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ABSTRACT
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1. Introduction

Advances in the direct assessment of power system stability have
addressed three related facets of the problem. The first is that of constructing a

^suitable Lyapunov or energy function, which is the basis of any direct-method.
The second area of interest is improved means of estimating stability boun
daries given such a function. Finally, recent attempts have been made to
improve the power system model to more accurately reflect observed system
behavior. The work presented here primarily addresses the third issue, and as
necessitated by our model, singular perturbation techniques are employed to
obtain well defined system equations to which Lyapunov techniques may be
applied.

Until recently, most applications of direct methods to multimachine power
systems utilized classical synchronous machine models with pure impedance
representations for loads. Such models cannot represent more general static or
dynamic load behavior, nor generator flux decay and excitation dynamics.
Several recent works have addressed these problems [4,14,20]. In [4], static
nonlinear load models are employed with swing equations for both generators
and loads. Hence voltage magnitude at load buses is allowed to vary according to
constraints imposed by the static load models. A similar approach is taken in
[14], where affine frequency dependent real power load and arbitrary static
reactive power load models are used.

The drawbacks in the approaches of [4] and [14] lie in the models them
selves. The combination of dynamic swing equations with static load models
yields a system of differential equations with algebraic constraints. As we show
in section 4, such a system is not in general well posed globally. This reflects the
fact that static load models may not be applicable over the entire range of pos
sible voltage variation. This problem is observed in [20], where it is suggested
that the state space be restricted to those initial conditions from which trajec
tories of the system are well defined for all time. However, no method for identi
fying such a restricted state space is proposed, limiting the application of that
work.

The application of singular perturbation results to power system stability
studies was first examined in [18]. The results obtained concerned the local
behavior of a system with fixed voltage magnitudes about its equilibrium points.
In this work, we are concerned with stability in the large. For a model including
voltage variation and flux decay effects, we construct a well posed augmented
system of differential equations (no algebraic constaints). Using results of [13],
we are able to explicitly characterize regions in which the augmented system
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"behaves like" the original model. We construct a Lyapunov function for the aug
mented system, and show that the region of attraction estimates obtained may
be restricted to sets in which the augmented system and the original system are
consistant. This provides an explicit technique to accomplish the goal suggested
in [20]. From a broader perspective, this approach may be useful for obtaining
estimates of the region of attraction for systems modelled by differential equa
tions with algebraic constraints.

2. System Model

2.1. Network

Our analysis is an extension of the structure preserving model introduced
in [5]. Assume the power system under consideration consists of n0 + 1 buses
(nodes), lQ lines (branches) , and m generators. This physical network is aug
mented to include m buses representing internal voltage at each generator.
These fictitious buses connect to the terminal buses through lines representing
the generator transient reactance. The augmented network then consists of
n + 1 buses, where n = n0 + m , and I =l0 + m lines. We will choose an internal
generator bus as reference, numbered 0, and number the remaining internal
generator buses 1 through m-1, generator terminal buses m through 2m-l, and
load buses 2m through n.

Because loads are not algebraically absorbed into the network as
described in [8], it is reasonable to assume that the network is lossless. The
resulting bus admittance matrix Y is pure imaginary, with elements Y^ = jB^.
We also assume slowly varying voltage magnitude and phase (quasi-steady-state).
Hence voltage at a representative bus i will be given by a time varying phasor
Vi(t) , with magnitude | J$ |(t) and angle 6t(t) . Complex power absorded by the
network at bus i is given by:

St = Pi+jQt = ViCfJl)' (1)

Transforming (l) to polar coordinates, it is convenient to define a vector of
angle differences relative to the reference bus:'

for i=l,2 n.

For convenience we define a0 = 0, with the understanding that a0 is not a
component of the system vector a . The load flow equations for the real and ima
ginary parts of Si are then given by:

Pi =fit*, IJfl) = £ |K| | Vk |i^sinfo-cO (2)
JbsO

Qi =9i(£L\V\) =-£ | Vi\ | ^l^cosfo-a*) (3)

2.2. Load Models

2.2.1. Real Loads

As in the original structure preserving model, real loads are represented
by affine functions of frequency. Empirical studies of loads with a significant
induction motor component confirm that such a model is reasonable over a
range of frequency variation of roughly 5% [l], consistant with our quasi-steady
state assumption. In this formulation, we have real power absorbed by the load
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at bus i given by:

Pi.i+Di6i (4)

for i=m,m+l,...,n.

Observe that if P* is the equilibrium value of Pi given in (2), real power bal
ance requires that Pi = —Pi.i . Also, we will require that A>0.

2.2.2. Reactive Loads

Reactive power absorbed at bus i is modelled as either a Taylor expansion
about the operating point (hence a polynomial in voltage magnitude) or an
exponential function of voltage magnitude. We define:

*(IKI) =
?i°+?i,|I'il+---+9ir|l{lr

or
\y

(5)

e Vi"\

require gt" su and y^:

Conservation of reactive power at bus i implies that gi(oLiJfl )+?i(l KI) = 0.
o

Under the assumption that | T£ | € R^, i.e. bus voltage magnitudes are strictly

positive, we may multiply by | Vj, |"l to obtain:

\Vi\-l\gi(at\V\) + qi(\Vi\)l = 0 (6)

for i=m,m+l,...,n.

