

Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN ELECTRONIC CIRCUIT CAD FRAMEWORK

by

K. H. Keller

Memorandum No. UCB/ERL M84/54

6 July 1984

AN ELECTRONIC CIRCUIT CAD FRAMEWORK

by

K. H. Keller

Memorandum No. UCB/ERL M84./54

6 July 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

An Electronic Circuit CAD Framework

By

Kenneth Howard Keller

B.S. (Carnegie Mellon University) 1979
M.S. (University of California) 1981

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

AN ELECTRONIC CIRCUIT CAD FRAMEWORK

Kenneth Howard Keller

Ph£>. Computer Science Division

Sponsors: Hewlett-Packard Signature L7^M^i^L^/J€^7&^-^
Fannie and John Hertz Foundation A. Richard Newton

Committee Chairman

ABSTRACT

The requirements for a framework for circuit computer-aided design are presented,

including the information and operations that circuit CAD tools require. An experimental

framework has been developed that consists of the data structure package Squid, the

device-independent graphics package MFB, and the user interface Hawk. Squid is object-

oriented so it is efficient relative to general-purpose DBMS and design description language

approaches. By calling Squid, circuit CAD tools are provided with storage for hierarchical

connectivity, parameter, and layout information and provided with search operations. Squid

uses a new data structure, OSL, for 2-dimensional searching so that searching layouts is

efficient. OSL falls into the class of bin data structures, but is the first data structure to

exploit the aspect ratio of shapes explicitly. Through Hawk, the user can have Hawk call

tools and draw Squid information in color and multiple windows on the screen of a raster

graphics device by calling MFB. Other contributions include tools for laying out arrays,

routing schematic diagrams, and for the abstraction of layouts. The research on layout

abstraction is particularly important and introduces the concept of protection frames.

Protection frames speed drawing, extraction, layout rule checking, and process-independent

compaction by reducing the number of shapes that each tool must process.

ACKNOWLEDGEMENTS

First and foremost I thank my research adviser, Prof. Richard Newton.

I thank Rick Spickelmier, Prof. John Ousterhout, and Prof. Stephen Penman for reading this

thesis.

I thank the Berkeley students who contributed software to the framework— their names

are listed in the appendices.

I thank Peter Moore for NLP algorithms and for building the mask operation package that

made the protection frame computation program possible.

I thank Prof. Ousterhout*s MAGIC group for exchange of technical information and for

keeping their code readable.

I thank the first users of Hawk: the designers of the CMOS SOAR chip, Prof. Newton, and

Res Saleh.

I thank my backers: Fannie and John Hertz Foundation, Hewlett-Packard, and the late Mr.

I. Keller.

I thank my family who originated the sanity-preserving chant, "Love my thesis—feelin'

good."

I thank my office-mates-Jeff Burns, Mark Hofmann, and Carl Sechen—for keeping the Flag

flying high.

LIST OF FIGURES

1.1 A design hierarchy. .. .•-. 1

12 An ideal framework. 6

1.3 A real circuit CAD framework. 7

2.1 An instance hierarchy. <— 21

2.2 The dependency hierarchy of the resistor example. ~ 22

2.3 Dependency propagation. . - 24

2.4 Four layers. ~ 32

2.5 Outlined shapes with control points shown. ~ 33

2.6 Examples of geometric functions. ~~~~.. 40

2.7 A1 kiloohm polysilicon resistor. 42

2.8 Geometric operations. ~ 47

4.1 An OSL data structure. .- - 83

4.2 Pruning behavior of OSL data structure. 86

5.1 Screen controlled by Hawk. 91

6.1 NibbleReg is a homogeneous row vector of BitRegs. ~ 120

62 Legend for nMOS process. 125

6.3 Layout view of a depletion-load inverter. . 126

6.4 Bounding box view of a depletion-load inverter. ~ 128

6.5 Doughnut view of a depletion-load inverter. ~ 131

6.6 Pins of abstract view of a depletion-load inverter. ~ 137

6.7 Frames of abstract view of a depletion-load inverter. -. ..——.- — 138

n

Ill

6.8 Layout view of address decode PLA. 139

6.9 Pins of abstract view of address decode PLA. 140

6.10 Frames of abstract view of address decode PLA. ~ 141

6.11 Pins of array. ~ 142

6.12 Frames and active area of array. 143

6.13 Pins of abstract view of array. 145

6.14 Frames of abstract view of array. , , 146

TABLE OF CONTENTS

Chapter 1. INTRODUCTION

1.1 The Problem

1.2 The Structure of Tools 3

1.3 Frameworks in General 5

1.4 An Experimental Framework 6

1.5 Design Methods ~ 8

1.6 Terminology ~ 8

1.7 Summary of Results 9

Chapter 2. REQUIREMENTS OF A CIRCUIT CAD FRAMEWORK 10

2.1 Mechanism and Policy 10

2.2 View Data Model 10

2.2.1 Naming ~ 11

222 Protection and Locking 16

2.2.3 Revision Control 17

2.2.4 Crash Recovery 18

22JS Other Operations 19

2.2.6 Stranger Views and Circuit Views 20

2.3 Circuit View Data Model 20

IV

V

2.3.2 Dependencies -~.~ 21

2.3.3 Parameters ~ 26

2.3.4 Connectivity ~ , ~ 27

2.3.5 Regularity in Connectivity 28

2.3.6 Geometric Information 31

23.7 Shapes 31

2.3.8 Geometric Functions 39

23.9 Placed Instances 43

2.3.10 Geometric Regularity 43

2.3.11 Geometric Operations 45

2.4 Database , 49

2.5 Hardware Independence ~~. 51

2.6 User Interface ~ 52

Chapter 3. THE SQUID PACKAGE 53

3.1 History 53

3.2 File System 54

33 Path Mechanism ~ 55

3.5 Dependency Hierarchy 58

3.6 Revision Control ~~~~~~~~~~~~.„ ~ 59

3.7 The Package from the Public Point of View ~ 60

3.7.2

3.7.3

3.7.4

3.7.5

3.7.6

3.7.7

3.8

3.8.1

3.8.2

3.83

3.9

Communication

SQ

Switching Contexts

The Resistor Cell of Chapter 2 ~-~

Range Queries ,

A Demon

The Package from the Implementation Point of View

The Data Structure

Circuit View File Format —

Transformation

Conclusions

Chapter 4. ORTHOGONAL SCAN-LINES

4.1

42

43

4.4

4.5

Background

Motivation .

Principles of Operation

Algorithm Analysis ~~

Measurements

Chapter 5. HAWK

5.1

5.1.1

5.1.2

5.1.3

Initialization

Layers

Commands

More Customization

VI

61

62

65

67

70

71

72

72

76

79

80

81

81

81

82

85

87

89

91

91

94

97

vu

5.1.4 Desktops _ 97

5.2 Scheduler 99

5.2.1 Keyboard Command 99

5.2.2 Pressed Button Number One 99

5.23 Pressed Any Other Button 100

5.3 Demons ~ 101

5.4 Selection 102

5.5 User Interface ~ 103

5.6 Measurements — 104

5.7 Multiple Windows 105

5.8 Redisplay 106

5.9 Instance Transformation 109

5.10 Clipping 109

5.11 Window to Viewport Transformation ~ 110

5.12 Ellipses 111

5.13 Bounding Boxes - 112

5.14 Suppressing Detail ~ 113

5.15 Obscured Pins ~ 114

Chapter 6. NEW CIRCUIT CAD TOOLS 115

6.1 Logic Design Tools ~ 115

, 6.1.1 Schematic and Block Diagram Capture by Beaver ~ ~ 115

6.2 Layout Design Tools - 118

VU1

622 Array 119

6.23 Protection Frames ~ 123

Chapter 7. CONCLUSIONS 150

REFERENCES 152

Appendix A. SOURCE CODE 157

Appendix B. PACKAGE CONTRIBUTORS 158

Appendix C HAWK TUTORIAL 160

10.1.1 Assumptions ~ 160

10.1.3 Disclaimer 162

10.1.4 Getting Started 162

10.2 Basic Hawk 164

10.2.1 Screen Layout 164

10.2.2 Graphical Input 166

10.2.3 Invoking Commands 166

10.2.4 Manipulating a Single Window 171

10.2.5 Selecting Layers 172

10.2.7 Editing an Object 172

10.2.8 Pan & Zoom 173

10.2.9 Shape Drawing in General 173

IX

10.2.10 Multiple Windows 174

10.2.11 More on Editing 174

10.2.12 Desktops 174

10.3 Tools ~~ 175

10.3.1 Selected Set 175 %

10.3.2 Hardcopy 176

10.3.3 Slide & Figure Making 177

10.3.4 Leaf Cell Layout 177

10.3.5 Floor Plan Layout 179

10.3.6 Schematic Capture ~ 179

10.4 Wish List 179

10.5 Bug List 181

10.5.1 Fatal 181

10.5.2 Annoying ~ 181

10.6 Installing a Command 181

10.6.1 Simple Command 182

10.62 Advanced Command 185

ACKNOWLEDGEMENTS i

LIST OF FIGURES ii

TABLE OF CONTENTS iv

CHAPTER 1

INTRODUCTION

1.1. The Problem

Circuit design times are increasing dramatically [1-3], because circuit technology is changing

and circuit complexity is increasing [4] while designer productivity is not keeping pace. A

design is termed hierarchical if it can be modeled as a supervisory system composed of

subordinate subsystems as in Figure 1.1.

system

subsystfeml .}. subiystemn

Figure 1.1: A design hierarchy.

Each subsystem can in turn be modeled as a system so that the design hierarchy is more

than two levels deep. A microprocessor hierarchy could contain register file, ROM, data path,

pad, and control subsystems. A design is termed regular if the frequency of re-use of the

same subsystems is high or there is a pattern to the use of the subsystems. A ROM could be

laid out as a 2-dimensional matrix of "l" and "0" subsystems in which there is a high fre

quency of each present. The solution to this problem is to use high-productivity design

methods that exploit both design hierarchy and regularity [5] and to use Computer-Aided

Design (CAD) software [6] which can exploit this structural information. CAD software is

known also by the terms computer aids, CAD tools, design automation (DA) software, and

design aids Henceforth, the favored term will be simply tools.

With a hierarchical design method, each subsystem is easier to understand, less error-prone,

and more likely to be designed swiftly than the entire system. Because of the volume of

design data involved, if one does not use a hierarchical design method, not enough computer

power may be available and affordable to designers. Because subsystems are designed

independently, the resultant system may not be as efficient— as measured by speed, power

consumption, and cost—as the system designed as a whole. Thus, efficiency is traded for pro

ductivity. One objective of hierarchical design is to make minimum compromises in

efficiency while maintaining minimum design time. Once a hierarchical design method is

chosen, specific design methods must be selected for the subsystems and their combination

into a single system.

There are many different design methods in use today [7l but regular design methods are

gaining popularity. In a hierarchical design method, both regular and random design tech

niques can be applied in the design of the same system. In a regular design method, much

functionality can be implemented quickly. For example, a ROM or PLA that implements a

particular function can be designed by a synthesis tool in a matter of seconds while a ran

dom circuit for the same function may take days to design. Regular design methods also

help to minimize the data volume problem mentioned earlier. For example, a ROM can be

represented compactly. The layout of the ROM is similar in form to a 2-dimensional,

Boolean matrix in which the value of an element selects one of two types of circuit. To

conserve space, the layout can be represented as this sort of matrix. Designing subsystems

by a synthesis tool, using subsystems taken from a library of pre-designed subsystems that

aTe to be re-used, and designing with arrays that require little or no routing are all regular

design methods.

It is not clear what the best design methods and technologies are for complex circuits. It is

likely that new ones will be discovered continuously. For that reason, it is important that a

CAD system be able to adapt to new design methods as they evolve.

1.2. The Structure of Tools

There are many ways to build the tools that make possible the use of a computer-oriented

design method including design languages, database management systems (DBMS), and data

structure packages. Each has been successful in certain applications.

In the design language approach, there must be at least one design language that represents

all the information that tools need. Each tool has a parser for each language it reads and a

generator for each language it writes. The situation at Berkeley is a good example of this

widely used approach. Various dialects of CEF [8] represent layout information. BLT [9]

was developed to represent net list information for all tools that process net lists. Though

the SPLICE [10] class of simulators uses BLT, the other simulators including SPICE [11], the

net list comparator, and the extractor do nor use BLT. Rather, they each have their own

input language.

STTF [12] and SLL[13] were developed to represent net list and layout information, and the

relationships between them, but they were never really used for design. However, the data

models they represent are very similar to the data model presented in Chapter 2.

The disadvantages of multiple design languages are:

1. It takes time to learn them all.

2. The same information is replicated in different forms. This wastes space and
leads to confusion and consistency problems.

3. Constructs that are not used by a tool must be parsed by it anyway even when
the language can be separated into independent sections.

4. For ease of use, design languages are often human-readable, but this makes them
bulky and may lead to inefficient parsers.

In the DBMS approach, a special-purpose database for the tools used by a specific design

method is created by writing a schema for a general-purpose database such as relational, net

work, or hierarchical database [14-18]. Some of the advantages of the DBMS approach are:

1. Single, shared data structure that is easy to change.

2. Single, shared query language or set of operations.

3. No parsing.

But the DBMSs of today also have some problems:

1. They are slow relative to the other approaches [17].

2. Each DBMS supports one logical data structure that must be "twisted" to
represent the information needed by tools.

3. Each DBMS supports physical data structures designed to make its standard
operations on its one logical data structure fast. However, if the data structure of
the design method does not fit the logical data structure, the physical data struc
tures will not make the standard operations fast.

4. Standard operations are often not the right ones for the design method.

5. There is no revision control and it is hard to implement a revision control
mechanism on top of a DBMS.

6. Features such as protection and crash recovery that are critical to business data
processing cannot be disabled easily to recover the performance lost due to their
presence.

In the data structure package approach [19-23], the best data structure for the tools can be

built and used, because there are few constraints on the structure. If the data structure is

created and maintained by invoking subroutines, procedures, or macros, then tools can be

insulated from many changes to the data structure and tools can share common operations.

Sometimes this approach is termed language embedding. When the data structure and

operations are designed so that they serve many design methods, they become a framework—

the topic of the next two sections.

1.3. Frameworks in General

The dictionary [24] defines a framework as a structure for supporting something, or a basic

system or design. Since the class of regular, hierarchical design methods has been identified

as most promising and new design methods within this class are being discovered continu

ously, it is reasonable to seek a framework for this class of design methods. The framework

can be thought of as a tool box with common tools at the bottom and drawers on top to keep

special, custom tools. From this point on, common tools will be termed services and special

tools simply tools. If a circuit designer uses the same framework for two design methods,

chances are he will learn the second one faster. The same is true for a CAD programmer.

To make it as easy as possible to implement a design method, all services that are bound to

be common to design methods should be implemented and made easy to use by tools and

designers alike. As illustrated in Figure 1.2, services include:

1. A data model that expresses not just the objects to be dealt with, but also the
operations to be performed on them.

2. A database that implements the model. It is impossible to make an efficient data
base without taking into account the operations of the data model.

3. Inspecting and displaying the contents of the database.

4. Synthesizing and editing the contents of the database.

5. A user interface for scheduling services and tools.

It may also be important for the framework to be independent of particular hardware

choices.

user interface

tools services

database ^display

operating system

computer- -terminal

graphics

package

Figure 1.2: An ideal framework.

Thus far, the framework has been presented independent of an application. The require

ments of a framework for circuit CAD in particular are described in Chapter 2.

1.4. An Experimental Framework

To support the propositions of Chapter 2,1 wrote a framework to serve as a laboratory in

which to execute experiments. At present, the framework is being used to design integrated

circuits (ICs). Because of the diverse range of terminal hardware in many design environ

ments and the recent developments in the work-station area, the framework must be as

independent of hardware as possible. There are three main parts of the framework—the

Squid data model and database package, the MFB device-independent graphics package [25],

and the Hawk graphics editor. Squid and Hawk are the subjects of Chapters 3 and 5 respec

tively and their relationship is illustrated in Figure 1.3.

Python

Beaver

Hawk window manager

Squid database sHawk display

4.2 BSD UNIX

computer -real MFB

Figure 13: A real circuit CAD framework.

MFB

The framework is as independent of hardware as possible because it models the computer as

the 42 Berkeley Software Distribution (BSD) dialect of the widely-used UNIX operating

system and C programming language, and models the graphics terminal as a model frame

buffer (MFB) that is mapped to a real frame buffer by the MFB package.

The Squid package has two parts presented in Chapter 3. The first part is a set of conven

tions for storing multiple views of a circuit in the UNIX hierarchical file system and the

second part is a C package for locating the views and operating on the contents' of special

views termed circuit. The Squid package defines an object-oriented [23] data model.

Hawk completes the framework by serving as the common user interface, scheduler, and

display engine for all tools in the framework*

1.5. Design Methods

A framework cannot be judged accurately without applying it to a number of design

methods and thus incorporating a variety of tools into the framework. To be fully success

ful, new tools must be easy to make, easy to install, easy to use, and efficient. The first three

criteria are largely subjective while the last can be measured quantitatively in terms of

computer resources required including storage and execution time.

In Chapter 6, a number of new tools are described that execute on top of the framework.

The new tools include a schematic capture tool (Beaver), a procedural array making tool

(Array), a procedural painting tool (Program), a compaction tool (Python), an alphanumeric

terminal emulator and UNIX process window manager (WiSh), a parasitic extractor (Ibex), a

Net Listing tool (NLP), and a GRaPH drawing tool (GRF).

1.6. Terminology

All measurements included in this thesis were made on a VAX-11/780 with a floating point

accelerator executing 42 BSD UNIX.

The notation:

is used to denote a finite sequence or n-tuple of length n whose elements are et.

The term client denotes either a person or a computational object that uses a service while

the term user refers to a person that uses a service.

When a program is executed, UNIX passes it a command line made up of a sequence of argu

ments. By UNIX convention, any argument that begins with a minus sign but is not a

number is termed a switch and is the name of a parameter of the program. By convention,

an argument after a switch that is not also a switch is the value of the parameter named by

the switch.

Algorithms and code fragments are described using a variant of the "C" programming

language [26].

1.7. Summary of Results

The requirements for a framework for circuit computer-aided design are presented, includ

ing the information and operations that circuit CAD tools require. An experimental frame

work has been developed that consists of the data structure package Squid, the device-

independent graphics package MFB, and the user interface Hawk. Squid is object-oriented so

it is efficient relative to general-purpose DBMS and design description language approaches.

By calling Squid, circuit CAD tools are provided with storage for hierarchical connectivity,

parameter, and layout information and provided with search operations. Squid uses a new

data structure, OSL, for 2-dimensional searching so that searching layouts is efficient. OSL

falls into the class of bin data structures, but is the first data structure to exploit the aspect

ratio of shapes explicitly. Through Hawk, the user can have Hawk call tools and draw

Squid information in color and multiple windows on the screen of a raster graphics device

by calling MFB. Other contributions include tools for laying out arrays, routing schematic

diagrams, and for the abstraction of layouts. The research on layout abstraction is particu

larly important and introduces the concept of protection frames. Protection frames speed

drawing, extraction, layout rule checking, and process-independent compaction by reducing

the number of shapes that each tool must process.

CHAPTER 2

REQUIREMENTS OF A CIRCUIT CAD FRAMEWORK

2.1. Mechanism and Policy

[27] popularized the distinction between mechanism and policy in the context of computer

security, but the distinction is especially useful in the context of frameworks. The diction

ary [24] defines a mechanism as a process by which something is done or a machine. The

framework is the mechanism. Policy is defined as a guiding procedure. The design methods

are policies for using the mechanism. A mechanism can constrain the policies that use that

mechanism. In the remainder of this chapter, some of the requirements of an ideal efficient

and flexible framework are presented.

2.2. View Data Model

In a hierarchical design approach, the a system is broken down into subsystems, then each

subsystem is further reduced to subsystems, and so on. A system or subsystem is termed a

celL A view is a particular way of looking at a cell. To a test system, a complete represen

tation of a circuit is its test vector set. That is the only information about the cell that the

test system is concerned with. A cell can have a variety of views. Example view types are:

• Documentation.

• Performance graph.

• Test vector.

• Schematic diagram.

• Mask layout.

10

11

• Net list extracted from mask layout.

• Symbolic layout.

• Compacted symbolic layout.

• Expose instructions for an optical pattern generator.

In the following sections, each of the important characteristics of such a data model is

described.

2.2.1. Naming

To name a view of a cell, the name of the view and the cell to which it belongs must be

given. Thus, the name of a view of a cell is a pair:

< cell's full name, view's name >

In this section, various ways of producing such names are presented.

If only a single name space is used, then to name a cell, the cell's full and unique name

must be given as in:

Fuji Cj>\) Nape

hopper'sALU'sbuffer

zap'sPCsbuffer

Each name is cumbersome and composed of short names concatenated together.

If there are multiple name spaces or, equivalently, the one name space is partitioned, then

the full name of a cell has the form:

< name space's name, cell's relative name >

Having more than one name space is more powerful than having only one provided each

client has a current name space and he can use relative or full cell names. In this way,

relative cell names can be used more than once. Different clients or the same client can use

the same relative cell name in different name spaces as in:

Name Space's Name Relative Cell Name

hopper'sALU buffer

zap'sPC buffer

hopper'sBIE —

12

If the current name space is hopper'sALU and the cell buffer is searched for, then

< hopper'sALU, buffer > will be found, but if the current name space is zap'sPC and the

cell buffer is searched for, then < zap'sPC, buffer > will be found. Designs must be

merged with care. If two cells have the same relative cell name and they are merged into

the same name space, either one will destroy the other or an ambiguity will result, unless

one is renamed.

A list of names of name spaces is sometimes called a search rule, a path, or an import list

[21]. Even more powerful than having a current name space is to have a current path.

Given a relative cell name, its full name is computed by searching each element of the path

until a cell is found whose name matches it. There is not a current name space. Paths

make cell libraries possible. Consider

Name Space's Name Relative Cell Name

library buffer

hopper'sALU buffer

hopper'sBIE —

If the current path is (hopper'sALU library), then buffer is found in hopper'sALU. If

the current path is (hopper'sBIE library), then buffer is found in library, because

hopper'sBIE does not contain any cells. The problem with this mechanism is that the

current path must be assigned manually.

The current path and current name space schemes can be combined into a single mechanism.

Associate a path with each name space. The current path is the path of the current name

space. Let the current name space be the name space being searched. The special path ele-

13

ment "•" (dot) denotes the name space in which the current path is contained. The search

algorithm follows. It returns false if search fails. Otherwise, it returns true and

nameSpace's value is the full name of where relativeCellName was found.

BOOLEAN FUNCTION SearchK
currentNameSpace, relativeCellName, nameSpace)

STRING currentNameSpace, relativeCellName, nameSpace;
BEGIN

currentPath = PathOfNameSpace(currentNameSpace);

FOREACH element in currentPath,
iKelement = •)

IF(InNameSpaceP(relativeCellName, element))
nameSpace = element; /* Found directly. */
return(true); ENDBF

ELSE IF(SearchP(element, relativeCellName, nameSpace))
return(true>, ENDIF ENDIF /* Found indirectly. */

END

Consider:

Name Space's Name Path Relative Cell Name

library (buffers •)

buffers (•) buffer

hopper'sALU (• library) buffer

hopper'sBIE (• library) —

hopper'sALU2 (library •) buffer

If the current name space is hopper'sALU, then buffer would be found in hopper'sALU.

If the current name space is hopper'sBIE, then buffer would be found in buffers, because

buffer is not in hopper'sBIE, buffers which is searched because of library's path which is

searched because of hopper'sBIE's path. If the current name space is hopper'sALU2, then

buffer would be found in buffers, because buffer would be found from library, before

hopper'sALU2 could be searched.

In lexical scoping or definition hierarchy, name spaces can contain name spaces as in:

Root Child Grandchild GreatGrandchild

hopper

hopper goldSoar

hopper goldSoar buffer

hopper goldSoar ALU buffer

hopper goldSoar BEE —

14

In this table, all occupied entries except those containing buffer are name spaces— buffer is

a cell. The notation:

Toot/child/grandchild

denotes the name space grandchild contained in the name space child contained in the

name space root. Paths contain just two elements. The first is the • from above and the

second is the name of the space that encloses it—sometimes called the parent scope and

denoted "• •" (dot dot). If the current name space is hopper/goldSoar/BIE, then buffer is

found in hopper/goldSoar. buffer is not in hopper/goldSoar/BIE, so the parent scope

hopper/goldSoar was searched which does contain buffer. Presumably, this name space is

serving as a library. If the current name space is hopper/goldSoar/ALU, then buffer is

found in hopper/goldSoar/ALU.

Definition hierarchy is quite different from the hierarchy of view uses or instances

described in Section 22.

If paths can contain other name spaces besides • and ••, then lexical scoping and paths can

be combined. Consider

Path Root Child Grandchild GreatGrandchild

(library) hopper goldSoar

(•••) hopper goldSoar ALU

hopper goldSoar ALU buffer

(•••) hopper goldSoar BEE

(• buffers) library

(•••) library buffers

library buffers buffer

If the current name space is hopper/goldSoar/ALU, then buffer is found in

15

hopper/goldSoar/ALU. If the current name space is hopper/goldSoar/BIE, then buffer

is found in library/buffers, because the search fails in hopper/goldSoar/BIE. The search

then considers the path (library) of the parent scope hopper/goldSoar. The name space

library's path is (• buffers). The search of library itself fails so the path of

library/buffers is considered. The search of library/buffers itself succeeds.

So far, a cell cannot have more than one view of the same type, because the view com

ponent of a view name has been regarded as the name of the view's type. However, for a

cell sometimes it is useful to have multiple views of the same type. Thus, it is reasonable

for a data model to extend the name of a view of a cell to be a triple:

< cell's name, view type's name, view's name >

Multiple views are equivalent to multiple representations, but this leads to the notion of

multiple alternatives— a notion with artificial intelligence overtones that is not presented in

depth here. Each cell may have multiple alternatives each of which has multiple views.

Suffice it to say that the names a client chooses for his name spaces, cells, and views may

encode considerable meaning— a cell may have low and high power alternatives, a

radiation-hard low power alternative, and so on. A design method may decree that name

space names are drawn from a hierarchical taxonomy of knowledge about circuits. For

example, a name space name may have the form:

designer/chip/macro-cell/cell

as in:

hopper/goldSoar/ALU/buffer

Such names map onto a hierarchical name space nicely, but such a name space is not neces

sary. A data model may have a name space name be a set of pairs:

< property's name, property's value >

16

with a powerful pattern matcher so that name-spaces can be named easily. This defines a

hypercube in which each dimension corresponds to a property. Hierarchical names map

onto a hypercube well, because, in a pattern, the order of the components does not matter.

For the properties designer, chip, macro-cell, and cell, the name:

chip =* *, designer = *, cell = buffer

would match:

chip = goldSoar, designer •» hopper, macro-cell - ALU, cell - buffer
chip = library, designer »librarian, macro-cell = buffers, cell •» buffer

Henceforth, when the term view of a cell is used, the reader may think of it either as a tri

ple or a pair. Sometimes, the term view will mean view of cell and at other times, it will

mean a type of view. If the sense is not clear from context, the term view of cell or view

type is used.

2.2.2. Protection and Locking

A mechanism that controls who can access an object and how it can be accessed by him is

termed an access control, protection, or security mechanism. A mechanism that also controls

when an object can be accessed is termed a locking mechanism. The grain of locking and

protection can be the cell, the view of a cell, or even finer grain. A data model should pro

tect and lock at least at the level of the view, because unless a multiple process computation

is updating a view, it only makes sense for one process to update a view at a time.

A demon [20, 23] is a procedure that is associated with a type of event and is called to act

when an instance of that type of event occurs. The demon may change the outcome of the

event or it may perform an independent task. The range of possible protection strategies is

bounded by unrestricted access at one extreme and by the use of demons at the other

extreme. Access control lists belong in the middle of the spectrum. If there is no chance

17

that information will be used by more than one client, unrestricted access is the most

efficient approach. If this is not the case, access control lists that can control who can write

an object are critical. If a demon is associated with each object in a database, an arbitrary

protection policy can be implemented. For example, a demon could permit an object to be

edited for no more than a certain period of time.

The range of possible data locking is bounded at one extreme by no locking at all and at the

other extreme by one-client-at-a-time-per-object locking. Multiple readers but only one

writer allowed at a time per object is in the middle of the spectrum in this case. A data

model should permit multiple readers but only one writer at any time if more than one

client is responsible for, or can modify, an object. If libraries are always copied from

development computers to production computers and each client is solely responsible for his

own objects, locking is unnecessary except at the time of copying.

