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ABSTRACT

Vepe

In this paper we study multi-input multi-outzut (3I.0) iincar
time-invariant (LTI) control systems. We show that some

known constraints on the performance of SISO linear control sys-
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tems, e.g. those expressed by the Paley-Wiener thecrzm, Eo
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Integral theorem, and more recently, Zames' Inequality, can b
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given a unified treatment using scme elementary progperiies o
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subharmonic functions. Most importantly, results derived in
framework of subharmonic functions apply immediately to the
MIMO case. Indeed the proofs of the MIMO generalizaticns ars 22tzn

simpler than the original proofs of the SISO versicons.

1. Introduction

Bode! was perhaps the first to study a priori constraints on ths perfor-
mance of single-input single-output (SISO) linear time invariant fsedback sys-
tems, in the context of feedback amplifiers; Eorowitz? later intarpretad Bode's
work for control systems. In fact the classic Paley-Wiener theorem?3 can also be
interpreted as expressing an a priori constraint on the performeance of control
systems. Recently this topic of deriving constraints on centrel system perfor-
mance, based on just a little qualitative knowledge of the plant and ccaliroller
(e.g. closed loop stability and the existence of a plant C, zero) has raceived
much attention, for example in Zames# 5 and Freudenberg and Looze.6

The constraints arise from the requirement that the closed-lcop system be

stable, that is, that certain transfer functions be analytic and bcunded in the

right half-plane. The results mentioned above are all proved using the theory of
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analytic functions and as a result their multiple-input multiple-ouiput {1{IMO)

analogs either do not exist or involve complicated proofs when they do.

One approach to extend these ideas to multiple-input miltiple-output
(MIMO) control systems focuses on the eigenvalues of the varicus transier func-
tion matrices: the eigenvalues are viewed as one algebraic function delnsd cna
Reimann surface.? Unfortunately, the eigenvalues can be a poor msasure of the
"size" of a MIMO operator (e.g. a disturbance to output map) or ths "tightrnsss”
of a feedback loop.” Matrix norms, for example the largest singular value, are
good indicators of the size (resp., minimum singular values for the "tighinsss" of
a feedback loop), but, to quote Looze znd Freudenberg[8]: "In contrzst to the

gain of a scalar transfer function, a singular value is not in general the magni-

theory which led to the Bode gain-phase relations.”

While the maximum singular value of a stable transfer functicn matrix is
not the real part of an analytic function (such functions are called hzrmusnic),
we will see that it is subharmonic, and that subharmonic functions hzis the pro-
perties needed to derive the constraints (or generalizations) abcve. The pur-
pose of our paper is to show that using some elementary progertiss of s:bhar-
extended to the MIMO case. The prcofs based on subharmonic furcticns ot only
apply to MIMO systems, but are often simpler than the proofs of the SIS0 ver-
sions.

The mathematics presented here (theorems 2.1 and 2.2) is nof, to our
knowledge, in the Mathematics literature.

2. Subharmonic Functions

2.1. Notation and Definition
Cy will denote the open right half plane {s |[Res >0} and Cy its closur
fs|[Res=0]. H" will denote as usual the set of functions k(s) aralyiic and

bounded in C,, with boundary values defined via

[(]

h(jw) = Li_z:gh(a*.—jm) (2.1)

(The limit in (2.1) can be shown to exist for almost all @ € R: see e.g. Rudin[9]).

(H™)™** will. denote the set of mxn matrices with elements in H®. If Aisan

mXn complex matrix, then ||4|| will denote any induced norm, for exzmgle the
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maximum singular value 0=.(4) 2 VAox(474).

We will be considering functions on C, such as f(s)=log!(s—-1)/(s+1)|
which may take on the value —=, that is, functions f:C, +[~e=,=). Such a func-
tion is said to be continuous if the (real valued) function expf is.}

Definition: f:C;-[—=,=) is subharmonic if and oaly if it is continucus and

whenever Rea>r>0

2n
f(a)= 1—ff (z+1e*?)dyd (2.2)
2T
Note that the continuity of f implies that the integrand in (2.2) is boundad

above, and thus the integral in (2.2) is always well éefined (but may te —==).

Note also that the constant —= is subharmonic. Finally, if equality elwajs holds

=J

in (2.2), then f is harmonic.

We will be concerned with subharmonic functions which have a £z addi-

tional properties. For notational convenience we define the class SH:
Definition: f:C, »[—,«) £ SHif and only if

[1] f is subharmonic,

[1] s is bounded above, and

[(11] linalf (c+jw) exists and equals f(jo) for almost all € R.
[ Aad

2.2. SH Functions in Control Theory

Classic examples of functions in SH are lh{s)| and loglh(s )|, where h{s) = H™.