2.3. Machine Models

Two generator representations are compatible with the Lyapunov function
to be introduced in section 4; the well known classical model and a first order

o

flux decay model. It will prove convenient to partition | V| eR^.71"*"1 as :

where ft0 through gtr or /?,7, and | K°l are parameters determined by load
characteristics. We require qu ^0 and 7^1.

m =
Ufii

where |Jfi| e "R+m are internal bus voltages, components 0 through m-1, and

I Vjj\ e R+n m+1 are terminal and load bus voltages, components m through n.

The classical model assumption of constant voltage magnitude behind
transient reactance yields |jfj | = IJ^01 , reducing system variables to w, a, and
|J^| . In the context of the classical model, we will simplify notation by dropping
the subscript 2 whenever possible and let |Jf| denote the terminal and load bus
voltage magnitudes. Internal generator bus voltage magnitudes will then be fixed
parameters in the load flow equations (2) and (3).

The flux decay model is derived in appendix A. The resulting differential
equation describing dynamics of the internal generator bus voltage magnitude
is:

IKI = —^
r dO.i

£/.i°-| HI-*di *?*' (131 -1 vt 1003(0*-«,))
*d.i

(7)
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for i=0,l,...,m-l, where | Vj | is the terminal bus voltage magnitude correspond
ing to generator i. Recalling that £#= 1/xd#i' and Bu=-l/xdti' , we may rewrite
the right hand side of (7) in a form similar (6):

|isi=-
xd,i~xd.i

T, .K|-l(ft(flUifl)+tt(IKI)) (8)
/ dO

for i=0,l m-1, where

Thus far we have described the behavior of the internal generator bus vol
tage magnitudes. Dynamics of the bus voltage angles, ol, are described by the
well known swing equation:

Mith + Dg,iUi + /4(a, | V\ )-pgS = 0 (9)
for i=0,lf...m-l, where

Mi = generator inertia constant

Dg.i = generator damping constant
&>t = 4i = &i + Qq
Pg.i = mechanical input power
Conservation of real power implies Pf = P9tit where Pi° is the steady state

value of Pi as defined in (2) . '

3. Degenerate System Equations

For both the classical and the flux decay generator representations, the
models introduced in section 2 yield a system of differential equations with alge
braic constraints. In the terminology of singular perturbation, these are "degen
erate" systems, which we denote D .

Though the basic structure of the systems is the same for either represen
tation, the details require separate treatment.

3.1. Classical Model

o

Here the system variables are weW1, a<EJX* , |Jf| =|Jf2| eRfn"m+1 . We define

o

a vector function £:HflxRfn~m+l -*j^n-m+i by.

hi =
f/i(a,lJfl)-/\° i=i,2,....n

|f}l"1(ty(a.|Jf|)+^(|JJ|)) J=i-(n-m);i=7i +l 2n-m

We make the obvious partition of h as Ai(a, | V|) representing the first n
components and h?fjx, \V\) representing the final n-m+1 components.

With these definitions, we may combine the scalar equations of section 2 to
obtain:

^=-UflDgco--Mg-lT1Th1(at\V\) (10a)

A = T^-WV-ftita. \V\) (10b)
A =Zto(a.U:l) (10c)
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where

M^ = dmg[Ml,M2,...,Mm]

Dg = ding[Dg&Dg,1%...,Dg.m-i]
Di = cKag[A.m.A.m+i A.n]
T=[T1|T2] = [-e|lnxil]

T^E"*"1 ; T2€E?«*-m+1; e = [l, 1 l]T

3.2. Rux Decay Model

o

Here system variables are weRT^eR* , and \V\ = [|jfi|r,|J^| T]T eR^"1"1 .
o

We define A-'R^x Rfn+1-*R^1 as :

f/ite-UrlWi0 i=i.2 n
*~\ l^l"1tej(a,|Jf|)+g;(|P5D) ;=i-n;i=n+l 2n

Similar to the classical representation, we partition h as
o

£i(a|jf|):R*xR+n+1-»R*+m containing components 1 though n+m . and

hd&> \X\ JjR^xR^71'1"1 -•Rf*""1 containing components n+m+1 through 2n. The sys

tem equations are then given by:

i= -Hg-lBt^-[Hg-lT/|0]Ai(a.lJrl) (11a)
A=Tttt- [TaDf^lO] Ai(a, IJTI) (lib)
llii =-[o|Dz]Ai(«,lJ:i) (lie)
Jl=As(a.lJfl) .(lid)

where M^.D^.Dj , and T are as defined in 3.1, and

Dx = diag xd.0~x'd.Q xd.\-x'd.l xd.m-l~x'd.m-l
«T»» » rpt »•••• /j-i,

* dO.O •* dO.l i dO.m-1

4. Drawbacks of Degenerate System Model

A mixed system of differential and algebraic constraints such as (10) or (11)
is not guaranteed to define a globally well posed dynamical system. Specifically,
we will show that for a very simple example of the power system model
described by (10), "impasse point" behavior [6] occurs.

