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Abstract

This paper studies a generalized form of the MIMO Smith regulator
(GS) and one of its variants--the Gray-Hunt-Horowitz (GHH) regulator.
The necessary and sufficient conditions for the exponential stability of
both systems are determined. The two schemes are analysed and the
limitations imposed on system performance by uncertainty in delay, plant
saturation etc. are exhibited. The GHH and GS regulators are compared
with reference to a fairly general example. Finally, two theorems
establish a global parametrization of all stabilizing controllers for

the nonlinear GS and GHH regulators.
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1. Introduction

The problem of controlling a plant with "delays" has been studied
for a long time. In 1957, 0. J. M. Smith proposed an ingenious scheme
now called the Smith regulator (e.g. [Rst. 1]) -- with appealing
characteristics. Since then the SISO problem has been studied by many
authors [Gaw. 1], [kwo. 1], [Man. 1], [Mar. 1], [Mor. 1], [Pal. 1];
variations have been proposed e.g. [Hor. 1], and some of the theory has
been extended to the MIMO case [Ale. 1,2], [Fur. 1], [Ogu. 1], [Pal. 2].

We consider a generalized form of the MIMO Smith regulator which we
call the GS regulator (see Fig. 2 below) and one of its variants -- which
we call the Gray-Hunt-Horowitz (GHH) regulator (see Fig. 4 below). An

analysis of the nominal case for the generalized Smith regulator shows

that the I/0 map

= -1
H.y2u.I = NdPC(I+PC) = N4PQ (1.1)

and that the exponential stability of 2S(NdP, (I-Nd)P,C) requires that
the plant 6P(=NdP) be exponentially stable (see Appendix, Thm. A.2).
The formula (1.1) seems to say that.the delay Ny can be factored out of
the design, and thus that the delay imposes no special restrictions on
achievable performance.

In sec. 2 we describe the required factorization assumptions and the
assumptions made on the plant. Sections 3 and 4 contain analyses of the
GS and GHH regulators respectively, in the nominal and perturbed cases.
In section 5 we draw general conclusions on the two regulators and
apply results of the analysis to special examples to better understand
limitations of the two regulators. Section 6 discusses the extension to

the nonlinear case briefly and section 7 compares the two regulators.



Notation:
= b means a denotes b; ]N* is the set of positive integers; Ris the
field of real numbers; ¢ is the field of complex numbers; R is the
set of non-negative real numbers; C, (¢U+) js the set of complex numbers
such that Re z > 0 (Re z > o, resply.). For any set A, A™" denotes the
set of all nxn matrices with elements in A. ]Rp(s) (IRp,o(s)) denotes
the set of all proper (resp. strictly proper) rational functions with
coefficients in R. For any A € ¢m™xn, omax[A] (om.n[A]) is the maximum
(resp. minimum) singular value of A. Given o € R (typically o > 0),
f € Qo) 1ff f(t) = f(t) + g f, 8(t-t;), where f,
fa(t) =0 for t < 0. and t = exp(-ot) fa(t) €Ly t

R = R with

0, t >0, ¥i > 03
¥i, f; €R and i+~ f, exp(-ot;) € 8; T € A _(c) iff, for some 0 <O

f e Q(o,). f denotes the Laplace tran'sfonh.of f. &(o) = {F:f € A(0)};
&_(c) = (f:f € _(o)}. fe &_.’0(00) iFf f E&_(o) and f goes to
zero at infinity in C

2. System descmptwn and factorization of @

Let us call the plant transfer function ®. it is an nyXn; matrix.
Roughly speaking, we must assume that @ can be factored into a Blaschke-
product-1ike "all-pass" factor Nd and a factor P, i.e., /9= NdP (resp.
PNd) depending on whether the plant is more accurately modelled by the

"delay" Ny following (resp. preceding) P. Specifically,

Assumption A: The plant pmay be factored as N4P (resp. PN ) where
i) for some o < 0, Ndea (a,) "o (resp. a (o,) " ‘), is

unitary on the jw-axis and Nd(O) I’r.
noXn,
ii) Pe R (s) 07 and is exponentially stable.

Comments: a) Note that, irrespective of the order of factors,
noXN;

e a (o ) © 1, j.e., is strictly proper.

+ There is no loss of generality in assuming N (01- , for if N, (0)=U#1,
U unitary, redefine Nd(s) to be NqU-1 (resp. ) and redefine P as
UP (resp. PU) so that NdP (resp PN ) is uncﬁanged
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b) In the appendix we show that, given that Nd has its elements
in éi_(oo), P must be exponentially stable in order for the GHH or GS
regulators to be exponentially stable. Thus, we assume exponential
stability of P only for convenience and to emphasize that GS or GHH
regulators can only be used for exponentially stable plants.

c) For the Smith regulator an explicit knowledge of both factors
Nd and P is‘required in order to construct the regulator. However the
plant need not be physically separable into factors Nd and P.

d) We will see below that in order to use the GHH regulator we do
not require an explicit knowledge of Nd but we do require that P factor
as PN, (i.e., "delay" N, precedes P) and that the plant be physically

separable into factors NdAand P with the output of Nd accessible to the

designer.

e) Though in assumption A ii) we impose the restriction that P
be lumped (i.e., P € E!p’o(s)noxni) it makes no difference to the methods,
theorems or conclusions of this paper if P is distributed (i.e.,

~ noXny
P Ga_’o(oo) , for some o_ > 0)

)

Since, by assumption A, P is exponentially stable we may use the
Q-parametrization theorem [Zam. 1], [Des. 1], [Cal. 1]. Throughout this
paper, given (P = N4P or PNy, we imagine the standard system ]S(P,C)
(Fig. 1) associated with this P and define Q := c(1+pC)™.T For p
exponentially stable, the exponential stability of ]S(P,C) is equivalent
to the exponential stability of Q := C(I+PC)'1; equivalently we can
represent C as an exponentially stable Q with a positive feedback of P.

