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ABSTRACT

Transient stability anslysis of a power system is concerned

with the system's ability to remain in synchronism following a dis

turbance. In utility planning, transient stability is studied by

numerical simulation. The long CPU run times for simulation pre

clude their use for on line security analysis. Interest has therefore

shifted toward the Lyapunov direct method of stability analysis.

This paper provides a critical review of research on direct methods

since 1970.

Considerable progress has been made on both theoretical pro

perties of energy functions and on criteria suitable for on-line

implementation. Current theory provides a satisfactory treatment

of voltage dependent reactive power demand, transfer conduc

tances, and flux decay. However, it can not incorporate the exciter

control loop which can create oscillations. Proposed on-line cri

teria appear to work very well on sample examples; but, they still

lack rigorous justification.

Finally, recent work has shown that power systems can exhibit

chaotic behavior. This surprising fact demonstrates that our

understanding of the dynamics of power systems remains incom

plete.

1 This research was sponsored by DOE Contracts DE-AC01-82-CE76221 and NSF Grant ECS-
6116213
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1. The Transient Stability Problem

1.1. Introduction

Large disturbances occur frequently in power systems. Examples are sudden

change in bus, load, or generation powers, or in the transmission system

configuration due to faults and line switching. In the planning and operation of a

power system, one is concerned with the ability of the system to serve load

demand in the presence of disturbances. In the planning context this is called

reliability, and in the operation context this is called security [58]. As tradi

tional stringent reliability criteria for planning analysis become more and more

difficult to meet due to economic and other considerations, the second line of

defense, on-line security analysis, becomes ever more important to guarantee

that quality of service to consumers is not unduly affected.

Immediately after a disturbance, one is concerned with the system's ability

to remain in synchronism, that is to remain stable. This is called transient sta

bility. Amathematical formulation of the problem of transient stability analysis

is presented in Section 1.2. If the system can withstand the initial impact of the

disturbance, one then is concerned with the power balance between generation

and load demand in the network. This is the problem of steady-state load flow
analysis. Both transient stability analyses and steady-state load flow studies are

performed extensively in today's utility planning reliability analysis. However,

only steady-state load flow is currently conducted in on-line security analysis
[50].

Transient stability analysis is routinely performed in utility system plan
ning. The industry standard for transient stability performance of a system is
the ability to withstand any "possible but improbable" three-phase fault close to

a generator with stuck breaker [21]. The method used for analysis is time-

domain numerical simulation [49]. Computer programs that can handle two

thousand buses and three hundred generators with detailed models are avail

able. Typically ten to forty runs may be required for a plan. The CPU time for a

typical run is around 15 minutes. Since the time interval of interest for tran

sient stability analysis ranges from a few milliseconds to a few seconds, simula

tion is infeasible for on-line security analysis. An alternative approach is the

(Lyapunov) direct method.



In Section 2 the direct method is introduced in the context of the classical

model of a power system. In that section we point out the shortcomings of this

model that arise from the simplifications made in regard to modeling transmis

sion lines, loads, and generator dynamics.

Section 3 is devoted to three recent approaches designed to overcome limi

tations of the classical model that are due to its neglect of transfer conduc

tances and flux decay. The Lyapunov functions proposed in these appraches also

offer the advantage that they preserve network structure, thereby permitting a

more precise accounting of the shifts in energy among system components dur

ing a transient.

Section 4 is devoted to approximations proposed to make the direct

methods implementable on-line. These approximations are inspired by the

theoretical advances discussed in Section 3. However, they are justified

exclusively on the basis of relatively few and simple simulations.

Section 5 is concerned with two recent studies that illuminate certain com

plexities of the transient stability problem without being directly motiviated by

it. One study shows that the introduction of exciter control can create an oscil

lation that reduces the stabity region. The second study shows that the classical

model can exhibit chaotic behavior.

Finally, Section 6 summarizes current research bottlenecks and sugges

tions for future research directions.

This paper places more emphasis on theoretical advances since 1970. Prac

tical considerations and experience are discussed and reported in [35].

1.2. A mathematical formulation

As stated before, transient stability analysis is concerned with the system's abil

ity to remain in synchronism following a major disturbance such as short-circuit

caused by lightning. Protective relays are placed strategically throughout the

system to detect faults and to trigger the opening of circuit breakers to isolate

the fault. Therefore, the power system can be considered as going through

changes in configuration in three stages, from pre-fault, faulted, to post-fault

systems. The pre-fault system is in a stable steady state. The fault occurs (e.g.,

a short circuit) and the system is then in the faulted condition before it is

cleared by the protective system operation. The transient stability problem is

the study of the stability of the post-fault system.
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Mathematically the problem can be stated as follows.1 We consider a

dynamical system that can be described by a set of three differential equations:

±(t) = //(x(0). -°° < t < tF (1.U)

x(t) = fF{x{t)), tF rzt <tP (1.1F)

x(t)=f(x(t)), tP*t <oo. (1.1)

The underlying idea is as follows. x(t) is the vector of state variables of the sys

tem at time t. At some time tp the system undergoes a fault, that is, there is a

structural change. This is represented by the change in the dynamics governing

the system behavior from // to fp. Prior to the fault we have the pre-fault or

initial dynamics, //.

The fault duration is confined to the time interval [tF, tP). During this

interval the system is governed by the faulted dynamics, fp. At time tP the

fault is cleared and the system is henceforth governed by the post-fault dynam
ics / .2

In the pre-fault regime the system is at a known stable equilibrium, say xj.

This, in effect, eliminates the need to discuss (1. II). We have instead,

x(t) = fF(x(t)), tF<t < tPt x(tp) =xi (1.1F)

x(t) =/(*(*)). tP<t <co. (L1)

At the end of the fault period the state of the system is

xP := $F(xJt tp-tp) (1.2)

where $F(x, t) is the state of the faulted system (l.lF) at time t if it is in state
x at time 0.