2.23. Revision Control

Each object can change with time—each has a history. If a view of a cell is extended to be a

triple:

< cell's full name, view's name, timeRange >

or four-tuple:

< cell's full name, view's type's name, view's name, timeRange >,

the latest or current view in a view's history is well-defined, and there are operations on

the history, then history is captured at the granularity of the view. For each view, each

value of timeRange names a revision or version. To implement this mechanism, the latest

n versions of a view can all be stored [28], or a differential representation can be stored and

the versions derived from it [29]. In the former case, more space is traded for less time. In

the latter case, more time is traded for less space in theory. In practice, it may be that more

18

time is traded for more space, because two versions may be very similar semantically, but

differ greatly in form. To date, research on differential representations has focused on form

rather than meaning [30].

2.2.4. Crash Recovery

Most interactive editors store the current version of a design in both secondary storage and

in primary storage. The secondary storage representation is as consistent as this store itself,

but there is no guarantee that the two representations are consistent except at the time the

cell is written back to secondary storage— save time. The process of saving makes the secon

dary storage representation conform to the primary representation. The process of re-editing

does the inverse—it makes the primary storage representation conform to the secondary one.

If the computer or the framework crashes before the client has invoked the save command,

the client will lose the changes made to the primary storage. To be safe, he invokes the save

command periodically. The crash recovery capability makes it unlikely that changes will

ever be lost, because crash recovery insures that if a command completes and then the com

puter crashes, the current version will contain what the client expects it to contain.

The problem with crash recovery is that it is useful to clients that the secondary and pri

mary storage representations of the current version can differ. Before a client makes a sub

stantial change that does not warrant creation of a new version, he invokes the save com

mand. He then makes the change and if he does not approve of it in retrospect, he invokes

the re-edit command. Thus, the re-edit command can be regarded as a form of undo com

mand. Of course, the client must still remember to invoke the save command at the right

time.

If changes to the current version are logged by the database and each change can be inverted

or undone, then a new scenario is possible. Any command can be undone or re-done. Thus,

19

a client can explore many changes without having to worry about invoking the save com

mand. Undoing all of the commands invoked since the last invocation of the save command

is equivalent to invoking the re-edit command. If the change log is kept in the secondary

store, then crash recovery can be performed by re-doing all of the changes to the current

version which will still be consistent after the crash. Because the log can become very

bulky, the DBMS may truncate it at save time. This will trade space for being able to undo

beyond a save.

The change log capability effectively captures history at a finer granularity than the ver

sion. This can also be implemented by insisting that version-creation be a function of the

operation on the objects belonging to a view. This is unacceptable because it leads to many

artificial versions that do not correspond to substantial changes.

2.2.5. Other Operations

A data model should have a full set of operations for manipulating cells and their views.

These operations include copying, renaming, creating, and deleting cells and their views. If

revisions and multiple views of the same type are to be supported, then the operations are

the same, but their operands are bulkier.

Sometimes a client must be able to associate client-specific information with an object.

Without this capability, whenever a client had to associate information with an objea that

is not part of the object the client would have to invent a new data structure package! A

property list is defined as a set of pairs:

< property's name, property's value >

Each cell, view of it, and all of the objects in the views should have an arbitrarily-long pro

perty list associated with it for storing client-specific information. At least integer, real.

Boolean, string, and time constants should be valid data types for property values.

20

2.2.6. Stranger Views and Circuit Views

A data model for the contents of views termed circuit views is described in the remainder

of this section. Views whose contents are unconstrained by this data model are termed

stranger views. A stranger view's contents are treated as a sequence of bytes termed a

stream. Standard stream operations—read, write, rewind, and seek— should be provided for

stranger views. When the information required by a tool just cannot be represented in a

circuit view even with the aid of property lists, the tool must resort to stranger views. For

example, special documentation, source code for a functional model of a cell, and tester out

put may be stored as stranger views. All of the facilities presented thus far are applicable

to both stranger views and to circuit views.

23. Circuit View Data Model

The information carried by the objects in a circuit view is:

• Instances of child views of cells (which make possible hierarchy).

• Property lists associated with each object to make it possible to extend the data
model in a limited way.

• Net lists which represent physical and logical connectivity.

• Layers which represent masks and inks, and which are populated by shapes.

• The geometric functions of shapes which relate net list and geometric informa
tion.

This information is presented in detail in the following sections. A resistor cell named

resistor will be used as an example to illustrate each concept.

23.1. Instances

An instance is the use of one view inside another view. The view that is used is termed

the master [31], because it is similar to a master copy. The instance depends on its master

21

and, by transitivity, the view that contains the instance depends on the master. The view

that contains the instance is termed the dependent view or simply the dependent.

The dependent is the source of an un-weighted, single-source, directed, acyclic graph (DAG)

whose arcs are the instances in the dependent and whose nodes are the masters of the

instances. The arcs are directed from the source to the nodes. Because masters can also be

dependents, the longest path's length may be greater than one. Such graphs are often

termed instance hierarchies even though they are not trees, because a master node may have

in-degree greater than one andthe arcs are directed. An example of an instance hierarchyis

illustrated in Figure 2.1.

< voltageDivider, simulation >

instajice2
instance1

< resistor, simulation >

Figure 2.1: An instance hierarchy.

Instances are analogous to calls, masters to subroutines, and instance hierarchy to call graph

in programming languages.

2.3.2. Dependencies

Sometimes a client must determine the dependents of a master in order to process the depen

dents, because of changes to the master. State-of-the-art programming environments provide

22

tools such as MASTERSCOPE [32] that enable the programmer to display and edit calls of

subroutines. The use of such tools is termed the deferred approach, because when a subrou

tine is changed, the calls to the subroutine are not immediately checked for validity. Some

tools, notably Hawk's display service, automatically reflect or propagate changes of masters

to their dependents. This is referred to as the automatic approach. Each particular design

method and its supporting toolsdetermine which approach is most suitable.

A second graph can be constructed that provides the information that makes a dependency-

analysis tool possible. To compute this graph, let the master, from which changes are to be

propagated, be the source and reverse the direction of the arcs in the instance hierarchy

graph. Sometimes, these reversed arcs are termed pointers up the instance hierarchy. The

graph is termed the dependency hierarchy and a data model should have it by associating a

dependency set of:

< instance, dependent >

pairs associated with each master. The dependency hierarchy of the resistor example is

illustrated in Figure 22.

< RTL inverter, simulation > < voltageDivider, simulation >
s7\

< resistor, simulation >

Figure 22:The dependency hierarchy of the resistor example.

To make possible an efficient implementation of the deferred and automatic approaches, each

23

view should have a set of times— termed time stamps— associated with it. The view's pro

perty list is a convenient place to put time stamps.

Assume that all tools can be interrupted as they execute. Each view has a time stamp

whose value is when the view was last updated. For each view and each analysis tool, the

time of the tool's last complete analysis of the view should be a member of the time set.

Thus, an analysis tool can be applied to a view and it can determine what it must analyze

by comparing the times of its last analysis to the times of the lastupdates of the view itself

and all masters that can be reached from it in the instance hierarchy graph!

i

It is insufficient to examine only the masters of instances of the view as shown in the fol

lowing example illustrated in Figure 23.

24

~.----- -

c ch ip

fe-;J

L

chan
v//-y, '•''••.'//•'//y///////

IMS ALUMSB

Figure 2.3: Dependency propagation.

It is useful to associate a bounding box with each view—the box approximates the area that

the view occupies. Suppose chip contains an instance of ALU which contains an instance of

ALUMSB. The time stamp on chip is later than the time stamp on ALU, because ALU was

stable when the instance of it was created in chip. A client increases ALUMSB's layout

area so that the area of ALU increases too. Now, the client examines chip with his graphics

25

editor. The graphics editor will show a bounding box that is too small for ALU unless it

examines the instances in ALU.

For efficiency, it should be possible to access an entire instance hierarchy and its time stamps

without accessing the other objects—such as shapes—in the masters. It takes care to imple

ment a database that separates instances, time stamps, and other objects. It is insufficient to

have the time of the last update of each view only unless a view cannot be updated if any

of its masters have been updated more recently than it has been updated, and it has not been

completely analyzed.

The amount of time information in the data model can be traded for efficiency of the imple

mentation. The information carried by the time information can also be represented

differently. Consider a mixed approach. When a master is changed, a Boolean property

named re-analyzeP is automatically asserted on the property list of the instance com

ponents of the master's dependency set, but the analysis itself is deferred. When the

analysis tool is applied to one of the dependents, it searches for all instances whose property

list contains a true-valued property named re-analyzeP and analyzes such instances.

If the view or master is renamed, there are obvious problems. Creating an instance of a ver

sion of a view rather than a view itself and then deleting a view if and only if the view's

dependency set is empty would prevent these problems from arising.

Often a client is not quite using a view— rather he is using a cell and the view of that cell

he chooses to create an instance of is just a preferred view for purposes of display. For

example, an instance of a schematic-symbol view is created in a schematic-diagram view,

but at net listing time, the symbol view is replaced by its underlying diagram view. For

example, an instance of a bounding box view is created in a layout view, but the bounding

box view is replaced by its underlying layout view when the user zooms in enough or

when layout analysis tools are applied to it. Thus, a data model may have cells be the

26

masters instead of the views of cells. In addition to the master cell's name, a set of

equivalent views and a preferred one could be associated with the instance.

An instance has an optional name. If an instance in a view is being selected by via a graph

ics editor, then the instance can be found without reference to its name by pointing to it.

Thus, the instance's name is irrelevant except for documentation and as a means for select

ing the desired instance among many which overlap. Some tools must report results and

diagnostics non-interactively. These tools must have a way of referencing an instance

uniquely. Thus, an instance that is not given a name by the user should be given a unique

name by the graphics editor. A demon performs this service for Hawk. In contrast, if an

instance in a view is being referenced in a design description language, it must have a

unique, user-defined name.

233. Parameters

Parameters are analogous to programming language parameters. A parameter is similar to a

variable in that it has a name and a scalar value such as a string, integer, Boolean, or real.

A simulation view of a resistor named < resistor, sim > would have a parameter named R

to represent its resistance. Because R is a variable, this view represents a class of views. If

R's default value is 1000, then its default resistance is 1000 ohms assuming the unit of resis

tance is ohms in all tools. When an instance of this view is created, all instances will have

a resistance equal to the default value unless an overriding value is associated with the

instance by naming R and making its value the overriding one. An overriding parameter is

termed an actual parameter and the default parameter on the master is termed a formal

parameter. These terms come from the programming language analogy.

27

2.3.4. Connectivity

A terminal is a circuit object that may have a voltage-valued variable associated with it,

among others. Here, voltage is abstract such as high or 0.3 millivolts. Like a parameter, a

terminal has a name. The simulation and layout views of a resistor have two terminals

named + and -. These two terminals are functionally interchangeable in this case and a

data model should represent this fact. In a hypothetical design description language, the

simulation view might have the form:

CELL resistor

VIEW TYPE simulation

TERMINAL +

TERMINAL-

CAN INTERCHANGE + -

FORMAL PARAMETER R 1000

When an instance of one of these views is created, the instance inherits the terminals of its

master. As in the case of parameters, terminals of the master are termed formal terminals

and those of the instance are termed actual terminals.

A net represents a "signal" or a set of terminals that are "logically" connected such that the

terminals all have the same voltage. The physical implementation of the connection deter

mines how different the terminal voltages are. A net has an optional name. To make the

simulation view of a voltage divider cell, two instances of the simulation view of the resis

tor would be made in it:

CELL voltageDivider
, VIEW TYPE sim

COMMENT instanceName masterCellName masterViewType
INSTANCE instance 1 resistor sim

INSTANCE instance2 resistor sim

A net would connect either of the two actual terminals on one of the instances with either

of the two actual terminals on the other instance.

28

CELL voltageDivider
VIEW TYPE sim

INSTANCE instance 1 resistor sim

INSTANCE instance2 resistor sim

COMMENT < instanceName, terminalName >
NETnetl <instancel, - > <instance2, + >

This would leave two unconnected actual terminals-one on each instance. Three formal

terminals could then be created named ground, voltage, and dividedVoltage. ground

would be connected to either of the two unconnected actual terminals by making a second

net and voltage would be connected to the other by making a third net. dividedVoltage

would be merged in the first net.

CELL voltageDivider
VIEW TYPE sim

INSTANCE instance 1 resistor sim
INSTANCE instance2 resistor sim

TERMINAL ground
TERMINAL voltage
TERMINALdividedVoltage

NET netl dividedVoltage <instancel, - > <instance2, + >
NET net2 ground < instance2, - >
NET net3 voltage < instance!, + >

23.5. Regularity in Connectivity

A bus is a sequence of nets or terminals termed bits that it is convenient to treat as a unit.

For example, an operand bus of an ALU may be implemented as 32 separate bit terminals,

but it is inconvenient to specify a voltage for each one. Rather, it is convenient to apply a

decimal value to the operand bus that may be used directly by a functional simulation tool

or partitioned into bit voltages by a circuit simulation tool.

Some data models allow sequences of nets, but not sequences of terminals. However, a

sequence of nets in a view can be thought of as a sequence of terminals that might be

29

formal terminals of the view. Not having sequences of terminals make instances bulkier

than they need to be, because they force each bit to be represented as a separate terminal.

If terminal sequences can be represented by single terminals, then the problem is solved.

The schematic-symbol view of an ALU would have a terminal named operandA<0-31 >

and the same view of a shifter would have a terminal named in < 0-31 >. A net connect

ing these two terminals represents 32 bits by the naming convention as in:

INSTANCE alu ALU schematic-symbol
INSTANCE sh shifter schematic-symbol

NET <sh, in<0-31 > > <alu, operandA<0-31 > >

If bit 7 has to be extracted from a bus terminal, then the terminal is connected to a tap,

merger, or ripper instance that has at least two terminals named 32 < 0-31 > and i, and a

parameter named i whose value is the number of the bit to be tapped:

INSTANCE alu ALU schematic-symbol
INSTANCE sh shifter schematic-symbol
INSTANCE tap lFrom32 schematic-symbol
COMMENT Tap off bit 7.
ACTUAL PARAMETER tap i = 7

NET <sh, in<0-31 > > <alu, operandA < 0-31 >
NET <alu, operandA<0-31 > > <tap, 32<0-31 > >
COMMENT Connect operandA < 7 > to —
NET <tap,i >_

In a real design description language, the tap instance could be implied by notation that is

compiled into the database:

INSTANCE alu ALU schematic-symbol
INSTANCE sh shifter schematic-symbol
NET <sh, in<0-31 > > <alu, operandA<0-31 >
NET <alu, operandA< 7 > > -

The schematic-drawing view of the ALU would have 32 separate terminals named:

CELL ALU
VIEW TYPE schematic-drawing

TERMINAL operandA <0 >

30

TERMINAL operandA < 31 >

The mapping between the operandA terminals on the drawing view to the terminal on the

symbol view is straightforward.

Rather than having to parse terminal names to access the bits of a sequence of terminals

representing a bus, a data model may have the name of a terminal be a triple:

< string name, number of LSB, number of MSB >

If there are no tap instances in a schematic-drawing view, then there is no need to number

bus terminal names at all, because the number of bits in the bus can be determined at net

listing time by examining the schematic-drawing views associated with instances of

schematic-symbol views.

Often in logic families, one has a part that processes nBits bits and wishes one had a part

that processes

multiple*nBits

bits. To represent the desired part, the client—a user or tool—creates a new cell with

schematic-diagram and schematic-symbol views. The client instances in the new diagram

view multiple instances of the nBits symbol view, connects them together if desired, copies

each formal terminal on the nBits symbol view to the new diagram view, adjusts the bit

range on any bus formal terminals, and connects the formal terminals to the actual termi

nals. Bus formal terminals must be connected to actual terminals through tap instances. If

subscripts are not being used on bus formal terminals, then the new and old symbol views

are the same. If not, then the client takes the nBits symbol view, copies it to the new sym

bol view and adjusts the bit range on any bus formal terminals.

As a second alternative for representing the part, the client just instances the original sym

bol view, but makes the value of the instance's property named SIZE the value of multiple

31

[33]. The new diagram view is implied by the original symbol view and the value of the

SIZE parameter, but it is not created. It is up to the net list processing tools to implement

this implication.

There are additional properties that net list processing tools may wish to recognize. The

ConnectSingletonsP property directs the tools to assume that all terminals that are not

buses are to be connected. This arises when control signals are represented by terminals

that are not buses.

The Cascade property on a terminal in directs the tools to assume that in on an instance

connects to out on the next—in the sense of next bit—instance. This arises when one wishes

to connect bits of a shift register or carryOut to carryin on an adder. Other properties

that assert regularity are undoubtedly desirable.

23.6. Geometric Information

There are a variety of techniques for describing geometric data [34, 35]. The issues of prime

importance here are to simplify the description of the most common shapes while not

excluding more complex ones. Hints, such as "this shape is a rectangle", can often be used to

improve processing efficiency later. In the following sections, a particular choice of shape

types is described which illustrates the main issues involved.

23.7. Shapes

Each separate view possesses a set of 2D, Cartesian coordinate systems that are superimposed.

Each coordinate system is termed a layer as illustrated in Figure 2.4.

ay f

JL

32

Figure 2.4: Four layers.

The meaning of layers is application-dependent. A view of a cell that contains integrated

circuit masks would possess shapes on layers that represent masks and a schematic view of a

ceD would have shapes on layers that represent inks. Different inks could be used for pins

and wires, symbols, and labels.

A shape is a set of curves on one layer. The curves forming a single shape need not be

closed. If a shape is filled, it becomes a surface bounded by the shape's curves. If a shape is

outlined, it remains a set of curves. Examples of outlined shapes are illustrated in Figure

2.5.

33

A Label

direction®!—___jgexplicitCurve

single—en led arrow

line

^ovplinitrnrvp ^explicitCurve

»otar>g1f»

circutar ar

control point

Figure 2.5: Outlined shapeswith control points shown.

A shape is termed Manhattan or orthogonal if each of its curves are perpendicular to one of

the two axes. A shape can be defined by a set of control points and parameters. A spUne is

a curve that is denned by a sequence of control points that indicate the curve's desired

shape. The term control points is used in the literature of splines [31].

Magnetic tapes for machines that make masks and wire-wrap boards are expressed in real

34

coordinates. For a particular machine, real coordinates can be re-expressed as integral multi

ples of a real-valued unit of distance termed lambda [8] that is equal to the smallest distance

the machine can resolve. Multiples of lambda can be processed more swiftly than real coor

dinates can be processed. Expressing real coordinates as multiples of lambda also defers the

selection of lambda to the last possible moment so the designer can re-scale his design if he

wishes. For these reasons, control points must be integral and their units are lambda. A sil

icon wafer six inches in diameter is 15.24X108 angstroms or a little more than 109 angstroms

across. Since 109 can be encoded in 32 bits, an acceptable precision for an integer is 32 bits.

Fortunately, current microprocessors process 32-bit data.

Unless a shape is a point, in the general case all of the points on the shape cannot be

represented by integral coordinates. Tools must deal with this fact and it may cause prob

lems. For example, if display code clips a non-Manhattan polygon in window coordinates,

then visible edges may be displayed with the wrong slopes. The solution is to clip in

viewport coordinates. For example, an operation that clips a non-Manhattan polygon to a

rectangle may yield polygons whose control points cannot be represented by integral coordi

nates. The solution is to let the user beware or let him draw control points on an integral

drawing grid that is coarser than the integral grid. For example, if each circular arc is

denned by three control points on the arc, then an arc with a slow rate of curvature can

only be drawn on a quite coarse drawing grid.

A rectangle is defined by a lower left corner and an upper right corner. In the hypothetical

design description language, a rectangle might have the form:

SHAPE

LAYER NP

LOWER LEFT 10 10

UPPER RIGHT 100 100

COMMENT All rectangles are Manhattan.

Filled rectangles occur very frequently in mask layout while unfilled rectangles often

35

occur in block diagrams and schematic diagrams. Every shape defines an implicit rectangle

that is termed its bounding box. A shape's bounding box is the rectangle with minimum

area that encloses all of the points on the shape's curves.

Refer to Figure 2.5. A filled line, or path, is defined by a sequence of control points and a

width, width. Each successive pair in the sequence defines a line segment. The curve

denned by this sequence of line segments is termed the center-line:

SHAPE
LAYER connect

CENTER LINE 0 0 100 0 100 100

WIDTH 20

COMMENT The bounding box for this line is implied by the center-line.
LOWER LEFT 0 -10
UPPER RIGHT 100 110

COMMENT By inference, this line is Manhattan.
IS MANHATTAN

The line itself can be thought of as a thick center-line with width governing the thickness.

More formally, the line is the locus of points that are width/ 2 from the line segment

sequence with the semicircles at each end cut away so that the first and last control points

correspond to where the line begins and ends respectively. The problem with this represen

tation is that often a line of odd width must end on the edge of a rectangle, but then the

line's control points do not lie on the integral grid.

The center-line of a line divides the closed curve that bounds the line into two open curves.

In a representation that solves the aforementioned problem, the control points define one of

these two curves. The curve denned by the control points is denoted by explicitCurve and

the other by implicitCurve. implicitCurve is denned by an additional control point

direction. The direction vector whose tail is the first control point of explicitCurve and

whose head is direction defines the direction to travel in to intersect implicitCurve. The

direction vector must be perpendicular to explicitCurve. width is the distance to travel.

SHAPE

LAYER connect

EXPLICIT CURVE 0 -10 110 -10 110 100
DIRECTION 0 0
WIDTH 20

COMMENT The bounding box for this line is implied by the center-line.
LOWER LEFT 0 -10
UPPER RIGHT 110 100

COMMENT By inference, this line is Manhattan.
IS MANHATTAN

36

Filled lines with non-zero-width on mask layers could serve as physical interconnect in an

IC. Filled lines with non-zero-width on PCB-side layers could serve as wire traces. Lines

with zero-width—termed vectors— on ink layers could serve as wires in a schematic

diagram. Note that there is no logical, or connectivity information, expressed explicitly by

the line. It is reasonable to have a vector shape so that a shape processing tool does not have

to check width. It is useful to have two special lines— double-ended arrow and single-

ended arrow— that represent arrows, because they are used often in schematic symbols— for

example diodes—and schematic diagrams—for example buses. Arrows can be made up of

lines and polygons, but then selecting an arrow with a graphics editor becomes difficult,

because the arrow is really a set of separate shapes that each must be selected.

A polygon is denned by a sequence of control points termed its vertices:

SHAPE

LAYER CD
VERTICES 0 0 100 0 50 100

LOWER LEFT 0 0
UPPER RIGHT 100 100

COMMENT A triangle cannot be Manhattan.

A circle or doughnut slice is represented by a point defining its center, and integer constants

denning its inner and outer radii, and beginning and ending angles:

SHAPE

37

LAYER CD

INNER RADIUS 0

OUTER RADIUS 100

BEGINNING ANGLE 0

ENDING ANGLE 90

CENTEROO

LOWER LEFTOO

UPPER RIGHT 100 100

COMMENT Such a shape cannot be Manhattan unless it has trivial radii.

The angles are in degrees and are measured counterclockwise from the x-axis. To be exact,

the data type of an angle must be real. There are four implicit control points corresponding

to the beginnings and ends of the inner and outer circular arcs. These control points do not

necessarily lie on the integral grid. Technically, a circle whose diameter is odd cannot be

represented. Practically, if typically control points are placed on a drawing grid, but the

user can also place control points between drawing grid points, then a circle whose diameter

is odd can indeed be represented.

A Manhattan transformation may be any sequence of flips about the axes, rotations about

the origin by multiples of 90 degrees, and translations. The above, angle-oriented represen

tation of a circle can be transformed by a Manhattan transform very quickly by translating

the center point and calculating the transformed angles trivially.

A representation that doesnot use angles or radii may be better

SHAPE

LAYER CD

OUTER ARCS BEGINNING 100 0
OUTER ARCS ENDING 0 100
INNER ARCS BEGINNING 0 0
INNER ARCS ENDING 0 0
CENTEROO

LOWER LEFT 0 0
UPPER RIGHT 100 100

COMMENT Such a shape cannot be Manhattan unless it has trivial radii.

The problem with this representation is that a center point and two other control points

38

define a circular arc only if the distance from the center point to each of the other two con

trol points is identical. It is also possible to eliminate the center point by representing a cir

cular arc by three control points that lie on the circular arc. A problem with this represen

tation is that three random points in the plane do not lie on a circular arc if they are col-

inear, but such an invalid definition can easily be detected. Even if they do, the middle

point may not lie on the integral grid. For example, the circular arc in the first quadrant of

the unit circle cannot be represented by three control points.

The first representation is preferred, because it is the only representation that does not have

to be verified to represent a circle. However, a graphics editor should have three different

commands for drawing circular arcs:

1. The user picks two points: the center and a point on the arc to define a full cir
cle.

2. The user picks three points: the center, the beginning of the arc, and the ending
of the arc. The distance between the first two points is the arc's radius. The coor
dinate of the ending of the arc is only used to calculate the angle that the arc
sweeps out so the coordinate does not have to lie on the arc. This command is used
to draw pie charts and arcs that sweep out a multiple of 90 degrees.

3. The user picks three points: the beginning and ending of the arc, and another
point that is supposed to be on the arc The editor fits this last point to obtain an
arc that is as close to the desired one as possible. This command has a spline flavor
and would be used to draw the three arcs on the schematic symbol for an OR gate.

In order to represent a schematic diagram that contains classical logic gates, the drawing grid

must be several times coarser than the integral grid or else the tips of the input pins for a

NOR, OR, or XOR gate will not lie exactly on the arc that the pins lie on when the gate is

drawn with real ink,

A Josephson junction might be patterned as a filled circle and a JFET gate might be pat

terned as a filled doughnut. An unfilled semicircle might be part of the schematic-symbol

for an AND gate and an unfilled circle might be part of the symbol for a voltage source.

A data model may extend the doughnut slice to an elliptical shape and include splines for

39

making free-form drawings.

A label is denned by a string constant that gives the characters in the label itself, a string

constant that gives the character font, and an integer constant that gives the font's height.

A control point defines where the label is to be placed subject to a justification such as

"left","center", or "right":

SHAPE

LAYER blue

JUSTIFICATION left

LOCATION 0 0
HEIGHT 10

LABEL framework

FONT roman

LOWER LEFT 0 0

COMMENT The x-coordinate of the upper right corner is an upper bound,
COMMENT because the width of the letters vary with the font and
COMMENT perhaps even the characters in the label.
UPPER RIGHT 90 10

More refined justifications may be desirable including justifying relative to other shapes.

The height can also be represented by the distance between the location control point and an

offset control point. The justification can also be represented by the direction vector defined

by the offset and location control points. A document with multiple fonts could be stored

in a cell view on an ink layer.

23.8. Geometric Functions

Geometric functions represent the relation between the net list information and the

geometric information that implements or pictures it. Any of the shape types—such as circle

and rectangle—can serve any of the four geometric functions. Examples of geometric func

tions are illustrated in Figure 2.6.

40

nMOS FET layout

active area

interconnects
pijis

resistor symbol

Figure 2.6: Examples of geometric functions.

A shape associated with a net is an interconnect. Wires, contacts, and edge-connectors are

interconnects.

A shape associated with a terminal that represents the piece of material to be connected to

in order to determine the terminal's voltage is a pin. In Figure 2.6, two resistor pins and

four FET pins are illustrated. A vector functioning as an interconnect is connected to the

top resistor pin and a line functioning as an interconnect isconnected tothe right FET pin.

A shape that is not an interconnect or a pin, but represents an instruction for manufactur

ing is an active area. In Figure 2.6, the rectangular channel of the FET functions as an

active area.

41

A shape that is not an interconnect or a pin, nor does it represent an instruction for

manufacturing is a frame. In Figure 2.6, the jagged vector functions as a frame. It is

intended that shapes functioning as interconnect, pin, or active area be placed on layers that

represent instructions for manufacturing. Again, the meaning of layers is application-

dependent.

A frame is a shape that functions as part of an abstraction. For example, the schematic-

symbol for an AND gate is an abstraction. As another example, a protection frame [36]

summarizes a layout and it is forbidden to place a shape too close to one. The space between

protection frames may be used as routing channels. Protection frames are the topic of the

last section of Chapter 6.

Geometric functions are also important in an automatic routing method such as the gate-

array design approach. As the first step in a design, the user defines the net list in a

schematic-diagram view. As the second step, the router is invoked to compute interconnects

for all nets. For each terminal in the schematic-diagram view, there is a corresponding ter

minal in the gate array view. In the schematic-diagram view, each terminal usually has

one pin, but in the gate array view, each terminal may have more than one pin to give the

router more freedom. As the third step, the designer can route any overflows. As the

fourth step, equivalent circuits for the routed nets are computed by an extractor and fed

back into the schematic-diagram view.

The nMOS [8] layout view of the resistor resembles a barbell as illustrated in Figure 2.7.

