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Abstract

This paper studies a generalized form of the MIMO Smith regulator

(GS) and one of its variants—the Gray-Hunt-Horowitz (GHH) regulator.

The necessary and sufficient conditions for the exponential stability of

both systems are determined. The two schemes are analysed and the

limitations imposed on system performance by uncertainty in delay, plant

saturation etc. are exhibited. The GHH and GS regulators are compared

with reference to a fairly general example. Finally, two theorems

establish a global parametrization of all stabilizing controllers for

the nonlinear GS and GHH regulators.
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1. Introduction

The problem of controlling a plant with "delays" has been studied

for a long time. In 1957, 0. J. M. Smith proposed an ingenious scheme

now called the Smith regulator (e.g. [Ast. 1]) — with appealing

characteristics. Since then the SISO problem has been studied by many

authors [Gaw. 1], [Kwo. 1], [Man. 1], [Mar. 1], [Mor. 1], [Pal. 1];

variations have been proposed e.g. [Hor. 1], and some of the theory has

been extended to the MIMO case [Ale. 1,2], [Fur. 1], [Ogu. 1], [Pal. 2].

We consider a generalized form of the MIMO Smith regulator which we

call the GS regulator (see Fig. 2 below) and one of its variants — which

we call the Gray-Hunt-Horowitz (GHH) regulator (see Fig. 4 below). An

analysis of the nominal case for the generalized Smith regulator shows

that the I/O map

Hy2Ul =NdPC(I+PCrl =NdRQ (1-1}
and that the exponential stability of 2S(NdP, (I-Nd)P,C) requires that
the plant ^(=NdP) be exponentially stable (see Appendix, Thm. A.2).

The formula (1.1) seems to say that.the delay Nd can be factored out of

the design, and thus that the delay imposes no special restrictions on

achievable performance.

In sec. 2 we describe the required factorization assumptions and the

assumptions made on the plant. Sections 3 and 4 contain analyses of the

GS and GHH regulators respectively, in the nominal and perturbed cases.

In section 5 we draw general conclusions on the two regulators and

apply results of the analysis to special examples to better understand

limitations of the two regulators.. Section 6 discusses the extension to

the nonlinear case briefly and section 7 compares the two regulators.
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Notation:

a := b means a denotes b; IN is the set of positive integers; IRis the

field of real numbers; C is the field of complex numbers; K+ is the

set of non-negative real numbers; ft. ((D ) is the set of complex numbers
+ a+

such that Re z >0 (Re z>a, resply.). For any set A, Anxn denotes the

set of all nxn matrices with elements in A. lR_(s) (R_ n(s)) denotes

the set of all proper (resp. strictly proper) rational functions with

coefficients in 3R . For any AeImxn, ^[A] (^min[A]) is the maximum
(resp. minimum) singular value of A. Given a^K (typically a > 0),

oo

f e d(o) iff f(t) = f.(t) + I f. fift-t,), where f = R -+ IR with
0

fa(t) =0 for t <0 and t «- exp(-at) fa(t) e L]; tQ =0, t. >0, Vi >0;

Vi, fi G 3R and i •* ^ exp(-at.j) G^; f G#_(a) iff, for some ^ <a

f e <4(a.,). f denotes the Laplace transform of f. O.M := {f: f e <&(a)};

Ci Jo) ={f: f e<2jo)h f e CL^Q(a0) iff f e#» and f goes to
zero at infinity in C _,_.

2. System description and factorization of (P

Let us call the plant transfer function (P: it is an n xn. matrix.

Roughly speaking, we must assume that Cr can be factored into a Blaschke-

product-like "all-pass" factor Nd and a factor P, i.e., P- N.P (resp.
PNd) depending on whether the plant is more accurately modelled by the

"delay" N. following (resp. preceding) P. Specifically,

Assumption A: The plant ^may be factored as NdP (resp. PNd) where
n xn. ^ n.xn.

1) for some oQ <0, Nd 6(2Jo0) ° ° (resp. CLJoQ) 1 *). is
4.

unitary on the jw-axis and Nd(0) = I .
n xn.

ii) P G R (s) and is exponentially stable.

Comments: a) Note that, irrespective of the order of factors,
n xn.

G ££_ (a ) , i.e., is strictly proper.

t There is no loss of generality in assuming Nd(0) =I, for if N.(0) =U^I,
Uunitary, redefine Nd(s) to be NdU-1 (resp. IT^) and redefine Pas
UP (resp. PU) so that P- NdP (resp. PNd) is unchanged.
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b) In the appendix we show that, given that Nd has its elements

in #_(a ), P must be exponentially stable in order for the GHH or GS

regulators to be exponentially stable. Thus, we assume exponential

stability of P only for convenience and to emphasize that GS or GHH

regulators can only be used for exponentially stable plants.

c) For the Smith regulator an explicit knowledge of both factors

Nd and P is required in order to construct the regulator. However the

plant need not be physically separable into factors Nd and P.

d) We will see below that in order to use the GHH regulator we do

not require an explicit knowledge of Nd but we do require that (P factor

as PNd (i.e., "delay" Nd precedes P) and that the plant be physically

separable into factors Nd and Pwith the output of Nd accessible to the

designer.