Next, assume that the post-fault system (1.1) has a stable equilibrium xs.
That is / (xs) = 0, and xs is stable.3

The fundamental problem of transient stability can now be posed. Starting
in the post fault initial state, xP, will the post fault system converge to the
equilibrium xsl More precisely, will

lim $(xPl t) = xs ? (1.3)
t-*ea

1 Thisdiscussion is motivated by Pai [33].
8 It may be the case that the clearing of the fault leads to a restoration of the pre-fault

system. In that case / = //. However this is not necessary.
3 By stable we mean that all eigenvalues of the Jacobian matrix df/dx (xs) have

strictly negative real parts. This guarantees that Xs is asymptotically stable [32].
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Here §(x, t) is the state of the post fault system (l.l) at time t if its state at
time 0 is x.

There is a region of initial conditions in the state space from which trajec

tories converge to xs. This is the attractor or the region of stability of xs,
denoted A(xs). By definition,

A(xs) := \x | iim $(x, t)-xsi. (1.4)
t-fOO

The question (1.3) can now be reformulated as: Does xP € A(x3)?

This question immediately leads to two fundamental tasks at the level of

theory and computation. From the general theory of differential equations we

know that the stability region A(xs) is an open subset of the state space. Thus,

from a topological viewpoint, the task is one of estimating the boundary of the

stability region, dA(xa). More precisely, the theoretical task is

To characterize dA(xs) in terms of Us geometric properties.

Suppose one has an adequate mathematical characterization of A(xs) and

dA(xs). The stability problem is to determine whether or not the post fault ini

tial state xp GA(xs). To be able to do this on-line requires an effective execution

of two computational tasks. The first is

To compute the post-fault initial state, xp*

Recall that xP = ^F(xt tP—tF). Now, in practice, the switching time or duration

of the fault, namely, r := tp—tF, is used as a variable in stability analysis. There

fore, one must be able to estimate the faulted trajectory,

xP(r) := M*/.t), (1.5)

by integration of the faulted dynamics (1.1F). This important task will not be

discussed further below. The function $F is analyzed in [25].

The second computational task is more central to the problem discussed

here. Suppose that xj = xP(0) G A(xs), that is, suppose the pre-fault equilibrium

is in the stability region.5 See Figure 1. As the fault proceeds, the corresponding

faulted trajectory xp{r) may eventually leave the stability region. Suppose this

happens at time Tc, so that

4 While it is reasonable to suppose that the pre-fault initial state, Xj, is known, we can not
suppose the same for Xp. This is because the faulted system dynamics are not known in ad
vance since we don't know which of the many possible faults will occur.

5 This is certainly the case if the pre-fault and post-fault systems are the same. In that
case Xj - Xs
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xP(r) G A(xs), t < rc, and xP(rc) g dA(xs). (1.6)

[FIGURE 1 NEAR HERE]

The time Tc is called the critical clearing time. If the fault duration tp—tF < Tc,

then transient stability is maintained; if it exceeds the critical clearing time, the

system will undergo transient instability.

Thus the second task is

To formulate on-line criteria to determine stability, i.e., to evaluate (1.6).

The fault duration r := tp—tF is determined by the relay setting. In system

operation, t is a fixed parameter. But in system planning, stability analysis is

used to help select relay settings, hence r is treated as a variable. Since the

result of stability analysis is binary —stable or not —which does not give much

information, it is conventional in power systems practice to use the critical

clearing time as a measure of stability. Note, however, that this is a very crude

measure of the stability region.

2. Transient Stability For The Classical Model

In this section we study the boundary of the stability region and stability criteria

for the classical model. Shortcomings due to modeling simplifications are also

discussed.

2.1. The classical model

For an n generator system, in the classical model, the dynamics of the ith gen
erator is governed by the equations:

<*i = «i. (2.1a)

Mi i* - P? - A «i - PI (2.1b)

P? =E* Ga + 21 Ei Ej Ytj cos((5i-dj-pi;). (2.lc)

Equations (2.1a), (2.1b) represent rotor mechanics: 6i, fy are the angle and

speed of the ith rotor; Mi and A are its inertia and damping constants; Pi1 is

the constant mechnical input power and Pf is the electric output power. Pf is

determined by the electrical network. The ith generator is modeled as a voltage



source6 of constant magnitude Ei and phase (5i( driving (through a transient
reactance) an electric network consisting of transmission lines and loads,

modeled as constant impedances. Viewed as a n-port driven by the voltage

sources Ei L6i, this network is described by the reduced complex admittance

matrix Y with coefficients Yy Op^. See Figure 2. The real, positive, diagonal

terms, Gu, of Y are separated out as indicated. Equation (2.1c) gives the real

power delivered to the electric network by the ith generator.

[FIGURE 2 NEAR HERE]

In the version above, node n +1 is an infinite bus, with En+y = 1 and

<5n+1 a 0. Thus the voltage at node n+1 serves as a synchronous reference.7

Equations (2.1) represent the post fault system. It is the counterpart of

(1.1) above. There is a similar equation for the faulted system.

Suppose (2.1) has a stable equilibrium, (<5S, us) - (6s . . <5£, 0. . . 0). (This is

the counterpart of xs in Section 1.2.) The first task is to estimate its stability

region. To use the Lyapunov direct method for this, it is necessary to assume

that the transfer conductances are zero, i.e.,

<Pij = %n. alU* j. (2.2)

Using (2.2) in (2.1c), substituting into (2.1b), and denoting P* := P? - E? Gu,
yields a version of the classical model,

6i = «i, (2.3a)

Mi Qt =Pi - A«i - 1£ Ei Ei Yi5 sin^-fy). (2.3b)

2.2. The boundary of the stability region

Theorem 1 characterizes the boundary of the stability region in terms of stable

manifolds of the equilibrium points that lie on the boundary.

