

Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PLACEMENT ALGORITHMS AND APPLICATIONS

TO VLSI DESIGN

by

C-K. Cheng

Memorandum No. UCB/ERL M84/40

16 May 1984

PLACEMENT ALGORITHMS AND APPLICATIONS TO VLSI DESIGN

by

C-K. Cheng

Memorandum No. UCB/ERL M84/40

16 May 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Placement Algorithms and Applications to VLSI Design

By

Chung-Kuan Cheng

B.S. (National Taiwan University) 1976
M.S. (National Taiwan University) 1978

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Engineering

in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

Approved: .j&ta+rrr. '/..<..- A':.: J. w~ <..\L.°./.
lirman .i <~v / Date

• • • ^xf^" • • • ^r • • • • •

Cid^ii^-?—-. &.: .{?.**&. X/m/j?4/.

Placement Algorithms and Applications to VLSI Design

Ph.D. Chung-Kuan Cheng EECS Dept.

Signature: fa
Committee Chairman

ABSTRACT

With the advent of VLSI technology, the number of com

ponents in a chip becomes very large. In view of the growing com

plexity of the chip and the need for fast turnaround time, the

importance of automatic layout is quite obvious.

While there are many effective and efficient wiring algorithms

currently available which have been used extensively, more work

need to be done in partitioning and placement. This dissertation

deals with theoretical study of partitioning and placement and the

implementation of algorithms for chip design.

There currently exist three basic strategies for automatic

chip layout, namely: the standard-cell, the gate-array, and the

building-block custom chip.

We will demonstrate that the placement problem can be

transformed to a network optimization problem. Based on the

sparsity of the network, an efficient algorithm has been developed

which is capable of solving the constructive placement problem.

The algorithm has been extended to assign components of

different width into a row based on the row-type chip design such

as the standard-cell and gate-array systems.

While the building-block custom chip system includes irregu

lar sized and shaped components, a reduction process has been

developed to tackle the overlapping problem. This process minim

izes the chip area, but still maintains the original relative positions

among the components. However, it allows rotation and flipping of

modules.

Finally, an investigation of the placement problem in terms of

different objective functions is explored. In linear placement, the

sum of the wiring lengths, the sum of the squared lengths and the

number of tracks required are used for comparison. Based on the

max-flow min-cut method, an efficient algorithm for linear place

ment has been developed. It is shown that the method generates

the best results in terms of the sum of the wire lengths, whereas

the network optimization method achieves the best results in

terms of the sum of squared lengths.

II

Acknowledgement

I am deeply grateful to my thesis advisor, Prof. Ernest Kuh, for his patience,

guidance and support. Working under him has been a most rewarding experi

ence. In addition, 1would like to thank Prof. T.C. Hu for his encouragement and

advice on linear placement. Prof. A.R. Newton and Prof. W.G. Bade were also

very helpful to me.

I am indebted to Dr. Jerry Lee for his encouragement and advice. Dr. B.S.

Ting and Dr. B.N Tien of Hughes Aircraft strongly supported this project.

I would also like to thank C.C. Chen, and most particularly Dr. M. Marek-

Sadowska, for many interesting and enlightening discussions. Also to be

credited on this account are my colleagues T. Tarng, H. Chen, W.M. Dai, X.M Xiong

and S.H. Lin. In providing an environment for implementation, J.T. Li and M.

Turner worked diligently and with great skill on the BAGEL system. My friend

C.L. DeMarco gave me much encouragement and advice throughout.

For their constant encouragement and faith, 1 am very grateful to my

parents. Finally, I am most indebted to my wife, Chuan-Ying, for her continued

faith and love.

Table of Contents

Abstract i

Acknowledgement 1

Table of Contents 2

1 Introduction 5

2 Placement Based on Resistive Network Optimization 13

2.1 Introduction 13

2.2 Formulation of the approach 14

2.2.1 Objective function 14

2.2.2 Network analogy 16

2.2.3 Boundary constraints 17

2.2.4 Slot constraints 19

2.3 Proposed method 20

2.3.1 Optimization 21

2.3.2 Scaling 23

2.3.3 Relaxation 25

2.3.4 Partitioning and assignment 27

2.4 Discussion 28

2.4.1 Multi-module nets 28

2.4.2 Computation complexity 28

2.4.3 Experimental results 29

2.5 Conclusion 37

3

3 Gate-Array and Standard-Cell placements 39

3.1 Introduction 39

3.2 Formulation of the approach 42

3.2.1 Objective function 42

3.2.2 Network analogy 44

3.2.3 Slot constraints 47

3.3 Proposed method 47

3.3.1 Optimization 47

3.3.2 Scaling 49

3.3.3 Relaxation 50

3.3.4 Partitioning and merging 52

3.3.5 Assignment 53

3.4 Experimental results 56

3.5 Conclusion 60

4 Building Block Placement 61

4.1 Introduction 61

4.2 Formulation 62

4.3 Preliminary locations of the modules 65

4.4 Basic operations 65

4.4.1 Compaction 66

4.4.2 Decompaction 67

4.4.3 Rotation 73

4.4.4 Selection of preferable direction 74

4.5 Algorithms 75

4

4.5.1 Spacing 75

4.5.2 Reduction 76

4.6 Assignment 78

4.7 Experiments 79

4.8 Conclusion 82

5 Linear Placement 84

5.1 Introduction 84

5.2 Formulation 85

5.3 Theory 87

5.4 Parallel graph 96

5.4.1 Algorithm 97

5.4.2 Example 98

5.5 Arbitrary graph 101

5.5.1 Graph modification 101

5.5.2 Algorithm 107

5.5.3 Example 107

5.5.4 Theorems 109

5.6 Application 112

5.6.1 Multi-pin nets 113

5.6.2 Algorithm 116

5.6.3 Discussion 117

5.6.4 Experiments 117

5.7 Conclusion 119

References 121

Chapter 1

Introduction

1.1. IC Layout

With the rapid evolution of VLSI technology, the number of components in a

chip becomes large. In view of the growing density and complexity of the chip,

physical layout becomes critical to turnaround time of the design and the per

formance of the circuit. Not only an extra long design period causes the cost of

the product unreasonably high, but also an ill-designed layout might be fatal to

the whole chip. Thus, an effective and efficient automatic layout is in need for

the advancement of the integrated circuit technology.

Due to the tremendous complexity of the problem, layout system is usually

decomposed into two phases, namely, placement and routing. The placement

assigns the locations of the components on the chip. Based on the result of

placement, the routing tries to complete the connections among the com

ponents under the constraint of specified design rules. Different placement

results generate different connection patterns. Thus, the result of layout is

much dependent on the phase of placement.

"While there are now many effective and efficient routing algorithms avail

able which have been used extensively, more work must be done in partitioning

and placement. This thesis deals with theoretical study of placement and the

implementation of algorithms for chip design.

1.2. Placement problems

There are currently three basic structures for automatic chip layout.

namely: the standard-cell, the gate-array, and the building block custom chip.

Gate-array and standard-cell approaches have a regular structured chip.

The 10 pads are placed on the boundary of the chip, while the modules are

assigned to an array of rows inside the chip. Modules are assumed to have same

height but varying width. The routing area is embeded between the rows and

around the periphery of the array. This style significantly simplifies the design

process. In gate-array approach, the chips are preprocessed to establish the

transistor sites and, often, power and ground metallization as well. The chip size

and routing areas are therefore fixed. Thus, achieving 100% routability is one

objective for the layout. On the other hand, the standard-cell layout involves the

customization of all mask layers. This additional freedom permits variable chip

size and adjustable routing space between rows of active areas. Completing the

routing with smallest chip area becomes important.

Building block design style is sometimes referred to as the general cell or

macrocell approach. It is a popular approach for developing high density, high

production- volume integrated circuit chips. Thus the sizes and shapes of the

modules are irregular. No geometry or size limitation apart from yield con

siderations is put on the cell layout. The building block layout is to achieve 100/t

routability while keeping the chip size as small as possible.

1.3. Review of placement

1.3.1. Objective function

The placement results are input to the routing phase where all the nets are

routed. The size of routing areas are finally determined in the stage of routing.

Because of the tremendous complexity of the combined problem, placement and

routing are usually separated as independent procedures. In placement.

however, some of this complexity remains: the estimation of the exact sizes of

routing areas can become very complicated. Therefore, the goal related to

minimizing routing spaces has to be simplified so that the objective function is

easy to enumerate on the computer. In the literature, the sum of wire lengths is

commonly used as the objective function for placement.

One the other hand we prefer strongly-connected modules to be near each

other to improve circuit performance. Otherwise, a long connection wire might

cause signal to delay more than a tolerable range. We choose the sum of

squared wire lengths as the objective function, since a small sum leads to both

the chip size minimization and delay time reduction. With this objective func

tion, the placement problem can be transformed into a network optimization

problem.

1.3.2. Placement algorithms

The algorithms for placement can be divided into two categories: construc

tive placement and iterative improvement of placement.

A. Constructive placement

One constructive algorithm is the clustering method. Initially, some

modules are placed on the chip as seeds. The unplaced modules are then put on

the chip sequentially. In each step, the module with the maximal connection to

the placed modules is taken from unplaced modules. It is assigned to the posi

tion so that the lengths of connections is minimal. This process is repeated until

all modules are placed.

Another algorithm is the top-down approach based on bipartitioning. The

algorithm used is a minimal cut method such as the Kernighan and Lin's. Given

B

a cut-line which partitions the chip into two, the modules are iteratively

exchanged between the two sides to minimize the number of crossing wires on

the cut-line. Then each subregion is partitioned again into smaller subregions.

The procedure continues until each subregion contains only one of the

prescribed modules.

Both clustering and bipartitioning algorithms are greedy in the sense that

they try to achieve the local optimal in each step, but does not view the problem

globally. Quinn and Breuer introduced a force-directed method. In their formu

lation, point modules are assumed, and a force-model is used to determined the

state of equilibrium. Hook's law gives the forces of attraction for modules con

nected by signal nets, and repulsive forces are used to keep modules apart for

those which are not connected. This method leads to a good initial placement.

However, the algorithm amounts to solving a large set of nonlinear equations ,

which is time consuming.

B. Iterative improvement of placement

The purpose of this phase is to improve the placement by applying small

local changes, such as the pair-wise exchange of modules. Goto, who used the

concept of the medium of a module, suggested a multi-way exchange iterative

improvement method. This method has better performance than the traditional

pair-wise exchange method. But. it often leads to a local minimum solution.

Kirkpatrick introduced a thermal annealing concept to avoid the problem of

trapping in the local minimum. The method simulates the physical thermal

annealing process, which starts with an appropriately chosen high temperature.

Pair of modules are randomly chosen to be exchanged. The difference of objec

tive function is checked with respect to the exchange. According to the tern-

9

perature, a probabilistic model is set to determine a threshold. The exchange of

the pair is accepted if the difference of objective function is smaller than the

threshold. The exchanges are repeated and the user gradually decreases the

temperature until no more improvements can be obtained. During the process,

a large number of different pairs of modules is tested for exchange. Therefore,

it consumes a great amount of CPU time.

1.4. Resistive network optimization

As the number of modules becomes larger, a global view of the problem

becomes more important. At the same time, the computational complexity of

the algorithm should be kept as low as possible. Otherwise, a large amount of

CPU running time would prohibit the implementation of the system.

In this thesis, we propose a constructive placement method. First, we sim

plify the problem by assuming that all modules are of same size and shape.

Thus, the model of point module is assumed. Let slots be the fixed locations for

modules to be assigned. The objective function is the sum of squared wire

lengths. The placement problem is transformed into the problem of minimizing

the power dissipation of a resistive network. The constraint of the slots is for

mulated in terms of a number of polynomial equations. In optimization, the first

order constraint is chosen to simplify the problem. This amounts to keeping the

center of gravity of modules at the center of the region. With network theory

and optimization techniques, the optimal locations of modules are easily

obtained.

Since only the linear constraint equation is used in optimization, the place

ment is more or less confined to the center of the region. Therefore, a scaling

and relaxation scheme is proposed to spread the modules so obtained to the

10

entire region. Then, a partitioning process is used to put the modules into

different subregions. The partitioning process continues until each subregion

contains only one module.

From several experiments conducted, the method is shown to generate

excellent placement results. Since the corresponding network inherits the spar-

sity of the placement problem, the method is very time efficient with the aid of

sparse matrix techniques.

1.5. Standard-cell and gate-array placements

The network optimization method is first implemented in standard-cell and

gate-array placement. In the partitioning, the sums of the sizes of the modules

are checked on the two sides of a dividing line to even out the distribution of the

modules over the chip area. After modules are partitioned into rows, a decom

paction process is used to separate the overlapping modules.

1.6. Building block placement

The network optimization is extended to find the relative locations of

modules in building block placement. Modules of rectangular circuit blocks are

categorized into two types. The modules which have width or height greater

than a certain threshold value are classified as critical module. After network

optimization, critical modules are placed first. Then, other modules are relo

cated in the free spaces left by critical modules. A spacing algorithm is used to

separate the overlapping modules by the operations of compaction, decompac

tion and rotation. In each iteration, the decompaction operation slides modules

back toward the original locations to avoid overlap. Thus, the original relative

locations are maintained during the process. The reduction algorithm is then

applied to reduce the chip size. The algorithm reduces the breadth of chip in

11

each iteration and calls for repeated use of the spacing algorithm until no more

reductions can be made.

1.7. linear placement

In order to have a fully automatic layout system, the optimum placement

ultimately means ease in routing. We need to compare different criteria used in

placement. Thus, an investigation of the placement problem in terms of various

objective functions is explored. In linear placement, the sum of wiring lengths,

the sum of squared lengths and the number of tracks required are used for com

parison.

Algorithms for linear placement are developed to minimize the sum of

lengths. Two criteria, max-flow min-cut, and a cost ratio, are used to make par

titions of the optimal order of the modules. The algorithm decomposes the

modules into smaller subregions. This process is repeated until each subregion

contains only one module.