e) Though in assumption A ii) we impose the restriction that P
n xn.

be lumped (i.e., P e IR (s) ° ) it makes no difference to the methods,

theorems or conclusions of this paper if P is distributed (i.e.,
n xn.

pG#-.o^o) •for some ao >0)
Since, by assumption A, P is exponentially stable we may use the

Q-parametrization theorem [Zam. 1], [Des. 1], [Cal. 1]. Throughout this

paper, given (P =NJ3 or PNd, we imagine the standard system S(P,C)

(Fig. 1) associated with this Pand define Q := C(I+PC)" .f For P

exponentially stable, the exponential stability of S(P,C) is equivalent

to the exponential stability of Q := Cfl+PC)"1; equivalents we can
represent C as an exponentially stable Q with a positive feedback of P.

This representation of C in Fig. 2 and in Fig. 4 (when P-j = P2 = p) 1eads
to Fig. 3 and 5 respectively.

TIndeed, the fact that when (P = N.P the nominal system of Fig. 2 has
H = N.PQ = N^PCfl+PC)"1 led some to think of the Smith regulator asy2u.j d x d v

^(P.C) followed by Nd since this would have the same H u!
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3. Analysis of the generalized Smith regulator (GS)

Let the nominal plant be (P := NdP and the perturbed plant be
ft := NdP. Referring to Fig. 3, we write the summing node equation as:

I-0>Q (P

-Q I

6T

e2

=
ul

u2

(3.1)

We shall solve (3.1) below in order to obtain eventually the closed-loop

transfer function H : (u-|,u2) *+ (ypy2)«
In the nominal case (P =P, Nd =Nd, thus <P =<P =NdP), Eqn. (3.1)

gives, for H°u : (i^.Ug) •* (e^):

1° =
eu

I -9

Q I-QP

and the nominal I/O-map

yu

Q -Qtf>

<£>Q P{l-Q<P)

Q -QNdP

NdPQ (I-NdPQ)NdP
(3.2)

Note that the nominal disturbance to output map is:

Hy d a I-^Q a I- NdPQ (3.3)

Comment: Whereas the "delay" caused the I/O-map H° „ = NHPQ to be
J2 1

premultiplied by Nd (see eqn. (3.2)), the effect of the "delay" Nd on

(see eqn. (3.3)) is much more drastic.
Vo •

In the additively perturbed case (P =<P+A<P), we shall establish that:

yu

QO+A '̂Q)"1 -Q-(I+A^-Q)'V

^Qd+A^-Q)"1 <P[I-Q (I+A^P-Q)'1-^]
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and that:

"yd = l - <?Q(I+A^'Q)
-1 (3.5)

The effect of P *- P is to replace Qby Qd+ACP-Q)"1 and (P by (P in

equations (3.2) and (3.3) to get equations (3.4) and (3.5). To prove

equations (3.4), (3.5), we solve the summing node equation (3.1) to get:

(I+AtP-Q)"1 -(I+A<P-Q)~¥
H =

eU Qd+AtP-Q)"1 I-Q(I+A<P-Q)~V

and eqn. (3.4) follows since,

yu

Q 0

0 <P eu

Comments:

a) In the multiplicatively perturbed case (P> (I+M)<P) we can use

formulae (3.4) and (3.5) above with LP =P-P =Hfi and <P = (I+M)^>.

b) As special cases, we easily obtain formulae for perturbations

in Palone or Nd alone either when P » NdP or P =PNd- For example,
if P=P+AP, Nd =Nd, <P » NdP then P =NdP =NrfP =Nd(P+AP), so

A(P =Nd-AP.

4. Analysis of the G-H-H regulator

We call Horowitz's modification [Hor. 1] of the Gray-Hunt [Gra. 1]

regulator the GHH regulator (Figs. 4,5). In order to be able to

implement this feedback scheme it is essential that: first, the "all-pass"

subsystem Nd precede P(i.e., P =PNd and not P =NrfP as before)
second, the output of Nd be accessible as shown in Figs. 4. and 5.
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Consider the nominal GHH regulator, i.e., in Fig. 4 set P = P-j = P2

and, in Fig. 5, set P = P2 = P; then, by inspection:

yu

Q 0

PNdQ PNd

l°H = I- PNHQ
y2d0 d

(4.1)

(4.2)

Suppose now that, in the system of Fig. 5, P = P+aP and P2 = P,

then the summing node equations read:

e1 = u1-AP-Nd(u2+Qe1)

e2 = u2 + Qe1

Solving equation (4.3) for H : u h- e gives

eu

(I+AP-N^)"1 -(I+AP-N^J'̂ AP'Nj
Qd+A-P-N^)'1 (I+Q-AP-N^"1

From equation (4.4),

yu

Qd+AP-NjQ)"1 !-Q-AP-Nd(I+Q-AP-Nd)"1
PN^d+AP-N^)'1 I PNd(I+Q-AP-Nd)"1

Since we can show that H A = I-H .. , from equation (4.5)
y2 0 y2 1

-1V d =I-PNdQ(I+AP-NdQ)"' =(I-PNdQ)(I-AP.NdQ) -1
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5. Conclusions

