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I. Introduction

One of the most important applications of feedback is to achieve

servoaction, that is, to obtain a system that tracks a given class of

signals and rejects a given class of external disturbances with zero

asymptotic error. In the linear time-invariant multi-input multi-output

context, this problem has been studied extensively in the literature

[See, e.g., Cal. 1; Cal. 2, Chapt. 7; Des. 1; Dav. 1, etc.]. Recently,

Morari [Mor. 1] studied the problem of "integral control" of an

exponentially stable linear time-invariant multi-input multi-output

plant. He obtained a necessary and sufficient condition on the dc gain

matrix of the given plant, under which the unity-feedback system con

sisting of the given plant and an integrator with a sufficiently small

coefficient is exp. stable and asymptotically tracks step inputs.

Since any realistic model of a physical system can be linear only

as a result of some approximations, it is important to investigate the

asymptotic tracking and disturbance rejection of nonlinear systems.

Many techniques have been proposed for the design of nonlinear systems

[Som. 1, Pec. 1, Sai. 1, Mey. 1, etc.] and specifically for tracking

and disturbance rejection [Des. 2, Sol. 1].

In this paper, we study tracking and disturbance rejection for a

class of nonlinear MIMO unity-feedback systems; namely, the system

S(M, | I+K) consisting of the given nonlinear plant// and the linear
proportional plus integral (PI) compensator | I+K(see Fig. 2.1 below).

The main result of the paper is Theorem 2.1 which shows, roughly speaking,

that if the nonlinear plant M is exp. stable and has a strictly

increasing dc steady-state input-output map, then a simple PI compensator

j I+K, with e > 0, K appropriately chosen, can be used to yield a

stable unity-feedback closed-loop system S(J/, £• I+K). Furthermore,
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the system S(yV, |l+K) asymptotically tracks reference inputs which
tend to constant vectors and asymptotically rejects disturbances which

tend to constant vectors.

The paper is organized as follows: In Section II, some basic

notations and definitions are introduced, general assumptions are given

and the main result (Theorem 2.1) is precisely stated. Theorem 2.1 is

established through Section III and Section IV. Section III studies

the special case where the compensator is a pure integrator. Based on

the result in Section III and a "loop transformation" technique,

Theorem 2.1 is proved in Section IV. Some concluding remarks are given

in Section V. Most proofs are given in Appendix A and Appendix B.

II. Problem Formulation and Main Result

11.1. Basic Definition's and Notations

Throughout this paper, |-| denotes the Euclidean norms of IR and

of ]Rm. For g:IRm -* IRn, Dg(yQ) e IRnxm denotes the Frechet derivative

of gevaluated at yQ. For f:IRn *IRm->IRn, D.,f(x0,y0), (D2f(x0,yo)),
denotes the derivative of f with respect to the first, (second, resp.)

variable evaluated at (xQ,y0). AeRnxn is said to be positive definite

(positive semidefinite), iff Vx €IRn, xt en, xTAx >0, (> 0, resp.);
note that A is not assumed to be symmetric. For Be ]Rmxn, a[B] (a[B])

2
denotes the maximal (minimal, resp.) singular value of B. f(x) := x -1

means that f(x) is defined to be the given RHS.

11.2. The System }S(N >§I+K)
Consider the nonlinear multi-input multi-output unity-feedback

system ^S(H >- I+K) shown in Fig. 2.1, where H is the given nonlinear

plant, u-. is the reference input, u2 and dQ are respectively the

plant-input disturbance and plant-output disturbance, e > 0, and K is a
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constant gain matrix. The nonlinear plant A with input e2, state x,

and output n2 is described by the following equations:

x(t) = f(x(t), e2(t)) (2.1a)

n2(t) = h(x(t)) (2.1b)

where t>0, e2(t) e iRm, n2(t) e ]Rm, and x(t) e ]Rn. We study the

asymptotic tracking and disturbance rejection of S{M, j I+K).

II.3. General Assumptions

We assume throughout that the nonlinear time-invariant plant H

satisfies the following assumptions:

(N.l) f:lRn x ]Rm -> lRn and h:Kn •+ JRm are C1 functions, and

f^6n' em^ = 8n' n^en^ = em* ^Thls t09etner witn (N-4) below imply that
for every piecewise continuous input e2(«)» for every initial condition

(xQ, tg), Eq. (2.1a) has a unique solution

t^s(t, tQ, xQ, e2(-)) (2.3)

defined on [t , «>).)

(N.2) There exists a C1 function g:IRm -• IRn s.t. Vv e IRm,

f(C.v) = 0n iff g(v) =£ ; (2.4)

(N.3) The map hog: vi-*h(g(v)) is a bijection of ]Rm onto TRm;

(N.4) there exists M > 0 s.t. Vv 6 IRm, V£ e IRn,

iD^tC.vJ^M (2.5a) ; |D2f(£,v)|<M (2.5b)

|Dh(C)| < M (2.5c) ; |Dg(v)| < M (2.5d)
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(N.5) There exist c > 0, a >0 s.t. V constant input v € jRm, Vxn e ]Rn,
0

VtQ > 0, Vt > tQ,

-a(t-t)
|s(t, tQ, xQ, v) - g(v)| <c|xo-g(v)|e ° (2.6)

(N.6) hog is strictly increasing: there exists $ >0 s.t. Vv-,, v2 ^ Km»

[hg(Vl)-hg(v2)]T [vrv2] >3|vrv2|2 . (2.7)

Comments

(a) Assumption (N.2) implies that for all constant inputs ve JRm, the

nonlinear plant H has a unique equilibrium state x := g(v) which by

(N.5) is globally uniformly exponentially stable (uniform in the

constant input v). Since the read-out map h is continous and satisfies

(2.5c), for all constant inputs v, for all initial conditions (xQ, tQ),

the corresponding plant output n2(t) tends exponentially to the constant

output hg(v). By (N.3), each such steady-state output hg(v) is achieved

by one and only one constant plant-input v.

