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Subharmorric Functions and Performance Ecunds on

Linear Time-Invariant Feedback Systems *

Stephen Boyd and C. A Desoer **

ABSTRACT

In this paper we study rriulti-input multi-output (MIMO) Unsar

tvrne-invariant (LT1) control systems. We show that some ".veil

known constraints on the performance of SISO linear control sys

tems, e.g. those expressed by the Paley-Wiener theorem, Eods's

Integral theorem, and more recently, Zam.es' Inequality, can be

given a unified treatment using some elementary properties of

subharmonic functions. Most importantly, results derived in this

framework of subharmonic functions apply immediately to the

MIMO case. Indeed the proofs of the MIMO generalizations are often

simpler than the original proofs of the SISO versions.

1. Introduction

Bode1 was perhaps the first to study a priori constraints on the perfor

mance of single-input single-output (SISO) linear time invariant feedback sys

tems, in the context of feedback amplifiers; Horowitz2 later interpreted 3cde's

work for control systems. In fact the classic Paley-Wiener theorem3 can also be
interpreted as expressing an a priori constraint on the performance of control

systems. Recently this topic of deriving constraints on control system perfor

mance, based on just a little qualitative knowledge of the plant and controller

(e.g. closed loop stability and the existence of a plant C+ zero) has received

much attention, for example in Zam.es4,5 and Freudenberg and Looze.6

The constraints arise from the requirement that the closed-icop system be

stable, that is, that certain transfer functions be analytic and bounded in the

right half-plane. The results mentioned above are all proved using the theory of

•Research supported in part hy the National Science Foundation grant ECS 31-1 £-753. Sir.
Boyd gratefully acknowledges the support of the Fannie and John Hertz Foundation.
♦The authors are with the EECS department and Electronics Research Laboratory, Univ. of
Calif., Berkeley, CA 94720.
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analytic functions and as a result their multiple-input multiple-output (MIMO)
analogs either do not exist or involve complicated proofs when they do.

One approach to extend these ideas to multiple-input multiple-output

(MIMO) control systems focuses on the eigenvalues of the various transfer func

tion matrices: the eigenvalues are viewed as one algebraic function defined en a

Reimann surface.7 Unfortunately, the eigenvalues can be a poor measure of the

"size" of a MIMO operator (e.g. a disturbance to output map) or the "tightness"

of a feedback loop.7 Matrix norms, for example the largest singular value, are

good indicators of the size (resp., minimum singular values for the "tightness" of

a feedback loop), but, to quote Looze and Freudenberg[9]: "In contrast to the

gain of a scalar transfer function, a singular value is not in general the magni

tude of an analytic function, thus precluding the application of complex variable

theory which led to the Bode gain-phase relations."

While the maximum singular value of a stable transfer function matrix is

not the real part of an analytic function (such functions are called harmznic),

we will see that it is subharmonic, and that subharmonic functions have the pro

perties needed to derive the constraints (or generalizations) above. The pur

pose of our paper is to show that using some elementary properties o? subhar

monic functions, all of the results mentioned above can be easily and clearly

extended to the MIMO case. The proofs based on subharmonic functions not only

apply to MIMO systems, but are often simpler than the proofs of the SISO ver

sions.

The mathematics presented here (theorems 2.1 and 2.2) is not, to our

knowledge, in the Mathematics literature.

2. Subharmonic Functions

2.1. Notation and Definition

C+ will denote the open right half plane js|Res>0j and CV its closure

(s|Res=sOj. HT will denote as usual the set of functions h(s) analytic and

bounded in CV, with boundary values defined via

h(ja) = limh(a+jo) (2.1)
a-0

(The limit in (2.1) can be shown to exist for almost all cj£i?: see e.g. Rudin[9]).

(ET)m*n will denote the set of mxn matrices with elements in H". If .4 is an

mxn complex matrix, then ||i4|| will denote any induced norm, for example the

June 11, 19S4
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maximum singular value cr^^A) ^ VXnas(-^ *A).

We will be considering functions on C+ such as / (s) = logj(s —1)/ (s-Hl)|

which may take on the value —°°t that is, functions / :CV -»[—«, =°). Such a func

tion is said to be continuous if the (real valued) function exp/ is.f

Definition: f :C+-*[—<*,«>) [s subharmonic if and only if it is continuous and

whenever Rea>r>0

f(a) <±-ff(a-rre':*)d# (2.2)

Note that the continuity of / implies that the integrand in (2.2) is bounded

above, and thus the integral in (2.2) is ahvays well defined (but may be —**).