One may interpret the effects of the constraints in (10c) or (lid) from
either an algebraic or geometric perspective. Algebraically, we view (10c) as
implicitly defining |V| as a function of &.. Roughly speaking, the implicit func
tion theorem guarantees the existance of a local solution for I 71 as a function of

OL about any point (a, \V\) satisfying h2(a, \V\) =.0 and ~2. (a, \V\ ) nonsingu-
lar. One may then substitute the solution for |Jf| into (10a) and (10b) to obtain
a local system of differential equations in cj and a alone. Variations of this
approach provide the underlying theory for most power system simulation pro
grams [19].
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The geometric perspective, while less useful from a computational stand
point, offers insight into those cases where this process breaks down. Consider
(10c) as defining a constraint manifold in the uraT \V\ space. Trajectories of the
system must remain on this manifold. Furthermore, the velocity vector which is
tangent to the trajectory at any point must have the property that its & and a
components are given by (10a) and (10b). In [17], this process is described as
"lifting" the dynamics onto the constraint manifold. We illustrate this process,
and the potential for impasse point behavior, with the following simple example.

4.1. Example System

We consider a simple one machine example with the classical model, as
shown in figure 1. The system is assumed to have a load located at the generator
terminal bus, having frequency dependent real power demand and fixed reactive
power demand. System equations (10) applied to this example yield:

a = -MflDgu + Mfl(P°-B0l \ Vx |sina) (12a)
a = -DTl(P° - B011 Vx | sina) - a (12b)
0= im^H?!0 - 50i| Oleosa - BnlV^) (12c)

For our example, we will take parameter values of:
Mg = 10.0
Dg = 0.05
Dt = 0.05

Bi2=-Bn = 10.0

Qi° = -0.5
P° = -4.0

Figure 2 shows the locus of points in the a versus | V11 plane satisfying
(12c). Note that (12c) is independent of a , so we may view the closed curve in
figure 2 as the cross section of a tube of infinite extent in the wdirection. Super
imposed on this is the curve of hv(a, | Vi |) = Bxz\ Vx | sinot - P° = 0. For u=0, this
hi=Q curve divides the plane into two regions: below the curve , a is greater than
zero, above the curve a is less than zero. The effect of nonzero cj will be to shift
this curve. However, given A~l=20.0 in our example, this effect will be neglible.
Therefore, for initial conditions of w=0.0,a=60°,| Vx\ =0.4, the path of the resul
tant trajectory will be roughly as shown in figure 3. We see that the trajectory
reaches (a*,|Vi*|) in finite time tl ( because a is positive and bounded away
from zero along the path shown ) , but cannot be continued on the time interval
[0,**+/?] for any £>0 . As defined in [6], (a*, | V? |) is an impasse point.

While this example concentrated on the degenerate system given by (10)
under the assumption of constant reactive load, it is easily shown that impasse
point behavior can appear in more general power system examples.

4.2. Interpretation of Impasse Point Behavior

The appearance of nonphysical behavior such as impasse points suggests
that our model is not applicable over the entire range of possible voltage magni
tude variation. This conclusion is supported by the experience in simulation
programs using fixed P-Q load models, where for low values of | 1^ | the process
of solving for voltage magnitude as a function of angle may break down [11]. In
simulation studies, a proposed solution is to instantaneously "switch" to a fixed
impedance load at some threshold of voltage magnitude. Such an approach
seems ill-advised in analytic studies without further evidence that it accurately



reflects actual load behavior.

The alternative is to accept the degenerate model D as accurately
reflecting load behavior in a limited range of values of the system variables.
Field tests of loads suggest that this is true in a region about the steady state
operating point. Our goal is to identify a region in which D remains well posed,
and to restrict our region of attraction estimate to a subset of this region. The
theory of singular perturbations provides a means to do this. We define an aug
mented ( singularly perturbed) system, At, which is well posed globally. We then
find conditions which ensure that trajectories of the degenerate system can be
approximated arbitrarily closely by the well behaved trajectories of the aug
mented system. Our region of attraction estimate is restricted to a set ( which is
shown to be invariant with respect to both D and Ae ) in which these conditions
hold.

5. Augmented System Equations

Following the approach suggested in [17], we view (10c) and (lid) as the
degenerate limit as e -»0+ of:

•Lai =-*•(*. urn (13)

The augmented system, which we denote Ae , is then described by a set of
autonomous differential equations. Again, we examine the two cases of classical
and flux decay generator representations.

Case 1: Classical Model

6 = -M^D^y - VT/iute, |7|) (14a)
A = T^ - T^T/AiGl IJfI) (14b)

\J&\ =-pMl*,|7|) (14c)

Case 2: Flux Decay Model

A =-VD^ " [M;1^7,10]Ai(a. IJf|) (15a)
A =T^ - [TaDf*VI 0]AiGl IV\) *(15b)

IAI =-[0|EUAiCa.lJri) (15c)

\Iz\ =-7*2(3. lifl) (I5d)

By construction, it is clear that in the respective generator representa
tions, the equilibria of D coincide with those of Ae . A sufficient condition for a
stable equilibrium of D to be stable with respect to Ac is examined in section 7,
after the machinery of a Lyapunov function for Ae is developed.