8 This is the voltage at a fictious 'internal' generator bus or node. The generator terminal
voltage V^ 0&i is after the transient reactance. See Figure 2.

7 Jin the absence of an infinite bus one may use the so-called center of angle as reference.
This creates no essential difference [34].
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For convenience, let x := (6, cj) denote the state of the power system.

Theorem 1

Let xs denote a post fault stable equilibrium, and let A(xs) and dA(xs) denote

the corresponding region of stability and its boundary. Let Xi,i = 1, 2, . . be the

equilibria lying on dA(xs). Let Wf (W?) denote the stable (unstable) manifold8 of

Xi. Then the x, are unstable equilibria, and

dA(xs) c \j Wl (2.4)
i

Moreover, if W* f) Wf = 0, for x^ * Xj, then

dA(xs) = U Wl (2.5)
t

This is a "folk theorem". For example, Pai [34] seems to regard it as self-

evident. Jocic [20] cites Shahshahani [47] as a reference. Tsolas, Arapostathis

and Varaiya [52] provide a complete proof. Their proof utilizes the energy func

tion developed below. The condition that W$ p, Wf - (ft holds 'generically'; hence

(2.5) is true for almost all parameter values. See [45] for a counterexample for
the simplest case, n = 1.

2.3. The direct method

Direct methods for transient stability analysis of power systems are based on

Lyapunov theory. The early work on Lyapunov theory is presented in [19]. Sub

sequent research has concentrated on extending the quadratic Lyapunov func

tions designed for linear systems to systems involving certain class of memory-

less nonlinearities. The work of Lure, Popov and others is presented in [54].

There are attempts to extend these methods to interconnected systems either

through vector Lyapunov functions or through aggregation of Lyapunov func

tions for individual subsystems [29, 48]. These approaches have, however, proved
to be conservative.

Although he did not employ the term, the first use of Lyapunov functions in

power systems transient stability analysis can be traced to Aylett [6]. The first

explicit use of Lyapunov functions in power systems, however, is due to Gless

[18], El-Abiad and Nagappan [14]. Amathematically rigorous treatment was pro
vided by Willems [56,57] in 1970. Since that date, scores of technical papers

8 Wf ( W?) is the set of all initial states from whichtrajectories converge to Xj as t -» co
(*-»-oo).
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have appeared in the literature. That work is systematically presented in Pai

[34], and in survey papers by Fouad [16] and Ribbens-Paveila [37], so our sum
mary is very brief.

Let (6s, a3) be a stable post fault equilibrium. Define the energy function^
V(6, cS) of the state

n*. «) := J* £ ^ of -%Pi (6i-6f)
i=l i=l

7l±l

~ £ Bk Ej Yij [cos(6i-63) - cos(<5?-<5/)]. (2.6)

At the post fault equilibrium V(68, u3) = 0.. Differentiating V(6, o) along the

trajectories of (2.3) gives,

|-K(a..)=§p+§^ =-|A^0. (2.7)
The inequality (2.7) shows that V qualifies for use as a Lyapunov function since

V(6(t), u(t)) must decline along the post fault trajectory. This observation is
the basis of the following fundamental result.

Theorem 2

Let v > 0 be a constant such that on the boundary of the stability region one has

V(6, o) < v. Then the connected component containing (6s, o9) of the set

P(v):=\(6,o) | V(6,u)<vl (2.8)

is inside the stability region.

Two observations need to be made. First, Theorem 2 is not an immediate

consequence of general Lyapunov theory since V(6, o>) does not become

unbounded as 16\ -»co. For a complete proof see [52].

Second, Theorem 2 provides an estimate of the stability region. To get the

best estimate (the largest R(v)) one wants to choose v in (2.8) as large as possi
ble. The largest value, vcr, is

vcr = min \V(6, a) \ (6, w) e dA(6s, cj3)].

From (2.4) we deduce that

v„ = miniK(<58,Qfl)j (2.9)

9 The first term in (2.6) is in the form of kinetic energy, the remaining terms can be
identified as potential energy. Hence Vis called the energy function.
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where the minimization is over all the unstable equilibrium points (uep) (6*, o8)
e dA(6s, <ys). The uep that achieves the minimum in (2.9) is called the critical
uep. See Figure 3.

[FIGURE 3 NEAR HERE]

2.4. Stability criteria

Theorem 2 suggests a stability criterion according to the following three step
procedure.

Step 1

Calculate the uep lying on the boundary dA(6s, cf). Calculate vcr by (2.9).

Step 2

Evaluate V along the faulted trajectory (<5(r), o(r)). If V(6(r), w(r)) < vcr, then
r < Tc, and the system is stable.

Step 3

The value rcr of r for which V(6(r), o(t)) = vcr provides an estimate of the true
critical clearing time Tq.

The main computational difficulty in implementing this procedure is the

calculation of the uep in Step 1. Observe that (6e, we) is an equilibrium of (2.3)
if and only if o9 =0 and

Pi = S %. Ej Yij sin(6?-6$), i = 1, . . , n.
3 *i

These are essentially the real power flow equations and determining all the solu
tions is difficult, see Section 4.

In the second place, it is obvious from Figure 3 that the •/?(!>„.) is an

underestimate of the stability region. Put differently, the boundary of the sta

bility region, 9^4(<5S, ws), is poorly approximated by the surface of constant
energy \ V(6, w) = v„ \. For the same reason rcr is an underestimate of the true
critical clearing time rc.

A much improved estimate of rc can be obtained. From Theorem 1 we know

that the boundary of the stability region is composed of the stable manifolds of

the uep that lie on the boundary. For instance, in Figure 3, dA(6s, ws) =

PJ^(uepl) \J Ws(uep2). Also uep3 is the critical uep, and so vcr < 7(uepi) for i =

1, 2. Now consider the faulted trajectory (6(t), w(r)) as shown. It leaves the

L 0 O
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stability region by exiting the boundary through W3(uep2). Hence an estimate of

the critical time is given by rco where

V(6(tco ), q(tco)) = F(uep2) =: vco. (2.10)

Since vco > vcr, this estimate will be superior to Tcr obtained previously. The

equilibrium uep2 is called the controlling uep correponding to the faulted tra

jectory. Note that the controlling uep depends on the faulted trajectory, but the

critical uep does not.