Note also that the constant -~ is subharmonic. Finally, if equality al-rays holds

in (2.2), then / is harmonic.

We will be concerned with subharmonic functions which have a fsv.- addi

tional properties. For notational convenience we define the class SH:

Definition: / :CV-»[-*,«)£ SH if and only if

[I] / is subharmonic,

[II] / is bounded above, and

[III] lim/ (cr+j'o) exists and eauals f(ju) for almost all u £ R.
a-*Q

2.2. SH Functions in Control Theory

Classic examples of functions in SH are \h(s)\ and logj/i(s)!, where h(s) £H*\

Some important SH functions in Control Theory are given in:

Theorem 2.1: Suppose H(s) £(H~)mXn. If || •|| is any induced norm, then

||#(s)||eSH iog!!^(s)||eSH

Theorem 2.2: Suppose H(s) £ (ET)nXn. Then

p(H(s)) £ SH logp(#(s)) e SH

where p(A) denotes the spectral radius of A

u(H(s)) € SH logfi(H(s)) £ SH

where a is Doyle's structured singular value [10]. If in addition H(s )~l £ (H")n*n,

t This agrees with the standard notion of continuity vrhen, as usual, a basis for the neighbor
hoods of -« are [-«*».-n), n=l....

Jimp 1 1 1PR4.
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then

cond(H(s)) £ SH iogcond(H(s)) £ SH

where condA= ||̂ 4Ji|[^4.""xJ| is the condition number of A

Theorems 2.1 and 2.2 are proved in the appendix. We will not use the fact

that Doyle's structured singular value and the condition number are SH in the

sequel.

2.3. Important Properties of SH Functions: fcllttO Paley-TTlanar Theorem

In the sequel we will use only two properties of SH functions, the S.:-zzii:\iL?n

Principle and the Poisson Inequality.

Maximum Principle: If / £ SH then

sup/ (j o) = sud / (s) (2.3)

Technically, the sup on the left hand side of (2.3) is an essentia! sup. The proof

can be found in Rudin[9 p.23l] or Conway[ll p.264].

Remark: The Maximum Principle need not hold if / is not bounded zboue, for

example / (s) = Re(es), which is bounded along the j'^-axis but not in Cw This /

satisfies [I] and [III] of SH but not [II]. Note also that the maximum principle

still holds even if / is not bounded below, e.g. f(s) = lcgj(s-l)/(s -rl)! 7>-hich is

inSH.

Poisson Inequality: Suppose / £ SH and is not identically -». Then for crz > 0,

and

Remark: Equation (2.5) should be compared to the Poisson Fannula, valid

for a bounded harmonic function / (s): for <70 > 0>

SISO arguments which use (2.6) (perhaps implicitly, e.g. via the Eode gain-phase

relations) can be extended to analogous MIMO arguments simply by using the
Poisson Inequality in place of the Poisson Formula. In this way SISO results go

June 11, 19S4
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through nearly unchanged for the MIMO case, with the conclusion changed into

the appropriate inequality.

Proof of Poisson Inequality:

Define fn(ju) &rnax\f(jo),--n\. Hence o-*fn(jd) is bounded on R. For x>0
define

(Note that the integrand in (2.7) is Ll). f„:C^-*R is a boundsd harmonic func
tion which satisfies property [III] of SH, so / -fn £ SH. Since / (j y) -fn (j :.) < 0

for all cj€R, we conclude from the Maximum Principle that f(s) -/rt(s)<0 for

all s £ C+. Thus for all n,

h-ffnU") ,'f" xa*/fa^"c) (2-3)

We now establish (2.4). If we can establish (2.4) for any particular -jc =r >0

and Qo = y £i? then it is true for all cr0>0 and xc^R, since for each such cc and

Uq there is a K < « such that for all cj £ R

Go *K x
<702 +(u-^c)2 ZZ-r(v-y)Z

and hence

Since / is not identically —«», find x>0 and t/ £/? such that /(r+?y)?*-».

Since / £ SH it is bounded above, we can find an;r/<» such that / (s) < £J for all

s£CV. Then

/Jjf^^vF"a (2"3)
Now for each n we have:

<2ttM -nf(x+jy)

Jittip 11 1QR4.
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by (2.3) and (2.9). Thus by the monotone convergence theorem [9p.22]

and (2.4) is established.

