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ABSTRACT

With the advent of VLSI technology, the number of com-
ponents in a chip becomes very large. In view of the growing com-
plexity of the chip and the need for fast turnaround time, the

importance of automatic layout is quite obvious.

While there are many effective and efficient wiring algorithms
currently available which have been used extensively, more work
need to be done in partitioning and placement. This dissertation
deals with theoretical study of partitioning and placement and the

implementation of algorithms for chip design.

There currently exist three basic strategies for automatic
chip layout, namely: the standard-cell, the gate-array, and the
building-block custom chip. '

We will demonstrate that the placement problem can be
transformed to a network optimization problem. Based on the

sparsity of the network, an efficient algorithm has been developed



which is capable of solving the constructive placement problem.

The algorithm has been extended to assign components of
different width into a row based on the row-type chip design such

as the standard-cell and gate-array systems.

While the building-block custom chip system includes irregu-
lar sized and shaped components, a reduction process has been
developed to tackle the overlapping problem. This process minim-
izes the chip area, but still maintains the original relative positions
among the components. However, it allows rotation and flipping of

modules.

Finally, an investigation of the placement problem in terms of
different objective functions is explored. In linear placement, the
sum of the wiring Jengths, the sum of the squared lengths and the
number of tracks required are used for comparison. Based on the
max-flow min-cut method, an eflicient algorithm for linear place-
ment has been developed. It is shown that the method generates
the best results in terms of the sum of the wire lengths, whereas
the network optimization method achieves the best results in

terms of the sum of squared lengths.
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Chapter 1
Introduction

1.1. IC Layout

With the rapid evolution of VLS] technology, the number of components in a
chip becomes large. In view of the growing density and complexity of the chip,
physical layout becomes critical to turnaround time of the design and the per-
formance of the circuit. Not only an extra long design period causes the cost of
the product unreasonably high, but also an ill-designed layout might be fatal to
the whole chip. Thus, an effective and efficient automatic layout is in need for

the advancement of the integrated circuit technology.

Due to the tremendous complexity of the problem, layout system is usually
decomposed into two phases, namely, placement and routing. The placement
assigns the locations of the components on the chip. Based on the result of
placement, the routing tries to complete the connections among the com-
ponents under the constraint of specified design rules. Different placement
results generate different connection patterns. Thus, the result of layout is

much dependent on the phase of placement.

While there are now many effective and eflicient routing algorithms avail-
able which have been used extensively, more work must be done in partitioning
and placement. This thesis deals with theoretical study of plaqement and the

implementation of algorithms for chip design.

1.2. Placemenl problems

There are currently three basic structures for automatic chip layout.



namely: the standard-cell, the gate-array, and the building block custom chip.

Gate-array and standard-cell approaches have a regular structured chip.
The 10 pads are placed on the boundary of the chip, while the modules are
assigned to an array of rows inside the chip. Modules are assumed to have same
height but varying width. The routing area is embeded between the rows and
around the periphery of the array. This style significantly simplifies the design
process. In gate-array approach, the chips are preprocessed to establish the
transistor sites and, often, power and ground metallization as well. The chip siie
and routing areas are therefore fixed. Thus, achieving 100% routability is one
objective for the layout. On the other hand, the standard-cell layout involves the
customization of all mask layers. This additional freedorn permits variable chip
size and adjustable routing space between rows of active areas. Completing the

routing with smallest chip area becomes important.

Building block design style is sometimes referred to as the general cell or
macrocell approach. It is a popular approach for developing high density, high
production- volume integrated circuit chips. Thus the sizes and shapesbf the
modules are irregular. No geometry or size limitation apart from yield con-
siderations is put on the cell layout. The building block layout is to achieve 100%

routability while keeping the chip size as small as possible.
1.3. Review of placement

1.3.1. Objective function

The placement results are input to the routing phase where all the nets are
routed. The size of routing arcas are finally determined in the stage of routing.
Because of the tremendous cornplexity of the combined probiem, placement and

routing are usually separated as independent procedures. In placement,
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however, some of this complexity remains: the estimation of the exact sizes of
routing areas can become very complicated. Therefore, the goal related to
minimizing routing spaces has to be simplified so that the objective function is
easy to enumerate on the computer. In the literature, the sum of wire lengths is

commonly used as the objective function for placement.

One the other hand we prefer strongly-connected modules to be near each
other to improve circuit performance. Otherwise, a long connection wire might
cause signal to delay more than a tolerable range. We choose the sum of
squared wire lengths as the objective function, since a small sum leads to both
the chip size minimization and delay time reduction. With this objective func-
tion, the placement problem can be transformed into a network optimization

problem.

1.3.2. Placement algorithms

The algorithms for placement can be divided into two categories: construc-

tive placement and iterative improvement of placement.

A Constructive placement

One constructive algorithm is the clustering method. Initially, some
modules are placed on the chip as seeds. The unplaced modules are then put on
the chip sequentially. In each step, the module with the maximal connection to
the placed modules is taken from unplaced modules. It is assigned to the posi-
tion so that the lengths of connections is minimal. This process is repeated unti!

all modules are placed.

Another algorithm is the top-down approach based on bipartitioning. The

algorithm used is a minimal cut method such as the Kernighan and Lin's. Given



a cut-line which partitions the chip into two, the modules are iteratively
exchanged between the two sides to minimize the number of crossing wires on
the cut-line. Then each subregion is partitioned again into smaller subregions.
The procedure continues until each subregion contains only one of the

prescribed modules.

Both clustering and bipartitioning algorithms are greedy in the sense that
they try to achieve the local optimal in each step, but does not view the problem
globally. Quinn and Breuer introduced a force-directed method. In their formu-
lation, point modules are assumed, and a force-model is used to determined the
state of equilibrium. Hook's law gives the forces of attraction for modules con-
nected by signal nets, and repulsive forces are used to keep modules apart for
those which are not connected. This method leads to a good initial placement.
However, the algorithm amounts to solving a large set of nonlinear equations ,

which is time consuming.
B. Iterative improvement of placement

The purpose of this phase is to improve the placement by applying small
local changes, such as the pair-wise exchange of modules. Goto, who used the
concept of the medium of a module, suggested a multi-way exchange iterative
improvement method. This method has better performance than the traditional

pair-wise exchange method. But, it often leads to a local minimum solution.

Kirkpatrick introduced a thermal annealing concept to avoid the problem of
trapping in the local minimum. The method simulates the physical thermal
annealing process, which slarts with an appropriately chosen high temperature.
Pair of modules are randomly chosen to be exchanged. The difference of objec-

tive function is checked with respect to the exchange. According to the tem-
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perature, a probabilistic model is set to determine a threshold. The exchange of
the pair is accepted if the difference of objective function is smaller than the
threshold. The exchanges are repeated and the user gradually decreases the
temperature until no more improvements can be obtained. During the process,
a large number of different pairs of modules is tested for exchange. Therefore,

it consumes a great amount of CPU time.

1.4. Resistive network optimization

As the number of modules becomes larger, a global view of the problem
becomes more important. At the same time, the computational complexity of
the algorithm should be kept as low as possible. Otherwise, a large amount of

CPU running time would prohibit the implementation of the system.

In this thesis, we propose a constructive placement method. First, we sim-
plify the problem by assuming that all modules are of same size and shape.
Thus, the model of point module is assumed. Let slots be the fixed locations for
modules to be assigned. The objective function is the sum of squared wire
lengths. The placement problem is transformed into the problem of minimizing
the power dissipation of a resistive network. The constraint of the slots is for-
mulated in terms of a number of polynomial equations. In optimization, the first
order constraint is chosen to simplify the problem. This amounts to keeping the
center of gravity of modules at the center of the region. With network theory
and optimization techniques, the optimal locations of modules are easily

obtained.

Since only the linear constraint equation is used in optimization, the place-
ment is more or less confined to the center of the region. Therefore, a scaling

and relaxation scheme is proposed to spread the modules so obtained to the
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entire region. Then, a partitioning process is used to put the modules into
different subregions. The partitioning process continues until each subregion

contains only one module.

From several experiments conducted, the method is shown to generate
excellent placement results. Since the corresponding network inherits the spar-
sity of the placement problem, the method is very time eflicient with the aid of

sparse matrix techniques.

1.5. Standard-cell and gate-array placements

The network optimization method is first implemented in standard-cell and
gate-array placement. In the partitioning, the sums of the sizes of the modules
are checked on the two sides of a dividing line to even out the distribution of the
modules over the chip area. After modules are partitioned into rows, a decom-

paction process is used to separate the overlapping modules.

1.8. Building block placement

The network optimization is extended to find the relative locations of
modules in building block placement. Modules of rectangular circuit blocks are
categorized into two types. The modules which have width or height greater
than a certain threshold value are classified as critical module. After network
optimization, critical modules are placed first. Then, other modules are relo-
cated in the free spaces left by critical modules. A spacing algorithm is used to
separate the overlapping modules by the operations of compactibn. decompac-
tion and rotation. In each iteration, the decompaction operation slides modules
back toward the original locations to avoid overlap. Thus, the original relative
locations are maintained during the process. The reduction algorithm is then

applied to reduce the chip size. The algorithm reduces the breadth of chip in
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each iteration and calls for repeated use of the spacing algorithm until no more

reductions can be made.

1.7. linear placement

In order to have a fully automatic layout system, the optimum placement
ultimately means ease in routing. We need to compare diflerent criteria used in
placement. Thus, an investigation of the placement problem in terms of various
objective functions is explored. In linear placement, the sum of wiring lengths,
the sum of squared lengths and the number of tracks required are used for com-

parison.

Algorithms for linear placement are developed to minimize the sum of
lengths. Two criteria, max-flow min-cut, and a cost ratio, are used to make par-
titions of the optimal order of the modules. The algorithm decomposes the
modules into smaller subregions. This process is repeated until each subregion

contains only one modulie.

-1t is shown that the linear placement method generates the best results in
terms of the sum of the wire lengths, whereas the network optimization method

achieves the best results in terms of the sum of squared lengths.

1.8. Thesis overview

The network optimization method is described in Chapter 2. Ilts extensions
to standard-cell and gate-array are discussed in Chapter 3. Chapter 4 deals with
the building block placement. The spacing and reduction algorithms which
separale the modules and reduce the chip size are described. Finally, Chapter 5
describes the properties of linear placement and introduces two new algorithms.

The proposed method and network optimization method arc compared with
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published results in terms of the sum of wiring lengths, the sum of squared

lengths, and the number of tracks required.

All algorithms described have been implemented in C programming
language and several examples obtained from industry have been used to test

the algorithms. The results are far superior than the manual placements.



Chapter 2
Placement Based on Resistive Network Optimization

2.1. Introduction

The force-directed method introduced by Quinn and Breuer is a good con-
structive placement method which leads to initial placement|[1]. In their formu-
lation, point modules are assumed, and a force-model is used to determine the
state of equilibrium. Hook's Law gives the forces of attraction for modules con-
nected by signal nets, and repulsive forces are used to keep modules apart for
those which are not connected. The algorithm amounts to solving a large set of
nonlinear equations, which is time consuming. An improvement has been pro-
posed by Antreich, Johnnes and Kirsch using the same force-directed method

but with a more systematic formulation of equations[2].

In this Chapter we propose a more efficient method based on resistive net-
. work analogy of the placement problem. The idea of using network analogy to
attack layout problems was first introduced by Charney and Plato[3]. They pro-
posed a method of module clustering according to the sensitivity of a network
analogy for the purpose of partitioning. In the Chapter, we first solve the
optimum placement problem in a systematic way by network analogy. The gen-
eral formulation of the problem of placing modules on slots involves optimiza-
tion with nonlinear constraints. However, if only the linear constraints are con-
sidered, the problem amounts to solving a linear sparse resistive network. Thus,
sparse matrix techniques can be used. Because of its computational efliciency,
the procedure is repeated in Lhe overall algorithm of part.it.ionfng and module
assignment. In the formulation, a key feature is that we allow some modules o
be fixed in position. Fixed modules could represent -0 pads; but they also play
an important role in solving each optimization problem in succession in Lhe

overall algorithm.

13
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In section 2 we give a detailed formulation of our approach to the problem.
Section 3 is divided into subsections of optimization, scaling, relaxation, and
partitioning and assignment. Section 4 briefly discusses the problem of multi-

module nets, the computation complexity and experimental results.