Some important SH functions in Control Theory are given in:

Theorem 2.1: Suppose H(s) € (H")™**. If ||-|| is any induced norm, then
lHZ(s)l €SH  logiH(s)l = SH
Theorem 2.2: Suppose H(s)<(H*)***. Then
p(H(s)) €SH  logp(H(s)) €SH
where p(A) denotes the spectral radius of 4,

K(H(s)) € SH  logu(H(s)) € SH

where u is Doyle's structured singular value[10]. If in addition H(s)~! € (H")**?,

t This agrees with the standard notion of continmuity when, as usual, a asis for the neightor-
hocds of —= are [—w,-n), n=1....
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then
cond(H(s)) € SH logeend(H(s)) € SH
where cond A=||4]j||4™Y}| is the condition number of 4

-y

Theorems 2.1 and 2.2 are proved in the aprendix. We will not uss the fact
that Doyle's structured singular value and the condition numbter are SH in the

sequel.

2.3. Important Properties of SH Functions: FIMO Paley-Tlenar Tiazora:
In the sequel we will use only two propertiss of SH functions, the Jazimum
Principle and the Poisson neguality.
Maximum Principle: If f € SH then
sepf G0) = gup/ () (2:3)
Technically, the sup on the left hand side of (2.3) is an essentizl sup. Ths preof
can be found in Rudin[9 p.231] or Conway[11 p.284].

Remark: The Maximum Prmc1ple neesd not hold if f is net toundsd zZove, for

satisfies [I] and [III] of SH but not [II]. ‘\'ot-= also that the maximum principls

e i
still holds even if f is not bounded below, e.g. f(s)=log!(s—1)/{s+1); which i
in SH

1]

Poisson Inequality: Suppose f €SH and is not identically —=. Than for 3> 0,

1 . gl : oef ()
L 200 e e we —UE o 2.4
" Irge) Go*+(w—wg)? < Y PTG (a—w)? (22)
and
L[ 7 Ge) e £ (oot w0) (2.5)
ool +(w—wg)? 7% -
Remark: Equation (2.5) should be comparsd to the Psisson Formula, valid
for a bounded harmonic function f (s): for 6g>0,
godw
LG —2 = f(otiz (2.6)

oo +(w—2

SISO arguments which use (2.6) (perhaps implicitly, e.g. via the Bsde gain-phase

relations) can be extended to analogous MIMO arguments simply by using the

Poisson Inequality in place of the Poisson Formula. In this way SISO rasul

[l

n
g

o
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through nearly unchanged for the MIMO case, with the conclusion changed into
the appropriate inegqualify.

Proof of Poisson Inequality:

Define f,(jo) 2max{f (jw),—n]. Eence v~ f,(j=) is bounded on R. For z>0
define

fn(z '*'.Ty) _ffn(] )_g:i‘z—— (2-7)

(Note that the integrand in (2.7) is L!). f,:C, > R is a bounded Aarmoniz func-
tion which satisfies property [11I] of SH, so f = f, €SH Since f(fu)—f.{jz)=<?
for all w€ R, we conclude from the Maximum Principle that f{(s)~f.{s}=0 for
alls €C,. Thus for all n,

_ffn(J )ﬁ'—f(ao"'.‘l ) (2.8)

We now establish (2.4). If we can establish (2.4) for any particuler 5o=x >0
and wg=Y €R then it is true for all 64> 0 and wg€ R, since for =sach such gg 22d
o thereisa K <e suchthatforall weX

] x
<K
oo+ (w—2g)? z2+(w—y)?

and hence
JirGen—=222 <k [ir o222
et e S PEnL

Since f is not identically —=, find >0 and y €® such that f{z+jy)# —=.
Since f €SH it is bounded above, we can find an # <= such that f(s)=/ for all
s €C,. Then ‘

ES

. xdw
falj o) ————m-= 7 2.2
f"(j/c:;zol " )Izz"'(i’"‘y)z (2:9)

Now for each n we have:

SiraGe) e

z?+{w-y)?

zdow zdw
: G[Mu*nu o) - [ 1) 22 "

=2ri - nf(z+jy)

Thime 11 1084



-8-
by (2.8) and (2.9). Thus by the mcnotone convergence theorem [9p.22]

. .’.’.'d&) —']’ —I-l- -~ A s
S G0 = 2t s (2 440) <

and (2.4) is established

From (2.4), (2.8), and the dominated convergence thecrem [9p.27] we con-
clude

L7 G0) o2 s £ (ogtion

2_*,(0_’
which is (2.5). [l

(2.4) implies that w- f(w) is lceally L', which is not obvious at &ll, For
example, f(s)=logis(s+1)7! has a singularity at ==0, nevertheless is still
locally L!. Indeed (2.4) has the corollary:

MIMO Paley-Wiener Theorem:
Suppose H(s) € (H*)™*" and is not identically zero. Then

flloa”[-’( .,)” 5 <o
1+2°?