From (2.4), (2.9), and the dominated convergence theorem [9p.27] we con

clude

c702+(cj-sj0)'

which is (2.5). M

(2.4) implies that o-*f(cj) is locally Ll, which is not obvious at all, For
example, f (s) = logjs(s+l)~1| has a singularity at i;=0, nevertheless is still

locally L1. Indeed (2.4) has the corollary:

MIMO Paley-Wiener Theorem:

Suppose H(s) £ (B°)m*n and is not identically zero. Then

r\loa[\H(j^
J l+i;2 -d^ < «

63 0

This is the simplest proof of the Paley-Wiener theorem that we know of (see

e.g. Desoer [12]).

3. Applications: MIMO Feedback Systems

3.1. Set-up and Notation

We will refer to the system lS(P,C) shown in Figure 1. In order to include

distributed and unstable plant P(s) and compensator C(s), we assume that
P(s) (respectively, C(s)) is an nxm (resp., mxn) matrix of transfer functions

in the algebra B, with n <m (see [13,14]).

B is defined as follows: A is the subalgebra of H" consisting of Laplace

transforms of distributions of the form

/(Oa/.(0 + E/i«»"«

where /o(0 = 0 for r <0, f4 s=0, fa £Ll, and [/i j el1. A" is the multiplicative sub

set consisting of those elements in A which are bounded away from zero at s = =»

in C+. Finally, B is the algebra of quotients ATA")"1, that is. elements of B have

June 11, 1984
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the form n/d with n £A and d £A°" (see e.g. [I5,p.66]). The reader unfamiliar

with these concepts can simply think of P and C as rational.

An element of B is stable if it is in A i.e. if it has a representation with d = 1.

We say an element h of B is strictly proper if limA(s) = 0 in C+.

We make two assumptions about lS(P,C):

Assumption 1: The plant P(s) is strictly proper.

Assumption 2: lS(P,C) is closed-loop stable, that is,

H en —
(i+pcyl -p{i+cpyl
c(i+pcyl (i+cpy1

€(Af ..^n (3<1)

where HCu>('iLi.uz) -*(si.e2)- Thi-s is precisely the condition that the transfer

function from any input to any output have all its elements in A(and hence H").

P and C have left and right A-coprime factorizations [13]:

P = NprDj.1 = D^Npl

C = D^Ncl = N„D-J

with the TV's and Z?'s having elements in A and the D's having determinants in

A", e.g. detC^ £A~. The CV poles of P and Care precisely the CV zeros of det.£U.

anddetZ?ci, respectively.

We will say that P(s) has a zero at s0£C+ if Npl(sq) is less than full rank,

that is, if there is a nonzero c £ C1 such that c *Npr(sc) = 0. This agrees -.vith the
standard notion of a zero for rational P, defined via the Srnith-MacMillan form

[16]. Note that P may also have a. pole at sc. We define the left nullspace asso

ciated with the zero at s0 by

Ns8ro ^NullspaceOV^So))

Nzanj does not depend on the coprime factorization used. If P does not have a

pole at s0, then P is analytic at s0 and we can find N=gr3 without reference to

coprime factorizations: NS8ro =Nullspace(P(s0)*).|

Similarly if pQ is a pole of P, we define its associated right nullspace Np3i8

by

t An example where 1fzm ?* Nulls?ace(P(s0)") is:

1 s-2 0
P(s) =

(s+l)2l 1 (s-2)"1
For this plant there is no nonzero XeC2 such that \'P(s) is analytic and zero &z s = 2.

.Tims 1 1 1QR4.
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Np0i8 ^\:ulIspace(i?pi(po))

Np0i8 is independent of the coprime factorization used, and if the pole is simple,

then Np0te is also given by

Npgjs = Range(Residue?3P)

Npoie can be interpreted as those directions along which the (opsn-loop) plant
blows up atp0.

We will focus our attention on constraints imposed on the disturbance-to-

output map Hy4 ={I-rPC)~l, which also happens to be the •Lrjp^Lt-to-tricking-
error map u ->u—y = gj. By either interpretation it is something v.-hlch, roughly

speaking, we would like "small" over the bandwidth of our system. T.Ve ".-ill refer

to —logjj/fyrfO'&OH as the disturbance-rejection (in nepers, at ^ rad/ssc). Of
course other control configurations or transfer functions can be considered.

In the sequel we will use only a few properties of lS(P,C). Tv.-o very impor

tant ones relate to Hyi'.

Fact: Suppose P has a zero at s0£ C* and a pole at p0£ CV, with associated left

(right) nullspace NS8„ (NF3ie). Then

(1) If \£N5ero then \*Hyd(sQ) = X*. In particular, !!/7y«(sc)!> 1.