5.1. The generalized Smith regulator

In order to avoid vague generalities we apply the analysis developed

above to the case when:

i) the plant P is square

ii) Z[P] n C+ = <j>; (in other words the plant P is such that P has

no poles in €+). We choose

Q:- P"](l +~)"m (5.D
c

where w is a chosen cutoff frequency and m is chosen large enough such

that Q is proper. Then,

^ =NdP(3 - M1 +̂ (5-2)

K a ° I-NHPQ = I - NH(1 +-§-) (5.3)

5.1.1. The generalized Smith regulator: nominal case

If we consider exclusively the nominal case (P = P, Nd = Nd) (and

disregard noise and saturation limitations for the moment) then:

i) as Smith pointed out in the SISO case, the feedback design can be

carried out as if the "delay" Nd were absent;

ii) eqn. (5.2) suggests that we can "broadband" the plant P

arbitrarily by choosing Q as in eqn. (5.1) above with w as large as we

please and thus achieve, on paper, an arbitrarily fast rise time in

spite of the presence of the "delay" Nd-

We still consider only the nominal case (P =P, Nd =Nd) but, more

realistically, look at saturation and at disturbance rejection constraints

-8-



a) Saturation

The plant input e2 is given by (see Fig. 3)

e2 =Q^ +d-QN^Ug

Thus Q also controls the size of the plant input. Saturation of the plant

P puts bounds on the allowed plant input e2- Hence saturation sets an

upper bound on the size of Q, i.e., on amaxCQ]- From (5-"0>

n -m

a [Q] = W 1(1 +J—) I <5-4)umaxLVJ a . [PJ lv w ' '
mm1, J c

From eqn. (5.4) since P is strictly proper it is clear that such a bound

on cr,„u[Q] puts a bound on u>„. Thus it is only on paper that we can
maxu^J r c

"broadband" P arbitrarily, even in the nominal case. These limitations

are precisely the same as those one would encounter when Nd = I (i.e.,

no "delays" in <P).

b) Disturbance rejection:

Consider the transfer function Hx/ . :dn«^y9 (eqn. (5.3)):
y2ao u c

tfmav[Hw A (Jw)] is a measure of the disturbance rejection achieved at
max y2aQ

frequency m and of the I/O-map sensitivity to plant perturbations. To

fix ideas, we consider the special case of "equal delay t in all channels,"

i.e.,

Nd(jW) =e"ja)T.I (5.5)

Using (5.5) in (5.3), for a large enough cutoff frequency a)c

ama¥CHv_h (Jo))] *amax[I-Nd(j(o)] -H -e"ja)T| -2sin(f) (5.6)'max^y^'

Equation (5.6) shows that a *V[HW .] starts at
max y^^Q

monotonically as <o increases over [0, —]; in particular crmax[H d ]

-9-
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reaches 1 at wd := •£- . Unless x is wery small, we will have wd « w .
Hence in the nominal case (P =P, Nd =Nd) we have an appealing I/O-map

Hw , but a very unfavorable H„ A : at u). = J- rad/s the system
j2u-j ^2 0

S(e"STP, e"STP, Q=P"'(1+—) ) does not achieve any disturbance
wc

rejection (see Fig. 3).

We have just seen that,.for the nominal system, the "delay" Nd imposes

bounds on the achievable disturbance rejection. This conclusion fits

Zames1 general theory [Zam. 1]: suppose that we model the "delay" Nd

by all-pass sections (i.e., Blaschke products), say, Nd =diag(p-i(s),
s-z..

• ••> Pn(s)), where p. (s) = n ( J ) , with Re(z_.. ) > 0 Vj, Vk, then by
j S+2.k *

[Zam. 1, Thm. 4] for all_ stabilizing compensators

i.e., the weighted disturbance transmission is bounded below by the value

of the weighting function, w(»)» at the C+-zeros of the plant P.

5.1.2. The generalized Smith regulator: the .perturbed case

i) For additive perturbations eqn. (3.4) shows that stability of

the perturbed GS regulator depends on the Nyquist plot of a> h- det[I+A(P*Q(ju).

provided that the perturbed plant P is stable.

ii) Consider multiplicative perturbations of the form P = (I+M)(P

(or ^ = <P(I+M) etc.) with M6</( where for a given tolerance function

on *-* &m(w) which satisfies

a) ui i-* jl (o>) mapping ]R+ into R+\{0} is continuous
* kb) 3k e w s-t- Am(w)w >1, for all u> sufficiently large

Ji := {M : MP is exponentially stable and strictly proper;

-10-



amax[M(ja))] <*m(aj)j Vw GR+*n+f =V }+

Using the results of [Chen. 1] (which generalized to the present case the

original results of [Doy. 1]) we write down the necessary and sufficient

condition for robust stability of the perturbed system for various

locations of the perturbation in Table 1. To see what the necessary and

sufficient condition means let us consider a specific row, ii), of Table 1

For a multiplicative P - (I+Mjtf3 where Me Ji, the necessary and

sufficient condition for exponential stability of S(P ,(P,Q) (GS) is

<w^ W« <1 ~ WVi3 °«**m K' • (5,7)