N/

:.<i-

m

conn

:̂>:.,-::

c

iilp:;

Figure 2.7: A 1 kiloohm polysilicon resistor.

• :

::/:..:
:,,:,

42

The shapes in this view follow:

• The "bar" represents a polysilicon rectangle functioning as active area. Because
the resistance of polysilicon is assumed to be 50 ohms/square, the rectangle s width
is 2and length is IK ohm divided by 50 ohms/square divided by the width or 10.
A line shape with two reference points would also be valid.

• Each "weight" represents apolysilicon to metal contact of minimum size made up
of three rectangles functioning as pins. There is one contact for each of the two
terminals of the resistor. Thus, there are three pins for each of the two terminals

43

of the resistor.

23.9. Placed Instances

In the presentation of net list information, masters were said to be used. Actually, when a

geometric view, such as layout or schematic-diagram, of a master is used, it is geometrically

transformed to place it in the coordinate system of the dependent. The transformation may

involve rotation about the origin, flipping about the axes, scaling, and translation. Manhat

tan transformations speed transformation of masters— see Chapter 3—and can be represented

by a point to encode the translation and three bits to encode the eight possible combinations

of flips and rotations.

A designer often creates a formal terminal and connects it to an actual terminal merely to

rename the actual terminal. In layout, the pins of each actual terminal to be renamed are

copied into the dependent where they are made pins of the formal terminal whose name is

the new name. A naive display of the dependent would show actual pins overlapping for

mal pins which is fine, but if the name of the terminal a pin is associated with is displayed

inside the pin, terminal names on overlapping pins will also overlap and be unreadable. A

possible solution is to have the data model decree that if pins on the same layer overlap,

then only the name of the terminal associated with the pin that is closest to the dependent

in its hierarchy will be displayed. If the pins are all at the same level of the dependent's

hierarchy, then a more sophisticated strategy must be chosen for displaying terminal names

which take into account the area around overlapping pins.

23.10. Geometric Regularity

In IC layout, often views are laid out as 2-dimensional arrays. In memories, each array ele

ment is an instance of a master that processes one bit of information.

44

The KIC 2 graphics editor [37] is built on topof a CIF [8] database package that uses the OF

user extension command to encode a 2-dimensional array of instances of a single master.

This command has the form:

OA s m n dx dy;

which means to create an m by n array whose elements are instances of the symbol s with

a distance of dx between columns and a distance of dy between rows. This 2D, homogene

ous array object—homogeneous as only one symbol is replicated—has been used with some

success. Many graphics editors have used this approach successfully. The main functions of

such a simple array object are to use less space than would be used if each element of the

array is stored as a separate instance, capture designer intent, make it unnecessary to re

place instances if the master's dimensions change, and make it easier for layout analysis tools

to avoid rechecking the same inter-element interactions repeatedly.

This simple array object has several problems. The first problem is that often, adjacent ele

ments are the mirror images of each other in order to enable supply sharing. This can be

represented as a simple array object that references a "dummy" view composed of 4

instances arranged as a 2 by 2 array. This level of indirection is clumsy and artificial. The

second problem is that ROM arrays are not purely homogeneous though simple RAMs or

register files are. The third problem is that all masters do not necessary have the same

dimensions. This is true of the layout fragments that can be arranged as an array to form a

PLA. The fourth problem is that bus terminals on each element are not suffixed with a bit

subscript as in:

operandA <i >

Note that in layout, a bus is represented by all terminals whose names match after sub

scripts have been removed from their names. Another problem is that even if the master

has no layout rule violations and an equivalent circuit has been extracted for it, the

equivalent circuit for the entire array must be stored. It would be much more space-

45

efficient to store how an element that is not on the border of the array connects to its neigh

bors so that the equivalent circuit for the entire array can be derived, but is not stored

explicitly. The final problem is that it is impossible to alter any of the elements without

modifying all of them.

The solution is a new breed of array object that enables each element of the array to be a

code that indexes a table. It is assumed that elements in the same row have the same height

and elements in the same column have the same width. However, each row can have a

different height and each column can have a different width. Each table entry stores the

following information:

• Master.

• Rules for neighbors on the left, below, on the right, and above.

Each neighbor rule has the form:

• Amount of overlap.

• A list of pairs of pins. In each pair, one pin is the master's and one pin is the
neighbor's.

23.11. Geometric Operations

A tool that processes layouts performs repeatedly geometric operations such as 2D searches.

Sometimes a layout contains thousands of shapes. Thus, the tool's data structures affect its

performance. If the framework's database is going to perform common geometric operations

on the behalf of tools, then the framework's database must employ data structures that per

form efficiently. The types of common geometric operations and many of the common lay

out tools that use them follow.

2D Geometric Operation Taxonomv

Terms for Operation Tvpe Tools

rectangular range query
area enumeration

windowing

layout rule checker
display tool
extractor

graphics editor
extractor

nearest neighbor search graphics editor

cover search

ray casting
compaction tool
maze router

river router

touching
intersection

diagram parser
extractor

recursive touching
recursive intersection

diagram parser
extractor

scanning layout rule checker
extractor

compaction tool
routing channel generator

incremental shape merging graphics editor

mask operations mask modification tool

boxing
pattern factoring

pattern-generator code-generator
display tool

Each of these geometric operations is illustrated in Figure 2.8.

46

47

w, mp%m>.
rectangular range

/

mm
i +«

WSMwmim. -W////A
torgcst box allowed

+ incremental me-j: +

Figure 2.8: Geometric operations.

One operation can often be recast as another. Touching can be recast as a range query in

which the range rectangle is the bounding box of the shape that is being touched.

Recursive-touching invokes recursive-touching recursively to calculate the transitive closure

of the touching relation. Nearest neighbor can be recast as a sequence of range queries with

each successive range rectangle being larger than, and enclosing, the previous one. It may be

48

possible to derive an even more efficient nearest neighbor operation by selecting the range

rectangles— denoted by the natural numbers—in the following clockwise "spiral" pattern

about the search point *:

j

:

8 5 5 5 5

8 4 1 1 6

*M 8 4 * 2 6 •*•

8 3 3 2 6

7 7 7 7 6

:

:

Cover search can be recast as a sequence of nearest neighbor operations in which the first

neighbor is constrained to lie in the cover search direction from *, the first neighbor then

becomes * and the operation recurs.

The first operations are "local" search operations, because the answer set's size is typically

much less than the total number of shapes present and the operations can attain efficiency

by minimizing the number of shapes that are searched. Scanning is a "global" search opera

tion, because the whole layout is usually searched.

The remainder of the operations modify the layout. Mask operation and boxing are imple

mented by a variant of scanning. Incremental shape merging can be implemented by a vari

ant of scanning or recursive touching.

The most popular geometric data structures are square bins [38], 4-d trees [391 and quad

trees [40]. Less popular is the bit map of [41] mentioned here for completeness. Because of

the way Squid is structured as presented in Chapter 3, it would be straightforward to use

any of these data structures.

Square bins have to be implemented as a sparse matrix or the bins waste too much space on

empty bins. At the floor plan level of an integrated circuit layout, there are a few large

49

instances that take up much of the space and there is no sense binning them. There are

several ways to handle shapes that intersect more than one bin.

These problems lead to bin data structures like quad trees in which the bins adapt as shapes

are inserted and deleted. Quad tree operations require more arithmetic than the other data

structures.

4-d trees are an application of Bentley's k-d trees that uses a non-standard search key space.

The reference [39] indicates that 4-d trees work very well. The trees trade time for space

in internal nodes. In a highly dynamic application, it is unclear how costly in time tree

balancing is. The trees can answer cover search and range query. Until recently, they have

been the state-of-the-art.

Recently, two new data structures have been proposed: vertical and horizontal bins [42] and

corner stitching [43]. I have implemented a variant of the former that is the subject of

Chapter 4. The latter shows great promise, because it can be used to implement virtually

all of the operations efficiently. All of the other data structures represent only the shapes

themselves and the empty space between shapes is implied. An important contribution of

corner stitching is that its explicit representation of empty space enables efficient local

searching.

2A. Database

In Chapter 1, database approaches were presented and the data structure package approach

was seen to be the most promising. Thus, the objects and operations presented in this

chapter are best implemented as a data structure package.

It does not matter how the information is kept in secondary storage. If a DBMS was con

structed that solved the problems alluded to in Chapter 1 and Section 2.1, it could work

50

well. Also, a flat file system, or a hierarchical file system can work well. All three make it

possible to cluster the information in a single view and support the access control and lock

ing operations. When a view's contents are referenced or accessed for the first time, they

must be compiled into a primary storage data structure that makes it possible for the opera

tions to be efficient.

A virtual memory primary store is desirable because in a single session or process lifetime, a

client inspects many views often, but not all at once. A virtual memory is not critical,

because the data-structure package can easily demand-page view data structures between

primary and secondary stores. However, neglecting operating system space, the primary

store should be at least several times the size of the largest view and the largest view

should be paged only if it has not been accessed for a long time. Thus, the largest view and

the masters it uses one level down in its instance hierarchy should all fit in the primary

store. The largest views are typically the root or top-level views of instance hierarchies in

the case of IC layout.

The implementation of dependency sets is not straightforward. It is well known that it is

hard, but possible, to insure that update to the dependency set and update of the dependent

is atomic. A better solution is to update the dependency set when the dependent is saved to

secondary storage. Thus, the dependency set would not have to be updated if no new

instances were created or deleted before saving the view.

The choice of the programming language in which to implement the objects and operations

described here is a deep topic. The languages of today differ greatly in programmer conveni

ence and in the quality of execution of programs written in them. The latter is partly

determined by the language itself, the computer, the language processor, and the program

mer. From a semantic point of view, the choice does not matter as long as the language has

long identifiers for abstraction; subroutines, methods, messages, or procedures for implement-

51

ing operations; macros, in-line code, or open code for making operations very efficient;

dynamic creation or allocation of data space for implementing objects; and subroutine

pointers for implementing demons [20], triggers, or attached procedures that make it possible

for a client to extend the operations without modifying the source code for them. Most

modern high-level programming languages have these features.

Processes that share heap and semaphores are very desirable, but not critical. If the language

or its packages have processes that do not share heap, processes must communicate via secon

dary storage which leads to replicated information and slow communication.

2JS. Hardware Independence

A CAD framework might have to be hardware independent, because the hardware must be

matched with the tools and tools vary greatly in their computer and user interface require

ments. If the graphics editor is being used for schematic diagram capture, then a mono

chrome or four-plane frame buffer is sufficient while for leaf cell layout, a frame buffer

with a larger number of planes may be necessary. A microprocessor with no floating point

instructions may be enough for a graphics editor while the SPICE circuit simulator [ll] can

benefit from a processor with matrix instructions [44].

There are several ways to construct a computer-independent framework: use a portable

language that invokes system calls through a run-time package, use a portable OS,or use an

OS that is available on a range of computers. Examples of the first way include FORTRAN,

SMALLTALK, MAINSAIL, and PASCAL. An example of the second way is the UNIX OS.

The first way can emulate the second way. Both ways are complicated by the fact that

each vendor's product deviates from the standard so that the framework builders must first

study all of the products for a lowest common denominator and resist the temptation to use

a feature that is not in the lowest common denominator.

52

As noted in Chapter 1, a framework that uses a model or virtual graphics terminal package

such as MFB can be terminal independent. It is well-understood [31] how to write a virtual

graphics terminal package.

2.6. User Interface

There must be an inspection service—a set of commands for inspecting all the information in

the database. Various display services must be provided that can be invoked by this inspec

tion service as well as the services that edit the database. For example, a tree drawing ser

vice would be useful for displaying name spaces, instance hierarchies, and dependency

hierarchies. A service that can draw the shapes of Squid circuit views will be used by all

graphics editors. A service to draw waveforms would be useful to tools such as simulators.

The editing services must enable the contents of circuit views, and cells and views of them

to be edited. A text editor can serve as a basic editing service for stranger views.

The scheduling services must enable tools and other services to be invoked, controlled, and

their resource utilization and progress monitored. There is a wide range of capability in

scheduling. The most basic capability enables the client to invoke one tool at a time and

optionally abort it. The most sophisticated capability enables the client to fully control a set

of tools executing simultaneously as a set of processes. Processes can be started, interrupted,

resumed, re-started, aborted, and set up to pause under certain conditions.

2.7. Summary

In this chapter, the requirements for an ideal circuit CAD framework have been described.

In the following chapters, an experimental framework is described which implements many

of the features presented in this chapter.

CHAPTER 3

THE SQUID PACKAGE

3.1. History

As stated in Chapter 1, the framework is built on top of 42 BSD UNIX. Thus, the Squid

package was constrained to be written in a 4.2 BSDUNIX programming language.

When the implementation of the Squid package was started two and a half years ago in

September of 1981, the languages and packages available were Berkeley's Lisp dialect Franz,

Pascal, FORTRAN 77, C, and the EQUEL query language for Berkeley's INGRES [45,46]

relational DBMS.

Franz was considered carefully largely because of my belief in Lisp. Most of the programs

in use by my research group were written in C, Pascal, and FORTRAN which do not inter

face easily to Franz. Franz's mark and sweep garbage collection is poor for interactive tools.

At this time, Franz starts up with 1.1 megabytes of virtual memory—quite a bit for a

work-station. Access-oriented and object-oriented [23] programming packages like GLISP

[22] and Flavors [20] were not available on top of Franz. On the other hand, the other

languages available did not have a source level debugger, strings, lists, an evaluator pro

cedure like EVAL, Franz-based graphics and graph-making packages under development by

Berkeley's Vaxima project, etc.

EQUEL is an excellent relational calculus with the power of an ALGOL family language as

it is embedded in C I designed a relational schema for the CIF data model which led to a

benchmark [17] comparing INGRES and my CIF database package [37] CD. Problems with

INGRES were found—the most important was very poor performance relative to CD. The

53

54

causes include:

1. INGRES' caching is poor.

2. Its access methods are limited and hard to control by the client.

3. It does not cluster data spread across relations. Often, the client is willing to de
clare the cluster in the schema. Example clusters are view of cell and OF symboL

4. The data model is missing a multiset feature. The client simulates the multiset
feature via integer-valued "id" domains whose values serve as identifiers of sets.
Each set element may be spread across many relations. To collect a set, the same in
teger domains in different relations are joined on the "id" of the set.

5. Queries cannot be built at run-time and interpreted via EQUEL.

After evaluations of all of these languages and packages, I decided to build a special-purpose,

access-oriented [23] package in C C is used widely and the 42 BSD UNIX compiler gen

erates fast code reliably. The ramifications were that the only ways that the user could

extend the data model was to use stranger views or property lists; because UNIX does not

have a C interpreter, unplanned queries could not be supported; graphics, graph-making,

string, list, heap management, dynamic linking, circuit view file parser, and circuit view file

generator packages had to be built; and a circuit view file format had to be designed. Pars

ing and generation could have been avoided by building a tool that would read and write

heap images. The form of a heap image is defined in C data structure declaration files

termed header files. This tool would be table-driven by a data type table built from header

files.

3.2. File System

UNIX's secondary store—the UNIX file system—is a rooted tree whose internal nodes are

directories and whose leaves are files. Thus, a directory holds information about files and

sub-directories. Each node has a name that need not be unique, but each node at the same

level of the same subtree must be named uniquely. The name / (slash) denotes the root

55

directory of the tree. The full name of a node named nodeName at level n+1 of the tree is:

/nodeNamel/«ynodeNamen/nodeName

where the nodeNamei are the elements of the simple path to the node starting from the

root. Only the first slash denotes the root—any remaining slashes separate node names. Such

a name is termed a path name. Each login process possesses a directory termed its working

directory.

In the Squid system, each cell is represented by a directory node whose name is the same as

the name of the cell. Each view of a cell is represented by a file in the directory represent

ing the cell. The file's name is usually the same as the view type's name, but does not have

to be. Circuit and stranger views are different, because the contents of a file representing a

circuit view can be parsed and generated by the Squid package, but the contents of a file

representing a stranger view is unconstrained. View-of-cell is the only inter-UNIX-node

relationship in circuit and stranger views. In addition, instance-of is an inter-UNIX-node

relationship in circuit views. Other inter-UNIX-node relationships can be represented by

property lists. For clarity, from here on a file representing a circuit view will be termed

simply a view file, a file representing a stranger view will be termed a stranger view file,

and a directory representing a cell will be termed a cell directory.

33. Path Mechanism

Each UNIX process has a store with it that is used as a property list termed an environment.

Each element of the list is termed an environment variable. When a process invoking the

Squid package starts, the value of the process' environment variable SQROOT is the current

cell if the variable is bound. Otherwise, the process' working directory is the current cell.

Each cell directory represents a single name space—because the file system is hierarchical,

the name space is also hierarchical. Thus, the current cell is equivalent to the current name

56

space and vice versa. Each cell contains a special stranger view, named the path view, that

contains the cell's path. Effectively, this view contains a list of views that can be used as

masters inside other views of the cell. The name searching algorithm is implemented as

described in Chapter 2. Squid operations that change the current cell are presented below.

If the current name space's path is changed, the < master, instance > associations of the

current cell are not re-evaluated automatically. A NameSearchMasters call to force re-

evaluation is not in Squid, but should be. If the path stranger view was instead a circuit

view with the elements of the path represented in the circuit view's property list, syntax

errors in paths would be impossible. A change to a path view could be detected by a Squid

demon that could invoke NameSearchMasters automatically.

One policy in use showcases this mechanism. In the directory ~ cad/lib/hawk there are

two sub-directories named technology and process. The cells in process contain informa

tion about processing lines such as transistor threshold voltage and metall spacing. The

cells in technology represent circuit-level information, such as valid masks and transistor

ratios, for each circuit technology like 2PhaseStaticNMOSWithDepletionLoads.

A client has project directories within the subtree rooted at his home directory where he

keeps circuits designed in technology technology. To study the impact of a processing line

line on his circuits, the client makes a project directory's path:

(•
~cad/Hb/hawk/technology/technology
~ cad/lib/hawk/process/line)

3.4. Protection

For each UNIX file system node, its owner can control read, write, and sense-existence-of

access for three sets of users: himself, a user group, and everybody but him. Because Squid

57

package operations on cells and their views are implemented by file-system system-calls,

UNIX protection implements Squid package protection.

An advisory lock is a lock that can be ignored by an uncooperative user. A node is termed

open to, in, or by a process, if the process has invoked open or creat to assert its intent to

read or write the node's contents. 42 BSD UNIX has an advisory lock feature that can

implement multiple-reader or one writer locking. Because only an open node can be locked

and there is a UNDt-compile-time upper bound on the number of nodes a process can have

open at once, there is the same bound on the number of locks a process can have. If the

Squid package used the 4.2 BSD UNIX lock feature and the maximum number of open nodes

per process was 30, then if the client tried to access its 31st view, a lock would have to bro

ken, creat can be invoked to atomically create a read-only file if it does not exist and thus

can be used to implement locking. Two files are associated with a view file. The first file is

the read-only "lock" file. The second file is the "policy" file and contains:

<host name, process id, mode >

triples. If a view file is being read, then each process that has compiled it contributes a tri

ple, with mode equal to r, to the view file's associated policy file. In the case of view file

editing, each policy file contains one triple and mode equals w. When a process attempts to

lock a view file, it must check the consistency of the view file's policy file, because some of

the processes referenced in the policy file may no longer exist as a result of framework or

computer crashes. If none of the referenced processes exist, the lock is "broken". At this

time, Squid does not implement locking at all.

Because UNIX nodes are not locked, an uncooperative user could cause inconsistencies even if

Squid does lock. Suppose an uncooperative user invokes a text editor and edits the contents

of a circuit view file. Later, a cooperative client invoking Hawk to edit the view will be

told by Squid via Hawk that the view file is corrupt, empty, or a stranger unless the

58

uncooperative user knew the circuit view file format or was lucky.

UNIX's file system commands do not have enough power to manipulate views, because a

view's state is stored in the file system and in UNIX's primary store—the address space of

each process that compiled the view. Thus, each file system command has a corresponding

Squid package operation that insures that the command is applied to the address space copy,

if any, as well as the file system copy. For example, UNIX's cp, which copies nodes,

corresponds to an operation that copies the current view—part of a process' Squid package

state—to the view dst. The declaration of this operation is:

SQStatus
SQ(sqCp,sqView,dst)
SQView dst;
/*sqCp and sqView are the names of constants.*/

or for those unfamiliar with the C programming language:

SQStatus /"The type of the value returned by the function.*/
SQ(/*SQ is the name of the function.*/

sqCp, /*lst formal parameter—the operation to be done.*/
sqView, /*2nd parameter—the type of the object to change.*/
dst) /*3rd parameter—the DeSTination view to be copied to.*/

SQView dst; /*dst's type is SQView.*/
/*sqCp and sqView are the names of constants.*/

3.5. Dependency Hierarchy

A brute-force solution is to have a registry file, say "" cad/lib/hawk/registry, on each com

puter that contains a list of names of cell directories that are roots of circuit hierarchies. To

compute a master's dependency set, a procedure searches every circuit view file, reachable

from every cell directory that is listed in the registry file of every computer, for an instance

of the master. For each master searched, only its instances need to be searched so perfor

mance is determined by file system performance. Also, if an instance of a master master is

created in a view dependent while a search is underway for dependents of master, depen

dent will not be found unless it already contains a saved instance of master. By

59

constraining the number of computers, keeping per project registry files, exploiting the fact

that certain view types could not possibly be instanced in other view types, and storing the

instance list at the beginning of view files, the cost of the search can be limited.

The best solution is to have a dependency set file associated with each view file. Change to a

dependency set file is arbitrated by locking and the changes are performed incrementally.

The lifetime of a dependency set file lock is very short relative to the lifetime of a view file

lock. The former is the time to create, update, or delete an instance.

When designing a complex circuit with a complex design method, it is very easy to forget to

apply the design method completely. A simple tool that traverses the instance hierarchy

representing a circuit and insures that all tools that must be applied in order to guarantee

correctness have been used is essential This is the deferred approach to dependency propa

gation described in Chapter 2. The stand-alone UNIX program make can play the role of

this tool. In general, make works quite well for this purpose, but several disadvantages fol

low. First, since make does not execute in the same address space as Hawk, the interactive

graphics user interface and previously compiled Squid circuit views cannot be exploited.

Second, the designer must construct the stranger views that drive make by hand which is

error-prone. To correct these problems, the framework should be extended to provide a tool

of this type.

3.6. Revision Control

Each view file represents the current version of the view. Squid also stores one version

back in a backup view file whose name is the concatenation of the view file's name and the

string "Backup".

60

3.7. The Package from the Public Point of View

3.7.1. Terminology

For realism, the Squid package is presented in terms of the C programming language. The

following table should make it possible for readers unfamiliar with C to understand the

package:

CTerm Algol Familv Svnonvm

struct record

struct member record field

jtiefine constant

enum enumerated type

void procedure

typedef datatype

typedef type

argument parameter

rnalloc new

free dispose

static own

extern public

union variant record with no tag

For the reader unfamiliar with C, some further notations must be explained. A comment

begins with /* and ends with */. Variables named p and q whose data type is Type are

declared by:

Type p, q;

Record assignment is allowed as in:

p = q;

A variable pointerToType whose data type is a pointer to a data type Type is declared by:

Type *pointerToType;

The following statement causes pointerToType to point to the storage occupied by p:

61

pointerToType = &p;/* Ampersand is the unary "address-of" operator. */

If Type is a scalar data type, then the value of the relational expression:

p = *(&p)/* Asterisk is the unary "indirection" operator. */

is always true. Even if Type is not a scalar data type, *pointerToType and p are inter

changeable.

If a record data type Type has fields fieldi of data type Typei:

typedef struct Type Type;
struct Type {

Typel fieldi;
Type2 field2;

}f

then:

pj&eldi

denotes the fieldi field of p and so does:

pointerToType->fieldi /* ->is the binary "dereferencing" operator. */

The value of the relational expression:

piieldi = pointerToType->fieldi

is always true.

3.7.2. Communication

For each object type in the data model, there exists a single C data type. Object variables are

declared by the client and passed as arguments to the Squid routines. When a client accesses

or pushes a circuit view, the contents of the view file is compiled or staged into a data

structure in the client's virtual address space. The virtual address space is partitioned into

Squid's private segment, the client's private segment, and the free segment. When Squid is

62

called, input actual parameters are copied by Squid into its private segment and Squid copies

information from its private segment into output actual parameters. Thus, communication

between Squid and the client is implemented by copying between the allocated segments of

the virtual address space. Squid's "copying out" slows retrievals. When a circuit view is

unstaged, Squid will return to the free segment the part of Squid's private segment occu

pied by the view. Thus, a client can use Squid as a "view segment cache". It is possible

therefore for Squid to execute on a UNIX OS that does not have virtual memory or has a

small virtual address space.

Character strings are an exception to inter-segment communication. Client strings are

copied into Squid's segment. However, strings retrieved by Squid for the client are not

copied into string pools in the client's segment. Thus, the client must not change a retrieved

string. Copying retrieved strings into client string pools would have kept communication

pure, but experiments indicated that it would have slowed retrievals dramatically.

3.73. SQ

The package provides one central function named SQ that takes the same first three formal

parameters on all calls. Having one central function simplifies the implementation of

demons presented later in this section. The parameters form the triple:

< name of operation,
name of data type of object that operation is applied to,
object >

The remainder of the formal parameters vary in number and meaning depending on the

values of the first three parameters. SQ is applied to objects in the current view and has

data type SQStatus. If a function of data type SQStatus does not return the value sqOK,

then:

String SQDiagnosticO

63

can be called to return complete English sentences that explain why the function did not

succeed. If the second parameter is invalid, then sqUndefinedObjectType is returned. If

the first parameter is invalid, then sqUndefinedOperationType is returned.

The call:

typedef enum {sqGeo^qTerm^qNet^qView,sqInst^qParm^qViewStk}
SQObjectType; /* ENUMerated type. */

/*

The terms shape and geometry will be used interchangeably though
the dictionary meaning of geometry is different from shape's meaning.
*/

SQ(sqCreate, objectType, object, J)
SQObjectType objectType;

allocates an object of data type objectType that is initialized via the values of a subset of

the members of object and may return a unique identifier or key for it as the value of

object.objectsI<L The key is only valid if the current view is the same as the current

view "was when the key was returned. The keys for each object are:

* Obiect Kev

view view file's full name

net net id

shape shape id

formal terminal terminal's name

formal parameter parameter's name

instance instance id

actual terminal < terminal's name, instance id >

actual parameter < parameter's name, instance id >

The user must not trust a key that has been returned if sqCreate fails, because, for

efficiency, Squid does not validate the integrity of keys each time Squid is called. The call:

SQ(sqUpdate, objectType, object, -.)
SQObjectType objectType;

changes information about object. The call:

SQCsqGet, objectType, object, -.)
SQObjectType objectType;

64

gets information about an object whose key is in object. The call:

SQ(sqDelete, objectType, object,«.)
SQObjectType objectType;

deletes an object whose key is in object. The following C fragment gets all of the objects

whose members' values match those of object:

SQStatus sqStatus;
SQID generatorld;
SQObjectType objectType;
- object;

SQ(sqBeginGen, objectType, object, ~, &generatorId);
fortoi

sqStatus = SQ(sqGen, objectType, generatorld, &object,«.);
if(sqStatus = sqEndGen) break;
switch(sqStatus) ~

}

Each pass through the for loop returns or generates an object of data type objectType.

The advantages of one central routine follow. For each client process, the Squid package has

a list of demons.

SQStatus SQAttachDemonCdemon)
int (*demonX);

inserts the function pointed to by demon in Squid's demon list.

SQStatus SQDetachDemonCdemon)
int (*demonX);

deletes the function pointed to by demon from Squid's demon list. When SQ is invoked

with anything but sqGet, sqBeginGen, and sqGen as its first actual parameter, each demon

in Squid's demon list is invoked with the same actual parameter list that was passed to SQ.

If the operation deletes an object, then the demons are invoked before the operation has

completed. Otherwise, the demons are invoked after the operation has completed. The dis

tinction between before-demons and after-demons is made in other access-oriented packages

[20].

65

The circuit view file and change log—for undo and crash recovery—formats can be the same

and are easy to design if each line is just a textual representation of the actual parameter list

of SQ. A format should have the following characteristics: be textual so that debugging and

patching is easy, be possible to compile in a single pass, be compact to economize on storage,

and be line-oriented so that a revision control tool such as RCS can be used. Squid's format

meets these goals. As each line is parsed, the parser action just calls SQ. Note that the for

mat problem is irrelevant to the client user when a data structure package such as Squid is

used, but Squid's solution is a windfall of one central routine.

The disadvantages of one central routine include the decrease of performance due to

dispatching in SQ and in each demon.