This is the simplest proof of the Paley-Wiener theorem that we know of (22
e.g. Desoer [12]).

3. Applications: MIMO Fecdback Systems

3.1. Set-up and Notation

We will refer to the system 'S(P,C) shown in Figure 1. In order to include
distributed and unstoble plant P(s) and compensator C(s), we assume that
P(s) (respectively, C(s)) is an nxm (resp., mxn) matrix of transfer functions
in the algebra B, with n <m (see [13, 14]). |

B is defined as follows: A is the subalgebra of H™ consisting of Laplace
transforms of distributions of the form

F(E) = Falt) + T Feb(tt)

where fo(t) =0 for £ <0, £; =0, f, €L}, and {f;} 1'. A" is the multiplicative sub-
set consisting of those elements in A which are bounded away from zero at s ==
in C;. Finally, Bis the algebra of quotients A(A”)~!, that is, elements of B have

June 11, 1984
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the form n/d with n €A and d €A™ (see e.g. [15,p.68]). The r=zzdsr unfzmiliar
with these concepts can simply think of P and C as rzticnal.

An element of Bis stable if it is in A, i.e. if it has a regreszntztion with 4 = 1.

We say an element h of Bis strictly proper if hmh(a) O0in Cy.

We make two assumptions about !5(P,C):
Assumption 1: The plant P(s) is strictly proper.
Assumption 2: !5 (P,C) is closed-loop stable, that is,

[ (r+pPC)y -p(r+cP) ]

Ha=|c(rrpcyt (r+cpyt | BT (@.1)

where Hen:(u,uz) -2 (2;,e2). This is precisely the condition that the transfs

function from any input to any output have all its elements in A (and hexce HT).

P and C have left and right A-coprime factorizations [13]:
P = N, D' = D',
C= DcIlNcl = Nchc;l

with the N's and D's having elements in A and the D’'s having delerminants in

A”, e.g. detD,, €A™, The C, poles of P and C are precisely the C, zeros cf detl_.

=
and detl,,;, respectively.

We will say that P(s) has a zero at sq€C, if Ap(s¢) is less than full rank,
that is, if there is a nonzero ¢ € C" such that ¢ "Ng-(s¢) =0. This agrees with the
standard notion of a zero for rational P, defined via the Smith-Maclilian form
[16]. Note that P may also have a pole at s¢. We define the left nullspace assc-
ciated with the zero at s¢ by

Nigro & Nullspace(Npr(sq))

N.¢ro does not depend on the coprime factorization used. If P does not have a
pole at sq, then P is analytic at sg and we can find N_. without refereace to
coprime factorizations: N g = Nullspace(P(sq) ).+

Similarly if pg is a pole of P, we define its asscciated right nullspzce No.,
by
t An example where N, # Nullszace(P(sy)”) is:

-2 0
Fer= <—1>f 1 (s-zrt]

For this plant there is 1o nonzero A€ €2 such that A"P(s) isens_y-ic end zero at s =2,

Tiine 11 1QRA

(@]

o)

B

C



.

Nooie A Nullspace(l,; (o))

Noois is independent of the coprime [actorization used, and i the pcle is simple,

then Np, is also given by
Npoie = Range/{Residue, P)

Npoie can be interpreted as those directions along which the {scpzz-izs2) plant
blows up at py.

We will focus our attention on constraints impesad on the Zisiuriznce-fo-
output map Hyy=( +PC)™}, which also happens to be the inzul-Iz-irzcking-
erTor map u »u—Yy =e;. By either interpretation it is something whkickh, roughly
speaking, we would like “small” over the bandwidth cf cur system. e il refer
to —logllHya(jw)ll as the disturbance-rejection (in nepers, at v rzd,//szc). Of
course other control configurations or transfer functions can k=2 considzrad.

In the sequel we will use only a few properties of !S(P,C). Two very irmpor-
tant ones relate to A 4:

Fact: Suppose P has a zero at s¢g= C, and a pole at pg€ C,, with azsccialzd leit
(right) nullspace Nigry (Npoe). Then

(1) If ANENzory then A Hyg(sg) =A°. In perticular, |Hy(se)i>1.