Equation (5.7) shows that the requirement of robust stability puts a

constraint on the "size" (.as measured by the maximum singular value) of

the I/O-map, H, . The larger the "size" of the perturbation M, the
y2ul

smaller we must choose o [H ] t0 maintain stability in the presence

of perturbations in the class J\.
«. -m

In the example of sec. 5.1, Hw „ = N.(1 + -f- ) (eqn. (5.2)) andy2u1 a a)c

since Nd is unitary, ^[H^]=|1 +j(^) |"m; thus abound o^CH^]
puts a bound on w , the achievable bandwidth.

iii) The effect of mismatches between plant "delay" and model "delay"

can be quite drastic and is best seen from the following example:

Consider 2S(e"(T+AT)sP, e"TSP,Q): i.e., Nd =e"(T+AT)sI (equal delay,
t+At, in all channels) and Nd =e'TSI. Note that (I+(e"^AT^s-l)I)e'xSP
= e"^T ^SP, thus the mismatch in delay can be modelled as a

^ +n~ (resp. n^) is the number of C+-poles of 0° (resp. <P).
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multiplicative perturbation of the form (I+M)P and from Table 1:

2S(e'(T+AT)sP, e"TSP,Q) is exponentially stable

- Vco e r , amax[e-ja3TP(jw) Q(jw)]-amax[(e-jwAT-l)I] <1 (5.8)

In particular for wk =^j^1'1* , ke fl*, stability condition (5.8) gives

Vk G1N*9 'W^k1 Q(juik)] <\ (5,9)

Note that the larger the uncertainty in delay, At, the smaller is the

spacing between the successive wk's.

Since Nd(ja)) is unitary, o^CH u (ju>)] =amax[p(Jw) Q(J*W)]
Va) G IR. Thus delay uncertainty imposes strict (and, in this case,

undesirable) conditions on the I/O-map.

In the SISO case, equation (5.9) becomes:

Vke N* , |p(j«k) q(jfc>k)| <\ ; or equivalently |h° u (jo>k) | <2

where h° „ (•) is the I/O-map for S(p,c) and this is more explicit than
y2ul

Palmor's result [Pal. 1, Thm. 1] for the case of unity feedback.

iv) Finally we point out that A<P may act in a direction to make

H = I-(PQ(I+A(P-Q)"1 larger than nominal though the perturbed system
y2a0

is still stable. Thus robust disturbance rejection, as defined in

[Chen. 2], will impose even more stringent requirements on the system.

5.2. The GHH regulator

5.2.1. The nominal case:

By equations (4.1) and (4.2), the nominal GHH system has the same

nominal I/O and disturbance to output maps as the nominal GS system.

Hence, using the same example as for the nominal GS system (see sec. 5.1.1),

-12-



equations (5.2) and (5.3) are valid for the GHH system, so we reach the

same conclusions except that the plant input e2 is now given by

e2 = Qu,+u2, which makes it even clearer that plant saturation puts a

bound on amav[Q] and hence on oi (see equation (5.4))
max c

5.2.2. The GHH regulator: the perturbed case

i) In the GHH regulator (Fig. 4) let P = P but Nd «- Nd. Then

from equations (4.5) and (4.6) with AP = 0 we obtain:

Hyu =
" Q 0 "

_pNdQ py

Vn S=I - PNdQ

(5.10)

(5.11)

Equations (5.10) and (5.11) are merely equations (4.1) and (4.2) with

N. «- Nd, and imply that if H. is arbitrary but exponentially stable, then"

the perturbed system is still exponentially stable. (This observation

is made intuitively obvious if we note that when P = P there is no

feedback, as Fig. 4 shows). This is the precise sense in which one

should understand Horowitz's phrase "totally insensitive to the delay t"

[Hor. 1, p. 984].

ii) From a comparison of Figs. 4 and 5, it might appear, at first

sight, that use of the Q-parametrization theorem causes us to ignore the

effect of differences between P, and P. This is not true because even if

Pn f P, but P, is exponentially stable, we may use the Q-parametrizati

theorem with Q, := C(I+P-.C)~ ; and, when P2 = P, this will just change

the I/O-map Hw „ to PN .Q, without affecting the stability of the GHHy2u«j a i

regulator.

iii) When P2 f P there is feedback, hence there may be instability:

Equations (4.5) and (4.6) show that, in order to maintain stability for

-13-
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all expected N/s and all expected additive perturbations, (AP's),

(I+AP-Nd*Q)~ must be exponentially stable—which is easily checked by a

Nyquist plot.

iv) For multiplicative perturbations in the class J{ (defined in

sec. (5.1.2), ii) the necessary and sufficient conditions for robust

stability for various locations of the perturbation are listed in Table 1

and if we look at row ii) again, we are led to the same conclusions for

the GHH regulator, as for the GS regulator in sec. (5.1.2), ii): the

larger the "size" [amav[M]) of the multiplicative perturbation, M, the
max

smaller we must choose amav[Hw „ ] ("size" of the I/O-map) to maintain
max yn\x*

exponential stability.