The significance of the controlling uep seems to have been observed first by

Kakimoto, Ohsawa and Hayashi [23] in 1978. It forms the basis of most on-line

stability criteria proposed since then. In general these criteria conform to the

following two step procedure.

Step 1

From the faulted trajectory (6(t), o(t)) estimate the controlling uep (6C0, uco).
Calculate^ = V(6C0, oco).

Step 2

Thevalue tco given by (2.10) gives an estimate of the critical clearing time rc.

Criteria proposed by various researchers differ in the way they estimate the
critical and controlling uep [4,5,38]. See Section 4.

2.5. limitations of the classical model

The classical model (2.3) makes unwarranted simplifications in its formulation of

the transmission lines and loads on the one hand, and of the generators on the
other [35].

The load is viewed as a constant impedance, and the network of transmis

sion lines and loads is then reduced to an n-port as seen from the generator
internal buses. This has two shortcomings:

(1) Itprecludes consideration of reactive power demand and voltage variation
at load buses;

(2) Reduction of the network leads to loss of network topology and hence pre
cludes study of transient energy shifts among different components of the
network.

In order to obtain the crucial inequality (2.7) it is necessary to ignore
transfer conductances in the reduced admittance matrix, Le., one assumes that

9\j -Vi^ (see (2.2)). The transfer conductance, Yy cos y>y, arises from the load
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impedances and from conductances in the transmission lines. The latter can

often be neglected.10 However, it is impermissible to neglect the transfer con
ductance arising from load impedances. The difficulty is compounded by the fact
that no one has estimated the magnitude and direction of the bias due to

neglect of transfer conductances.11 Thus the classical model has an additional

shortcoming:

(3) Neglect of transfer conductances leads to a bias in stability estimates of
unknown magnitude and direction.

With respect to generator models the principal deficiency is:

(4) Neglect of flux decay and exciter control may be unacceptable
simplifications.

3. Structure Preserving Energy Functions

Three models have recently been proposed to overcome some of the shortcom

ings of the classical model (2.3) and its associated energy function (2.6). The
principle breakthrough has been in their treatment of loads. The load can be

modeled more realistically and is no longer seen as a constant impedance, the

network is not reduced, and so the identity of the load nodes is not destroyed.

Because the network structure is maintained the associated Lyapunov functions

are called 'structure preserving' or 'topological* energy functions. The modeling

of generator dynamics is improved by inclusion of flux decay. However, the

exciter control loop is still absent from these models.

3.1. The Bergen-Hill model

In this model [9], at each load node the voltage is assumed constant and there is

a demand for real power equal to a constant plus an amount proportional to the

instantaneous frequency deviation at the node.

As in the classical model, nodes 1, . . , n are generator internal buses, node

7H-1 is the infinite bus, viewed as voltage sources, Ei ^.(5<. There are m load

10 The total loss in a power system, including machines, transmission lines, transformers,
and distribution system, is about 7 per cent. Transfer conductances are often permitted by
resorting to faulted trajectory-dependent energy function, see, e.g. [4, 34]. However, this
procedure does not yield Lyapunovfunctions and its use for stability analysis is suspect.

11 It is believed that the presence of transfer conductances should increase stability, i.e.,
that neglecting them leads to conservative estimates. This is not always true. It is easy to
give examples in which transfer conductances reduce the stability region. See, for example,
[1.30].

D C C
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nodes labeled n+2, . . , n+m + 1. At the kth load node there is a demand for real

power, Pk+DjcOk, where P$ and Dk > 0 are constants and uk is the instantaneous

frequency deviation. This power is delivered at the voltage Vk Ly>k, with Vk fixed.

Thus ok = <pk.

The 771 load nodes include the generator terminal buses in addition to the

'regular' load nodes. Each generator's terminal bus is connected to its internal

bus by its transient reactance which is treated as a lossless transmission line.

All the transmission lines are assumed lossless.12 Let Y = jB be the node admit

tance matrix seen from the n+m +1 nodes. For i ? J, ffy ^ 0 denote the sus-
ceptance of the line connecting nodes i and j.

Below indices i, j stand for generator nodes and the infinite bus, and k, I

stand for load nodes. In place of the classical model (2.3) one gets,

6i =wi, i = 1, . . ,71, (3.1a)

71 + 1

MiOi = Pi- DiUi - 2 Ei Ej Bij sin(6\-5y)
3*i

n+m+1

- £ Ei Vt Bu sin(6i-(pi), i = 1, . . , n, (3.1b)
l=n+2

0=Pi - Dk<pk - nf Vk E3- Bki sinfo-*,)
n+m + 1

- 2 Vk Vi Bki sin(<pk-<pi), k =n+2, . . , n+m +1. (3.1c)

Equation (3.1) gives the dynamics for the (2n+m)-dimensional state

(6x . . 6n, Qx . . an, <pn+2 • • Pn+m+i)- Equation (3.1c) gives the real power balance
at the load nodes.13

Define the function

*,(«. u, <?):=%£ Mi of - t Pi «i - "+2+1 Pt n
i=l i=l *=n+2

t+1-1C EiEjBij cos(6i-63)
n + 1 n+m + 1

" S E ^k Vk B* cos(6i-<pk)
i=l fc=n+2

18 This assumptionis much morereasonable than (2.2).
13 Real power injected into the network carries, by convention, a positive sign. Therefore,

Pi in (3.1b) is usually positive, and Pk in (3.1o) isusually negative.
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n+m+l

- S Vk Vt Bu cosfe-^)- (3.2)
k<l

Let ((5s, of, <p3) be a stable post fault equilibrium. Define the energy function

V(6, u. tp) := ^((5, «, 9?) - ^(5*, o>», ^). (3.3)

Then 7((5S, <ys, <pa) = 0. Differentiating 7(5, o, <p) along the trajectories of (3.1)
gives, after some manipulation,

This is the counterpart of the crucial inequality (2.7). With it one can prove the

analogs of Theorems 1 and 2 as in [52], and propose stability criteria based

either on the critical uep or the controlling uep.