This representation of C in Fig. 2 and in Fig. 4 (when P] =Py = P) leads
to Fig. 3 and 5 respectively.

TIndeed, the fact that whep P = N%Z the nominal system of Fig. 2 has

H = N,PQ = N,PC(I+PC)-! Ted soffle to think of the Smith regulator as
YoUq d d
1S(P,C) followed by Ny since this would have the same Hyzu]!
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3. Analysis of the generalized Smith regulator (GS)

Let the nominal plant be P .= NdP and the perturbed plant be

~
~

P = ﬂdP. Referring to Fig. 3, we write the summing node equation as:

I-PQ 05 € u
L (3.1)
We shall solve (3.1) below in order to obtain eventually the closed-loop
transfer function Hyu :(u],uz) F*(y],yz). )
In the nominal case (P = P, Ng = Ngo thus @ = P = NdP), Eqn. (3.1)

. 0 . .
gives, for Heu : (u1,u2) " (s],ez).

vl cee]
H€U=
Q I-QP

and the nominal I/0-map

o Q -QP Q -QN 4P '
Hoy = = (3.2)
PQ AP(1-QP) NgPQ  (I-N4PQIN P

Note that the nominal disturbance to output map is:

H

0 - - - -
Ypdy I-£#Q=1 N4PQ (3.3)

Comment: Whereas the "delay" caused the I/0-map H; g
271

premultiplied by Ny (see egn. (3.2)), the effect of the "delay" Ny on

= NdPQ to be

H2 . (see eqn. (3.3)) is much more drastic.
.deo A

In the additively perturbed case (P = P+AP), we shall establish that:

. Q(1+aP+q)"! Q- (13P-) P (3.4)
Y porae-q) Ali-q (14a6-0)7 P ] '



and that:

o =1 - PYIar-Q! (3.5)
Y2%
The effect of # <« P is to replace Q by Q(I+A6’-Q)'] and @ by 63 in
equations (3.2) and (3.3) to get equations (3.4) and (3.5). To prove

equations (3.4), (3.5), we solve the summing node equation (3.1) to get:

g [(1+Am-0)“ S(1+2@-Q)" P
e | 1+a@-Q)”!  1-Q(I+a®-Q)"'P

and eqn. (3.4) follows since,

. Q 07 .
Hoy = 0 @ Heu

Comments:
a) In the multiplicatively perturbed case ((;7, = (I+M)) we can use
formulae (3.4) and (3.5) above with AP = P-F=nP and P = (1+M)P.
b) As special cases, we easily obtain formulae for perturbations
in P alone or Nd alone either when ® = NdP or P = PNd. For example,
if P = P4ap, fig = Ny, @ = NP then @ = N = NF = Ny(P+aP), so
AP = N,-aP.

4., Analysis of the G-H-H regulator

We call Horowitz's modification [Hor. 1] of the Gray-Hunt [Gra. 1] '
regulator the GHH regulator (Figs. 4,5). In order to be able to
implement this feedback scheme it is essential that: first, the "all-pass"
subsystem Ny precede P (i.e., P = PN4 and not ¢ = NP as before)

second, the output of Nd be accessible as shown in Figs. 4. and 5.



Consider the nominal GHH regulator, i.e., in Fig. 4 set P = P] = P2

and, in Fig. 5, set P = P, = P; then, by inspection:

0
ng = | -] (4.1)
PNdQ de_]

0
=1 - PN 4.2

Hy,dy = 1~ PG (4.2)

Suppose now that, in the system of Fig. 5, P= P+AP and P2 =P,

then the summing node equations read:

e = Uq - AP<N ,(u,+Qe,)
e, = up + Qg
Solving equation (4.3) for ﬁeu’ ur e gives:
. (I+aP-N Q)‘] -(I+AP<N Q)-]oAP-N
- d d d
Heu - "] --l (4-4)
Q(I+aP-N Q) (1+Q-aP-N )
From equation (4.4),
. Q(I#aPNQ)™! | -QeaP-N(I+Q-aP-N,)”!
Hyy = | zoompomm=-s-ms = it (4.5)
PNdQ(I+AP°NdQ) I PNd(I+Q-AP'Nd)
Since we can show that H 4. = I-H , from equation (4.5):
Y2% YUy
iy o = I-BNQ(I+aP-N Q)" = (I-PN Q) (I-aP-N Q) (4.6)



5. Conclusions

5.1. The generalized Smith regqulator

In order to avoid vague generalities we apply the analysis developed
above to the case when:

i) the plant P is square
1

i1) Z[P] NnC, = ¢; (in other words the plant P is such that P™ has
no poles in €. ). We choose
-m
Q=P 1+ (5.1)

C

where We is a chosen cutoff frequency and m is chosen large enough such

that Q is proper. Then,

HO w = NgPQ = Ny(1 + u)i)‘m (5.2)
Yol c

HO = I-N,PQ = I - N (1 +i)'m. (5.3)
y2d0 d d Ye .