(b) Assumption (N.6) holds [Ort. 1, p. 142] iff Vv-,, v2 e ]Rm

vJD(hg)(v2)Vl >$|Vl|2 (2.8)

(c) Consider the square linear time-invariant plant described by

x = Ax+Bu (2.9a)

y = Cx (2.9b)

where u(t) and y(t) e lRm. The linear plant (2.9) satisfies (N.1)-(N.6)
o _]

if and only if A has all its eigenvalues in C_ and, with H(s) := C(sl-A) B,

H(0) is positive definite. Morari showed that a pure integrator with a
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sufficient small coefficient scan be used fcr the plant (2.9) with the

unity-feedback configuration to achieve asymptotic tracking of step inputs
o

if and only if A has all its eigenvalues in (C_ and H(0) has all its
o

eigenvalues in €+. (The last condition does not imply but is implied

by H(0) positive definite)

We assume for S(M »f I+K) that the reference inputs u-, and

disturbances u2, dg satisfy the assumption

(1.1) u-,(-)» u2(*)» do(') e C and 3"i» "2* d0 6^ such that' as

r
U](t) •*u1 r .U1 (t) - 0

m

/ u2(t)-»-u2 , and / u2(t) -* 9
m

d0(t)-dQ
\. V.

d0(t) ->e
m

Note that (1.1) implies that 3 u > 0 such that Vt > 0

|u-j(t)|<u, |u2(t)| <u, and |dQ(t)| <u .

(2.10)

(2.11)

Since u-,(«) and dQ(') satisfy the same assumption (1.1), the effect

of d0(«) on the closed-loop system S(yV, j I+K) can be included in
u-,(*). Hence, from now on we assume dQ(t) =6 .

For the system }S{M ,fI+K) shown in Fig. 2.1, let n(t) := ef e^t'Jdt1
JO '

and choose (x(t), n(t)) as state variable. We assume that for all e > 0

and KGIRmxm, the system ]S(M, |I+K) is reachable: more precisely,
for all states (xQ, n0)» Up n-j) € IRn x]Rms there exists inputs
u1, u2 e C ,with compact support, say [0,T], which take (x(0), n(0))

= (x0, n0) to (x(T), n(T))= (xr n-,)-
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II.4. The Main Result

Roughly speaking, we shall establish the following: Given the

nonlinear plants, which satisfies the smoothness, stability and dc

steady-state assumptions (N.1)-(N.6), if the constant gain matrix K is

chosen positive semi definite, and if |K| is small enough, then the PI

compensator | I+K, with e>0 small enough, yields stability and

asymptotic tracking of the closed-loop system S(M, j I+K) for all

initial conditions and for all inputs and disturbances satisfying (I.l).

More precisely, we shall prove the following theorem.

Theorem 2.1.

Consider the nonlinear feedback system S(N, j I+K) where A
satisfies (N.1)-(N.6). U.t.c, if

(i) KG ]Rmxn is positive semidefinite; and

(ii) |K| is small enough, then there exists e > 0 such that, for

all e G (o, e], for all initial conditions (x(0), n(0)) G IRn x lRm,

for all u-, («), u2(«)* and d0(«) satisfying (I.l), the corresponding

e-, (•)> e2(»)» *(•)» and y2(0 are bounded and e-, (t) -* 9 as t-• <».

Comment. We establish Theorem 2.1 through the next two sections. In

Section III, we study the tracking and disturbance rejection problem for

the system }S(X, fI) (i.e., h(M, fI+K) with K=QmJ with a
slightly more general class of reference inputs and disturbances. Based

on this result (Theorem 3.1), and the "loop transformation" technique,

Theorem 2.1 is proved in Section IV.

III. Integral Control -The System ]S(>V, | I)
In this section, we study the tracking and disturbance rejection

problem for the system S{M , j I) shown in Fig. 2.1, with K=Qmxm-
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For convenience, let C denote the class of all continuous functions. Let

the assumptions (N.1)-(N.6) still hold but the class of reference inputs

and disturbances considered in this section be slightly more general than

those satisfying (I.l): for the system }S{M ,§I), we assume that
u-|(*)> u2(*)» and dQ(«) satisfy

(1.2) u^-). <*0H eC, u2(«) e C1 and guy u2, dQ GIRm such that,
as t •+ °°,

u-,(t) ->u]

^u2(t) ->u2 , and u2(t) -+ 9m .

d0(t)-dQ

We shall prove the following tracking and disturbance rejection result.

Theorem 3.1.

Given that the nonlinear plant M satisfies (N.1)-(N.6), consider

the system S(>V> f I) shown in Fig. 2.1 with K=0mxm. U.t.c,
]e* >0such that, for all eG(0, e*], for all (x(0), e2(0)) G iRn x ]Rm,
for all u-,(»)> u2(«) and d0(«) satisfying (1.2), the corresponding e-,(«)>

e2(*)> x(-) and y2(«) are bounded; furthermore, e-,(t) -* 8 as t -> oo.