2.2. Formulation of the approach

Consider the module placement problem in chip layout. With reference to
Fig. 1 where movable modules together with fixed modules represent 1-O pads
are shown. The movable modules are to be placed on slots where horizontal and
vertical lines intersect. The net interconnection specification is given by a net
list relating nets and modules. We assume first that all nets are 2-module nets
and multi-module nets have been preprocessed and replaced with 2-module
nets[4]. Furthermore, all modules are assumed to have zero dimension, thus

their shape, size and pin locations are initially ignored.

2.2.1. Objective function

Let the two dimensions on the chip be specified by the x and y coordinates.
Let there be a total of n modules located at (z;,¥%;), i=1,2,....n. Let S denote the
connectivity between module i and module j, i.e., the number of wires between
them. Thus ¢;;=0. In the literature, the objective function used for placement is
usually the sum of wire lengths. However, because of network analogy, we choose

an objective function which is the sum of squared wire lengths. Let the objective

function be given by:
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Fig. 2.1. An example with movable modules to be placed on slots within the
square and fixed modules on the boundary representing 1-O pads.
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where l; is the Euclidean distance between module i and module j. Equation (1)

2‘481

can be written as follows[5]:
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where

B=D-C (3)
is an nXn symmetric matrix, C = [cij] is the connectivity matrix and D is a diago-

n
nal matrix whose i-th element d;; is equal to jzlc,-j.

With the symmetry between x and y in Eq. (1), we need to consider only the
one-dimension problem insofar as optimization is concerned. Thus we dispense
with the y coordinate until the end of Sec. 3 where we discuss partitioning and

assignment.

2.2.2. Network analogy

For those who are familiar with circuit theory, B in Eq. (3) is seen to be of
the same fc;rm as the indefinite admittance matrix of an n-terminal linear pas-
sive resistive network. We will model the coordinate of module i, x; with a node
voltage v; at node i. The reference coordinate x=0 is thus the datum voltage. The

term “Cjj in Eq. (3) is then the mutual admittance between node i and node j, and

d;;= i cy; is the self admittance at node i.
j=1

The power dissipation in the resistive network is

P=vTY,v (4)
where v is an n-vector representing the node voltage vector and Yn is the
indefinite admittance matrix which is symmetric. Thus the objective function of
the placement problem becomes the power dissipation in the linear passive
resistive network. It is well-known that in a passive resistive network the
current distributes itself in such a way that the power is minimum[6)]. That is,
any other current distributions which are not the solution of the network would
have a larger power dissipation. In other words, the problem of solving network

equations is equivalent to that of minimizing a well-selected function which
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represents power.

2.2.3. Boundary constraints

Consider the n-terminal resistive network shown in Fig. 2.2. The first m
nodes are floating and their voltages are denoted by an m-vector vy The
remaining n-m nodes are connected to voltage sources denoted by an (n-m)-

vector v,. Thus the coordinates of the n modules are represented by an n-
vector v=l,v;] where the coordinates of the fixed modules are specified by v and

the coordinates of the movable modules which are to be determined are

represented by v;.
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Fig. 2.2. An n-terminal linear, passive resistive network whose first m nodes
are floating and the remaining n-m nodes are connected to voltage

sources.

The network equations are:

0=y, +¥Y2v2 . (5a)
i = Yo V) + Ya22v2 (5b)

where ¥y, ‘ygz=ylg and yz; are the familiar ‘short-circuit admittance sub-
matrices of the indefinite admittance matrix, Yn. From (4b), we obtain

V) = =¥Y'Yi2v2 (6)
which gives the solulion of the movable modules in terms of the fixed modules

and the admittance submatrices.
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Remarks

(1) y,, is the short circuit driving-point admittance submatrix of a passive

resistive network and is positive definite; thus y;;! always exists.

(2) The solution of Eq. (6) must fall inside the region defined by the smallest
and largest voltages of the voltage sources. This is because in a passive
resistive network, node voltage can not lie outside the range of voltage

sources[8].

(3) The dissipated power obtained from the solution in Eq. () is the minimum
among all possible v,. Any deviation from the solution will result in an

increase in power.

2.2.4. Slot constraints

Up to now we have not imposed the constraint that the movable modules
must be located on slots. This means that the voltage vector v, when finally
determined must represent a set of prescribed discrete voltages called the legal
values. Let us designate the prescribed slots in terms of the permutation vector
P=[P1.P2....om )T Where p; is the i-th legal value and m is the total number of the
movable modules. Thus the permutation of the m legal values must be assigned
to the m modules of v;. To express this in terms of our optimization problem,
let v ,=[z;.zg.....zm]T. i.e., Z; denotes the coordinate of module i or the voltage at
node i. We claim that the following set of equations represents the constraints
on the modules which are required to be on slots:

‘2‘3} = ﬂ?i

i=)

i z2= 2} p2

i=1

(7)

‘glzim = gpm
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The first equation can be written as
17v,=1"p =d (8)
where 1 is a unit vector and d is a constant which is equal to the sum of the m

legal values.
Proof:

=> Let [x;.%5...x ] equal to any permutation of [py.PoiiPp) Eg. (7) is

automatically satisfied.

<= Let us define

J (z)=i;1j‘[=+z‘~]

Then the coeflicients of the variable x are multi-variable polynomials of
[x,.%5....x ). Through simple algebraic operations[7] and by using Eq. (7),
we can show that

f(z)=ﬁk+p,]

i=1

which implies that all modules are on slots.

Q.E.D.
2.3. Proposed method

The proposed method can be divided into subproblems of optimization, scal-
ing, relaxation, and partitioning and assignment. The main idea is to solve a
simple optimization problem using linear resistive network analogy repeatedly
and, in the process, the movable modules are assigned to slots. We shall use
node voltages and module coordinates interchangeably in the ensuing discus-
sion, for sometimes it is more intuitive to make statements in terms of voltages;
while in dealing with the actual placement problem it is more convenient to use

the coordinates.
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2.3.1. Optimization

From Egs. (4) and (5), we wish to minimize the power dissipation
1
P=vTYu = fv,’,vl}l:[:" ym“ux] = vy, + 2ufyove + viyave (9
21 Yzz|[V2
subject to the complete set of constraint equations in Eq. (7). This is clearly not
feasible. Therefore, we propose to use only the first equation in Eq. (7), which is

a linear constraint expressed by Eq. (8).

The solution to the optimization problem of minimizing P in Eq. (9) subject
to the linear constraint in Eq. (8) is derived from the well-known Kuhn-Tucker
conditions. The first order necessary conditions, in addition to the constraints
are

2y 11V +2Y12U2+A1 = 0 . (10a)
1Ty, =d (10b)
where A is the so called Lagrange multiplier. The solution of the above simul-

taneous equations is
vy =yi -yavzﬂl} (11a)
where

i = d"‘ltyﬁ'ylzvz .
! 1Tyl

(11b)

With respect to the second order conditions, we find the Hessian matrix is equal

to 2y,, which is positive definite. Thus the solution is optimal.

It is seen that the first term in Eq. (112) is precisely that given by Eq. (6)
for which there is no constraint on slots. The second term of Eq. (11a) can be
viewed as a correction term which attempts to put the solution on slots. In
terms of electric network, we may use current sources to interpret the effect as
shown in Fig. 2.3. Thus we have a linear resistive network with both voltage and

current sources. In addition, we know that the network is sparse because of the
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inherent nature of the placement problem. Using well-known sparse matrix algo-
rithms, we can greatly reduce the computation time in comparison with those

that use attraction and repulsion forces[1,2].

| . m+
2“ Linear N >
Zo—(1) Passive (2)|— Jt
m Resistive ‘' n
t— Network ?

OOO BECIOIO,

Fig. 2.3. Network interpretation of the optimization problem with linear

constraints.

As mentioned previously, because only the linear constraint equation is
used, the solution will nol put modules on slots. As a matter of fact the result
will lead to modules more or less confined to the center of the region. Therefore
we must introduce ways to spread the modules so obtained apari and then to
bring them to the legal positions. Thus the next step in our overall method is
scaling which will distribute the solution more evenly over the entire region.
However, let us first analyze the effect of module movements to changes in

power dissipation. Let us assume that we deviate away from the solution v, of
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Eq. (11) by év, under the constraint of Eq. (8), i.e.

176v, =0 (12)

We claim that the power dissipation is increased by

Gv{yuﬂ‘u,.
Proof:

From equation (9), we have

AP = P(‘u1+6'u,)—P(‘U1) = 26v{y"v, + G‘U{yud‘u; + 261}{}!12’!}2

From equation (11),

YiV2 = =yyv) + 1

and using Eq. (12), we obtain

AP = 6v {y |16U]
Q.E.D.

Furthermore, it is possible to derive an upper bound on the increase in
power dissipation in terms of yy, the largest diagonal element in y,,. From the
Theorem of Gerschgorin[8], we know that the eigenvalues of y,, are not larger

than 2yy, then

AP = SuTynby, < ynl|6v,)% < zyu‘ﬁlavf (13)

Therefore the increase in power dissipation has an upper bound which is propor-

tional to the norm of the deviation dv,.

2.3.2. Scaling

The result of the optimization with linear constraint leads to solutions which
have movable modules concentrated at the center of gravity of all’modules. The
linear constraint dictates the mean position of the modules. The only forces
which attempt to scatter the modules are the fixed modules at the boundary.

Therefore, in order Lo be able to partition the modules we will introduce scaling
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to redistribute the modules at the expense of increasing the power dissipation.
The method used here is to minimize the increase of power AP under the con-
straints which include both the first order and second order equations in Eq. (7).
Fortunately, by using the norm of v, in Eq. (13), we again can resort to the

well-known Kuhn-Tucker conditions.

Let us assume that in the region where there are k modules the legal values
are given by the permutation vector [p,.pa.....p: ]. Let 2, =[z,1.Zo2.....Zox ] denote
the solution obtained from optimization and let =, =[z, l.z,,z.....z;,*] denote the

new solution after scaling. Thus our problem is to minimize

f [:m'. - zm‘]e (14)

under the constraints

‘gzm' = f:Pz' (15)

i=]

and
ézfi = i:Piz (16)
i=1 i=]

The solution is derived from the Kuhn-Tucker conditions. The first order

necessary condition is

2[.1,.—:,]+)\,1+2>\2z,. =0 (17)
In addition to the constraints of Eq. (15) and Eq. (16), the solution is ‘
Fori=1,2,....k
zn = g, 4, (18)
where
Cn = 71' Pi (19)
i=)

§
'

ER bo -c ]2]-;_ (20)
el
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%gzoi (21)

0
°
]

and

T

[i—};[zm - ¢, ] (22)

Thus ¢, is the mean position of the computed module positions and ag is the

a,

root mean square amplitude measured from Cor

With respect to the Kuhn-Tucker second order conditions, we find the Fes-
sian matrix is equal to 2%:'—;‘—! where | is an identity matrix. Where g, >0, the Fes-

sian matrix is positive definite. The solution is optimal. If a, turns out to be
very small which approaches zero, so does z,; —c, in Eq. (18); then Eq. (18) must

be replaced by

Zni = Cn (23)
After scaling the norm of deviation becomes
i Pm "zoi] = kl[a'n"ao] [cn'co] | (24)
=1
The result of scaling represents an improvement from the result of optimization
as far as module location is concerned, but it gives an increase in power dissipa-

tion.

2.3.3. Relaxation

Before undertaking partitioning and assigning of modules to slots, we need
to perform relaxation to be described below. This will greatly improve the prel-
iminary results from optimization and scaling. The method calls for repeated
use of scaling and optimization over subregions to be specified by designers.
This tends to spread the modules out more evenly over the entire region. 1t is
important to nole that when a pertinent subregion is considered, modules out-

side are always kept fixed.
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We propose to choose subregions in the following way: First we start from

one end of the region, then the other end and, finally, the middle. After the ini-

tial optimization over the entire region, three such steps of scaling and optimi-

zation over subregions are carried out. The result tends to settle down and is

ready for partitioning. Thus we have as

Input:

A one-dimensional region with coordinates of movable modules =z,
i=1,2.....m obtained from initial optimization in the entire region with
specified fixed modules z;, i=m+1,m+2....,n on the boundary. A parameter g

is to be chosen by the designer with 0<8<50%.

Relaxation:

(1)

(2

(3

G

(5

(6)

1))

Order the modules from left to right according to coordinates with the

smallest one first.

Choose [8mlt modules from the left, let other modules be fixed and do scal-
ing in the left 8 region.