For two specific locations (see rows 1 and 3b) of Table 1) of

perturbations, however, the GHH regulator is stable for ajl_ perturbations

in class J{ defined by taking £m(w) to be arbitrarily large for all u>
OT m

(i.e., there is no restriction on amax[M] as long as the perturbed plant

is still exponentially stable). This phenomenon is explained in i) of

the present section (5.2.2)

6. The nonlinear case

The theory of the GS regulator and the GHH regulator extends to the

nonlinear case, as is suggested in [Mar. 1, p. 162].

For all nonlinear dynamical systems considered below, we assume that

at t = 0 they are in a standard state (say, some equilibrium state called

nithe zero-state). Thus we assume that, for any input (say e2 : 1R+ -*• IR )

the nonlinear causal plant P has a unique output ^(e2(.)) : H+ -

which depends only on the input.

-14-
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6.1. Definitions and Notations

Let (JC, II - II) be a normed space of "time functions": 0 -+ If where

J is the time set (typically IR+ or W), TJ'is a normed space typically

R, IRn, Cn, •••) and B«B is the chosen norm in JC. Let £Q be the
corresponding extended space (see e.g. [Wil. 1], [Des. 4]).

A function <f> : R+ -• IR+ is said to belong to class K iff $ is <J>

continuous and increasing. <j> is said to belong to class K iff <j> G K and

4>(0) =0. If <J>-j and <J>2 GKQ, then <j>, + <J>2 and a h- <j>-j(4>2(a)) G KQ.
ni no 9 -i

A nonlinear causal map H:£ "*£ is said to be <3-stable iff j<j> G K
"iS.t. VX GJ^1 , VT Ga,

IlHxIL < (J)(IlxllT)

His said to be incrementally ^-stable (incr. & -stable) iff (i) His

J -stable, (ii) 3$ GK s.t. Vx, x' e £J, VT G J,

ilHx-Hx'IlT <i(llx-x'flT)

It can be shown that if the nonlinear causal maps H-i and jj2 are h-stable,
(inc. ^-stable), then H-.+H2 and H, <> y2 are 2 -stable, (incr. Ji-stable,
resp.). (For simplicity, in what follows we drop the symbol "o" denoting

the composition of the maps.)

A feedback system is said to be well-posed iff the relation from the

exogenous inputs into each subsystem1* variable (i.e., subsystem input and

subsystem output) is a well-defined nonlinear causal map between the

corresponding extended spaces. More precisely, the system S(P,C) of
n. n n n.

Fig. 1, where ?:£p -^JC. , C:£ °->jCJ are causal maps, is said to be

By subsystem we mean any block of the block diagram of the feedback
system.

-15-



well-posed iff H: (u-, ,u2) »-• (e, ,e2,y,,y2) is well-defined and causal.

Note that ^(P.C) is well-posed implies that1" (I+PC)"1 and (I+CP)"1 are

well-defined and causal. We say that a well-posed nonlinear feedback

system is x)-stable (incr. ^(-stable) iff the map from the exogenous

inputs to any subsystem variable is ^-stable (incre. JJ-stable, resp.).

The Q-parametrization theorem [Des. 2], [Des. 3], states that if

(p is incrementally ^-stable, then the nonlinear feedback system

S(P9C) is o-stable if and only if there is an ^-stable Qsuch that

£= Q(HQ)"1 (6J)

or, equivalently, [Des. 2,3]

Q=C(I+PC)-1 . (6.2)

Note that here PQ, PC,etc. denote composition of nonlinear maps.

Consider S(NdP,(I-Nd)P,C) shown in Fig. 2, interpreted in the

nonlinear context: where P =NdP with Pnonlinear, causal, incrementally

^-stable and the "delay" map Nd is linear, time-invariant, represented
by a transfer function Nd which is proper, analytic in C+ and unitary on

the jw-axis. Applying the Q-parametrization theorem we can redraw the

system of Fig. 1 as shown in Fig. 2, except that we consider the nominal

nonlinear case, set P, Pto P; set Nd, Nd to Nd- Now for 2S(NdP,NdP,Q)
we have the partial I/O-map H u : (u.|,0,0) «-^y2 given by H =NdPQ.

This suggests immediately that, since Nd represents only a linear "delay,"

we choose g to fashion Pg to our design requirements. In other words, the

design concept that 0. J. M. Smith proposed in 1957 can be extended to

The meaning of (I+PC) deserves clarification: the map C is composed
with P then the identity is added, and the resulting map is inverted.
Although this formula has the same form as the linear case, it has a
completely different interpretation.
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the MIMO nonlinear case. Now if, in Fig. 3, we view Q as C with a nonlinear

(negative) feedback P (see equation (6.2)) we obtain, for the nonlinear

case, the system of Fig. 2 where we set Pand Pto P; Nd andNd to Nd and Cto C.