3.7.4. Switching Contexts

The template for a client is:

/* Include stream package declarations for stranger views. */
include <stdiah>

/* Include Squid package declarations. */
include <cad7sqJi>

void ClientO
I
SQID viewStackld;

SQBeginO;
viewStackld = SQCreateViewStkO;
SQPushViewStk(viewStackld);

/* Body of client. */
SQPopViewStkC);

SQEndO;
}

A view stack is a stack of views. Squid has a stack of view stacks whose top is termed the

current view stack. The top view of the current view stack is termed the current view.

The cell the current view is in is the current cell and current name space. The client may

66

create as many view stacks as he wishes and switch between them in a first-in-first-out

fashion. Suppose many client packages are executing in the same process, a client package

caller is processing the current view, and caller calls a client package callee. If callee

pushes its view stack when it starts to execute and pops its view stack when it finishes,

caller's current view will be the same as when it called callee. The Hawk graphics editor

uses one view stack per Hawk window on the screen so that Hawk can avoid invoking

Squid's name search feature each time the current window changes.

The view stack whose identifier is viewStackld is empty initially, but the current cell is

the value of the environment variable SQROOT, if it is bound. Otherwise, the current cell

is the client process' working directory. To push a stranger view to change or browse

through on the current view stack, the following C fragment can be used:

include ~

void ClientO
{
SQView view;
FILE *stream; /* A pointer to a stream allocated by the stream package. */

viewxell = "resistor"; /* Cell named resistor. */
view.view «• "documentation"; /* View type named documentation. */
viewjnode « "w"; /* Writing or changing. */
SQCsqPush, sqView, sqStranger, &view, &stream); /* Push. */

fprintftstream, -.); /* "FilePrintFormatted" or write stranger view file. */

fscanftstream, -.); /* "FileScanFonnatted" or read stranger view file. */

SQ(sqPop, sqView, sqUnstage); /* Pop. */

The name search algorithm is executed always when the first actual of SQ is sqPush. Since

Squid does not lock, SQView.mode is used only to check the protection on the view file. If

r is substituted for w in SQView.mode, the view can be browsed through or .Read from

exclusively.

To push a circuit view to change or browse through on the current view stack, the

following C fragment can be used:

include ~

void ClientO
{
SQView view;
FILE *stream;

67

viewxell = "resistor"; /* Cell named resistor. */
view.view = "sim"; /* View type named physical. */
view.mode = "w"; /* Writing or changing. */
SQCsqPush, sqView,sqCircuit,&view, &stream); /* Push.*/

SQCJ;

SQ(sqPop, sqView,sqStage); /* Pop. */

If sqUnstage is substituted for sqStage, the storageassociated with the view will be freed.

3.7.5. The Resistor Cell of Chapter 2

The following C fragment creates the simulation view of the resistor of Chapter 2 assuming

it is the current view:

SQTerm formalTerminal;
SQParm forma 1Parameter;

formalTerminaljietID = NULL; /* Floating net's id is NULL. */
/* SQTerminstID = NULL means formal terminal. */
formalTerminalinstlD = NULL;

formalTerminal.name = "+";
SQ(sqCreate, sqTerm, formalTerminal); /* Create +. */

formalTerminaLname = "-";
SQ(sqCreate, sqTerm, formalTerminal); /* Create -. */

formalParameterinstID = NULL;
formalParameterjiame = "R";
formalParameter.valueType = sqReal; /* Real-valued. */
formalParameter.value.real = 1000; /* 1000 ohms. */
SQ(sqCreate, sqParm, formalParameter);

SQCsqSave, sqView, sqText); /* Save the current view. */

68

Note the operation to save the current view.

The following C fragment creates the physical or layout view of the resistor of Chapter 2

assuming it is the current view:

SQGeo pin, active;
SQIntegerPoint twoPoints[2];

/* The physical view has the same terminals as the simulation view. */

activeJayer = pinJayer = "NP"; /* nMOS polysilicon mask. */
activcfilledP = pin.filledP = sqTrue; /* A filled surface. */
activejnanhattanP = pin.manhattanP = sqTrue;
activei"unction = sqActiveArea;
pini"unction = sqTermArea; /* Terminal area is equivalent to pin. */

/* Left weight of barbell. */
pin.geoType = sqRect; /* A rectangle. */
pin.def.recti = 0;
pin.def.rect.b = 0; /* Left Bottom corner is (0,0). */
pin.def.rectj = 4;
pin^iefject-t = 4; /* Right Top corner is (4,4). */
pinimplements.term.name • +";/* Pin for + terminaL */
SQ(sqCreate, sqGeo, &pin);
/*

SQ produces the following side-effects.
pin.geoID is the unique id of the weight,
pin.bb is the bounding box of the weight.
*/

/* Bar of barbell. */

activcgeoType = sqLine; /* A line. */
activcdefJincnPath «• 2; /* Two reference points. */
activcdefJincwidth = 2; /* Center line's width is two. */
activcdefJincpath = twoPoints; /* Pool of points. */
twoPoints[0].x= pin.bb.r;
twoPoints[0].y = pin.bb.b+2; /* First reference point relative to pin. */
twoPoints[l].x = twoPoints{0]^+10;
twoPoints[l].y = twoPointsfOly; /* Second reference point relative to first. */
SQ(sqCreate, sqGeo, &active);
/*

active.geoID is the unique id of the bar.
active.bb is the bounding box of the bar.
*/

/* Create the rest of the shapes. */

SQ(sqSave, sqView, sqText); /* Save the current view. */

69

It would not be hard to change the above fragment into a module generator [47] for

minimum-width, nMOS, polysilicon resistors. The steps are:

• Create a subroutine named MinWidthPolySiR.

• Have the subroutine push a view whose cell name has the form:
CopyStringCcellsName,"MinWidthPolySiR" >,
ConcatenateString(cellsName, FloatToStringCR));
If the view exists, the subroutine returns.

• Have the subroutine prompt the client for the resistance and store it in the
float-valued, local variable named R.

• Include the above fragment in the subroutine. Substitute:
R/resistancePerSquare/minWidth[SQLayerNameToNumber(" NP")]
for 10 in the fragment. Fetch the values of resistancePerSquare and minWidth
from a process library.

A graphics editor can call the resistor module generator when the user points at a menu

selection or types the name of the subroutine. How this task can be performed by Hawk is

described in Chapter 5. Another module generator could then call the resistor module gen

erator if desired.

The following C fragment creates the voltage divider example of Chapter 2, assuming it is

the current view:

SQNet net;
SQTerm formalTerminal, actualTerminal;
SQInst instance1, instance2;

instance1jnasterCell = "resistor";
instanceljnasterView = "sim"
/* Transformation can be given as a matrix or in OF style. */
instancelxif = "t 0 0"; /* No transformation. */
instance2 = instancel; /* C allows record assignment. */

instance1.name =» "instancel";
SQ(sqCreate, sqlnst, &instancel);
/*

instancelinstID is the unique id of instancel.
instancel.bb is instancel's bounding box.
*/

instance2.name = "instance2";
SQ(sqCreate, sqlnst, &instance2);

/*

instance2instID is the unique id of instance2.
instance2.bb is instance's bounding box.
*/

formalTerminalinstID = NULL;

net.name = "netl";
SQCsqCreate, sqNet, &net);
/* netnetlD is netl's unique id. */
formalTerminaljietID = actualTerminaLnetlD = netnetlD;

/* Create dividedVoltage terminal and connect it to netl. */
formalTerminal.name= "dividedVoltage";
SQCsqCreate, sqTerm, formalTerminal);

/* Connect the rest of netl. */
actualTerminalinstID = instancel;
acrtualTerminaLname = "-";
SQ(sqUpdate, sqTerm, actualTerminal);
actualTerminalinstID = instance2;
actualTerminaljiame = "+";
SQ(sqUpdate, sqTerm, actualTerminal);

/* Create and connect net2 and net3. */

3.7.6. Range Queries

The "special shape generator" performs range queries and hastwo calls:

SQStatus SQSpecialBeginGenCarea, layerFMask, hierarchyLevel, generatorld)
SQBB area; /* Rectangular area. */
int layerFMask[SQMAXLAYERS*4+ll2]; /* Match criteria. */
hit hierarchyLevel; /* Match criterion. */
SQID generatorld;

SQStatus SQSpecialGen(generatorId, /* Generator id. */
geo, /* A shape. */
integerPath, nlntegerPath, /* Pool of points. */
NULL, 0, /* Present for historical reasons. */
instlDs, nlnstlDs) /* Hierarchy nodeof generated shape. */

SQID generatorld; /* An SQID. */
SQGeo *geo; /* A pointer to a shape record. */
SQIntegerPoint *integerPath;

/* Variable-length vector of data type SQIntegerPoint. */
SQID *instIDs; /* Variable-length vector of data type SQID. */

70

71

int nlntegerPath; /* An integer. */
int *nInstIDs; /* Pointer to an integer. */

Calling SQSpecialBeginGen initializes the generator to generate all shapes in the current

view that match the following criteria:

• Shape is not deeper than level hierarchyLevel of the instance hierarchy rooted
at the current view. hierarchyLevel = 1 matches shapes in the current view
only, hierarchyLevel = 2 matches shapes in the current view and in masters of
all instances in the current view, etc.

• Shape intersects the rectangular area area.

• Shape's layer and geometric function numbers match a pair in layerFMask. For
example, if layerFMask[0][0] = 1 and layerFMask[Oll] = (int)sqFrame,
shapes on layer SQLayerNumberToNameO) functioning as frames would be
matched. Each:

<layerFMask[iIO], layerFMask[iIl] >
represents a pair
<layerNumber, geometric function number >
The pair:
<-l,->
must be the last element of the array.

The search of the instance hierarchy is depth-first. Each time SQSpecialGen is called,

*nInstIDs should be the length of the vector instlDs. Each time SQSpecialGen returns:

instIDs[0], -, instIDs[*nInstIDs-l]

represents the simple path down the instance hierarchy to the shape.

3.7.7. A Demon

An example of a demon that watches for changes to the nMOS, polysilicon layerFMask fol

lows:

include <stdiah>

include <ad/sqJi>
/* Include the variable-length formal parameter list package.*/
include <varargsJi>

static SQObjectType objectType;
static SQOperationType operationType;
static va_hst ap;

static SQGeo np, *pNp;

int NPDemon(va_alist)
va_dcl

{
va_start(ap);
operationType = va_arg(ap, SQOperationType); /* Fetch first actual. */
objectType = va_arg(ap, SQObjectType); /* Fetch second actual. */

iitobjectType != sqGeo) return; /* Uninteresting operation. */

switch(cperationType) {
case sqCreate:

pNp = va_arg(ap, *SQGeo); /* Fetch third actual. */

break;
case sqUpdate:
case sqDelete:

np = va_arg(ap, SQGeo); /* Fetch third actuaL */

break;

);

va_find(ap>,
}

72

3.8. The Package from the Implementation Point of View

In this section, private refers to details about the implementation of Squid that the Squid

client is not aware of.

3.8.1. The Data Structure

Each public data type declared in the header file named sq.h maps to one or more private

data types. The central data structure is a hash table:

HashTable theViews;

of view records of data type View indexed by the full path name of the view file 42 BSD

UNIX has special file system nodes, termed symbolic links, that serve as synonyms for other

nodes. If a view file node's name and a symbolic link node aliasing the view file node are

passed to Squid, then the view represented by the view file node will be compiled twice,

73

because the two names will hash differently. Moreover, if the first view compiled is

changed but not saved, when the second view is compiled, the primary store representation

of the two views will be inconsistent The solutions are to forbid symbolic links or to have

a 42 BSDUNIX system call yield the node being aliased by a symbolic link.

Squid stores a string table common to all objects in a process in order to avoid storing the

same string many times:

HashTable theCommonStrings;

Each private data type has a property list and Squid has common code to deal with property

lists. Property lists are not hashed—they are self-organizing, linear lists:

#lefine LIST_HEAD(dataType, head)\
dataType *head;

define UST_ELEMENT(dataType, next)\
dataType *next

struct Prop/*erty*/ {
UST_EI .EMENTXnext);
String name;
SQValueType valueType;
union {

float real;
int integer;
SQBool bool;
RefAny refAny;

}
value;

};

There is a vector of length SQMAXLAYERS of layer names indexed by layer number:

String layerNumberToNametSQMAXLAYERS];

At this time, there is not a hash table of the form:

HashTable layerNameToNumber;

As a result hashing layer names to layer numbers so SQLayerNameToNumber does not

74

execute as fast as it could.

A multi-list is a set of elements and an object that all of the elements are associated with.

Each view record has single-linked multi-lists of net records of data type Net, parameter

records of data type Parm, and instance records of data type Inst:

define MULTI_LISTJrIEAD(dataType, head)\
dataType *head;

define MULTI_LIST_ELEMENT(elementDataType, next parentDataType parent)\
elementDataType *next;\
parentDataType *parent;

struct View {
MULTI_LIST_HEAD(Inst instancesInThisView)
MULTUJSTJIEAD(Parm, fonnalParameters)
MULTUJSTJBEAlXNet nets)
LIST_HEAD(Term, formalTerminals)
LIST_HEAD(Inst instancesOfThisView)

};

Given a view, its dependency set can be found quickly via instancesOfThisView. If all

dependents have not been compiled, then this dependency set will be incomplete. Each net

record has a multi-list of terminals:

struct Net {
MULTI_LIST_HEAD(Term, terminals)
String name;

struct Term/*inal*/ {
UST_ELEMENT(Term, next)
MULTI_LIST_ELEMENT(Term, nextlnNet, Net net)
String name;

The multi-lists yield fast answers to queries. Given a terminal, the net it is in can be found

rapidly. Given a net all of its terminals can be found rapidly. Given an instance, its depen

dent can be found quickly. Actual and formal terminals are represented by the same data

type:

struct Inst/*ance*/ {
MULTIJJST_HEAD(Term, actualTerminals)

75

MULTLLIST_HEAD(Parm, actualParameters)
View "master;

};

Parameters are treated the same way. Given an instance, its master can be found quickly

via master.

Each view record has an SQMAXLAYERS- by-4 matrix of pointers to geometric index

records of data type OSLIndex:

struct View {
OSLIndex *layerFPairs[SQMAXLAYERSl4];

};

The details of geometric indexing are presented in Chapter 4, but the geometric index is used

to answer quickly a subset of the geometric queries presented in Chapter 2. The first

dimension of the matrix is a layer number. The second dimension of the matrix is the

geometric function number—zero denotes frame, one denotes active area, etc Thus, a view

record yields fast access to geometries associated by:

<area, layerNumber, geometric function number >

A drawback of the data structure is that the maximum number of layers is a compile-time

constant so that if a view does not have shapes associated with all possible:

< layerNumber, geometric function number >

pairs, space is wasted and if a view has shapes on more than SQMAXLAYERS layers, the

client must re-compile Squid. This can be remedied by turning the vector of pointers to

geometric index records into a hash table keyed by:

< layerNumber, geometric function number >

A geometric index indexes bounding box records of data type OSLRect— a bounding box

record points to a shape record of data type Geo that the bounding box encapsulates:

struct OSLRect {
SQIntegerPoint lowerLeftCorner,upperRightCorner;
Geo *shape;

};

struct Geo/*metry*/ {
SQGeoType shapeType;
union {

Label *label;
Polygon *polygon;

}~
nonManhattan;

76

To change the sort of geometric index used, change the data type of ViewJayerFPairs.

Because a shape record points to a label record if the shape is a label, etc., Squid can use the

speed and simplicity of a rectangle-oriented geometric index yet still represent non-

Manhattan geometries. If the shape is a rectangle, OSLRectshape = NULL.

Changing the data type of instances into OSLIndex would speed up range queries for

instances in views containing many instances. A public generator for instance range query

would have to be implemented and exported.

Each non-view record in the heap is given a non-negative, integer identifier that is unique

within the view that contains the record. Each view record houses a monotonically increas

ing, 32-bit sequence number. When a record is created, the sequence number of the view

that contains the record is incremented and it becomes the record's identifier. Identifiers

impose an order on the objects in a view that is invariant throughout the view's lifetime

and is also useful to clients at times.

3.8.2. Circuit View File Format

When the physical view of the resistor was saved, the view file's contents were approxi

mately as follows. (Though comments are not present in Squid circuit view files, C-style

comments and blank lines have been inserted for clarity.)

SQUID
/*

By reading the first line,
circuit and stranger views can be differentiated quickly.
*/

/*

PUT the LNTeger value 7 on the
property named squidNextObjectlD.
*/

PUTVIEW "resistor" "physical" "w" "squidNextObjectlD" INT 7

/*

MaKe a TERMinal named + whose NET ID is floating and INSTance ID
is 0 meaning it is a formal terminal.
*/

MK TERM "+" NETJD 0 INSTJD 0
MK TERM "-" NETJD 0 INSTJD 0

/*

MaKe a RECTangle whose unique id is 1,
that is a pin for the TERMinal named +,
that is on the LAYER CP,
that is FILLed,
whose Lower Bottom corner is (0,0),
whose Right Top corner is (4,4).
*/

MK RECT 1 TERM "+" LAYER "CP" FDLLLB0 0RT4 4

/*/*

MaKe a LINE whose unique id is 2,
that is ACTIVE area,
that is on the LAYER CP,
that is FILLed,
whose WIDTH is 2,
whose PATH is (4,2) to (14,2).
*/

MK LINE 2 ACTTVE LAYER "CP" FELL WIDTH 2 PATH 4 2 14 2

/* The five remaining shapes follow. */

77

Before Squid became a semi-production package, it used a format very similar to the text

format in the example, but instead of a "line" representation of SQ's parameter list the

binary representation of the parameter list was used. The time to write a circuit view file

is so fast and only one at a time is typically written that either format yields acceptable

performance The space to store a circuit view file is about the same for either format

78

unless a string table is used in the binary format

To propagate dependencies up a deep instance hierarchy, at least the instances of all the mas

ters in the hierarchy must be read at once. Thus, the time to read a circuit view file must

be minimized. The time to read a circuit view file is less when a binary format is used.

The following table exhibits measurements of the time to read integers in both formats.

The "XPort" chip hasabout 3600 drawn rectangles in it If it takes 4 integers to represent a

rectangle's 4 edges or corners, then XPort can be represented in 14,400 integers.

Number of Integers User Time (sec)

Binarv Text

1000 .1 .4

5000 .4 2

20,000 1.5 8

Thus, a binary format yields about 10,000 integers/sec and a text format yields about 2000

integers/sec. The difference can be attributed to number conversion.

The time to read a text format increases if the text format is parsed. Parsing can permit the

client to permute "fields" in a line, and to abbreviate and alias reserved words. Again, if the

client is using a data structure package, the format is irrelevant, but to ease the implementa

tion, Squid parses using the UNIX parser and scanner generators [48]. If the client is going

to use the format as a hardware description or layout language, then the format matters.

The text format the client types may be used as the database format and the language syn

tax, or compiled into a binary database format The drawback of compilation is that having

two copies costs space.

From the point of view of the implementor, the advantages of a text format are that it is

easy to debug, easy to change, and could be used with RCS while a binary format cannot A

binary format is not easy to change at all. A relocatable binary image of the view data

structure can be read even faster than Squid's development binary format.

79

3.83. Transformation

To retrieve the shapes represented by an instance, the special shape generator must

transform shapes fetched from the master into the coordinate system of the dependent The

Manhattan Transform package is used by Squid and Hawk to transform points in the plane.

Because only rotation by a multiple of 90 degrees and flipping about the two axes are possi

ble in the data model, MT uses integer arithmetic and can invert any transformation matrix

very quickly. If the original transform is:

then the inverse is:

a d 0

b e 0

c f 1

a b 0

d e 0

-ca-fd -cb-fe 1

Transformation matrix inversion is used in boxing tests and for implementing editing-in-

context Boxing tests are described in [31].

The following C fragment was executed to test the speed of transforming points. The frag

ment transforms a random point pt 10,000 times—one transform per iteration of the for

loop.

int i;
MT*mt;
SQIntegerPoint pt;

/♦Allocatestorage for and initialize a transform stack.*/
mt = MTBeginO;
MTIdentityCmt); /*Assign the identity matrix to the current transform.*/
MTTranslate(mtl00,100); /Translate the current transform by (100,100).*/
foKi = 10000? >0;-i) /*For 10,000 times.*/

MTPoint(mt&ptx,&pty>, /"Transform (ptx,pty).*/

The fragment required:

0.5 user-seconds or 50 microseconds/point

80

3.9. Conclusions

The Squid database has been the subject of Chapter 3. Though some of the material has

been drawn from the application— a framework for circuit CAD—most of the material is

independent of the application. The majority of material presents implementations of state-

of-the-art methods of computer science such as the demons of access-oriented programming,

object-oriented programming, propagation of dependencies, locking, protection, naming, per

sistent objects, objects with non-trivial history, and context-switching. The "framework for

software CAD"— 4.2 BSD UNIX's C programming environment— did not permit these

implementations to be as easy as they could have been. Research and development in the

areas of programming environments and computer architecture must seek to integrate these

methods so that the client need not implement these methods and the client can spend more

time at the application level.

CHAPTER 4 '

ORTHOGONAL SCAN-LINES

4.1. Background

A survey of past work is in Chapter 2.

4.2. Motivation

OSL falls into the class of bin data structures, but OSL's bins are rectangular rather than

square so that the problems of square bins can be avoided. There are several reasons why

rectangular bins make sense. First even for a large area to be partitioned, the number of

rectangular bins is linear in the sum of the height and width of the area. Thus, space

requirements are not excessive. Second, shapes are small and square as in contacts cuts,

shapes are rectangular and have a shortest side that is close to minimum line width, or

shapes are relatively large but there are not very many per cell as in wells and pad over-

glass. Thus, except for the latter class of shapes, as long as the width of each rectangular bin

is not less than the minimum line width, a shape will rarely lie in more than 2 bins.

Exhaustive search is sufficiently fast for shapes of the latter class. Third, the number of

horizontal edges with the same y-coordinate and the number of vertical edges with the same

x-coordinate in each cell has been measured to be no more than 10 on a variety of cells.

Thus, if the bin width was chosen to be 2 lambda, then the worst case number of shapes

that will be examined in searching for what intersects a single point can be computed. The

horizontal bin that contains the point can have 10 edges at each of the 2 y-coordinates it

covers. Similarly, the vertical bin can have 20 edges. Therefore, 40 edges could be searched.

81

82

43. Principles of Operation

Orthogonal Scan-Lines (OSL) is a data structure or index for editing and range querying 2D

shapes enclosed by their rectangular bounding boxes. If the 2D shapes are rectangles, then

the bounding boxes are the rectangles themselves. Assume this is the case for the rest of

this chapter. Let:

upperLeftArea upperRightArea

middleLeftArea middleRightArea

lowerLeftArea lowerRightArea

be an example of the bounding box of all of the shapes on a single layer— there are six bin-

Distance lambda by binDistance lambda, non-overlapping, rectangular areas in the bound

ing box denoted by upperLeftArea, upperRightArea, etc Let bb.left, bb.bottom,

bbjright and bb.top define the bounding box's four edges.

An OSL index partitions the bounding box of the layer into non-overlapping, horizontal, rec

tangular bins termed logs each binDistance lambda wide as in the three logs:

upperLog

middleLog

lowerLog

and non-overlapping, vertical, rectangular bins termed poles each binDistance lambda tall

as in the two poles:

leftPole rightPole

The log upperLog intersects areas upperLeftArea and upperRightArea. The log middle-

Log intersects areas middleLeftArea and middleRightArea. The log lowerLog intersects

areas lowerLeftArea and lowerRightArea. The pole leftPole intersects areas upperLef

tArea, middleLeftArea and lowerLeftArea. The pole rightPole intersects areas upper-

83

RightArea, middleRightArea and lowerRightArea. The number of logs is (bb.top-

bb.bottorn)/binDistance and the number of poles is (bb.right-bb.leftVbinDistance.

An example OSL data structure for a small layout fragment is shown in Figure 4.1.

\ layout \

poles

•—;logs

binDistance = 8 lambda

Figure 4.1: An OSL data structure.

If a rectangle is wider than it is tall, it must be associated with all logs that it intersects.

However, if a rectangle can lie in a variable number of logs, storage allocation is

84

complicated. Rather, its top and bottom edges are associated with the logs in which the edges

lie. Because of the distribution of shapes encountered in circuit CAD, its edges will not be

very far apart Each top and bottom edge contains a pointer to the rectangle it bounds so

each rectangle is pointed to by two edges. The vertical case is symmetrical.

To answer a rectangular range query, all bins that intersect the query rectangle, queryRec

tangle, are searched. If queryRectangle equals middleLeftArea as in:

upperLeftArea upperRightArea

queryRectangle middleRightArea

lowerLeftArea lowerRightArea

then middleLog and leftPole must be searched. Actually, it is the rectangles pointed to by

the edges pointed to by the intersecting bins that are searched.

If queryRectangle is small and lies entirely inside a rectangle whose edges are in bins that

do not intersect queryRectangle, then the rectangle will be missed in the search of the bins

that queryRectangle does intersect To solve this problem, queryRectangle is always

grown by half of the maximum of the widths of the rectangles. Again, this maximum

must be close to the minimum line width.

A way of visualizing the pruning behavior is to let the query rectangle partition the bound

ing box into eight octants surrounding it:

octantl octant2 octant3

octant4 queryRectangle octant5

octant6 octant7 octant8

Assuming that the octants' boundaries lie on bin boundaries, octants 2, 4, 5, and 7 are need

lessly searched during a search of queryRectangle. binDistance controls the performance

of the data structure.

If queryRectangle equals middleLeftArea, then upperLeftArea (octant2), lowerLef

tArea (octant7), middleRightArea (octantS), and octant4 are wastefully searched—

85

Octants 1, 6, 3, and 8 are pruned. Octants 1, 4, and 6 are infinitesmal in this example. By

sorting the edges in a bin, some of this wasted search can be eliminated.

A horizontal scan-line is a set of edges with identical y-coordinates. Vertical scan-line is

defined symmetrically. In order to eliminate the aforementioned needless search, sort the

edges by y and then x to form a sorted list of scan-lines. Associate the top scan-line in each

log with the log the scan-line intersects. Now, assuming a raster scan order search, when

searching an edge whose left-coordinate is greater than the right-coordinate of queryRec

tangle:

edgeJeft > queryRectanglcright

any remaining edges in the scan-line can be skipped. Similarly, when searching a scan-line

whose y-coordinate is greater than the bottom-coordinate of queryRectangle:

scanLine.y > queryRectanglcbottom

any remaining scan-lines can be skipped. Both of these refinements could be applied to mid-

dleLog. The vertical case follows as above. This refinement gains a factor of 2 in pruning

on the average.

4.4. Algorithm Analysis

The pruning behavior of the OSL data structure is illustrated in Figure 42.

octants

best case

worst case

1 searched

1 queryRectangle

I pruned

86

Figure 42: Pruning behavior of OSL data structure

With these refinements, the data structure will search needlessly all shapes in Octants 2 and

4 only. As queryRectangle's shape and location change, the areas of these two octants

change. If queryRectangle's shape is constant, these two areas increase as queryRectangle

moves toward (—oq—oo) arid tend to zero as queryRectangle moves toward («*oo). A

smaller binDistance wastes space on more bins, but improves time, because fewer shapes

87

are needlessly searched.

An example of the worst case is a binDistance lambda by bb.width lambda query rectan

gle whose lower edge corresponds to the lower edge of the bounding box. A search will

search the one log containing it and all the rectangles in all poles. If the rectangles are

evenly split among the logs and poles, the pruning will be only a half.

An example of the best case is the same rectangle in the worst case example moved so that

its upper edge corresponds to the upper edge of the bounding box. The best case is close to

optimal.

4.5. Measurements

struct SlowRectangle {
SlowRectangle "nextSlowRectangle;
Point lowerLeft,upperRight;
RefAny rectangle;};

An OSL data structure occupies 124 bytes of space for the "header", a pointer per bin, and

52 bytes per rectangle. A linear list data structure would occupy sizeoftSlowRectangle)

or 24 bytes per rectangle. Thus, an OSL data structure costs more than twice the space of a

linear list.

Two very different views were used two measure the speed of OSL. The RISC I floor plan

is the layout view of the top level cell in the RISC I, nMOS, 45,000 device microprocessor,

The floor plan contains over 7000 contacts and wire segments. The layout view of the

CMOS SOAR leaf cell is a high-density, p-well, bulk CMOS layout with 260 rectangles in

it. The panning and zooming commands of Hawk were used to answer several random-

range queries on these cells. At least half of them were on the lower right area of these

cells to enable the poorer behavior of the data structure to have an effect.