6. Lyapunov Function for Augmented System

To define a Lyapunov function for the augmented system Ae , we assume
that the desired post fault operating point x8 has been identified. The candidate
Lyapunov function will be defined relative to this point so that its value at x8 is
zero. We will denote our candidate Lyapunov function V(jz) , with the dependence
on x? understood. In turn V(x) will be used to verify the asymptotic stability of
x° •

Define:

Cam)

Vfe) =&*%£.+ / <k(y.)M> (is)
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A closed form equivalent for (16) is presented in Appendix A
We have expressed (16) with the assumption that the integral term may be

o o

written independent of any C1 path in EflxR1.n"m+1 ( alternately K^xR***1 for the

flux decay model ) . This follows directly from the observation that the Jacobean
matrix:

/(ftijri)-*^ (17)

whereat = ','^"IJI , is symmetric. This calculation is performed in appendix A
Next we must show that the derivative of Y(x) along trajectories of (14) or

(15) is nonpositive. By direct calculation we obtain:

vfe) =-s/Vgo. -Ai(o, IJT| )rRAi(a, IJfl) - T^Ga, \v\p^fa \v\) (is)

where

for classical model

R =
TA'lT2T 0 for flux decay model

By construction, Dff is positive definite and R is positive semi-definite. Hence
V(x)^0 •

Next, we use "Vfe) to establish sufficient conditions for x? to be asymptoti
cally stable.

Proposition 6.1

Given an equilibrium point x? with components U? =0 , ja8 , and |J? | , if the
matrix «/"(&8, |J? |) is positive definite, then x? is asymptotically stable with
respect to AB .

Proof:

First observe that the structure of (14) and (15) imply that AiteMl!8 |) = 0.
and iLzte8, |J* |) =.0.. Hence q^~=0 , and a Taylor expansion of Vfe) about*8
yields: ~~

V{x) = (x-x°)T TAg 0
0 /(aMJf»|)

(x-x*) +o(||x-x8||3) (19)

where o() represents higher order terms. Given M^>0 by construction, and
the hypothesis /(a8, \V° |)>0 , we have that V(xe +x) is locaUy positive definite.
We define:

Sk = component of f* |Vfe)«sfc} containing x8 (20)

It is clear from (22) that for some k sufficiently small, Sg is bounded. Let

n0 = k|vfe)=oi (21)

Then it is easily shown that the largest invariant set of Ac contained in
QoOSjf is the point x8 . It follows from La Salle's theorem [21] that x* is an
asymptotically stable equilibrium for Ae . •
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7. Relation of Augmented System to Degenerate System
Our first step is to return to the issue raised in section 5; namely, under

what conditions is a stable equilibrium x8 of Dalso stable with respect to Ae .
Proposition 7.1

Suppose the equilibrium point x8 is "small disturbance stable" [23] with
_.— (a8,|J^ |) is positive definite. Thenx8 is asymptoticallyrespect to D and
3|Jf2.

stable with respect to Ae .

Proof:

To allow uniform notation for both the classical and flux decay representa
tions, we will partition a subset of the system variables for each case into what
we will refer to as dynamic and algebraic variables.

Case 1: Classical Model

U. = vector of dynamic variables = a,

z. = vector of algebraic variables = | V\

Case 2: Flux Decay Model

y. = vector of dynamic variables = . #
I-ill

«. = vector of algebraic variables = |j£|

By a minor variation on theorem 1 of [23], we have that x8 is small distur
bance stable implies that

dhm2 d/ig 1

"^1 *fw> (22)
dhx dhx

H(3ie^.a) = dy. dz.

is positive definite. By the definitions of h^ and z. , the second hypothesis ofpro
position 7.1 translates to -|jp&a ,ze )>0 . Using the results of proposition"8.1, we

must show that #&8jz8)>0 and -|̂ fe8.z8)>0 imply that J(tf;\Jf\)>0 . This
follows-directly from the observationthat [18] :

Hi"dfi2
dz

<3L*JL°)
dhz .

u+
dho .
-fna8.*8)

To put the results of propositions 7.1 and 7.2 into perspective, we envision
the following application. One is given a desired post fault operating point x8 for
D% which is small disturbance stable (this is a reasonable minimal stability
requirement for any operating point). To ensure that this point is also asymptot

esically stable with respect to Ae , we must also check that ^->0. Simple
dzsufficiency conditions for this property are examined in appendix £

7.1. Region of Attraction Estimate for Augmented System Ae
In proposition 6.1, we established that x8 was an asymptotically stable

equilibrium of At by invoking LaSalle's theorem for the set Ss . the conclusion
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was that any trajectory originating in Sg converged to x8 as £-+«>. In addition to
providing the asymptotic stability result, this implies by definition that Sg is
contained in the region of attraction of x8 . The goal of this section is to show
that as the parameter k is increased, the sets Sk remain in the region of attrac
tion of x.8 until some critical value, kcrU , is reached. This limiting value of k is
obtained when the set Sk fails to be bounded. We address sufficient conditions
for boundedness in the following proposition.

Proposition 7.2

Define

Note that for k^k, Sk/ Sg = £ '. Suppose that for some k>k

inf ||W(x)||>0
xeSk/Sg

__. Then the set Sk is bounded and V(x)^0 for all xeSj. .

Proof

A detailed proof of this proposition will be given in appendix B; here we will
simply contrast the result with that generally used in Lyapunov studies for
power systems. In [22] for example, the constant potential surface (here the
boundary of Sk ) is expanded until it first intersects an unstable equilibrium
point. The value of V(x) at this point is taken as the desired k^, and for ail
k<kcrit . Sk is claimed to lie in the region of attraction of x.8. Implicit in this
approach is the assumption that Sk remain bounded until the closest unstable
equilibrium point is encountered, otherwise LaSalle's theorem does not hold. For
the Lyapunov function defined in (16), this boundedness assumption may not
hold for an arbitrary network. Hence the more complex criterion for bounded
ness proposed in proposition 7.2 is necessary.