We formalize the above discussion as the following theorem:

Theorem 6.1: Let P be a nonlinear causal incrementally <3 -stable map

and Nrf a linear time-invan ant map represented by a transfer function

which is proper, analytic in C+ and unitary on the jw-axis. Then the

nominal nonlinear GS regulator 2S(NdP,(I-Nd)P,C) is ^-stable if and only
if C=Q(I-PQ)"1, or equivalents Q=Cfl+PC)"1, for some J-stable Q.

Proof: Follows the proof of Thm. 1 a), sec. Ill of [Des. 3] almost exactly,

after defining u-j := N^Ce-j) - N^fug+Ce^. n

For the nominal nonlinear GHH regulator we state and prove the

analog of Theorem 6.1

Theorem 6.2: Let P be a nonlinear causal >o-stable map and Nd a linear

time-invariant map represented by a transfer function which is proper,

analytic in (E+ and unitary on the jw-axis. Then the nominal nonlinear

GHH regulator 3S(PNd,P,P,C) is ^-stable if and only if C:= Q(I-Pg)'1,
or equivalently Q= C(I+PC)~ for some ^-stable Q.

Proof: (=>) Set u2 =0 and dQ =0: the partial map H : (u, ,0,0) h- y, is

given by H, = C(I+PC) which by assumption is -i-stable. Let

Q:= Cfl+PC)"1 , then Qis i-stable, equivalently C=g(I-Pg)"1

(<=) Refer to Fig. 4; set dQ =0: the summing node equations read:

e1 =^ -PCe] (6.3)

e2 =u2 +Ce] (6.4)
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Equation (6.3) is equivalent to:

e, =(I+BQ)"1^

and, from Fig. 4,

y1 =Ce1 =C(I+PC)"1u1 =gu] (6.5)

Define the projection map tt.. :(Un,u2) »-* u., i= 1,2. From equation (6.5),

the map H u=(upu2) ^i 1S 9iven bV

H = Q 7T-.-y-jU * ~1

Since j, is &-stable and by assumption Qis o-stable, the map H uis

jO -stable. From Fig. 4, we have

y2 = PNd(u2+yi) •

Hence the map H =(U|,u2) »^y2 is given by

By2u"E8d<Vi!yiU) (6'6)
Now, by assumption, Pis JS-stable and Nd is linear, and -o-stable:
thus tt2, H and PNd are all ^-stable, and it follows from equation
(6.6) that Huis JUstable. Therefore H : (u.j,u2) «-• (y19y2) is
^-stable. n

7. A Comparison between the GS and GHH Regulators

i) Refer to equation (3.2) with (P =PNd and to equation (4.1).
The first column of. the nominal H° is the same for both regulators as

is the first column of the perturbed H 's (equations (3.4), (4.5)).

Consequently:

a) the nominal (resp. perturbed) I/O-maps are identical, each to each,

for both configurations;
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b) Since H A = I - Hu , (in the nominal as well as perturbed cases),
y2a0 y2ul

the nominal (resp. perturbed) disturbance-to-output maps are identical,

each to each, for both configurations. We have used a) and b) to

abbreviate sec: 5.2.1 drastically.

ii) Table 1 compares the 2 regulator configurations on the basis of

necessary and sufficient conditions for robust stability under multiplicative

perturbations at various locations. It reiterates an important point

that we have discussed and explained in sec. 5.2.2 i), iv):

Given that the assumptions on factorization (see sec. 4) required

for the use of the GHH regulator obtain, we may say that provided P2 = P

(which is really the nominal case for the GHH regulator), the GHH

regulator has superior stability properties when uncertainty in Nd is

potentially large.

In view of our theoretical results (sec. 5.1.2, iii)) on the effects

of uncertainty in delay on the GS regulator, the numerical example of

[Pal. 1] and simulation studies ([Hor. 1] etc.), this robustness of the

GHH regulator with perfect model (P2 = P), in the face of uncertainty

in Nd, is significant. However, as rows ii) a) and b) and iii) a) and

c) of Table 1 show, the GHH and GS regulators impose identical robust

stability constraints as soon as we are in the real world of imperfect

(P2 f P) models! The importance of a perfect model is seen again In

the appendix (see comment c following Theorem A.l, Appendix I).

iii) A comparison of Theorem 6.1 and 6.2 shows that the theory of

the GHH regulator extends to the nonlinear case under the assumption

that P is <S-stable whereas the extension of the theory of the GS

regulator requires the stronger assumption of incremental xS-stability

of P.
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Notation for Appendices I & II

Referring to the notation of Sec.I, we introduce the following

notation. For details, see [Cal. 2].

A oo A A
d. (a) and Q n(a) denote the subsets of & (a) consisting of those

- - ,o -

f that are bounded away from zero at infinity in C ., and those that go to

zero at infinity in C + respectively.