5.1.1. The generalized Smith regylator: nominal case
If we consider exclusively the nominal case (P = P, Ng = Nd) (and

disregard noise and saturation limitations for the moment) then:

i) as Smith pointed out in the SISO case, the feedback design can be
carried out as if the "delay" Nd were absent;

ii) egn. (5.2) suggests that we can "broadband" the plant P
arbitrarily by choosing Q as in eqn. (5.1) above with w, as large as we
please and thus achieve, on paper, an arbitrarily fast rise time in

spite of the presence of the "delay" Nd'

We still consider only the nominal case (P==§, Nd==ﬁd) but, more

realistically, look at saturation and at disturbance rejection constraints:



a) Saturation

The plant input e, is given by (see Fig. 3)
e, = Qu.I-I-(I-QNdP)u2

Thus Q also controls the size of .the plant input. Saturation of the plant

P puts bounds on the allowed plant input e,. Hence saturation sets an

upper bound on the size of Q, i.e., on o__ [Q]. From (5.1),

max

-m
e[ = 5y 10+ 350 (5.4)

min

From eqn. (5.4) since P is strictly proper it is clear that such a bound

on o_..[Q] puts a bound on w

max Thus it is only on paper that we can

c
"broadband" P arbitrarily, even in the nominal case. These limitations

are precisely the same as those one would encounter when Nd =1 (i.e.,
no "delays" in @).

b) Disturbance rejection:

Consider the transfer function H d
Y2%

[HyZd (jw)] is a measure of the disturbance rejection achieved at
0

tdy Y, (egn. (5.3)):

%max
frequency w and of the I/0-map sensitivity to plant perturbations. To

fix ideas, we consider the special case of "equal delay t in all channels,"

i.e.,
Ngldw) = e73uTu (5.5)
Using (5.5) in (5.3), for a large enough cutoff frequency w,

naxlHy, 4 (3] = o, {1~ Ngdu) = [1 - &3] = 2 sin()  (5.6)

Equation (5.6) shows that omax[H d ] starts at 0 for w = 0 and increases
Y2%

o o 'IT.. o
monotonically as w increases over [0, T], in particular cmax[HydeJ



reaches 1 at wy = 3“_1 . Unless t is very small, we will have wy << W,
Hence in the nominal case (P=P, ﬁd=Nd) we have an appealing I/0-map
. =
Hyzu]’ but a very unfavorable Hyzdo :at Wy = 37 rad/s the system
2 =M

S(e"STp, e~STp, Q==P'](1 +Z§4 ) does not achieve any disturbance
rejection (see Fig. 3). ‘

We have just seen that,.for the nominal system, the “delay" N, imposes
bounds on the achievable disturbance rejection. This conclusion fits
Zames' general theory [Zam. 1]: suppose that we model the "delay" Ng
by all-pass sections (i.e., Blaschke products), say, Ng = diag(p](s),
cees pn(s)), where pk(s) =1 (figﬁﬁa , with Re(zjk) >0 ¥j, ¥k, then by

j s+zjk

[Zam. 1, Thm. 4] for all stabilizing compensators

¥j, Yk

i.e., the weighted disturbance transmission is bounded below by the value
of the weighting function, w(+), at the C,-zeros of the plant .

5.1.2. The generalized Smith requlator: the perturbed case

i) For additive perturbations egn. (3.4) shows that stability of
the perturbed GS regulator depends on the Nyquist plot of w + det[I+AP-Q(jw.
provided that the perturbed plant 03 is stable.
ii) Consider multiplicative perturbations of the form P = (1+M) P
(or P = P(1+M) etc.) with M € M where for a given tolerance function
w P 2.(0) which satisfies
a) wt R,m(w) mapping R into R, \{0} is continuous
b) Jk € N s.t. lm(w)wk > 1, for all w sufficiently large
M := {M:M@P is exponentially stable and strictly proper;
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+

_ ot
P nf,}

Gmax[M(jw)] < !Z,m(w), Yo €R,_, n
Using the results of [Chen. 1] (which generalized to the present case the
original results of [Doy. 1]) we write down the necessary and sufficient
condition for robust stability of the perturbed system for various
locations of the perturbation in Table 1. To see what the necessary and
sufficient condition means let us consider a specific row, ii), of Table 1.
For a multiplicative ¢ - (I+M)0’5 where M € M, the necessary and
sufficient condition for exponential stability of ]S(dB,GD,Q) (GS) is

omax[@Q] cmax[M] <1 & cmax[H Jo _ [MI<1. ‘(5.7)

YoUp™ “max
Equation (5.7) shows that the requirement of robust stability puts a
constraint on the "size" (as measured by the maximum singular value) of

the I/0-map, H The larger the "size" of the perturbation M, the

YUy’

smaller we must choose o [H ] to maintain stability in the presence
ax- y,ly

of perturbations in the class M.