For the Lyapunov function defined here, we will define the smallest % for
which the hypothesis of 7.2 fails to hold k^ . With boundedness established for
Sk , 0<k.<kc^rii , we may obtain an estimate of the region of attraction ofx8 .

Proposition 7.3

Let the assumptions on k of propositin 7.2 hold. Then Sk is invariant with
respect to At, and Sk is contained in the region of attraction ofx8 for Ae .

Proof ' ;•** '

The invariance of Sk follows from the fact that V(x)^0 and the construction
of Sk . To show that any trajectory ofAe originating in Sk approaches x8 as t -*«, ,
we apply LaSalle's theorem as in proposition 6.1 •.

It is important to note that several researchers [3,9,15] have obtained
excellent results in applications using heuristic techniques for finding k^ ,
which have reduced the conservativeness of the region of attraction estimates
used in their studies. Presumably such heuristic techniques might be profitably
applied to the Lyapunovfunction and models proposed here. However, no formal
proof has been offered to show that the larger sets obtained by these .methods
must lie inside the true region of attraction.
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7.2. Region of Attraction Estimate for Degenerate System D
We recall that our original, physically based model is the degenerate sys

tem, D . As observed in section 4. D is not necessarily well posed globally. There
fore, within the limitations of this model the region of attraction estimate should
have the property that any trajectory originating in this set is well defined for all
time ( no impasse point behavior ), and asymptotically approaches the stable
equilibrium x8 . We will use the sets Sk defined previously, suitably restricting k
so that the desired properties are obtained.

Proposition 7.4

Let the assumptions of proposition 7.1 hold. Then for all k , Q<k<kc1it such
that

x*Sk
>0 (23)

(where XminM denotes the smallest eigenvalue of the matrix A), any trajectory
So(tiX°) of D with initial condition x.°€.Sk has the following properties:

(i) s0(t£.°) e Sk for all t^O (i.e. Sk is invariant with respect to D )
(ii) for all 5>0 , there exists e>0 such that the trajectory ofAe with initial condi-

tionx0 , denotedse(t,x0) satisfies | is0(*(x°)-sc(£lx0)| \^6 for all teO .
(iii) s0(r,x0)-»x8 as t

Proof

Property (i)

-»oo

dhz
Our condition on the smallest eigenvalue of -f=-(£) over the set Sk guaran-

- dh ~ _tees that there exists an Msuch that | \[-=^-{x)]-l\ \2^M for allx e Sk , and in

particular for x° . By the implicit function theorem [16] , we have that -==-(x)
nonsingular implies that there exist open balls U and V about y and ? respec
tively and a.unique C ( by virtue of hz being Cm ) function <p:U+V such that
hzizLghl)) =.0. for all y € U . Moreover, given the fixed upper »bound on
IIt'gjH"1! 12 over Sk . we can find a minimum r>0 so that all such bails Uhave
radius of at least r . Hence we may form a finite cover of the y components of
the bounded set Sk by these open balls, which we denote \ Ur(s^)\ . Starting from
x° € Sk . we obtain a local representation ofD on Ur(y°) by:

&=. - VD^" AAiGfc.e(it)) . (24a)
y =Ba - Chifa&iy)) (24b)

where A . B , and C are constant real matrices dependent on the generator
representation chosen.

Using ss.. we may also express the Lyapunov function defined in (16) as
V(«40 =yic^y.sB.iy)) (25)

Along trajectories of (24) we have:

%m) = -&LT'Dg£L -hjfa&fa)) Rhl(y,se.(y)) -



h*T(y.seJ[u)) -^-iu&(y))
-i

- 12.- S

dhvik2

dy <y&{y)) h\(y,&(y)) (26)

where Ris a positive semidefinite matrix dependent on the generator represen
tation used, and by definition hz(y$sdy)) = 0.. Hence Vfc>.y)3S 0.

Because V{<&y) ^0 , we conclude that the y component of trajectory
s0(t& ) for the local representation of D remains in Ur(y°) C)Sk on some finite
time interval [0.*1) . When s0(t,xQ) leaves Ur(y°) at time r1. we must switch to a
new local representation corresponding to the ball in which s0(tl&°) lies, say
Ur(y ) . The same reasoning shows that s0(t&°) remains in Ur(yl)f^Sk on some
interval \t\t2) . Given that the right hand side of (24) remains bounded and
Iipschitz continuous in Sk , standard continuation results for o.d.e.'s ensure
that s0(*,x ) can be continued for all t>0 , and byMp.y)^G we have that these
trajectories remain in Sk . • (propertry (i))

- To establish properties (ii) and (iii), we will make use of the following
lemma:

Lemma 7.4.1:

Given £° e Sk , for all k>0 , there exists e>0 and an 7t<«"Such that
sc(7\£°) e Sg for all s , 0<e*s,s .