(2)If/i£N?0ja then#yd(pc)^=0.

The proof in is §A2.

Interpretation of (l): At s =sc, the component of the disturbance which lies

in N28ro appears unaffected in the output.

Interpretation of (2): At s =Po, we have perfect tracking along those direc

tions in which the plant has infinite gain.

We have already seen one constraint on Hy&\ by Assumption 1, PC is not

identically —/, so Hyd cannot be identically zero, hence the Palsy-Wiener

theorem yields

rliogii/fc^in^ Km {a2)
J l+oa

This constraint is well known in the SISO case. One consequence is, we cannot

have perfect tracking: or infinite disturbance rejection (H-i(Jn) =0) over any
band offrequencies.

June 11, 19S4
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3.2. Bode's Integral

In (3.2), the Paley-Wiener theorem expresses a fundamental constraint on

the achievable disturbance rejection. If the plant and compensator are strictly

proper, as is usually the case, the conclusion can be strengthened considerably.

For SISO systems with stable rational P and C with P(s)C(s) = 0(s~z)t Ecde

proved [l, 2]:

flog\Hyd(jd)\di> =Q (3.3)

Thus the area under the disturbance-rejection curve (in db-rad/sec), is

zero. In particular, positive closed-loop disturbance-rejection (i.e.

\og\Hyd(jo)\<Q) in band implies disturbance amplification (log[Hyd{ji>)\>0) at
some frequencies out of band.

Freudenberg and Looze have recently evaluated the integral (3.3) for the

SISO case, where the plant and compensator have finitely many C+ poles:t3

flog\Hyd(j u)\da =2- f Repfc (3.4)
fc=i

where \px pK] are the C¥ poles of PC (In fact (3.4) holds when there are

infinitely many C+ poles). Thus unstable P or C can only increase the integral

(3.3): if PC = 0(s~z) then in general we have

flog\Hyd(jv)[du>:0
regardless of whether the plant or compensator are stable or not.

Using subharmonic functions we can prove:

MIMO Bods Theorem: Suppose PC = 0(s~z). Then

/log||#^0'«)!£"* 0 (3.5)

Proof: The hypothesis PC=0(s~2) implies I-Hyd = 0(s~z). By the triangle ine
quality,

l-||/--H^ll^ll^dll^l +li/-^!l

so that

^g\\Hyd\\=0(s-z) (3.5)

t This is just Jensen's formula for C+ [9,11].

June 11, 1934
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From the Poisson Inequality we know u-*\ogAHyd(j~)\ is locally L!; from

(3.6) we knowlogii-tfydO'̂ MI = °(^~2)« hence we conclude that

^log!!#ydO'")i|eLl (3.7)

Now multiplying the Poisson inequality (2.5) by a0>0 and evaluating at

Oq = 0 yields

^/iog!iHvao--)iirr^F^ ^=g::^,(^)i! (3.3)
By (3.6), as Cq-*03 the right-hand side of (3.4) converges to zero. By dominated

convergence and (3.7) the left-hand side of (3.3) converges to

^flogWH^ij^Wdcj and (3.5) follows. N
This theorem is known,|f but we emphasize that this proof is almost the

same as the proof of the SISO Bode theorem given in [3], with the exception that

we have used Poisson's inequality (valid for subharmonic functions) as opposed

to Poisson's formula (valid just for harmonic functions). We should perh&ps

mention that (3.5) can be strengthened by replacing "Hyd.\ "'^Pi—yi)-

Remark: For MIMO systems strict inequality can occur in (3.5) even when

the plant and compensator are stable (cf. SISO case (3.4)). For example con

sider the plant P(s) = diag[(s-rl)"2,(s+2)"2] with unity compensator C-1. Then

J \.og\\Hyd(jd)\\dcj is the integral of the max of two functions, each of which has

integral zero by the SISO Bode theorem. Since the graphs of the two functions

cross each other, flog\\Hyd{j'J)^du>0.

3.3. Tames* Inequality [4.5]

We now consider constraints due to plant C+ zeros.

Zames' Inequality: Suppose w £H~ and P has a zero at sc £ CV- Then

su^\Hyd(jo)vr(jo)\\ 5= |w(s0)| (3.9)

The interpretation is as follows: usually we have P{jo)C{jd) -> 0 as y ->» (i.e.