-m ’
In the example of sec. 5.1, H =N,(1+>) (eqn. (5.2)) and
YaUs d Ye

since N, is unitary, cmax[Hy2u1J= 1 +j(£t)l'm; thus a bound omax[Hyzu]]
puts a bound on wes the achievable bandwidth.

iii) The effect of mismatches between plant "delay" and model "delay"
can be quite drastic and is best seen from the following example:
Consider 2S(e'(T+AT)SP, e T5P,Q): i.e., Nd = o~ (T¥aT)sy (equal delay,
T+At, in all channels) and N, = e "SI. Note that (Ii—(e'(At)s-l)I)e'TsP

= & (T"T)Sp  thus the mismatch in delay can be modelled as a

T -
n; (resp. n;) is the number of € _-poles of ® (resp. (P).
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multiplicative perturbation of the form (I+M)P and from Table 1:

25(e~(THATISp  o"TSp q) is exponentially stable

“ ¥ €R, o, [eP(ju) Qliw)l-o  [(e™I4T-1)1] < 1 (5.8)

In particular for w, = ZZ;] T,ke ll*, stability condition (5.8) gives
e * . . 1

Yk N, cmax[P(J“’k) Q(ka)] < '2_ (5-9)

Note that the larger the uncertainty in delay, At, the smaller is the
spacing between the successive wk's.

Since Nd(jw) js unitary, Gmak[Hyzu](jw)J = omax[P(jm) Q(jw)]
Yw € R. Thus delay uncertainty imposes strict (and, in this case,
undesirable) conditions on the I/0-map.

In the SISO case, equation (5.9) becomes:

* . . . . 1
YKEN , lP(ka) q(ka)l <-% ; or equivalently lh;ZuI(ka)l <%

where h; " (+) is the I/0-map for ]S(p,c) and this is more explicit than
21

Palmor's result [Pal. 1, Thm. 1] for the case of unity feedback.

iv) Finally we point out that A® may act in a direction to make
H
Y2%
ijs still stable. Thus robust disturbance rejection, as defined in

= I-é’Q(I+Ad’-Q)'] larger than nominal though the perturbed system

[Chen. 2], will impose even more stringent requirements on the system.

5.2. The GHH requlator

5.2.1. The nominal case:

By equations (4.1) and (4.2), the nominal GHH system has the same
nominal I/0 and disturbance to output maps as the nominal GS system.

Hence, using the same example as for the nominal GS system (see sec. 5.1.1),
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equations (5.2) and (5.3) are valid for the GHH system, so we reach the
same conclusions except that the plant input e, is now given by
e, = Qu]+u2, which makes it even clearer that plant saturation puts a

bound on °max[Q] and hence on we (see equation (5.4))

5.2.2. The GHH requlator: the perturbed case

i) In the GHH regulator (Fig. 4) let P = P but Ny < Ny. Then
from equations (4.5) and (4.6) with AP = 0 we obtain:
~ Q 0

Ho, = | - (5.10)
yu N
PNdQ PN4

H = 1-PN 5.11
Hyzdo I- PN Q (5.11)

Equations (5.10) and (5.11) are merely equations (4.1) and (4.2) with

Nd @-ﬁd, and imply that if ﬁd is arbitrary but exponentially stable, then

the perturbed system is still exponentially stable. (This observation
is made intuitively obvious if we note that when P = P there is no
feedback, as Fig. 4 shows). This is'the precise sense in which one
should understand Horowitz's phrase "totally insensitive to the delay t"
[Hor. 1, p. 984].

ii) From a comparison of Figs. 4 and 5, it might appear, at first
sight, that use of the Q-parametrization theorem causes us to ignore the
effect of differences between Py and P. This is not true because even if
P1 # P, but P] is exponentially stable, we may use the Q-parametrization
theorem with Q] = C(I+P]C)']; and, when P2 = P, this will just change
the I/0-map Hyzu] to ﬁNdQ1 without affecting the stability of the GHH
regulator.

iii) When P2 # P there is feedback, hence there may be instability:

Equations (4.5) and (4.6) show that, in order to maintain stability for

-13-



all expected ﬁd's and all expected additive perturbations, (AP's),
(I+AP-ﬂd-Q)'] must be exponentially stable--which is easily checked by a
Nyquist plot.

iv) For multiplicative perturbations in the class M (defined in
sec. (5.i.2), ii) the necessary and sufficient conditions for robust
stability for various locations of the perturbation are listed in Table 1
and if we look at row ii) again, we are led to the same conclusions for
the GHH regulator, as for the GS regulator in sec. (5.1.2), ii): the
larger the "size" [o

max

smaller we must choose o___[H ] ("size" of the I/0-map) to maintain
max-"y,u,

exponential stability.