Cumulative Statistics for Random Ran^e Oueries
Circuit # Oueries # Found # Spurious # Possible

CMOS SOAR Leaf Cell 1013 6311 1240 17164

RISC I Floor Plan 330 30148 10020 266724

Found is what an optimal data structure must search. # Spurious is the number of rec-

88

tangles searched that did not answer the query. # Possible is the number of rectangles that

would be searched in an exhaustive search. These cumulative statistics can be summarized

in two figures of merit:

Figures of Merit for Random Ranee Oueries
Circuit Times Optimal Factor Better Than Exhaustive

CMOS SOAR Leaf Cell 12 2.27

RISC I Floor Plan 1.33 6.64

A measure of how much worse OSL is than optimal is the number actually searched over

the number actually found. The closer this is to unity, the better. A measure of how much

better OSL is than exhaustive search is the number that would have been searched in an

exhaustive search over the number actually searched. The larger this value is, the better.

The raw speed of the data structure is hard to measure. Range queries on the RISC I floor

plan cell indicate a search time of 100 microseconds per rectangle counting spuriously

searched rectangles. The same workload on a linear list search indicates a search time of 20

microseconds per rectangle counting spuriously searched rectangles. Thus, OSL must search

a factor of jive times fewer rectangles than exhaustive search to equal the performance of

exhaustive search. The figures of merit in the above table indicate better primings than this.

In the measurements presented in Chapter 5, it will be clear that for zoom and pan, OSL

does not justify the space cost, because the data structure search time per rectangle is so

much less than the display time per rectangle. In a layout rule checker or extractor, the use

of OSL would improve time performance. See the last section of Chapter 6.

CHAPTER 5

HAWK

Hawk displays Squid circuit views in multiple windows and enables the user to invoke

tools. Figure 5.1 shows the screen of a terminal under control by Hawk via the MFB pack

age.

89

90

.menu view

JZZn

Figure 5.1: Screen controlled by Hawk.

91

The tiny window at the top of the screen is termed the typescript window. User typing is

echoed here and status information, help, and diagnostics are displayed here as well. The

largest window contains a schematic view and the leftmost window contains a layer menu.

Other windows contain a command menu, a layout view, and the legend for Figure 5.1.

Because of a bug in the dumpScreen command, each window is not completely full.

A derived shape is a shape that is computed from information in the database, but is not

stored explicitly in the database. Thus, space is conserved and it is easier to keep the display

consistent with the database. This term will be used throughout this chapter.

5.1. Initialization

To initialize itself, Hawk must have four sets of information: the graphics terminals it con

trols via MFB, the layer display-control property lists, command tables, and specific win

dows to display.

5.1.1. Layers

Hawk uses several special layers—they are special in that it is assumed that they will not be

used by clients in Squid circuit views. Otherwise, these layers are like any other. For each

window, a derived rectangle that covers the window is drawn on the layer named

backgnd. The rectangle serves as the "sheet of paper" that the other "ink" layers are

drawn on top of. In retrospect, rather than having a layer named backgnd, having the

layer that serves as the sheet of paper bound on a per window basis would have been better,

because menus, schematics, and layouts may be easier to perceive on different colors of

"paper" as they have different colors of "ink" in them. Many designers like black paper for

schematics, but prefer lightly colored paper for layouts-often a light gray.

Most shapes derived by Hawk are drawn on the layer named hawk. Shapes—termed jazz—

92

that highlight other shapes are drawn on the layer named jazz. There is a major grid line

for every five minor grid lines. Major and minor grid lines are drawn on the layers named

maj and min respectively.

Each of the four Squid geometric functions on each layer can be given its own display-

control property list that controls just how shapes are drawn by Hawk. For example,

polysilicon pins and frames can be distinguished by adjusting the values on their display-

control property lists so that they are drawn in different shades of red. A display-control

property list's properties are: color, filled in or not, outlined or not, line style-«uch as dotted,

priority—as explained below, and fill pattern if filled. Thus, a shape associated with a

< geometric function, layer > pair may be filled and outlined, just outlined, or just filled.

As in KIC 2 [37], < geometric function, layer > pairs are displayed in priority order. The

derived rectangle on the layer named backgnd is always displayed first. The priorities of

the grid line layers can be controlled by the client. Usually, the lowest priorities are associ

ated with < geometric function, layer > pairs that are filled in completely, middle priorities

are associated with pairs that are filled with stipple patterns, and higher priorities are associ

ated with pairs that are just outlined. Often, the grid line layers have the highest priority

and the grid is drawn using a sparse line style. Thus, the completely filled in shapes are

visible through the stippled and outlined shapes, and the grid. The layer named jazz is

displayed last so that highlighted shapes are clearly shown.

Hawk does not use the multiple memory plane capability of MFB at all. If memory planes

become inexpensive, it would be beneficial to reserve planes for highlighting, for rubber-

banding newly-created shapes, for cursors tracked by Hawk, and for colormixing layers.

Special Squid circuit views termed layer views contain the display-control property lists. A

layer view's property list contains a Boolean-valued property named hawkLayerViewP

whose value is sqTrue. For each layer view, Hawk expects at most one non-label shape for

93

each < geometric function, layer > pair. The shape's property list is the pair's display-

control property list. When a layer view is displayed in a window, it serves as a layer

menu. The leftmost window in Figure 5.1 is such a window. Hawk enables the client to

add and subtract layers from a selected set of layers. Tools can use this selected set of layers

as operands of commands.

Each MFB has its own layer menu, because the client will desire pairs to be shown on a full

color frame buffer differently than on a black and white raster plotter. When Hawk is exe

cuted, the value of the -display switch is the name of the terminal used for display as well

as user input and the value of the -plotter switch is the name of the terminal used for

plotting. For both terminals, Hawk searches for a layer view whose cell name is the name

of the terminal and whose view type name is symbolic.

When Hawk is executed, the value of the -interface switch is the name of the UNIX dev

ice driver that the terminal is controlled by. Omission of this switch causes Hawk to use

the teletype port the user logged in at This is the norm when low-cost terminals with

integral RS-232 controllers are used. An example of such a terminal is the AED 512.

A user who does not wish to draw layer views may use a tool named layerview that reads

a text file and outputs a layer view such as the one displayed in the leftmost window in

Figure 5.1. A fragment of such a text file is included here:

COMMENT NP denotes Nmos Polysilicon.
LAYER NP

COMMENT

LINEJSTYLE 347
N0_DUT1JNE
FILL

COMMENT Each octal number is a row of an 8 by 8 bit matrix.
STIPPLE 33 cc 33 cc 33 cc 33 cc

COMMENT Saturated red.

COLOR 1000 0 0
FRAME

COMMENT Shapes on < frame, NP > will be shown filled with a stipple pattern,
COMMENT not be outlined, vectors will be dashed, and colored red.

COLOR 800 0 0
PIN
COMMENT Shapes on < pin, NP > will be shown just as < frame, NP > shapes,
COMMENT except the former will be colored a darker red.

94

5.1.2. Commands

Each command is implemented by a subroutine stored in an object file. If an object file con

taining commands was not linked to the Hawk load module prior to Hawk execution time,

then during Hawk execution the object file is dynamically linked and loaded if and only if a

command in the object file is invoked. A tool is implemented by one or more commands.

Defining new commands to Hawk is the mechanism a client uses to add a tool into the

framework. There are three types of commands: long commands, key commands, and menu

selections. Long and key commands are typed on the keyboard of the display terminal

while menu selections are picked or pointed to via the graphical input device of the display

terminal. Thus, initialization must build three tables:

<menu selection's name, subroutine's name, object file's name >
<key, subroutine's name, object file's name >
< long command's name, subroutine's name, object file's name >

A menu is just a Squid circuit view termed a menu view whose property list contains a

Boolean-valued property named hawkMenuViewP whose value is sqTrue. An example of

a menu view is displayed in the window in the lower left corner of Figure 5.1. Each menu

selection in a menu view is represented by a shape whose property list contains two string-

valued properties. The value of the property named hawkRoutine is the subroutine's name

that implements the menu selection. The value of the property named hawk.o is the name

of the object file that contains the subroutine. Thus, a client can draw his own menus.

The tool menuview reads a text file and writes a menu view that houses a classical, textual

menu. An example of such a menu is displayed in the window in the lower left corner of

95

Figure 5.1. Each line of the text file can have one of these two forms:

LABEL menuSelectionsName subroutinesName objectFilesName HELP theHelp
SUB_MENU subMenusName menuCellsName menuViewsName HELP theHelp

menuview compiles each line into a label on the layer named hawk in the output menu

view. theHelp is the value of the label's string-valued property named hawkHelp. When

the layer named help is selected and the label is picked or pointed to, the value of the pro

perty named hawkHelp is displayed as help for the command associated with the label.

Each line that begins with LABEL becomes a label that will invoke a command when

picked or pointed to. The label itself becomes menuSelectionsName, the value of the

label's hawkRoutine property becomes subroutinesName, and the value of the label's

hawk.o property becomes objectFilesName.

Each line that begins with SUB_MENU becomes a label that, when picked or pointed to,

will overlay the menu that contains the label with another menu usually termed a sub

menu. The label itself becomes subMenusName. menuCellsName becomes the value of

the label's string-valued property named hawkSubmenuCell and menuViewsName

becomes the value of the label's string-valued property named hawkSubmenuView.

When the label is picked or pointed to, the window displaying the layer view containing

the label is updated so that it displays the layer view whose name is:

< menuCellsName, menuViewsName >

Example menuview input is:

SUB.MENU WINDOWS windos symbolic HELP Window manager ~
SUB.MENU HAWK -/hawkCommand symbolic HELP ~
SUBJMENU LAYOUT layout symbolic HELP ~
SUB.MENU SCHEMATIC schematic symbolic HELP ~
SUBJrfENU SYMBOL symbol symbolic HELP ~
SUB_MENU NLP nip symbolic HELP -
SUB_MENU SLIDES slides symbolic HELP -
SUBJMENU P-USTS plists symbolic HELP -
LABEL save save save HELP ~

LABEL write w w HELP ~
LABELeditByTyping pushByTyping push HELP -
LABELeditByPointing pushByPointing push HELP
LABEL lyra lyra layout/lyra HELP -
LABEL violation violation layout/lyra HELP ~
LABEL critical critical layout/lyra HELP ~
LABEL re-edit pushBang push HELP ~
LABEL subedit pushlnContext push HELP ~

96

A special file named .cadre in the user's home directory has been used to store tool-specific

information in the Berkeley CAD environment for several years. Each file named .cadre is

divided into sections. Each section may house information used by many tools. The syntax

of each section is unconstrained except that each line of the section has the form:

reservedWord —

The key table is stored in the HAWK section. The form of a line binding a key in the

HAWK section is:

ALIAS key subroutinesName

An example is:

begin HAWK
ALIAS r rectActive
ALIAS e delete

ALIAS + addPtSel
ALIAS - subPtSel

ALIAS t addRectSel
ALIAS _jsubRectSel
ALIAS ~xdesel
ALIAS m move
AULAS g copyWindo
ALIAS S save

end

A long command is a string whose first character is a colon and whose tail is the name of

the subroutine that implements the long command. Thus, an explicit long command table is

unnecessary. The problem with not having a long command table is that a subroutine name

may be awkward to remember and to type.

97

The problem with the way long and key commands are implemented is that the object file's

name is not stored though the subroutine's name is. This is historical and should be fixed.

A subroutine whose name begins with HA implements a Hawk command. Otherwise, the

subroutine implements a client command. If a client command is executing, it can invoke a

Hawk command indirectly by calling the Hawk library subroutine HAListen, but it cannot

invoke another client command. If a Hawk command is executing, it cannot invoke any

another command. Thus, Hawk commands nest with client commands, but not vice versa.

HApan, HAzoomin, and HAzoomout, are Hawk commands that can be invoked to adjust

windows while in the middle of a client command without disturbing the client command's

state. For example, during manual routing, it is often convenient to pan to find jog points.

5.13. More Customization

As the final phase of initialization. Hawk dynamically links a subroutine named HABegin

that can be written by the user to customize Hawk. HABegin is stored in a stranger view

named HABegin.o in the cell named menus/userCommand. It is expected that HABegin

will parse command line arguments that have not been set to NULL by Hawk.

After HABegin has executed, Hawk displays all of the windows that have been created and

invokes the Hawk scheduler described in the next section.

5.1.4. Desktops

A desktop is a configuration of windows independent of what is displayed in the windows.

At this time, the default HABegin implements desktops. This subroutine's first argument is

a desktop name and its remaining arguments are a sequence of:

< cellName, viewName, accessMode >

98

triples that name circuit views to display in the windows of the desktop. The desktops and

their functions so far are:

Desktop Function

slides Slide-making.

horizontalhop Editing fat, short layouts.

verticalhop Editing tall, skinny layouts.
one One big window.

three Two little windows stacked and a big window next to them.

zap Four windows used for layout.

The desktop in Figure 5.1 is three.

In retrospect, desktops should be implemented by Hawk in the following way. First, a

client draws a desktop template as a view type named template of a cell representing the

desktop. Each rectangle in the view corresponds to a window on the screen. Each such rec

tangle has three labels inside it:

CELL%i
VIEW%i

ACCESS_MODE %i

that name the circuit view that is to be displayed in the window corresponding to the rec

tangle. %i is the value of the ith argument passed to the desktop instance creation com

mand. The command works by letting the user pick or point at a desktop template out of a

menu and typing a list of arguments— %1, %2, _, %n. Only one desktop instance can be

displayed at a time. A desktop instance can be stored as a view just like its desktop template

as long as the %i are stored on the property list of the view.

Commands to switch desktop instances should be implemented. One command switches to

the desktop instance that displays any view of a particular cell or a particular view.

Another command enables the client to pick or point to a desktop instance out of a menu.

99

5.2. Scheduler

The Hawk scheduler is an infinite loop that invokes a subroutine named HAListen. HAL

isten invokes MFBPoint which returns when the user has typed a keyboard key or pressed

a button on the graphical input device. This section presents the flow of HAListen.

5.2.1. Keyboard Command

If the client typed a key, then if the key is a colon, the client is prompted to type a

subroutine's name. Otherwise, the subroutine name associated with the key is fetched from

the key table. The dynamic linking package is invoked to fetch the pointer to the subrou

tine that implements the the keyboard command. Finally, the subroutine is invoked if it

has been linked. Upon return from the subroutine, HAListen returns.

5.2.2. Pressed Button Number One

Assume the user pressed button number one. If the cursor does not lie in a window, HAL

isten returns.

Otherwise, the coordinate of the cursor is computed by looking up the type of the object

displayed in the window and calling an object-specific subroutine that returns a string

representing the coordinate. So far, it has been assumed that Hawk can display only Squid

circuit views in windows, but really Hawk can display other objects as well. A graph-

drawing object's subroutine might return a <time, voltage > pair while a Squid circuit

view's subroutine would return a coordinate in lambda.

If the window is displaying a menu view, Hawk invokes Squid to fetch the shape intersect

ing the cursor and retrieves the shape's property list. If the shape represents a submenu,

then the submenu is displayed and HAListen recurs. This implements the "overlay sub-

100

menu" command.

If the shape represents a command, Hawk highlights the shape and invokes the subroutine

that implements the command. When the command returns, Hawk un-highlights the shape.

If the shape is contained in a menu view that is displayed in a pop-up window and the

shape's property list does not contain a property named hawkKeepMenuP whose value is

sqTrue, then the pop-up window is erased. Otherwise, the Hawk scheduler will not erase

the pop-up window, because it assumes that the menu selection will not change the display

and it is likely that the user will pick or point to yet another menu selection when the

menu selection returns. This saves the user a few button presses.

If the window is displaying a layer view, Hawk invokes Squid to fetch the shape under the

cursor, selects the layer the shape is on if the layer is not already selected and highlights the

shape, un-selects the layer the shape is on if the layer is already selected and un-highlights

the shape, and HAListen recurs. The subroutine HALayerSelectedP may be called by a

client command to fetch the layers that are selected by the client.

If the window is not displaying a layer or menu view, HAListen returns. There are

several Hawk routines that a client command can call to fetch the window pointed at,

where the cursor was, etcetera.

5.23. Pressed Any Other Button

If the client pressed any other button, the window, if any, bound to the button is popped up

if it is not already visible. Otherwise, the window is erased. Hawk places the viewport of

an invisible pop-up window outside the display terminal's coordinate system. Hawk will

not display such windows, but the windows reside in the same data structure as visible

windows.

101

5.3. Demons

Many of the shapes that are computed by Hawk from other shapes (labels for terminal

names are computed from pins, for example) are stored explicitly as shapes in contrast to

being derived as a by-product of redisplay. This makes redisplay simpler at the expense of

space. Let the term derived shape be used for such computed shapes even though they are

explicitly stored.

When a shape is updated, any of its derived shapes must be updated as well to insure con

sistency between display and database. Hawk's Squid-demon performs this task. When a

view is compiled, as each shape in the view is created, the Hawk demon is invoked by Squid

to possibly create derived shapes. When a shape is updated, the Hawk demon is invoked by

Squid to update any of its derived shapes. The association between a derived shape and the

shape it is derived from is stored on the property lists of the shapes.

The derived shapes implemented by the Hawk demon are labels picturing instance names,

terminal names, and instance parameter lists. The code to maintain the association properties

and the derived shapes is cumbersome. Only terminal names are still used with success,

except that in schematic capture, clients do not wish the names of standard terminals to be

displayed. For example, displaying the name input3 on a NAND gate just creates clutter

and transmits no information, because the information is carried in the shape of the symbol

for the gate.

If derived shapes are not stored explicitly, redisplay is impacted greatly. Each redisplayed

area must be grown to insure that all derived shapes that may impinge on the redisplayed

area are collected. Each impinging derived shape must be clipped to the ungrown redisplay

area. Conservatively, the grown area must be the entire window and shapes that are

derived from shapes that lie outside the window must never be displayed. In retrospect,

this space-saving and code-saving alternative is preferred.

102

5.4. Selection

Like most graphics editors, Hawk enables the client to manipulate a set of selected objects

that are highlighted to indicate that the objects are selected.

At this time, Hawk highlighting is implemented by shapes on the layer named jazz. Con

sistency between highlighted shapes and highlighting shapes is insured by the Hawk demon.

A shape is highlighted by drawing an outlined rectangle on the layer named jazz around

the shape's bounding box. Unfortunately, a bounding box is too coarse for shapes such as

arcs, lines, and polygons. The "jazz" shapes consume considerable space when everything in

a view is selected. The selected set is implemented by making a copy of everything selected

in a special view. For each set element, the association between the copy and its master is

stored in the property lists of master and copy. This implementation is appealing, because

selection can be implemented as a set of client commands completely independent of the

Hawk kernel. However, the special view consumes considerable space when everything in

a view is selected and only objects from a single view can be selected at once.

At this time, either a whole shape is selected or it is not selected, but it is convenient to

select control points and edges of shapes so that stretch operations can be cast as a move

operation. Early in the implementation of Hawk, control point selection was possible.

However, the jazz implementation of Hawk had to be bypassed because, in the jazz imple

mentation, only one jazz shape can be associated with each shape while one jazz shape per

selected control point or edge was desired. Thus, control point highlighting was imple

mented in the selection commands. The value of a shape's integer-valued property named

selReferencePointMask encoded which of the shape's control points were selected. This

implementation bounded the number of control points per shape to be the number of bits in

an integer. In an unrestricted implementation, this property must be integer-vector-valued.

For lines and polygons, when consecutive control points are selected, the redisplay code

103

should highlight the thus defined segments and edges respectively instead of the points

themselves.

In retrospect, each view should have its own list of selected objects as in [25]. Highlighting

would be implemented by deriving from these lists shapes on the layer named jazz. When

all of the shapes on a layer are selected, each one should not be highlighted. Rather, a

highlighting rectangle should be drawn around the bounding box of all the shapes on the

layer. This saves an enormous amount of redisplay time and storage for the selected set.

Shapes, instances, and terminals can all be selected in Hawk. The latter arises when editing

nets such as with the Beaver schematic capture menu presented in Chapter 6.

5.5. User Interface

In summary, the Hawk user interface possesses graphical menus, invocation of commands

via keyboard and graphical input, pop-up windows, hierarchical menus, and multiple win

dows displaying multiple objects.

Hawk pops up windows which may display anything a window may display. This enables

a pop-up "part" menu to be implemented as a view that contains instances of parts and that

is displayed in a window bound to a button.

Each window has a few rectangles termed tabs or light buttons on its border that invoke

Hawk commands when the tabs are picked or pointed to. The tabs are clearly visible along

the borders of the windows of Figure 5.1. At present, the tab in the middle of the top

border of a window is used for panning by half the window's height in the positive direc

tion of the y-axis. The tab in the middle of the right border is used for panning by half the

window's width in the positive direction of the x-axis. The tab in the middle of the bottom

border and the tab in the middle of the left border behave similarly for the negative direc-

104

tion. The tab in the upper right corner is used for popping out of an in-context edit, popping

from a submenu, or emptying a window. Finally, the tab in the lower right corner pops up

status information about the window.

5.6. Measurements

The same two views that were used to measure the performance of OSL in Chapter 4 were

used to measure the performance of Hawk. Here, the time to zoom in on a single random

area was measured. For the leaf cell, the area was the full bounding box and the statistics

printed by Hawk are:

334 shapes and 4 user-millisec/shape

For the floor plan cell, the statistics are:

302 shapes and 3 user-millsec/shape

The contributions to the 3 or 4 user-milliseconds/shape follow:

Contributions to Show Time Per Shane

Source Time

Window Lookup NA

Set <nd Style NA

2D Data Structure Search 200 microsec

Instance Transformation 0

Clipping NA

Window to Viewport Transformation 45 microsec/vertex

Shape Showing via MFB NA

Each contribution must be counted for each window, but there is only one window in the

workloads. Instance transformation is skipped by Hawk for each shape in the source of the

instance hierarchy being shown. Each shape in the workloads is in the source and a rectan

gle. Clipping is not expensive for rectangles. A rectangle can be clipped using compare

instructions only. For a rectangle, window to viewport transformation takes 90 microsec.

Besides the contributions in the table that could not be measured, there are others: subrou-

105

tine call overhead—about 30 microsec on a VAX-11/780, detail suppression tests, and derived

shape tests.

If Hawk can produce a call to MFB's MFBShowRectangle every 4 milliseconds, then

Hawk can make a 250-rectangle change in one second. So unless Hawk is tuned by in-line

coding, etc., expensive frame buffers will not turn Hawk into a real-time graphics editor.

5.7. Multiple Windows

The data structure that supports display of multiple objects in multiple windows is quite

simple. All windows displaying the same object—usually Squid circuit view—are linked

into a circular list. Also, all windows are linked into a linear list. Each object is linked to

one of the windows, if any, it is displayed in. The rest of the windows the object is

displayed in are available through the circular list containing the one window.

This paragraph holds for windows displaying Squid circuit views. The display view of a

window is the view being displayed in the window. The edit view of a window is the

view being edited in the window. The edit view is a master of an instance in the instance

hierarchy whose source is the display view. This is used to implement in-context editing

and propagation of changes up the hierarchy as presented shortly. Each window displaying

a Squid circuit view has an edit view and a display view.

Hawk does not display a correlation between windows displaying the same area of the same

object. It would be useful to have a master cursor appear in the window the graphical

input device is in and slave cursors appear in all other windows that display the same object

as the window. This could be done with a work-station.

Hawk does not permit windows to overlap, but it could be extended as follows to allow

this. Each window is given a priority by the client. When a window is created, it becomes

106

the window with highest priority. There are also commands to push a window to the bot

tom thus making its priority the lowest, pull a window to the top thus making its priority

the highest, and highlighting temporarily all fully or partially obscured windows. All

windows would be partitioned into non-overlapping subwindows. A window is linked to

its non-obscured subwindows. Subwindows behave exactly like windows in Hawk at this

time.

A mask operation algorithm can be used for this partitioning:

1. Number the windows so that window number one has lowest priority, etcetera.

2. For each window, make a layer with one rectangle on it corresponding to the
window and make the layer's name be the number of the window.

3. Akin to the classical AND and OR operations, calculate a MAX operation.

4. For each layer, make the rectangles on it, if any, into subwindows of the win
dow corresponding to the layer.

5.8. Redisplay

When the database is changed, the display of the database may have to be altered to track

this change. There are two types of display changes:

1. Change a viewport. For example, a Hawk window is deleted, created, or its
viewport changed. Redisplaying the screen is just a huge viewport change.

2. Change an area. For example, a shape is added to a Squid circuit view or the ob
ject in a Hawk window is zoomed in on.

First, consider a viewport change:

Hawk.Window hawkWindow;
Squid.BoundingBox changedViewport^Lrea;

foreach hawkWindow

if(NOTSquidJntersectsXhawkWindow.viewport,changedViewport))
continue;

area = SquidJntersectionOf(hawkWindow.viewport,changedViewport);
area = Squid.ViewportToWindow(hawkWindow,area);

107

HawkJ>isplay(hawkWindow,area);

Second, consider an area change. All Hawk windows displaying the same Squid circuit

view are in the same list. Also, all of the Squid circuit view's shapes that intersect the area

can be searched for rapidly via Squid. Thus, only one database search of the view's area is

necessary:

Squid.BoundingBox area;
Squid.Shape shape.g;
Hawk.Window hawkWindow;

Squid£eginSearch(area);
while(Squid.Search(&shape) h= Squid_End_Search)

shape = Hawk.QipShape(shape,area);
foreach hawkWindow

/*AH windows displaying the same object are in a circular list.*/
g = Hawk.WindowToViewport(hawkWindow,shape);
g «• Hawk.ChpShape(g,hawkWindow.window);
switch(g.shapeType)

case Squidjtectangle:
MFBX)isplayRectangle(g.locus.rectangle);

If the MFB can clip and transform window to viewport, the inner loop body can be replaced

by MFB calls to redefine the window and viewport, and to display the shape. To tighten

this, the MFB should have a bank of:

< window, viewport >

pairs. The banks would be initialized outside the loops and the redefinition call would only

have to send a bank number.

Seldom is the changed area a rectangle—in general it is the union of disjoint polygons. How

ever, Squid can only search for the shapes that intersect a rectangle and thus this union

must be approximated by rectangles. In most graphics editors, this union is approximated by

the bounding box of the union or by the bounding boxes of the disjoint polygons. In Hawk,

the former is used most of the time and sometimes the latter.

108

The former code fragment corresponds to the Hawk subroutine named HADisplay-

Viewport and the latter to the subroutine named HADisplayView. The declarations are

interesting:

HADisplayViewportCviewport)
SQBB viewport;

HADisplayView(windoID^rea^loneP^ditViewDidNotChangeP)
int windoID;
SQBB area;
SQBool aloneP^ditViewDidNotChangeP;

windoID is the id of or pointer to the window to be redisplayed, area is the rectangular

area in world coordinates to be redisplayed. If aloneP = sqTrue, then only the window

given by windoID shall be redisplayed. Otherwise, all windows displaying the same

display view as the window given by windoID will be redisplayed. aloneP =«=» sqTrue is

used while panning or zooming a single window. editViewDidNotChangeP = sqFalse

implies aloneP = sqFalse, because this means a change has been made to the area and one

wishes everything on the screen to reflect this change. The change will be propagated up

the hierarchy. This can be quite expensive and that is why editViewDidNotChangeP =

sqTrue means no change to the area was made and thus propagation is nor to be done.

Thus, the implementation of change propagation makes editing in context easy:

HADisplayView(-)

f
if(NOT editViewDidNotChangeP)

-. /*Let EDIT view be DISPLAY view.*/

- /*Display DISPLAY view.*/

if(NOT editViewDidNotChangeP) {
/*Propogate changes UP.*/
foreach instance OF EDIT view

area' •» Transform(instance->transform,area);
HADisplayViewGnstance- >instanceIN->window,area',-.);}

109

5.9. Instance Transformation

The transformation package presented in Chapter 3 is used by Hawk to transform points.

When editing in context, the client points at the coordinate system of the view being

displayed and this point must be transformed into the coordinate system of the master being

edited. Inverting the instance transformation and multiplying the display point by the

inverse yields the edit point.

5.10. Clipping

For each Squid shape type, there is a corresponding Hawk clipping routine. For example:

voidHAClipRect(clippingRectangle^rc4st)
SQBB *clippingRectangle;
SQGeo *src,*dstD;

clips *src to form zero or one rectangles in *dst[0]. When clipping an SQPolygon or

SQLine, many shapes can be produced as a by-product of clipping. When clipping an

SQCircle, between zero and four shapes can be produced.

To clip to the outsideof a clipping rectangle, the clipper is invoked on the rectangles:

SQBB *clippingRectangle;

HAAboveClippingRectCclippingRectangle);
HALeftOippingRectCclippingRectangle);
HARightClippingRectCclippingRectangle);
HABelowClippingRect(clippingRectangle);

One clipping routine should have been implemented— at least from point of view of the

client of the clipping package— that has the declaration:

voidHAClipShape(clippingRectangle^irc,dst4nsideP)
SQBB *clippingRectangle;
SQGeo *src,*dstD;
SQBool insideP;

110

5.11. Window to Viewport Transformation

In this section, the term window means a rectangular area in world coordinates while

viewport means a rectangular area in screen coordinates as usual. Let viewportDimension

and windowDimension be the width or height of a viewport and window respectively.