It is shown that the linear placement method generates the best results in

terms of the sum of the wire lengths, whereas the network optimization method

achieves the best results in terms of the sum of squared lengths.

l.B. Thesis overview

The network optimization method is described in Chapter 2. Its extensions

to standard-cell and gate-array are discussed in Chapter 3. Chapter 4 deals with

the building block placement. The spacing and reduction algorithms which

separate the modules and reduce the chip size are described. Finally, Chapter f>

describes the properties of linear placement and introduces two new algorithms.

The proposed method and network optimization method are compared with

12

published results in terms of the sum of wiring lengths, the sum of squared

lengths, and the number of tracks required.

All algorithms described have been implemented in C programming

language and several examples obtained from industry have been used to test

the algorithms. The results are far superior than the manual placements.

Chapter 2

Placement Based on Resistive Network Optimization

2.1. Introduction

The force-directed method introduced by Quinn and Breuer is a good con

structive placement method which leads to initial placement! l]. In their formu

lation, point modules are assumed, and a force-model is used to determine the

state of equilibrium. Hook's Law gives the forces of attraction for modules con

nected by signal nets, and repulsive forces are used to keep modules apart for

those which are not connected. The algorithm amounts to solving a large set of

nonlinear equations, which is time consuming. An improvement has been pro

posed by Antreich, Johnnes and Kirsch using the same force-directed method

but with a more systematic formulation of equations[2].

In this Chapter we propose a more efficient method based on resistive net

work analogy of the placement problem. The idea of using network analogy to

attack layout problems was first introduced by Charney and Plato[3]. They pro

posed a method of module clustering according to the sensitivity of a network

analogy for the purpose of partitioning. In the Chapter, we first solve the

optimum placement problem in a systematic way by network analogy. The gen

eral formulation of the problem of placing modules on slots involves optimiza

tion with nonlinear constraints. However, if only the linear constraints are con

sidered, the problem amounts to solving a linear sparse resistive network. Thus,

sparse matrix techniques can be used. Because of its computational efficiency,

the procedure is repeated in the overall algorithm of partitioning and module

assignment. In the formulation, a key feature is that we allow some modules to

be fixed in position. Fixed modules could represent 1-0 pads; but they also play

an important role in solving each optimization problem in succession in the

overall algorithm.

13

14

In section 2 we give a detailed formulation of our approach to the problem.

Section 3 is divided into subsections of optimization, scaling, relaxation, and

partitioning and assignment. Section 4 briefly discusses the problem of multi-

module nets, the computation complexity and experimental results.

2.2. Formulation of the approach

Consider the module placement problem in chip layout. With reference to

Fig. 1 where movable modules together with fixed modules represent 1-0 pads

are shown. The movable modules are to be placed on slots where horizontal and

vertical lines intersect. The net interconnection specification is given by a net

list relating nets and modules. We assume first that all nets are 2-module nets

and multi-module nets have been preprocessed and replaced with 2-module

nets[4]. Furthermore, all modules are assumed to have zero dimension, thus

their shape, size and pin locations are initially ignored.

2.2.1. Objective function

Let the two dimensions on the chip be specified by the x and y coordinates.

Let there be a total of n modules located at fe.yi), i=l,2,...,n. Let c denote the

connectivity between module i and module j, i.e., the number of wires between

them. Thus c..=0. In the literature, the objective function used for placement is

usually the sum of wire lengths. However, because of network analogy, we choose

an objective function which is the sum of squared wire lengths. Let the objective

function be given by:

a

o

Q o o a D

D

D

IS

. a q a d a

Fig. 2.1. An example with movable modules to be placed on slots within the

square and fixed modules on the boundary representing 1-0 pads.

where !», is the Euclidean distance betweenmodule i and module j. Equation (1)

can be written as folIows[5]:

=££<**?- £ te«*i*i+ttevV?- £ t^ViVi
i«l.i!«/ j»\ i«lj«l inl.i>nj jm\

=*TBr + jyTBff (2)

16

where

B = D -C (3)

is an nxn symmetric matrix, C = [c-:] is the connectivity matrix and D is a diago-

n

nal matrix whose i-th element d- is equal to 2 cy•

With the symmetry between x and y in Eq. (l), we need to consider only the

one-dimension problem insofar as optimization is concerned. Thus we dispense

with the y coordinate until the end of Sec. 3 where we discuss partitioning and

assignment.

2.2.2. Network analogy

For those who are familiar with circuit theory, B in Eq. (3) is seen to be of

the same form as the indefinite admittance matrix of an n-terminal linear pas

sive resistive network. We will model the coordinate of module i, X: with a node

voltage v. at node i. The reference coordinate x=0 is thus the datum voltage. The

term -c^- in Eq. (3) is then the mutual admittance between node i and node j, and

d-.= 2Jc\j ls the self admittance at node i.

The power dissipation in the resistive network is

P = vTYnv (4)

where v is an n-vector representing the node voltage vector and Y is the

indefinite admittance matrix which is symmetric. Thus the objective function of

the placement problem becomes the power dissipation in the linear passive

resistive network. It is well-known that in a passive resistive network the

current distributes itself in such a way that the power is minimum[6]. That is,

any other current distributions which are not the solution of the network would

have a larger power dissipation. In other words, the problem of solving network

equations is equivalent to that of minimizing a well-selected function which

17

represents power.

2.2.3. Boundary constraints

Consider the n-terminal resistive network shown in Fig. 2.2. The first m

nodes are floating and their voltages are denoted by an m-vector v.. The

remaining n-m nodes are connected to voltage sources denoted by an (n-m)-

vector v2. Thus the coordinates of the n modules are represented by an n-

vector v = \u2 where the coordinates of the fixed modules are specified by vg and

the coordinates of the movable modules which are to be determined are

represented by vx.

I »

2*

m •-

Linear
(I) Passive

Resistive
Network

(2)

IB

m+l

m+2

n

©©©

Fig. 2.2. An n-terminal linear, passive resistive network whose first m nodes

are floating and the remaining n-m nodes are connected to voltage

sources.

The network equations are:

0 = ViiVi + yi2V2 (5a)

i8 = y2iVi +V22V2 (5b)

where yn, Viz=V?i and yzz are the familiar short-circuit admittance sub-

matrices of the indefinite admittance matrix, Y . From (4b), we obtain

v\ = -VnyizVz (6)

which gives the solution of the movable modules in terms of the fixed modules

and the admittance submatrices.

19

Remarks

(1) Vii is the short circuit driving-point admittance submatrix of a passive

resistive network and is positive definite; thus y{f always exists.

(2) The solution of Eq. (6) must fall inside the region defined by the smallest

and largest voltages of the voltage sources. This is because in a passive

resistive network, node voltage can not lie outside the range of voltage

sources[6].

(3) The dissipated power obtained from the solution in Eq. (6) is the minimum

among all possible v1. Any deviation from the solution will result in an

increase in power.

2.2.4. Slot constraints

Up to now we have not imposed the constraint that the movable modules

must be located on slots. This means that the voltage vector v- when finally

determined must represent a set of prescribed discrete voltages called the legal

values. Let us designate the prescribed slots in terms of the permutation vector

P=[Pi'Pz-»*Pm] wherept is the i-th legal value and m is the total number of the

movable modules. Thus the permutation of the m legal values must be assigned

to the m modules of v%. To express this in terms of our optimization problem,

let v1=[r1,x2,...,a:m]1, i.e., Zj denotes the coordinate of module i or the voltage at

node i. We claim that the following set of equations represents the constraints

on the modules which are required to be on slots:

£* =£pi
i=l i=l

i=l t=l

2*r = 2pr
i=l i=l

20

The first equation can be written as

where 1 is a unit vector and d is a constant which is equal to the sum of the m

legal values.

Proof:

=> Let [xj.Xg xm] equal to any permutation of [pi.Pg PmL Eq. (7) is

automatically satisfied.

<= Let us define

Then the coefficients of the variable x are multi-variable polynomials of

[xj,x2 xm]. Through simple algebraic operations[7] and by using Eq. (7),

we can show that

/(x)=ft[r+A)
which implies that all modules are on slots.

Q.E.D.

2.3. Proposed method

The proposed method can be divided into subproblems of optimization, scal

ing, relaxation, and partitioning and assignment. The main idea is to solve a

simple optimization problem using linear resistive network analogy repeatedly

and, in the process, the movable modules are assigned to slots. We shall use

node voltages and module coordinates interchangeably in the ensuing discus

sion, for sometimes it is more intuitive to make statements in terms of voltages:

while in dealing with the actual placement problem it is more convenient to use

the coordinates.

21

2.3.1. Optimization

From Eqs. (4) and (5), we wish to minimize the power dissipation

n r1, 2\yz\y?2
^1 - ViVnVi + 2vf2/12v2 + vly2zvz (9)

subject to the complete set of constraint equations in Eq. (7). This is clearly not

feasible. Therefore, we propose to use only the first equation in Eq. (7), which is

a linear constraint expressed by Eq. (8).

The solution to the optimization problem of minimizing P in Eq. (9) subject

to the linear constraint in Eq. (8) is derived from the well-known Kuhn-Tucker

conditions. The first order necessary conditions, in addition to the constraints

are

2y11v1+2y12v2+Xl = 0 (10a)

1TV! = d (10b)

where X is the so called Lagrange multiplier. The solution of the above simul

taneous equations is

Vi =2/n[-3/22V2+iij (Ha)
where

11 = 1'yrfl * (Hb)
With respect to the second order conditions, we find the Hessian matrix is equal

to 2^/]i which is positive definite. Thus the solution is optimal.

It is seen that the first term in Eq. (lla) is precisely that given by Eq. (6)

for which there is no constraint on slots. The second term of Eq. (lla) can be

viewed as a correction term which attempts to put the solution on slots. In

terms of electric network, we may use current sources to interpret the effect as

shown in Fig. 2.3. Thus we have a linear resistive network with both voltage and

current sources. In addition, we know that the network is sparse because of the

22

inherent nature of the placement problem. Using well-known sparse matrix algo

rithms, we can greatly reduce the computation time in comparison with those

that use attraction and repulsion forces[1,2].

m

©0©

Linear
(I) Passive

Resistive
Network

(2)

m+l

m+2

©©©

Fig. 2.3. Network interpretation of the optimization problem with linear

constraints.

As mentioned previously, because only the linear constraint equation is

used, the solution will not put modules on slots. As a matter of fact the result

will lead to modules more or less confined to the center of the region. Therefore

we must introduce ways to spread the modules so obtained apart and then to

bring them to the legal positions. Thus the next step in our overall method is

scaling which will distribute the solution more evenly over the entire region.

However, let us first analyze the effect of module movements to changes in

power dissipation. Let us assume that we deviate away from the solution vl of

23

Eq. (11) by dvi under the constraint of Eq. (8), i.e.

lr^i = 0 (12)

We claim that the power dissipation is increased by

6vfyu6vv

Proof:

From equation (9), we have

LP = /7(vi+6i/1)-/?(v1) = Z6v\ynvx + 6v\yn6vl + Z6v\y^z

From equation (11),

yizvz = -ynvx +ix

and using Eq. (12), we obtain

LP = 6vlyn6vi
Q.E.D.

Furthermore, it is possible to derive an upper bound on the increase in

power dissipation in terms of yu, the largest diagonal element in yu- From the

Theorem of Gerschgorin[8], we know that the eigenvalues of yn are not larger

than 2yjj, then

AP = tojynfoi * Ivnl I*«118 * 2l/*2*'t8 03)

Therefore the increase in power dissipation has an upper bound which is propor

tional to the norm of the deviation 6vx.

2.3.2. Scaling

The result of the optimization with linear constraint leads to solutions which

have movable modules concentrated at the center of gravity of all modules. The

linear constraint dictates the mean position of the modules. The only forces

which attempt to scatter the modules are the fixed modules at the boundary.

Therefore, in order to be able to partition the modules we will introduce scaling

24

to redistribute the modules at the expense of increasing the power dissipation.

The method used here is to minimize the increase of power LP under the con

straints which include both the first order and second order equations in Eq. (7).

Fortunately, by using the norm of 6vx in Eq. (13), we again can resort to the

well-known Kuhn-Tucker conditions.

Let us assume that in the region where there are k modules the legal values

are given by the permutation vector [pi,P2.....p*]. Let x-0=[x„i,xoZ xok] denote

the solution obtained from optimization and let x^=[xni,xnZ a:,*] denote the

new solution after scaling. Thus our problem is to minimize

under the constraints

and

where

'n = j. 2^Vi

2

On =

2 k« ~*ei]'

LiXni = 2-Pi
isi i=l

£ *& =£p?

04)

05)

(16)
tal t=l

The solution is derived from the Kuhn-Tucker conditions. The first order

necessary condition is

2^-*b]+\,l+2X22n =0 (17)
In addition to the constraints of Eq. (15) and Eq. (16), the solution is

Fori=l,2,...,k

08)

(19)

(20)

and

-fi

25

k<-,*oi (21)
"•t=i

a,, = £-fih-c')! (22)

Thus cQ is the mean position of the computed module positions and a is the

root mean square amplitude measured from c .

With respect to the Kuhn-Tucker second order conditions, we find the Hes-

sian matrix is equal to 2—/ where 1 is an identity matrix. Where a0>0, the Hes-

sian matrix is positive definite. The solution is optimal. If a turns out to be

very small which approaches zero, so does xoi—c0 in Eq. (18); then Eq. (18) must

be replaced by

n - cn (23)

After scaling the norm of deviation becomes

2^ -xoi]Z =A^-a^+Jcn-Co)2]. (24)
The result of scaling represents an improvement from the result of optimization

as far as module location is concerned, but it gives an increase in power dissipa

tion.

2.3.3. Relaxation

Before undertaking partitioning and assigning of modules to slots, we need

to perform relaxation to be described below. This will greatly improve the prel

iminary results from optimization and scaling. The method calls for repeated

use of scaling and optimization over subregions to be specified by designers.

This tends to spread the modules out more evenly over the entire region. It is

important to note that when a pertinent subregion is considered, modules out

side are always kept fixed.

26

We propose to choose subregions in the following way: First we start from

one end of the region, then the other end and, finally, the middle. After the ini

tial optimization over the entire region, three such steps of scaling and optimi

zation over subregions are carried out. The result tends to settle down and is

ready for partitioning. Thus we have as

Input:

A one-dimensional region with coordinates of movable modules xlt

i=l,2,...,m obtained from initial optimization in the entire region with

specified fixed modules Xj, i=m+l,m+2 n on the boundary. A parameter 0

is to be chosen by the designer with 0</?<50%.