[M]) of the multiplicative perturbation, M, the

For two specific locations (see rows 1 and 3b) of Table 1) of
perturbations, however, the GHH regulator is stable for all perturbations
in c'lass./‘(=° defined by taking zm(w) to be arbitrarily large for all w

(i.e., there is no restriction on o___[M] as long as the perturbed plant

max
is still exponentially stable). This phenomenon is explained in i) of

the present section (5.2.2)

6. The nonlinear case

The theory of the GS regulator and the GHH regulator extends to the
nonlinear case, as is suggested in [Mar. 1, p. 162]. -

For all nonlinear dynamical systems considered below, we assume that
at t = 0 they are in a standard state (say, some equilibrium state called
the zero-state). Thus we assume that, for any input (say e, : R,~ Rni)
the nonlinear causal plant £ has a unique output @ (e,y(.)): R, >R °,

which depends only on the input.
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6.1. Defin_itions and Notations

Let (£,0-1) be a normed space of "time functions': J - & where
J is the time set (typically R, or N), 2/ is a normed space typically
R, R", c", ---) and -1 is the chosen norm in £. Let L, be the
corresponding extended space (see e.g. [Wil. 1], [Des. 41).

A function ¢ : R_—> R is said to belong to class K iff ¢ is ¢-

continuous and increasing. ¢ is said to belong to class Ky 1ff ¢ €K and

¢(0) = 0. If ¢1 and ¢, € K?,’ theg ¢1 + ¢, and a»¢1(¢2(a)) € K,-
A nonlinear causal map U‘£e1 ->£e° is said to be d-stable iff Jo €K

n.
s.t. ¥x e£e‘ , VT € g,

lxlo < ¢(lIxiy)

H is said to be incrementally & -stable (incr. 4 -stable) iff (i) H is
~ n.
S -stable, (i1) J§ €K, s.t. ¥x, x' €£', VT € J,

Elljx-ﬂx'lIT < ¢(llx-x'[|.l.)

It can be shown that if the nonlinear causal maps H; and H, are A-stab]e,
(inc. d -stable), then Hyt, and Hy o H, are X-Stable, (incr. B-stable,
resp.). (For simplicity, in what follows we drop the symbol "o" denoting
the composition of the maps.)

A feedback system is said to be well-posed iff the relation from the
exogenous inputs into each subsystem+ variable (i.e., subsystem input and

subsystem output) is a well-defined nonlinear causal map between the

corresponding extended spaces. More precisely, the system ]S(E,g) of
n

. n n n,
el —>£e°, Q:.Ceo‘ -n[:e1 are causal maps, is said to be

Fig. 1, where E:i

fo subsystem we mean any block of the block diagram of the feedback
system.
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well-posed iff H :(u],uz)r» (e],ez,y],yz) is well-defined and causal.

Note that ]S(P,C) is well-posed implies that' (I+PC)‘] and (I+CP)'] are

well-defined and causal. We say that a well-posed nonlinear feedback

system is d-stable (incr. ug—stable) iff the map from the exogenous

inputs to any subsystem variable is d-stable (incre. ;3-stab1e, resp.).
The Q-parametrization theorem [Des. 2], [Des. 3], states that if

P is incrementally Qg-stable,_zggg the nonlinear feedback system

‘s(g,g) is $-stable if and only if there is an d -stable Q such that

¢ = Q(1-p)"" g (6.1)
or, equivalently, [Des. 2,3]

Q = c(1+pC) . (6.2)

~ N ey

Note that here PQ, PC,etc. denote composition of nonlinear maps.

Consider zs(udg,(l-ud)g,g) shown in Fig. 2, interpreted in the

-~

nonlinear context: where & = ng with P nonlinear, causal, incrementally
xﬁ-stable and the "delay" map Nd is linear, time-invariant, represented
by a transfer function Nd which is proper, analytic in C, and unitary on
the jw-axis. Applying the Q-parametrization theorem we can redraw the

system of Fig. 1 as shown in Fig. 2, except that we consider the nominal

nonlinear case, set P, P to P; set Ny> Nd to Ny. Now for 2S(NdP,NdP,Q)

~(~ "~(Q~ "~

we have the partial I/0-map :(u1,0,0) =Yy given by H = ngg.

~y2u] ~
This suggests immediately that, since Nd represents only a linear "delay,"

Hy2“1

we choose Q to fashion PQ to our design requirements. In other words, the

design concept that 0. J. M. Smith proposed in 1957 can be extended to

TThe meaning of (.I,*'BQ)'1 deserves clarification: the map C is composed.
with P then the identity is added, and the resulting map is inverted.
Although this formula has the same form as the linear case, it has a
completely different interpretation.
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the MIMO nonlinear case. Now if, in Fig. 3, we view Q as C with a nonlinear

(negative) feedback P (see equation (6.2)) we obtain, for the nonlinear

case, the system of Fig. 2 where we set Pand Pto P; Ny and Nd toN, and C to C.

We formalize the above discussion as the following theorem:

Theorem 6.1: Let P be a nonlinear causal incrementally 4 -stable map
and Nd a linear time-invariant map represented by a transfer function
which is proper, analytic in €, and unitary on the jw-axis. Then the

nominal nonlinear GS regulator ZS(NdE,(l-Nd)E,Q) is 4 -stable if and only

if C = g(g-gg)'], or equivalently Q = g(ygg)'], for some .J-stable Q.

