
 

 

 

 

 

 

 

 

 

Copyright © 1984, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



MINIMAL SWAPPING FINITE ELEMENT AND FINITE

DIFFERENCE IMPLEMENTATIONS

by

Edward Ashford Lee

Memorandum No. UCB/ERL M84/59

27 July 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley, CA 94720



MINIMAL SWAPPING FINITE ELCMENT AND FINITE DIFFERENCE IMPLEMENTATIONS

Edward Ashford Lee

Department of Electrical Engineering and Computer Science
University of California

Berkeley, CA 94720

July 27, 1984

ABSTRACT

This paper presents a general technique for managing memory when imple
menting certain numerical computations that require more storage than avail
able in the main memory of the computer at hand. The computations to which
the technique applies are those which iterativeiy update variables at a node in a
mesh, and the update depends only on the values of variables at neighboring
nodes. The Finite Element Method (FEM) (with linear interpolation) and several
finite difference schemes, including some implicit methods, fall in this class.

The memory mangement technique reduces the amount of data swapping
between main and secondarj memory by a factor that is dependent on the
dimensionality of the problem and the size of the main memory. The savings
can be quite dramatic; for example, given a memory capable of storing 100,000
grid points, a two dimensional FEM problem requires a factor of 60 less swapping
using the minimal swapping technique than a standard implementation.

Using the minimal swapping technique, a relationship is derived between
the memory size and the I/G bandwidth required to achieve a certain perfor
mance for a given problem. This relationship can be used to determine the sys
tem requirements for problems of interest.
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1. Introduction

Numerical simulations of certain physical problems, such as the propaga

tion of seismic waves in inhomogeneous media, require a great deal of computer

memory. While a sizable research effort is under way to design machines with

the processing power necessary to perform the numerical computations in a

reasonable amount of time, the perhaps less glamorous memory problem is

often neglected. In particular, if the problem requires mere than the capacity

of the computer main memory, a naive implementation requires the entire

problem to be swapped to secondary memory in each time iteration, and the

simulation grinds to a near standstill. The communication bandwidth between

main memories and even the best secondary memory systems is orders of mag

nitude short of what is required for a reasonable execution time. Consequently,

in practice, even on the most advanced machines, the size of the main memory

puts a hard limit on the practical size of a simulation.

A simple modification of certain numerical simulations can greatly reduce

the amount of I/O bandwidth required for a problem larger than the size of the

computer main memory. The modification is based on the principle that if a set

of initial conditions corresponding to part of the problem is loaded into main

memory from secondary memory, then the maximum amount of computation

should be done before the results are written back to secondary memory.

Surprisingly, to my knowledge, this is not usually done.

1.1. A Problem Size Estimate

The simulation of the propagation of seismic waves is one of the more com

putationally expensive problems around. A reasonable numerical technique to

apply to the problem is the Finite Element Method (FEM). This method is taken

as an example of a technique in which the update of a state variable at a node in

a grid is dependent only on the values of the state variables at the nodes



immediately adjacent. What follows is an estimate of the size of the two and

three dimensional simulations that geophysicists would ultimately like to run, in

order to illustrate that the problem of running simulations tiat are larger than

the main memory of the machine are not merely academic.

The FEM requires about ten nodes per shortest spatial wavelength for accu

rate simulation when linear interpolation is used (for a detailed analysis of this,

see [1]). A useful three-dimensional simulation would cover a surface area of

about 50,000 feet squared (about ten miles squared) and a depth of about 25,000

feet (roughly five miles). If c is the velocity of propagation ot the waves in the

medium, / is the temporal frequency and Xis the wavelength, then

\=c/f.

Assuming, roughly, that the smallest velocity c of interest is about 5000 ft./sec.

(found in water) and the highest frequency of interest is on the order of 50

cycles/sec, the shortest wavelength is about 100 feet. Thus, the smallest spac

ing of FEM nodes is about 10 feet apart. This implies on be order of 6xl010

nodes, assuming that the node spacing is regular.

Depending on the programming details, on the order of ten variables per

node must be stored in memory. Thus, as much as 6xlOn floating point

numbers need to be stored. For 32 bit words, this transla:es into a memory

requirement of 2.4 Terrabytes ( 2.4X1012 ).