Relaxation:

(1) Order the modules from left to right according to coordinates with the

smallest one first.

(2) Choose (Pmlt modules from the left, let other modules be fixed and do scal

ing in the left /? region.

(3) Fix the modules so determined in the left /? region and release the modules

in the right (1-0) region. Do optimization.

(4) Choose f/Sm] modules from the right, let other modules be fixed and do scal

ing in the right /? region.

(5) Fix the modules in the right /9 region and release the modules in the left (l-

/?) region. Do optimization.

(6) Choose FjSml modules from the left, let other modules be fixed and do scaling

in the left £ region.

(7) Set modules in both the left /? region and the right /? region fixed and

release the modules in the center subregion. Do optimization,

t Del means the smallest integerwhich is larger than k.

27

Output:

A one-dimensional region with m modules and new coordinates xit

i=l,2 m.

2.3.4. Partitioning and Assignment

We next partition the region into two. The ratio of the left subregion to the

right subregion is [m/2|/fm/2i where [kj denotes the largest integer which is

smaller than k. We do scaling once more for the left subregion and then for the

right subregion. As before, in scaling for a subregion we always keep those

modules outside fixed. The result of this gives two partitioned subregions

together with their associated modules. We next repeat the process for each

subregion, i.e., perform independently for each subregion, optimization, relaxa

tion and partitioning.

In the following we will reinstate the y coordinate to summarize the 2-

dimensional partitioning and assignment problem.

Input:

A 2-dimensional region to be partitioned into rectangles each containing a

module, a set of m movable modules together with their coordinates and a

set of n-m fixed modules.

Assignment:

(1) Do optimization on both the x coordinate and the y coordinate of the mov

able modules.

(2) While each region contains more than one module

Do

Choose the direction of the cut-line.

Cut the longer side of region.

28

list all current regions.

For each region do partitioning.

(3) For each region, assign the module to the legal value.

2.4. Discussion

2.4.1. Multi-module nets

As mentioned in the introduction section, we assume that all nets are 2-

module nets in our treatment. Since multi-module nets are always present, we

use the following two models to deal with them:

(1) At the beginning we use a clique to simulate a multi-module net. If there

are r modules in a net, the weight of each edge on the clique is 2/r.

(2) After the relative module position is determined, we use a chain to connect

the modules. Consider the x direction, we order the modules according to

their coordinates; we then link the modules by a chain in this order.

In the experiments to be discussed in 4.3, the lengths of wires are meas

ured according to the model in (2) in x and y directions, respectively.

2.4.2. Computation complexity

The optimization algorithm amounts to a linear resistive network computa

tion. Using sparse matrix technique, we have the computation complexity

0(m ') where m is the number of movable modules. The scaling operation is

linear with k where k is the number of modules in a subregion.

As to partitioning and assignment, in each iteration, all current regions are

divided into two subregions. It takes loggn iterations to make all the necessary

divisions. Thus the total complexity is 0(n1*4log2n).

29

2.4.3. Experimental results

A 20 module example is designed to illustrate the procedure of our algo

rithm. As shown in Fig. 2.7, four modules are fixed on the four corners of the

chip, and in the optimal placement every module is connected to the neighbor

ing modules only. Figs. 2.4~2.7 illustrate how module locations evolve from the

initial placement onto slots. In the figures, module positions are indicated by

points with module numbers. The connectivity among modules is represented

by linking lines.

xl9

xl8

squared length » 17.629627
Manhattan length = 25.4815

30

Fig. 2.4. Result of assignment step (l) of the 20 module example. The

module positions are optimal under the constraint that the center of

gravity of the modules is at the center of the chip.

xl9

squared length
Manhattan length

^JLC -x!8

28.721426

31.8012

31

Fig. 2.5. Result of first level partitioning and scaling after relaxation is car

ried out in the vertical direction.

xl9

squared length
Manhattan length

xl8

27.540583

29.6487

Fig. 2.6. Result of second level partitioning and scaling.

32

xl9

111.

k8

«4

x!6 K0

xl3 x!4 xl5

k9 *ie _Kll

*6 K?

Kl <2 <3

*17

squared length = 28
Manhattan length = 28

_xl8

Fig. 2.7. A 20-module placement problem with 4 fixed modules specified.

33

* Fig. 2.4 is the result of initial optimization. The module positions arc

optimal under the constraint that the center of gravity of the modules is at the

center of the chip. Relaxation is next carried out and the modules spread out

over the entire region in the vertical direction. Next partitioning and scaling are

used to relocate the modules into two subregions as shown in Fig. 2.5. Fig. 2.6 is

the result of second level of optimization, relaxation and partitioning using a

vertical cut-line; hence, module spread out in the horizontal direction. Fig. 2.7

34

is the solution of the final assignment. It is seen that all modules are located on

slots.

To evaluate the effectiveness of our method, we use the example given by

Steinberg[5,9]. However, because we always assume that there exist fixed

modules in our formulation, we modified Steinberg's example by fixing the posi

tion of the two modules (34 and 26 shown in Fig. 2.9) in the bottom row. In relax

ation, we tried different values of /9 to compare the results. These are shown in

Fig. 2.8 where we plot the sum of the squared length for different values of 0. It

is clear that /?=0 implies no relaxation. The placement for 0=0.125 which leads

to the smallest squared wire length is shown in Fig. 2.9. This 34 modules, 172

nets example took 13.1 seconds of cpu time and 169K memory on VAX 11/780

machine. For comparison with Steinberg and Hall, we also calculated the sum of

the Manhattan length and the sum of Euclidean length. The Table 2.1 summar

izes the comparison.

10,000

^ 9800
g» 9600
3 9400

9200

9000

8800

8600

8400

O
3
or

35

0.0 0.1 0.2 0.3 0.4 0.5

Fig. 2.8. Result on Steinberg's example, with different values of § in relaxa

tion.

9 2

16 8 3 17

10 4 18 5

1 7 13 6

15 20 1 1 12

28 19 14 27

32 29 23 21

33 30 22 25

34 31 24 26

Squared length 6596
Manhattan length 5316
Euclidean length 4358.36

Fig. 2.9. Result on Steinberg's example, with /? equal to 0.125.

36

Measure Steinberg Hall Cheng-Kuh

Squared length 11875 9699 8596

Manhattan length N.A. 5139 5316

Euclidean length 4894.54 4419.13 435B.36

37

Table2.1. Example 1: Steinberg's example

As a second example we use the ILLJAC IV PC Board problem given by

Stevens[lO]. Again we fix the 10 Pads according to the placement result of Quinn

and Breuer[l]. The result with /?=0.25 is given in the Table 2.2 together with

those of Stevens and, Quinn and Breuer. This 136 modules, 432 nets example

took 104.2 seconds of cpu time and 480K memory on VAX 11/780 machine.

Measure Stevens Quinn and Breuer Cheng-Kuh

Squared length N.A. 8794 7521

Manhattan length 2733 2558 2495

Table2.2. Example 2: Placement of 1LUAC IV Board IC136.

In both examples it is seen that in terms of our chosen objective function,

Le., the sum of squared length, our method yielded the best results by far.

2.5. Conclusion

The module placement problem has been formulated in terms of linear

resistive network optimization. The objective function used is the sum of

38

squared wire length which corresponds to power dissipation in the resistive net

work. Fixed modules become nodes with constant voltages. Movable modules

then correspond to nodes whose voltages are to be determined. Since modules

must be put on slots, a set of constraint equations are imposed on the modules.

We consider only the first order linear constraint which, in essence, fixes the

center of gravity of the movable modules. The optimization calculation can thus

take advantage of the sparse matrix technique, and is repeated in the over-all

algorithm. To assign modules to slots, we need to perform scaling, relaxation,

partitioning and assignment. These comprise the over-all algorithm.

We have tried our method on well-known examples and compared our

results with other methods. So far, we always obtain the least squared wire

length as we expected. The extensions to gate-array , standard-cell, and build

ing block designs will be discussed in the next two Chapters.

Chapter 3

Gate-Array and Standard-Cell Placements

3.1. Introduction

Gate-array and standard-cell designs are now widely used for automatic lay

out of VLSI circuits. In these approaches, the designs of basic circuit

configurations (modules) are stored in a library. A typical chip structure is

shown in Fig. 3.1. The 10 pads are placed on the boundary of the chip, while the

modules are assigned to rows inside the chip. Modules are assumed to have

same height but varying width. The rectangular areas between rows are used for

routing. This style significantly simplifies the design process. Often there are

hundreds of modules on a chip. In such systems, automatic placement plays the

important role of ensuring all modules are at their legal locations and further

more achieving 100% routability.

In gate-array approach, rows of transistors are preprocessed. The chip size

and routing areas are therefore fixed. In standard-cell, chip size and routing

areas are adjustable. Thus, routing is different for these two systems. However,

the formulation of placement problem is similar. Consequently, our placement

algorithm is developed for both gate-array and standard-cell designs.

In this chapter, we extend the network optimization method to gate-array

and standard-cell placement problems. The placement combined with a global

routing systemfll] and Yoshimura and Kuh's channel router[l2] represents the

major components of the Berkeley Automatic Gate-Array Layout System

(Bagel)[l3].

Since the modules have varying width, we have to consider the size of the

modules in distributing them over the chip. Also, since pin locations can be far

from the center of the module, we must modify our model of point modules pre-

39

40

viously used. Finally, in the assignment algorithm, we introduce a decompaction

process to separate overlapping modules.

In section 2 we give a detailed formulation of our approach to the problem.

Section 3 describes the extension of the network optimization method in gate-

array and standard-cell approaches. Decompaction is also described in the

assignment algorithm. Finally, we demonstrate the test results on 2K and 4K

gate-array examples.

t s : s t * jp-f * * *
»"it u I! I [[111! *Ii II iTFI i.i 11

'•-iiuiiuiriLiiriiiiruWirL

vVi'iil til [Till'' luiTinifOIH

< i k l t L-l k l t M U ' fcfctkktlfct'v t t »

LiwrriiKDiri^.rrTTvrrTTT'Mr

" >r r r rtt r*r rTrTT [inriTiiiin
,» I I l | I i l • I I I I r i | VI | i i | | | | ih

J <»i»%%UU »•>•«•»• v.^<«. . i»*»*»>»'»>•>»*» W»»»W«
..f r j r 11 r iiT'if I »• rivf i ninny i
/ % i i i I i i I i t i l L • k k.k i k i I'd i i U«. I

9Xri»rrn 1H| rrr .. rrTi7T''*fnnirju
'ji'ii Li.aa>LJ.l til t kiiLi i.iiULi ill

•/liiTiiiTfoirinuivirnroiTin
IUTfTTTi f*f*rrT ,; ' rjifjrifnTiiT rt * rrrrr rrryu j»c 4 rt rrri.rr rrr \ r\\JI I'll I I 11 I I ill 4 III UlUMJ. I lill •fllUllUllllV LlU.Ll tt l.LLl I l.^i

rnnn rrrrr »• rr r n r? r rrniriV;
11.1 LI l l II I 11*: III i li 11 III ili •!;

dri'Tim r r r r r r' ffr'ffnrTnM
<l Llll ll III 1.1 I LlllLlHLllllL'

>l Llll Li il li 11 «• iVij.llLLlluJ'M

j
;t.r r r r r r itututt i rirTtr7trvfnrT»T rr

••'•. li 1i111 i u i 1.1 t u 111i UJi i lu I

•,.r f r f r r r r rjif f r ., r rfifi»fT.-tirjirfir
• I LI I I I III t LI I * II ILL I 1'U I l t I I

) Lllu.JJLU.LiJLJLy, l.P-111 llUll 1111

41

lUlllUlUrji tlllttllllllL!
tiTinLutUiVTinriTHirjir

UlIIlTiTiTiV awpmtrtiiHt
triuniTiriTP-iiTrcmriifliir

K[ii[iu iTlll ;| [iE!! KM If ITIUi i(TiM t [lEiTlLLLLl LI %•
:f!in.ir?i[!i[Ur[[T!f[ilB[i

. til lu it Li.u» , t t » t » t t.t i.t-t »..». •

.1.;.

ifrri riMiri rrr«; fi i ruff

•r rntTT'rri,'r«Tv rr^mrr nrrnr^
I lU.Ull.Uil L I "H k'l l. II. L.l.U_lJi. I '

'; yvr rrrTi-nr jarr 4 rrTirTTTmTiiTrri?TnrrTTrTiTiir-i rr r*r7irrrrrTTV
j' an i. i.iUli i ill- u in i.iiJiilu.liiilll.ii.1 mi iv U.n.Liil.LLii im,

iinri
LA.I I I >

•inn r r rnry»r * rr ryirM r rrrnr
ill Ui in 111 • ll nun ill ili

* rrr rr r rr r t r r i r rr r rr r r r r-r r r r u

i - f . j i ; | 4 i: «; t i

Fig. 3.1. An example with modules to be placed on rows within the chip and

fixed 10 pads on the boundary.

42

3.2. Formulation of the approach

We formulate the placement problem in gate-array and standard-cell chips

layout. Refer to Fig. 3.1 where array of rows together with slots on the boundary

for external 1-0 pads are shown. Given a set of modules, the modules have

different width, but the height of modules is set equal to the height of rows of

active areas. There are pins fixed on modules for the purpose of connection.

Let N be a set of nets describing the connection of pins and 1-0 pads. Placement

assigns modules on rows of active areas with the constraint that no module can

overlap each other. For each row, we denote the capacity to be the area avail

able for modules as shown in Fig. 3.2. We denote the size of the module to be the

area occupied by this module. As usual, we replace all multi-pin nets with two-

pin nets in the following formulation.

w

^—H

rW«/e 7

size of module i = zj, *H
Fig. 3.2. Illustration of the capacity of each row and the size of the module.

3.2.1. Objective function

We choose the sum of squared wire lengths to be the objective function.

Since the pin locations are considered, we formulate the function in terms of the

pin coordinate LPe^/fyl where i is the index of pin. Let c~ denote the

tivity between pin i and pin j. The objective function can be written as:

connec-

43

where (ij) is a pair of pin indices, and lij is the Euclidean distance between pin

i and pin j.