@(o) =[d_)0 (*)][# rwr1
denotes the commutative algebra of fractions g = n/d, where n G <#_(a)

and d e#~(a)

(B0(a) := [^(oHMrto)]"1

Let H G#(a)mxn then:

N D" is called a right coprime factorization (r.c.f.) of H if and

only if

(i) Nr and D have all their elements C(_(c) and

det Dr e^~(a)

(ii) H=NrD^
(iii) Nr, Dr are right coprime (r.c), i.e., there exists Ur G#_(a)nxm

and Vre #_(a)nxn such that

UN + V D =1
r r r r n

D" N. is called a left coprime factorization (l.c.f.) of H if and

only if

(i1) N. and D. have all their elements in QJss) and

det DG £°°(a)
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(ii')H =D^N
(iii1) D£J N^ are left coprime (I.e.), i.e., there exists U£ g #_(a)nxm

and V& e #Ja)mxm such that

A,

For all HG<8(a)mxns algorithms are available to obtain both r.c.f.

and l.c.f. [Cal. 2].
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Appendix I: Stability of the GHH Regulator

Since there are proofs available in the literature showing that

exponential stability of the plant is necessary for the use of the Smith

regulator [Fur. 1], we do an analysis for the GHH regulator and indicate

a method for the Smith regulator that does not rely on state-space analy

sis as in [Fur. 1]. We impose the following 2 assumptions on C, Nd, P,

P,, P«. For some a < 0
\ l o

n.xnrt a. n.xn.
CG-g(aQ) 1 °; Nd GCtJaQ) n \.V u>e R, Nd(ju>) is unitary; Nd(0) =I,

n xn. a. n xn.

Pe£0(a0)° ';P.6¥o(0/ \ 0=1,2

DI]n„0 is an l.c.f. of C; Nm D'1V% is an r.c.f. of P., j=l,2
ex, ex, m.r m.r J

j j

N„„D'; is an l.c.f. of P
pr pr

(A2)

Comments: a) Note that, [Cal. 2], the matrices D„„, D ,Dm „ maybe chosen to
ex, p r m.r

j

be rational; by definition, they are exponentially stable, proper and

their determinants become non-zero constants as |s | ->» «>.

b) Assumption (Al) says that C, P, Nd and the plant models P, and

P2 are not required to be lumped: their transfer functions C, P, P,, P2,

Nd are analytic in Re s> a^ except for possibly a finite number of poles.

The plant P and its models P,, P2 are required to be strictly proper.

In terms of ^, £2, £3 defined in Fig. Al, the system 3S(PNd,P1,P2,C)
is described by

D^ = N£u, Nr£ = y (A3)
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where g := KJjsJ:^* u := [uru2^ and

D : =

c£ m,r
+ Nc*V "NciV Nc*V

d m,r
Dm2r 0

0
nur "Dnrpr

c£ i
rD

V ,

"d

0 J

o 0 . N
pr

N ' -N , NJm,r i nur I pr •

(A4)

(A5)

From (A3) H : u «- y the input-output map of the system S(PNd,P, ,P2,C)

is given by

Hyu =NrD"\ (A6)

We now define stability.

Definition: We say that a system S specified by a matrix fraction

description, as in (A3), is exponentially stable if and only if det[D]

has no C+-zeros.

Comments: a) Since we do not require left (resp. right) coprimeness ofD and

N^ (resp. D and Nr) in the above definition we cannot use the definition

that "S is exponentially stable if and only if H :u h-y has all its

elements in #_(a )'*, as in [Chen 1]; indeed the description (A3) allows

unstable hidden modes.
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b) For the system 3S(PNd,P1 ,P2,C), shown in Fig. A.l it is intuitively
obvious that (D,Nr), (D,NJ are not r.c, I.e. respectively because:

i) we are not observing all_ subsystem outputs (thus there may be output-

decoupling zeros); ii) we do not have exogenous inputs to all subsystems

(thus there may be input-decoupling zeros) [Cal. 1, Sec. 4.2].

Theorem A.l. Let assumptions (Al) and (A2) hold. The nominal GHH regu-

lator, namely the system S(PNd,P,P,C), is exponentially stable if and

only if

i) D„M can be taken to be I,
pr

ii) Vs GC+, det[Dc£(s) +Na(s)Npr(s)] +0.

Comment: Note that if we choose D = I, then P = N and by the defini-
n xn •

tion of the r.c.f. ([Cal. 2], [Chen 1]), Npr e #_ Q(oQ) ° \ Since
c nnxn-f * * nftxn.- "'Nd G#_(aQ) ° \ T =PNd Gq_ o(aQ) ° n thus € is exponentially

stable, as promised.

Proof: In the nominal case Nm „ = Nm w = N„„ and Dm „ = Dm „ = d.nur m2r pr m, r m«r pr

Making these substitutions in (A4) we use the elementary column operation

Y2 «- y2 +y3 and the Binet-Cauchy theorem [Gan. 1] to obtain

det[D] =- (det[Dpr])2det[DaDpr+Nc)lNpr] (A7)

(<=) Clearly if i) and ii) in the statement of Theorem Al hold, then

det[D] f 0, V s G(D+.

( =>) From equation (A7), we note that, since P is strictly proper and

C is proper, for s Gc+ and |s| -»• «, det [D] tends to a non-zero constant.