Aproblem of this magnitude is not likely to fit in the main memory of any

machine in the near future. In fact, it is not likely to fll in the secondary

memory of any such machine either. Nonetheless, it illustntes that research

ers wishing to perform three dimensional simulations will not be satisfied if they

are restricted to the main memory of any mortal machine.

Consider, alternatively, a two dimensional model of the same magnitude as

the one above. That is, 50,000 feet long by 25,000 feet deep. Vith a node spacing



of ten feet, this means a total of 1.25X107 nodes, implying a storage requirement

of 1.25X108 floating point numbers. For 32 bit numbers, this translates into 500

Megabytes. This is orders of magnitude larger than the main memory of present

day machines, but at least it is not inconceivable that with substantial secon

dary memory, such a simulation might be implementable.

2. One Dimensional FEM

For simplicity, I will begin by illustrating the technique for a one dimen

sional simulation using the FEM. The technique applies in the same way to finite

difference schemes. Although few physical problems are actually one dimen

sional, extensions to more dimensions will be considered after the one dimen

sional results are established.

2.1. Standard FEM

Consider a problem to be solved using the FEM with linear interpolation and

P nodes in a straight line. Linear interpolation in FEM implies that at each time

iteration, the new state at each node is affected only by its nearest neighbors. If

T time steps are desired, then the total amount of computation to be done is PT

node updates, where a node update will be the basic unit of work considered.

Assume that the main memory capacity is M nodes with P» M. Then in a

naive implementation, the initial conditions for M nodes are loaded into

memory, the nodes are updated one time step, and the results written back to

secondary memory. Then another M initial conditions are loaded; the process is

repeated until all P nodes are updated, at which point the second time step is

begun.

The communication workload can be measured using a unit called a swap.

One swap is the operation of writing the contents of main memory (M nodes) to

secondary memory, and reading back an equivalent amount. The total number



of swaps for the standard implementation is

Sstd=PT/M, (1)
which can certainly be improved.

On many systems, the programmer is encouraged not to think about the

details ofmemory management. In a virtual memory machine, for example, this

standard technique will result by default if the program accesses all elements of

the large array or vector containing the node state variables.

The FEM simulation is usually formulated in state variable form as

u(n+l) = Au(n) + b[n) (2)
where u(n) is the state vector at time n (containing the state variables for all

the nodes), Ais a sparse matrix containing the physical coefficients, and b(n) is

some forcing term. This formulation, however, conceals the nearest-neighbor

nature of the problem that is inherent in the physics. Aprogrammer is likely to

completely update the state before proceeding to the next state update, and

again, the standard technique results by default.

2.2. Minimal Swapping FEM

To minimize the amount of swapping required to perform a simulation, the

program should make maximal use of each swap. Since a node update is depen

dent only on the nodes immediately next to it, it is possible to do more than just

one time step per swap. Starting with the initial conditions for M nodes in

memory (at t=0), the update can actually only produce M-2. new states (at t=l)
because the nodes neighboring the ones on the end are not in memory. (This

effect is negligible for large Mand so is not taken into account in computing the

communications workload for the standard implementation.) Observe, however,

that once M-2 new node values have been computed, a new time step can be

computed producing M-A new node values at time t=2. This process can be

repeated, producing a triangle of new node values, as shown in Figure 1. The
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number of node updates that can be done from one set of M initial conditions is

W =
M-l

2

which for large M is approximately (M/2)2. The naive implementation only

accomplishes M node updates per swap, so this implies that the number of

swaps can, in principle, be reduced by a factor of about /,// 4. For large

memories, this can be quite significant.

More work is required to make the updates coincide at the boundaries of

the swaps. To accomplish this, divide the problem with P nodes into frames of

width M. Assume that the boundary conditions of the problem are time invari

ant, so only one storage location is needed at each end of the linear mesh to

store them. Then if the leftmost frame (the set of Mleftmost initial conditions)

is loaded, the pattern ofnode updates that is possible is shown inFigure 2.

Instead of doing all possible updates, consider the following strategy.