However, the locations of pins in Eq. (l) are constrainted with respect to

the locations of modules to which the pins belong (Fig. 3.3). Let m(i) be the

index of the module to which pin i belongs. In Fig. 3.3, the relative coordinate of

pin i with respect to the center of the module is (dx^cft/f). The pin location can

then be formulated by the coordinates of module center, (*m(i)»ym(t))-

For each pin i.

P*i =*m(t)+Qlsm(i)*d:ci
Py% = ym{i)+OymM*dyi (2)

In gate-array and standard-cell placements, the modules are not allowed to

rotate by ninety degrees. They can only be reflected with respect to the x or y

axis. In the above equation, (OXm{i)*Oym(i)) denotes the reflection status of

module m(i) in the x and y axes. The value of -1 indicating reflection and the

value of +1 indicating no reflection.

The above equation indicates that the objective function in Eq. (l) can be

formulated in terms of the coordinates of the module centers. Plugging Eq. (2)

into Eq. (1), we see that the objective function is then formulated in terms of the

coordinates of the module centers.

44

... 0
'V»!fi)

"*« Wt//e r»(i)
Fig. 3.3. Illustion of pin location with respect to module center.

3.2.2. Network analogy

In Chapter 2. the model of point module is used for modules of same shape

and size. Through network transformation, the point modules become the nodes

of the corresponding linear resistive network. In this section, the model of

modules is extended so that the distances between pin locations and module

centers are taken into consideration.

Suppose the orientations of modules are given. The distance between pin

and the center of the module is a constant. In the network analogy, we

transform coordinates to voltage values. Thus, the distance between pin and

module center is transformed to a branch voltage source between the

corresponding nodes. Fig. 3.4 illustrates this transformation. In Fig. 3.4a, we

have a module with three pins 1, 2 and 3, connected to modules 4, 5 and 6.

respectively. Point c is the center of the module. Fig. 3.4b is the corresponding

network of Fig. 3.4a. Pins and modules together with point c are transformed to

the nodes of the network. Connectivity is transformed to the conductance and

constraint of pin locations is transformed to the branch voltage sources.

Ihrough voltage transformation, we can shrink nodes 1, 2 and 3 to node c and

45

transform the branch voltage sources to the voltage sources on branches (1,4),

(2,5) and (3,6) as shown in Fig. 3.4c.

4 «*

5«*

4«*

4*

5-

14

'25

*I4

AAAr

'25

g 25

*l x 2 »c

J

(o)

V|C

♦ -

v3c
I 2fOfG

J V2C

(b)

V|C v3C

r2C

IC)

3*

*36

*36
•VyV-

46

'36
♦6

Fig. 3.4. Network model of a large module with given orientation and pin lo

cation:

(a) The module with three pins connected to other modules, c is the

cneter of the module.

(b) The network mode) of the module. Constraints on pin locations is

modeled by branch voltage sources.

(c) The network model after voltage transformation.

47

Thus, given n modules with pin locations on the modules, we have an anal

ogy of an n-node linear resistive network with nodes representing the modules

and branch voltage sources representing the constraint of pin locations.

Let G denote the branch conductance matrix. A the incidence matrix and

Eb the branch voltage sources[6]. Let us set v to be the voltage vector of nodes.

The power dissipation is now

P=[Eb +Atv} Tcfeb +ATv] (3)

3.2.3. Slot constraints

For network optimization, we can formulate the slot constraint in terms of

a number of polynomial equations. As in Chapter 2, we use the first order equa

tion only. The first order equation expresses the constraint of keeping the

center gravity of modules at the center of chip. Let tuj be the size of module i.

This constraint is now written as:

2iivixi/2^=Cx (4)
t=l i=\

where cx is the center of the region.

3.3. Proposed method

The network optimization is modified to deal with modules of different size

and the pin location constraints. A merging operation is introduced to improve

the result after partitioning. We also describe the decompaction in subsection

3.3.5.

3.3.1. Optimization

Decomposing the voltage vector into floating voltage vector Vj and the fixed

voltage sources vZl we have the following formula for the power dissipation.

P = EfGEb +vfyj,vi+2rfy izVZ+vzryzzv2+Eb GAjv, +£•<, GA\vz (5)

48

where 2/11,3/12,1/22 are the short-circuit submatrices of the indefinite admittance

matrix Y=AGAT. A\ and Az are the submatrices of A corresponding to vector vx

and vz.

We want to minimize the power dissipation subject to the constraints in Eq.

(4). Similar to the result of Chapter 2, we obtain the following results from the

well-known Kuhn-Tucker conditions:

v^Vo+Vnio (6a)

*• =yT\l\-y^z-AxGE^ (6b)
*g = T -x w (6c)

where w is a vector of elements ui^ and d is the constant to maintain the first

order constraint.

It is seen that that first term in Eq. (6a) represents the solution for which

there is no constraint on slots. The second term of Eq. (6a) can be viewed as a

correction term which attempts to align the solution on slots. In terms of elec

tric network, we may use current sources to interpret the effect. Thus we have a

linear resistive network with both voltage and current sources.

Any deviation from this solution can cause the power dissipation to

increase. Let us assume that we deviate away from the solution vx of Eq. (6) by

6vx under the constraint of Eq. (4), i.e.

wT6vx = 0 (7)

Then we claim that the power dissipation is increased by

j[6vTyntoi- (8)
Proof:

The proof is similar to the proof in subsection 2.2.1 except that the effect of

the branch voltages and sizes of modules are considered here. From equa

tion (5). we have

49

LP =Ppi+av,]-/^] =6vJyxx6vx+Zvlyxx6vx+26vlyx2vz+EbGAj6vx
From equation (6)

1/ll^l-^a)=^o
and using equation (7). we obtain

LP = 6vjyxx6vx

Q.E.D.

Therefore the increase in power dissipation has an upper bound which is

proportional to the norm of the deviation 6vx.

3.3.2. Scaling

The formulation of scaling in Chapter 2 is modified to take into account the

sizes of modules. Without lose of generality, we assume there are certain

number of legal locations for modules to be assigned in order to formulate the

mean position and root mean square amplitude of the desired module distribu

tion. Let us assume that in a region or a subregion, there are k modules with m

legal locations given by [pi.P2,...,Pm]- Let [xQX%xoZt...tx0t] denote the solution

obtained from optimization and let [xnXtxnZ%...,xnk'\ denote the new solution after

scaling. For simplicity, we minimize the following objective function

<«1 V
'J (S)

under the first and second order slot constraints

lX*nt LPi
i=l _ i=l

lX
m

t=i

and

(9)

ifr—= istr- (10)
i = l

The solution is given by the Kuhn-Tucker conditions, i.e. For i=l,2,...,k

where

and

'» =h£pi
*£i

On = £#*-'»)'
,V\Zo

e. = i^

i=l

a„ =

fXpta -c0f
i=i v '

Wi
t=i

Zni = Z °n + Cn

50

(")

(12)

(13)

(14)

(15)

where c is the mean position of the computed module positions and a is the

root mean square amplitude from c . If a approaches zero, so does *ci"cQ in Eq.

(11), and Eq. (11) can be replaced by

t = c„ (16)

It is easy to check that after scaling, the objective function in equation (8)

is equal to

^•[(an-Oo^+^n-Co)2] (17)

3.3.3. Relaxation

The result of relaxation, as described in Chapter 2, leads to modules more

or less confined to the center of the region. Therefore, relaxation scheme is

used to spread the modules to the whole region. The method calls for repeated

use of scaling and optimization over the subregions specified by designers.

Modules are selected to the subregions according to the order of their

51

coordinates. We try to make the total size of the selected modules equal the

capacity of the subregion. Since the sizes of modules are not uniform, total size

of the selected modules and the capacity of the subregion may not match. In

order to make the difference small, we develop a function to define the number

of modules to be selected. Let P be the capacity of the subregion. Let module i

be the critical module such that by adding this module the sum of selected

module sizes would increase from a value T to T + ui* where T < P ^ r+ui». If

P—T > T+Wi—P then we select module i. Otherwise it is not selected. Thus, the

difference is smaller than the size of the largest module. We define the number

of the selected modules by function f(P).

Thus the relaxation is described as:

Input:

A one-dimensional region with coordinates of movable modules x^,

i=l,2,...,m obtained from initial optimization in the entire region with

specified fixed modules x*, i=m+l,m+2 n on the boundary. Sum of the m

movable modules is S. A parameter 0 is to be chosen by the designer with

0</?<50%.

Relaxation:

(1) Order the modules left to right according to coordinates of the centers of

modules

(2) Choose f(S*/S) modules from the left, setting other modules fixed and do

scaling in the left 0 region.

(3) Fix the modules so determined in the left § region and release the modules

in the right (1-/5) region. Do optimization.

(4) Choose f(S*0) modules from the right, set other modules fixed and do scal

ing in the right /? region.

52

(5) Fix the modules in the right /S region and release the modules in the left (l-

(J) region. Do optimization.

(6) Choose f(S*/S) modules from the left, set other modules fixed and do scaling

in the left /? region.

(7) Set modules in both the left /? region and the right /? region fixed and

release the modules in the center subregion. Do optimization.

Output:

A one-dimensional region with m modules and their new coordinates Xj,

i=l,2,...,m.

3.3.4. Partitioning and Merging

In partitioning, we divide a given region into two subregions. The modules

in the region are redistributed to the two subregions. Also we try to make the

ratio of module sizes in two subregions approaches the ratio of the capacities of

the subregions. Let R be the ratio of the capacities of two subregions and S be

the total size of the modules to be partitioned. The intended total sizes of

1 R 1modules in the two subregions would be 5* * and 5* Thus, f(5* p)

defines the number of modules to be seperated from other modules.

Each time we list all regions on the chip as current regions. The partition

ing step divides the current regions into subregions. After all current regions

are partitioned, we use a merging step to improve the result. We use a window

to cover part of subregions, merge these subregions and do the partitioning

again. We define two kinds of windows: horizontal and vertical. In the horizontal

window, the number of columns of subregions is larger than the number of rows

of subregions. In the vertical window we have a larger number of rows of subre

gions. In Fig. 3.5 we use a (1 x 4) horizontal window. We scan rows from right

to left with an increment of 2 and top to bottom with an increment of 1. The

53

illustration ofvertical window could be shown by rotating this picture 90 degrees

and reflecting with respect to the x axis.

-—-—•

i
i—

i

i

•

i
i
;

Fig. 3.5. Illustration of horizontal window.

3.3.5. Assignment

We continue partitioning the chip until all modules are assigned to the

predefined rows, while keeping the total size of modules in each row approxi

mately the same. Because the size of modules is not uniform, two different rows

54

of modules may not have the same size. When one row of the region is parti

tioned into two parallel rows of subregions, we check the difference of sums of

module sizes between the two rows in the partitioning of each region. Thus, the

difference of the total module sizes between the two rows is not larger than the

size of the largest module.

Initially,, because the orientation of modules is not determined yet, point

model is assumed to represent all the modules. After optimization, the relative

locations of modules are determined. Based on those locations, the reflection of

each module is determined to minimize the wiring length. This process is

repeated after the partitioning in each level.

When modules have been assigned to rows, they might overlap, because the

modules have different shapes. A decompaction step is done on each row to

separate the overlapping modules. Scanning from right to left, we assign the

feasible range of location for each module. For the current module, its left

bound is set by the right edge of the previous module, and the right bound is set

so that the capacity of the right region is equal to the sum of sizes of modules on

the right hand side. Then the module is set between the boundary and located

as close as possible to its original position obtained after partitioning. Fig. 3.6

illustrates this process. The modules are initially located in one row as shown in

Fig. 3.6a. Fig. 3.6b demonstrates the process of decompaction. The vertical dot

ted lines indicate the left and right bounds of module 3. Module 3 is located

within the boundary and set near to its initial location. Fig. 3.6c shows the

result of decompaction.

a.

(.. m&&

a

Fig. 3.6. Decompaction on one row:

(a) Initial locations of modules.

(b) Decompaction process on module 3.

(c) Result of decompaction.

The following shows the assignment algorithm.

Input:

55

A 2-dimensional region to be partitioned into rectangles each containing a

Initial

Result

56

module, a set of m movable modules together with their coordinates, and a

set of n-m fixed modules.

Assignment:

(1) Do optimization on both the x coordinate and the y coordinate of the mov

able modules.

(2) While each region contains more than one module

Do

List all current regions.

For each region do partitioning.

Use horizontal window.

Do merging and repartitioning.

Use vertical window.

Do merging and repartitioning.

(3) For each row

Do decompaction.

3.4. Experimental results

The above method has been implemented and tested with gate-array

designs used at Hughes Aircraft Company and other industrial companies. Table

3.1 shows the comparison with manual designs on 4K gate-array chips. Four

chips have been tested. It is shown that the sums of squared wiring lengths are

reduced. Fig. 3.7 gives the solution of automatic placement of chip 1. Fig. 3.9

exhibits results in terms of wirability of chip 1 for both the automatic and

manual designs. The abscissa represents cut-lines in the horizontal and vertical

directions. The ordinate represents percentage of routing track demand over-

supply. It is seen that in the horizontal direction both the manual and

57

automatic placements yield results which are easily routable. However, in the

vertical direction, the manual placement requires over a hundred percentage of

track demand over supply, which is clearly unroutable, while the automatic

placement requires a peak percentage of less than 70. In general, automatic

placement tends to distribute the wires more uniformly and thus achieves

better routability. The cpu time of the above placement is about one minute on

an Amdahl V8.

Chip# manual placement network optimization

1 5.98xlOy 1.3lxl0y

2 3.70xlOy 3.37xl0y

3 2.91X109 1.83xl0y

4 2.16xl0y 0.94X109

Table 3.1. Placement results of four 4K gate-array chips in terms of

sum of the squared wire length.

Chip 1: 317 modules, 676 nets and 2284 pins.

Chip 2: 255 modules, 916 nets and 2049 pins.

Chip 3: 442 modules, 983 nets and 3012 pins.

Chip 4: 484 modules, 1030 nets and 1969 pins.