The structure preserving energy function (3.3) overcomes the defect due to

neglect of transfer conductances. However, the assumption of constant voltage

magnitudes and the neglect of reactive power demand at the load nodes are still

unrealistic. These are removed in the next two models.

3.2. The Narasimhamurthi-Musavi model

In this model [31], at the kth load node there is a demand for real power equal

to Pk+Dkyk as before. In addition, there is a demand for reactive power Qk(Vk)

given as a function of the voltage magnitude at that load. The voltage magnitude

Vk is not fixed. The machine model is as before. Using the same notation as

above leads to a model consisting of equations (3.1a-c), and (3. Id):

QftVb) =-*£ Vk Ei Bid cosfe-A)
i=l

n+m + 1

- E Vk Vi Bki cos(pfc-pi), A: = n+2, . . , n+m +1. (3.1d)
J=n+3

This equation says that the reactive power flows into node k must sum to zero, a

consequence of Kirchhoff's laws.

The introduction of the algebraic 'constraint' (3.Id) raises the question

about defining the solutions of this model. It is assumed that the m equations

(3. Id) can be solved continuously for the m voltage magnitudes Vn+2, . . , ^i+m-n

in terms of 6 and (p. One substitues these values into (3.1a-c) to obtain a

differential equation involving only the state vector (6, w, <p). It is also possible

to define a solution via singular perturbation, see [12].

KC
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Define the function

n+m+1 „ n+m +1 * Q$(y)
W2(6. fi>. p. V) := Wx(6, o,<p)-% £ tf Btt - 2 / "^jL^.

*=n+2 Jfe=n+2 I v

where FKx is as in (3.2). Let (6s, o3, ps, Vs) be a stable equilibrium of (3.1a-d).
Define the energy function

V(6, «.?):= Wz(6, «, <p, V) - Wz(63, a3,?3,**). (3.4)

Here V= (J^+2. . • , Ki+m+i) is a function of (6, y>) given implicitly by (3.1d).
Differentiating (3.4) along the trajectories of (3.1a-d) gives,

d 0Wo • QWo 8Wp • A „ n+m +1

5TK= ~d* +*T* +-W*= -SA-f - .,2,****°- 0.5)
Once again one can obtain the analogs of Theorems 1 and 2 following the argu
ment in [52].

3.3 The Tsolas-Arapostathis-Varaiya model

So far, the generator internal voltage magnitudes, the Ei, were assumed fixed.

This means that the flux linkages (which are proportional to Ei) are constant

during the transient following a disturbance. The model in [52] permits flux
decay.14

To describe that model it is necessary to identify explicitly the generator

terminal nodes. (Above, those nodes were included in the m load nodes.) In the
rest of this section i, j = 1, . . , n will be used for the generator internal and ter

minal nodes, and A:, I = n+2, . . , n+m +1 will denote regular load nodes.

The ith generator's terminal voltage is denoted I£ £#*, and its internal vol

tage is denoted E'iq L6i. The latter is the quadrature axis voltage. (It replaces

Ei L6i above.) The infinite bus voltage is Vn+1 £tfn+1, Vn¥l = 1, tfn+1 = 0. The
model for generator i is

&i=Ui, (3.6a)

Mi 6>i = Pi- A «c " Pi* (3.6b)

T'** i'gi =- ^r-^'iq +^T*'** Vt cos(6i^i) +En, (3.6c)
x di x di

_ E\ Vt sin(a<-tfi) , V? sinfrfo-flt)] (s'g-afr) .
p% *i te^r* ! (a6d)

14 For an earlier attempt to incoporate flux decay see [24].
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Equations (3.6a), (3.6b) give the rotor dynamics. Equation (3.6c) is the flux
decay equation for a one-axis model. The electrical power P* injected into the

network is given by (3.6d). All the terms in these equations that have not been

defined previously such as 7"^, X&, etc. are generator constants. For details

see [52].

The model is completed by the power flow equations at the generator termi

nal and load nodes. The real power flow equations are

Pt =t? Vi VjBij sinCtfi-tfy) +n+2+1 Vt VtBu sinfa-p,). i =1. . . .n. (3.7a)
3 *i lsn+2

0=Pi - fy <pk - U£l Vk Vj Bkj ainfab-fy)
3-1

n+m + 1

- 2 Vk Vi Bki sin(pfc-pi), k = n+2, . . , n+m+1. (3.7b)
l *k

The reactive power flow equations are

Q_ *'«+** yP. _ E'j, Vj cosfa-fr) ff cos[2(tft-fr)](«'«-»*)
~ Zx^X'^ i X'M Zx^X'a

-S ViVjBy cosfa-tf,) -n4§+ ViViBki cosfa-p,), i =1 ™. (3.8a)
;=1 l=n+2

r\Xl n+m+1
• Qi(Vk) =-2 VkVj cosfo-ty) - £ Vk Vi cos(^-^).

j-l t=n+2

k = n+2, ... n+m +1. (3.8b)

It is assumed that the algebraic equations can be solved for V and # in

terms of <5, <p, and E'q. Substitution into (3.6a-c), (3.7b) gives a differential equa
tion in the state vector (6, u, <p, E'q).