So we need only consider the possibility of finite £+-zeros of det[D].
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By the assumption of exponential stability, det [D(s)] f 0 V s in

Re(s) > a where \o | is small and a-. < a < 0: thus, by (A7),

Vs :Re(s)>a0,det[Dpr(s)] f 0and det[Dc£(s)Dpr(s) +Na(s)Npr(s)] f0(A8)

Now the matrix D is analytic in Re s > a,, det[D (s)] f 0 for
p -j a. n.xn. p

Re s>aQ , sh- (D (s)) G^(aQ) n; consequently D can be taken

to be I. This establishes conclusion i). Conclusion ii) follows by (A8). a

Robustness considerations: Since P,, P2 are meant to be models of

P, they are assumed to be strictly proper. In the nominal case

P, = P2 = P. If P, and P2 differ slightly from P, we can show that
3
S(PNd,P,,P2,C) is also exponentially stable.

Let (Al), (A2) hold for the GHH regulator 3S(PNd,P1,P2,C). Then D
is given by (A4) and by the elementary column operation (Y2^Y2+Y3)on D

we obtain D',

D' :=

OcAi/NaV •WVV' ! Nc^Npr

-NdDrair V ! 0

0 x pr nur7 pr

(A9)

Recall that N ,Nm r, D ,0m rhave elements in <^_, hence are bounded
in C+. So we assume that P1 and P2 are "good" models of P; more pre

cisely, we assume that for j =1,2, and for e > 0 small,

(N_-Nm J and (Dn -Dm ) are 0(e) in C
pr m.r

j

pr m.r

then, by applying the Binet-Cauchy theorem to D' we obtain:

-28-
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det[D'] =- detCD^,. +Nal^^.det[l^p]-det[Dpr] +0(e) (All)

Then, since det[D (s)] is bounded away from zero in Re(s) > a , for

e > 0 sufficiently small, (All) shows that det[D'] will also be bounded

away from zero in Re(s) j> 0; equivalently with assumption (AlO)

3S(PNd,Pn,P2,C) is exponentially stable.
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Appendix II: Stability of the GS regulator

For the GS regulator (Fig. A.2) the "block" [I-Nd(s)]N^(s) has a

blocking-zero at s=0 since Nd(0) =I.f Thus, at dc
block" Cl"Nd]N^ D" has an output y3 which is zero; furthermore, in the

nal case (Nd =Nd, so that Nd(0) =I), the GS regulator is equivalentnomi

to ^(P.C) at dc.

Referring to Fig. A.2, we state the analog of Theorem A.l for the GS

regulator. Let the following assumptions hold:

For some a < 0
o —

n xn. a. nrtxn. a n xn. „ a. nftxnft
ce«(a0)° \?e*0(a0)° '^e*^)0 '; Nd, Nd e4(a0) ° °\ (B.l)

VwGR, Nd(jw) and Nd(jio) are unitary and Nd(0) =Nd(0) =I.

DclNcx-is an 1-c-f- of C; NprDpr is an r-c,f- of P; 1
\ (B.2)

NmXl iS an r'C-f- 0f P Jmr mr J

Theorem B.l. Let assumptions (B.l) and (B.2) hold. The nominal GS regu

lator, 2S(NdP,(I-Nd)P,C) is exponentially stable if and only if,
i) D^ can be taken to be I,

' pr

ii) Vs G(E+, det[Dc£(s) +Nc£(s)Npr(s)] f 0

Proof: As in Appendix I, the elementary column operation (Y-j-eY-|+Y2^

shows that, in the nominal case, we have

det[D] =det[Dct0 +MaNpr] det[Dpr]
+The blocking zero shows that there is a windup problem [Sst. 1] if
det[Dmr(0)]-0.
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LOCATION OF MULTIPLICATIVE
PERTURBATION M€^ (see Sec.5.l.2.ii)
IN GS REGULATOR

••>- .. ••i)a) Following plant

r* i —i

1 1 1 r r
?-<H3h & 4- » Kh

L| &

r

b) "Following" model

—0 6-4^"

ii) a) "Preceding" plant, i e.«/ = .#(I +M)

b) "Preceding" model

ni) Between N„ B P
a) .f = PNd

"ol-H^o-^NdK-^TVo^p^
PNd—1

b) .*=N«P

TABLE 1

GS

-PQ

i.e.
either

-PNdQ
or

-NdPQ

PQ

i.e.

either

PNdQ
or

NdPQ

-QP

i.e.
either

QNdP
or

•QPNd

QP

-NdQP

-PQNd

LOCATION OF MULTIPLICATIVE
PERTURBATION M€~# (see Sec. 5.l.2.ii!
IN GHH REGULATOR

o) "Following" plant

—o-*[n! -rrPT4-4lr*0-r*

X
b) "Following model

-*Sn

'Preceding plant

j-Jm]—i

£

a) "Between" Nd a P

Q —O—Nd-* —- I —O— P —t—
1—

£
b) M

AT)

i-6- p —1

*

GHH

Hyt?

-PNdQ

PNdQ

-NdQP

NdQP

IN ALL CASES THE NECESSARY AND SUFFICIENT CONDITION FOR EXPONENTIAL STABILITY

OF THE PERTURBED SYSTEM IS: _ r,. 1 I r 1 r 1
^max
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Fig. A.l The GHH regulator: 3S(PNd,P,, P2,C)
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