58

fj ffflffidmr

Fig. 3.7. Picture of the chip placement.

Percentage of Track Demand vs. Supply
140

Flf. 35Placement results measured in terms of the number
oiwires crossing the cut-lines on chip 1.

0|vert trocks auto
nor trocks auto

vert trocks man,
nor tracks man [

Cut-lines

CO

60

We also compare with the traditional iterative improvement method[l4] on

a 2K gate array example. The specification of the example and the results are

given in Table 3.2. It is shown that not only the sum of squared wire lengths

decreases, but the sum of wire lengths is also reduced by 26%. This example

takes 783.2 seconds of cpu time on VAX 11/780.

Iterative improvement Network Optimization

Manhattan length 77326 57191

Squared length 9.99X106 3.0lxlOb

Table 3.2. Comparison with iterative improvement on 2K gate-array

chip

445 modules, 464 nets and 1713 pins

3.5. Conclusion

We have implemented a resistive network optimization method for gate-

array and standard-cell placement. Point modules are replaced by modules of

different sizes on cell rows. A decompaction process is proposed to separate

modules on each row. The results applied to 4K gate-array chips lead to far

superior results than that of manual placements. Also, the comparison with the

traditional iterative improvement method on a 2K gate-array example shows

that our method produces better results.

Chapter 4

Building Block Placement

4.1. Introduction

The building block layout is a popular approach for developing high-density,

high production-volume integrated circuit chips. However, due to the wide

variety of sizes and shapes of modules used in building block systems, the place

ment problem becomes very complicated.

To dissect a rectangle into a finite number of non-overlapping squares,

Tutte et al.[l5] introduced a planar directed graph. This planar directed graph

is later used as polar graph in building block placement. Based on the polar

graph representation, many placement methods have been developed.

Lauther[l6] combined this graph representation with a min-cut placement algo

rithm to partition the modules into separated areas and improve the result by

rotating and flipping of the modules. Ksueh and Pederson[l7] also derived from

the same graph a compaction algorithm to reduce the size of the chip. However,

in the compaction, the connectivities among the modules are not taken into

account. As a result, the wiring length might increase after a few interactions of

compaction.

The structure of polar graphs represents the relative locations of the

modules. There are different descriptions of the polar graph with respect to the

implementations. This chapter uses a graph representationf17] which is

extended from the traditional polar graph so that free spaces are allowed on the

chip. Let us consider an example of such a graph illustrating placement of

modules along the x-axis. In the graph, there are one source node and one sink

node representing the left and right edges of the chip, respectively. Other ver

tices represent the modules. There is a branch (a,b) directed from a vertex a to

vertex b if the vertices a and b in the graph correspond to "horizontal adjacent"

61

62

modules in the layout, and module a is on the left hand side of the module b.

Two modules are horizontal adjacent if there exists a horizontal line which inter

sects with both modules, and no module placed between them is cut by this line.

Each branch has a weight associated with it which equals the sum of half widths

of the modules. This representation is shown in Fig. 4.1. The placement in Fig.

4.1a is represented by the graph shown in Fig. 4.1b. The free space is not

included in the graph. Note that the topology of the graph might change when

modules are moved from their current locations. It is important to note that

the longest path in the graph determines the width of the chip.

In the following sections, we describe a novel algorithm. This method

applies the network optimization method[l8] to locate the initial relative

module locations. In order to spread the modules, the partitioning step of the

network optimization in Chapter 2 is first used to divide the chip into 4x4 subre

gions. The modules whose dimension is comparable to the dimension of subre

gions are considered as critical modules and placed at this stage. After their

position has been fixed, the capacity of each chip region is updated and network

optimization method is used to relocated other modules. A reduction process is

used to separate the overlapping modules and reduce the chip size, while still

maintaining the original relative module locations. In preliminary experiments,

this method generates results comparable with manual placement.

4.2. Formulation

Consider a set of rectangular modules of different shapes and sizes to be

located within chip area. On the four sides of the modules are pins for connec

tions. Given a netlist and external pads fixed on the boundary of the chip, the

nets connect external pads and modules. The placement problem is to place the

modules with the goal of minimizing the chip area and keeping modules with

strong connectivities near each other.

TT11

1

|

mz

rn4

1

m3 j

J 1A.

V

Fig. 4.1. JlJustration of polar graph.

63

64

The two objectives of minimizing the area and placing modules with strong

connectivities close together are related to the cost of chip manufacturing and

to its performance. The advantage of small chip size is obvious, while the objec

tive of contiguous placement of modules with strong connectivity is needed to

reduce the time delay of the signals. We choose the objective function of sum of

squared wire lengths since a small sum leads to both the chip size minimization

and delay-time reduction.

The results of placement are input to a routing system which wires the nets

among the modules and pads to complete the layout. Therefore, the size of the

routing areas also affect the results of layout. To concentrate on the placement

itself, we assume the routing areas are given. The modules are expanded in both

dimensions by an amount equal to half the channel width to cover the routing

areas.

We also use grids to divide the chip area into basic square cells. The size of

modules are then rounded off to the multiple of the basic square cells. Thus, the

numbers of columns and rows of the grids define the size of the chip. The place

ment problem amounts to assigning modules on grids. This formulation

simplifies the explanation and programming of the algorithms. However, the

algorithms can be easily extended to gridless cases.

Donze and Sporzynski[l9] have introduced the masterimage approach. This

approach has a basic chip structure of gate array. The modules are allowed to

have different widths and height, however. This method is considered to be

intermediate between unconstrainted and constrainted approach. Thus, in the

case that the channel widths are forced to be a constant and the module orien

tations are suitably constrained, the general building block placement problem

reduces to the masterimage placement problem.

65

4.3. Preliminary locations of the modules

The network optimization method is used to determine the preliminary

locations of the modules with the objective of minimizing the sum of squared

wiring lengths.

Initially, each module is modeled by a single node of the network. After the

optimal locations of modules are obtained, we choose the orientation of the

module to minimize the wiring length. Then, in the corresponding network, the

relative positions of pins are modeled by voltage sources connecting nodes per

taining to the module.

We assign modules into subregions in order to distribute the size of modules

evenly over the chip. Because the size of modules is not uniform, the partition

ing process checks the sum of sizes of modules in each partitioned row or

column. For instance, when one row of regions is further partitioned into two

parallel rows of subregions, we check the difference of sums of module sizes

between the two rows in the partitioning of each region. Thus, the difference of

the total module sizes between the two rows is not larger than the size of the

largest module.

4.4. Basic operations

With respect to the preliminary module locations, the modules might over

lap due to their different sizes and shapes. This section introduces four basic

operations, namely, compaction, decompaction, rotation and selection of prefer

able direction. The operations are processed in one dimension of the chip. Then

the algorithms call for repeated use of the operations in each dimension to

separate the modules and to minimize the chip size.

Based on the theory of the polar graph, we know that the longest path from

the source to the sink is assigned to be equal to the dimension of the chip. The

66

basic operations are used to shift or rotate the modules so that the longest path

length is reduced. However, instead of manipulating on the abstract polar

graph, these operations deal -with the modules directly on the chip. Therefore,

the operations can handle the overlapping of the modules and take into account

the preliminary locations of the modules. As a result, the operations become

easy for coding and efficient for the layout.

4.4.1. Compaction

Given the chip area, the objective of compaction is to minimize either the x

or y dimension of the chip. Because the process is the same in the x and y

directions, let us describe the compaction with respect to x direction. Along the

x axis, the modules are first ordered from right to left. Following this order, we

shift the modules to the right edge of the chip, with the constraint that no

modules overlap.

Therefore, after the compaction, all modules are separated. However on

the left edge of the chip, some modules might fall outside the chip area. Formu

lating this problem in the terminology of polar graph, we give the following

definitions.

i Critical path: After the modules are separated, we can construct the polar

graph. Any path on the polar graph which is larger than the width of the

chip forces the modules to fall outside the boundary of the chip. Let us

define such a path to be the critical path.

ii Slackness: Where there is no critical path, the width of the chip is larger

than or equal to the longest path of the polar graph. In this case, we define

the slackness to be the difference between the width of the chip and the

length of the longest path.

67

4.4.2. Decompaction

While compaction shifts the modules toward one side of the chip, decompac

tion pulls them back near the preliminary locations. The modules are now

ordered in the reverse order. We scan from left to right and assign the feasible

range of location for each module. For the current module, its left bound is set

by the right edges of the previous modules, and its right bound is set by its right

edge as determined by the compaction operation. Then the module is set

between the left and right bounds and located as close as possible to its prelim

inary location. However, for the module on the critical path, there is no possible

variation in position. Then, these modules are put back at the previous locations

and some of the modules overlap again. In this way, next time, when decompac

tion is processed in the orthogonal direction, they are forced to split apart in

that direction.

However, if the modules are also on the critical path in the orthogonal

direction, the decompaction operation also puts these modules back at the

same locations. As a result, no improvement can be achieved through further

decompactions. In order to avoid this problem, the modules are shifted from

the previous locations by one grid toward the location determined in the com

paction process.

The decompaction is listed as follows:

Input:

The width and the height of the chip.

Preliminary locations of the modules derived from the network optimization

method.

The module locations obtained from the last decompaction process.

Decompaction:

68

1. Do compaction in x direction.

2. Do from left to right

For each module

If it is not in the critical path

Then

Set

a.left bound: The left edge of the chip or the right edges

of the previous modules.

b.right bound: Its location obtained from step 1 above.

Locate this module at a minimum distance from its prelim

inary location within the bounds.

Else

Set it at the previous module location with one grid deviation

toward the location obtained from step 1.

Output:

The module locations.

Example

This example demonstrates the compaction and the decompaction opera

tion in the x direction. Suppose the preliminary locations of the modules

are given as Fig. 4.2. In step 1, we order the modules from right to left.

Each module is slid toward the right edge of the chip with the constraint

that no modules should overlap[Fig. 4.3]. Then the modules are processed

in the reverse order. Fig. 4.4 illustrates the process on the third module.

Its left bound and right bound are shown by the bold lines on both sides of

the free space in the chip. The module is pulled back near the preliminary

69

location within the bounds. Because no critical path occurs in this exam

ple, all modules are finally assigned within the chip area without overlap

ping [Fig. 4.5].

70

W5

ml
ml

m4

mz

Fig. 4.2. Illustration of five-module example with preliminary locations.

71

Fig. 4.3. Result of compaction on five-module example.

1

rt\5

m\

\ J

! m3 !

m+

mz

Fig. 4.4. Illustration of decompaction process on module m3.

72

m5

ml

m3

rn4

rv> *"*m *+

Fig. 4.5. Result of decompaction of five-module example.

4.4.3. Rotation

73

Given the critical paths, the rotation operation selects modules on these

paths and changes their orientation by ninety degrees, in order to reduce the

length of the paths. In particular, the modules are chosen for rotation if their

74

longer edges are parallel to the direction of the critical path. Clearly, a ninety

degree rotation places the module's shorter edge on the critical path, reducing

the path length.

The situation in the direction orthogonal to the critical path is also con

sidered in order to avoid the possibility of a rotation generating a new critical

path in that direction. On each column of the grid, we define the load of the

column by the sum of the heights of the modules which intersect this column.

The modules on the column of minimum load are then chosen for rotation.

The rotation against the critical path in x direction is stated below to

describe the process.

Input:

The locations of modules derived from decompaction.

The critical path in x direction.

Rotation with respect to the critical path in x direction:

1. Calculate the load of each column.

2. Among the modules on the critical path, select a set of the modules

which have the width larger than the height. Check the loads of the

columns which are crossed by the centers of these modules.

3. Among the selected set of the modules, select the modules whose centers

are located on the column of the minimal load.

4. Rotate the chosen modules.

4.4.4. Selection of preferable direction

Since the above operations are done in one dimension, the placement result

might depend on the choice of the direction of the operation. We set the prefer

able direction according to the lengths of the longest paths in the x and y direr-

75

tions. To begin with, compaction is used to find the longest path parallel to each

axis. Then for each direction, the ratio of longest path length to chip dimension

in that direction is calculated. The axis with a smaller ratio determines the pre

ferred direction which is operated first.

4.5. Algorithms

Given the preliminary locations of modules, and the width and height of the

chip, the spacing algorithm is proposed to separate the overlapping modules by

repeated use of decompaction and rotation. According to the slackness

obtained in spacing, the reduction algorithm reduces the chip size and uses

scaling to redistribute the modules. Given the new chip size, spacing is used

again to separate the modules. The reduction of the chip size is repeated until

spacing fails to assign the modules inside the chip.

4.5.1. Spacing

Through iterations, the spacing algorithm uses decompaction and rotation

to change the topology of the polar graph until there is no critical path.

Input:

The width and the height of the chip.

Preliminary locations and the previous locations of the modules.

Two integer constants: number of iteration, (denoted ^iterations) and

number of loops, (denoted #loops).

Spacing:

Do i= 1 to /Jfiterations

Select the preferable direction.

Do j= 1 to #loops

76

Do decompaction in the preferable direction.

Do decompaction in the other direction.

Do rotation.

If there is no critical path,

Then jump outside the do-loop.

If there is no critical path

Then Output.

Else spacing fails.

Output:

The result of spacing.

The integer constants are set as the threshold for the number of processes.

In the experiments, we set #loops as two. With a proper estimation on the chip

size, it takes only a few iterations to eliminate the critical path. Therefore, ten

is sufficiently large for the value of ^iterations.

4.5.2. Reduction

The chip size is decreased by the reduction algorithm. In each iteration,

either the width or height of the chip is reduced by an amount determined from

slackness which was previously calculated in compaction. Consequently, with

this reduction, the preliminary locations of the modules are scaled to the new

chip size. In order to allow freedom in the other direction, the dimension of the

chip is reduced by only half the available slackness, but not smaller than a fixed

value.

Input:

Initial width and height of the chip.

77

Preliminary locations of the modules.

Reduction:

Repeat

l.Do spacing

2.Check the slackness Sv and Sv in x and y directions, respectively

3.1f (Sx >Sy) or (Sx =S and chip width ;> chip height)

Set chip width= chip width-max[Sx/2, l]

Else

Set chip height= chip height-max[S ,/2, l]

Update the preliminary locations of the modules by scaling

according to the ratio of new chip dimension to old chip dimension.