Fix the modules so determined in the left g region and release the modules
in the right (1-8) region. Do optimization.

Choose [8ml modules from the right, let other modules be fixed and do scal-
ing in the right g region.

Fix the modules in the right g region and release the modules in the left (1-

) region. Do optimization.

Choose [8m] modules from the left, let other modules be fixed and do scaling

in the left 8 region.

Set modules in both the left g region and the right 8 region fixed and

release the modules in the center subregion. Do optimization.

t Il means the smallest integer which is larger than k.
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Output:

A one-dimensional region with m modules and new coordinates z;,

i=1,2,....m.

2.3.4. Partitioning and Assignment

We next partition the region into two. The ratio of the left subregion to the
right subregion is |m/9/m/2 where [ denotes the largest integer which is
smaller than k. We do scaling once more for the left subregion and then for the
right subregion. As before, in scaling for a subregion we always keep those
modules outside fixed. The result of this gives two partitioned subregions
together with their associated modules. We next repeat the process for each
subregion, i.e., perform independently for each subregion, optimization, relaxa-
tion and par;itioning.

In the following we will reinstate the y coordinate to summarize the 2-
dimensional partitioning and assignment problem.

Input:
A 2-dimensional region to be partitioned into rectangles each containing a

module, a set of m movable modules together with their coordinates and a

set of n-m fixed modules.
Assignment:

(1) Do optimizatlion on both the x coordinate and the y coordinate of the mov-

able modules.
(2) While each region contains more than one module
Do
Choose the direction of the cut-line.

Cut the longer side of region.
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List all current regions.
For each region do partitioning.

(8) For each region, assign the module to the legal value.
2.4. Discussion

2.4.1. Multi-module nets

As mentioned in the introduction section, we assume that all nets are 2-
module nets in our treatment. Since multi-module nets are always present, we

use the following two models to deal with them:

(1) At the beginning we use a clique to simulate a multi-module net. If there

are r modules in a net, the weight of each edge on the clique is 2/r.

(2) After the relative module position is determined, we use a chain to connect
the modules. Consider the x direction, we order the modules according to

their coordinates; we then link the modules by a chain in this order.

In the experiments to be discussed in 4.3, the lengths of wires are meas-

ured according to the model in (2) in x and y directions, respectively.

2.4.2. Computation complexity

The optimization algorithm amounts to a linear resistive network computa-
tion. Using sparse matrix technique, we have the computation complexity
0(m1'4) where m is the number of movable modules. The scaling operation is

linear with k where k is the number of modules in a subregion.

As to partitioning and assignment, in each iteration, all current regions are
divided inlo two subregions. It takes logzn iterations to make all the necessary

divisions. Thus the total complexity is 0(n1'4log2n).
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2.4.3. Experimental resuits

A 20 module example is designed to illustrate the procedure of our algo-
rithm. As shown in Fig. 2.7, four modules are fixed on the four corners of the
chip, and in the optimal placement every module is connected to the neighbor-
ing modules only. Figs. 2.4~2.7 illustrate how module locations evolve from the
initial placement onto slots. In the figures, module positions are indicated by
points with module numbers. The connectivity among modules is represented

by linking lines.
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b 4
[
L]

x18

\xl?

squared length = $7 . 629627
manhattan length = 2S5.484S

Fig. 2.4. Result of assignment step (1) of the 20 module example. The
module positions are optimal under the constraint that the center of

gravity of the modules is at the center of the chip.
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x19

x13 L 15 _x18

.\

[
.
L

L,

squared length = 28.721426
manhattan length = 34.8042

Fig. 2.5. Result of first level partitioning and scaling after relaxation is car-

ried out in the vertical direction.
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x19
2 <12 x14 x15 x18
<8 9 x10 11
4 L5 b6 ke
x16 e 3 —L‘Z\\rs

&l?

squared length = 27,.540583
manhattan length = 29,6487

Fig. 2.6. Result of second level partitioning and scaling.
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x19
x12 x13 x14 x15 x18
8 9 10 11
4 e A:) 7
x16 ("] 1 2 x3
k1?7
squared length = 28
manhattan length = 28

Fig. 2.7. A 20-module placement problem with 4 fixed modules specified.

- Fig. 2.4 is the result of initial oplimization. The moedule positions arc
optimal under the constraint that the center of gravity of the modules is at the
center of the chip. Relaxation is nex\ carried out and the modules spread oul
over the entire region in the vertical direction. Next partitioning and scaling are
used to relocate the modules into two subregions as shown in Fig. 2.5. Fig. 2.6 is
the result of second level of optimization, relaxation and partitioning using a

vertical cut-line; hence, module spread out in the horizontal direction. Fig. 2.7
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is the solution of the final assignment. It is seen that all modules are located on

slots.

To evaluate the effectiveness of our method, we use the example given by
Steinberg[5,9]. However, because we always assume that there exist fixed
modules in our formulation, we modified Steinberg's example by fixing the posi-
tion of the two modules (34 and 26 shown in Fig. 2.9) in the bottom row. In relax-
ation, we tried different values of 8 to compare the results. These are shown in
Fig. 2.8 where we plot the sum of the squared length for different values of 8. It
is clear that =0 implies no relaxation. The placement for §=0.125 which leads
to the smallest squared wire length is shown in Fig. 2.9. This 34 modules, 172
nets example took 13.1 seconds of cpu time and 169K memory on VAX 11/780
machine. For comparison with Steinberg and Hall, we also calculated the sum of

the Manhattan length and the sum of Euclidean length. The Table 2.1 summar-

izes the comparison.



Squared Wire Length

35

10,000}
9800} \\\
9600}

9400}
9200}
9000}
8800}
8600}
8400}

>

0.0 0.1 0.2 0.3 0.4 0.5

Fig. 2.8. Result on Steinberg's example, with different values of g in relaxa-

tion.
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Measure Steinberg Hall Cheng-Kuh
Squared length 11875 9699 8596
Manhattan length N.A 5139 5316

Euclidean length 4894.54 | 4419.13 4358.36

Table2.1. Example 1: Steinberg's example

As a second example we use the ILLIAC IV PC Board problem given by
Stevens[10]. Again we fix the 10 Pads according to the placement result of Quinn
and Breuer[1]. The result with 8=0.25 is given in the Table 2.2 together with
those of Stevens and, Quinn and Breuer. This 136 modules, 432 nets example

took 104.2 seconds of cpu time and 480K memory on VAX 11/780 machine.

Table2.2. Example 2: Placement of ILLIAC ]V Board 1C136.

In both examples it is seen that in terms of our chosen objective function,

i.e., the sum of squared length, our method yielded the best results by far.

2.5. Conclusion

The module placement problem has been formulated in terms of linear

resistive network optimization. The objective function used is the sum of

Measure Stevens | Quinn and Breuer | Cheng-Kuh i *
Squared length N.A. 8794 7521
Manhattan length 2733 2558 2495
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squared wire length which corresponds to power dissipation in the resistive net-
work. Fixed modules become nodes with constant voltages. Movable modules
then correspond to nodes whose voltages are to be determined. Since modules
must be put on slots, a set of constraint equations are imposed on the modules.
We consider only the first order linear constraint which, in essence, fixes the
center of gravity of the movable modules. The optimization calculation can thus
take advantage of the sparse matrix technique, and is repeated in the over-all
algorithm. To assign modules to slots, we need to perform scaling, relaxation,

partitioning and assignment. These comprise the over-all algorithm.

We have tried our method on well-known examples and compared our
results with other methods. So far, we always obtain the least squared wire
length as we expected. The extensions to gate-array , standard-cell, and build-

ing block designs will be discussed in the next two Chapters.



Chapter 3
Gate-Array and Standard-Cell Placements

3.1. Introduction

Gate-array and standard-cell designs are now widely used for automatic lay-
out of VLSI circuits. In these approaches, the designs of basic circuit
configurations (modules) are stored in a library. A typical chip structure is
shown in Fig. 3.1. The 10 pads are placed on the boundary of the chip, while the
modules are assigned to rows inside the chip. Modules are assumed to have
same height but varying width. The rectangular areas between rows are used for
routing. This style ‘signiﬁcantly simplifies the design process. Often there are
hundreds of modules on a chip. In such systems, automatic placement plays the
important role of ensuring all modules are at their legal locations and further-

more achieving 100% routability.

In gate-array approach, rows of transistors are preprocessed. The chip size
and routing areas are therefore fixed. In standard-cell, chip size and routing
areas are adjustable. Thus, routing is different for these two systems. However,
the formulation of placement problem is similar. Consequently, our placement

algorithm is developed for both gate-array and standard-cell designs.

In this chapter, we extend the network optimization method to gate-array
and standard-cell placement problems. The placement combined with a global
routing system[11] and Yoshimura and Kuh's channel router[12] represents the
major components of the Berkeley Automatic Gate-Array Layout System
(Bagel)[13]. |

Since the modules have varying width, we have to consider the size of the
modules in distributing them over the chip. Also, since pin locations can be far

from the center of the module, we must modify our model of point modules pre-

39
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viously used. Finally, in the assignment algorithm, we introduce a decompaction

process to separate overlapping modules.

In section 2 we give a detailed formulation of our approach to the problem.
Section 3 describes the extension of the network optimization method in gate-
array and standard-cell approaches. Decompaction is also described in the

assignment algorithm. Finally, we demnonstrate the test results on 2K and 4X

gate-array examples.



41

T

EEEE!

Lahad L R 'l [ I L

— Sy Ny — R —

[ ]
—
Ot
o
—
O el
L
F—
nl
tl
- —

g

[l

I

Fig. 3.1. An example with modules Lo be placed on rows within the chip and
fixed 10 pads on the boundary.
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S.2. Formulation of the approach

We formulate the placement problem in gate-array and standard-cell chips
layout. Refer to Fig. 3.1 where array of rows together with slots on the boundary
for external 1-O pads are shown. Given a set of modules, the modules have
different width, but the height of modules is set equal to the height of rows of
active areas. There are pins fixed on modules for the purpose of connection.
Let N be a set of nets describing the connection of pins and 1-O pads. Placement
assigns modules on rows of active areas with the constraint that no module can
overlap each other. For each row, we denote the capacity to be the area avail-
able for modules as shown in Fig. 3.2. We denote the size of the module to be the
area occupied by this module. As usual, we replace all multi-pin nets with two-

pin nets in the following formulation.

t_' w
U IINN

anu,e 1

—

vCaFQC;'f'j = \/\/‘ H
size of module i = zJ; « H

Fig. 3.2. lllustration of the capacity of each row and the size of the module.

3.2.1. Objective function

We choose the sum of squared wire lengths to be the objective function.

Since the pin locations are considered, we formulate the function in terms of the

pin coordinate [PAHJ‘] where i is the index of pin. Let Sij denote the connec-

tivity between pin i and pin j. The objective function can be written as:
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2 wgleN 2 (1.5)eN |
where (i,5) is a pair of pin indices, and l; ; is the Euclidean distance between pin
i and pin j.

However, the locations of pins in Eq. (1) are constrainted with respect to
the locations of modules to which the pins belong (Fig. 3.3). Let m(i) be the
index of the module to which pin i belongs. In Fig. 3.3, the relative coordinate of
pin i with respect to the center of the module is (dz;,dy;). The pin location can

then be formulated by the coordinates of module center, (Zn ) Ym@))-

For each pin i.

Pzy = Zp(i)+ OFpp (1)*dz;
Py; = Ym(i)*t Oym(i)*dy; (2)

In gate-array and standard-cell placements, the modules are not allowed to
rotate by ninety degrees. They can only be reflected with respect to the x or y
axis. In the above equation, (OZm (). Oym(i)) denotes the reflection status of
module m(i) in the x and y axes. The value of -1 indicat‘i.ng reflection and the

value of +1 indicating no reflection.

The above equation indicates that the objective function in Eq. (1) can be
formulated in terms of the coordinates of the module centers. Plugging Eg. (2)
into Eq. (1), we see that the objective function is then formulated in terms of the

coordinates of the module centers.
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Fig. 3.3. llustion of pin location with respect to module center.

3.2.2. Network analogy

In Chapter 2, the model of point module is used. for modules of same shape
and_ size. Through network transformation, the point modules become the nodes
of the corresponding linear resistive network. In this section, the model of
modules is extended so that the distances between pin locations and moduie

centers are taken into consideration.