Adetailed proof of this lemma is provided in appendix B. Abrief motivation
is in order, however. In proposition 6.1, we established that for fixed e . x° e Sk
implied that se(*,x°)-x8 as *-.» . This of course implies that for an arbitrary
*>0 , se(t,x ) will eventually enter Sg . Lemma 7.4.1 goes further by establishing
a type of uniform stability in s . Specifically, we show that given any k>0
(presumably A:«A: ), we can find an s and a Tsuch that not only is st(T^.°) in
Sg, but se(7\x°) is in Sg for all 0<s<& . With this property estabUshed. we can
easily show properties (ii) and (iii) using singular perturbation results.

Properties (ii) and (iii)

If we examine the augmented equations (14) and (15) in light of the notation
beco • m?ecUon 7t We See that the Perfcurbed equations of (14c) and (l5d)

£=-£*tfcjL) (27)
Then condition (23) and point (i) insure that when (27) is linearized about

any point ons0(f^) all its eigenvalues have strictly negative real parts. Hence
by the results of [13] we have that for all 7<« , and all 6>0, there exists a s>0
such that 0<e £e implies | |s0(*JL0)-*«(tjE°)| \*t for all t e [0.T] .

Next we observe thatby the construction of the sets Sk , given any 6>0
there exists A:1, k*>0 and 6>Q such that •
(a) SkZcB(x°,6) = \x\ ||x-x8|i^<5i

(b) B(xe,6) CSkz . and Skl CB{x\ f-)
The nesting of sets described in points (a) and (b) is described in figure 4

By the results of lemma 7.4.1, we may find sl and Tl such that sc(r\x0)) e S j
for all £ satisfying 0<s^sl . By the result of [13] used above, we may find an e*>0
such that 0<e^s? implies | |»o(*JL°)-*«(^°)| [*§-for all t e [O.f1] . If we let s
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= min^.fi2) , we have 0<£2Se implies :

(a) 11s0(t JL°)ss(t ,x0) ||<; |<«5 for all te[0,Tl]
(b) se(r ,x0) €5.! c B(x°, h for aU ter1 .

Results (a) and (b) together imply that s0(Tl&°) e B(x?,6) c SU c £(x° <S)
wh\c/1?..^turn ^P1163 that I\so(t^0)-ss(t^)\ \*6 for aU t^O . Properties (ii)
and (ui) follow directly. •

Proposition 7.4 provides a means of identifying those values of Jfc for which
the sets Sk are suitable region ofattraction estimates for D . While the criterion
of the smallest eigenvalue of -=*-> 0 over the set Sk may be computationally
unwieldly. the fact that -=—- is a real symmetric matrix offers an easy
sufficiency condition for this property. This issue is examined in appendix A.

8. Conclusions

In this work we have examined a detailed model for direct transient stabil
ity analysis of multimachine power systems. We have shown that this model is
not generally well posed globally. To address the problem, we have used singular
perturbation techniques to introduce an augmented system which is globally
well posed, and first performed stability analysis for the augmented system. In
the process a valid Lyapunov function for the augmented system is constructed.
Finally, we have obtained explicit criteria for the trajectories of the augmented
system to "behave like" those of the original system , and have shown that a
region of attraction estimate may be found in which these criteria are met.

It should be pointed out that the augmented system and singular perturba
tion results are primarily conceptual tools for identifying the Lyapunov function,
region of attraction estimates, and "valid" regions for the degenerate model.
Similar results could be obtained by working directly with the degenerate
model. However, we believe that the motivation is much clearer in the context
presented here. In particular, the concept and construction of a Lyapunov func
tion is not well established when dealing with a system of differential equations
with algebraic constraints. By working with the augmented system first, we may
employ standard results from Lyapunov theory directly. The singualr perturba
tion results allow us to "translate" back to the originaldegenerate model.

Ultimately, through improved understanding of dynamic load behavior in
power systems, one may hope to obtain a system model which is well posed glo
bally, eliminating the necessity for these techniques. However, given the state of
the art of power system modelling, the approach presented here represents a
means of applying Lyapunov techniques to the degenerate power system model.
More generally, it provides a means of obtaining region of attraction estimates
for any system modelled by ordinary differential equations with algebraic con
straints.



Appendix A

Structure of J(a, | V\)
By definition

4L
/ =

(c)
3<2L

3a aiifl

where [|V|] = diag[\ V0\t\ Vt\. • • • .| Vn\].
To show J is symmetric, we must show:

(a) -^-symmetric
OSL

(b) -"—'. Jpp •&'• symmetric

-14

dCL d\V\

am

Point (a)

Vita, urn
d(Xi

-tftflKll^lcosfou-ot;-) i*;
2**1^1 Î Icosfo-a*) i=j
k+i

Given 5^cos(ai-aj)s£^cos(ay-ac) symmetry follows immediately.

Point (b)

8|T}|

Symmetry follows as in point (a).