The window to viewport transformation mathematical equations are:

pixels «• Round(lambda*viewportDimension/windowDimension)
viewportDimension >= windowDimension

The finite, integer computer equations are:

pixels = (2*lambda*viewportDimension+wmdowDimension)/(2*wmdowDimen^

Pre-computing yields:

pixels = (lambda*A+windowDimension)/B

Hawk's macro HALFLTOP transforms a world coordinate point to a screen coordinate point.

A program was written that invoked this macro 100,000 times. Compiled without the

optimizer, this program executed for 5.1 user-sec or 51 microsec/point. With the optimizer,

this program executed for 4.5 usersec or 45 microsec/point.

When the window is zoomed a long way out, Le.,

viewportDimension «windowDimension, there are many lambda per pixel, and only

a coarsely sampled image can be displayed. Since this image is not very pleasing and can be

very costly to display, suppressing detail is very important as presented in the next sections.

When there are one or more pixels per lambda, the number of pixels per lambda may not be

integral and this leads to asymmetries. Here's an example:

viewportWidth = 1000 pixels
windowWidth = 588 lambda
1.7 pixels/lambda
firstRectangle.left = 0 lambda
firstRectangle .right = 2 lambda
secondRectangleieft = firstRectanglcright = 2 lambda

Ill

secondRectangle.right = 4 lambda
firstRectangle .width - secondRectangle.width = 2 lambda

Transformation yields:

firstRectangle left - 0 pixels
firstRectangle .right= Round(3.4) = 3 pixels
firstRectangle.width = 4 pixels
secondRectangleJeft = firstRectanglcright = 3 pixels
secondRectangle.right = Round(6.8) = 7 pixels
firstRectangle.width *» 5 pixels

Though in world coordinates the width of both rectangles is the same, their widths in

screen coordinates differ by one. This is annoying, but because the shared edge in world

coordinates is still common in screen coordinates, connectivity is preserved.

5.12. Ellipses

The control points in the last example may be interpreted slightly differently. If the x coor

dinate of the center of a circle is 2 lambda and the circle's radius is 2 lambda, then the x

coordinate of the center is 3 pixels, the minimum x coordinate is 0 pixels, and the maximum

x coordinate is 7 pixels. Thus, the perfect circle in world coordinates is warped in screen

coordinates. This is annoying and strikingly visible, because a circle's main perceptual pro

perty is its symmetry. If the circle is displayed as an ellipse, symmetry will be preserved as

well as connectivity. However, a line passing through the center of the circle in world coor

dinates will not pass through the center of the ellipse. The ellipse solution trades inter-

shape symmetry for intra-shape symmetry. Though it is a highly subjective matter,

schematic display experiments reveal that this is a good trade-off.

Display of ellipses is an interesting problem. The common solutions sweep theta in the

parametric equation of an ellipse to yield points on the ellipse, use a DDA-class algorithm, or

use a Bresenham-class algorithm. A package named El was built whose data structure is a

table of elliptical arcs sweeping through the first quadrant. Arcs with major and minor

112

axes ranging from one up to a compile-time constant of ten are tabulated. Ellipses or ellipti

cal arcs that sweep between two angles that are each a multiple of 90 degrees are built up

by symmetry operations.

The points on the ellipse must not be connected by lines drawn by a line drawing algo

rithm, because if an equilateral triangle is drawn with one side parallel to the x axis, and

one of the remaining two sides is nipped sideways and overlayed over the other, my experi

ence is that they will not match pixel for pixel. Plotting the trajectory insures perfect sym

metry.

Other elliptical arcs are built up by constructing an ellipse, computing the point on the

ellipse that is closest to the point corresponding to the starting angle, and traversing the

ellipse, starting from this closest point, accumulating consecutive points until the point on

the ellipse that is closest to the point corresponding to the finishing angle is reached. Clip

ping is very similar. The ellipse is traversed searching for visible-to-invisible and invisible-

to-visible transitions that yield visible sub-arcs.

5.13. Bounding Boxes

There are Squid operations to fetch the graphics and "graphics+text" bounding boxes of an

instance and of a view. Squid also propagates bounding box changes up the instance hierar

chy so that the bounding box information is correct unless the propagation has been deferred

by calling SQDeferBBUpdates.

Yet another example of derived shapes is the problem of displaying bounding boxes of

instances rather than all of the shapes the instances contain. Two of the modes for a Hawk

window are bbl and bb*. bbl displays the bounding box of each instance in the view

displayed in the window as well as all shapes in the view, bb* displays the bounding box

of all instances in the hierarchy whose source is the view displayed in the window as well

113

as all shapes in the view. In bb*, the bounding box of an instance is displayed in a color

that indicates the level of the hierarchy it is on. This makes a clear, spatial decomposition of

the hierarchy.

5.14. Suppressing Detail

If a Hawk window is in expand mode, all shapes in the hierarchy whose source is the view

displayed in the window are displayed. If the RISC I microprocessor floor plan is displayed

in a 1000 pixels by 1000 pixels viewport, about 500,000 rectangles would be displayed at a

scale of about 400 square microns per pixel. On a frame buffer that can draw 300

rectangles/sec, a redisplay would take over 27 minutes.

If the Hawk client, in error, commands Hawk to run a long redisplay, he may press an

interrupt key and Hawk will cease. Hawk does display fewer derived shapes as the client

zooms out more. First, the grid is suppressed, then names of terminals, then names of

instances. Polygons and arcs are depicted by their bounding boxes when the client zooms

out far enough. There is no sense scan-converting an arc that is on the order of one pixel in

area.

It may be reasonable to have Hawk automatically suppress the display of shapes whose

width and height are less than a certain number of pixels. A more interesting possibility is

to partition all such shapes into equivalence classes. Each class is a set of shapes that are

separated by no more than a certain number of pixels. Each class is shown as the bounding

box of all shapes in the class. When a class is zoomed in on, it breaks apart into its com

ponent shapes.

114

5.15. Obscured Pins

When a circuit is designed, its terminals are given names that suggest their function. For

example, a RAM cell may have a busA terminal on it. However, when the RAM cell is

used in a register as a master, it is convenient to rename busA to a contextual name such as

IR<3> and have the name IR<3> obscure the name busA when the register is displayed or

plotted. As proposed in Chapter 2, it may be argued reasonably that this semantics should

be prescribed by the data model. Instead, Hawk insures this in its redisplay algorithm.

Before a pin pin at level level on layer layer is displayed, the area of layer layer that pin

covers in the levels of instance hierarchy above level is searched for pins that obscure pin.

pin is displayed only if there are no such pins. This can be interpreted as another example

of derived shape.

6.1. Logic Design Tools

CHAPTER 6

NEW CIRCUIT CAD TOOLS

6.1.1. Schematic and Block Diagram Capture by Beaver

Traditionally, a schematic diagram or block diagram—henceforth abbreviated schematic— is

drawn with a graphics editor by using the same commands that are used in drawing any

two-dimensional line drawing. The schematic differs from any two-dimensional line draw

ing in that it must conform to a particular syntax so that a schematic extractor tool-

henceforth abbreviated extractor—can read the schematic and produce the net list, or connec

tivity, represented by the schematic A typical schematic syntax is as follows:

1. A shape functioning as a pin is associated with a terminal by adding a ter-
minalName property to the shape's property list.

2. A shape functions as a frame if it is not a pin and there are no instances in the
view the shape is contained in. Such a view would represert a schematic-symbol.

3. A shape is asserted to function as an interconnect if it connects two or more pins
and there are instances in the view the shape is contained in. Such a view would
represent a schematic.

4. Two terminals are connected if a pin associated with one terminal intersects a
pin associated with the other terminal. Also, two terminals are connected if a pin
associated with one terminal intersects an interconnect and a pin associated with
the other terminal intersects the same interconnect.

5. If two interconnects intersect, the extractor will assume that the interconnects
are not connected unless an object is present at the intersection to explicitly create a
connection. Such an object is termed a solder dot and either a shape or instance of a
solder dot master can function as one.

A useful command for editing a schematic is to select all control points that intersect a

115

116

selected instance—normally the control points will be associated with interconnects that are

connected to terminals on the selected instance. Thus, when the selected instance is moved,

the interconnects whose shape is controlled by the selected control points will move along

with the selected instance.

However, the following problems arise when capturing schematics with the commands of

the graphics editor for 2D line drawings. Sometimes the moved interconnects will result in

a pleasing schematic, but sometimes the schematic will appear ghastly, unwanted connec

tions will be created, and solder dots will have to be moved or deleted manually after the

move. After an instance is deleted, often lines functioning as interconnects possess control

points that no longer intersect pins, because the pins were deleted along with the instance.

Such lines must be edited after the deletion. A terminal is termed floating if it is not con

nected to any other terminal. Commands that highlight all terminals connected to a

selected terminal and that highlight floating terminals cannot be implemented without exe

cuting the extractor.

The schematic capture editor, Beaver, is a set of commands built within the framework that

solves some of those problems. Beaver's schematic syntax follows:

1. A view named body that represents the schematic-symbol for a cell is drawn as
a set of frames on the special layer SYMBOL and a set of pins on the special layer
CONNECT. The frames function as obstacles for Beaver's maze router. The pins
must lie on or outside the bounding box of the frames. Shapes on other layers are
ignored, but the other layers may be useful for shapes representing documentation,
terminal names, logic bubbles, etc.

2. A view named schematic that represents the schematic-drawing for a cell is
drawn as a set of pins on the special layer CONNECT and a set of instances of
body views. If the cell also has a body view, then every formal terminal in the
body view must appear in the schematic view. A global terminal is a terminal
whose name ends with an exclamation point. A global terminal is automatically
associated with a global net whose name is the same as the terminal's name. Thus,
global terminals do not have to be connected by interconnects.

Thus far, no commands specific to Beaver are required for schematic capture, except that the

117

selection tool permits the user to add and subtract terminals from the selected set as well as

shapes and instances. Selecting a pin causes its associated terminal to be selected as well as

all of the terminal's associated pins.

There are only four commands that manipulate the schematic view in the current win

dow. At all times, the net list is simply the set of nets in the schematic view—extraction is

unnecessary. First, the command connect deletes interconnects implementing any nets that

the selected terminals may be participating in, merges the nets together into one net and

deletes them, adds any selected terminals that are floating to the one net, and routes the one

net. The routing algorithm will be described in the next paragraph. Second, the command

disconnect deletes interconnects implementing any nets in which the selected terminals

participate, inserts the selected terminals in a special floating net, and then re-routes the nets

that were initially un-routed. Third, the command dangling inserts into the selected set

any floating terminals. Fourth, the command jazzNet inserts into the selected set any ter

minals that are connected to terminals that were members of the selected set when the

command was invoked.

The selection tool's commands that move and delete the selected set had to be modified to

invoke the Beaver router to re-route affected nets. This could have been implemented as a

Beaver Squid-demon, but was not. The routing algorithm is divided into two phases. First,

for each net, a global routing phase calculates a minimum spanning tree for the net using

Manhattan distance between the net's pins as the branch weight. Second, each minimum

spanning tree branch is routed by a rule-based, pin-to-pin, maze router. Each rule is applied

and generates one route that is tested against the existing objects in the schematic view. If a

route intersects an obstacle frame implicitly denned by an instance of a body view or the

route contains an interconnect that lies on top of an existing interconnect associated with a

different net, then the route is rejected. Otherwise, a cost that measures the quality of the

route is calculated that sums the length of the route and a penalty factor for the number of

118

interconnect crossings. If all routes are rejected, a possibly non-Manhattan straight line is

drawn as an interconnect on the special layer SOLDER between the pins. Otherwise, the

route with the minimum cost is chosen. As a post-processing step, interconnects functioning

as solder dots are placed on the special layer SOLDER at any intersections of interconnects

associated with the net. In many cases, a Steiner tree would yield a more pleasing route

than a minimum spanning tree.

Because the pairs:

< SOLDER, interconnect >
< CONNECT, interconnect >
< CONNECT, pin >
< SYMBOL, frame >

are used, four different colors can be used to aid perception of schematics. As expected, glo

bal routing that is "more global" than one net at a time is necessary to obtain schematics

with the minimum number of interconnect crossings. Highlighting failed routes by placing

them on the layer SOLDER guides the user in moving instances apart to yield more routing

area between instances.

6.2. Layout Design Tools

When designing custom integrated circuits, there are at least four design methods applied in

the layout phase of design:

1. Detailed layout of views such as RAM cells, bonding pads,
and large transistors.

2. Automatic layout by module generator as in PLAs and gate matrices.

3. Wire-less connection by careful placement as in bit-slice data paths and
registers (abutmentor overlap).

4. Connection by routing as in floor plans.

Each of these approaches will be referred to during the description of a number of layout

tools in the remainder of this chapter.

119

6.2.1. Drawing Layouts

There are two types of paradigms for layout editing:

1. Shapes are painted. As shapes are created, they are merged with existing shapes.
The painting analogy arises because after painting with a good paint and brush, the
exact strokes of the brush are not visible and neither are the originally created
shapes except by chance. Shape deletion is modeled as painting with a background
paint. Shapes can only be modified by creating and deleting shapes. Thus, creation,
deletion, and modification of shapes are performed by painting[49, 50].

2. Objects are manipulated. When a shape is created, it is added to the database
without altering the structure of existing shapes or the added shape. Deletion and
shape modification are performed by selecting control points, edges, or whole shapes
and moving, replicating, and removing them. Moving a control point or edge is
sometimes termed stretching.

In the paint paradigm, since the relationship between what specific shapes were drawn and

the area they cover is not maintained, a drawn set of rectangles on a layer can be

represented by a smaller, perhaps minimal, set of rectangles in which any two rectangles

that intersect must abut. In the object paradigm, the drawn and minimal sets will only be

identical if special care is taken by the drawer or by chance. If the drawn and minimal sets

are not the same, there will be several problems. Redisplays will be longer than necessary,

because there are more rectangles to display. If rectangles are outlined, the outlines may be

confusing. Yet, if rectangles are not outlined, selectingall objects that contain a single point

becomesa game of chance, because the individual objects are not differentiable.

The selection tool I have implemented uses an object paradigm. Recall from Chapter 5 that

selection is implemented outside of the Hawk kernel.

6.2.2. Array

In harmony with the viewpoint on geometric regularity in Chapter 2, a tool called array

has been constructed whose input is a command line that describes the array the tool is to

build and whose output is a physical view representing the array. To make a 4 bit register

120

named NibbleReg with odd bits mirrored out of a memory cell named BitReg, for example

a typical command line is:

array -row -mirror -width 6 -pitch 5 -# 4 NibbleReg -homo BitReg

Figure 6.1 illustrates the construction.

«•

width

b

<r >

usA<rodI>

pins

< BitReg, physical >
>pitch

hn^A< 0 > b. isA<? >

bus£A^1 > busAd3>

J
m

WK{
S5S5S
ST

< NibbleReg, physical >

•

Figure 6.1: NibbleReg is a homogeneous row vector of BitRegs.

-row means that the array is a row vector—each instance is placed side by side, -mirror

121

means that odd bits are flipped sideways. BitReg is 6 lambda wide and has a pitch of 5

lambda. The value of the -# switch is the number of bits, -homo means that the array is

homogeneous—all of the elements are identical. Each terminal of BitReg whose name has

the form:

terminalName%d

as in busA<&d> is termed a subscripted terminal. For each integer i between 0 and 3, i is

substituted for %d in all subscripted terminals— formal terminals are created in the physi

cal view of NibbleReg with the resulting names. The pins associated with subscripted

actual terminals on the ith instance of BitReg are copied into the physical view of ByteReg

properly transformed. When the physical view of NibbleReg is displayed, Tecall from

Chapter 5 that the names of the terminals associated with the pins created by Array will

obscure the names of the subscripted terminals associated with the pins that Array copied.

Effectively, %d plays the role of a bit number, but often a word number is desired. To

solve this problem, %d must be generalized to %subscriptName. Thus, a physical view

might contain formal terminals named busA%bit and enable%word. The value of Array's

new switch -subscriptName is a substring that follows % in a formal terminal name.

The tool can build a row or column vector composed of simple instances of element views.

Matrices must be built as rows of columns or columns of rows, but this is usually quite

natural as exemplified by a register file composed of registers with each register composed of

memory cells. The tool aligns adjacent elements so that they intersect properly and mirrors

every other element if desired so that the silicon area occupied by power and ground pins is

shared.

At this time, Array is simply a drawing tool. For a layout analysis tool to exploit the regu

larity of a physical view which represents an array, Array should also produce a view

which contains additional implied connectivity information and a summary of the array.

Not all arrays are homogeneous. The following command line constructs the physical view

of the byte insert/extract stage of a CMOS microprocessor's data path:

array -mirror -height 124 -pitch 117 *-& 32 bfloor -subscriptbaby

Each of the 32 bits is different, but -subscript means they are named babyO/symbolic,

baby1/symbolic, ~, baby31/symbolic. The physical view will be stored in

bfloor/physical Unless a layout analysis tool such as the next section's Frame can prove

that the babyi have the same perimeter characteristics, a layout analysis tool will be unable

to exploit -subscript regularity.

The following command line builds the physical view of the ALU stage of a CMOS

microprocessor's data path:

array -pitch 117 "nf 32
afloor #Name of the cell,

-random #Random pattern among the elements,
alufirst aluodd alueven alulast

alufirst aluodd alueven alulast

alufirst aluodd alueven alulast

alufirst aluodd alueven alulast

alufirst aluodd alueven alulast

alufirst aluodd alueven alulast

alufirst aluodd alueven alulast

alufirst aluodd alu30 alu31

Because the bits are already mirrored, -height is unnecessary. If the original array is:

or equivalently:

where P, is:

"Ei-Ej+l

then the minimalarray for the original array is the array that contains only the unique P,-.

For the ALU, the minimal array is:

123

alufirst aluodd alueven alulast

alufirst aluodd alu30 alu31

If the minimal array is processed by the layout analysis tools, then these tools must general

ize their output slightly to assert that they have processed the entire original array.

If the array's pattern is:

even odd even odd even odd ~

the command line's form is:

array -mirror -pitch # -height # theArray -evenodd even odd

If odd is already mirrored, -mirror and -height are unnecessary. Clearly, layout analysis

tools can exploit the regularity here.

6.23. Protection Frames

For a long time, schematic-symbols have been used widely to suppress detail in schematic-

diagrams and block diagrams. When an instance of a schematic-symbol is created, an

instance of the schematic-symbol's associated schematic-diagram is created implicitly as well.

By assigning the proper values to the properties and actual parameters of the schematic-

symbol, as well as connecting to the schematic-symbol's actual terminals, the behavior of

the circuit represented by the schematic-symbol's associated schematic-diagram is determined

completely. Thus, the schematic-symbol is an abstracted view of its associated schematic-

diagram view.

In the remainder of this section, the use of abstract views for layouts is described. The goals

are to speed layout analysis, speed layout drawing, decrease space requirements, and decrease

screen clutter. The small amount of past research in this area is reviewed and then new

results are presented. All examples will be drawn from an nMOS process [8] that is used

for low-density custom circuits. The process has the following characteristics:

124

• Depletion and enhancement, self-aligned, polysilicon-gate transistors.

• A minimum channel area of 2 lambda by 2 lambda.

• A minimum line width of 2 lambda.

• External thick-oxide contacts between polysilicon and metal, and diffusion and
metal.

• External gate-oxide contacts between polysilicon and diffusion used mostly for
connecting gates and sources when building depletion load devices. Such contacts
are sometimes termed buried.

• One level of metal with a minimum line width of 3 lambda and a minimum

separation of 3 lambda.

Figure 6.2 is a legend depicting, for each mask, the mask's name, the mask's function, and

stipple pattern that shapes on the mask are drawn in.

iW n + : n+ diffusion

till!!

DMCon: nH—to—NM contact

I PMCon: NP-to-NM contact

Sjjjj
ill! depFET: depletion —mode FET

1
!i!l enhFET: enhancement—mode FET

. NM: metaH

125

w/M, NP: polysilicon

ND: diffusion mask

NC: thick oxide contact cut

il NS: gate oxide contact cut

W£M Nl: depietion implant

Figure 6.2: Legend for nMOS process.

At the low end of the abstraction spectrum is the mask view of a layout. All mask

modification has been performed so that each layer in the mask view corresponds to a blow-

back [8l plate, or mask.

A view that is somewhat more abstract than the mask view, is the layout view which con-

126

sists of layers that are easily transformed to masks by a mask operation tool. The layout

view of an nMOS, depletion-load inverter is illustrated in Figure 6.3.

W:'<,•:.'

1
P
1 .••//V .j...

I

1
f̂

/

\l d..d!

***&$$••••- •
•"•\Vi~ \-

if
J::.: •-

•/.•'••///

'- |W* -

3ft«5ii£i':~:.:.I-.:-wi. ,

Figure 6.3: Layout view of a depletion-load inverter.

This inverter will be abstracted in several ways in the remainder of this section. Each

labeled rectangle is a pin—the label the pin contains is the name of the terminal the pin is

associated with. Neglecting mask operations that correct for the effect of wafer processing

127

on nMOSFET channel dimensions and neglecting pins, the layout view would be the same

as the mask view. The large majority of layout processing and display tools process the lay

out view.

When a chip is designed using a gate array or standard cell design method, the chip's floor

plan is regular. Regularity makes possible a high level of abstraction which in turn

simplifies layout processing.

A gate array chip is designed by customizing a standard floor plan by connecting gates and

vias by routing on conductor layers. Because the placement of the floor plan's gates and vias

is fixed, the floor plan can be abstracted as a set of routing channels that interconnects are

routed in. Except for the conductor masks, the mask view is computed once and does not

change from chip to chip. After routing a chip, the mask view of the routing masks for the

chip can be computed trivially and is correct by construction.

A standard cell chip is harder to abstract than a gate array chip, because the placement of

standard cells is not fixed. However, the floor plan and standard cells are regular. A stan

dard cell can be abstracted by its clock and supply pins which abut matching pins on adja

cent standard cells and its signal pins which lie on the bottom and top edges of it. A signal

pin can be connected to by an interconnect, but not by another signal pin, because standard

cells are placed in separated rows. A floor plan can be abstracted by routing channels

between rows of standard cells. Because the standard cells are carefully designed to abut

correctly and are precisely characterized once and re-used in each chip, as in the gate array

case, the mask view for a particular chip is easily computed and correct by construction.

Currently, custom chips are designed with tools that process the layout view and thus

without the aid of abstraction. Several programs [51, 52] have been built that exploit regu

larity to simplify processing, but they process the layout view. Several researchers [36, 53-

57] have implemented abstractions tosimplify processing that are presented next.

128

At the high end of the abstraction spectrum is the bounding box view as exemplified by the

abstraction of the inverter from Figure 6.3 in Figure 6.4.

Figure 6.4: Bounding box view of a depletion-load inverter.

The bounding box view represents the two pieces of information that every layout abstrac

tion must: pins to be connected to and obstacles to stay away from termed protection

frames. The bounding box approximates the layout view by covering at least all of the

129

shapes of the layout view. The internal and border details of the layout view are lost. The

algorithm for computing the bounding box view from a layout view in which the designer

has drawn pins follows:

1. Merge all shapes.

2. Grow the shapes resulting from the merge by the largest distance MAXRULE
that two shapes must be separated by.

3. Compute the bounding box of the shapes resulting from the growth.

4. Make this bounding box a rectangle on the layer named BB. (In CMOS, MAX-
RULE is usually equal to the greatest well-to-well spacing. In nMOS, MAXRULE
is usually equal to the greatest metal-to-metal spacing. In bipolar, MAXRULE is
usually equal to well-to-base spacing or to the greatest metal-to-metal spacing. Be
cause of the growth, interconnects and other bounding boxes can touch a bounding
box, but cannot overlap the bounding box if layout rules are to be obeyed. The
bounding box abstraction is quite conservative, because two bounding boxes placed
side by side will be further apart than they need to be by at least the amount of
growth. This abstraction does have the appeal that interconnects do not have to be
any particular distance away from bounding boxes.)

5. Stretch the pins by river-routing the pins to the edges of the bounding box. (For
each pin, disregard its route except for that which is colinear with the bounding
box edge and let that be the pin in the bounding view.)

6. For each pin, calculate the largest current that can flow through the pin. (Thus,
the width of any interconnects that are routed to the pin can be adjusted so that
the interconnects do not break up due to a worst-case current flow.)

This algorithm can be automated easily by invoking a river routing tool and a mask opera

tion tool. Current calculation is harder and thus may be left to the designer. This algo

rithm can be applied to a view that contains only instances of bounding box views, inter

connects, and pins so that this abstraction is hierarchical. A slight variant of this abstraction

is used in the BBL placement and routing tool [58]. In this variation, the protection frame is

a Manhattan polygon and worst-case current flow is indicated by pin width. Instances of

bounding box views cannot be routed over. In general, an abstraction with a single protec

tion frame on a special layer cannot be routed over except by pre-planned jumpers. This is a

disadvantage in some design methods however it also has several advantages. First, there is

no problem in extracting node-to-node, cross, mutual, or coupling capacitance. For multi-

130

layer metal processes, this is usually not a problem anyway. Second, each layout view can

be prepared for pattern generation independently at least in the domain of optical pattern

generators. If interconnects are grown during preparation of the mask view, care must be

taken to shrink them back so they do not overlap grown pins.

The bounding box protection frame is so coarse that an unacceptable amount of chip area

may be traded for the processing efi&ciency of the bounding box view. A view that

represents the border of the layout view in more detail in order to enable greater area utili

zation is the doughnut view in Figure 6.5.

i i

y.qq
VOiD

BSR5|(P*Wi

131

Figure 6.5: Doughnut view of a depletion-load inverter.

The algorithm to compute this abstraction is:

1. Copy the layout view to the doughnut view doughnut. The rest of the opera
tions are performed on doughnut.

2. Draw a protection frame polygon on the layer named BB that encloses all of the
shapes that are not pins to be shared when an instance of another doughnut view
overlaps an instance of doughnut.

3. Shrink the protection frame by MAXRULE.

132

4. Clip to the outside of the shrunken protection frame all of the shapes contained
in doughnut. (This forms a doughnut-shaped abstraction, because the clipping
operationforms a doughnut hole.)

5. Grow the protection frame by MAXRULE.

6. The protection frame must contain all devices though contacts can exist outside
the protection frame. (Thus, only routing can exist in views that contain instances
of doughnut views.)

Once a layout view has been layout-rule-checked and extracted, its equivalent circuit has

been compared against its schematic view, it has been converted for pattern generation, and

it has been abstracted, these operations need not be performed again unless it is altered.

When an instance of this abstraction is created, only the shapes of the doughnut, the protec

tion frame, and the pins have to be re-processed. Furthermore, simpler, faster extraction and

layout rule checking tools can be applied because devices do not have to be processed. The

doughnut view abstraction can be applied hierarchically. As level of instance hierarchy

increases, typically the processing savings due to the abstraction increases.

Two problems with the doughnut view are that it is not possible to route through the pro

tection frame and the designer must draw pins in great detail. In the case of the inverter,

13 rectangular pins were drawn by hand. The rest of this section presents an algorithm

called Frame that solves these problems and an implementation of the algorithm which is

also called Frame.

First, it is assumed that the designer has drawn pins in each layout view. However, he does

not need to draw the pins in their entirety— in Figure 6.3, the vdd! pins at the top can be

drawn as a single vector on the metal layer instead of having to draw rectangles on the

polysilicon, metal, and thick oxide contact cut layers.
i

The protection frame algorithm implemented in the Frame program is used to construct all

protection frames described here and is as follows: First, layers are derived from the layout

view that represent devices, contacts, and interconnects. The section named FRAME in the

133

file named .cadre contains the rules for deriving these layers. The following excerpt from

the FRAME section used to build the following examples is:

begin FRAME
#'Rules file" for Mead&Conway-MOSIS nMOS process with buried contacts
&nd no butting contacts.
#JOT layerl layer2 means layerl = NOT layer2.
NOTiPNP

NOTIDND

NOT !C NC

NOT UNI

NOT B NB

NOTIMNM

#AND layerl layer2 layer3 means layerl = layer2 AND layer3.
ANDn+!PND

AND PD NP ND

AND PD!B PD 03

^Must differentiate between the two FET modes so that enh FETs are

#iot implanted by accident. depFET accounts for ND that isn't n+.
AND enhFET PD'B a

AND depFET PD!B NI
AND MC NC NM

ffiAust differentiate between the two thick oxide cuts or else when routing
#to a "contact pin" on NP (n+), we have to check if n+ (NP) is present.
#A11 NC is accounted for by PMCon and DMCon.