Comments

(a) Roughly speaking, the theorem says that given that the nonlinear

plant A satisfies (N.1)-(N.6), a simple integrator ~ I, with e > 0 small

enough, yields stability and asymptotic tracking of the closed-loop

system S(>V, |l)i. for all inputs and disturbances satisfying (1.2).

(b) Theorem 3.1 is a special case of Theorem 2.1 except that the class

of reference inputs u-,(«) and plant-output disturbance dQ (•) is slightly

more general. (Compare I.l with 1.2).
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(c) From the stability and tracking point of view, the effect of u2(«)

on the closed-loop system S(//, | I) is equivalent to the effect of
adding the derivative u2(0 to the reference input u-,(«). Since

u2(#) ^ C, and u"2(t) -* 6m, we may assume, without loss of generality

that u2(t) = 0n and dQ(t) = e .

(d) In the following analysis, we first examine the case where the

reference input u, is constant; by a change of variables and a change

of time scale, the problem is converted into a singular perturbation

framework.

Consider the nonlinear feedback system S{M,j I), with
u2(t) =dQ(t) = 0m, u, £C and u-,(t) -+U-, as t -»• «»; refer to Fig. 2.1,

with K=0mxm> write the equations describing S(//, j I):

x(t) = f(x(t), e2(t)) (3.1a)

e2(t) = £(u1(t)-h(x(t))) (3.1b)

y2(t) = h(x(t)) (3.2)

with £ >0, t > 0, x(0) = Xq, and e2(0) = e2Q. Let us shift the

origin to the equilibrium point: First define e2 by

U-, = hg(e2) (3.3a)

and then define the new variables u-,(t), e«(t) and x(t) by

u^t) := u^t) -u] (3.3b)

i2(t) := e2(t)-i2 (3.3c)

x(t) := x(t)-g(e2(t)) (3.3d)

Using x(t) and e2(t) as state variables, Eqs. (3.1) become
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x=f(g(i2+e2)+x, i2+e2) -e-Dg(e2+e2)(hg(e2) -h(g(e2+e2)+x))

-e-Dg(e2+e2)«u1 (3.5a)

t2 =e[hg(e2) - h(g(i2+i2) +x)] + e-u} (3.5b)

with t>0, x(0) =xQ - g(e2Q) and e2(0) =e2Q-e2. Assumptions (N.l)

and (N.4) imply that for all initial conditions and all piecewise

continuous u-,(«) Eqs. (3.1) have a unique solution on 1R+, consequently,

by (3.3), the solution x(«) and e2(*) of (3.5) are uniquely defined on 1R+,

We study first the case where the reference input u-,(t) is constant,

i.e., u-,(t) = u-, or equivalently u,(t) =0 ;and derive a stability and

tracking result.

Set u-,(t) e ©n, Eqs. (3.5) become

i =f(g(e2+e2)+x, i2+e2) -e-Dg(i2+e2)(hg(i2) -h(g(i2+e2)+x)) (3.6a)

^2 =e[ng(e2)-h(g(e2+e2)+x)] (3.6b)

It can be easily checked that (N.2), (N.3) and (3.3b) imply that

(x(t) , e2(t)) = (0n, 0m) is the unique equilibrium point of Eqs. (3.6).

Since h and g are continuous, (x(t), e0(t)) -* (0n, 0 ) as t -•« implies
c n m

that y2(t) •* u1 i.e., e1 (t) -* e as t-»• ».

Let x := et be the new "time scale," t is "slow time" compared to t.

Define the variables z(«) and w(«) by

z(t) := x(t) , w(x) := e2(t) (3.7)

Using t, z, and w as new variables (hence z denotes 4^- ,etc.), rewrite

Eqs. (3.6) as

ez =f(g(e2+w)+z, e2+w)-eDg(i2+w)[hg(i2)-h(g(e2+w)+z)] (3.8a)
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w= hg(e2) - h(g(e2+w) + z) (3.8b)

with z(0) =x(0), w(0) =e2(0), where we have used that u-1 =hg(e2).

Clearly, (z,w) = (6n>0m) is the equilibrium point of Eqs. (3.8). Since

e>0, (z(t), w(t)) -* (0n, em) as t-+«, iff (x(t), e2(t)) •+ (en, 0m)

as t -*«>. Note that Eqs. (3.8) are in the form of standard singular

perturbation [Tih. 1, Bar. 1, Hab. 1, Kok. 1]: for e « 1, z is the

"fast" variable and w is the slow variable. Note that Eqs. (3.6) and

Eqs. (3.8) describe the same system but in a different time scale.

If in Eqs. (3.6), we let e=0 and hence e2+i2 = e2Q, we have

x= f(g(e20) + x, e2Q)
(3.9)

e2 = S2(0) - e2Q-i2

The system described by (3.10) with e2Q treated as a fixed parameter is

called the "boundary-layer system" [Tih. 1, Bar. 1, Hab. 1, Kok. 1] of

the singularly perturbed system (3.8). Note that the boundary-layer

system is defined in the "fast" time scale t.