- Suppose the orientations of modules are given. The distance between pin
and the center of the module is a constant. In the network analogy, we
transform coordinales to voltage values. Thus, the distance between pin and
module center is transformed to a branch voltage source between the
corresponding nodes. Fig. 3.4 illustrates this transformation. In Fig. 3.4a, we
have a module with three pins 1, 2 and 3, connected to modules 4, 5 and 6,
respectively. Point ¢ is the center of the module. Fig. 3.4b is the corresponding
network of Fig. 3.4a. Pins and modules together with point ¢ are transformed to
the nodes of the network. Connectivily is transformed to the conductance and
constraint of pin locations is transformed to the branch voltage sources.

Through voltage transformation, we can shrink nodes 1, 2 and 3 to node ¢ and
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transform the branch voltage sources to the voltage sources on branches (1,4),.

(2,5) and (3,8) as shown in Fig. 3.4c.
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Fig. 3.4. Network model of a large module with given orientation and pin lo-

cation:

(2) The module with three pins connected to other modules. ¢ is the

cneter of the module.

(b) The network model of the module. Constraints on pin locations is

modeled by branch voltage sources.

(c) The network model after voltage transformation.
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Thus, given n modules with pin locations on the modules, we have an anal-
ogy of an n-node linear resistive network with nodes representing the modules

and branch voltage sources representing the constraint of pin locations.

Let G denote the branch conductance matrix, 4 the incidence matrix and
E, the branch voltage sources[6]. Let us set v to be the voltage vector of nodes.

The power dissipation is now
T
P= [E, +AT) 6B, +4™) (3)
3.2.3. Slot constraints

For network optimization, we can formulate the slot constraint in terms of
a number of polynomial equations. As in Chapter 2, we use the first order equa-
tion only. The first order equation expresses the constraint of keeping the
center gravity of modules at the center of chip. Let w; be the size of module i.
This constraint is now written as:

‘);w‘-z‘-/ f w; =c; (4)

i=1
where ¢; is the center of the region.
3.3. Proposed method

The network optimization is modified to deal with modules of different size
and the pin location constraints. A merging operation is introduced to improve
the result after partitioning. We also describe the decompaction in subsection

3.3.5.

3.3.1. Optimization

Decomposing the voltage vector into floating voltage vector v, and the fixed

voltage sources v, we have the following formula for the power dissipation.

P= EQTGEQ +v fy,,v ,+2vfy,gvg+v§y22v2+ E° GAT‘UI'*'EQ GAZUQ (5)
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where ¥,,,¥12.¥22 are the short-circuit submatrices of the indefinite admittance
matrix Y=AGAT. A, and 4; are the submatrices of 4 corresponding to vector v,

and va.

We want to minimize the power dissipation subject to the constraints in Eq.
(4). Similar to the result of Chapter 2, we obtain the following results from the

well-known Kuhn-Tucker conditions:

V1= +Y Mg (6a)

Vg = Y5 [~Y12V2—A,GE, (6b)
. d—wTy,

g = wryl_llw (BC)

where w is a vector of elements w; and d is the constant to maintain the first

order constraint.

It is seen that that first term in Eq. (Ba) represents the solution for which
there is no constraint on slots. The second term of Eq. (6a) can be viewed as a
correction term which attempts to align the solution on slots. In terms of elec-
tric network, we may use current sources to interpret the effect. Thus we have a

linear resistive network with both voltage and current sources.

Any deviation from this solution can cause the power dissipation to
increase. Let us assume that we deviate away from the solution v, of Eq. (8) by

6v, under the constraint of Eq. (4), i.e.

wTG'U] =0 (7)

Then we claim that the power dissipation is increased by

viynbv,. (8)

ro|=

Proof:
The proof is similar to the proof in subsection 2.2.1 except that the effect of

the branch voltages and sizes of modules are considered here. From equa-

tion (5). we have
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AP = P{uﬁ-&u,]-PI‘ul) = dv{y,lév,+2v{y,,6v,+26vfy,zvg+5,, GA‘{ﬁ‘U;

From equation (8)

yll{"l"va]=i¢
and using equation (7). we obtain
AP = évly,,bv,
Q.E.D.

Therefore the increase in power dissipation has an upper bound which is

proportional to the norm of the deviation év,.

3.3.2. Scaling

The formulation of scaling in Chapter 2 is modified to take into account the
sizes of modules. Without lose of generality, we assume there are certain
number of legal locations for modules to be assigned in order to formulate the
mean position and root mean square amplitude of the desired module distribu-
tion. Let us assume that in a region or a subregion, there are k modules with m
legal locations given by [Pi.P2.....Pm]) Let [Zo1.Zo2,....Tox ] denote the solution
obtained from optimization and let [Z,;,Zn2.....Znc ] denote the new solution after

scaling. For simplicity, we minimize the following objective function

2
f‘w‘ {:m - %i] (8)
=)
under the first and second order slot constraints
i:l'wizm’ glpi

= (9

|
m
2‘“}‘
i=]

and

i wv’.zr?i 22%2

{=1 - i=) (10)

m
t‘"’t
i=1
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The solution is given by the Kuhn-Tucker conditions, i.e. For i=1,2,...k’

Zyy — C
Zn = 00 + Ca (11)
where
Cp = 1—‘§pf’ (12)
kt=l
1 .
= |1 o )37
=i -] @
1 iilwtz“ |
R R e
i=1 -.
and

o}

bl - .|

- |i=1

a, = o

i=1

(15)

where C, is the mean position of the computed module positions and a, is the
root mean square amplitude from c,. If a, approaches zero, so does Z,-c, in Eq.

(11), and Eq. (11) can be replaced by

Zpi = Cp (16)

It is easy to check that after scaling, the objective function in equation (8)

is equal to
élwe ‘[[an -an]z+ Cn -co]al (17)

3.3.3. Relaxation

The result of relaxation, as described in Chapter 2, leads to modules more
or less confined to the center of the region. Therefore, relaxation scheme is
used to spread the modules to the whole region. The method calls for repeated
use of scaling and optimization over the subregions specified by designers.

Modules are selected to the subregions according to the order of their
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coordinates. We try to make the total size of the selected modules equal the
capacity of the subregion. Since the sizes of modules are not uniform, total size
of the selected modules and the capacity of the subregion may not match. In
order to make the difference small, we develop a function to define the number
of modules to be selected. Let P be the capacity of the subregion. Let module i
be the critical module such that by adding this module the sum of selected
module sizes would increase from a value T to T + w; where T < P < T+w;. If
P-T > T+w;—P then we select module i. Otherwise it is not selected. Thus, the
difference is smaller than the size of the largest module. We define the number

of the selected modules by function {(P).
Thus the relaxation is described as:

Input:

A one-dimensional region with coordinates of movable modules z;,
i=1,2,....m obtained from initial optimization in the entire region with
specified fixed modules z;, i=m+1,m+2,...,n on the boundary. Sum of the m
movable modules is S. A parameter 8 is to be chosen by the designer with

0<B<50%.
Relaxation:

(1) Order the modules left to right according to coordinates of the centers of

modules

(2) Choose f(S*8) modules from the left, setting other modules fixed and do
scaling in the left 8 regior;.

(3) Fix the modules so determined in the left g region and release the modules
in the right (1-g8) region. Do oplimization.

(4) Choose f(S*g) modules from the right, set other modules fixed and do scal-

ing in the righl 8 region.
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(5) Fix the modules in the right g region and release the modules in the left (1-
B) region. Do optimization.
(8) Choose £(S*g8) modules from the left, set other modules fixed and do scaling

in the left g8 region.

(7) Set modules in both the left 8 region and the right 8 region fixed and

release the modules in the center subregion. Do optimization.

Output:
A one-dimensional region with m modules and their new coordinates z;,

i=1,2,....m.

3.3.4. Partitioning and Merging

In partitioning, we divide a given region into two subregions. The modules
in the region are redistributed to the two subregions. Also we try to make the
ratio of module sizes in two subregions approaches the ratio of the capacities of
the subregions. Let R be the ratio of the capacities of two subregions and S be

the total size of the modules to be partitioned. The intended total sizes of

1 . R
T+r 20d S*TiE

modules in the two subregions would be S*

Thus, f( S*

)
1+R
defines the number of modules to be seperated from other modules.

Each time we list all regions on the chip as current regions. The partition-
ing step divides the current regions into subregions. After all current regions
are partitioned, we use a merging step to improve the result. We use a windo‘w
to cover part of subregions, merge these subregions and do the partitioning
again. We define two kinds of windows: horizontal and vertical. In the horizontal
window, the number of columns of subregions is larger than the number of rows
of subregions. In the vertical window we have a larger number of rows of subre-

gions. In Fig. 3.5 we use a ( 1 x 4 ) horizontal window. We scan rows from right

to left with an increment of 2 and top to bottom with an increment of 1. The
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illustration of vertical window could be shown by rotating this picture 90 degrees

and reflecting with respect to the x axis.

Fig. 3.5. lllustration of horizontal window.

3.3.5. Assignment

We continue partitioning the chip until all modules are assigned to the
predefined rows, while keeping the total size of modules in each row approxi-

mately the same. Because the size of modules is nol uniform, two different rows
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of modules may not have the same size. When one row of the region is parti-
tioned into two parallel rows of subregions, we check the difference of sums of
module sizes between the two rows in the partitioning of each region. Thus, the
difference of the total module sizes between the two rows is not larger than the

size of the largest module.

Initially, because the orientation of modules is not determined yet, point
model is assumed to represent all the modules. After optimi;ation. the relative
locations of modules are determined. Based on those locations, the reflection of
each module is determined to minimize the wiring length. This process is

repeated after the partitioning in each level.

When modules have been assigned to rows, they might overlap, because the
modules have different shapes. A decompaction step is done on each row to
separate the overlapping modules. Scanning from right to left, we assign the
feasible range of location for each module. For the current module, its left
bound is set bs' the right edge of the previous module, and the right bound is set
so that the capacity of the right region is equal to the sum of sizes of modules on
the right hand side. Then the module is set between the boundary and located
as close as possible to its original position obtained after partitioning. Fig. 3.8
illustrates this process. The modules are initially located in one row as shown in
Fig. 3.6a. Fig. 3.6b demonstrates the process of decompaction. The vertical dot-
ted lines indicate the left and right bounds of module 3. Module 3 is located
within the boundary and set near to its initial location. Fig. 3.6c shows the

result of decompaction.
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Fig. 3.8. Decompaction on one row:
(a) Initial locations of modules.
{(b) Decompaction process on module 3.

(c) Result of decompaction.

The following shows the assignment algorithm.

Input:

A 2-dimensional region to be partitioned into rectangles each containing a
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module, a set of m movable modules together with their coordinates, and a

set of n-m fixed modules.
Assignment:

(1) Do optimization on both the x coordinate and the y coordinate of the mov-

able modules.
(2) While each region contains more than one module
Do
List all current regions.
For each region do partitioning.
Use horizontal window.
Do merging and repartitioning.
Use vertical window.
Do merging and repartitioning.
(8) For each row

Do decompaction.

3.4. Experimental results

The above method has been implemented and tested with gate-array
designs used at Hughes Aircraft Company and other industrial companies. Table
3.1 shows the comparison with manual designs on 4K gate-array chips. Four
chips have been tested. It is shown that the sums of squared wiring lengths are
reduced. Fig. 3.7 gives the solution of automatic placement of chip 1. Fig. 3.8
exhibits results in terms of wirability of chip 1 for both the automatic and
manual designs. The abscissa represents cut-lines in the horizontal and vertical
directions. The ordinate represents percentage of routing track demand over-

supply. It is seen that in the horizontal direction both the manual and
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autornatic placements yield results which are easily routable. However, in the
vertical direction, the manual placement requires over a hundred percentage of
track demand over supply, which is clearly unroutable, while the automatic
placement requires a peak percentage of less than 70. In general, automatic
placement tends to distribute the wires more uniformly and thus achieves
better routability. The cpu time of the above placement is about one minute on

an Amdahl V8.

Chip # | manual placement | network optimization
1 5.98x10° 1.31x10°
2 3.70x10° 3.37x10°
3 2.91x10° 1.83x10°
4 2.16x10° 0.94x10°

Table 3.1. Placement results of four 4K gate-array chips in terms of
sum of the squared wire length.

Chip 1: 317 modules, 676 nets and 2284 pins.

Chip 2: 255 modules, 916 nets and 2049 pins.

Chip 3: 442 modules, 983 nets and 3012 pins.