PC is strictly proper), which implies that as i>-»», \\Hyd(j^y^ 1. Kence
sup\\\Hyd(jcS)\\\qeRl^ 1, that is, the minimum (unweighted) disturbance rejec
tion is less than Odb. The H" function w in (3.9) serves to weight the

disturbance-to-output map more highly in-band (where iw| is large) than out-of-

ttJohn Doyle, personal comnronication.
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band (where |w| is small). Zam.es' inequality tells us that the plant CV zero puts
a lower bound on the achievable peak value of the w-weighted disturbance-to-

output map.

This was proved in Zames [4] for stable P and C and extended to unstable

SISO P and C in Zames and Francis [5].

Proof (using subharmonic functions):.Under the hypotheses, '\\Hyd(s)\\\s)\K £SH,
so invoking the maximum principle (2.3)

suD||^(;i;)w(;cj)!| > i!/fj,d(s0)w(s0);| = i!^!i(sc):;;w(sc)i > ~(sc)\ (3.10)

since by Fact 1 of §3.1, ||/fyd(s0)||^l.N
Remark 1: We need not start with a weighting function w(s) in H". Indeed it

is more natural to simply specify a positive weighting function k{p) along the

jcj-axis, for example

k(u) = b \o\>^3

which weights the in-band disturbance rejection by a >0 and the cut-of-bar.d dis

turbance rejection by b>0. Using the concepts developed, it is not hard to

express Zames' inequality directly in terms of the weight fc(:j):

Zames' Inequality for jo -axis Weights: Suppose fc(cj) is a bounded positive func

tion such that y*|logA:(Q)|(l+cj2)~1do<«, and P has a zero at sc=crc-i-7';;c£ C¥.
Then

sup||#yd(j o)k (o)\\ >exp ±-flogk (») 2°fa (3.11)

If a0 =0 then su.^\Hyd(jd)k{p)\\ £: k(o).

The proof is in §A2.

This last theorem can be put in another interesting form. Suppose 5!(zi) is

a desired upper bound for H-ffydO'1")!!- M{o) would typically be small in band (to
guarantee a minimum disturbance rejection), and larger, but not too large, out

of band (to guarantee robustness).

Corollary: Suppose that P has a zero at cr0 +JUq £ CV and M(o) is a bounded posi

tive function such that

AogM(o) °f° <0 (3.12)

June 11, 1984
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(this integral may be -«, but is always well defined).

Then there is no controller C such that the closed loop system lS(P,C) is stable

and \\HydUo)\\*Mfa) for al1" ei?-
The proof is in §A2. These last two forms of Zames' inequality are related to

the MIMO generalizations of the Freudenberg-Looze integral constraints which

we will discuss in the next section.

Remark 2: Zames* inequality holds for matrix weightings, i.e. if \V£ (H")~* c

and P has a zero at s0 £ C+, then

supji/^OMW^);: > iJW(s0)|| (3-13)

Note that matrix weightings do not induce symmetric seminornis (in Zanies'

sense). Also, the inequality is false if we put the matrix weighting on the left.

3.4. MIMO Zames-Francis Inequality

Just as the Bode integral increases when the plant or compsr.Si.tor are

unstable (see equation (3.4)), Zames' inequality may also be sharpened when the

plant or compensator are unstable. Suppose, for example, that s.n 5150 plant P

has a pole at pQ £ C+ and a zero at s0 £ C+, and w£H". Then [5]

suDi!i?yd(;o)wO^)i|̂ £2±£l||w(So)| (3.14)
Thus if the plant or compensator is unstable, the lower bound (3.9)

increases (dramatically, if the pole pQ and zero s0 are close). If either the pole
or zero are on the jo-gods, (3.14) is still true: it is simply Zames* Inequality then.

Using subharmonic functions, we can extend this result to the MliEO case.

In the MIMO case, the increase in the lower bound is not as simple as (3.14), that

is, division by the Blaschke factor formed with the plant C¥ pole: the increase

depends not only on the location of the zero and pole in the complex plane, but

also on their geometry, i.e. their direction in space. Let us consider two exam
ples:

Example 1:

_ 1
^> = 77I

s-.9

s-1

s+.9
0

s + 1

If we apply Zames and Francis' SISO bound to channel 1 of this plant we have:

June 11, 19S4
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su^Hyd(jo)^{j^ >19|w(0.9)|

In this case, the C+ pole-zero near cancellation has greatly reduced the achiev

able performance. On the other hand consider

Example 2:

s+.9

*•> = FTT
s-1

s-.9

s + 1

For this plant it can be shown, using the SISO methods of Zames and Francis [5],

that for any e > 0 there is a controller which yields

In this case the plant C+ pole, even though close to the piz.nt CV zero, has not

degraded the performance of the system as in example 1.