Until spacing operation fails

Output:

Final spacing.

Computational complexity

In compaction and decompaction, we sort the order of the modules, and

assign them on the grids one by one. Therefore, given n modules, it takes O(nlog

n) operations. In rotation, the search is done among the modules on the critical

path. It is a linear time operation.

The spacing algorithm uses decompaction and rotation in each iteration.

Because we set a threshold on the number of iterations, the computational com

plexity is also O(nlog n).

Since the spacing is repeated in the reduction, the total computational

complexity of reduction is 0(#spacings • n log n) where #spacings indicates

number of iterations on spacing.

78

4.6. Assignment

Since the shapes of the modules are irregular, we divide the modules into

two types and place them in two stages. Modules with one edge larger than one

third of the width or of the height of the chip are classified as critical modules.

Critical modules tend to move more in the spacing algorithm. We therefore

place the critical modules in the first stage. Then we locate other modules to fill

into free spaces left by the critical modules. Finally, the reduction is used to

minimize the chip size.

Input:

The initial width and height of the chip.

The netlist of irregular sized modules.

Assignment:

l.Use network optimization method to partition the chip into 4x4 subre-

gions.

2.Do spacing on critical modules

3.Fix critical modules and update the capacities of the grids.

4.Use network optimization method to partition the chip into last level.

5.Do reduction on all modules.

4.7. Experiments

The algorithm is implemented in C-language on a VAX 11/780 machine. In

the experiment, we use the AMI example[20] which contains 33 modules, 38

external pads, 132 nets and 440 pins. The initial chip size is set as 209x294. The

modules are expanded by the amount of 4 in both dimensions as a rough esti

mate of the routing area.

In this example, there are no critical modules. Hence the first three steps

79

of assignment are skipped. After the input phase is done, the network optimiza

tion method finds the preliminary locations of the modules[Fig. 4.6]. The

modules spread over the chip; however, some of them overlap.

**.*
m

11 H3r
J*r* i I

Qt I I

l ,fgj;g.36l

-p^ra, 1—1 I Jm _J|
tt—i Uj L_! !.—-r4i

Vi-

• ^.
'£»

" J
|~~vij

VlJU
u

Vl i I V"3

u

Outahast? lewei = U

Manhattan lsr.nth
squared lsnath

t- i

1 u ^ ^

•-• i0022.*

~ 42C216

i&Ai

-i.Tr

i ja*

1

is r

•f 4g

Fig. 4.6. Result of network optimization on AMI 33-module example.

The process of reduction inputs the result of the network optimization

method. Fig. 4.7 is the result of first iteration. All overlapped modules are

separated. It takes 10 iterations to reduce the chip to a minimal area of

177x262 [Fig. 4.8].

The table below lists the sum of the wiring lengths, the sum of the squared

lengths, and the CPU time of various steps in comparison with manual place

ment. The reduction algorithm reduces the chip size by 24.5%. Also, the sum of

r --

i—:.

«: c« -r = r*>

f21
f i v

! '1J f3*

#1
t

I

-na
f27r I f*

ras

f2i

fd

1=i i !

*r>

* _

fi? |

flft

i—.
r?

i !•

i

f24 !

re'

Jf4©
'i'

Jf47

j f£S4t-
I r
l #3*

f21
df-3-

117 1'
l
l

Fig. 4.7. Result of spacing after network optimization.

80

the wiring lengths and the sum of the squared lengths are much less than those

obtained from manual placement.

sum of the

wiring lengths

sum of squared

wiring lengths

CPU time

(sec.)

chip size

I
i

network optimization 10022.7 488216 36.8 209x294 .

reduction algorithm 9440.5 446170 42.2 177x262

manual placement 13010 972228 N.A. 210x236

j-'i-rt-jtl _rS2 _r?>i _r<i~ jda

ff~
foi

I
fi9

i ' *7
fl? I •ic« T3

t .J ; 1 j i ' • j|—;

T..J L^i I rli-, . !'—i I
p»»< 1—i r *32 '—'i^£i 1 3—1
J*69 f2S I J- I77sf->-f ! fUC* .1

?;T)6| | I '
r

ri: |
.?2*£44!9 r**4

fZl

fiC

§•41

>*4Q

if37

,r-48

nanha11an length - 9440.£
squared length - 446170

bondptXJwS? bundptYJ-IiJ and naateu--64 nuatsh-45

Fig. 4.8. Result of reduction on AMI 33-module example.

Bl

The layoutfFig. 4.9] is completed by a building block routing packagel20].

Since the actual routing areas are much different from the initial estimates, the

chip size expands to 209x288. However, it is still comparable with the result of

manual placement.

!:! I

B2

t::i

«H
Is-*

HI
n-?

u-**fc"LAP3ED TIKE - 2i2.2S5****T

*MiN*Q, XrtAX=2SC, YhIN*0, YrtAX™£Q?
Fig. 4.9. Layout of AMI 33-module example from the result of automatic

placement.

4.8. Conclusion

We have proposed here new efficient placement algorithms. They are based

on four elementary operations, namely: compaction, decompaction, rotation,

and selection of preferable direction. Using these elementary operations, we

developed the spacing and reduction techniques. The process of placement is

an iteration of spacing and reduction. The placement is different from other

83

methods of iterative improvement. "While in the other methods, relative place

ment in each iteration is changed drastically (for example by pair-wise inter

change or by compaction), the proposed placement minimizes the chip area,

but still maintains good relative locations among the modules. We have tried our

algorithms on practical examples. The results are comparable to manual place

ment done by an experienced designer.

This method could be used as an automatic placement for the masterimage

system. Further research on the routing area estimation would improve the lay

out result in general building block problems.

Chapter 5

linear Placement

5.1. Introduction

One important technique in circuit layout is linear placement, often used in

gate matrix design and backboard ordering. The problem is known to be N-P

complete. Therefore, algorithms proposed for solving the problem have been

either heuristic or branch and bound. Gomory and Hu[2l] introduced the useful

concept of cut tree in dealing with network flow problems. Adolphson and

Hu[22] have shown that when Gomory and Hu's cut tree is a chain, the sequence

of this chain is optimal in terms of the sum of wire lengths and the maximum

track density. However, this chain is only a special case of the linear placement

problem. Lawler has determined that a linear placement problem is related to a

job sequencing problem[23].

In this Chapter, we use the sum of wire lengths as the objective function.

We propose algorithms for linear placement which can be represented by a

parallel graph and an arbitrary graph. These algorithms decompose graphs and

lead to optimal solutions. In application to circuit layout, the multi-pin net is

first represented by a loop. An algorithm is constructed that can tackle very

large problems efficiently.

In section 2, we give the formulation of our approach. Section 3 describes

the theories related to the problem. Section 4 deals with the special case of the

parallel graph, and section 5 handles the general case of the arbitrary graphs.

In section 6. the application to VLSI design is discussed together with the com

putational complexity of the proposed method. Finally, some experimental

results are given.

64

85

5.2. Formulation

In linear placement, the specification is the netlist together with a set of

modules. The modules are to be assigned on slots equally spaced on a line. Sup

pose two modules are fixed on both ends of the line for the purpose of external

connection. We assume that all nets are 2-pin nets and multi-pin nets have been

preprocessed and replaced with 2-pin nets. Then the problem can be formu

lated by the following graph representation.

Given a graph G(V,E), there is a set of vertices V of cardinality \\\ and a set

of edges E of cardinality |E|. The edge Ej , connects vertex v. and vertex v.. Each

edge E- • has associated with it a nonnegative number c- . denoting the connec-

tivity between v. and v.. Let v and vt be the two boundary vertices of Vfixed at

both ends of the line [Fig. 5.1].

Fig. 5.1. Graph with v and vt fixed on both ends and vertices to be assigned

on slots.

86

The problem is to assign vertices onto the slots in an optimal order (0P0)

under a given objective function. In [25], a method based on an interval graph

model was proposed to minimize the track density. In this Chapter, the objec

tive function used is the sum of wiring lengths, thus we wish to minimize

lJf'W
2i=l;slc»A; 0)

where l+j is the distance between vertex v, and vertex v..

5.3. Theory

In terms of network flows, let vg and v^. be the source and the sink, respec

tively. Cy is then the capacity between vi and v.. The max-flow min-cut

method[26] finds a cut-line that separates vg and vt with a minimal sum of the

capacities of lines crossing the cut-line. Hereafter, this cut is called the max-

flow min-cut in order to differentiate from other cut-lines[27] used in place

ments.

Adolphson and Hu[22] have shown that max-flow min-cut makes a partition

of 0P0 in terms of the sum of wiring lengths. They give the following theorem:

Theorem 1.

The max-flow min-cut defines a partition of 0P0 in the linear placement

problem.

The theorem was proved by contradiction. Suppose there exists a cut-line

which makes another partition of 0P0 in contradiction to the partition made by

the max-flow min-cut. Then, based on the properties of the max-flow min-cut, it

is shown that the partition made by the max-flow min-cut generates a better

result.

This theorem provides a tool for graph decomposition. Consider the graph

G(V,E). Let A, B, C and D be four disjoint subsets of V such that V=A^BuCuD.

87

Given a placement C A B D as shown in Fig. 5.2a. Let us denote by COxy the sum

of all the connectivities between the set X and the set Y. Suppose we shift B to

the left hand side of set A as shown in Fig. 5.2b. Then the sum of the lengths

changes. The length of the wires connecting between set A and sets C & D

increases by [COAc—CQu>]lB| and the length of the wires connecting between set

B and sets C & D decreases by [COBC-COBD]\A\. The length of the wires connect

ing between set A and set B decreases no more than CC^[|A|+|B!]. Thus, the sum

of the lengths increases by an amount larger than

[cOac-COju*] !Bj-[cQbc-CQbd] |Aj-CO^ (i AI +! B\)
=[cC^-(c0^+CCto>)] |B1 -[(cc^c+CCUbJ-CC^]|A\ (2)

BB

a.

b.

Fig. 5.2. Placement of A, B. C and D four disjoint sets.

With respect to Fig. 5.2a. let us denote by XI and Xr the connectivity of X to

the vertices on its left and on its right, respectively. That is

Eq.(2) becomes

ALsCOAC Bl^COsc+COjiB

At&COab+ COm BrsCOBD

(M-Ar)\B\-(Bl-Br)\A

(3)

(4)

89

If . .,—> • p.—, then Eq. (4) becomes larger than zero. In this case, exchang

ing the order of set A and set B would increase the sum of lengths.

The expansion of this property leads to the following theorem. First, let us

define

to be the cost ratio of set A. We can view the first two terms as the drag forces

of the set A from both sides and jA| as the inertial of the set A. The ratio of the

drag force to the inertial measures the priority of the order of subsets. The fol

lowing theorem suggests that the subset which generates the maximal cost ratio

should be placed ahead of other vertices in the 0P0. Note yA can be negative.

Theorem 2.

Let F be the collection of all subsets of V such that for all A in T v £A, v.

*Aand]A|>0.

If A* is the element of F such that

MT

t \

then A*\jv,8
K I

1 and V-A*-vs >make a partition of the 0P0 of the linear

placement problem.

Proof:

For clarity, we divide the proof into two steps.

1. We modify the graph G(V,E) such that for every edge E-. :. ie4* and

jeV-i4*-o's[, we delete the edge E- . and add edges Ei t and Eg . as shown in

Fig. 5.3.

Fig. 5.3. Illustration of G'(V,E') in the proof of theorem 2.

Let this new graph be G'(V,E'). Then we make the following statement.

Claim 1.

'̂UT^s [and K-i4*-|vt | make apartition of the 0P0 of G\

2. Of the original graph, we state the following:

Claim 2.

90

}fA0\jvt and V-4--LJ make a partition of the 0P0 of G\ then both

subsets also define a partition of the 0P0 of G.

Hence we view the modified graph G* in step one of the proof as the

worst case. If the theorem is true for this case, then it should be true

in the original graph.

Proof (Claim 1):

91

This statement is proved by contradiction. If the theorem is not true,

then there exists an m>l such that the 0P0 has the form of

v9 B} At B2 . . . Bm An £m+, vt (Order I)
m

where U4=4#, 4*0 i=1.2 m and Bi*(f> i=2 m
i=l

In the following proof, we shall demonstrate that the order

v9A1Az...AmBlB2... £m+1 vt (Order II)

is not worse than order 1in terms of the sum of the wire lengths.

Let us denote by Xli, Art the connectivity of Xi to the vertices on its

left and on its right, respectively. Then in order II

and

Ettk-Ari)

A
7^=^ (5)

*=i

7Al 14!
tWr+t)

&* i ia

"EWav)

&* £141

Because yA* is the maximum, combining Eq. (5) and Eq. (6) we have

2(^--4r,)
7a?7a> ==> TV****

i=2

£(A-A-t)

&* 21a
i«3

(6)

ym-x ^yA. ==> y .<——-

Using the same reasoning, we obtain

1*?7a . = = > —r-=r-, <.yA*
Bx >yA

yz ^y . ==>

ttfk-Bri)

t=l

^7a-

2(^-^0
7m *yA* ==>

i=l

•*7V

Now changing from order 1 to II, we decrease the cost by

\Bl\(Al-Arl)+£\Bi\(Alz-Art)+...+%\Bi\(Mm-Arm)

2iAI(«l-A-l)+2lAl(«2-^g)+...+ |AI»l(«m-^m)
i=l is2

=l^ii2(^->»r»)+|B2!2(^-^ri)+-+!^ml(^m-^rm)
t=l i*2

Al\(Bll-Brl)+\A2\t(Blx-Bri)+...+ \Am\ft(Bli-Bri

92

(7)

(8)

(9)

Plugging Eq. (7) and Eq. (8) in Eq. (9), we have the cost decreasing by

the amount larger than

l

,4i+... +l«n!i4»l
i=l i«21=2

i=l

= 0

"V A1\\Bl\ + \A2\Y\Bi\+... +\Am\ZiBx

(10)

93

This indicates order II is the 0P0.