Chip 4: 484 modules, 1030 nets and 1969 pins.
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We also compare with the traditional iterative improvement method[14] on
a 2K gate array example. The specification of the example and the results are
given in Table 3.2. It is shown that not only the sum of squared wire lengths
decreases, but the sum of wire lengths is also reduced by 28%. This example

takes 783.2 seconds of cpu time on VAX 11/780.

Iterative improvemnent | Network Optimization ’

Manhattan length 77326 57191

Squared length 9.99x10° 3.01x10°

Table 3.2. Comparison with iterative improvement on 2K gate-array
chip

445 modules, 464 nets and 1713 pins

3.5. Conclusion

We have implemented a resistive network optimization method for gate-
array and standard-cell placement. Point modules are replaced by modules of
different sizes on cell rows. A decompaction process is proposed to separate
modules on each row. The results applied to 4K gate-array chips lead to far
superior results than that of manual placements. Also, the comparison with the
traditional iterative improverment method on a 2K gate-array example shows

that our methed produces better resuits.



Chapter 4
Building Block Placement

4.1. Introduction

The building block layout is a popular approach for developing high-density,
high production-volume integrated circuit chips. However, due to the wide
variety of sizes and shapes of modules used in building block systems, the place-

ment problem becomes very complicated.

To dissect a rectangle into a finite number of non-overlapping squares,
Tutte et al.[15] introduced a planar directed graph. This planar directed graph
is later used as polar graph in building block placement. Based on the polar
graph representation, many placement methods have been developed.
Lauther[18] combined this graph representation with a min-cut placement algo-
rithm to partition the modules into separated areas and improve the result by
rotating and flipping of the modules. Hsueh and Pederson[17] also derived from
the same graph a compaction algorithm to reduce the size of the chip. However,
in the compaction, the connectivities among the modules are not taken into
account. As a result, the wiring length might increase after a few interactions of

compaction.

The structure of polar graphs represents the relative locations of the
modules. There are different descriptions of the polar graph with respect to the
implementations. This chapter uses a graph representation[17] which is
extended from the traditional polar graph so that free spaces are allowed on the
chip. Let us consider an example of such a graph illustrating placement of
modules along the x-axis. In the graph, there are one source node and one sink
node representing the left and right edges of the chip, respectively. Other ver-
tices represent the modules. There is a branch (a,b) directed from a vertex a to

vertex b if the vertices a and b in the graph correspond to "horizontal adjacent”

61
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modules in the layout, and module a is on the left hand side of the module b.
Two modules are horizontal adjacent if there exists a horizontal line which inter-
sects with both modules, and no module placed between them is cut by this line.
Each branch has a weight associated with it which equals the sum of half widths
of the modules. This representation is shown in Fig. 4.1. The placement in Fig.
4.1a is represented by the graph shown in Fig. 4.1b. The free space is not
included in the graph. Note that the topology of the graph might change when
modules are moved from their current locations. It is important to note that

the longest path in the graph determines the width of the chip.

In the following sections, we describe a novel algorithm. This method
applies the network optimization method[18] to locate the initial relative
module locations. In order to spread the modules, the partitioning step of the
network optimization in Chapter 2 is first used to divide the chip into 4x4 subre-
gions. The modules whose dimension is comparable to the dimension of subre-
gions are considered as critical modules and placed at this stage. After their
position has been fixed, the capacity of each chip region is updated and network
optimization method is used to relocated other modules. A reduction process is
used to separate the overlapping modules and reduce the chip size, while still
maintaining the original relative module locations. In preliminary experiments,

this method generates results comparable with manual placement.

4.2. Formulation

Consider a set of rectangular modules of different shapes and sizes to be
located within chip area. On the four sides of the modules are pins for connec-
tions. Given a netlist and external pads fixed on the boundary of the chip, the
nets connect external pads and modules. The placement problem is to place the
modules with the goal of minimizing the chip area and keeping modules with

strong connectivities near each other.
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Fig. 4.1. Nlustration of polar graph.
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The two objectives of minimizing the area and placing modules with strong
connectivities close together are related to the cost of chip manufacturing and
to its performance. The advantage of small chip size is obvious, while the objec-
tive of contiguous placement of modules with strong connectivity is needed to
reduce the time delay of the signals. We choose the objective function of sum of
squared wire lengths since a small sum leads to both the chip size minimization

and delay-time reduction.

The results of placement are input to a routing system which wires the nets
among the modules and pads to complete the layout. Therefore, the size of the
routing areas also affect the results of layout. To concentrate on the placement
itself, we assume the routing areas are given. The modules are expanded in both
dimensions by an amount equal to half the channel width to cover the routing

areas.

We also use grids to divide the chip area into basic square cells. The size of
modules are then rounded off to the muitiple of the basic square cells. Thus, the
numbers of columns and rows of the grids define the size of the chip. The place-
ment problemm amounts to ass.igning modules on grids. This formulation
simplifies the explanation and programming of the algorithms. However, the

algorithms can be easily extended to gridless cases.

Donze and Sporzynski[ 18] have introduced the masterimage approach. This
approach has a basic chip structure of gate array. The modules are allowed to
have different widths and height, however. This method is considered to be
intermediate between unconstrainted and constrainted approach. Thus, in the
case that the channel widths are forced to be a constant and the module orien-
tations are suitably constrained, the general building block placement problem

reduces to the masterimage placement problem.
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4.3. Preliminary locations of the modules

The network optimization method is used to determine the preliminary
locations of the modules with the objective of minimizing the sum of squared
wiring lengths.

Initially, each module is modeled by a single node of the network. After the
optimal locations of modules are obtained, we choose the orientation of the
module to minimize the wiring length. Then, in the corresponding network, the
relative positions of pins are modeled by voltage sources connecting nodes per-

taining to the module.

We assign modules into subregions in order to distribute the size of modules
evenly over the chip. Because the size of modules is not uniform, the partition-
ing process checks the sum of sizes of modules in each partitioned row or
column. For instance, when one row of regions is further partitioned into two
parallel rows of subregions, we check the difference of sums of module sizes
between the two rows in the partitioriing of each region. Thus, the difference of
the total module sizes between the two rows is not larger than the size of the

largest module.

4.4. Basic operations

With respect to the preliminary module locations, the modules might over-
lap due to their different sizes and shapes. This section introduces four basic
operations, namely, compaction, decompaction, rotation and selection of prefer-
able direction. The operations are processed in one dimension of the chip. Then
the algorithms call for repeated use of the operations in each dimension to

separate the modules and to minimize the chip size.

Based on the theory of the polar graph, we know that the longest path from

the source to the sink is assigned to be equal to the dimension of the chip. The
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basic operations are used to shift or rotate the modules so that the longest path
length is reduced. However, instead of manipulating on the abstract polar
graph, these operations deal with the modules directly on the chip. Therefore,
the operations can handle the overlapping of the modules and take into account
the preliminary locations of the modules. As a result, the operations become

easy for coding and efficient for the layout.

4.4.1. Compaction

Given the chip area, the objective of compaction is to minimize either the x
or y dimension of the chip. Because the process is the same in the x and y
directions, let us describe the compaction with respect to x direction. Along the
x axis, the modules are first ordered from right to left. Following this order, we
shift the modules to the right edge of the chip, with the constraint that no

modules overlap.

Therefore, after the compaction, all modules are separated. However on
the left edge of the chip, some modules might fall outside the chip area. Formu-
lating this problem in the terminology of polar graph.'we give the following

definitions.

i Critical path: After the modules are separated, we can construct the polar
graph. Any path on the polar graph which is larger than the width of the
chip forces the modules to fall outside the boundary of the chip. Let us
define such a path to be the critical path.

ii ~ Slackness: Where there is no critical path, the width of the chip is larger
than or equal to the longest path of the polar graph. In this case, we define
the slackness to be the difference between the width of the chip and the

length of the longest path.
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4.4.2. Decompaction

While compaction shifts the modules toward one side of the chip, decompac-
tion pulls them back near the preliminary locations. The modules are now
ordered in the reverse order. We scan from left to right and assign the feasible
range of location for each module. For the current module, its left bound is set
by the right edges of the previous modules, and its right bound is set by its right
edge as determined by the compaction operation. Then the module is set
between the left and right bounds and located as close as possible to its prelim-
inary location. However, for the module on the critical path, there is no possible
variation in position. Then, these modules are put back at the previous locations
and some of the modules overlap again. In this way, next time, when decompac-
tion is processed in the orthogonal direction, they are forced to split apart in

that direction.

However, if the modules are also on the critical path in the orthogonal
direction, the decompaction operation also puts these modules back at the
same locations. As a result, no improvement can be achieved through further
decompactions. In order to avoid this problem, the modules are shifted from
the previous locations by one grid toward the location determined in the com-
paction process.

The decompaction is listed as follows:

Input:

The width and the height of the chip.

Preliminary locations of the modules derived from the network optimization

method.

The module locations obtained from the last decompaction process.

Decompaction:
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1. Do compaction in x direction.
2. Do from left to right
For each module
If it is not in the critical path
Then
Set

a.left bound: The left edge of the chip or the right edges

of the previous modules.
b.right bound: Its location obtained from step 1 above.

Locate this module at a minimum distance from its prelim-

inary location within the bounds.

Else

Set it at the previous module location with one grid deviation
toward the location obtained from step 1.
Output:
The module locations.
Example
This example demonstrates the compaction and the decompaction opera-
tion in the x direction. Suppose the preliminary locations of the modules
are given as Fig. 4.2. In step 1, we order the modules from right to left.
Each module is slid toward the right edge of the chip with the constraint
that no modules should overlap[Fig. 4.3]. Then the modules are processed
in the reverse order. Fig. 4.4 illustrates the process on the third module.

Its left bound and right bound are shown by the bold lines on both sides of

the free space in the chip. The module is pulled back near the preliminary
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location within the bounds. Because no critical path occurs in this exam-
ple, all modules are finally assigned within the chip area without overlap-

ping [Fig. 4.5].
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Fig. 4.2. lllustration of five-module example with preliminary locations.
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Fig. 4.3. Result of compaction on five-module example.



Fig. 4.4. lllustration of decompaction process on module m3.
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Fig. 4.5. Result of decompaction of five-module example.

4.4.3. Rotation
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Given the critical paths, the rotation operation selects modules on thesce

paths and changes their orientation by ninety degrees, in order Lo reduce the

length of the paths. In particular, the modules are chosen for rolation if their
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longer edges are parallel to the direction of the critical path. Clearly, a ninety
degree rotation places the module's shorter edge on the critical path, reducing

the path length.

The situation in the direction orthogonal to the critical path i§ also con-
sidered in order to avoid the possibility of a rotation generating a new critical
path in that direction. On each column of the grid, we define the load of the
column by the sum of the heights of the modules which intersect this column.

The modules on the column of minimum load are then chosen for rotation.

The rotation against the critical path in x direction is stated below to

describe the process.

Input:
The locations of modules derived from decompaction.
The critical path in x direction.

Rotation with respect to the critical path in x direction:
1. Calculate the load of each column.

2. Among the modules on the critical path, select a éet of the modules
which have the width larger than the height. Check the loads of the

columns which are crossed by the centers of these modules.

3. Among the selected set of the modules, select the modules whose centers

are located on the column of the minimal load.

4. Rotate the chosen modules.

4.4.4. Selection of preferable direction

Since the above operations are done in one dimension, the placement result
might depend on the choice of the direction of the operation. We set the prefer-

able direction according to the lengths of the longest paths in the x and y direc-
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tions. To begin with, compaction is used to find the longest path parallel to each
axis. Then for each direction, the ratio of longest path length to chip dimension
in that direction is calculated. The axis with a smaller ratio determines the pre-

ferred direction which is operated first.

4.5. Algorithms

Given the preliminary locations of modules, and the width and height of the
chip. the spacing algorithm is proposed to separate the overlapping modules by
repeated use of decompaction and rotation. According to the slackness
obtained in spacing, the reduction algorithm reduces the chip size and uses
scaling to redistribute the modules. Given the new chip size, spacing is used
again to separate the modules. The reduction of the chip size is repeated until

spacing fails to assign the modules inside the chip.

4.5.1. Spacing

Through iterations, the spacing algorithm uses decompaction and rotation

to change the topology of the polar graph until there is no critical path.
Input:

The width and the height of the chip.

Preliminary locations and the previous locations of the modules.

Two integer constants: number of iteration, ( denoted f#literations ) and

number of loops, { denoted #loops ).
Spacing:
Do i= 1 to #iterations
Select the preferable directlion.