AND PMCon MC NP
AND DMCon MC ND

^CONNECTS layerl layer2 means when a shape on layerl intersects a shape
#on layer2, the two shapes are connected.
CONNECTS NM NM

CONNECTS NP NP

CONNECTS n+ n+

CONNECTS NM PMCon

CONNECTS PMCon NP

CONNECTS NM DMCon

CONNECTS DMCon n+

CONNECTS NP NB

CONNECTS NB n+
iffRAME layerl %d means to compute shapes functioning as protection frames
ton layerl by growing shapes on layerl that are not pins by %d,
#ORing the grown shapes, and shrinking the ORed shapes by %d.
#This operation closes up gaps between shapes on layerl that
Cannot be used for routing on layerl.
#The choice of %d that yields the most freedom in routing is:
%d = £ * minLineWidthOnLayerl + minSeparationBetweenLayerlShapes - .5
#The choice of %d that forbids routing over a symbolic view on layerl is:
%d-INF

FRAME enhFET INF
FRAME depFET INF
FRAME DMCon INF
FRAME PMCon INF

FRAME n+INF

134

FRAMENBINF

FRAME NI INF

FRAME NP INF

FRAME NM INF
end

Consider derivation of the layer named enhFET. An enhancement-mode FET channel is

formed everywhere polysilicon intersects diffusion and there are no gate oxide contact or

depletion-mode implant shapes present. This can be expressed by the notation:

enhFET = NP AND ND AND (NOT NB) AND (NOT NI)

and as shown above:

NOTIINI

NOTIBNB
ANDPDNPND

AND PD!B PD !B

AND enhFET PD!B Q

Second, each pin that the designer drew is extended or extracted using the recursive touch

ing geometric operation described in Chapter 2 and each line of the form:

CONNECTS layerl layer2

in the section named FRAME. Considering again the vdd? pin on the metal layer in Figure

6.3, the lines:

CONNECTS NM DMCon
CONNECTS DMCon n+

enable the recursive touching geometric operation to extend the single metal pin through the

thick oxide cut rectangle through the diffusion rectangles to the drain of the depletion-mode

FET. Distinguishing between diffusion rectangles on the enhFET, depFET, and n+ derived

layers keeps the recursive touching geometric operation from extending the single metal pin

through the depletion-mode FETs channel. Thus, this phase of the algorithm is precisely

what a node extraction algorithm would perform.

The maximum width of the drawn and extracted pins are denoted by maxPinWidth. In

135

practice, the pins with the maximum width are always supply pins except in the case of

wells and pins of huge transistors. Such pins must not contribute to maxPinWidth. Non-

supply pins are easily neglected, because their associated terminals do not have names that

end with an exclamation point. Well pins are easily neglected, because the FRAME section

includes lines of the form:

SUPPLIEDJBY CW GND!

CW denotes a CMOS p-well that must be grounded. Huge transistor pins are not so easily

neglected. They have not been encountered by the program Frame as of yet so though this

problem must be solved, its solution has been put off. Perhaps the best solution is to add a

line in the FRAME section whose form is:

SUPPLY layerl

layerl is a layer that supplies are routed on—most often the highest level of metaL Only

pins on layers that route supplies contribute to maxPinWidth.

Fortunately, the SUPPLLED_JJY construct serves another purpose. After this phase of the

algorithm completes, any shapes on supplied-by layers that are not pins associated with the

supplying terminal are highlighted by shapes on a diagnostic layer. This is very useful in

CMOS processes. In CMOS processes, it would also be useful to check that the wells are

connected to their supplies every wellSupplyingContactSeparation square lambda. After

Phase 3, this could be performed in the follow way:

1. If there is not at least one well-supplying contact in a well, the SUPPLEEDJJY
check will produce a diagnostic.

2. No edge that is part of the perimeter of a well is separated from a well-
supplying contact in the well by more than wellSupplyingContactSeparation.

3. Each well-supplying contact in a well must have another well-supplying con
tact in the same well within wellSupplyingContactSeparation lambda of it.

Let maxHW denote the maximum of the Height and Width of the view being abstracted.

136

Third, for each layer, the shapes are grown by maxHW, merged, and shrunk by maxHW-

maxPinWidth in order to construct a protection frame. This frame will suppress the

detail inside the view being abstracted yet enable the pins near the view's perimeter to

remain outside of the frame so they can be connected to. This phase can be skipped entirely

as will be clear shortly.

Fourth, for each layer, the shapes that are not pins are grown by growAmount, merged,

and shrunk by growAmount in order to construct a protection frame, growAmount is

given in the FRAME section by lines of the form:

FRAME layer growAmount

Thus, the line:

FRAME NM INF

means to grow and shrink by maxHW. When growAmount is equal to maxHW, the

resulting protection frame is a bounding, Manhattan polygon.

Fifth, for each layer, all pins and pieces of pins that are contained entirely inside a protec

tion frame are removed from the abstract view, because they cannot be used in routing.

In summary, the algorithm is:

1. Layers are derived from the layout view that represent devices, contacts, and in
terconnects.

2. Each pin is extracted.

3. For each layer, the shapes are grown by maxHW, merged, and shrunk by
maxHW-maxPinWidth in order to construct a protection frame.

4. For each layer, the shapes that are not pins are grown by growAmount,
merged, and shrunk by growAmount in order to construct a protection frame.

5. For each layer, all pins and pieces of pins that are contained entirely inside a
protection frame are removed from the abstract view.

This algorithm is coded in 528 lines of C.

137

The results of applying this algorithm to the layout view of the inverter in Figure 6.3 are

Figure 6.6 and Figure 6.7. No metal or polysilicon protection frames were computed,

because the inverter occupies such a small amount of area. To produce these frames from

the original layout data required less than 5 CPU seconds on a VAX-11/780.

\/<.diil

&£?:••-

1 I •" ill

11
feii'••>:?.-; v •••'•

If
.1, A,

_^.

mm

. •"•:-

xifeSSSfeiiiU

ill \

Figure 6.6: Pins of abstract view of a depletion-load inverter.

f555£::3r.»t»

iallilililllllisMlilil

Mm.

Illlliii!!!
iliiiiiifi
lllliiimlil

Figure 6.7: Frames of abstract view of a depletion-load inverter.

138

Figure 6.8 illustrates the layout view of the address decode PLA of the SOAR microproces

sor.

E&1 /•

Km

s.

•

-

=?.:

—.'ZZmU- m!T&ZM*&r*£5&liVw2Pt -- :i-l-.: :/m*i'-_--M-l"'.- '.-

j n ij o '

r
•JZ.-/ .••////-w/

0<- • WC//7.. vxtt/-.

'/i'-'.- - >'////"••;/&>
* S --•:• . •--• •

*• * --i:

Eg///S/A'////. •7i -'-••'•
If * *

r

Figure 6.8: Layout view of address decode PLA.

Figure 6.9 and Figure 6.10 illustrate the frame abstraction of the layout view.

139

140

? #

W M & B & Oil

.,,:.:;••• •-•t.>-;;::;>.:>»::::;.-;:.:;:..:»:;.>>S;.;.i'::ft;:¥>v;n:-'-y.:;;;\»J'-;:i..; -«< 7 -;W'"?:<;'♦.' :•'•/•.>i».-:::vx':^-'vA;:;

%
»C(&<^ei«p«Sffi1«&OSnsSf&;d S%fwl^C^a^na^9SIS3^«ru2^>«raoi[at9A. opcSoai s«*Ssa»p6uilJ:.a."<fc

Figure 6.9: Pins of abstract view of address decode PLA.

141

Figure 6.10: Frames of abstract view of address decode PLA.

Qearly, most of the area is occupied by protection frames.

Figure 6.11 and Figure 6.12 illustrate a view containing instances of the abstract view of

Figure 6.3.

142

ETildir:

Figure 6.11: Pins of array.

143

twuinpwun***0 m

wm.. :"«nr;L,!

SitHJHiiir!

111

*

iiili

jm »

alii

mm

Figure 6.12: Frames and active area of array.

This view is basically a 3 by 2 array of inverters connected into a 3 by 1 array of non-

inverting buffers. All possible examples of pin sharing are present— out to in, vdd!, and

gnd!. In the top row of the array, the in and out pins have been renamed topin and

topOut respectively by placing metal pins on top of the pins on the top instances. In the

case of topin, topin is at a higher level in the instance hierarchy than is in. During Phase

2, when the algorithm encounters two connected pins implementing different terminals, the

algorithm will always coerce the lower level pin to the higher level pin. Global pins are

considered to be at the imaginary Level 0—the highest level of the instance hierarchy. In

144

the middle row of the array, the pins midin and midOut have been connected to in and

out via interconnects and contacts. Phase 2 will recognize this. In the bottom row of the

array, no pins have been connected to in and out. Phase 2 will qualify pins in and out by

the names of the instances they are associated with. This qualification avoids potential ter

minal name clashes that can arise when multiple instances of the same view are present.

Figure 6.13 and Figure 6.14 are the array's abstraction.

145

iK~^-:-;-~

r

:• •

mi

pi

1
K*fflm.

to?;-: ••

lor^M//dut

a •'•V. •

Figure 6.13: Pins of abstract view of array.

••:--v---';'::-~~~

lit

:W:-ifg

ft

4Ji

#.

146

Figure 6.14: Frames of abstract view of array.

Metal and polysilicon protection frames cover the core of the array. All input and output

pins are associated with different terminals, because Phase 2 has performed correctly.

If Phase 3 is skipped and the grow amount for conductor layers is:

minLineWidthOnLayer , . „ . „ . „, 1
* VminSeparationBetweenLayerShapes ——

then gaps that cannot be used for routing will be closed, but the protection frames will be

sets of disjoint Manhattan polygons in general. Thus, these abstractions can be routed

147

through without pre-planned jumpers. When Phase 3 is skipped and the grow amounts are

equal to small positive integers, term this algorithm the gate array variant. Otherwise,

term this algorithm the macro-cell variant.

This abstraction is computed by the tool Frame available from Hawk and is used in the

process-independent compaction tool Python [56]. By convention, the view to be abstracted

is named physical and the abstracted view is named symbolic. The following measure

ments quantify the performance of Frame and how much less space is required to store

symbolic views than physical views:

Circuit Execution Time # of Shapes
Phvsical View Svmbolic View

1-bit complementer 206 370 149

32-bit complementer NA 370*32-11,840 1095

PLA 126 3979 239

inverter 5 28 25

inverter array 18 28*6=168 100

The mask operation package fa and the Squid package are used to implement Frame.

Presently, fa does not have the ability to perform the recursive touching geometric opera

tion though it does perform the scanning geometric operation. Thus, Squid performs the

recursive touching geometric operation.

Consider the PLA in the above table. The approximately 4000 shapes that are framed is a

misleading number, because the PLA is computed by a module generator that does not merge

the shapes. When the shapes are merged by the Caesar graphics editor, the number of

shapes decreases to 1100. Thus, Frame reduces geometric complexity by a factor of 5 rather

than an order of magnitude. The pin extraction phase of the algorithm lasts for 6 seconds

when an OSL data structure is used to index shapes and lasts for 18 seconds when a linear

list is used to index shapes. With an OSL data structure, 30,000 shapes were searched

instead of the 300,000 that exhaustive search traversed. Thus, the 10-fold search pruning of

the OSL data structure compensates for the slower raw speed of the OSL data structure.

148

However, overall the algorithm is 20 seconds slower when an OSL data structure is used.

The reason is that insertion and deletion time, and the time to search all shapes are more

costly when a complex data structure is used.

The complementer is a CMOS microprocessor circuit. The layout view of the 1-bit comple

menter contains 13 terminals. After abstraction, there are 50 frames and 99 pins or about 5

pins per terminal. This is not surprising, because some of the terminals are jumpers and are

available on more than one layer. 32 instances of the 1-bit complementer yield 242 termi

nals, about 3200 pins, and 1600 frames. After abstraction, there are only 1000 pins and 95

frames. The number of pins is reduced, because pins shared between adjacent instances axe

absorbed into frames.

An extraction tool and a layout rule checking tool must be written to take full advantage

of this abstraction. These tools would process a view that contains only instances of abstract

views and shapes that do not form devices. The former tool is really just a modification of

Frame, because Frame can extract nodes. Any layout rule checker could serve as the latter

tool if it was modified in the following way. Ordinarily, a layout rule checker processes

pairs of the form:

< layer, shape >

The checker would be modified to process tuples of the form:

< layer, geometric function, shape, instance id >

Tuples with the same instance id are never checked against each other, because there can be

no violations due to their interaction.

In the first case, there are two protection frames tuples whose instance ids are not equal. In

the second case, there is a protection frame tuple and a "non-frame" tuple whose instance

ids are not equal. In these two cases, if the two tuples are on the same layer, they cannot

intersect at all and must be separated by at least the minimum separation distance between

149

two shapes on the layer.

There is one exception that occurs when pins are being shared. The case is a variant of the

second case. First, the non-frame tuple must be a pin. Second, the gap between the two

tuples is occupied by a pin tuple whose instance id is identical to the frame tuple's instance

id. This gap can be infinitesmal when the two tuples abut.

Two "non-frame" tuples whose instance ids are not equal must be checked against each

other. They can always intersect if they are on the same layer.

CHAPTER 7

CONCLUSIONS

Hierarchical and regular design methods for circuits have been used successfully to attack

the problem of increasing circuit design times. A circuit computer-aided design (CAD)

framework speeds the implementation of instances of these classes of design methods,

because the client can re-use software for common operations and can focus on his particu

lar design method. Also, a framework that is built using a portable software design method

makes it possible to use a variety of computers and terminals without major impact on the

underlying software.

The requirements for a circuit CAD framework were described. The implementation of a

real circuit CAD framework— the combination of the portable operating system 42 BSD

UNIX, the device-independent graphics package MFB, the database package Squid, and the

user interface Hawk—was presented and was evaluated. Finally, a number of new circuit

CAD tools were implemented within the framework.

Continuation of this work is necessary in order to take full advantage of the framework.

With the addition of:

• partitioning, placement, and routing tools

• refined array makers

• separate extractors and layout rule checkers for leaf views and views that con
form to the protection frame model

• the net list comparator WOMBAT

• a refined version of the Python compaction tool that is compatible with the pro
tection frame model

• the simulator SPLICE2

150

151

• module generators

• an alphanumeric terminal emulator for Hawk windows

• the net listing tool NLP

the framework and associated tools will be able to support a variety of modern design

methods.

Further work requires the use of the framework on a number of designs, using a variety of

design methods, to tune the framework and gain further experience with its strengths and

weaknesses.

REFERENCES

1. Lattin, WM VLSI Design Methodology: The Problems of the 80's for Microprocessor

Designs, First Calxech Conference on VLSI,, January 1979, 247-252.

2. Mayo, J., Design Automation: Lessons of the Past, Challenges for the Future, IEEE

Computer Graphics, Sept. 1983.

3. Newton, A. R., The VLSI Design Challenge of the 80's, Proc 17th Design Automation

Conference,, June 1980, 343-344.

4. Noyce, IL, Hardware Prospects and Limitations, in The Computer Age: A Twenty-Year

View, J. Moses and M. Dertouzos (ed.), MOT Press, Cambridge, May 1980, 321.

5. Lattin, B., VLSI Design Methodology The Problem of the 80's for Microprocessor

Design, in Proc 16th Design Automation Conference, June 1979.

6. Newton, A., Computer-Aided Design of VLSI Circuits, Proceedings of the IEEE 69,

10 (October 1981),.

7. Haydamack, W. and D. Griffin, VLSI Design Strategies and Tools, in HP Journal, voL

32, June 1981.

8. Mead, C and L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.

9. Crawford, J., A Unified Hardware Description Language for CAD Programs, ERL,

U. of California at Berkeley, Aug. 1979.

10. Newton, A. R., The Simulation of Large-Scale Integrated Circuits, ERL Memo No.

ERI^M78/52,, July 1978.

11. Cohen, E^ Program Reference for SPICE2, Electronics Res. Labn ERL Memo ERL-M592,

June 1976.

152

153

12. Sequin, C. and A. Newton, A Structured Interchange Format for the Description of

Integrated Circuits, CAD Group, 321 Cory Hall, U. of California at Berkeley, May

1980.

13. Newton, R„ Symbolic Layout Language, CAD Group, 321 Cory Hall, U. of California at

Berkeley, 1981.

14. Chu, K., J. Fisburn, P. Honeyman and Y. Lien, Vdd-A VLSI Design Database System,

Engineering Design Application IEEE Catalog No. 83CH1886-1, (May 1983),.

15. Rao, K., D. McLeod and K. Narayanaswamy, An Approach to Information Management

for CAD/VLSI Applications, Engineering Design Application IEEE Catalog No.

83CH1886-1, (May 1983),.

16. Wiederhold, G., A. Beetem and G. Short, A Database Approach to Communication in

VLSI Design, in IEEE Transactions on CAD of ICs and Systems, vol. CAD-1, April

1982.

17. Guttman, A. and M. Stonebraker, Using a Relational Database Management System for

Computer Aided Design Data, IEEE Database Engineering 5, 2 (June 1982),.

18. Stonebraker, Mn B. Rubenstein and A. Guttman, Application of Abstract Data Types

and Abstract Indices to CAD Data Bases, Memorandum No. UCB/ERL M83/3,

Electronics Research Laboratory, University of California, Berkeley, CA, January 1983.

19. Roberts, R. and I. Goldstein, The FRL Manual, MTT AI Laboratory, Cambridge, 1977.

20. Moon, D., LISP Machine Manual, MTT AI Lab, 1982.

21. Mitchell, J„ W. Maybury and R. Sweet, Mesa Language Manual, Xerox Palo Alto

Research Center, April 1979.

22. Novak, G., GLISP, in The AI Magazine, vol. TV, U. of California at Berkeley ERL, Fall

1983.

154

23. Stefik, M„ D. Bobrow, S. Mittal and L. Conway, Knowledge Programming in Loops, in

The AI Magazine, vol. TV, U. of California at Berkeley ERL, Fall 1983.

24. The American Heritage Dictionary of the English Language,, 1976.

25. Billingsley, G., KIC, MS Report, Department of Electrical Engineering and Computer

Sciences of University of California at Berkeley, Fall 1983.

26. Kernighan, B. W. and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc.,

Englewood Cliffs, NJ, 1978.

27. Jones, A., Protection in Programmed Systems, in PhD Thesis, Carnegie-Mellon Un

Pittsburgh, June 1973.

28. Dec, T. S^ VAX 11/780: Software Handbook, Digital Equipment Corp., Maynard,

MA, 1978.

29. Tichy, W. F., Design, Implementation, and Evaluation of a Revision Control System, in

Proc of the 6th International Conference on Software Engineering, Sept. 1982.

30. Keller, K. and M. Stonebraker, Embedding Hypothetical Databases and Experts in a

Database System, in Proc SIGMOD Conference, 1980.

31. Newman, W. and R. Sproull, Principles of Interactive Computer Graphics,, 1982.

32. Teitelman, W„ Interlisp Reference Manual, XEROX Palo Alto Research Center, Palo

Alto, CA, 1978.

33. McWilliams, T. and L. Widdoes, SCALD: Structured Computer-Aided Logic Design,

Technical Report No. 152 , Digital System Lab, EECS Dept^ Stanford U., Stanford, CA ,

March 1978.

34. Committee, G. S. P., Status Report, in Computer Graphics, vol. 13, August 1979.

35. Calma Inc., C, The STREAM Layout Language, in Internal Memo, 1984.

36. Keller, K. and A. Newton, A Symbolic Design System for Integrated Circuits, in Proc

19th Design Automation Conference, June 1982.

155

37. Keller, K. and A. Newton, KIC 2: A Low-Cost, Interactive Editor for Integrated

Circuit Design, in Proc. 24th COMPCON, Feb. 1982.

38. Bentley, J„ D. Haken and R. Hon, Fast Geometric Algorithms for VLSI Tasks, in IEEE

COMPCON, Spring 1980.

39. Lauther, U., A Data Structure for Gridless Routing, in Proc 17th Design Automation

Conference, June 1980.

40. Kedem, G., The Quad-CIF Tree: A Data Structure for Hierarchical On-Line

Algorithms, in Proc 19th Design Automation Conference, June 1982.

41. Wilmore, J., The Design of an Efficient Data Base to Support an Interactive LSI Layout

System, in Proc. 17th Design Automation Conference, June 1980.

42. Ousterhout, J. and D. Ungar, Measurements of a VLSI Design, in Proc 19th Design

Automation Conference, June 1982.

43. Ousterhout, J„ Corner Stitching: A Data-Structuring Technique for VLSI Layout

Tools, IEEE Transactions on CAD/ICAS CADS, 1 (January 1984),.

44. Vladimirescu, A„ Simulating VLSI Circuits, PhD Thesis, EECS - UCB, Berkeley, CA,

Jan 1983.

45. Stonebraker, M., The Design and Implementation of INGRES, ACM Trans. Database

Systems, Sept. 1976.

46. Stonebraker, M., Retrospection on a Data Base System, ACM Trans. Database Systems,

Sept. 1980.

47. Newton, A. R„ D. O. Pederson, A. L. Sangiovanni-Vincentelli and C. H. Sequin, Design

Aids for VLSI: The Berkeley Perspective, IEEE Transactions on Circuits and Systems,

, July 1981.

48. Johnson, S^ YACC: Yet Another Compiler Compiler, in UNIX User's Manual, U. of

California at Berkeley Computer Science Dept. CSRG,.

156

49. Ousterhout, Jn Caesar: An Interactive Editor for VLSI Layouts, VLSI Design II, 4

(Fourth Quarter 1981),.

50. Ousterhout, J., Caesar: An Interactive Editor for VLSI Layout, in Proc. 24th

COMPCON, Feb. 1982.

51. Whitney, T„ Description of the Hierarchical Design Rule Filter, SSP File # 4027,

Caltech CS Dept~, October 1980.

52. Newell, M. E. and D. T. Fitzpatrick, Exploiting Structure in Integrated Circuit Design

Analysis, Proc Conf. on Adv. Research in VLSI, MTT, Boston, Mas&, Jan. 1982.

53. Scheffer, L. and M. Tucker, A Constrained Design Methodology for VLSI, in VLSI

Design, vol. 3, May/June 1982.

54. McCalla, W. J. and D. Hoffman, Symbolic Representation and Incremental DRC for

Interactive Layout, Proc. IEEE Int. Symp. on Circ. and Syst^ Chicago, Illinois, April

1981.

55. Niessen, G, Hierarchical Design Methodologies and Tools for VLSI Chips, in Proc

IEEE, vol. 71, Jan. 1983.

56. Bales, M^ Layout Rule Spacing of Symbolic IC Artwork, MS Report, Electronics

Research Lab of U. of CA at Berkeley, May 1982.

57. Lock, E, Techniques for the Construction of Parameterized Functional Modules, MS

Report, Electronics Research Lab of U. of CA at Berkeley, Dec. 1981.

58. Chen, N„ C Hsu and E Kuh, The Berkeley Building-Block Layout System for VLSI

Design, ERL Memo, ERL, Univ. of CA at Berkeley, February 14,1983.

59. Arnold, M. and J. Ousterhout, Lyra: A New Approach to Geometric Layout Rule

Checking, in Proc. 19th Design Automation Conference, June 1982.

APPENDIX A

SOURCE CODE

The envelope attached to this page contains microfiche upon which is printed the source

code for OSL, Frame, Squid, and Hawk.

157

APPENDIX B

PACKAGE CONTRIBUTORS

The following packages are integrated to some degree into the framework.

Author Package's Function Package's Name
John Ousterhout MOS circuit timing estimation. Crystal

Mark Bales Compaction. Python

Mark Hofmann Non-Manhattan circuit extraction. Ibex

Mike Arnold Layout rule checking. Lyra

Peter Simanyi GRaPH making. GRF

Brian Lee

Ken Keller

Emulating alphanumeric
terminals on graphics terminals.

WISH

Dan Fitzpatrick .cadre file parsing. Cadre

Ken Fishkin Selecting colors. colortran

Peter Moore Memory management. nmalloc

Peter Moore Mask operations. fa

Jim Kleckner Dynamic linking-loading. Dyn

Ken Keller

Mark Bales

Giles Billingsley
Brian Lee

Device-independent
graphics.

MFB

Ken Keller

Brian Lee

Device-independent
raster hardcopy graphics.

MHC

Ken Keller Manhattan transformation. MT

Ken Keller Clipping shapes to rectangles. HA

Ken Keller Elliptical arc display. El

Ken Keller File System routines. FS

John Ousterhout Parsing csh-style file names. Pa

John Ousterhout Hashing. Hash

Jim Kleckner

Ken Keller
Code timing. Stop

Jim Kleckner

Ken Keller
Storing waveforms- WAP

S. Johnson Generating parsers. yacc

M. Lesk Generating scanners. lex

NA Stream I/O. stdio
NA sqrt, sin, etc. math

NA Operating system. UNIX

158

10.1. Introduction

10.1.1. Assumptions

APPENDIX C

HAWK TUTORIAL

Tutorial for the Hawk

Framework for Circuit CAD

Ken Keller

U. C Berkeley

It is helpful if you have read the chapters entitled:

Requirements of a Circuit CAD Framework
The Squid Package
Hawk

of Ken Keller's PhD thesis.

It is assumed that you can use UNIX, csh, and at least one of the local graphics editors: KIC,

Caesar, or gremlin.

10.1.2. Hawk

To the circuit CAD programmer, Hawk is a programming environment which has many

useful subroutines for manipulating and displaying circuit CAD information. To the circuit

designer, Hawk is a graphics editor and shell.

160

161

The Hawk window manager manages multiple windows on a graphics terminal's screen.

Assorted types of objects can be displayed in windows. Thus far, the types are:

Tvne

WISH

Squid

GRF

Represents
Alphanumeric terminal's screen.

Multiple views of circuits.

Waveforms.

The WISH alphanumeric terminal's screen type has not been released yet. Brian Lee will be

installing this type in Hawk shortly.

The data model of SPICE decks can represent devices and their connectivity. The data

model of the QF interchange format can represent hierarchical layouts. The data model of

the Squid subroutine package can represent connectivity and layout information and the

relation between them. Each file that has been created and edited solely by calling the

Squid subroutine package is termed a Squid circuit view.

At this time, the GRF waveform type is available only to the developers of Hawk's Net List

Processor (NLP) commands. The NLP commands will provide a common user interface to

SPICE3, SPUCE2, and Wombat.

The Squid subroutine package also abstracts the UNIX file system a little. Each directory

represents a cell or circuit and each file within a cell directory represents a view or

representation of the cell. Thus, a view file is named by a triple:

< cell'sName, view'sName, accessMode >

A view can be accessed for browsing or editing. Cells can be named using the csh's tilde

notation or relative to other cells via a library or path construct as explained below. The

subroutines that deal with cells and views rather than the contents of Squid circuit views

can be called by any tool.

Hawk has a built-in display list interpreter for displaying Squid circuit views. The Hawk

162

window manager calls the WISH and GRF packages to display the types they deal with.

Hawk's scheduler listens to the keyboard and graphics input device of the graphics terminal

for input, and schedules commands to be executed as a result of input. A command may be

a subroutine or a process, but is almost always a subroutine. A set of related commands is

sometimes termed a tool.

Hawk is extensible for two reasons. First, it is possible to add commands to Hawk without

recompiling Hawk. Second, by calling UNIX, Squid, and Hawk; commands built by users

that implement circuit CAD algorithms do not have to implement I/O.

10.13. Disclaimer

Because Hawk is extensible and a research project, it is changing. Thus, the goal of this

tutorial is to acquaint you with the principles of operation of Hawk so that you can learn

the details of Hawk by yourself. If and when Hawk changes, you will be able to make

sense of many of the changes without re-reading this tutorial.

10.1.4. Getting Started

Login on a computer in which Hawk is installed-currently ucboz and ucbic at a supported

graphics terminal:

TerminalName Manufacturer Model

JI Jupiter

kk Tektronix 4113

t5 Tektronix 4113

AE AED 512

of Colors

256

16

16

256

Note

Enables pop-up windows.

No pop-up windows.

Berkeley Evans
Hall PROMs
enables pop-up windows.

The AED and Jupiter terminals have a reliability problem. While operating Hawk on one

of these terminals if the terminal should ring its bell, then very calmly wait until Hawk

163

has finished drawing—this will be signaled by a visible cursor. If your screen is quite

messed up, type:

ctrl-1

Hawk will redraw your screen. Infrequently, the terminal will be "locked up". If this

happens, pressing the reset function key in the upper left corner of the terminal's keyboard

will have no effect. All you can do is turn the terminal off and then on again. This will

log you out so you must log in again.