Update nodes up to time step t-N, where N<M. The pattern of node updates is

shown in Figure 3. Now keep in memory the N node values along the sloping

edge, and bring in from bulk memory B more initial conditions, such that

M = B + N. (4)

Now it is possible to update the nodes in the parallelogram of Figure 4. Repeat

the parallelogram updates until the boundary condition at the other end makes

possible another rhombus shaped update pattern. Figure 5 shows how the N

complete time steps are divided. Once these are complete, the entire process

begins again at t=N.

Assuming that the problem size P is much greater than the memory size M,

most of the update operations will be of the parallelogram type shown in Figure

4. It is easy to see that the number of node updates in the parallelogram is

M
+ "Z— 1 ; for M even

(3)
; for M odd



(N-1)(B-1). Subject to the constraint that B+N=M, this is maximized if

N = B. Therefore, using this strategy, the optimal choice ofN and B is

N=B = M/2. (5)
Neglecting the effect of the rhombuses at the ends of the grid (Figure 5), the

total number of swaps for the minimal swapping solution will be

<-, P T _ APT
Ondn ~ B N - -jp • (6)

Comparing this with equation (l) it is clear that the amount of swapping has

been reduced by a factor of

Sstd M

which for a large memory is a significant savings.

If the effects of the rhombuses on the ends are considered, the situation is

actually improved because the rhombuses represent more work for a single

swap than do the parallelograms.

3. Two dimensional Problems

The two dimensional FEM simulation is a much more common problem, and

is treated in a similar way in this section.

3.1. Standard FEM

Assuming a memory size of M, a naive program loads a BxD area of initial

conditions, computes one time update, and writes the result back to secondary

memory, where M= BD. The total number of swaps for an standard implemen

tation of a problem with P nodes and T time steps is

Sstd - ~^"= zjjr (8)PT _ FT
BD M

Again, this can be improved.
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3.2. Minimal Swapping FEM

The technique for maximizing the amount of work done per swap is similar

to the one dimensional case. Figure 6 illustrates the analogous division of A7

time steps. Again assuming that the problem size P is much larger than the

memory size M, most of the node updates tcke place in the paraUelepipeds of

Figure 7. To maximize the number ofnode updates performed for each of these

typical swaps, we clearly need to maximize the number of nodes in this paral

lelepiped, subject to the constraint thit

U = D(B-l) +B(N-V + N(D-l) (9)
which is the total number of nodes required to start the computation. The

number of node updates in the parallelepiped is

W= (B-:)(D-1)<N-1) (10)

because we do not count the initial nodes as rode updates. This function can be

maximized subject to its constraint using Lagrange multipliers, and the result is

B=N = D, (11)

and the optimal dimensions are

D(B-l) = B(N-l) = N(9-l) = M/3. (12)
When combined with equation (ll) the becomes a quadratic that can be solved

yielding

B=N=D=1+<1ya/3*, (13)
which is approximately (M/3)% for large M. This result is intuitive, because the

volume of a parallelepiped is maximized subject to a surface area constraint by

making it a cube.

The total amount of swapping reqjired to run a simulation with P nodes for

T time steps using the minimal swapping technique is

PT ru PT

5min =WW= o//3)3/2" . (14)
So the advantage gained by using the minimalswapping technique is a factor of



S . ~ o3/2 (15)
*-' mm o

reduction in the number of swaps. For a memory capable of storing 100,000

nodes (about a 4 Megabyte memory) this is a reduction in the required swapping

by a factor of about 60, which is again significant.

Note that the improvement is dependent only on the size of the memory,

not on the size of the problem, as long as the problem is much bigger than the

memory. However, as in the one dimensional case, if the problem is not much

bigger than the memory, then the edge shapes in Figure 6 become significant,

and the situation is actually improved. The advantage of the minimal swapping

technique will be greater.

4. Three Dimensional Problems

All of the arguments presented for the lower dimensional cases apply as

well to three dimensional problems, but visualizing the problem is considerably

more difficult because the solution volume that must be carved up is four

dimensional. Nonetheless, let us try.