Proof: Follows the proof of Thm. 1 a), sec. III of [Des. 3] almost exactly,
after defining u; := N P(Ce;) - NyP(uy*Cey). m

For the nominal nonlinear GHH regulator we state and prove the

analog of Theorem 6.1

Theorem 6.2: Let P be a nonlinear causal d-stable map and N4 a linear
time-invariant map represented by a transfer function which is proper,

analytic in € _ and unitary on the jw-axis. Then the nominal nonlinear

GHH regulator SS(BN,.P.P.C) is B-stable if and only if C := Q(I-PQ)",
or equivalently Q = g(ygg)'1 for some J3-stable Q.

Proof: (=) Set u, = 0 and dy=0: the partial map H : (uy,0,0) » y, is
—_ : Y1y 1 1
given by ﬂy]u] = C(I+PC)™" which by assumption is d-stable. Let

Q:= Q(I"’EQ)_l » then Q is 4 -stable, equivalently §'= g(;-gg)'1

(<) Refer to Fig. 4; set d0 = 0: the summing node equations read:

e, = u2+§e] (6.4)
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Equation (6.3) is equivalent to:
e, = (I+p¢) " Nu
1 ol 1

and, from Fig. 4,

vy = Cey = (1+20) Ny = quy (6.5)

Define the projection map T, : (u],uz) Pug, §= 1,2. From equation (6.5),

the map ﬁy]u= (”]’"2) ag 2 is given by

ﬁy]u = 9 II]

Since m is d -stable and by assumption Q is J-stable, the map ﬂy]" is
3-stab1e. From Fig. 4, we have

Yo = Bud(uz"'.y])
Hence the map ﬂy2u= (u1,u2) '—>y2 is given by

Now, by assumption, P is 3-5tab1e and Nd is linear, and d-stable:

thus Tos ljy u and PN, are all ¢8-stab1e, and it follows from equation
1

(6.6) that ﬂyzu is A-stable. Therefore ﬂyu : (u],uz) P (y7.¥5) is

z-stable. n

7. A Comparison between the GS and GHH Regulators

i) Refer to equation (3.2) with ® = PN4 and to equation (4.1).
The first column of the nominal H;u is the same for both regulators as
is the first column of the perturbed ﬁyu's (equations (3.4), (4.5)).
Consequently:
a) the nominal (resp. perturbed) I/0-maps are identical, each to each,

for both configurations;
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=I-H (in the nominal as well as perturbed cases),
Y299 Yol
the nominal (resp. perturbed) disturbance-to-output maps are identical,

b) Since H

each to each, for both configurations. We have used a) and b) to
abbreviate sec. 5.2.1 drastically.

ii) Table 1 compares the 2 regulator configurations on the basis of
necessary and sufficient conditions for robyst stability under multiplicative
perturbations at various locations. It reiterates an important point
that we have discussed and explained in sec. 5.2.2 i), iv):

Given that the assumptions on factorization (see sec. 4) required
for the use of the GHH regulator obtain, we may say that provided Pz =P
(which is really the nominal case for the GHH regulator), the GHH
regulator has superior stability properties when uncertainty in Nd is
potentially large.

In view of our theoretical results (sec. 5.1.2, iii)) on the effects
of uncertainty in delay on the GS regulator, the numerical example of
[Pal. 1] and simulation .studies ([Hor. 1] etc.), this robustness of the
GHH regulator with perfect model (P2 = P), in the face of uncertainty
in Ny, is significant. However, as rows ii) a) and b) and iii) a) and
c) of Table 1 show, the GHH and GS regulators impose identical robust
stability constraints as soon as we are in the real world of imperfect
(P2 # P) models! The importance of a perfect model is seen again in
the appendix (see comment c following Theorem A.1, Appendix I).

iii) A comparison of Theorem 6.1 and 6.2 shows that the theory of
the GHH regulator extends to the nonlinear case under the assumption
that P is J-stable whereas the extension of the theory of the GS

regulator requires the stronger assumption of incremental,g-stability

of P.
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Notation for Appendices I & II

Referring to the notation of Sec.I, we introduce the following
notation. For details, see [Cal. 2].

éif(o) and éi_’o(o) denote the subsets of‘éi_(c) consisting of those
f that are bounded away from zero at infinity in Co+, and those that go to
zero at infinity in €0+ respectively.

B = LA, @A @]
denotes the commutative algebra of fractions § = n/d, where n € 2%_(0)

and d € Z (o)

Bo(@) := [A. ()12 7()]"!

Let H E‘é(o)mxn then:

N D!

Dy is called a right coprime factorization (r.c.f.) of H if and

only if
(i) N, and D have all their elements é?_(o) and

@tDrGé?b)

|
(i) H = NrDr

(ii1) N., D, are right coprime (r.c.), i.e., there exists u. € CZ_(o)nxm

and V. € ,&-(O)nxn such that

UrNr + VrDr = In

D?N2 is called a left coprime factorization (1.c.f.) of H if and

only if

(i*) N, and D, have all their elements in é?_(c) and

det D € ['1\,?(0)
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(ii') H = D'
(iii") Dgs Ny are left coprime (T.c.), i.e., there exists Uy € &_(o)nxm

and V, € &_(c)mxm such that

For all H E@(g)mxn, algorithms are available to obtain both r.c.f.

and 1.c.f. [Cal. 2].
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Appendix I: Stability of the GHH Regulator

Since there are proofs available in the literature showing that
exponential stability of the plant is necessary for the use of the Smith
regulator [Fur. 1], we do an analysis for the GHH regulator and indicate
a method for the Smith regulator that does not rely on state-space analy-
sis as in [Fur. 1]. We impose the following 2 assumptions on C, N, P,
P], P2. For some o. < O

0

n.xn

~ o ;%0 N e
C € Blo,) 3 Ny € Q_(o,) » ¥ w€ R, Ny(Jw) is unitary; Ny(0)=1.