(2) If <€ Nggpe then Hyg(pc)u=0.

The proof in is §A2.

Interpretation of (1): At s =s¢, the component of the disturtancs which lies
in N;¢r appears unaffected in the output.

Interpretation of (2): At s =pg, we have perfect tracking zlcn;
tions in which the plant has infinite gain.

We have already seen one constraint on Hyg: by Assumption 1, PC is not
identically -/, so Hy4 cannot be identically zero, hence the Palsy-Wiener
theorem yields

f IlogilHya(g'w)'lL‘, <= (3.2)

1+w

This constraint is well known in the SISO case. One conseguence is, wez cennot

-

have perfect tracking or infinite disturbance rejection (H,;(j=)=0) over any
band of fregquencies.

(
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3.2. Bode's Integral

In (3.2), the Paley-Wiener theorem expresses a fundamental constrzint on
the achievable disturbance rejection. If the plant and compensator are strictly
proper, as is usually the case, the conclusion c2n be strengthened considsrably.
For SISO systems with stable rational P and C with P(s)C(s)=0(s?), Bzde
proved [1,2]:

JioglHa(j0)dn =0 (3.3)

Thus the area under the disturbance-rejsction curve (in db-rad,s=z2), is
zero. In particular, positive closed-loop disturbance-rejecticn (i.=.
loglHys(j)| <0) in band implies disturbance cmplification (log!Hy(j»)i>0) =t

some frequencies out of band.

flog,Hyd (juw)dw =27 {j Repy (3.4)

k=1
where {p;. ... .px} are the C, poles of PC (In fact (3.4) holds when th=rs zre
infinitely many C, poles). Thus unstable P or C can only increase the intzzral

(3.3): if PC = 0(s~?) then in general we have

flogIHyd jo)do=0
regardless of whether the plant or compensator are stable or not.

Using subharmonic functions we can prove:

MIMO Bode Theorem: Suppose PC = 0(s™2). Then
S10gllBya(Go)ide = 0 (3.5)

Proof: The hypothesis PC = 0(s?) implies /~H,q = O(s~?). By the triangle ins-
quality,

1=|l7 = Hygll < || Hyall = 1+ = Hyqll
so that

log||Hyall = O(s %) (3.8)

t This is just Jensen's formula for €, [8, 11].

June 11, 1984
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From the Poisson Inequality we know o -log!H.(j=) is lscally LY from
(3.8) we know log|{Hya(j )|l = O(27%), hence we conclude that

& » logllHya (jo)] € L} (3.7)

Now multiplying the Poisson inequality (2.5) by 0g>0 and evaiuating at

w0 =0 yields
1 " -
f]-OgllHyd(] )i lm Gelog! Huz{oo)li (3.8)
By (3.6), as 0g - the right-hand side of (3.4) converges o zero. By dominalzd
convergence and (3.7) the Ileft-hand side of (3.3) convergss ‘o

7 flogl\Hyq(j0)ide and (3.5) follows. [

This theorem is known,}j but we emphasize that this proof is almiost the
same as the proof of the SISO Bode thsorem given in [3], with the exzeption that

we have used Poisson’'s inequality (valid for subharmonic functions) as oppesad

to Poisson’s formula (valid just for harmsnic functions). We saculd gperhags
mention that (3.5) can be strengthened by replacing !!#, 4} with p(#.2).

Remark: For MIMO systems strict ineguality can cceur in (3.3) svzn when
the plant and compensator are stable (cf. SISO case (3.%)). F

wen 1
or 2XzIip.2 ToOn-

sider the plant P(s)=diag[(s+1)7%,(s+2)~?] with unity compensator C=/. Thsr

5]

floglIHyd(J w)lldw is the integral of the max of two functions, sach of which hz

(]

integral zero by the SISO Bode theorem. Since the graphs of the two funztions
cross each other, flogI!Hyd(jw)Egdw >0.

3.3. Zames’ Inequality [4, 5]
We now consider constraints due to plant C, zeros.

Zames' Inequality: Suppose w€H™ and P has a zero at s¢£C,. Then

su | Hya (4 w)w(F o)l = jw(so)l (3.9)

The interpretation is as follows: usually we have P(j2)C(Hz)»0as x> = (i.e.
PC is strictly proper), which implies that as -, [AF{(jo)ll-1. Hence
supl||Hyq(f »)|| o € R]=1, that is, the minimum (unwelchted) disturbance rejec-
tion is less than 0db. The H™ function w in (3.9) servss to weight the

disturbance-to-output map more highly in-band (where ;wl is large) than out-of-

ttJonn Doyle, rersonal comarunication,
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band (where || is small). Zames’ inequality telis us that the plant C, zzro puts
a lower bound on the achievable peak value of the w-weighted disturbance-to-
output map.