In the two dimensional problem, the parallelepiped of Figure 7 represents a

transition in time from the square at its base (the initial conditions) to the

square at its crest, where two side faces of the parallelepiped were previously

computed and given as side conditions. These side conditions are used as

needed as time progresses. Similarly, the equivalent to the parallelepiped for

the three dimensional problem is the progression in time from the cube in Fig

ure 8a (the initial conditions) to the cube in 8b, where the dashed cube shows

the relative position of the original cube; side conditions are used along the way

but are not drawn because they are used as the computation progresses through

the fourth dimension, time. Figure 9 shows the shape of the volume through

which the simulation progresses; at the beginning of a frame computation, this

shape is filled by the initial conditions and the side conditions. This volume
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represents the memory required to run the simulation through the appropriate

hyper-parallelepiped. The optimal dimensions of the hyper-parallelepiped are,

as before, all equal. It can be shown then, that to run anNxNxNxN hyper-

parallelepiped, the memory volume of Figure 9 is AN3 nodes, so that

N = (M/A)V3 (IS)
and the amount of work per swap is

AT4 = (/,// A)i/3 (17)
and thus

44/3/rr

The savings of the minimal swapping method is a factor of

Sstd Ml{3

Srmn 4'^

using the fact that for the three dimensionalproblem Sstd is ihe same as for the

two and one dimensional problems, and is g.ven in (l) and (3). For #=100,000

this represents a reduction in the amount o: swapping by a {actor of about 7.3.

The savings is clearly much more modest forthree dimensionii problems.

5. Implicit Solution Techniques

The minimal swapping technique can also be applied to implicit techniques

in a fairly straightforward way. Consider, for example, the solution technique

given by

Au(n +1) = Bl(ti). (20)

Assume that the A and B matrices are sparse in just the way so that an element

of the u(n +l) vector depends only on nearest neighbors in the u(n +l) and u(n)

vectors. (Note that 1 mean "nearest neighbars" in a physicd sense; they need

not be adjacent in the vector). This implicit method can sometimes be approxi

mately solved using the Jacobi method. Write the Amatrix as a sum of an upper

triangular matrix, a diagonal matrix, and a lcwer triangular matrix, so that

(13)

(19)
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and thus
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D(U+I+L)u(n+l) = Bu(n) . (21)

A=D(U+I+L) (22)

u(n+l) = D^Bufa) - (U+L)u(n +1). (23)
The value of u(n-t-l) can be approximated by defining

Uofa+1) = u(n) (24)
and

Ui(n+1) = irlBu(n) - (U+IJu^n+l) (25)
where i = 1,2 /. If the method converges, then / is selected to achieve the

desired accuracy. Except for the term Bu(n) this looks just like the Leration in

time of an explicit method, but with / times as many iterations. The presence of

the Bu(n) term merely means a memory penalty that must be paid, because

this term is only updated every / iterations, but otherwise the iterations of the

above equation can be implemented using the minimal swapping technique.

6. A Simplified Programming Method

Because of the peculiar shapes involved in the minimal swappingtechnique,

its implementation is not completely straightforward. Where the necessary pro

gramming effort is not justified, a simple technique with suboptimal efficiency

can be employed satisfactorily.

Since the end results of a run of the parallelogram, parallelepiped, or

hyper-parallelepiped are node values that are valid at different points in time, it

seems reasonable to store along with the state of each node the time at which

that state is valid. Then, when initial conditions are loaded, the parallelepiped of

Figure 7 can be "grown" like a crystal starting in the lower, forward, right hand

corner and performing a node update whenever possible. This simple technique

requires examining all nodes to see if they can be updated, so the number of



nodes to be operated on will be

rather than
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r/3/2MS =^g- (26)

J,?3/2(B-1)(D-1)(N-1) = |L_ (27)
Using this algorithm, the m'nimal swapping technique involves about three times

as many node operations as the standard technique. In addition, each node

update is slightly more complicated because of the tests that must be per

formed to determine whether the update can be done. This will be somewhat

offset by the fact that for two thirds of the node operations no update will be

performed; but in any case, it is hard to imagine that it would complicate the

node operations by more than a factor of two or so. Six times the computational

complexity is a small price to pay for 1/60 times the communications with

secondary memory, when snch communications dominate the execution time of

the program.