Let <j>(*> t ,x,v) denote the solution of (3.9) with e2Q = v)

starting with the initial condition (x ,t ). J (3.10a)

It can be easily checked that Assumption (N.5) implies that, there

exist a > 0 and c > 0 — see (2.6) — such that

V(xQ, v) G iRn x]Rm, vt >0, Vt >tQ ,

-a(t-t)
k(t, tQ, xQ, v)| <c|xQ| e ° (3.11)

If in Eqs. (3.8a) we set e = 0, then Eqs. (3.8) reduce to

z = 9n
w= hg(i2) - hg(e2+w) (3.12)
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The system (3.12) is the "reduced system" of the singularly perturbed

system (3.8) [Bar. 1, Hab. 1, Kok.l]. Note that 0 is the equilibrium

point of (3.12).

Let i|;(-, x ,w ) be the solution of (3.12) starting with ^ (3.13)

the initial condition w(x ) = wrt.
v o o

Assumption (N.6) implies that the equilibrium point 0 of the

reduced system (3.12) is globally uniformly exp. stable: More precisely,

we have the following

Fact: There is a $ > 0 such that the solution of (3.12) satisfies that

VwQ GIRm, Vt0 >0, Vt >t0,
-3(t-t )

I<Ht> V wQ)| < |wQ| e ° (3.14)

Proof: Let P: IRm -> 1R+ be defined by P(w) =|w|2. The derivative
P(3 12) alon9 tne trajectory of (3.12) is given by

P(3#12)(w) =2wTw =2[hg(e2) - hg(e2+w)]Tw

l-2$|w|2 (3.15)

where we have used Assumption (N.6). From (3.15) and the definition of

P, we have that Vwrt G lRm, Vt > 0, Vt > t ,
o o — — 0

^•(I*(t, t.wo)|2) <-28|*(t, t_, w)|2

Hence, VwQ G IRm, Vtq >0, Vt >tq,
-3(t-t )

I*(t. t0> wq)| < |W |e °
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Lemma 3.2. If the nonlinear plant A satisfies the Assumptions (N.1)-(N.6),

then ^ £* > 0 such that Ve G (0,e*], the equilibrium point (z(t), w(t))

= (0 , 6 ) of Eqs. (3.8) is globally uniformly exp. stable.

Comments

(a) Lemma 3.2 implies that Ve G (0,e* ], the equilibrium point

(x(t), e2(t)) = (0 ,0 )of Eqs. (3.6) is globally uniformly exp. stable,

i.e., for S(Af, j I), for constant input u,(t) =u-,, the equilibrium

point (g(e2), e2) is globally uniformly exp. stable

(b) Since u(t) =u] i.e., u} (t) =0, from (a), V(x(0), e2(0)) €rnx]Rm
(or equivalently for any (x(0), e2(0)) G IRn xlRm), x(t) ^0n, e2(t) -♦ 0m
as t^ «. Since hand g are continuous, e2(t) -» e2» x(t) ^-g(e2),

y2(t) "^u,, and e,(t) -»• 0ffl as t-*•« (see (3.3)). In particular,

e-,(-)» e2(«)» x(-)» y2(#) are bounded on 1R+.

(c) The lemma is proved by showing that if e > 0 is small enough, then

there exists a Lyapunov function for the system (3.8), which leads to

the global uniform exp. stabilityof the equilibrium point. Similar

results on the stability of nonlinear singularly perturbed system are

also available in [Bar. 1], [Hab. 1], [Cho. 1].

Proof: See Appendix A.

Proof of Theorem 3.1: Let

x(t) := x(t) -g(e2) = x(t) + g(e2+e2(t)) - g(i2) (3.17)

Use1 (x, e2) as state variable, rewrite Eqs. (3.1) as

*f*e2> u,(«)> and £«(•) are defined in (3.3)
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i =f(g(i2) + x, i2+e2) (3.18a)

e2 =e[hg(e2) -h(g(i2) +x)]+ e5] . (3.18b)

Clearly, with u, (t) = 0 , (0 , 0 ) is the equilibrium point of (3.18).

Now Lemma 3.2 implies that, with u,(t) = 9m» 3 e* >° s*t- Ve e (°»£*]»

for all (x(0), e2(0)), as t-* °°, (x(t), e2(t)) "^ (©n» 0m) exponentially,

and since |x(t)-x(t)| = |g(i2+e2(t)) -g(i2)| lM|e2(t)|, we have that,

with u-,(t) = ©m, the equilibrium point (0 ,0 )of (3.18) is globally

uniformly exponentially stable. By (2.5), the RHS of (3.18) as a

function of (x, eL, u,) is globally Lipschitz continuous. A result of

Vidyasagar and Vannelli [Vid. 1, Cor. 1.1] states that if (x(0), e2(0))

= (0n, 0m), then Ve G (0,e*], for all u^-) e Cwith u^t) -+ 0m as t-» »,

the corresponding (x(t), e2(t)) -* (0n, ©m) as t •* «. Therefore, for the

system S(A, |- I), for every u^*) GCwith u-,(t) -»• u-, as t-* «, for

all+ u2(.) and dQ(-) satisfying (1.2), if (x(0), e2(0)) =(g(i2), i2),
(where i2 := (hg)"'^)), then the corresponding e.,(-)> e2(«)» x(-) and
y2(«) are bounded and e^t) •* ©m (i.e., y2(t) -*u1) as t-> «. since the

system S(M, j I) is time-invariant and is assumed to be reachable,

we have that for the system ]S{N> fI)> for all e€(0,e*], for all
(x(0), e2(0)) GlRn x]Rm, for all u^-), u2(0 and dQ(.) satisfying
(1.2), the corresponding e^.), e2(-)> x(«) and y2(.) are bounded and
e-j(t) -» 0m as t-* ~. n