This was proved in Zames [4] for stable P and C and exteaded to unstable
SISO P and C in Zames and Francis [5].

Proof (using subharmonic functions): Under the hypotheses, {7, 4(s )

so invoking the maximum principle (2.3)

:'|
Eﬁ

21€1§||Hyd(j0)w(j ol = | Hyq (so)w(so)il = itHya(seiiiw(se)i= ={sc)l  (3.10)

since by Fact 1 of §3.1, [|[Hy4(so)l|= 1.1l
Remark 1: We need not start with a weighting function w(s) in H®. Inds2d it
is more natural to simply specify a positive weighting function % {») along the

jow-axis, for example

which weights the in-band disturbance rejection by @ >0 and the cut-of-tand dis-
turbance rejection by b >0. Using the concepts develeped, it is not hard
express Zames’ inequality directly in terms of the weight & ():

Zames' Inequality for jw -axis Weights: Suppose k() is a bounded positive func-
tion such that flloglc (0){(1+0?) 'dw <, and P has a zero at sg=05+7::5€Cs.
Then

. 1 . oedw
supllFy (G o)k ()] = exp 1= [ logk {2) — 2= (3.11)

If 0g=0 then SggllHyd(j w)k ()| = k(w).

The proof is in §A2.

This last theorem can be put in another interesting form. Sup;cse MEDHRE
a desired upper bound for ||[Hyq(jw)||. M(w) would typically be sma

guarantee a minimum disturbance rejection), and larger, but rot too lar

::
:3
tr
(4]
3
(L
~~
r
(o]

of band (to guarantee robustness).

Corollary: Suppose that P has a zero at 0g+j2g € Cy and #(w) is a bounded posi-
tive function such that

d
f log M (o) 2:(“03 57 <O (3.12)

June 11, 1984

(0 )]
(et ]



-12-

o

(this integral may be —e, but is always well defined).
Then there is no controller C such that the closed loop system '5{”,C) is stable
and ||Hyg(jw)l|= H(w) forallweR.

The proof is in §A2. These last two forms of Zames' insgusalily are r=lated to
the MIMO generalizations of the Freudenberg-Looze integral constrainis which
we will discuss in the next section.

Remark 2: Zames' inequality holds for matrix weightings, L.e. if W& {iF;™"*

and P has a zero at sg€ C,, then

sul|Hya (o) W(2)1 = (sl (3.13)
Note that matrix weightings do not induce symmetric seminorms {in Zamss'
sense). Also, the inequality is false if we put the matrix weighting on the leit

3.4. MIMO Zames-Francis Inequality

Just as the Bode integral increases when the plant or comigznszior zre
unstable (see equation (3.4)), Zames’ inequality may also be sharzenzd wizn the
plant or compensator are unstable. Suppose, for example, that zn SISC plant P2

bas a pole at pg€ C, and a zero at s;€Cy, and we H”. Then [5]

S

SU‘D”Hyd(]&))WO DS !sc +Po : v(so)] (3.14)
Thus if the plant or compensator is unstable, the lower bound (3.2)
increases (dramatically, if the pole pg and zero sg are close). If sither the pole
or zero are on the jw-axis, (3.14) is still true: it is simply Zames’ insquaiity then.
Using subharmonic functions, we can extend this result to the {30 czse.
In the MIMO case, the increase in the lower bound is not as simple as (3.14), that

is, division by the Blaschke factor formed with the plant C, pole: the increase

depends not only on the lacation of the zero and pole in the cor-'p'.av piane, but
also on their geametry, ie. their direction in space. Let us coasider tvc 2xam-
ples:
Example 1:
=
P(s) = s+1| g s+.9
s+1

If we apply Zames and Francis’ SISO bound to channel 1 of this plant we have

June 11, 1984
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sup Hya(j 2)w(j )i = 185(0.9)

In this case, the C, pole-zero near cancellaticn has greatly reduced tkhe achiev-
able performance. On the other hand consider

Ezample 2:
§+.Sz 0 |
= 1 -
P(S) T os+1 0 s—.9
s+1

For this plant it can be shown, using the SISO methods of Zames and Francis [3],

that for any £ >0 there is a controller which yields
supll Hyg (Fo)w(je)ll = iw(0.9)i + ¢

In this case the plant C; pole, even though clcse to the plant Cy z2ro, has nst
degraded the performance of the system as in exampgle 1.