The key is that the concept of pole-zero near cancellation for MIMO systems

involves the geometry of the pole and zero.

To make this precise:

SQMO Zames-Francis Inequality: Suppose the plant P has a pole at p0£C+, with

associated nullspace Nj,0f8 there, and a zero at sc£CV, with associated left

nullspace Nzaro. Then if || • \\ = ffmaxO),

suo||fl^0«)w&«)|| ^ cosWN^.N^)) i2i£2-»lW(s0)| (3.15)

where cos(4Np0ia.Nsero)) denotes the cosine of the angle between the spaces

Np0je and NZBT0 and is defined by

cosMN^.N^)) imaxi|u^||u£N38n,,T;£N?a£ai |ju||=!!v|!= 1J (3.13)

The proof is in §A2.

It is readily verified that the cosine expression in (3.15) is one in example 1

above (indeed Np0ja =NS8ro here) and zero in example 2 above (i.e. NpS(3 and N5=r3
are orthogonal). Thus the MIMO Zames-Francis Inequality tells us nothing for

example 2, and, more generally, is weaker than than Zames' Inequality when the

angle between the spaces Npoia and Nsaro is larger than cos~li(s0-^o)(so+?o?i~1'

Remark: Although we have stated the MIMO Zames-Francis Inequality for

poles and zeros in the open right half-plane Cf, it remains true if either the pole

or zero lies on the jw-axis, since in this case the conclusion (3.15) is wezlzer

June 11. 19S4
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than that of Zames* Inequality (3.9).

3.5. MIMO Freudenberg-Looze Integral Constraints.

Freudenberg and Looze [6] recently applied Poisson's formula to SISO con

trol systems to derive integral constraints similar to those appearing in Zames'

inequality for jcj-axis weights. Using subharmonic functions, we can e::tsnd

their results to the MIMO case.

To take a simple example, suppose P and C are SISO and F(ac) = 0, uz > 0,

and loglHyt^jo)\^-M for jwj^Qg (that is, we have at least M nepers disturbance

rejection up to Oq rad/sec). Then [6]

logjujI/fcOu)!**^ (3.17)
where i? = 2 tan~l(cjjg/ aQ).

tf can be interpreted as the total angle from the C+ zero Cq subtended by

the "bandwidth" fa'o||cj|<cjaJ. From (3.17), we see there is quite a pe.ilc in the

disturbance-to-output map Hyd unless cjg«o"o-

We will now show that the same result holds for MIMO systems.

MIMO JVeudenberg-Looze Constraint: Suppose that P has a zero at cc>0 and

log||#vd0'u)l|2£-^ for \o\^u3. Then

iogsuD||/fyd(;^)!l^^-V (3.13)

We consider a real plant zero here for simplicity only; in fact the result

holds for any C+ zero.

Proof: Once again the proof is nearly the same as SISO version, with the Poisson

Inequality used where the Poisson Formula is used in the SISO proof. From Fact

1 of §3.1. ||#yd(c70)||:> i, go log||#vd(<70)||=s0. From the Poisson Inequality:

i./log||f^C/6>)||̂ |ra: log||tfw(<70)!| ^0 (3.19)
Using our hypothesis we also have

^/logll^llO'")^T 0.20a)
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=-#£-+ logaup||/fwW«)||(l-^ (3.20c)
From (3.19) and (3.20) we conclude the expression in (3.20c) is nonnegative, and

thus

logsup||tfyd0'")ll^/^
which establishes the MIMO Freudenberg-Looze Inequality. M

In fact the MIMO Freudenberg-Looze Inequality can also be derived from

Zames' Inequality for jsj-axis weights. Let R =log sup'\Hyd(jo):[ and consider the

weight

k(o) = exp/r/ M^"5

so that supj|#yd (j o)k (o)\\<= 1. From (3.11) we have

1 > suv\\Hyd(jo)k(o)\\ ^ exp-(/,/tf •*- i?(tf--))

so that R^M#(tt-$)-1, which is (3.18).

4. Conclusion

We have given generalizations of the Paley-Wiener theorem, the Eode

integral, Zames' Inequality, the Zames'-Francis Inequality, and the

Freudenberg-Looze constraints, to distributed, unstable, multi-input multi-

output systems. We wish to emphasize the simplicity of the m.ethod. SH func

tions are a wide enough class to include such useful functions as "//^(s)! and
log||i?v<i(s)||, and yet are restricted enough to still derive meaningful constraints,

e.g. via the Maximum Principle or Poisson Inequality.