All of the terminals have either a mouse with three buttons or a tablet on top of which is a

mouse—sometimes termed a puck— that has four buttons. All known mice have three

buttons. It will be assumed that all pucks follow the Summagraphics convention for color

coding puck buttons. This is assumption is valid for the terminals in Berkeley's EECS Dept.

Type to the shell:

setenv MFBCAP ~cad/lib/mfbcap.
mkdir ~ /project
cd " /project
cat >path
• ~cad/lib/hawk/technology/mosisNMOS "* cad/lib/hawk

The directory named ~ /project represents a cellor circuit. The file named ~ /project/path

represents a view of type path of the cell named ~ /project. The file is a stranger view,

because the file was created and edited by you instead of the Squid subroutine package.

Again, if a file is created and edited solely by the Squid subroutine package, it is a circuit

view.

The view type path is so named, because the function of it is the same as the function of

the csh environment variable named PATH. It enables the client to use partial file names—

those that do not begin with a slash in order to save typing and in order to be able to

relocate the files that the partial file names refer to without having to change the partial file

164

names.

A view of type path is a list of full directory names. If you are logged in at ucbic, the list

for ~ /project/path is:

•pwd' /cad/lib/hawk/technology/mosisNMOS /cad/lib/hawk

Partial file names are expanded into full file names— those that do begin with a slash— using

this algorithm:

For each full directory name in list of full directory names
contained in the view of type path,

fullFileName = strcat(fullDirectoryName, partialFileName);
switch accessMode

case editing:
If fullFileName exists and is writable or

it is permissible to create fullFileName,
return;

case browsing:
If fullFileName exists and is readable,

return;

Now, it is evident why • is the first element of ~ /project/path— anything you create will

have priority over what is in Hawk's libraries.

If you are logged in at a terminal whose name is terminalName— see the table above for

valid terminals— type:

" cad/new/hawk -display terminalName -plotter vp

10.2. Basic Hawk

10.2.1. Screen Layout

The layout of windows on the screen is termed a desktop and is subject to change.

There will always be a window that is about as wide as the screen, but only one or a small

165

number of characters tall. This window is the typescript window. You should always

watch this window for help and information in general. If the information is urgent as

with a diagnostic, your terminal's bell will be rung. You must press any key once you have

read the information before you may do anything else.

There will always be a window that is tall and thin or short and fat that is displaying a

bunch of rectangles with a label on each. This window is the layer menu window. Each

rectangle stands for a layer and the label on it is the layer's name. The rectangle shows the

color and fill pattern that shapes on the rectangle's associated layer will be displayed in.

There may be several other windows. A window that contains a bunch of labels—one on

top of another is usually a command menu window and the object displayed in it is just a

special Squid circuit view that acts as a menu. In a menu, submenus are labels in all caps

and commands are labels in mixed case.

Each window has a stack of objects in it. The top of the stack is what is displayed. A

window can be empty.

Each window has several tiny rectangles around its border termed tabs or light buttons.

They are:

Location

upper middle

lower middle

left middle

right middle

upper left

upper right

lower right

Function

pan upwards

pan downwards

pan to the left

pan to the right

window containing tab
becomes the current window

pop the object off the
stack of objects in the
window containing tab

display status of window
containing tab

Currently, there is no help on light buttons so you will have to re-read this or watch msgs

166

for changes.

10.2.2. Graphical Input

The middle mouse button and the yellow puck button are the point button. By pressing it,

you notify either Hawk or the command that is executing that you wish to point at

something on the screen.

In general, the other buttons pop up windows when you press them. Only one pop up

window can be displayed at a time. Thus, before a window is popped up, any window that

is already popped up is erased.

Currently, the left (right) mouse button and the white (blue) puck button are bound to a

window that is displaying a menu of user (Hawk) commands and submenus. Currently,

the green puck button is bound to a window that displays the view type whose name is the

value of your environment variable named HA_PART_MENU_yiEW, of the cell whose

name is the value of your environment variable named HA_PART_MENU_CELL.

10.23. Invoking Commands

Again, a command is just a subroutine. To invoke a command, type a colon followed by the

name of the subroutine that implements it. You can cancel a command when one is

prompting you by pressing the ESC key. There are two other ways to invoke commands:

pick a menu selection and press a key.

When a menu selection is picked, if the menu selection is displayed in a pop up window,

the pop up window will usually be erased.

In general, a menu selection that is in all upper case is a goto submenu command. Go to a

submenu. This just pushes the submenu's menu on the stack of objects of the window

167

displaying the menu. Go back to the previous menu by pointing at the pop tab. This just

pops the submenu's menu off the stackof objects of the window displaying the menu.

To associate key key with a command named command, put a line in the HAWK section

of your .cadre file of the form:

ALIAS key command

Here are the names of the commands available by default.

Class

Command Function

strUL

Stretching

Stretch Upper Left corners of selected rectangles.
strLR

strLL

strUR

Shane Drawine

rectActive Draw rectangles for layout.

rectTerm Draw rectangular pins for layout or schematics.

circleTerm Draw circular pins for schematics.

arcTerm Draw arc pins for schematics.

arcFrame Draw arcs.

labelFrame Draw labels.

setfustification For labels.

setFont For labels.

setHeight For labels.

lineFrame Draw vectors.

arrowFrame Draw arrows.

lineActive Draw paths for layout.

setWidth For thick lines.

Selection

delete Delete elements in selected set.

addPtSel Add elements to selected set.

addRectSel
n

subPtSel Subtract elements from selected set.

subRectSel
N

desel Clear selected set.

move Move selected set elements.

copy Copy selected set elements.

upsideDown Copy selected set
elements upside down.

sideways Copy selected set
elements sideways.

sel90 Copy selected set
elements rotated

CCW by 90 degrees.

sell80 Copy selected set
elements rotated

CCW by 180 degrees.

se!270 Copy selected set
elements rotated

CCW by 270 degrees.

Editing

save Save top view in current window's view stack.

pushByTyping Push a view in the current window.

pushByPointing Push the view in the current window in other windows.

pushBang Re-push or re-edit.

pushlnContext Sub-push or subedit.

Windows

copyWindo Copy window.

createWindo Create window.

updateWindo Re-create window.

delWindo Delete window.

Disnlav Control

HAvisible Make visible selected layers only.

HAzoomin Zoom in.

HAzoomout Zoom out.

HApan Pan.

HAfull Show whole obiect.

168

View Control

definedView Denned view command.

physicalView 'Expand" command for layouts.
symbolicView 'Unexpand" command for layouts

Grid Control

gridOn Turn grid on.

gridOff Turn grid off.

gridPitch Set grid pitch.

Plotting
iustPlot Plot current window.

plotAndSpool And spool plot.

justDump

dump&Spool

slide

lyra

violation

critical

Plot screen.

And spool plot.

Temporarily have current
window cover screen.

Layout Tools

Run Lyra LRC.

Probe Lyra violations.

Probe Crystal critical path

Placement

place I Place an instance.

Beaver Schematics

selConnect Connect selected terminals.

selDisconnect Disconnect selected terminals.

selJazzNets Jazz nets of selected terminals.

dangle Jazz dangling terminals.

169

frameMenu

readRules

Framing
Frame physical view
in current window.

Re-read FRAME

section of .cadre file.

Propertv & Parameter List Editing
aParmlJst Make current plist

actual parameter list
of current instance.

fParmlist Make current plist
formal parameter list of
object in
current window.

fPropList Make current plist
property list of
object in
current window.

aPropList Make current plist
property list of
current instance.

geosPropList Make current plist
property list of
current shape.

setlnst Set current instance.

setGeo Set current shape.

updatePList Change a property
of current plist
of current obiect.

delPList Delete current plist
of current obiect.

getPList List current plist
of current obiect.

A currently popular alias list for layout is:

begin HAWK
ALIAS w HAzoomin

ALIAS o HAzoomout
ALIAS p HApan
ALIAS f HAfull

ALIAS r rectActive
ALIAS e delete

ALIAS + addPtSel
ALIAS - subPtSel

ALIAS t addRectSel
ALIAS _subRectSel
ALIAS * x desel

170

ALIAS m move
ALIAS g copyWindo
ALIAS S save

end

171

Because of the way dynamic linking of command subroutines is implemented in Hawk,

some commands are linked at the time Hawk is compiled and some are not. To force the

latter ones to be linked, you must pick them from menus. Thus, you cannot use the

keyboard to invoke the latter ones until you have picked them from menus at least once.

10.2.4. Manipulating a Single Window

Go the window manger menu WINDOW.

Create a window by pointing at the menu label create in the window manager menu. The

user menu is erased and the window manager prompts you in the typescript window at the

top of the screen. When creating the window, take care not to overlap any other windows.

Hawk does not work correctly when windows overlap, but it does not force them not to.

Yes, this is not great. This may change.

Set the current window by pointing at the appropriate tab in your window. Often,

commands expect the current window to be set. In the beginning, you will probablyforget

to do this, but you will soon become accustomed to this.

Move and/or change the size of your window by pointing at the menu label recreate in the

window manager menu.

Get the status of your window by pointing at its status tab.

Delete your window by pointing at the menu label delete in the window manager menu.

172

10.2.5. Selecting Layers

Hawk maintains a set of selected layers. Initially, none of the layers in the layer menu are

selected. Point at the rectangle associated with a layer to select it. Hawk draws a rectangle

around each selected layer. To un-select a selected layer, point at the rectangle associated

with the layer.

10.2.6. Getting Help

Select the layer named help. Now, each time you point at a label in a menu, information

about the command associated with the menu label will be printed in the typescript

window until you un-select this layer.

This is terse help. A verbose help is planned.

10.2.7. Editing an Object

Create a window—it is empty. Point to the menu label editByTyping in the top-level of

the user menu. Type:

foo physical

This will create a directory named foo in your directory named ~ /project. Also, a file

named physical will be created in your new directory named ~ /project/foo. f oo is a cell

and physical is a type of view of it. This view of this cell is pushed on the empty stack of

objects in your window. If the view is new, the view is made a Squid circuit view by

default.

Point at random places in the window—each time you point, the coordinates of where you

pointed at will be displayed in the typescript window. The numbers next to dx and dy

yield the Manhattan distance between successive locations you point at. These numbers can

173

be used as a sort of ruler.

Display the status of your window.

10.2.8. Pan & Zoom

Whether or not you see a grid, zoom in by pointing at the menu label zoomin in the Hawk

command menu. You will have to pop up the window containing the Hawk command

menu. Don't forget to set the current window. If you did not, cancel the command or just

pretend you did and the command will probably inform you that you did not In any

event, set the current window and point to the command again. Zoom in until you have a

grid. There are grid-control commands in the window manager menu. Try them or use

help to find out what they do.

Try the other commands in the Hawk command menu including pan, zoomout, and f ulL

The panning tabs can also be used to pan the current window.

10.2.9. Shape Drawing in General

In general, once a shape drawing command is invoked, you will be prompted to point to

define control points for the shape to be drawn. The shape will be drawn on the selected

layers of the object in the current window. Each drawing command is a loop or mode.

Each pass through the loop, you define one shape per selected layer.

For shapes such as paths that can be made up of an arbitrary number of control points, you

must point to the same position twice or press the ESC key in order to finish off the shape

being drawn. For shapes such as rectangles and arcs, the number of control points is a small

constant so there is no need for such a convention. Most shape commands will highlight all

control points entered so far so that it will be easy to choose the next one.

174

As an example, go to the layout menu by pointing at the menu label SLIDE in the top-level

user menu. Select the NP layer. Point to the menu label vectors and point in your

window to draw a few vectors on the selected layer. Cancel the command.

10.2.10. Multiple Windows

Go to the window manager menu and copy your window a few times. Make one of them

display all of the vectors. Make the others display some of the vectors. You can use the

others as magnifying glasses by setting one of them to be the current window, pointing at

the pan command, and panning the current window by pointing at the window that is

displaying all of the vectors.

10.2.11. More on Editing

Suppose you don't like what you have done. Invoke the command re-edit to get the

previous version of your Squid circuit view which of course is empty.

To edit a different Squid circuit view, pick the pop tab and again invoke editByTyping.

10.2.12. Desktops

This section is a copy of the section on desktops in Chapter 5 of Ken Keller's PhD thesis.

In case you have not read all of Chapter 5, the user-supplied—don't worry, there is a

default— subroutine named HABegin is called with all command line arguments that

Hawk does not recognize directly. You already know that Hawk recognizes the arguments

-display and -plotter.

A desktop is a configuration of windows independent of what is displayed in the windows.

At this time, the default HABegin implements desktops. This subroutine's first argument is

a desktop name and its remaining arguments are a sequence of:

< cellName, viewName, accessMode >

triples that name circuit views to display in the windows of the desktop.

Desktop Function

slides Slide-making.

horizontalhop Editing fat, short layouts.

verticalhop Editing tall, skinny layouts.

one One big window.

three Two little windows stacked and a big window next to them.
zap Four windows used for layout.

175

In summary, suppose you want three windows with each containing a different view of a

cell and you only want to edit the last view. You would type to the shell to invoke Hawk:

* cad/new/hawk -display terminalName -plotter vp -three
cell viewl r cell view2 r cell view3 w

10.3. Tools

10.3.1. Selected Set

There are a set of commands that manipulate a selected set of objects in the Squid circuit

view displayed in the current window. Terminals, instances, and shapes can be selected.

Instances can only be selected if the layer named inst is selected. Only shapes on selected

layers can be selected unless the layer named all is selected at which time all shapes can be

selected. A terminal is selected by selecting any one of its associated pins.

The menu labels +point and -point add and subtract respectively pointed to objects from

the selected set. The menu labels +rectangle and -rectangle add and subtract respectively

the portion of objects that intersect a selection rectangle you define by pointing twice. Thus,

+rectangle behaves like a rectangular saw— cutting all objects into pieces that lie inside

176

and outside of the selection rectangle.

The menu label clear clears or empties the selected set.

A variety of commands operate on all selected objects in the current window. For example,

all of the Beaver schematic capture tool's commands do this. The menu label move moves

the objects in the selected set by the displacement you define by pointing twice. The menu

label erase deletes the objects in the selected set. The menu labels copy, upsideDown,

sideways, 90degrees, 180degrees, and 270degrees copy the objects in the selected set to

the Squid circuit view being displayed in the current window. Since the current window at

the time of selection and at the time of copy may differ, objects can be copied from one

Squid circuit view to another. Thus, Squid circuit views can be regarded as both menus and

design objects. Remember that when you clear the selected set, the current window must

be the window that was current when you started selecting. All rotations are counter

clockwise, upside-down means to flip about the x-axis, and sideways means to flip about the

y-axis.

10.3.2. Hardcopy

The plotters available are:

PlotterName Manufacturer Model # of Colors Note

vp Versatec small 2 Works on ucbcad or ucbic.

h7mfb HP 7221a 4 Works on ucbcad or ucbic.

Starts plotting when you
press "chart hold"
button on plotter.

The program ~cad/bin/mfb21pr must be installed on your machine for plotting towork.

To command the default HABegin to plot a set of views without being logged in at a

graphics terminal, type:

" cad/new/hawk -plotter plotterName -plotwindow celll viewl ~ celln viewn

177

There are commands that plot the current window and the whole screen. See the upper

half of the menu that can be reached by pointing at the menu label SLIDES.

10.33. Slide & Figure Making

There is a special menu that can be reached by pointing at the menu label SLIDES that has

commands for drawing shapes whose functions are frame. For those who have not read

about the Squid data model, a frame is just a shape that is not a wire and not a pin.

Plotting commands are also in this menu. The menu label photograph can be used to

temporarily display the current window so that it covers the whole screen— then it can be

photographed with a tripod-held camera or the Matrix Instruments film recorder by Ken

Keller's desk. Pressing the return key will cause the window to resort to its original size.

When the technology ~ cad/lib/hawk/technology/whiteSlides is included in your

" /project/path, a convenient set of layers is at your disposal when you are drawing with

Hawk. The main layers are named red, green, blue, and bw. A shape drawn on one of the

layers named for the three primary colors will always be plotted in the color whose name

is the same as the layer's name— if you are using a color plotter. A shape drawn on the

layer named bw will be plotted in white. The layers named CONNECT, SOLDER, and

SYMBOL required by the Beaver schematic capture tool are also present in this technology.

10.3.4. Leaf Cell Layout

There are a small set of commands for layout of leaf cells in the menu reachable by picking

the menu label LAYOUT. There is a command to draw rectangles and a command to draw

rectangular terminals or pins. The selected set commands-especially +rectangle— are

useful for modifying drawn rectangles. There are four commands— upLeft, upRight,

lowLeft, lowRight— for moving the corners of the rectangles in the selected set.

178

Once you have drawn a portion of a layout or a whole layout and you want to check that

it obeys layout rules, you can pick the menu label lyra to command the Lyra layout rule

checker to analyze a rectangular area. Be sure that your .cadre file has the correct

technology declared in it. Lyra erases old violations and displays any new violations as

"violation rectangles" on the layer named lyrar. If it is not evident what a violation

rectangle means, pick the menu label violation and point to a violation rectangle—Lyra

will display a sequence of characters that stand for the violation—see lyra(cad.l).

Leaf cells should be drawn as views named physical A physical view can be turned into

a symbolic view by running the program frame or picking the menu label FRAME. For

instructions on how to use frame, see Chapter 6 of Ken Keller's thesis. Be sure to edit your

.cadre file before attempting to run frame.

Leaf cells can have other leaf cells placed within them— that is physical views can contain

instances of other physical views. Thus, it is not necessary to turn every physical view into

a symbolic view. Turn a physical view into a symbolic view only when you will not be

forming transistors anymore. If you want to rename a terminal, just draw a terminal with

the desired name on top of the terminal to be renamed. In general, the terminal that is

highest in the instance hierarchy will obscure all terminals on the same layer that intersect

it.

To place an instance of a view, pick the menu label SCHEMATIC and then the menu label

place. Once you have drawn leaf cells for transistor, contacts, etc., you may wish to place

them in a view of a cell that will serve as a menu. By displaying this menu in a window

next to the window that is showing the Squid circuit view that you are editing, you can

copy menu items into the view you are editing.

Often, it is useful to edit a view that has been placed as an instance in the view being

displayed in the current window. There are several ways to accomplish this. First, create a

179

new window and push the view to be edited in it. Second, pick the menu label sub-edit

and point at the instance. The window will be redrawn, but all shapes except those in the

view to be edited will be shown in the same color to indicate that they cannot be edited.

Any changes to the view will be seen immediately in all instances of the view. Once you

have finished modifying the view, picking the pop light button will redraw the window

and you will see the results of your changes in color.

10.3.5. Floor Plan Layout

A floor plan layout is just a physical view with instances of symbolic views in it. There

are currently no special commands for such views even though it is possible to construct

hierarchical extraction, hierarchical layout rule checking, and routing aids. The rngroup

may be developing such tools.

103.6. Schematic Capture

See Chapter 6 of Ken Keller's PhD thesis.

10.4. Wish List

This section is an evolving "wish list" that documents what users would like to see in

Hawk. Having it here will serve to stimulate thought as to what is possible and prevent

you from "making wishes" that have already been made.

Extend Squid to have an arrow shape type so that arrows can be operated on sensi
bly.

Polygons.

Selection of control points so that "move" becomes a general stretch.

Undo.

180

Redo.

Verbose help.

Comprehensive help.

Use stippling for better display of un-editable shapes.

Display un-editable shapes even when edit and display views are the same.

Automatic culling of shapes within instances.

Re-route command in Beaver.

Allow user routing in Beaver.

Bus support in Beaver.

Instance arrays in Beaver.

Editing labels.

Transform label justification.

String search for labels, terminals, etc.

Command table.

KIC-style attribute menu for interactively defining layers, colors of layers, etc.

A path command that solves the half-lambda problem.

Routing aids.

Release NLP so that Beaver can be used to drive simulators and Hawk can be used
to display simulator output.

Release WISH so ctrl-z does not have to be typed in order to run shell commands.

"Video Is" to minimise typing of file names.

Have Ibex write its net list as a Squid view.

Simple stretchable cell capability.

Finish Python.

"make"-like support for re-evaluating schematics and symbolic views when lower
levels of the instance hierarchy have changed.

True "desktop" support.

Support for black & white terminals.

181

Fang interface.

Per-object selected set—currently the selected set can only hold sub-objects from a
single object.

Read-in of objectsshould be faster by replacing the parser built by yacc and lex.

ciftosquid that supports CIF files with hierarchy.

10.5. Bug List

10.5.1. Fatal

re-edit.

Placing an instance of a view that does not exist.

10.5.2. Annoying

Subtract from selected set by rectangle,

squidlyra is too slow on large areas.

10.6. Installing a Command

See Chapter 5 of Ken Keller's PhD thesis. In review, Hawk distinguishes Hawk-commands

and client-commands-each command is in only one command-space. The menu selections

associated with the subroutines you can write must be placed in a client-command menu.

The information associated with the top-level, client-command menu is represented by the

cell named ~cad/lib/hawk/menus/userCommand. There is a menu-making program

named menuview. The command line:

menuview < cad/lib/hawk/menus/userCommand/src
" cad/lib/hawk/menus/userCommand symbolic

182

causes the contents of the stranger view named src to be read by menuview and the top-

level menu to be written into the circuit view named symbolic.

To make your own menu and install commands in it, you must create a directory to

represent your menu, create and edit src in your directory, run menuview, create a

window in Hawk for your menu, and finally edit your menu in the window. From this

point on, you can pick menu selections from your menu.

To install a command in the top-level menu, you must create a directory

~ /project/menus/userCoxnmand to represent your version of the top-level menu, copy

userCommandV* to it, edit path so that it searches your directory and

~ cad/lib/hawk/menus/userCommand, edit src, and re-run menuview.

To install a menu in your top-level menu, you must do the same thing. In addition, you

must create a directory to represent your menu as explained above.

10.6.1. Simple Command

The subroutines named fRects and oRects in the object file named

~cad/lib/hawk/menus/userCommand/geos/rectsJi implement rectangle drawing:

iWefine MAX(dragon^agle) ((dragon) > (eagle) ? (dragon) : (eagle))
#iefine MIN(dragon,eagle) ((dragon) < (eagle) ? (dragon) : (eagle))

static void rects(filledP)
SQBool filledP;
{

HAWindo currentWindow;
SQGeo rect; /*Rectangle being drawn.*/
SQGeo firstCorner; /*Highlight of first corner drawn.*/
SQID layerGenerator;
SQIntegerPoint lowerLeft,upperRight; /"Corners.*/
SQIntegerPoint integerPointTripletf]; /*Store for firstCorner.*/

rect.geoType = sqRect;
recti"unction =» geosF;
rect.implements.term.name = termsName;
rectJlledP = filledP;

firstCorner.geoType =* sqLine;
firstCorner.function = sqFrame;
firstCorner.defJincnPath = 3;
firstCorner.defiine.width = 0;
firstCorner.defJincpath = integerPointTriple;
firstCorner.filledP = sqTrue;
firstCorneriayer =» "hawk";

for(s) { /*Drawing commands are modes.*/

currentWindow = HACurrentWindoO;
if(currentWindow.windoID = NULL) {

HATypescript(sqTrue,"Please select the current window first,");
return; }

/♦Prompt user to point at first corner of rectangle.*/
HATypescriptXsqFalse," POINT to 1st corner of rectangle.");
HAListenO;
/*Did he cancel?*/
iitHAKeyTypedO = HAESC) return;
if(HAMenuSelectionP()) return;

SQEmptyBBSet(HAChangedRectO);
lowerLeft = *HACursorPositionL();
integerPointTriple[l] =lowerLeft;
integerPointTriple[Ote = lowerLeftjc;
integerPointTriple[03.y = lowerLeft,y+HASQUNTTSPERLAMBDA;
integerPointTriple[2lx = lowerUftJt+HASQUNITSPERLAMBDA;
integerPointTriple[2].y = lowerLefty;
SQPushViewStk(currentWindow.editStk);
/♦Create highlight of first corner.*/
SQ(sqCreate,sqGeo,&firstCbrner);
S(^sqGet^Geo/^rstCorner4ntegerPointTriple,3JWLL,0);
SQAddToBBSet(&firstCorner.bbJHAChangedRect());

SQPopViewStkO;
/*

Just redraw the area of the object in the current window
that the highlight covers.
*/

HADisplayView(currentWindow.windoID,*HAChangedRect()^qFalse^qFalse);

/♦Prompt,*/

HATypescriptXsqFalse,"POINT to 2nd corner of rectangle.");
HAListenO,

/♦Cancel?*/

if(HAKeyTypedO = HAESC OR HAMenuSelectionPO) {
/*Yes.*/

SQPushViewStk(currentWindow.editStk>,
SQ(sqDelete^qGec^firstCorner); /*Delete highlight,*/

SQPopViewStkO;
/♦Erase highlight,*/
llADisplayView(cuiTentWindow.windoID,*rIAChangedRect()^qFalse^qFalse);

183

}

if(HAKeyTypedO = HAESC)
continue;

else return;}

/♦Didn't cancel.*/

upperRight = *HACursorPositionL();

recuiefjrectl = MIN(lowerLeft^,upperRighti>,
recuief.recur = MAX(lowerLeftx,upperRightx);
rect,def.rect.b = MIN(lowerLeft,y,upperRight,y);
recuiefj"ecT,t = MAXGowerLeft,y,upperRight,y>,
SQPushViewStk(currentWindow.editStk);

SQBeginLayerGen(&layerGenerator);
/♦For each selected layer.*/
while(SQGenLayer(layerGenerator^ferectlayer) != sqEndGen)

if(HALayerSelectedP(recUayer))
SQ(sqCreate,sqGeo,&rect); /*Create rectangle drawn.*/

/♦Delete & erase highlight*/
SQ(sqDelete,sqGeo,firstCorner);

SQPopViewStkO;

SQAddToBBSetX&recuiefject41AChangedRectO>,
/♦Redraw.*/

HAI)isplayView(currentWmdow.windoID,*HAChangedRect()^qFalse^qFalse>, }

static void fRectsO
/*

Enable user to draw Filled RECTangleS
on selected layers
of Squid circuit view in current window.
*/

I
rects(sqTrue);

}

static void oRectsO
/*

Enable user to draw Outlined RECTangleS.
on selected layers
of Squid circuit view in current window.
*/

{
rects(sqFalse>,

}

184

185

10.6.2. Advanced Command

The subroutines named lyra and violation in the object file named

~ cad/lib/hawk/menus/userCommand/lyra.0 implement the layout rule checking tool

named Lyra [59]. Actually, the subroutines implement the interface to Lyra. Lyra is a

large program written in the Lisp programming language. The first time the subroutine

named lyra is called, it executes Lyra as a UNIX process so that it can communicate with

Lyra via an inter-process communication object in the future. UNIX processes do not share

the same address space so the inter-process communication object is not shared storage. Thus,

if Lyra has a bug in it or exceeds its resource limits, Hawk will continue to execute and

notify the user. Hawk and Lyra communicate via a simple language that is quite similar to

OF [8] called Caesar format [49].

When the user invokes the subroutine named lyra, the subroutine named lyra is called. If

Lyra is not already executing on the subroutine's behalf, the subroutine executes Lyra. The

subroutine prompts the user to point at the corners of a rectangle that brackets the area he

wishes Lyra to analyze. Once the user has done so, lyra:

• Grows the area by MAXRULE.

• Calls Squid to retrieve all shapes that intersect the grown area.

• Communicates the shapes to Lyra in Caesar format via an inter-process communi
cation object.

• Deletes any rectangles on the layer named lyra that are a result of past Lyra
analyses. The lyra layer will be explained shortly.

• Waits for Lyra to fail or to communicate any layout rule violations in Caesar
format. Each violation is a rectangle and a label. The rectangle brackets the area
that contains the violation and the label explains the violation.

• Creates a rectangle on the layer named lyra for each violation rectangle and in
serts a string-valued property named lyra on the created rectangle's property list
whose value is the violation label.

• Calls Hawk to redisplay the grown area in all windows that display it.

186

When the user invokes the subroutine named violation, the subroutine prompts the user to

point at a set of violation rectangles on the layer named lyra. Once the user has done so,

the subroutine calls Hawk to display the values of the property named lyra on the

pointed-to rectangles' property lists.

You may read the source file for lyra.o at your leisure. It is not stored in the stranger view

named lyrax. It is convenient to be capable of executing Lyra interactively from Hawk as

a menu selection and in batch mode as a UNIX program. The source file is stored in its own

directory, named " cad/src/squidLyra, just as most UNIX program source is. The directory

contains a command for producing ~C9.d/lib/hawk/menus/userCommand/lyra^> as well

as the UNIX program named "* cad/bin/squidlyra.

	Copyright notice 1984
	ERL-84-54 (1 of 2)
	ERL-84-54 (2 of 2)