The key is that the concept of pole-zero near cancellation for JIMO systems
involves the geomelry of the pole and zero.

To make this precise:
MIMO Zames-Francis Inequality: Suppose the plant P has a pcle at pg{,, with
associated nullspace Npye there, and a zero at s¢EC4, with zssociatad l=2fit

nullspace Nzgre. Then if ||* || = Omax(').

SUD“Hyd(J wyw(jo)l = COQ((.(N;,,_G Nzers)) II?%::'\"(: ] (3.13)

where cos(4Npge.Nzero)) denotes the cosine of the angle between ths spacss
Npoie and Nzgrp and is defined by

cos(4Nyos6 . Neers )) A max§juvi|e €Ny, v S8 S TH E I =1}

The proof is in §A2.

1t is readily verified that the cosine expression in (3.15) is one in example 1
above (indeed Npois = Nzgr, here) and zero in example 2 above (i.e. Npys 2nd Noer
are orthogonal). Thus the MIMO Zames-Francis Ineguality tells us nathing for
example 2, and, more generally, is weaker than than Zames' Inequality when the
angle between the spaces Nygq and Nygpy is larger than cos {(so—pc)(set2oli !

Remark: Although we have stated the MIMO Zames-Francis Inequality for
poles and zeros in the gpen right half-plane C,, it remains true if either the sols

or zero lies on the jw-axis, since in this case the conclusion (3.13) is wez"zr

June 11. 1984
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than that of Zames' Inequality (3.9).

3.5. MIMO Freudenberg-Looze Integral Constraints.

Freudenberg and Looze [6] recently applied Poisson’s formula to SiSO con-
trol systems to derive integral constraints similar to those appearing in Zames'
inequality for jw-axis weights. Using subharmonic functions, we can extend
their results to the MIMO case.

To take a simple example, suppose P and C are SISO and P(cg) =0, o
and log|Hyq (jw)|<—H for |w|=<wp (that is, we have at least #f nepers disturbance
rejection up to wgrad/sec). Then [6]

log Sgngyd(jw)laM%- (3.17)

where ¥ =2tan"(wg/ dq).
¥ can be interpreted as the total angle from the C, zero cg subisndsd by
the "bandwidth” {jo|iw|=<wp}. From (3.17), we see there is quite a p2zk in the

disturbance-to-output map Hy4 unless ¢p<<og.
We will now show that the same result holds for MIMO systems.

HIMO Freudenberg-Looze Constraint: Suppose that P has a zero at ;>0 and
log||Hyg (j w)l|< =M for |w|<wg. Then

, 3
e Y —— sl
log gténllfﬁ,d(]w)‘]_M ’ (3.18

We consider a real plant zero here for simplicity only; in fact the rssult
holds for any C, zero.

Proof: Once again the proof is nearly the same as SISO version, with thes Pcisson
Inequality used where the Poisson Formula is used in the SISO proof. From Fact
1 of §3.1, ||Hya(oo)l|= 1, so logllHyg(a'o)HzO. From the Poisson Inequality:

Lf log s () 25 2= Log e (el = 0 (3.19)

Using our hypothesis we also have

godw
L froglalGo) Sy (3.202)
“p
—Mf ood @ | f ogdw ' -
< + ! M= [ —— (3.20b
e loggggdHya(Jd)“"‘ch ot (3.20b)
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= -M%-&- logsup![Hyd(ja)ll(l—‘%) (2.202)

From (3.19) and (3.20) we conclude the expression in {3.22¢) is nonnegative, and
thus

: g
log supl||Hyq (F 0)l[= M —y

which establishes the MIMQO Freudenberg-Looze Inequality. i_|

weight

_ | expl lwi<ws
k(2) = | xR |ol>2p

so that sup||Hyq (F @)k (@)= 1. From (3.11) we have
1= supliHya (G o)k ()| = exp—(418 + 2(8-7))

so that R =M 9(r—8)7}, which is (3.18).

4. Conclusion

We have given generalizations of the Paley-Wiener theorsm, the Eode
integral, Zames' Inequality, the Zames'-Francis Insquzlity, =zn the
Freudenberg-Looze constraints, to distributed, unstable, multi-input mulli-
output systems. We wish to emphasize the simplicity of the msthed. S func-

1

M

log||Hyq(s)Il. and yet are restricted enough to still derive meaningful constraints,

)

tions are a wide enough class to include such useful functicns as ;| z(

e.g. via the Maximum Principle or Poisson Inequality.
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Al. Proofs of Theorems 2.1 and 2.2
We first list some elementary properties of subharmonic funziions:
Fact Al: Suppose {fa]a<A} is a family of subnarmonic funciions wiich is

bounded above. Then
F(s) 2supfals)
agA

is subharmonic.