IV. Asymptotic Tracking and Disturbance Rejection of ^S(M> -I+K)

In this section, we prove Theorem 2.1 based on Theorem 3.1 and the

"loop transformation" technique. We first prove that the assumptions

In the derivation, w.l.o.g., we assumed u0(t) = d (t) = 0
2X o m

ft
See section II.3.
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(N.1)-(N.6) are "invariant" under sufficient small positive semidefinite

feedback K (Lemma 4.1 below). The proof proceeds by examining the

relation between the (proportional plus integral control) system

S(A» j I+K) and the (integral control plus local constant output .
feedback) system S(Af ,| I), shown in Fig. 4.2 below.

For the given nonlinear plant^V described by (2.1) and satisfying

(N.1)-(N.6) apply a constant output feedback K as in Fig. 4.1, and call

the resulting closed-loop system M: it has input e2, state x, and

output y2; it is described by

x= f(x, e2-Kh(x)) =: f(x, e2) (4.1a)

y2 = h(x) (4.1b)

For any v G IRm, let s(«, t , x , v) be the solution of

x= f(x,v), t > 0 (4.2)

corresponding to the initial condition (x ,t ). The following lemma

shows that if K is positive semidefinite and if |K| is small enough ,

then the resulting nonlinear plant M preserves the qualitative properties

(N.l) to (N.6) of M. More precisely, we have

Lemma 4.1. Let A satisfy (N.1)-(N.6). If K is positive semidefinite

and if |K| is small enough, then M satisfies the following assumptions

(N.1)-(N.6):

(N.l) f,h GC1, f(0n, 0m) =0n, and h(0n) =0m ;

(N.2) Vv GlRm, f(?,v) =0n iff g(v) := gd+Khg)"1 (v) =?;
furthermore g := g(I+Khg) G C ;

(N.3) the map v^hg(v) is a bijection of lRm onto IRm;

-14-



(8.4) there exists M>0, s.t. VvQ e]Rm, V? e IRn,

10^(5, vQ)| <M ; |D2f(5, vQ)| <M

|Dh(C)| <M ; |Dg(v0)| <M

(N.5) there exists c>0, a>0s.t. Vv G IRm, vt >0, VxQ G ]Rn,

-a(t-t0)
|s(t, tQ, xQ, v) - g(v)| <c|xQ-g(v)| e ;

(N.6) there exists 3>0 s.t. Vv1, v2 G lRm,

[hgfy) -hg(v2)]T[v1 -v2] >3|v] -v2|2 .

Comment: hg is the dc steady-state I/O map of the nonlinear system^

shown in Fig. 4.1.

Proof of Lemma 4.1: See Appendix B.

An immediate consequence of Lemma 4.1 is the following.

Lemma 4.2: Given that the nonlinear plant M satisfies (N.1)-(N.6),

consider the system S(//, |- I) shown in Fig. 4.2, where M is defined in

Eqs. (4.1). U.t.c. if K is positive semidefinite and if |K| is small

enough, then ] e >0 such that for all eG (0,e], for all (x(0),e2(0))

GIRn xiRm, for all u^-). u2(«) and dQ(.) satisfying (1.2), the
corresponding 8-,(-)» e2(*)» x(«) and y2(«) (see Fig. 4.2) are bounded

and e, (t) -*• 0m as t •* ».
1 m

Proof: From Lemma 4.1, H satisfies (N.l)-(N.6). The proof can be

constructed using exactly the same techniques as those in the proof of

Theorem 3.1. n
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Consider the system ]S(M, fI+K), (see Fig. 2.1) with dQ(t) =0m,
t

m
+

and write the equations

x= f(x,e2) (4.5a)

e2 = u2+n +K(u1-h(x)) (4.5b)

n = e(Ul-h(x)) (4.5c)

y2 = h(x) (4.5d)

Let e2 := e2 +Kh(x), rewrite the equations (4.5) as

x=f(x, e2-Kh(x)) = f(x,e2) (4.6a)

u9 Ku-,
e2 =-eh(x) +e(u] +-f +~1L) (4.6b)

y2 = h(x) (4.6c)

Note that Eqs. (4.6) describe the system S(/V> j I) with reference

input u-j := u1 +- u2 +- K u-,, and disturbances u2(t) = dQ(t) =0 .

So, use Lemma 4.2, to obtain the following

Proof of Theorem 2.1: Since u,(«) and u2(«) satisfy (I.l), u\(*) GC

and u^t) •* u1 as t-> «. By Lemma 4.2, e^[*) := u^-) +(u2(«) +Ku1(-))/e

-y2(*)> e2(») = e2(») + Ky2(-)> x(*) and y2(«) are bounded and

e-j(t) -+ 0m as t->«. Therefore, for the system ]S(/f, |I+K),
e-|(#) = u-j(-) -y2(*)> e2(«)> x(«) and y2(«) are bounded. Since

"l ^ "*" em' ^2^ ~* em and ®1 ^ ~* em as *"* °°» and since

t rt
Recall that n := e e^t'Jdt'.