More elegant implementation techniques immediately come to mind. For

example, one could load the side conditions from secondary memory as they are

needed, and write node varies to secondary memory when the nodes can no

longer be updated. This wil reduce the amount of memory needed to achieve a

given reduction in the swapping rate, but the precise amount will depend on the

computer architecture. It will also reduce the workload, because every time a

node is encountered which cannot be updated beyond a given time step, it is

banished from memory, and the program will not attempt to update it on future

time steps. Many other machine dependent embellishments are possible.

There is one potential difficulty that arises from the use of the minimal

swapping technique. Since at any given time the states at different nodes are

valid for different iteration numbers, examining the entire grid at a given itera

tion number (grid snapshot) is difficult. The solution, if snapshots of the grid
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are required at random times, seems to be to monitor the time. variable

corresponding to each node, and when it reaches the iteration number desired,

output the state. This will add some code to the inner loop. An alternative is to

restrict snapshots to the times when they are immediately available in memory.

7. Designing or Selecting a Suitable Computer System

Since the amount of swapping done when the minimal swapping algorithm is

used is dependent on the size of the memory, a relationship can be established

between the memory size and the I/O bandwidth that is required to achieve a

certain performance. Specifically, the two parameters may be traded off to

achieve a computer system optimized for these numerical problems. To illus

trate the tradeoff, I will consider only the two dimensional problem.

Recall that P is the total number of nodes in the problem and T is the total

number of time steps to be computed. "Recall also that M is the total number of

nodes that fit in main memory and that Sstd is the number of swaps required to

solve the problem using the standard method, and S^n is the number required

using the minimal swapping method. Define C as the communication bandwidth

available between main and secondary memory (in bytes/sec) and Tq as the

acceptable total amount of time for the system to spend on communication

between these memories for the execution of the entire simulation (in seconds).

Further assume that 10 floating point numbers per node must be stored, and

that 4 bytes are required per floating point number. Then the bandwidth

required for the standard implementation can be computed as

„ Axl0xMSstd pt

C= TC -4°W <28>
using equation (8).

Let us try some typical numbers. Assume that it is acceptable for our com

puter system to devote one hour to communication so Tc = 3600 seconds.



14

Assume also that we wish to run 5000 time steps, so T = 5000. The two dimen

sional problem from section 1.1 had P = 1.25xl07 nodes. Equation (23) yields

C = 694 Megabytes/ sec

which is not a trivial requirement.

On the other hand, the communication bandwidth required using the

minimal swapping method is

_ 4xlQx/^5min 40x3^ PT

C~ TC = Tcm (29)
using equation (14). For IA-100,000 nodes, using the same numbers as above,

this becomes

C - 11.4 Megabytes/ second

which is much more manageable.

An interesting use of equation (29) is to solve for M as a function of the sys

tem bandwidth C.

With the numbers assumed above, this is plotted in Figure 10. This figure indi

cates that to solve the two dimensional problem in a matter of hours, assuming

that the arithmetic hardware is designed for performance comparable to the

memory management, then a communication bandwidth of 10 to 20

Megabytes/second implies a memory size of one to five Megabytes. The required

memory size grows very fast as the bandwidth goes below about five

Megabytes/second. Of course, these figures are quite sensitive to parameters

such as the size of the problem and the acceptable time devoted to communica

tions, but they are useful to show the orders of magnitude of the numbers

involved.

40X32/ (30)
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8. Conclusions

I have presented a general technique which can achieve significant reduc

tions in the amount of memory bandwidth required to run certain large numeri

cal simulations when the problem size is larger than the main memory size of

the computer. The reduction in bandwidth depends on the dimensionality of the

problem, with greater advantage for smaller dimensions, and on the size of the

main memory. Thus, a tradeoff between memory size and I/O bandwidth is esta

blished; this can be used to design or select computer systems optimized for

solving the kinds of numerical problems considered.

The technique applies to all numerical methods where iterative updates of a

value at a node are made dependent on the values at the neighboring nodes.

The technique also applies to some implicit methods with similar nearest-

neighbor dependencies.
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Figure 7: The parallelepiped that dominates the computation when the main memory is
much smaller than the problem size.
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computation for a three dimensional simulation.

Figure 9: The volume of memory required to compute the hyper-parallelepiped of Figure 8.
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