Proof: f is clearly continuous. Now suppose Rea>r >0. Then fc

3
o
18]

e
$
m
]

en 2n
1 i .1 1 . IR ]
Sala) = E—T-T—[fa(ai-re”)dvs 27_[[ (g +ret®)cd

and consequently
27\'
(q,)::ugf (G.)S _— f("+ T2 55
which proves that f is subharmonic.{|

Fact A2: Suppose f, is a sequence of subharmonic functisns
formly on compact subsets of C,. Then f is subharmoniec.

)
3]
[O 5

- f uni-

Proof: Again, f is clearly continuous. If Rea >7 >0 then

2n
21rff (a+re*?)dd = hm— fa(a+ra®)dd = 11"1f,( )= f{a)

Fact A3: Suppose f is subharmonic and ¢:[~=,=) > [~=,=) is continuous, convex,
and non-decreasing. Then »(f (:)) is subharmonic.

Proof: Once again ¢(f (*)) is clearly continuous, and

2n 2
1 " . -
B [rp(f (a+re*®))di=¢ Eléﬁ—-.[f (2 +re*®)ds| = {7 (a))

where the first inequality is Jensen’s inequality [Sp.63] and the sscond follows
since f is subharmonic and ¢ is non-decreasing. U

The most important case of Fact A3 is y(z) =expz: if f is subharmonic then
expf is subharmenic, and hence if f € SH then expf €SH
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We can now prove theorems 2.1 and 2.2.
Theorem 2.1:
Suppose H(s)e{(H*)™"™ and suppose I|l is any induced norm. Then
log||H (s )l € SH and ||H(s)l| < SH.

Proof: In view of the remark after Fact A3, we need only prove that

log]|H(s)||€SH. Property [11] of SH is clear; property [IlI] follows irom {(2.1) and

the continuity of A»log!lAll. It remains to show that log!{H(s)|] is subkarmonic.
Continuity is clear. Let |||l be the norm used in C™ and !zt 'y b2 ik

norm dual to the norm used in C™*, so that

loglF(s)ii=  sup _logu’ H(s)v]| (a1.1)

u
lhallg<1, jvigs1
For any # € C™ and any v € C™ logju ‘H(s)v| is subharmonic, so by Fzact Al and
(A1.1), log||H (s)|| is subharmonic, establishing log!!H(s )|j< SH. |
Thus, for example, logC.c(H(s)) and o (H(s)) are in SH.

Theorem 2.2: Suppose A(s) €(H*)**". Then

p{H(s)) € SH logo(H(s)) € SH

p(H(s)) € SH  logu(H(s)) € SH
If in addition H(s)~! €(H”)™*", then

cond(H(s)) € SH logcond (H(s)) < SH

Proof: As in theorem 2.1 the only hard part is showing the log-sxpraszicns are
subharmonic. Suppose H(s) € (H")***. We first show logp(H(s)) is subharmonic.

Let ||-|| be any induced norm, e.g. 02y Then

lOg”i{S’n” - logp(H(s)) as n - = (.-\.12)

uniformly on compact subsets of C,. By theorem 2.1 each n~logi7(s)*]! is

subharmonie, so by Fact A2 and (A1.2) we conclude logp(H(s)) is subharmonic.

1f ;(A) denotes Doyle's structured singular value, then
logu(H(s)) = guplogp(UH (s))

where U is the structured unitary group (see Doyle [10]) and hence by Fact Al
and subharmonicity of logo( UH (s )), logu(H(s)) is subharmonic.

Finally suppose in addition H(s) le(@@)*n, Tken
logcond (H(s)) =log||H(s)|| + log!|H (s )™"||, and is subharmonic by thzorem 2.1. |
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A2. Proois of Theorems of §3
Fact: Suppose P has a zero at sg€ (' and a pole at pg€ C,, with asscciated left
(right) nullspace Nogr (Nzoie ). Then
(1) E NEN,gp then A Hyy(so) = A
(R) If 1€ Npose then Hyg(so)ue =0.
Proof: Direct calculaticn yields
Hyg =1 = N ATV (A2.1)
where
Ay 2 DoyDyp + Ny N,

It is shown in Callier and Descer [13] that the clcsed-ioop stability assumption 2
implies A{'€A™*™ 4+ If A€Ngm then A'NVp(sg)=0, hence from (A2.1)
A*Hyq(so) =A°, which establishes Fact (1). To prove Fact (2), we note that

where
Bz 2 Dy Doy + Ny N

and, as above, Ag' €A™*™, If 1€ Npye then Dy(pe)u=0, so from (12.2) wve con-
clude Hy(pc)u=0. rl

Zames' Inequality for jo -axis Weights: Suppcse & () is a boundsd positive func-

tion such that f[logk ()(1+®) 'dw <=, and P has a zaro at sg=c5+ o€ Ch.
Then

O’s’.i.‘.?