Point (c)

-^•cos(ai-a;)
d(Wi\'lqi(\Vi\))

dWjl-£» +

-<3tfl*}|sin(ai-aj)
n

S^ifcl^lsin(«t-«Jb)
(fe=0

i*ja/italJTl) ^iKlsinfo-Aj-)

E^ifcl^lsi^ai-ajb)
(^0

i=7

dh2

i=j

i*j

i=j

(17)

(A.1)

(A.2)

(A.3)

(A.4)

Sufficient Conditions for -f^-ty* £?) Positive Definite
From the definition ofy . z , hziy.z) in section 7 and results above . it is

Oft9

clear that -g^iy'^?) is symmetric, with components given by (A.2). From the
Gershgorin circle criterion , we obtain the following sufficient condition for posi
tive definiteness in terms of component values:
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£l^cos^-a*8)! <£3^-^^^^-
Jfe=0 Jb^O d IVi
k*i kM

fori = 771,771 + 1,....71

(A.5)
1^1 = 1^1

Closed Form for Lyapunov Function V(x)
The following function may be shown to have the same derivative with

respect to x = (&& \V\) as "V(x) . and to be equal to V(x8) = 0 at the stable
equilibrium xf . Therefore the functions are equal, and we may write:

Vfe) =&*%« - %£ £ B* IVi IIVk Icosfo-a*)
i=0Jb=0

+}ffi £ 3* I^ IIV IcosW-cx*8)
t=0Jfe=0

^llqj^-Er(&-^) (A.6)
k=r\vh*\

where r=m for the classical model and r=0 for the flux decay modeL A very
similar "energy function" was proposed in [14] for the case of classical genera
tor models. While (A.6) is obviously preferable from a computational standpoint,
(16) greatly simplifies the necessary analysis to verify the Lyapunov function
properties.

Derivation of Jlux Decay Model

For simplicity, we neglect the effect of saliency on the "power-angle" rela
tion. Therefore the power delivered to the network by generator i with terminal
bus voltage magnitude | Vj | is given by:

P=̂ ^-sinK-a,) (A.7)
We will define the ficticious internal bus voltage magnitude for generator i

as IVi I =Eq'. and let By = -^-. Then (A.7) becomes
xd.i

P = By IVi 11 Vj Isinfo-a,-) (A.8)
which is consistant with (2).

Following the development in [2], we employ the "one-axis" model to
describe the time rate of change of Eqti' as

'40,i

where excitation E°fj is fixed in our model, and
Ei = Eq,i' - (xd.i - Xd.i') Id.i (A. 10)

Eq.i = VV4 + rIq.i+Xd.i'Id.i (A.11)

Neglecting resistance r , we solve for Idi in (A.11). Substituting for Idi in
(A. 10) and for Ei in (A.9) yields

*•* =TW^'4 "*•*' " '̂x~g<"' ^Vi-^)) (A.12)
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The quantity Vqj represents the q-axis component of Vj , and by definition
Vj has an angle of (oti —ay) relative to the q axis. Hence we obtain

y*4 = |t}|cos(ai -a,-) (A.13)

Recalling our definition of | J$ | = £,/ , we may substitute in (A. 12) to
obtain

'*' =W"^ " I7il " Xd'xdT' {m ~H5loo.<«, -a,)) (A. 14)

as given in (7).
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Appendix B

Proposition 7.2: Outline of Proof

We wish to show that for anyk satisfying the premise ofproposition 7.2, the
set Sk is bounded. Our approach will be to construct a homeomorphism between
the boundary of the bounded set Sg ( denoted dSg ) and the boundary of Sk (
9Sk ).

Consider the autonomous system

l =VV(x) (R1)
By construction of "V(x) , it is easily shown that in any closed bounded set. W(x)
is bounded and Lipschitz continuous. Also, V(x) is clearly nondecreasing along
trajectories of (B.l). We will use these properties to show that for all x € dSg .
the trajectory of (B.l) originating from x moves outward from dSg and reaches a
bounded^(x) satisfying Vfe,^)) = k . The map x,() is the desired homeomor
phism.

Detailed Proof

Denote solutions of (B.l) with initial condition x° as sc(r,x0) . By standard
continuation results for differential equations [7], the properties of Wfe)
guarantee that for there exists a y>0 such that (B.1) has a unique Cl solution
s(r,x)forall* € [O.y] .

Lemma 7.2.1

We will show that for all x e dSg there exists F<«» such that
(i) s(t£) is C1 and exists on the time interval [O.F] .
(ii) V(s(Fur))=A:
(iii) 0<V(s(t£))<k for all t e [O.F)

Case 1:

Suppose for all x e dSg . s(tg) is Cl and uniquely defined on [0.«) . so (i) is
satisfied Jor aU i<«. Approach (ii) by contradiction. Given that the map
t-*V{s(t&)) is continuous, and V(s(0,x)) = k<k , if we suppose (ii) does not hold
for any 0<t<» , it follows that V(s(t,z))<k for all 0<£<« , which implies

s(t£)£Sk/Sg (B#2)
for all t e [0,«).

Then by the premise of proposition 7.2 there exists 6*>0 such that
! IW(s(*,x))j \>6 for all t e [0,«) . it follows that

t

V(s(f>£))-fc=/^V(S(r,£))!dr (B.3)
0

t

=/iiW(s(T^))!!2dTS:(52^
0

But clearly for t sufficiently large we have V(s(t,x.))>k which yields the
desired contradiction. Hence (ii) is satisfied. It is easily shown that a minimum
such t must exist, and by the continuity of t->V(s(t£)) (iii) is satisfied. •
(case 1)



-18-

Case 2:

Suppose for some x e dSg , (B.l) does have a unique Cl solution on [Q,tf) ,
but this solution cannot be uniquely continued on any interval [0,£/+/&], /?>0 .
Hence (i) holds for any0<t<tf . It follows that [7]

iims(r,x)

is not contained in any region where W(-) is bounded and Lipschitz continuous.
We establish (ii) by contradiction. Suppose for all t e [Q,tf) ,V(s(t£))<k .