Do j= 1 to #loops
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Do decompaction in the preferable direction.
Do decompaction in the other direction.
Do rotation.
If there is no critical path,
Then jump outside the do-loop.
If there is no critical path
Then Output.
Else spacing fails.
Output:
The result of spacing.

The integer constants are set as the threshold for the number of processes.
In the experiments, we set #loops as two. With a proper estimation on the chip
size, it takes only a few iterations to eliminate the critical path. Therefore, ten

is sufficiently large for the value of f#iterations.

4.5.2. Reduction

The chip size is decreased by the reduction algorithm. In each iteration,
either the width or height of the chip is reduced by an amount determined from
slackness which was previously calculated in compaction. Consequently, with
this reduction, the preliminary locations of the modules are scaled to the new
chip size. In order to allow freedom in the other direction, the dimension of the
chip is reduced by only half the available slackness, but not smaller than a fixed

value.
Input:

Initial width and height of the chip.
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Preliminary locations of the modules.
Reduction:
Repeat
1.Do spacing
2.Check the slackness Sy and Sy in x and y directions, respectively
31 ( S, > Sy Yor( Sy = Sy and chip width = chip height )
Set chip width= chip width-max[S,/2, 1]
Else
Set chip height= chip height-max[Sy/Z. 1]
Update the preliminary locations of the modules by scaling
according to the ratio of new chip dimension to old chip dimension.
Until spacing operation fails
Output:
Final spacing.
Computational complexity
In compaction and decompaction, we sort the order of the modules, and
assign them on the grids one by one. Therefore, given n modules, it takes O(nlog

n) operations. In rotation, the search is done among the modules on the critical

path. It is a linear time operation.

The spacing algorithm uses decompaction and rotation in each iteration.
Because we set a threshold on the number of iterations, the computational com-
plexity is also O(nlog n).

Since the spacing is repealed in the reduction, the total computational
complexity of reduction is O(#spacings * n log n) where #spacings indicales

number of iterations on spacing.
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4.6. Assignment

Since the shapes of the modules are irregular, we divide the modules into
two types and place them in two stages. Modules with one edge larger than one
third of the width or of the height of the chip are classified as eritical modules.
Critical modules tend to move more in the spacing algorithm. We therefore
place the critical modules in the first stage. Then we locate other modules to fill
into free spaces left by the critical modules. Finally, the reduction is used to
minimize the chip size.

Input:
The initial width and height of the chip.

The netlist of irregular sized modules.

Assignment:

1.Use network optimization method to partition the chip into 4x4 subre-

gions.

2.Do spacing on critical modules

3.Fix critical modules and update the capacities of the grids.

4.Use network optimization method to partition the chip into last level.

5.Do reduction on all modules.

4.7. Experiments

The algorithm is implemented in C-language on a VAX 11/780 machine. In
the experiment, we use the AMI example[20] which contains 33 modules, 38
external pads, 132 nets and 440 pins. The initial chip size is set as 209x294. The
modules are expanded by the amount of 4 in both dimensions as a rough esti-

mate of the routing area.

In this example, there are no critical modules. Hence the first three steps
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of assignment are skipped. After the input phase is done, the network optimiza-
tion method finds the preliminary locations of the modules[Fig. 4.6]. The

modules spread over the chip; however, some of them overiap.
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Fig. 4.6. Result of network optimization on AMI 33-module example.

The process of reduction inputs the result of the network optimization
method. Fig. 4.7 is the result of first iteration. All overlapped modules are

separated. It takes 10 iterations to reduce the chip to a minimal area of

177x262 {Fig. 4.8).

The table below lists the sum of the wiring lengths, the sum of the squared
lengths, and the CPU time of various steps in comparison with manual place-

ment. The reduction algorithm reduces the chip size by 24.5%. Also, the surn of
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the wiring lengths and the sum of the squared lengths are much less than those

obtained from manual placement.
sum of the sum of squared | CPU time | chip size )
wiring lengths | wiring lengths (sec.) ‘
network optimization 10022.7 4882186 36.8 209x294 ;
reduction algorithm 9440.5 446170 42.2 177%262
manual placement 13010 972228 N.A 210x286 ]
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Fig. 4.8. Result of reduction on AM] 33-module example.

The layout[Fig. 4.9] is completed by a building block routing package[20].
Since the actual routing areas are much different from the initial estimates, the
chip size expands to 209x288.. However, it is still comparable with the result of

manual placement.
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Fig. 4.9. Layout of AMI 33-module example from the result of automatic

placement.

4.8. Conclusion

We have proposed here new efficient placement algorithms. They are based
on four elementary operations, namely: compaction, decompaction, rotation,
and selection of preferable direction. Using these elementary operations, we
developed the spacing and reduction techniques. The process of placement is

an iteration of spacing and reduction. The placement is different from other

LR R L
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methods of iterative improvement. While in the other methods, relative place-
ment in each iteration is changed drastically (for example by pair-wise inter-
) change or by compaction), the proposed placement minimizes the chip' area,
but still maintains good relative locations among the modules. We have tried our
elgorithms on practical examples. The results are comparable to manual place-

ment done by an experienced designer.

This method could be used as an automatic placement for the masterimage
system. Further research on the routing area estimation would improve the lay-

out result in general building block problems.



Chapter 5

Linear Placement

5.1. Introduction

One important technique in circuit layout is linear placement, often used in
gate matrix design and backboard ordering. The problem is known to be N-P
complete. Therefore, algorithms proposed for solving the problem have been
either heuristic or branch and bound. Gomory and Hu[21] introduced the useful
concept of cut tree in dealing with network flow problems. Adolphson and
Hu[22] have shown that when Gomory and Hu's cut tree is a chain, the sequence
of this chain is optimal in terms of the sum of wire lengths and the maximum
track density. However, this chain is only a special case of the linear placement
problem. Lawler has determined that a linear placement problem is related to a
job sequencing problem[23].

In this Chapter, we use the sum of wire lengths as the objective function.
We propose algorithms for linear placement which can be represented by a
parallel graph and an arbitrary graph. These algorithms decompose graphs and
lead to optimal solutions. In application to circuit layout, the multi-pin net is
first represented by a loop. An algorithm is constructed that can tackle very

large problems efficiently.

In section 2, we give the formulation of our approach. Section 3 describes
the Lheories related to the problem. Section 4 deals with the special case of the
parallel graph, and section 5 handles the general case of the arbitrary graphs.
In section 6, the application to VLSI design is discussed together with the com-
putational complexity of the proposed method. Finally, some experimental

results are given.
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5.2. Formulation

In linear placement, the specification is the netlist together with a set of
modules. The modules are to be assigned on slots equally spaced on a line. Sup-
pose two modules are fixed on both ends of the line for the purpose of external
connection. We assume that all nets are 2-pin nets and multi-pin nets have been
preprocessed and replaced with 2-pin nets. Then the problem can be formu-

lated by the following graph representation.

Given a graph G(V,E), there is a set of vertices V of cardinality |V! and a set
of edges E of cardinality |[E{. The edge Ei.j connects vertex v; and vertex Vi Each
edge Ei.j has associated with it a nonnegative number ci.j denoting the connec-
tivity between v, and vy Let v_ and v, be the two boundary vertices of V fixed at
both ends of the line [Fig. 5.1).

2

B
I.L'
r
[
N
T
o

5

Fig. 5.1. Graph with vg and Vi fixed on both ends and vertices to be assigned

on slots.
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The problem is to assign vertices onto the slots in an optimal order (OPO)
under a given objective function. In [25], a method based on an interval graph
model was proposed to minimize the track density. In this Chapter, the objec-
tive function used is the sum of wiring lengths, thus we wish to minimize

%’% %'cu"—i.j (1

i=1j=1
where ; ; is the distance between vertex v; and vertex vje
5.3. Theory

In terms of network flows, let vg and v; be the source and the sink, respec-
tively. Cij is then the capacity between vi and vj. The max-flow min-cut
method[26] finds a cut-line that separates vg and Vi with a minimal sum of the
capacities of lines crossing the cut-line. Hereafter, this cut is called the max-

flow min-cut in order to differentiate from other cut-lines[27] used in place-

ments.

Adolphson and Hu[22] have shown that max-flow min-cut makes a partition

of OPO in terms of the sum of wiring lengths. They give the following theorem:

Theorem 1.

The max-flow min-cut defines a partition of OPO in the linear placement

problem.

The theorem was proved by contradiction. Suppose there exists a cut-line
which makes another partition of OPO in contradiction to the partition made by
the max-flow min-cut. Then, based on the properties of the max-flow min-cut, it

is shown that the partition made by the max-flow min-cut generates a better

result.

This theorem provides a tool for graph decomposition. Consider the graph

G(V.E). Let A, B, C and D be four disjoint subsets of V such that V=AuBUCUD.
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Given a placement C A B D as shown in Fig. 5.2a. Let us denote by COyy the sum
of all the connectivities between the set X and the set Y. Suppose we shift B to
the left hand side of set A as shown in Fig. 5.2b. Then the sum of the lengths
changes. The length of the wires connecting between set A and sets C & D
increases by [ COyc—C0O4p]IB| and the length of the wires connecting between set
B and sets C & D decreases by [ COpc~COgp]lAl. The length of the wires connect-
ing between set A and set B decreases no more than COy3[|A!+!B ]. Thus, the sum

of the lengths increases by an amount larger than

[couc-couw) 1 B1~[cOsc—CO) 141 ~COU 141+ 5]
= [couc-{cou+ cow)| 1 51 -|[cose+ COu5)~COsp 1 4! (@)



Fig. 5.2. Placement of A, B, C and D four disjoint sets.

With respect to Fig. 5.2a, let us denote by X! and Xr the connectivity of X to

the vertices on its left and on its right, respectively. That is

Al=C0,4 Bl=COgo+ COsp (3)
Ar=C0u+C0,p Br= COgp
Eq.(2) becomes

(Al-4r)|B|-(BL-Br)|A] @
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If All;rr > BIIEIB". then Eq. (4) becomes larger than zero. In this case, exchang-

ing the order of set A and set B would increase the sum of lengths.

The expansion of this property leads to the following theorem. First, let us

define

1=(Ten=Y T o) |4l
wa e A_H
to be the cost ratio of set A We can view the first two terms as the drag forces
of the set A from both sides and |A] as the inertial of the set A. The ratio of the
drag force to the inertial measures the priority of the order of subsets. The fol-

lowing theorem suggests that the subset which generates the maximal cost ratio

should be placed ahead of other vertices in the OPO. Note 74 can be negative.

Theorem 2.

Let T" be the collection of all subsets of V such that for all Ain T Vg ZA, Vi
£A and |A> 0.

If A® is the element of I" such that
Y4-=max 74
then A'U{u,] and V—A'—{vs} make a partition of the OPO of the linear

placement problem.
Proof:
For clarity, we divide the proof into two steps.

1. We modify the graph G(V,E) such that for every edge E; i i€4° and

jeV—A'-{us]. we delete the edge Eij and add edges Ei t and Esj as shown in

Fig. 5.3.
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Fig. 5.3. lllustration of G'(V,E') in the proof of theorem 2.

Let this new graph be G'(V,E'). Then we make the following stétement.

Claim 1.
A’U{u,] and V—A’-{v,] make a partition of the OPO of G'.

2. Of the original graph, we state the following:

Claim 2.

If A'U{v,} and V-4 ’—{u,] make a partition of the OPO of G’, then both

subsets also define a partition of the OPO of G.

Hence we view the modified graph G’ in step one of the proof as the
worst case. If the theorem is true for this case, then it should be true
in the original graph.