Define the function

n n n+m + 1

W3(6,o,(p,E'q,V,^):=^'£lMiWiz-^lPi6i- £ Pg &,
i=l i=l fc=n+2

n+1 n + 1 n+m + 1

- 2 Vi Vj Bi5 cos&i-^j) - £ £ K *i 3* cosfa-**)

n+m +1 n+m +1 n+m +1 * Ou(v)
- 2 Vk ViBkicos(<pk-<Pi)-% £ Jiffl*- 2 f :±7TLdv

k<l Jb=n+2 fc=n+2 1 v
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+ffi E% *« f EJlIp.. (3.9)

The last two terms are contributed by the flux decay equation (3.6c). If we

assume x'^ = x^, then the expression simplifies as in [10].

Let (6s, o3,<p8, £"|, >*,tfs) be a stable equilibrium and define the energy
function

. V(6, u, <p, £",):= W3(6, «, <p, E'q, V, tf) - W3(6S, u3,?3, E'3, V3,*3). (3.10)

Then, along the trajectories of (3.6)-(3.8) one has

T*>i E%^0. (3.11)

dt 66* 3w a^ a#'g *

= - E A «f
i=l

n+m+1 „ n+l

fc=n+2 i=li=l ^di x di

The additional term in (3.11) compared with (3.5) equals the dissipation in the
field winding [52]. The inequality (3.11) can be used to prove the analogs of
Theorems 1 and 2.

The energy function (3.10) gives a qualitative improvement over the classi

cal function (2.6): it does not neglect transfer conductances due to load

impedance, it permits voltage dependent reactive power demand, and it incor

porates flux decay. Theorems 1 and 2 indicate how these energy functions can

be used to derive stability criteria.

Second, the improved energy functions are more difficult to compute than

the classical function. To appreciate this, note that V in (3.10) is defined in

terms of the post fault system, but it must be evaluated along the faulted tra

jectory. Suppose the faulted trajectory (6(t), u(t), <p(t), E'q(t), V(t), V(t)) is
obtained by numerical integration. To evaluate V at each step we must calcu
late

WQ(6(t), u(t), <p(t), E\(t), VP(t), M*))>

where the post fault values VP(t) and VP(t) are obtained in terms of 6(t), <p(t)
andE'q(t) by solving the algebraic equations (3.6d), (3.7a), and (3.8a-b).

4. On-Line Stability Criteria

In this section we review the main ideas underlying proposals for on-line imple
mentation of stability criteria based on direct methods.
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4.1. Approximating uep

In Section 2.4 we saw how Theorems 1 and 2 relate energy functions to transient

stability. To formulate on-line stability criteria requires, in addition, the

specification of this relation in a computable form. The criteria entail a com

parison of the energy along the faulted trajectory with the energy at the critical

or controlling uep. Hence the first step is to calculate the relevant uep. That

depends on the power system model. In this section we consider the classical

model.

From (2.3) we note that (6, o) is an equilibrium if and only if o = 0 and

Pi = 2 Ei Ej Yi}- sm(6i-6j), i = 1 n. (4.1)

These are n equations in the n variables 6i (recall that c5n+1 = 0). Since the

equations are 277-periodic in 8i we may limit the search for equilibria to the

region15

-7T < 6i <: 7T, i = 1, . . , n. (4.2)

Consider the task of finding the critical uep. By definition (2.9), it is the

equilibrium on the stability boundary with the least energy. Thus to determine

the critical uep one must first find all the uep. To appreciate the complexity of

that problem take the special-case P± = 0, all i, so that (4.1) simplifies to

n+1

0 = 2 ^ Ej Yij sin(6i-6j), i = 1, . . , n. (4.3)

Each of the 2n vectors 6 with (5t = 0 or 77 satisfies (4.3). It is also true that 6s = 0

is stable while the 2n-l other equilibria are unstable, see [3].

On the other hand, for n = 1, (4.1) reduces to

Pi = Ex Ez Yxz sin^.

For \P\\ <ExEzYiZ this has exactly two equilibria 6s and 6s with 6s stable, 6°

unstable and 6e+63 = n or —it.

Based on these two special cases it has been conjectured that in general

(4.2) possesses a unique stable solution, <5S, and 2n—1 uep <58 near the vectors 5°

= (<5f. • • . 6%) of the form (5f = 6? or 6?+6% = n or -77. This suggests the following

18 This is not strictly legitimate unless the intersection of the stability region with the hy-
perplane U - 0 is contained in the region (4.2). That is true for n = 1; for n > 1 it is plausi
ble but unproved. Note that the energy function V is not periodic in <5$.
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on-line criterion.

Step 1

Use Mewton-Raphson or any other appropriate scheme to solve (4.1) for the uep

6e starting from each of the 2n-l approximate uep 6a as initial points.

Step 3

For each of the 2n-l uep 6° obtained this way evaluate V(69). The uep with

minimum V is an estimate of the critical uep.

For n S; 10 say, Step 1 becomes computationally prohibitive, and one must

reduce the search. This might be done as follows. To each approximate uep one

can associate a 'mode of instability'. For example, if <5° =

(n-63, t7-<5f, 6§, . . , <5£), we can say that 6a corresonds to an instability due to
the acceleration of generators 1 and 2 while generators 3, . . , n remain in syn

chronism with the infinite bus. Researchers have noted that in most simulations

transient instability occurs when a single generator accelerates or 'separates'

from the rest of the system.16 In terms of Theorem 1 this means that the faulted

trajectory leaves the stability region through the stable manifold of a uep near

one of the n approximate uep (5°* = (<5f, . . , 77-df, . . , <5n). Hence in Step 1
above it is enough to consider the n starting points <5al, . . , 6an. A further

approximation would be to assume that the energy at the approximate uep and

the corresponding true uep are sufficiently close [36]. This would avoid Step 1

altogether, and one would estimate the critical energy by

vcr = min {V(tf* 0) I i = 1 n]. (4.4)

It seems that the estimate given by (4.4) is conservative for large n. To get
a better estimate one should study the faulted trajectory to determine the con

trolling uep. According to the preceding paragraph the controlling uep is likely

to be near one of the approximate uep 6al, . . , 6m. Ribbens-Pavella and her col

leagues [38-41] have argued that the 'correct' approximate uep can be obtained
as follows. First, find the generator i that has the fastest acceleration immedi

ately after the fault starts. Second, calculate the time 7* when the energy along
the faulted trajectory (6(r), w(t)) reaches the energy equal to' that of the

18 For the structure preserving energy functions (3.3) and (3.4), other rules have been
proposed to reduce the number of approximate uep that need to be considered. These rules
use the network structure to predict the set ofgenerators most likelyto separate from the
rest of the system [9,31]. However, the rules have not been validated theoretically or
through simulation.
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approximate uep 6ai,

V(6(Ti), u(n)) = 7(<5* 0).