Xn

~ n_xn, ~ n_xn.
0 i, o7 . _
P e ﬁo(qo) > Pj € ‘30(00) s J ]a 2
(A1)
-1 . . -1 . . _
DclNc£ is an l.c.f. of C; ijrijr is an r.c.f. of Pj, i=1,2
-1.
Nperr is an 1.c.f. of P
(A2)

Comments: a) Note that, [Cal. 2], the matrices Dcz’ D..,D may be chosen to

pr > m.r
be rational; by definition, they are exponentially stab]e,Jproper and
their determinants become non-zero constants as |s| + «.

b) Assumption (A1) says that C, P, N4 and the plant models P] and
P, are not required to be lumped: their transfer functions C, P, Pis Pos
Nd are analytic in Re s> o except for possibly a finite number of poles.
The plant P and its models P], P2 are required to be strictly proper.

In terms of E]’ Ens &3 defined in Fig. Al, the system 3S(PNd,P],PZ,C)

is described by

Dg =Nu, NE=y (A3)
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where £ := [E¥EE£EE;J, u = [u{;ug], and

~ ' 1
Dc20m1r chNm]r ' chNmzr v NeaNor
—_ e = m e e emlea e e e, e e -
D:= [-N,D ! D ! 0 (A4
d myr : mr )
L myr pr
(N,' 0] Dt 0 10
cz: mro |
Nos= | 0T R, | s No:= | TV O TN (A5)
L , d r 1 Tpr
- - = R T
i
L 0 . 0 _%ﬁr|'%br'Nm~

From (A3) Hyu: u+~ y the input-output map of the system 3S(PNd,P],Pz,C)

is given by

Hyy = NrD'le (A6)

We now define stability.

Definition: We say that a system S specified by a matrix fraction

description, as in (A3), is exponentially stable if and only if det[D]

has no C+~zeros.

Comments: a) Since we do not require left (resp. right) coprimeness of D and
Nz (resp. D and Nr) in the above definition we cannot use the definition
that "S is exponentially stable if and only if Hyu :ury has all its

elements in 42_(00)", as in [Chen 1]; indeed the description (A3) allows

unstable hidden modes. -
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b) For the system 3S(PNd,P],P2,C), shown in Fig. A.1 it is intuitively
obvious that (D,Nr), (D,Nz) are not r.c., 1.c. respectively because:
i) we are not observing all subsystem outputs (thus there may be output-
decoupling zeros); ii) we do not have exogenous inputs to all subsystems

(thus there may be input-decoupling zeros) [Cal. 1, Sec. 4.2].

Theorem A.1. Let assumptions (A1) and (A2) hold. The nominal GHH regu-
lator, namely the system 3S(PNd,P,P,C), is exponentially stable if and
only if
i) Dpr' can be taken to be I,
i) ¥s €C, det[Dcz(s) + ch(s)Npr(s)] # 0.
Comment: Note that if we choose D__ = I, then P = N__ and by the defini-
pr ~ P n oxn,
tion of the r.c.f. ([Cal. 2], [Chen 11), Npp € (Z_ 0(oro) ° 7. Since
c ~ noxni £ e A NoXN; ’@ ) )
Ny d_(co) , = PNy Q-,o(oo) thus is exponentially

stable, as promised.

Proof: In the nominal case Nm.lr = Nmzr = Npr and Dm1r = szr = Dpr’
Making these substitutions in (A4) we use the elementary column operation

Yo < Yo * Y3 and the Binet-Cauchy theorem [Gan. 1] to obtain

det[D] = - (det[D) 1)’det[0 (A7)

c2PprtNeaNor

(=) Clearly if i) and ii) in the statement of Theorem Al hold, then
det[D] # 0, ¥ s €C,.
(=) From equation (A7), we note that, since P is strictly proper and

C is proper,for s €C_and [s| + =, det [D] tends to a non-zero constant.

So we need only consider the possibility of finite € _-zeros of det[D].
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By the assumption of exponential stability, det [D(s)] #0 ¥ s in

Re(s) > o, where o | is small and oy < o, < 0: thus, by (A7),

¥s : Re(s)>og, det[D,(s)]# 0 and det[D ,(s)D) (s) *Neo(sINy ()] # O (ag)

Now the matrix Dy s analyt1c 1n Re s > oy, det[Dpr(s)] # 0 for

s H'(Dpr(S)) can be taken

pr
Conclusion ii) follows by (A8). ™

Xn,
Res >0 , 52(0 ) " 1, consequently D

0

to be I. This establishes conclusion i).