Proof (Claim 1):
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This statement is proved by contradiction. If the theorem is not true,

then there exists an m>1 such that the OPO has the form of

Vg BIAIBz...BmAmqu.,‘Ug (Order])

m
where YA =4", A#¢i=1,2,..mand B;#¢ i=2,....m
=1

In the following proof, we shall demonstrate that the order

'U.AlAg...A'nE,Bz...Bm‘,,I'U‘ (Order.[!)
is not worse than order ] in terms of the sum of the wire lengths.
Let us denote by X, X7; the connectivity of X; to the vertices on its

left and on its right, respectively. Then in order 11

] N— (5)
Pl

and

(8)

:2:(44‘1"4'1)
Im-y = ————
ua 4
=

Because 7, is the maximum, combining Eq. (5) and Eq. (6) we have

$ (a-ar)
i=2
$ 4l

VaSYye S=> Y4eS
i=2

$ (4 -ar)
ve 574. ==> 7“5(:3

A 2 | Al
{=3
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(7)
ﬂm"km
m-1 SY,» ==D O ————ee
7 U‘& 7a 74 IAml
=1
Using the same reasoning, we obtain
< ==> Bl1-Br|
751 Ya® == IBll 5
‘}:(Bli-ﬁ‘rt)
Ye Sy, ==> -‘—syﬂ.
YA piry
(8)
S au-r)
Ym Sy TF> —— =74’
o2 Sia
Now changing from order | to II, we decrease the cost by
B2 (=t )+ 51 B (amhr) ..t 81 B (Ui =)
=1 =1
m
~|Z141(BU=Br )+ 8 A1 (Ble=Bro)+ .+ | An | (Blm=Brm)
(=1 =
=15, & (=4 )+ Bel E(A=Ar)+ ..+ B | (Alm = A7)
= X
. ’i ]
- |441|(le‘3"'1)+!/42;‘ (Bl‘-Brt-)-l-...-&-IA,,,!?(B&—Br‘-)l (9)
=] =1

Plugging Eq. (7) and Eq. (8) in Eq. (9), we have the cost decreasing by

the amount larger than

t=2

7,-{!13;{{,i.m+ist§'.A.'s+---+iBmlMmli

7'

=1

tAl”Bll"’lAZI%lBtI"' +’4n3213;.]

=0 (10)
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This indicates order 1l is the OPO.

Proof (Claim 2):
We can prove claim 2 by contradiction. Suppose claim 2 is not true,
then there exists an m>1 such that order 1 is OPO. We can check that,
if we change from order 1l to order 1 the sum of the lengths in graph G
does not decrease more than the sum of the lengths in graph G'. Now

in graph G’ order 1l is not worse than order 1. Consequently, in graph G

order 11 can not be worse than orderl. -«

Q.E.D.

Example:

Fig. 5.4. five-vertex graph with connectivities labelled on the edge;s.

In Fig. 5.4, we have three vertices to be assigned. The following table lisls
the cost ratios with respect to different subsets. Of these, vertex vg gen-

erates the maximal cost ratio. Thus Vg is ahead of other vertices in the
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OPO.

vertex set {1} {2} {3} {1.2} {1,3] {23} §1,2,3}

cost ratio -1 -6 2 0.5 0.5 -1 1.67
Table 5.1.

After the graph is partitioned we have subsets of vertices !Sii. For each
such subset {Sii we shrink all vertices on its left hand side to a new source vg'
and shrink all vertices on its right hand side to a new sink vt'. as shown in Fig.
5.5. Let us define this new graph to be the shrunk graph Gg;- Based on the fol-

lowing theorem, we can decompose the graph and deal with the shrunk graph

Gs-1 as a new linear placement problem.
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Fig. 5.5. lllustration of the shrunk graph.

Theorem 3.

Given a graph G(V,E), and assume that A is a subset of V such that, in the
OPO, A covers consecutive |A] slots. According to the definition of the
shrunk graph, we construct graph G A Then, the OPO of A with respect to
the shrunk graph G A is also an optimal order of A with respect to the origi-

nal graph G.
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Proof:
Suppose that in the OPO,there are three subsets L,A and R with the order L
A R Let k and 1 be the indices of slots at both ends of set A. Then the sum

of the wiring lengths is

1 WH 1 1 1
‘2-% tci.jlp(i)puﬁ % Loiibmetit 3L Leubusnt 5 & Couibs)
t=1j=1 el jel wA jed @R jeR
+2 Loibmetity Leisbwen*ty Ciibwew (11)
Ll jeA wL jeR wA jeR

The terms that are not related to A could be represented by a constant.

1 ! |

5‘% %%‘pm.pm-c +32 Loiubueit) Leubuenty ik s2)
i=1 j=1 A4 jeA wl jeA WA jeR
Decomposing the second and third terms on the right hand side of the equa-

tion, we have
i | & P!
2—,{' fciﬂpu»pw-c*z-z Llishwat)ty 2Ciikpl)
=1 j=1 84 JjeAd Ll jeA
+ ¢ b+ i skt c; 4
g}’ ;,33 FLABY E ”2; iilpa ‘g 5323 wibpl)
1
=C+5% Loishupit), Leiibkai’*s Lol (13)
84 jed tel jeAd 194 jeR
This indicates the OPO of A in GA is also the OPO of A in G.

Q.E.D.

Based on these results, we first deal with a special case: the paraliel graph.
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5.4. Parallel graph

Fig. 5.6. The construction of parallel graph.

Given a set of disjoint graphs GI'GZ'""Gm' let each graph Gi contain a
source and a sink for i=1,2,....m. A parallel graph is constructed by shrinking
the sources and the sinks of this set of graphs to a single source and a single

sink[Fig. 5.8), respectively. We denote this relation by

G(V.E)= | G(%.B) (14)

Suppose the OPOs of graphs Gl.Ga.....Gm are known. Then, based on the fol-
lowing lemma, an algorithm is proposed to find the OPO of graph G. The lemma
suggests that, from one of the parallelied graphs, we can find the vertex set

which generates the maximal cost ratio.

Lemma 1.

Given G(V,E)= ﬁ,ci(vi'gi)' there exist an A° and an i in {1,2,....,m} such that

A’ cC V; and 7,. =max 74
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Proof:
This lemma is proved by contradiction. Suppose the statement is not true.

Then there exists a k>1 and a permutation function gq(i) such that
k

A® = A). where A4 C vq(i)' If jef1,2,...k} is the index such that
=1

k
74'0)zr£1__§11x Y ag ey then Vag =7 As a result, 4q(;) satisfies the conditions of

the lemma.

Q.E.D.

5.4.1. Algorithm
In the following, the algorithm deals with the parallel graph.
Input:
m
G(V.E)= ¢I=’;Gi(vi'Ei)
Algorithm:
1. Set W= V and set a an empty permutation:

2. Find a subset S of W such that Ys=max 7.

3. Find OPO of Gs.

4. Append the order of S to the end of the permutation a.
5. Set W= W- S, updating the graph to be shrunk graph Gy
6. If W= ¢ then stop, else go to 2.

Output:

&, the ordering of V.

Based on lemma 1, the subset S can be found from one of the parallelled
graphs. Suppose the optimal order of graphs Gi i=1,2,....,m is given. The compu-
tational complexity of the algorithm is polynomial. ‘Next we prove the output is

an OPO solution.
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Theorem 4.

The above algorithm generates an OPO of graph G.

Proof:

This theorem is proved by induction.

Case 1. The process stops at the first iteration
In this case, step 3 finds the OPO solution.
Case 2. The process stops at the k'th iteration

Here, we assume the solution is the OPO at the k’th iteration. Then we

prove that the solution is the OPO after k+1 iterations.
Case 3. The process stops at the k+1'th iteration

In the first iteration, from theorem 2 and lemma 1, V-W and W define a parti-
tion of the OPO. Step 3 also finds the OPO of V-W in G. From case 2 above
and theorem 3, the OPO of W is found in the next k iterations. From

theorem 3 we know the output a is the OPO solution.

Q.E.D.
Based on the algorithm and theorem 4, we state the following:

Theorem 5.

The OPO of Vi in Gi i=1,2,...,m is the OPQ of Vi in G.

5.4.2. Example:

We have a parallel graph G(V.E) formed by two chains G,(V4.E,) and
G5(V,.Ey) as shown in Fig. 5.7.
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Fig. 5.7. 15-vertex example.

Since Gomory and Hu's cut trees of 61 and G, are chains, the OPOs of G1
and 02 have the same order as the chains. Thus we can easily check the ¥

values with respect to different cut-lines as shown in Fig. 5.8.

—ZBK 2| |
-kf. 83 3\4 -5/;

Fig. 5.B. Cost ratios with respect to different cut-lines.
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Following the algorithm, in step 2 the cut-line that separates vertices Ve vy

and A from other vertices, generates the highest ¥ value. Consequently, ver-

tices Vi and Vo are placed ahead of other vertices in the order.

In the second iteration, we update the y values as Fig. 5.9. Again, by check-

ing the ¥ value, we set vertex vg in front of other vertices. It takes six iterations

to find the OPO solution [Fig. 5.10).

4, o T4
.—3/5—
15 /LE Ve [V ﬂ"; s
4 J 10
3/
Vs -
NTATATANAY:
i '3(‘} 11

s
4 >3

/- =&/ 3 -4

Fig. 5.9. Shrunk graph updated from Fig. 5.8.
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Fig. 5.10. Optimal order of 15-vertex example.

5.5. Arbitrary graph

In the general case, we encounter arbitrary graphs. Although, theorem 2
gives a criterion to partition the OPOQ, it is in general difficult to find the subset

which generates the maximal cost ratio for an arbitrary graph.

The max-flow min-cut makes a partition of OPO. However, in the case that
either the cut-line separates the source Vg from all other vertices or the cut-line
separates v; from all other vertices, no information of the optimal order can be
obtained. In order to do further partitioning, we need a strategy which modifies

the graph without disturbing the optimal order of the original graph.

We then repeat this process on each partitioned subset until graph
modification fails. It is shown that this process finds the subset which generates

the maximal cost ratio.

5.5.1. Graph modification

Given a graph G(V,E), we can modify the graph by



103
i. Adding an edge Es.t. with connectivity a.
ii. Adding an edge Ei.t for all i#s with connectivity b.
ili. Adding an edge Es.i for all i#t with connectivity c.

iv. Adding an edge E; ; for all (Let@jli=j, i#s, it j#s, j#t, v;€V and viev |

with connectivity d.

v. Adding an edge Es.i and Ei t for any i#s,t with connectivity e;.

Fig. 5.11. lllustration of graph modification.

Fig. 5.11 is an illustration for the graph modification. 1t is obvious thatl the
modified graph has the same OPO as the original graph.
Constraint:

The max-flow min-cut method is applied to the graph with non-negative con-

nectivities.
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Otherwise, the max-flow min-cut problem becomes an N-P complete problem.
Therefore, we have to restrict the connectivities a, b, ¢, d and € such that the

modified graph does not contain a negative connectivity branch.

With regard to this constraint, a strategy setting the values of a, b, ¢ and &

is developed. This can be divided into three cases.

Case(1) a and e;: Since the values of a and € do not affect the configuration of

the max-flow min-cut, they are ignored.

Case(2) b and c: With reference to Fig. 5.12, line 1 separates {vsi from V-[vs{.
line 2 separates {vtt from V-{vt; and line 3 separates |V| into m+1 vertices

and {V]-m-1 vertices.

Fig. 5.12. Graph modified by adding edges with connectivities b and c.

Let us denote by Fl' F’2 and F‘3 the sums of connectivities of lines crossing
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line 1, line 2 and line 3, respectively. After step ii and step iii are applied to
modify the graph, F; becomes F;’ i=1,2and 3.
Fi=Fi+(|V|-2)%
Fa=Fa+(|V|-2)% (15)
Fg=F3+m*b+(| V]| -m=2)*¢c
Thus
F3=Fy=F3-F,+m*(b—c) (18)
and
Fé-Fé=Fs-F2+(IV| —m—2)‘(c—b) (17)
To avoid the case that the max-flow min-cut lies on line 1 or line 2 in Fig.
5.8, the variables must be set so that Fg—F;<0 and Fg—F»<0. As a result, the
value of . b-c is set to maximize the minimum of §

Fi+m*(c=b),Fa—(| V|-m -2)*(c -b) }. Thus, the solution is

_F\~F,
=Tz

Case(3) d: By applying step iv of the graph modification, the following results are

b (18)

obtained.
Fi =F,
Fé =Fg . (19)
Fg=Fg+m*(|V|-m-2)*d
In order to have F3—F;<0 and F3g—F,<0, d is set to as small a value as pos-
sible. Thus, d is set to be the negative value of a maximal connectivity clique

which contains all vertices but Vg and Vi before the modification.
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Example

Fig. 5.13. six-vertex example from [22].

Fig. 5.13 is the six-vertex example from [22]. On the graph, we have the
sums of connectivities to the source F1= 18 and that to the sink F2= 14,
Consequently, from Eq. 18, we set b-c=(18-14)/4= 1. There is also a clique
connecting Vi Vo Vg and V4 with connectivity 2. Thus we modify the graph
by adding edges with connectivities b=1, e= 0 and d= -2 [Fig. 5.14]. Fig.