—_—— AR.3
0’02+(:)-Qc)2 ( )

, 1
suplHya(70)k ()] = exp L [ logk (4)
Remark: The hypothesis on k is precisely the condition that there exist aweH®
with k(w) =|w(jw)|. We will not directly use this fact.

Proof: We first extend logk(w) to a function A harmecnic in C.. Define h by
h(jw) Alogk (@) and for 0g>0,

O'cd.’a}

h(otion) & L[ logk ()

—_— 4
od+(w-wc)? (h2.4)

{In fact detd, is what is usuelly cailed the charecieristic functicn of ihe closed-lcoz system
1S(P,C), end the closed-loop stzbility assumption (Assumpzion (2)) is egqzivaient to
(detAy)teA
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The hypothesis on k ensures that the integral in (A2.4) makes sens=. It can be
directly verified that 2 € SH (indeed h is harmonic, i.e. —h €SH as well). Eence
logll Ay (s)ll + R(s) € SH
so by Fact A3 of §A1,
lHya(s lexph(s) € SH
By the Poisson Inequality,

supll Hya (7 2)k (2)1| = [l Hya(so)llexph (so)

1 j‘ ogdw
> - f —
exp logk (w) T p——:
since ||Hyq(so)l[=1 by Fact (1) of £3.1. l

Corollary: Suppose that P has a zero at g¢ +jwg€ Cy and M(w) is a bound=d posi-

tive function such that

flog.-',{(w) m( 0 (A2.3)

Then there is no controller C such that the closed loop system '5(P,C) is stable
and ||Hya(jw)ll= M (0) for all wER.

Proof: By contradiction. Suppose there is such a controller. Then

1 f . ocdw 1 f oodw .
= { log||A, ! < logM(w) —————-<0 (a2
P Og” Jd(] O)I. 0,02_*_(9_00)2 og ( ) 2+(0_d0)2 \ O)
Since P has a'zero at sg=0g+jwe s C,, we have as above
0 = logllZy(solil < ! _ Gode A2.7
OU|I iyd S(J)Il = = ]-Ongyd(J )” 24‘(0—00)2 (- .7)

which contradicts (A2.6), establishing the Corollary. [

MIMO Zames-Francis Inequality: Suppose P has a pole at pg€ C, and a zsro at
So€ C,, with associated left (right) nullspace Ngse (Njero ). respectively. Then if

1= omex("),

SotPo

398/1Ha ()W &) = cos(ANoots Noars)) | SEELw(so)]  (42.8)

where cos(4{Ngote,Nzarg )) is defined in (3.16) of §3.3.
Proof:

June 11, 1984
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Let (poe be a matrix whose columns are an orthcnormal basis for M;;,. By Fact
(1) of §3.1, Hyq(po) Upete =0. Since Hyq is analytic at po, we hav
- S+pg vv2in M,
;.I,TLIW(S)UP"“ € H‘r T pale (AE.Q)

Now since [|Upgell= 1 (recall ||| = 0max() herel),
supl| Hya (Fo)wljo)li = sup)lFy (G ) gye w(i )]

. + -_—
IR0 (59) Upaig (3 9) |

and using (A2.9) and the Poisson Inequality:

So+Po | se+pe |, ...
= || ——H,q(s0) Upora w(s = - wisg) iH.alse) mell (A2.10
So—Do yd( 0) 'pola ( 0) I~50-p0 || \ G)... ,i( C) ,s.e.l \ )
Now let U.p be a matrix whose columns form an orthoncrmal tzsis for

Noro. Then by Fact (2) of §3.1 we have Uspy “Hya(Sg) = Userp -+ Since [, (s,

"Hyd (SO) Upole ” = “U:am .Hyd (S c) U;ate !i = :: U::c.'v ' U;::!c l {-:'-2' 1 la)
= max {fu "v||u € Negry . U €N, T =l = 1 42.11b)
2 C°5(4Npola Niow)) (22.11c)

From (A2.10) and (A2.11) we conclude

supl|Hya ( )w(j o)l = cos(ANzoie Nzars ) § T80

which establishes the MIMO Zames-Francis Ineguality. |_'_|
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