Robustness considerations:

Since P], P2 are meant to be models of

P, they are assumed to be strictly proper. In the nominal case
P] = P2 =P, If P] and P2 differ slightly from P, we can show that
3S(PNd,P],P2,C) is also exponentially stable.

Let (A1), (A2) hold for the GHH regulator S(PNy,P;.P,,C). Then D
is given by (A4) and by the elementary column operation (yz+w2+y3)on D

we obtain D',

Dcxpm r+Nc2Nm r ' (Npr m r) ! chNpr
1 T 2 I
- - = - - - - - = - -
D' : 'NdDm]r szr | 0 (A9)
-— — -— - -— s em e e e
0 (Dpr mzr) ' 'Dpr -

Recall that N__, N have elements in ¢ _,

pr’ m, pr’ mzr

in C+. So we assume that P1 and P2 are "good" models of P; more pre-

cisely, we assume that for j = 1, 2, and for € > 0 small,

(Npr . r) and (D ) are 0(e) in C00+

r m r
j P

J

then, by applying the Binet-Cauchy theorem to D' we obtain:

-28-
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det[D'] =- det[D + chNm1 ]-det[szr]-det[Dpr] + 0(¢e) (A11)

cJZ,Dm] r r

Then, since det[Dpr(s)] is bounded away from zero in Re(s) > o, for

)
e > 0 sufficiently small, (A11) shows that det[D'] will also be bounded
away from zero in Re(s) > 0; equivalently with assumption (A10)

3S(PNd,P1,P2,C) is exponentially stable.
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Appendix II: Stability of the GS regulator

For the GS regulator (Fig. A.2) the "block" [I-Nd(s)]Nmr(s) has a
blocking-zero at s =0 since Nd(O) = 1.T Thus, at dc
block" [I-Nd]NmrD;l has an output Y3 which is zero; furthermore, in the

nominal case (Nd==Nd, so that ﬁd(0)= I), the GS regulator is equivalent
to 's(P,C) at dc.

Referring to Fig. A.2, we state the analog of Theorem A.1 for the GS

regulator. Let the following assumptions hold:

For some 0y 2 0

S n_xn. ~ n_xn, ~ n_xn. . ~ n_xn
01 3 o1, o1, 00
Ce-@(co) s Peﬁo(co) ’ Peﬁo(oo) ’Nd’ Ndea_(oo) (B~])

Y wE€ R, Ny(ju) and N,(jw) are unitary and N,(0) =N,(0) = 1.

-1 . i -1. ~
Dcch2'1s an l.c.f. of C; Nperr is an r.c.f. of P;
(802)
-1. .
NmrDmr is an r.c.f. of P

Theorem B.1. Let assumptions (B.1) and (B.2) hold. The nominal GS regu-
lator, 2S(NdP,(I-Nd)P,(:) is exponentially stable if and only if,
i) Dpr can be taken to be I,

1) ¥seq,, det[D  (s) +Ney(sIN,.(s)] # 0

Proof: As in Appendix I, the elementary column operation (Y1+V1+Y2)

shows that, in the nominal case, we have

det[D] = det[Dcszr + chNpr] det[Dpr] o

1'The blocking zero shows that there is a windup problem [Rst. 1] if
det[Dmr(O)] =0.

-30-



U «+ € Y|

Uy +.6 +

+

e 'Tf" Q j:éte? 5 IR, F Ly,

Fig. 3. The GS reqgulator with Q parametrization:
’S(NgP, NgP, Q) = *s (N4P, (I-N4)P,C)
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Fig 4. The GHH reguiator: *S(PNg,P,, P,,C)
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Fig. 5. The GHH regulator with Q-parametrization:
ZS(ﬁ, Pz, NdQ)



TABLE 1

LOCATION OF MULTIPLICATIVE s | LOCATION OF MULTIPLICATIVE
PERTURBATION M€« (see Sec.5..2.ii) | 23- | PERTURBATION Me€.# (see Sec.5..2.ii) | SHH
IN GS REGULATOR Hyn | IN GHH REGULATOR Hyn

1) a) "Following” plant o) "Following" plant

b) "Preceding” model

i) "Between” Ny 8 P
Q) P= PNQ

-NgQP

'PQNd

IN ALL CASES THE NECESSARY AND SUFFICIENT CONDITION FOR EXPONENTIAL STABILITY

OF THE PERTURBED SYSTEM IS: o 1\ 1 Zotg) < Tmax [HY7] Tonas [M] < 1



5 O

N ¢ l & _]" pr
3 C g ]
y P
Dl’l’l|l’-lw szf-|
jgl > P, t‘fz > P2
NIT||I’ J Nmer
& &
+ +

Fig.A.l The GHH regulator: *S(PNg,P,,P,,C)

C P
e A N a(ga r — € N dO
_ y + _ ~ +
U &} Ngy Der”! ! ’Dpr'_’Npr_z'Nd —+é+ Y1+Y2

4 + ez
Y3 £ J h ~
(I-Nd)Nmr‘_LD .

A 4

0

Fig.A.2 The GS regulator: ZS(Ndﬁ,(I-Nd)P,C)
(Note: P := Nupr D)
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