Third, find the generator; that has the fastest acceleration at time Ti. Then 6aj
is the correct approximate uep; and the controlling uep is estimated to be the

one near 6ai. That estimate can be obtained by say a Newton-Raphson scheme
to solve (4.3) starting at 6ai [40]. Aslightly different choice for 6aj' is given in
[41].

The proposals discussed above can be implemented on-line. Unfortunately,

they all lack theoretical justification. To illustrate the gap between our theoreti

cal understanding and these proposals consider the belief that (4.3) has 2n solu

tions. Bailleul and Byrnes [7] give an example that has a continuum of solu

tions. Their best provable estimate is that for almost all values of the "parame

ters' EiEj Yij, the number of solutions is between 271"1 and 22n. Moreover, as the

Pi in (4.1) change, solutions merge and new solutions are created as discussed

in [3]. Another belief implicit in these proposals is that the post fault system
has a unique stable equilibrium. However, in [52] there is an example with two

stable equilibria. Also, [3] contains an example of (4.1) in which there is no

stable equilibrium but which does have an unstable equilibrium.

4.2. Approximating the stability boundary: PEBS

Another proposal has been made by Kakimoto et al [23] and more extensively

pursued by Athay et al [4,5]. The basic idea underlying the 'Potential Energy

Boundary Surface (PEBS)' goes back to the classical equal area criterion [2].

The energy function (2.6) can be decomposed as V(6, w) = Vjc(u) + Vp(6).

Vk(u>) := J£ 2-^<CJ<2 is the kinetic energy and Vp(6) is the potential energy. Then
(2.3) can be written as

6i - vj, (4.5a)

Mi 6>i =-A a>i - j£~(6). (4.5b)
dVp

Also, (6e, wfl=0) is an equilibrium of (4.5) if and only if "Tiri^0) = 0, i.e., 6* is an

extremal of Vp. It is not difficult to see [46] that the equilibrium is stable if and

only if (5e is a local minimum of Vp(6). Consider now the gradient system

i="$<«). (4-6)

L t
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From the preceding remark we conclude that 6e is an equilibrium (stable equili

brium) of (4.6) if and only if (<58, 0) is an equilibrium (stable equilbrium) of (4.5).

Now let (6s, 0) be the post fault stable equilibrium of (4.5), and let dA(63)

denote the boundary of the stability region. This is a surface in R2n of the state

(6, q). 6s is also a stable equilibrium of (4.6). The boundary of its stability

region, dP(63), is a surface in Rn. The set dP(63) is called PEBS.17

We can now give a version of the PEBS procedure.

Step 1

Calculate the faulted trajectory (6(t), Q(t)). Suppose 6(t) crosses the PEBS at

^ime r. Evaluate the corresponding potential energy vp := Vp(6(r)).

StepS

Estimate the critical clearing time tq by the smallest time18 Tp when the total
energy equals vp,

V(6(Tp),»(TP))=Vp.

Several comments are in order. First, the intuition behind the procedure is

that vP is the maximum energy (along the faulted trajectory) that can be con

verted into potential energy before <5(0 reaches PEBS. Hence, if the fault is

cleared before Tp, all the kinetic energy can be converted into potential energy

before the faulted trajectory exits the stability region. This intuition is valid for

n = 1 and we get the equal area criterion.

Second, to implement Step 1 on-line the faulted trajectory must be calcu

lated faster than real time. Several schemes have been proposed for doing this

[4,22,23]. In addition, there must be a quick way of deciding when 6(t) reaches
PEBS. One popular approximation is to take r to be the first time that Vp(6(t))

reaches a local maximum or -—Vp(6(r)) = 0.

Third, a variation of the PEBS procedure would be to substitute for Vp the

potential energy of the subsystem consisting of one or more generators (and

associated transmission lines) that are most likely to separate from the rest of
the system as in Vittal [55] or Michel et al [28].

17 This is a precise definition. Whether it agrees with the 'constructive definitions' in
[4,23] is a matter of interpretation.

18 From Step 1 it follows that Tp < T.
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Fourth, while PEBS was originally proposed for the classical model, its appli
cability depends only on the decomposition of the total energy into kinetic and

potential energy. A look at the structure preserving energy functions proposed

in Section 3 shows that they all have this form. It should therefore be possible
to obtain PEBS procedures for them as well. This would be particularly valuable

since transfer conductances and voltage dependent loads are better handled by

these energy functions. For a very recent study that exploits this idea, see Sas-

try [45].

Finally it must be emphasized that theoretical justification for the PEBS

procedure is lacking.19 According to our formulation PEBS is the stability boun

dary of the gradient system (4.6). Its relation with the stability boundary of the

actual system (4.5) has not been theoretically investigated. At the very least

one would like to know whether the equilbria of (4.6) that lie on PEBS

correspond to the equilibria of (4.5) that lie on its stability boundary.

In conclusion, the proposals for on-line criteria reviewed here have been

shown to be promising on simulations of systems of varying size. They differ in

terms of amount of computation required and in the accuracy with which they

can estimate the critical clearing time. A much more rigorous test would be to

see how well the stability region itself is estimated.20 Unfortunately none of the

proponents of these schemes have attempted such a test.