Proof (Claim 2):

We can prove claim 2 by contradiction. Suppose claim 2 is not true,

then there exists an m>l such that order I is 0P0. We can check that,

if we change from order II to order 1 the sum of the lengths in graph G

does not decrease more than the sum of the lengths in graph G'. Now

in graph G* order II is not worse than order 1. Consequently, in graph G

order II can not be worse than order I. -♦«-

Q.E.D.

Example:

%

Fig. 5.4. five-vertex graph with connectivities labelled on the edges.

In Fig. 5.4, we have three vertices to be assigned. The following table lists

the cost ratios with respect to different subsets. Of these, vertex Vg gen

erates the maximal cost ratio. Thus v^ is ahead of other vertices in the

94

OPO.

vertex set (1) \Z\ |3) |1.2{ (1.3J J2.3J (1.2.3J

cost ratio -1 -6 2 0.5 0.5 -1 1.67

Table 5.1.

After the graph is partitioned we have subsets of vertices \S\. For each

such subset (S^ we shrink all vertices on its left hand side to a new source v '

and shrink all vertices on its right hand side to a new sink v/, as shown in Fig.

5.5. Let us define this new graph to be the shrunk graph Gg.. Based on the fol

lowing theorem, we can decompose the graph and deal with the shrunk graph

Gg^ as a new linear placement problem.

95

Fig. 5.5. Illustration of the shrunk graph.

Theorem 3.

Given a graph G(V,E). and assume that A is a subset of V such that, in the

OPO. A covers consecutive |A| slots. According to the definition of the

shrunk graph, we construct graph G». Then, the OPO of A with respect to

the shrunk graph G* is also an optimal order of A with respect to the origi

nal graph G.

96

Proof:

Suppose that in the OPO.there are three subsets L.A and R with the order L

A R. Let k and 1 be the indices of slots at both ends of set A. Then the sum

of the wiring lengths is

fci=l; =l ^iaLjeL ^ iaA jeA ^iaRjeR

+S £ci.>*p(i),P(;)+E Sci.jip(i).pO)+S Scijfp(i)j»U) (11)
isL jeA iaL jeR iaA jeR

The terms that are not related to A could be represented by a constant.

2% Ecijfp(t)*(/)SSC+—J) Eci.;Wp(i)+£ Eci.;^(i).p(;)+S SeiJ^(i)*tt2)
fet=l ;=l cm4 jM tal J«4 iaA jeR

Decomposing the second and third terms on the right hand side of the equa

tion, we have

2"S ECij*p(i).Pl;)=C+2-E SCijfp(i).PU)+E T,ciJlkj>'J)
fc»=l >sl ^iaA jeA iaL jeA

+S Ecij-Wi+X! IXiW^+E Eci.Apu)
fcj4 ;ei? iaL jeA iaA jeR

=C"+2"E Ecij*p(i).pC;)+E £ci.;'**j»0)+E EcljW>.« (13)
fc<«i4 jeA iaL joA UA jeR

This indicates the OPO of A in G* is also the OPO of A in G.

Q.E.D.

Based on these results, we first deal with a special case: the parallel graph.

97

5.4. Parallel graph

Fig. 5.6. The construction of parallel graph.

Given a set of disjoint graphs G«.Gp,....G . let each graph G- contain a

source and a sink for i=l,2,...,m. A parallel graph is constructed by shrinking

the sources and the sinks of this set of graphs to a single source and a single

sink[Fig. 5.6], respectively. We denote this relation by

G(VtE)=lla(VuEi) (14)

Suppose the OPOs of graphs GitGp«"**G are known. Then, based on the fol

lowing lemma, an algorithm is proposed to find the OPO of graph G. The lemma

suggests that, from one of the parallelled graphs, we can find the vertex set

which generates the maximal cost ratio.

Lemma 1.

m

Given G(V,E)= // G;(V.,E;). there exist an A and an i in |1,2 mj such that

A* C Vi and yA* =max y*

98

Proof:

This lemma is proved by contradiction. Suppose the statement is not true.

Then there exists a k>l and a permutation function q(i) such that

A =U^g(i). where ^(t) c V /.v. If je[l,2,...,kj is the index such that

7^w)^max 74_(i). then 7a^^7a'- As a result, Ag^) satisfies the conditions of

the lemma.

Q.E.D.

5.4.1. Algorithm

In the following, the algorithm deals with the parallel graph.

Input:

G(V.E)= TiG.jy^)

Algorithm:

1. Set Ws V and set a an empty permutation:

2. Find a subset S of W such that 7e=max yA.

3. Find OPO of Gs.

4. Append the order of S to the end of the permutation a.

5. Set W= W- S, updating the graph to be shrunk graph G^-.

6. If W= 0 then stop, else go to 2.

Output:

a, the ordering of V.

Based on lemma 1, the subset S can be found from one of the parallelled

graphs. Suppose the optimal order of graphs G- i=l,2 m is given. The compu

tational complexity of the algorithm is polynomial. Next we prove the output is

an OPO solution.

99

Theorem 4.

The above algorithm generates an OPO ofgraph G.

Proof:

This theorem is proved by induction.

Case 1. The process stops at the first iteration

In this case, step 3 finds the OPO solution.

Case 2. The process stops at the k'th iteration

Here, we assume the solution is the OPO at the k'th iteration. Then we

prove that the solution is the OPO after k+1 iterations.

Case 3. The process stops at the k+l'th iteration

In the first iteration, from theorem 2 and lemma 1, V-W and Wdefine a parti

tion of the OPO. Step 3 also finds the OPO of V-W in G. From case 2 above

and theorem 3, the OPO of W is found in the next k iterations. From

theorem 3 we know the output a is the OPO solution.

Q.E.D.

Based on the algorithm and theorem 4, we state the following:

Theorem 5.

The OPO ofVi in G{ i=l,2 m is the OPO of V- in G.

5.4.2. Example:

We have a parallel graph G(V.E) formed by two chains G1(V1,E1) and

Gg(V2,Eg) as shown in Fig. 5.7.

100

tf V- « IE- ^ 15 IS

4 7 2 * //

Fig. 5.7. 15-vertex example.

Since Gomory and Hu's cut trees of G- and Gg are chains, the OPOs of G.

and Gg have the same order as the chains. Thus we can easily check the y

values with respect to different cut-lines as shown in Fig. 5.8.

f4 1/+ H -#

V$ 34 -*/£
Fig. 5.8. Cost ratios with respect to different cut-lines.

101

Following the algorithm, in step 2 the cut-line that separates vertices v , v.

and vg from other vertices, generates the highest y value. Consequently, ver

tices Vj and Vg are placed ahead of other vertices in the order.

In the second iteration, we update the y values as Fig. 5.9. Again, by check

ing the y value, we set vertex vg in front of other vertices. It takes six iterations

to find the OPO solution [Fig. 5.10].

i£

Fig. 5.9. Shrunk graph updated from Fig. 5.8.

102

4 7^

Fig. 5.10. Optimal order of 15-vertex example.

5.5. Arbitrary graph

In the general case, we encounter arbitrary graphs. Although, theorem 2

gives a criterion to partition the OPO, it is in general difficult to find the subset

which generates the maximal cost ratio for an arbitrary graph.

The max-flow min-cut makes a partition of OPO. However, in the case that

either the cut-line separates the source vg from all other vertices or the cut-line

separates v^ from all other vertices, no information of the optimal order can be

obtained. In order to do further partitioning, we need a strategy which modifies

the graph without disturbing the optimal order of the original graph.

We then repeat this process on each partitioned subset until graph

modification fails. It is shown that this process finds the subset whichgenerates

the maximal cost ratio.

5.5.1. Graph modification

Given a graph G(V.E). we can modify the graph by

103

i. Adding an edge Eg t with connectivity a.

ii. Adding an edge E^ t for all i^s with connectivity b.

Ui. Adding an edge Eg •for all i*t with connectivity c.

iv. Adding an edge Eg for all (i,j)eKi.j)li*J. i*s. i*t. j*s, j^t. v^V and v-€V
with connectivity d.

v. Adding an edge Esi and Ei t for any i*s,t with connectivity ej.

£

a.

Fig. 5.11. Illustration of graph modification.

Fig. 5.11 is an illustration for the graph modification. It is obvious that the

modified graph has the same OPO as the original graph.

Constraint:

The max-flow min-cut method is applied to the graph with non-negative con

nectivities.

104

Otherwise, the max-flow min-cut problem becomes an N-P complete problem.

Therefore, we have to restrict the connectivities a, b, c, d and e^ such that the

modified graph does not contain a negative connectivity branch.

With regard to this constraint, a strategy setting the values of a, b, c and ei

is developed. This can be divided into three cases.

Case(l) a and e^ Since the values of a and e, do not affect the configuration of

the max-flow min-cut, they are ignored.

Case(2) b and c: With reference to Fig. 5.12. line 1 separates fvj from V-JvJ,
s s

line 2 separates Jv^} from V-|vt} and line 3 separates |V| into m+1 vertices

and |V|-m-l vertices.

Fig. 5.12. Graph modified by adding edges with connectivities b and c.

Let us denote by F^. Fg and Fg the sums of connectivities of lines crossing

105

line 1, line 2 and line 3. respectively. After step ii and step iii are applied to

modify the graph, Fi becomes F^ i=l, 2 and 3.

F2=F2+(\V\-Z)*b (15)
Fs=F3+m*b+(\ K|-m-2)»c

Thus

Fa-F'l=Fa-F1+m*(b-c) (16)

and

F±-F2=Fa-F2+(\V\-m-Z)*(c-b) (17)

To avoid the case that the max-flow min-cut lies on line 1 or line 2 in Fig.

5.8, the variables must be set so that F3-Fj^0 and Fg-F^O. As a result, the

value of . b-c is set to maximize the minimum of \

Fi+m'^-b^-d V|-m-2)*(c-o) J. Thus, the solutionis

6-c=fw5r (i8)
Case(3) d: By applying step iv of the graph modification, the following results are

obtained.

F'^F,

F2=F2 (19)

F3=F3+m'(| V\-m-Z)*d

In order to have F3-Fj^0 and Fg-Fi^O, d is set to as small a value as pos

sible. Thus, d is set to be the negative value of a maximal connectivity clique

which contains all vertices but vg and v. before the modification.

106

Example

„M .../f. .-.-(4

\ 3 V,

Fig. 5.13. six-vertex example from [22].

Fig. 5.13 is the six-vertex example from [22]. On the graph, we have the

sums of connectivities to the source F-= 18 and that to the sink Fg= 14.

Consequently, from Eq. IB, we set b-c=(lB-14)/4= 1. There is also a clique

connecting v^, Vg, v^ and v4 with connectivity 2. Thus we modify the graph

by adding edges with connectivities b=l. c= 0 and d= -2 [Fig. 5.14]. Fig.

5.15 is the result after graph modification.

107

1£t>

Fig. 5.14. The edges with connectivities b and d added to the graph.

Fig. 5.15. Modified graph partitioned by max-flow min-cut line.

108

5.5.2. Algorithm

For the modified graph, we partition the vertex set with the max-flow min-

cut method. Then for each obtained subset of vertices Si, the graph Gg- is con-

structed(see Sec. 5.4). We continue this process until no vertex set S: can be

partitioned further. Finally, we find the OPO of each set S: and concatenate the

sub-sequences.

Input:

Graph G(V,E)

Algorithm:

l.Set G(V,E) to be the current graph.

2.List all. current graphs.

3.For each current graph:

i. Modify the graph.

ii. Partition the vertices with the max-flow min-cut.

4.If no more partitioning of V is obtained from 3, then go to 8.

5.List all sets of partitioned vertices.

6.For each partitioned vertex set A

i. Construct shrunk graph G. as stated in Section 3.

7.Go to 2.

B.Find the OPO of all partitioned vertex sets.

Output:

The order of vertices.

5.5.3. Example

We use the previous six-vertex example [Fig. 5.13]. After the graph is

modified, the max-flow min-cut separates v , v- and v. from other vertices.

109

After partitioning, we construct two graphs with respect to the two subsets of

vertices [Fig. 5.16]. The OPO solution is obtained after the second level partition

[Fig. 5.17]. The sum of wiring lengths is 78 which is the best result for this prob

lem.

Fig. 5.16. Shrunk graphs constructed after partitioning.

110

Fig. 5.17. Optimal order of six-vertex example.

5.5.4. Theorems

According to theorem 1, theorem 3 and the properties of the modified

graph, the output is an OPO solution. Thus we have theorem 6.

Theorem 6.

The result of the above algorithm is an OPO solution.

In the following theorem, we also prove that the algorithm can still find the

cut-line that makes the same partition as the max-flow min-cut of the original

graph.

Theorem 7.

In the above algorithm there exists one cut-line which makes the same par

tition as the max-flow min-cut of the original graph G(V,E).

Proof:

Let us assume that the vertices are partitioned into m subsets S«, S« S

such that these subsets can not be partitioned into smaller subsets by

further operations. From theorem 6, we know subsets S,. So S make
l c m

Ill

partitions of OPO. Based on the proof of theorem 1. the partitions of OPO do

not contradict with the partition made by the max-flow min-cut of the origi

nal graph G. In other words, there exists a max-flow min-cut of graph G and

an index i such that this max-flow min-cut divides the vertex set V through

subset S-.

In the case that the max-flow min-cut does not separate the set S: into

smaller subsets, this max-flow min-cut makes the same partition as one of

the cut-lines which separate the subset S^ Then the statement of the

theorem is true.

Suppose the max-flow min-cut separates subset S, into two smaller subsets.

Then, in the shrunk graph Gg., this cut-line should also make a max-flow

min-cut partition on the subset S^ While the graph Gg. can be partitioned

by max-flow min-cut, based on the strategy of graph modification, S- can

also be partitioned into smaller subsets in step 3 of the algorithm. As we

have assumed that S. can not be partitioned into smaller subsets, such par

titioning contradicts our assumption. -»«-

Q.E.D.

Furthermore, the algorithm can also find the cut-line that partitions the

vertex set V into A u\vA and V-A -Jv_).
s s

Example

In example 5.3, shown in Fig. 5.17, the cut-line which cuts between v4 and vg

is the max-flow min-cut of the original graph. In this example, we have four

vertices to be assigned. Thus, there are 2-1 different subsets of vertices.