0 '
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ei =h -(u2 +K^)/e» ei(t) "*em as t

V. Concluding Remarks

In this paper, we study tracking and disturbance rejection of a

class of nonlinear time-invariant systems with proportional plus integral

(PI) compensator. The basic assumptions on the plant — exponential

stability and monotonicity of the dc steady-state input-output map —

are satisfied by typical chemical process (with appropriate choices

of inputs and outputs). We have shown that, for a large class of

nonlinear plants, a simple PI controller (which is commonly used in

process control) can be used to achieve closed-loop stability, asymptotic

tracking for inputs which tend to constant vector and asymptotic

disturbance rejection for disturbances which tend to constant vectors.
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Appendix A

Proof of Lemma 3.2

We first construct Lyapunov functions for the boundary-!ayer system

(3.10) and for the reduced system (3.12), then we show that if e > 0 is

small enough, then the sum of these two functions is a Lyapunov function

of the system (3.8). We proceed with the following lemma.

Lemma A.I: With <!>(•,•,•,•) and ij>(',«,«) defined in (3.10a) and (3.13),

3c^ >0such that Vt >0, Vz GIRn, Vw G JRm,

a-iT
1D34>(t,0,z,w) I< a,- e

i

D44>(t,0,z,w)| £ a1 e

a1
D3i|/(t,0,w) I£a, e

OUT

d-iT

Proof:

From (3.10), we have

c|>(t,0,z,w) = z + f(g(w)+(t>(T,,0,z,w), g(w)) dT*

Hence

(A.l)

(A.2)

(A.3)

(A.4)

D3(t,0,z,w) = 1+ D^gM+^T'.O.z.w), g(w)) •D3(j>(t',0,z,w) dT'

(A.5)

By taking norms on both sides of (A.5) and using (2.5) we obtain,

fT
|D-(t,0,z,w)| < 1 + M.|D.(t',0,z,w)| dT
J Jn °

n ^ mmHence, V (t,z,w) g 1R+ x IR" x ]Rm,

MtD-(t,0,z,w)| < e

Ineq. (A.2) and (A.3) can be similarly established.

-18-

(A.6)

(A.7)



Let y be a positive integer and y >_ max(
a-.+2a a-i+23

), where

a.j, a, 3 are defined in Lemma A.l, (2.6), and (2.7) respectively.

Following [Bar. 1], let

U(w) :=
0

|i|;(t,0,w)|2y dT .

Lemma A.2 below summarizes the properties of U(-).

(A.8)

mLemma A.2: The function U: IR -* E+ defined in (A.8) satisfies the

following properties:

(a) Vw€]Rm, X |w|2Y >U(w) >±&l2y

2y3 2M2 4Y

(b) U/3 -j2)(w), the derivative of Ualong the trajectory of (3.12)

satisfies

U(3 12)(w) =-|w|2y, Vwe ir

(c) 3«2 >0, s.t. Vw GIR01,

|DU(w) | <a2\vi\2y']

m

(A.9)

(A.10)

(A.11)

Proof:

U(w) =f WT'.O.wJI^dT1 <f |w|2y e-2a8T'dT' =t±t |w|2y (A.12)
Jq Jo ^YP

Since by (3.12) i|;(t,0,w) =w+ [hg(i2) - hg(i2+ip(T',0,w))] dT', we
0

obtain using (2.5) and (3.14)

|i|/(t,0,w)| > |w| - max |D(hg)(n) | • |i|/(t' ,0,w) |dT'
J0 n

>|w| -f M2|^(T,,0,w)|dT' >|w| -f M2|w|dT
JO Jo

1
Therefore, for 0 < t <

— 2 '
2M^
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Wt.o.w)! >ty-

Consequently,

2M
w
2Y

U(w) > Wt'.O.wJI^dT' >—
0 2N2M2 4Y

Assertion (a) follows from (A.12) and (A.13).

Taking limits as At V< 0, we obtain successively

U(3.12)M = l1m[U(*(At,0,w))-U(w)]/At

= lim[

(A.13)

,co

|*(T,0,*(At,0,w))|2YdT - |*(t,0,w)|2ydT]/At
0 h

rCO o f00 0
|<HT+At,0,w)rYdT - |i|>(T,0,w)rYdT]/At

0 JO
At

= lim[

= lim[-
0

= - |W.

since ^(0,0,w) = w. This proves (b).

From (A.8),

DU(w) =f y|^(t,0,w)|2(y"1).2^(t,0,w)T.D^(t,0,w) dT
JO J

Therefore, by (3.14) and (A.3),

|DU(w)| <fO°2Y|w|2(Y"1)e"2(Y'1)3T.|w|e"BT.|D^(T,0,w)|dT

2Y

|iMT,0,w)|2YdT]/At

<f2Y|w|2Y-1.e-(2Y-1)^.a1eaiTdT
Jn '0

23+a-,
Since y > oQ » the integral in (A.15) is finite and

23

2yoilDU(w)|l(2Y.l)1B.ai H2^-1 -: a2|wl2^ .

-20-
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Similarly referring to (3.10a) and (3.11), we define V : IRn * IRm

-* IR+ by

f00 o
V(z,w) := |(|)(T,0,z,w)rYdT (A.16)

J0

The following lemma can be proved using the same techniques as in the

proof of Lemma A.2.