Recall that -g{s(t&))= W{s(t,x)) . Using this fact we may bound | \s(tjQ\ | by
| |x | | plus the arc length ofs(tg) from 0to t , which may be computed as:

II«(*£)! U= ILSI \2+f<nSjTfll> ,W(S(r^))>dT
t

*\\2\\z+f\\VK*<j£i,\\zdT
o.

If we break the interval [Q,t] into the set of points for which
I IW(s(*,x))| |asi andthose for which | jW(s(t&))\ !>1 , we have :

t

| |ff(*£)| |a^| |x| \z+t+/| |W(st,x))| |22dr<s ||x ||8 +tf +A: (B.4)

foralU €[0,^).
Hence

ijmj l*(*JE)l \&tj +* + 112| |8

Here we must distinguish between the two types of reactive load represen
tation defined in (5). For the exponential representation or the polynomial
representation with gi°=0 , the boundedness of ||s(r^)(| as t-*tf implies
W(s(£,x))) remains bounded and Lipschitz continuous as t-*tf , which contrad
icts our observation at the start of case 2.

For the case of polynomial reactive load representations with qi°<0 (recall
our restriction in equation (5)) , we have the possibility of components ofW(x)
becoming unbounded as the corresponding component of \V\ goes to zero .
However, in this case V(s(*,x)) approaches «* , (see (A.6)), so we obtain a con
tradiction to V(s(tjz))<k for all t € [0,^) .. *

We conclude that for either load representation (ii) must hold for some
t<tf . Point (iii) follows from the same arguments employed for case 1 -
(lemma 7.2.1)

With lemma 7.2.1 established, we may define a function Tk('):dSg-R,. , k
satisfying the premise of proposition 7.2:

Tk(M) = smallest t>0 such that \{s(t£))=k

We will show that rk(-) is continuous, and therefore that x,(-) = s(rk(•),•) is
continuous .

Given x e dSg and e>0 , let £ e dSg satisfy | |x-x'| |<e . Without loss of
generality we may assume T*(x)<rfc(x') and let Tmin = Tk(x) . Then by con
tinuity ofs(t,) with respect to initial conditions and continuity ofW() , for any
6i>Q , there exists an appropriate £ such that the assumption of | l.x-x'1 \<s
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implies

11 w(*(«)) 118-1 fw(* («')) 112|«*i
for ail <"e [0,7^].

This implies

/ I|VV(S(«))| |8-| |W(s(£x'))l ^d^S^Tmin

But

1 mlw

f\\W(Ht£,)\\zdt =k-k
o

and

*-* = / l|WM<\x'))l!2^
o

=/UW(s(M'))llad<-+ / \\W(s({£<)) \\*d{
0 'mln

which implies that

*tnin

By the definition of rk() , we have sft\x') e 5fc for all f € [7,min.TJb(x')] .
Therefore | |W(sft\x')) 1|*fcd* for all f e [^.^(x')] . where * is as described in
(B.3).

We conclude that

*r ?W* f (£') 11 W(s(££•)) IIzdt
1 mAit

^^\rh(s:)-Tmia\^69\Tk(g:)'Tt(£,\
kBy construction T^s-^-, so it follows that

|rfc(x')-rA(x)|̂ ^-(5l
for allx' such that | |x'-x | | ^e . Hence rk() is continuous on dSg .

As indicated previously, we then have xf(): dSg-*dSk continous by observ
ing ar/(x) =s(Tfc(x),x) . To show that the inverse of xf() is continuous , we
need only observe that it is obtained by running the system (B.1) backwards in
time from points on dSk and repeating the preceeding construction . That x/(-)
is one to one follows from the uniqueness of the solutions of the differential
equation (B.l). Finally, to show that xf(dSg) = dSk , it is easily established that
for allx € dSk . S/"1^) is well defined and contained in dSg .
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Proof of Lemma 7.4

By contradiction. Given x° e Sk , suppose for all 7*0 there exists k>0 such
that for all e>0 , we can find an s , 0<£<£ satisfying se(7t^°) ft Sg .

Now, by the results of [13] , sc(r,x0) must converge uniformly to sD(t,x0) on
[0,7j as e-*0+ . So if we can find £ arbitrarily close to zero such that sE(7\x°) ft
Sg , it follows that s0(T^.°) ft interior ofSg . Since this reasoning applies for all
T<°° , we'may conclude that the positive limit set [21] of s0(t&°) does not inter
sect the interior of Sg .

The remainder of this proof follows the reasoning of lemma 5.2.81 of [21].
We have shown that *V(s0(\x0)) is a nonincreasing function bounded below by
zero, therefore it has a definite limit as t -♦« , which we denote c . Let L be the
positive limit set of s0(-,x0) . The fact that V(s0(*,*0))-»c as t -•« implies V(x)=c
for all x € L . But the positive limit set must be invariant with respect to D , so
,V(x)=0forallx eL.

Now, LO interior of Sg = <f> , so in particular x? £ L . We can easily show
that the largest invariant set of D for which V(x) = 0 is the point x8 , yielding
the desired contradiction . •
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