5. Acknowledgement

Mr. Boyd gratefully acknowledges the support of the Fannie and John Hertz

Foundation.

June 11, 1984

860



-16-

Appendix

Al. Proofs of Theorems 2.1 and 2.2

We first list some elementary properties of subharmonic functions:

Fact Al: Suppose J/a]a£Aj is a family of subharmonic functions which is

bounded above. Then

/(s)isuo/ft(s)
a£A

is subharmonic.

Proof: / is clearly continuous. Now suppose Rea > r > 0. Then for any (X £ A

/a(a)£ '±rff«(a.+rei*)d*< ±-ff(a.±r^)d&

and consequently

2ff

/(a) =suD/a(a) < jL-ffla+ra^d*

which proves that / is subharmonic.n

Fact A2: Suppose fn is a sequence of subharmonic functions and fn ~*f u'^"

formly on compact subsets of C+. Then/ is subharmonic.

Proof: Again, / is clearly continuous. If P.ea >r >0 then

27T 2n

•i-rff (a+raw)<M =\iui-^--ffn{a^rei'y)d^ >lim/a(a) =/ (a)

J^ct A3: Suppose / is subharmonic and p^-56,36) -»f-30,30) is continuous, convex,

and non-decreasing. Then ?(/(•)) is subharmonic.

Proof: Once again ?(/(•)) Is clearly continuous, and

2n

27T-0

2lT

-±rf<p(f(a+rei*))d<&><p *?(/(*))

bb U

where the first inequality is Jensen's inequality [9p.63] and the second follows

since / is subharmonic and <p is non-decreasing.N

The most important case of Fact A3 is tp(x) = exp:c: if / is subharmonic then

exp/ is subharmonic, and hence if / £ SH then exp/ £ SH.
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We can now prove theorems 2.1 and 2.2.

Theorem 2.1:

Suppose H(s) £(EP)77lXn and suppose ||-|| is any induced norm. Then

log||H(s)|| £SH and ||tf(s)|| £ SH.

Proof: In view of the rem.ark after Fact A3, we need only prove that

log||#(s)||£SH. Property [II] of SH is clear; property [III] follows from (2.1) and

the continuity of A-*logJ!A]|. It remains to show that log;|//(s)|| is subharmonic.

Continuity is clear. Let ||-||0 be the norm used in Cm and 1st "•:'•, be the

norm dual to the norm used in C71, so that

logpf(s)i| = M„ sup \og\u'H(s)v\ (A1.1)

For any u £ C71 and any veC" log',it*//(s)*uj is subharmonic, so by Fact Al and

(Al.l), log||//(s)|| is subharmonic, establishing log!!#(s)||sSH. N

Thus, for example, logo-j^C^s)) and (ftMx(H(s)) a*"5 in SH.

Theorem 2.2: Suppose H(s) £ (W)n*n. Then

p(H(s)) £ SH logp(H(s)) £ SH

u(H(s)) £ SH logu(H(s)) £ SH

If in addition //(s)"1 £(H")nXn. then

cond(H(s)) £ SH logcond(H(s)) £ SH

Proof: As in theorem 2.1 the only hard part is showing the log-expressions are

subharmonic. Suppose H(s) £(H~)nXn. We first show logp(H(s)) is subharmonic.

Let ||*|| be any induced norm, e.g. aTnsx. Then

log||g(S)"l| „ i (g(s)) asn.„ (A1.2)
71

uniformly on compact subsets of C+. By theorem 2.1 each n_1Iog;|/f(s)n;j is

subharmonic, so by Fact A2 and (A1.2) we conclude logp(H(s)) is subharmonic.

If/x(A) denotes Doyle's structured singular value, then

logu(H(s)) = suu\ogp(UH(s))

where IT is the structured unitary group (see Doyle [10]) and hence by Fact Al

and subharmonicity of logp(UH(s)), logu(H(s)) is subharmonic.

Finally suppose in addition #(s)_1 £(H")r-XTl. Then

logcond(H(s)) =log\\H(s)\\ +log\\H(s)~x||, and is subharmonic by theorem 2.1. M
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A2. Proofs of Theorems of §3

Fact: Suppose P has a zero at s0£ C+ and a pole atpc£ C¥, with associated left

(right) nullspace N58ro (N?0-8). Then

(1) If X£N28ro then \'Hyd(s0) =X*.

(2) If u£Npoia then Hyd(sQ)u =0.