Lemma A.3: The function V:IRn xiRm -+ ir+ defined by (A.16) satisfies

the following conditions:

(a) V(w)6KnxF»,^|2|2r>y(z>1()>jjjJ^ (A.17)
where M > 0, a > 0 and c > 0 are given in (2.5) and (2.5);

(b) v(3 to)* tne den'vatl've of v along the trajectory of (3.10) satisfies
that V (z,w) GlRn x ir"1,

^(3.10)(z'w) ="lzl2y (A-18)

(c) 3 a3 >0 such that V (z,w) e ]Rn x lRm,

iD^tz.w)! <o^lzl^"1 (A.19)

|D2V(z,w)| ia3|z|2Y_1 (A.20)

Now consider the function L:IRn x]Rm -> IR+ defined by

L(z,w) = V(z,w) + U(w) (A.21)

The derivative of L along the trajectory of (3.8) is given by
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L(3j8)(z,w) =D1V(z,w) ]-{f(g(e2+w)+z,e2+w )-eDg(i2+w)

•[hg(e2)-h(g(i2+w)+z)]}

+ [D2V(z,w) +DU(w)][hg(e2) -h(g(i2+w) +z)] (A.22)

By adding and substracting DU(w)[hg(e2) -hg(i2+w)] to (A.22), and by

using (A.10), (A.18), (2.5c) and (2.5d), we have

43.8)(z'w) ="e|z|2Y-V(z,w) Dg(e2+w) [hg(i2) -h(g(i2+w) +z)]

+ D2V(z,w)[hg(i2) -h(g(i2+w) +z)]

+ DU(w)[hg(i2) -hg(e2+w) +hg(e2) -h(g(i2+w)+z)

- hg(e2)+hg(i2+w)]

<-1|z|2y +|D-,V(z,w)|-M-M(|z|+M|w|)

+|D2V(z,w)|-M«(|z|+M|w|) - |w|2y+|DU(w)|*M |z| (A.23)

Using (A.11), (A.19) and (A.20) in (A.23), we have

43.8)(z'w) ="7 Iz!2Y +ot3M2|z|2Y +a3M3|zi2Y"1 |w| +a3M |z|2^ +̂M2 |z 12^_1 |w

- M^+c^Mlwl^lzl .

Hence for some constant 3,, 3«, 33 > 0,

L(3.8)U.w) <(b1-^IzI2y +B2I2IZy"1H+b3|2||w|Zy"1-|''IZy

-[(BTiJIzl^+Bglzl^H+B^zlH^-Jlwl^]

-i|z|2Y-l|„|2Y (A.24)

-22-



Now, there exists+ e* >0 s.t. for all e e (0,e*], for all
(z,w) e ir" x ]Rmf

(31-^)|z|2y +32|z|2y"1|w|+33|z||w|2y-1-1|w|2y<0 (A.25)

Consequently, for all e € (0,e*],

We have shown that (i) for some constant a,, a2 >0,

ai(|z|2Y+|w|2Y) <L(z,w) <a2(|z|2Y+|w|2Y) (A.27)

and (ii) 3 1 > e* > 0 s:.t. for all e e (0,e*]

l(3Vz*w)-"?(|z|2y +|w|2Y) (a-28)

i-^L^w) (A.29)

Let (<£(•, tQ, z,w), $(•, tQ, z,w)) be the solution of (3.8) corresponding
to the initial condition (z(tQ), w(tQ)) = (z0,wQ). By using (A.27) and

(A.29) we obtain that Ve € (0,e*],

I^VV^^I^W^I <2-(a2/a1)1/2Y(|w0|+|zo|)exp[-(t-t0)/(4a2Y)]

This shows that Ve € (0,e*], the equilibrium point (6 ,6 ) of (3.8) is
n m

globally uniformly exp. stable.

Let y := ~- , the left hand side of (A.25) can be written as

(61 ~2F+32y+63y2Y~1 -ry2Y)lzl2Y and the polynomial 32y +33y2Y"1
1 2y- 2" y ' has a global maximum in 1R+.
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Appendix B

Proof of Lemma 4.1

1 1
(i) From (4.1a), the function fee as the composition of two C

functions. Also f(6ni6m) =f(6n» em-Kh(0n^ =V Thus ^.1) 1s
satisfied.

(ii) Claim: If |K| < 1/M2, then M satisfies (N.2) and (N.3).

From (2.5), we have Vv eIRm, |hg(v)| =|hg(v) -hg(em)| <M2|v|2
and hence |(I+Khg)(v)| > |v| - |K| M2|v| = (1-|K|M2)|v|. Since

|K|«M2 < 1, (I+Khg) is a proper C1 function. Now by (2.5), Vv e TRm9

|[I+D(Khg) (v)]| > (1-|K|M2) , (B.l)

hence the matrix I+D(Khg)(v) is nonsingular, Vv € IRm. By the global

inverse function theorem [Pal. 1, Wu. 1], the map (I+Khg)" is a C

bijection of ]Rm onto IRm. Finally, by (N.3), and since h, g e C ,

the map v-* hg(v) = hg(I +Khg)-1(v) is aC1 bijection of IRm onto IRm.

Thus (N.3) is established.

Consider

f(£,v) = f(£,v-Kh(£)) = en , (B.2)

g : lRm •* ]Rn defined in (N.2) is a C1 injection by (N.2) and (N.3),

hence (B.2) holds if and only if

C=g(v-KhU)) o g-1(c) =v-Kh(c) =: v]

o v-Khg(v1) =v1 o (I+Khg)_1(v) =v]

«> C=gd+Khg)"1^) =g(v) . (B.3)
A continuous map is said to be proper iff the inverse image of every

compact set is compact.
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Note that g is a C map.