Among them, (v., v. J generates the maximal cost ratio of 2.5. In Fig. 5.17,

these two vertices are separated from other vertices by the cut-line cutting

through v* and Vg.

112

Theorem B.

In the above algorithm there exists one cut-line which partitions V

A u|vs| and V-A -|vs{ such that, in the original graph, y^max yA.

into

Proof:

Suppose in the original graph, we have A0 and y* such that 7*=7.,=max yA.
AaT

Without loss of generality we assume 7*^0. If we add edges to G(V,E) such

that for all i€|Vj-|vs{-{vtJ we add edge Ei t with connectivity 7*. then we can

make the following statement.

Claim:

The max-flow min-cut of the new graph partitions V into A ^!vsi and V-

A -fvJ.

Proof:

Suppose the max-flow min-cut separates V into A'ujv j and V-A'-|v j.

Then the sum of the connectivities of lines crossing the cut-line is

=1™S E c*.; + E ca4+y'\A\
WA jeV-A-b,\ jeV-A-L\

E £ 'ij-Zcj* E cj+r'M!= min
AeT

r+7*l*

(20)

After the term 2 c*.j is deleted from both sides ofEq. (20). we have

Ecj-E E "n-y'\A\

= max
Mr

Ec».;—E E c4J-7*Ui (21)

113

If Eq. (21) > 0 then y*>y\ That contradicts the definition of y*. Thus

Eq. (2l)s£0.

On the other hand, when A=A , £c*j'~E £ ctj~7*l^!=n. we

also know Eq. (21) can not be less than zero. Consequently, Eq. (21)

can only be zero. In other words this cut-line separates V into A*\j>v,
s

and V—A*—vs .

Based on this claim, with the same reasoning as the proof of theorem 7 we

know that one of the cut-lines should partition V into A*'>J and

•-44
Q.E.D.

Since there are |Vj-2 vertices to be assigned, it takes at most jVi-3 max-flow

min-cut operations to partition all the vertices to the last level. Based on

Theorem 8, lemma 2 is stated as follows:

Lemma 2:

It takes at most !V|-3 max-flow min-cut operations to partition V into

^'uj^s[and V-v4*—Ju, [such that 7^.=max yA.

5.6. Application

In the VLSI linear placement problem, there exist large numbers of com

ponents. Furthermore, many of the nets are multi-pin nets. A simple and

effective model is developed here to decompose multi-pin nets into two-pin nets.

Then an efficient algorithm is proposed for applications to VLSI design.

114

5.8.1. Multi-pin nets

Schuler and Ulrich[28] used a clique[Fig. 5.18a] to replace the multi-pin

net. This model is independent of the order of modules. However, it is not an

accurate estimate of the actual wiring length of the net. On the other hand, a

chain[Fig. 5.18b] that can really represent the length of the net is very sensitive

to the order of modules.

a.

b.

Fig. 5.18. Decomposition of multi-pin net.

(a) Model of a clique.

(b) Model of a chain.

(c) Model of a loop.

115

-*

Instead, we use a loop[Fig. 5.18c] to connect the multi-pin net. The connec

tivities of the edges in the loop are set as half the weight of the multi-pin net.

The relative module locations are estimated by the network optimization

method[lS]. This method utilizes the resistive network analogy to solve the

116

optimization problem of linear placement. Based on circuit theory and optimi

zation techniques, a relaxation scheme is developed to calculate the module

locations. Although the network optimization method has the objective of

minimizing the sum of the squared lengths, the method generates very good

estimates of the module locations[l8]. We sequence the modules according to

the relative module locations. As shown in Fig. 5.18c, the loop is connected in

such a way that even if the order of any pair of neighboring modules is reversed,

the model is still accurate.

i-P-i2-e-iU-7-6-S-4-2-ii-3-13-i4-iS-i6
l-l \ ! 1-1 I-I
I-—I | j | ,

, , , ,
j ,..., , _ , |

I 1-1 j-|-|-|-|

Fig. 5.19. Layout of the 16-vertex example.

— I — |

1

5.6.2. Algorithm

An efficient algorithm is developed to handle large and arbitrary graphs.

Wherever the max-flow min-cut method can not do further partitioning, we apply

the relaxation scheme[l8] to fix part of vertices at both ends of the partitioned

subregion and merge the fixed vertices to vertex v and vertex v.. In this way,

the process can keep cutting to the last level and find the sequence of the

117

vertices.

Input: Net-list with two vertices fixed at both ends.

Algorithm:

1. Set the current region be the whole region.

2. Do|

List current regions.

For each region

Do partitioning {

a. Do graph modification.

b. Use max-flow min-cut to partition the modified graph.

c. If step b above fails, use the relaxation scheme to fix parts of ver

tices at both ends.

d. Update the graph, using max-flow min-cut to partition the modified

graph.

)

I until all vertices are partitioned.

Output: The order of vertices.

5.6.3. Discussion

In VLSI design, the graph is always sparse. Based on the sparsity matrix

technique, the relaxation scheme takes approximately 0(|V| *) operations in

each iteration. After rounding off the connectivity of the edges to rational

numbers, the Ford and Fulkerson's max-flow min-cut method takes about 0(!E(;)

operations. It takes at most jV|-3 iterations to partition all the vertices. Hence,

the computation time complexity is OflVj). However, this is only an estimation

for the worst case. In the following experiments, we shall demonstrate the

118

efficiency of this method in terms of CPU running time.

5.6.4. Experiments

Our linear placement method is implemented in C-language and tested on

VAX 11/780 machine. Three examples from [28] and [30] are used to test this

method. We use three measurements: sum of the lengths, sum of the square

lengths, and the number of tracks required, to compare this method with the

network optimization method and published results[l8,29,30]. For simplicity,

we set the constant, /S at the value of 0.25 in the relaxation step[l8].

Example one contains nine vertices[28]. We fix vertices two and six following

the result of [29]. In this example both the linear placement method and the

network optimization method generate the same result [Tab. 5.2].

Our linear placement Network Optimization Kang's result

Manhattan length 50 50 50

Squared length 152 152 152

^Tracks required 11 11 11

CPU time (sec.) 2.1 1.6 N.A.

Table 5.2. Example 1: 9 vertices, 16 nets and 43 pins.

Example two contains 16 vertices[30]. To compare with the result of [30],

vertices one and sixteen are fixed at the two ends [Tab. 5.3]. The ordering result

is shown in Fig. 5.19 with the layout of tracks.

119

Our linear placement Network Optimization Wing's result

Manhattan length 73 79 78

Squared length 509 45 % 628

#Tracks required 8 8 8

CPU time (sec.) 2.7 1.7 N.A.

Table 5.3. Example 2: 16 vertices, 17 nets and 42 pins.

Example three contains 31 vertices[28]. We fix gates 0P1 and PI at both

ends following the result of [29]. It was mentioned in [29] that the best solution

known has the total length 91. However, we generate an ordering with the total

length of 88 [Tab. 5.4]. The ordering result is shown below

P1-B-A-C-G-H-I-D-E-F-J-Q-R-M-K-L-P2-T-S-N-0-P-Z-Y-0P2-X-W-V-U-0P3-0P1

Our linear placement Network Optimization Kang's result

Manhattan length 88 102 95

Squared length 556 464 887

^Tracks required 6 8 6

CPU time (sec.) 7.3 4.6 N.A.

Table 5.4. Example 3: 31 vertices, 31 nets and 79 pins.

Therefore, our linear placement method achieves the best result in terms

of sum of the lengths. On the other hand, the network optimization method

achieves the best result in terms of sum of the squared lengths. Our linear

120

placement method also generates good placement results in terms of the

number of tracks required. All these examples take less than 10 seconds of CPU

time to execute.

5.7. Conclusion

We have explored the properties of linear placement problems. Two cri

teria, max-flow min-cut and cost ratio, are proposed to make partitions of the

optimal order. The shrunk graph is then constructed to decompose the problem

into two smaller sized problems. Based on the partitioning process, an optimal

ordering method is first proposed to handle the special case: parallel graphs.

However, in the general case: arbitrary graphs, a graph modification is

developed to modify the graph without disturbing the optimal order of the origi

nal graph. A strategy is set so that max-flow min-cut method can make further

partitioning. Based on this strategy, an optimal ordering method is also pro

posed for arbitrary graphs. The method is shown to find the subset which gen

erates the maximal cost ratio. This method is extended to the applications to

VLSI design, with multi-pin nets modelled by loops. The relaxation step in net

work optimization method is utilized to continue the partitioning. It is demon

strated with examples that this method achieves equal or better results than

current methods.

References

[I] N. R. Quinn. Jr. and M. A. Breuer. "A Force Directed Component Place

ment Procedure for Printed Circuit Boards," IEEE Trans, on Circuits and

Systems, vol. CAS-26, No. 6, pp. 377-388, June 1979.

[2] K. J. Antreich, F. M. Johnnes and F. H. Kirsch, "A New Approach for Solv

ing the Placement Problem Using Force Models," Proc. IEEE Int. Symp

on Circuits and Systems, pp. 481-486. 1982.

[3] H. R. Charney and D. L. Plato, "Efficient Partitioning of Components,"

Proc. of the 5th Annual Design Automation Workshop, pp. 16-1 to 16-21.

1968.

[4] D. G. Schweikert and B. W. Kernighan, "A Proper Model for the Partition

ing of Electrical Circuits," Proc. 9th Annual Design Automation

Workshop, pp. 56-62, Jun. 1972.

[5] K. M. Hall. "An r-Dimensional-Quadratic Placement Algorithm," Manage

ment Sci.. vol. 17, no. 3, pp. 219-229. Nov. 1970.

[6] C. A. Desoer and E. S. Kuh, Basic Circuit Theory, McGraw-Hill Book Com

pany, 1969.

[7] N. Jacobson, Basic Algebra, W.H. Freeman and Company, pp. 133-135.

1974.

[8] R. S. Varga Matrix Iteratiue Analysis, Prentice-Hall, Inc., 1962.

[9] L. Steinberg 'The Backboard Wiring Problem: A Placement Algorithm,"

S1AM Rev.. Vol. 3. no. 1. pp. 37-50. Jan. 1961.

[10] J. E. Stevens Fast Heuristic Techniques for Placing and Wiring Printed

Circuit Boards, Ph.D. Thesis, Coinp. Sci. Dep., Univ. of Illinois, 1972.

[II] M. Marek-Sadowska and J.T. Ii, "Global Router for Gate Array," IEEE

ICCAD. pp. 131-132. 1983.

121

122

[12] T. Yoshimura and E.S. Kuh, "Efficient algorithms for channel routing."

Memo. UCB/ERL M80/43. Aug. 11, 1980, Electronics Research Laboratory,

College of Engineering, Univ, California, Berkeley.

[13] J.T. li, C.K. Cheng, M. Turner, E.S. Kuh and M. Marek-Sadowska.

"Automatic Layout of Gate Arrays," submitted to Custom Integrated Cir

cuits Conference, May 19B4.

[14] S. Goto. "An Efficient Algorithm for the Two-Dimensional Placement Prob

lem in Electrical Circuit Layout." IEEE Trans, on Circuits and Systems,

vol. cas-2B, no. 1, Jan. 1981.

[15] R.L. Brooks, C.A.B. Smith. A.H. Stone and W.T. Tutte "The Dissection of

Rectangles into Squares," Duke Math, Journal, Vol. 7, pp.312-340, 1940.

[16] U. Lauther "A Min-cut Placement Algorithm for General Cell Assemblies

Based on a Graph Representation," Proc. 16th Design Automation Confer

ence, pp. 1-10. June 1979.

[17] M.Y. Hsueh and D.O. Pederson "Computer-Aided Layout of LSI Circuit

Building-Blocks," Proc. IEEE Int. Symp. on Circuits and Systems, pp.

474-477, 1979.

[18] C.K. Cheng and E.S. Kuh "Partitioning and Placement Based on Network

Optimization," IEEE Int. Conf. on Computer-Aided Design, pp 86-87, 1983.

[19] R.L. Donze and G. Sporzynski "Masterimage Approach to VLSI Design."

IEEE Computer Mag., pp. 18-25, Dec. 1983.

[20] N.P. Chen. C.P. Hsu. E.S. Kuh. C.C. Chen and M. Takahashi "BBk A

Building-Block Layout System For Custom Chip 1C Design," IEEE Int. Conf.

on Computer-Aided Design, pp 40-41. 1983.

[21] RE. Gomory and T.C. Hu "Multi-Terminal Network Flows." J. Soc. Indust.

Appl. Math. 9, pp. 551-570. 1961.

123

[22] D. Adolphson and T.C. Hu "Optimal Linear Ordering," SIAM J. Appl. MATH.

Vol. 25, No. 3, pp. 403-423, November 1973.

[23] E.L. Lawler "Sequencing Jobs to Minimize Total Weighted Completion

Time Subject to Precedence Constraints," Annals of Discrete Mathemat

ics 2, pp. 75-90, 1978.

[24] J.B. Sidney "Decomposition Algorithms for Single-Machine Sequencing

with Precedence Relations and Deferral Costs," Operations Research, Vol.

23, No. 2, pp. 283-298, March-April 1975.

[25] T. Ohtsuki, H.M. Mori, E.S. Kuh, T. Kashiwabara and T. Fujisawa "One-

Dimensional Logic Gate Assignment and Interval Graphs," IEEE Trans on

Circuits and Systems, pp 675-633, September 1979.

[26] L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks, Princeton University

Press, 1962. Canad. J. Math., 8, 1956.

[27] B.W. Kernighan and S. Lin "An Efficient Procedure for Partitioning

Graphs," Bell Syst. Tech, J, pp. 291-307, Feb. 1970.

[28] D.M. Schuler and E.G. Ulrich "Clustering and Linear Placement," Proc.

9th Design Automation Workshop, pp. 50-56, 1972.

[29] S. Kang "Linear Ordering and Application to Placement," Proc. 20th

Design Automation Conference, pp 457-464, 1983.

[30] 0. Wing "Interval-Graph-Based Circuit Layout," IEEE Int. Conf. on

Computer-Aided Design, pp 84-85, 1983.

	Copyright notice 1984
	ERL-84-40 (1 of 2)
	ERL-84-40 (2 of 2)