Proof: Direct calculation yields

Hyd = / - A^ArliVel (A2.1)

where

Aii DclDpr+NclXpr

It is shown in Callier and Desoer [13] that the closed-loop stability assumption 2

implies Afl£AmXm.t If X£NS8„, then \\\Tpr(sQ) = 0, hence from (A2.1)
X*#yd(so) = X*, which establishes Fact (l). To prove Fact (2), we note that

Hyd = Der&Dpt (A2.2)

where

^^DplDcr^N?LNcr

and, as above, A2'1£AmXm. If ^£Nps,ia then Z?-,t(pc)Ai = 0. so from (A2.2) we con
clude Hyd(pC)U- 0. M

Zames' Inequality lor jo -axis Weights: Suppose k(o) is a bounded positive func

tion such that f\logk(o)\(l+oz)~ldo<*>, and P has a zero at sG =cc4-;i;0£ C+.
Then

sun\\Hyd(jo)k(o)\\ >esp£-Aogfc(a) /°d^ ,2 (A2.3)

Remark: The hypothesis on fc is precisely the condition that there exist a w£H°°

with k(o) = |w(j«)|. We will not directly use this fact.

Proof: We first extend logfc('Ly) to a function h harmonic in C+. Define h by

h(j w) ^logfc (o) and for <r0 >0,

M*.+i«d 1 f/^^^SsF (A2-4)
fin fact detAi is what is usually called the c/ianzc£ens*zc function of the closed-icop system.
lS(P,C), and the closed-loou stability assumption (Assumption (2)) is equivalent to
(detA^eA "

June 11, 1984



-19-

The hypothesis on k ensures that the integral in (A2.4) makes sense. It can be
directly verified that h £ SH (indeed h is harmonic, i.e. —/i £ SHas well). Hence

log!|tfy*(s)|| + Ms) e SH

so by Fact A3 of §A1,

||i?yd(s)||exp/i(s) £ SH

By the Poisson Inequality,

su^\Hyd(jo)k(o)\\ * \\Hyd(s0)\\exph(s0)

exp — / logfc(cj)—=—;
-*o)2

since ||Hyd(s0)||> 1by Fact (l) of S3.1. M
Corollary: Suppose that P has a zero at <7C + jw0£ C¥ and M(o) is a bounded posi

tive function such that

flogM(o) , af° ,2 <0 (A2.5)
J G02+(0-0Q)Z

Then there is no controller C such that the closed loop system lS(P,C) is stable

and \\Hyd(jo)\\<M(o) for all ozR.

Proof: By contradiction. Suppose there is such a controller. Then

£-A°gl|/^G'")l! t°f° „« $-fl0gU(.») ,°f° « <0 (A2.6)
7W d Go +(«-wo) nJ ao'+io-Oar

Since P has a zero at s0 = <Tq+jcjq £ C+t we have as above

1 C Undoo<iog||̂ (sfl)||< i-y losli^0^)ll^2^z^r C-*-2-7)
which contradicts (A2.6), establishing the Corollary. M

MIMO Zames-PVancis Inequality: Suppose P has a pole at p0 £ C¥ and a zero at

s0£C+, with associated left (right) nullspace N^ (N,^,), respectively. Then if

Sq+Pqsug||#^0"a)wO'u)!l > cos(/IXpolB,Xzgn))

where cos^N^^N-^)) is defined in (3.16) of §3.3.

Proof:

June 11, 1934
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Let Lpoig be a matrix whose columns are an orthonormal basis for y.poU

(1) of §3.1, Hyd(po)Up0lB = 0. Since Hyd is analytic atp0, we have

S Pq

Now since ||^oia||<l (recall Nil = o-ma^C*) here!),

= susup T^^y^^u-^-<y^\jo-po

and using (A2.9) and the Poisson Inequality:

so-Po

Now let C/Ijot, be a matrix whose columns form an orthonormal !

N28ro. Then by Fact (2) of §3.1 we have Uzar0 'Hyd(sc) = Uzzro \ Since ;:C'-:

ll^d(^c)upolB !| =* ||tfm -Hyd(sc) u?oLQ || = I; c/,c„' crP5lc ;|

= max!|it#v||Tx£Nsen,,T; £N?3»3, iju!j = ;;v;| = lj

i cos(4Npoi8,N5Snj))

From (A2.10) and (A2.ll) we conclude

supH^O'a)MJo)\\ i> cos(4N?0i8 ,Nr2r9)) ji£3£°.jj~(sc)|
uej? ° | s0 po \

which establishes the MIMO Zames-Francis Inequality. N

June 11. 1984
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