5.15 is the result after graph modification.
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Fig. 5.14. The edges with connectivities b and d added to the graph.

/
Vi V.
| © 4
2
g ., z
v;
AN /

Fig. 5.15. Modified graph partitioned by max-flow min-cut line.
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56.5.2. Algorithm

For the modified graph, we partition the vertex set with the max-flow min-
cut method. Then for each obtained subset of vertices S;, the graph Gg; is con-
structed( see Sec. 5.4 ). We continue this process until no vertex set Si can be
partitioned further. Finally, we find the OPO of each set S; and concatenate the

sub-sequences.
Input:
Graph G(V,E)
Algorithm:
1.Set G(V,E) to be the current graph.
2.List all current graphs.
3.For each current graph: .
i. Modify the graph.
ii. Partition the vertices with the max-flow min-cut.
4.1f no more partitioning of V is obtained from 3, then go to 8.
5.List all sets of partitioned vertices.
6.For each partitioned vertex set A
i.  Construct shrunk graph G  as stated in Section 3.
7.Go to 2.
8.Find the OPO of all partitioned vertex sets.

Output:

The order of vertices.

5.5.3. Example

We use the previous six-vertex example [Fig. 5.13]. After the graph is

modified, the max-flow min-cut separates v, V4 and 2 from other vertices.
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After partitioning, we construct two graphs with respect to the two subsets of
vertices [Fig. 5.16]. The OPO solution is obtained after the second level partition

[Fig. 5.17). The sum of wiring lengths is 78 which is the best result for this prob-

lem.

Fig. 5.16. Shrunk graphs constructed after partitioning.
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W~

Fig. 5.17. Optimal order of six-vertex example.

5.5.4. Theorems

According to theorem 1, theorem 3 and the properties of the modified

graph, the output is an OPO solution. Thus we have theorem 8.
Theorem 6.

The result of the above algorithm is an OPO solu‘tion.

In the following theorem, we also prove that the algorithm can still find the
cut-line that makes the same partition as the max-flow min-cut of the original
graph.

Theorem 7.

In the above algorithm there exists one cut-line which makes the same par-

tition as the max-flow min-cut of the original graph G(V,E).

Proof:
Let us assume that the vertices are partitioned into m subsets Sl. SZ""' Sh
such that these subsets can not be partitioned into smaller subsets by

further operations. From theorem 8, we know subsets 3, Spis S, make
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partitions of OPO. Based on the proof of theorem 1, the partitions of OPO do
not contradict with the partition made by the max-flow min-cut of the origi-
nal graph G. In other words, there exists a max-flow min-cut of graph G and

an index i such that this max-flow min-cut divides the vertex set V through

subset Si‘

In the case that the max-flow min-cut does not separate the set S, into
smaller subsets, this max-flow min-cut makes the same partition as one of
the cut-lines which separate the subset Si' Then the statement of the

theorem is true.

Suppose the max-flow min-cut separates subset Si into two smaller subsets.
Then, in the shr;unk graph GSi' this cut-line should also make a max-flow
min-cut: partition on the subset S;. While the graph GSi can be partitioned
by max-flow min-cut, based on the strategy of graph modification, Si can
also be partitioned into smaller subsets in step 3 of the algorithm. As we
have assumed that Si can not be partitioned into smaller subsets, such par-

titioning contradicts our assumption. -«

Q.E.D.
Furthermore, the algorithm can also find the cut-line that partitions the

vertex set V into A.uivs; and V'A"!st-

Example

In example 5.3, shown in Fig. 5.17, the cut-line which cuts between v4 and vy
is the max-flow min-cut of the original graph. In this example, we have four
vertices to be assigned. Thus, there are 241 different subsets of vertices.
Among them, ivl. v4§ generates the maximal cost ratio of 2.5. In Fig. 5.17,
these two vertices are separated from other vertices by the cut-line cutting

through V4 and vo.
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Theorem B.

In the above algorithm there exists one cut-line which partitions V into
A‘u{vsl and V-A.-ivs{ such that, in the original graph, 7, .=n‘1.ar;c Y4
Proof:
Suppose in the original graph, we have 4° and y° such that ¥*=y, ~=max 4.
Without loss of generality we assume 9°20. If we add edges to G(V,E) such
that for all i€IVHvsHvt{ we add edge Ei.t with connectivity ¥°, then we can
make the following statement.
Claim:
The max-flow min-cut of the new graph partitions V into A‘u!vsi and V-
A.-ivsi.
Proof:
Suppose the max-flow min-cut separates V into A‘u(vs} and V-A'-{v ]
Then the sum of the connectivities of lines crossing the cut-line is

T oty
4 JeV-4 -{\:,] JeV-4 -{v,}

e v.,+ f" wrac

=m € j Zc,,-!» Y ey +yiAll (20)

,. V-a- f, ’ V-H

After theterm ) c,; is deleted from both sides of Eq. (20), we have

= m-l cs.j+7.!A§

JoV-1qv,
Csj— 2 Ce¢j—7 'A 1
jonr A '}
=n‘1'arx 20,_,-—2 2 c‘-.,--‘,v'lAi ) (21)
jeA WA
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If Eq. (21) > O then 74>7°. That contradicts the definition of ¥*. Thus
Eq. (1) < 0.

On the other hand, when A=A", PN Y iy~ lAl=0. we
JoA A icV~A+}
(]

also know Eq. (21) can not be less than zero. Consequently, Eq. (21)

can only be zero. 1In other words this cut-line separates V into A’V'{vs}
and V—A’—{v,}.

Based on this claim, with the same reasoning as the proof of theorem 7 we

know that one of the cut-lines should partition V into A'u{vs} and
V.A-_{u,}.
Q.E.D.

Since there are !V|-2 vertices to be assigned, it takes at most |Vi-3 max-flow
min-cut operations to partition all the vertices to the last level. Based on

Theorem B, lemma 2 is stated as follows:
Lemma 2:

IL takes at most [V{-3 max-flow min-cut operations to partition V into

A 'U{u, ]and V-A '—{u,] such that 7 ,-=max 74.

5.6. Application

In the VLSI linear placement problem, there exist large numbers of com-
ponents. Furthermore, many of the nets are mulli-pin nets. A simple and
eflective model is developed here to decompose multi-pin nets into two-pin netx.

Then an efficient algorithm is proposed for applications Lo VLS] design.
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5.6.1. Multi-pin nets

Schuler and Ulrich[28] used a clique[Fig. 5.18a] to replace the multi-pin
net. This model is independent of the order of modules. However, it is not an
accurate estimate of the actual wiring length of the net. On the other hand, a
chain[Fig. 5.18b] that can really represent the length of the net is very sensitive

to the order of modules.



115

2/£

I/2,

Fig. 5.18. Decomposition of multi-pin net.
(a) Model of a clique.
(b) Model of a chain.

(e¢) Model of a loop.

Instead, we use a loop[Fig. 5.18c] to connect the multi-pin net. The connec-
tivities of the edges in the loop are set as half the weight of the multi-pin net.
The relative module locations are estimated by the network optimization

method[18]. This method utilizes the resistive network analogy to solve the
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optimization problem of linear placement. Based on circuit theory and optimi-
zation techniques, a relaxation scheme is developed to calculate the module
locations. Although the network optimization method has the objective of
minimizing the sum of the squared lengths, the method generates very good
estimates of the module locations[18]. We sequence the modules according to
the relative module locations. As shown in Fig. 5.18c, the loop is connected in
such a way that even if the order of any pair of neighboring modules is reversed,

the model is still accurate.

1=0=12-E-4U-T-6=5-4-2~14-3-13-14-45-4¢
=1 fem=t I=] =]
=== S T P —— [

frememmmmen ] || m————

bm===t=1 d=l=1=]=]

Fig. 5.19. Layout of the 16-vertex example.

5.6.2. Algorithm

An efficient algorithm is developed to handle large and arbitrary graphs.
Wherever the max-flow min-cut method can not do further partitioning, we apply
the relaxation scheme[ 18] to fix part of vertices at both ends of the partitioned
subregion and merge the fixed vertices to vertex Vg and vertex Vi In this way,
the process can keep cutting to the last level and find the sequence of the
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vertices.
Input: Net-list with two vertices fixed at both ends.
Algorithm:
1. Set the current region be the whole region.
2. Do
List current regions.
For each region
Do partitioning §
a. Do graph modification.
b. Use max-flow min-cut to partition the modified graph.

c. If step b above fails, use the relaxation scheme to fix parts of ver-

tices at both ends.

d. Update the graph, using max-flow min-cut to partition the modified

graph.

}

{ until all vertices are partitioned.

Output: The order of veriices.

5.6.3. Discussion

In VLSI design, the graph is always sparse. Based on the sparsity matrix
technique, the relaxation scheme takes appro:cimately-O(iVll’4) operations in
each iteration. After rounding off the connectivity of the edges to rational
numbers, the Ford and Fulkerson's max-flow min-cut method takes about O(’.Efz)
operations. It takes at most |V|-3 iterations Lo partition all the vertices. Hence,
the computation time complexity is O(IVIS). However, this is only an estimation

for the worst case. In the following experiments, we shall demonstrate Lhe



efficiency of this method in terms of CPU running time.

5.6.4. Experiments
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Our linear placement method is implemented in C-language and tested on

VAX 11/780 machine. Three examples from [28] and [30] are used to test this

method. We use three measurements: sum of the lengths, sum of the square

lengths, and the number of tracks required, to compare this method with the

network optimization method and published results[18,29,30]. For simplicity,

we set the constant, g at the value of 0.25 in the relaxation step[18].

Example one contains nine vertices[28]. We fix vertices two and six following

the result of [29]. In this example both the linear placement method and the

network optimization method generate the same result [Tab. 5.2].

Our linear placement

Network Optimization

Kang's result

Manhattan length 50 50 50
Squared length 152 152 152
#Tracks required 11 11 11
CPU time (sec.) 2.1 1.6 N.A.

Table 5.2. Example 1:

9 vertices, 18 nets and 43 pins.

Example two contains 16 vertices[30]. To compare with the result of [30],

vertices one and sixteen are fixed at the two ends [Tab. 5.3]. The ordering result

is shown in Fig. 5.19 with the layout of tracks.



119

Our linear placement ; Network Optimization | Wing's result
Manhattan length 73 79 78
Squared length 509 451 628
#Tracks required 8 8 8
CPU time (sec.) 2.7 1.7 N.A.

Table 5.3. Example 2: 18 vertices, 17 nets and 42 pins.

Example three contains 31 vertices[28]. We fix gates OP1 and P1 at both

ends following the result of [29]. It was mentioned in [29] that the best solution

known has the total length 91. However, we generate an ordering with the total

length of 88 [Tab. 5.4]. The ordering result is shown below

P1-B-A-C-G-H-I-D-E-F-J-Q-R-M-K-L-P2-T-8-N-0-P-Z-Y-0OP2-X-W-V-U-OP3-0P1

Our linear placement

Network Optimization

Kang's result

Manhattan length 88 102 95
Squared length 5586 464 887
#Tracks required 6 8 6
CPU time (sec.) 7.3 4.6 N.A.

Table 5.4. Example 3: 31 vertices, 31 nets and 79 pins.

Therefore, our linear placement method achieves the best result in terms

of sum of the lengths. On the other hand, the network optimization method

achieves the best result in terms of sum of the squared lengths.

QOur linear
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placement method also generates good placement results in terms of the
number of tracks required. All these examples take less than 10 seconds of CPU

time to execute.

5.7. Conclusion

We have explored the properties of linear placement problems. Two cri-
teria, max-flow min-cut and cost ratio, are proposed to make partitions of the
optimal order. The shrunk graph is then constructed to decompose the problem
into two smaller sized problems. Based on the partitioning process, an optimal
ordering method is first proposed to handle the special case: parallel graphs.
However, in the general case: arbitrary graphs, a graph modification is
developed to.modify the graph without disturbing the optimal order of the origi-
nal graph. A strategy is set so that max-flow min-cut method can make further
partitioning. Based on this strategy, an optimal ordering method is also pro-
posed for arbitrary graphs. The method is shown to find the subset which gen-
erates the maximal cost ratio. This method is extended to the applications to
VLSI design, with multi-pin nets modelled by loops. The relaxation step in net-
work optimization methed is utilized to continue the partitioning. It is demon-
strated with examples that this method achieves equal or better results than

current methods.
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