(iii) Claim: If |K| < 1/M2, then N satisfies (N.4).

Since |K| < 1/M2, by (11), (I+Khg)"1 is well-defined. Now

V(v-j,Vq,S) e lRm xlRm xlRn, we obtain using standard differential

calculus [Die. 1, pp. 148-154]:

|D1f(C.v0)| = ^f^^-Kh^)) + D2f(£,v0-Kh(0) •(-KDh(C))|

< iD^U.v^KhtOJI + |D2f(C.v0-Kh(C))||KDh(5)|

<M+M2.|K| by (2.5a-c)

|D2f(5,v0)| = |D2f(5,v0-Kh(C))-l| <M by (2.5b)

We have shown in (ii) that, with <j>(0 := (I+Khg)(«)» Vv e lRm,

1- |K|M2 < |D4>(v)|<1+ |K|M2 (B.4)

hence

Vv e ir"1, iDcf'OKv))! <1/(1-|K|M2) (B.5)

i.e.,

Vw e IRm, iDcfV)! <1/(1-|K|M2) , (B.6)

since <f> is a bijection of lRm onto IRm. Consequently, Vv <= ir"1,

|Dg(v)| =|D(go(|,-1)(v)| <|Dg(({,"1(v))|.|D(0"1(v)| <M/(1-|K|M2) (B.7)

(iv) Claim: If |K[ is small enough, then M satisfies (N.5).

Consider the system (4.2) with ve IRm, let v, := (I+Khg)-1v.

Define x:= x- g{v}) =x-g(I +Khg)~1(v), and write Eq. (4.2) as
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x = f{g{v}) +x, v-Kh(g(v1)+x))

= f[g(v1) +x, (I+Khg)Vl -Kh(g(Vl)+x)]

x = f{g{v^)+x9 v}) +&f{x9v}) (B.8)

where Af(x,Vl) := f[g(v.,)+x, (I+Khg)v] -Khfgtvj)+X)] - f(g(v7) +x,v})
By (2.5c),

|Af(x,Vl)| <M|K[ |hg(Vl) -h(g(v-,) +x)|

<M2|K||x| . (B.9)

We know by (N.5) that Vv] <= IRm the equilibrium point x =e of the
system

X= f(g(v1) +x, Vl) (B.10)

is globally uniformly exp. stable uniform in the constant input v,,

i.e., 3c>0, a>0s.t. Vx(0) <= IRn, Vv] e IRm, Vt >0

|x(t)| < c|x(0)| e"at

By a converse stability theorem [Hah. 1, p. 273], 3 Lyapunov function

V: IRn •* IR+ satisfying

1) 3y2>Y1>0 s.t. Vx e IRn, Y] |x|2 <V(x) <y2|x|2 ; (B.lla)

2) V.10)(X) -" \ l^l2 ' Vxe]Rn; (B.llb)

3) =| A >0 s.t. Vx G IRn , |DV(x)| < A|x| . (B.llc)

Now for the system (B.8), use the same Lyapunov function v, then
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V.8)(X) = fDV(x)][f(g(v-,)+x, V]) + Af(x, V])]

<-1|x|2 +|DV(x)| •|Af(x, Vl)| by (B.llb)

<-1 |x|2 +X•|K|-M2|x|2 by (B.9) and (B.llc)

- CX-|K| -M2-l)|x|2

So if |K| < «, then V/R Q\(x) < - c, Ixl for some c, > 0.

Consequently, if |K| < « , the equilibrium point x = 6 of (4.2) is
2AM^ _ n

globally uniformly exp. stable [Kra. 1, p. 60], thus Af satisfies (N.5).

(v) Claim: If K is positive semidefinite and |K| <-U then
M^

33>0s.t. Vv, vQ e IRm, vTD(hg)(vQ)v >3|v|2.
Let A(v-,) := D(hg)(v]), then for v] := (I+Khg)_1vo,

D(hg)(vQ) =A(v1)(I+KA(v1))"1 =(A^)"1 +K)"1. (B.12)

Also hg :IRm -* IRm is a C1 bijection which by (2.7) and (2.5) satisfies

Vv1 e IRm,

M2 >|D(hg)(Vl)| =|A(v1)| >3>0 and a[A(v])]>3 (B.13)

Let v3 := A(v])"1v ,then

vTA(v1)"1v =v^ A(v1)Tv3 =v] A(v1)v3 >3|v3|2 (B.14)

-1... . r./ x-1

2

Now |v3| = |A(v1)"lv| >a[A(Vl)"'] •|v|

= |v|-l/5[A(v1)] > |v|/IT by (2.5)

So vT A(v1)"1v >(3/M4)|v|2 (B.15)

mThen Vv, vQ e IR'" with v, defined above,
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vTD(hg)(vQ)v =vT(A(v1)"1 +K^v by (B.12)

=v2(A(v1)"1 +K)Tv£ with v2 := (A(v1)"1 +K)-1v
T -1_> v2 A(v-j) v2 since K is positive semidefine

>(6/M4)|v2|2 by (B.15)

>TT (-TT-irHvl2 "—^T Ivl2 by (B.13)
^ 3 +M (M2+3)
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Figure Captions

Fig. 2.1. The system ^sQl, |I+K), where Mis described by (2.1)
Fig. 4.1. The nonlinear plant J\f .

Fig. 4.2. The system ]S(N,| I).
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