5. Exciter Control and Chaotic Motion

Two recent studies illuminate the complex behavior of power systems. The first

shows that the introduction of an exciter loop can create an oscillatory instabil

ity that reduces the transient stability region. The second exhibits the possibil

ity of chaotic motion in the classical model without damping. These studies are

reviewed below.

10 It is often claimed that the PEBS procedure does guarantee so-called 'first swing' stabil
ity. This stability concept is very imprecise, and the alleged proofs of the claim are logically
unsound.

30 One can get an exact series representation for the stable manifolds charcterizing the
stability boundary [42]. This series can be computed recursively. However, no numerical
tests have been conducted. See also [62] for a first order approximation.
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5.1. Exciter control

Of the three controllers of a generating unit (boiler control, governor, and

exciter) only the exciter acts sufficiently fast to be of concern in transient sta

bility.21 As mentioned before, the absence of the exciter loop is the only serious
deficiency in the machine models of Section 3.

To appreciate the effect of the exciter consider a single generator con

nected to an infinite bus by a lossless transmission line whose inductance is X.

In the model of Section 3.3 take n = 1, denote by E'q L6 and E LQ the generator
and infinite bus voltages respectively, assume x'd = xq, to get the model

<5 = w, * (5.1a)

E' E
M 6> = P -D o- g sin<5, (5.1b)

X d +A.

T'do E'q =-^7-E'q +*'"*' (E'q-Ecos6) +EF (5.1c)
X £ X (H +A

In Section 3.3 it was assumed that the field voltage Ep is fixed. If an exciter is

included, then Ep is its output and can no longer be considered constant. If one

considers the IEEE Type 1 excitation system, then EF can be modeled as the

output of a third order nonlinear system,

z=f(z;K), (5.2a)

EF = h(z). (5.2b)

Here z e R3 is the state of the exciter, / and h are nonlinear functions whose
particular form is not important for our purposes (for details, see [l]). The

parameter K in (5.2a) is the exciter amplifier gain.

For quite some time it was known that this system can exhibit oscillations

in theory [8,13] and in practice [53] for realistic values of K. The oscillations

are suggested by linear analysis. Let x9(K) = (6e, o° =0, E'f, z8) be an equili
brium for a given value of K. Let k(K) be the set of eigenvalues of the system

linearized about xe(K). It was observed that for K < Kc, M.K) is contained in the
open left-half plane, and for K > Kc a pair of eigenvalues cross the imaginary

axis into the right-half plane at a frequency uc ? 0. Thus for K < Kc, xe (K) is a

stable equilibrium, and it is unstable for K > Kc. Moreover, one can predict an

81 The protective relays in the system will act well before the governor and boiler control
to prevent damage due to transient stability.
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oscillation of frequency near o>c when K is near the critical value Kc.

To characterize the oscillation in more detail the nonlinear system (5.1)-

(5.2) must be examined directly. This was first done by Abed and Varaiya [1].
Based on the theory of Hopf bifurcation22 they study the system behavior in a

small neighborhood of x9(Kc) and for |K-Kc \ small. They show that

(1) For K < Kc, there is a unique unstable limit cycle near the stable equili
brium xe (K) whose amplitude is of order (K-Kc)z;

(2) For K > Kc, there is no limit cycle near the unstable equilibrium x9(K).

The effect of the excitation system on the transient stability region was

clarified by Tsolas [51]. His findings are conveniently summarized in Figure 4

which displays the projections of the trajectories of (5.1)-(5.2) onto the 6-q

plane. In that figure (69, o9=0) is the (projection of the) normally stable equili

brium x9; (<5U, wu=0) is a uep with 6U ~ tt-69 . These equilibria repeat at 2rr

intervals and the figure shows the one at (<T*-27r, cjw=0).

[FIGURE 4 NEAR HERE]

(1) For K < K < Kc (Figure 4b) there is a unique unstable limit cycle around

the stable equilibrium (69, 0); the limit cycle forms the boundary of the stability

region. The amplitude and the period of the limit cycle (hence the stability

region) grow as K is decreased to£ At K =K the limit cycle touches (6U, 0)

and it is destroyed.

(2) For K <K (Figure 4a) there is no limit cycle and the behavior is qualita

tively similar to the case where there is no exciter.

(3) For K > Kc (Figure 4c), (69, 0) becomes unstable as predicted by linear

analysis.

These results show that the excitation system can reduce the transient sta

bility region. The oscillatory behavior also suggests it may be difficult to esti

mate the stability region by Lyapunov functions.

83 Anaccessible account of Hopf bifurcation is available in [27].

V / c
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5.2. Chaotic motion in the classical model

For n = 1 and zero damping the classical model (2.3) reduces to

<5 = a. (5.3a)

M q = P - a sin<5, (5.3b)

where a := EiEzY\Z. This is also the equation for a pendulum with driving force

P and for a > \P\, as will be assumed here, its behavior is described by the
phase portrait of Figure 5.

[FIGURE 5 NEAR HERE]

There is a Lyapunov-stable equilibrium x3 = (6s, u=0) and a saddle point xu =

(6U, cj=Q) with a sin<5s =P, 6u=n-6s. Since there is no damping, the energy func
tion

V(6, o) = %M oz-P (<5-<58) - a[cos<5-cos(5s]

is constant along trajectories. If the energy is sufficiently small the trajectory

forms a closed orbit (limit cycle) around xs. The amplitude and period of this
orbit increase with the energy until it reaches a critical value vc when the orbit

touches xu and its 'period' becomes infinite. (For energy larger than vc there is

no closed orbit.) Observe that this infinite period orbit, W(xu), is simultaneously
the stable and unstable manifold of xu which is therefore called a homoclinic

point.

Now consider (5.3) with initial condition x e W(xu) and replace the constant
force P by P plus a small periodic force p(t) with some period T,

<5 = «, (5.4a)

Mo = P +p(t) -asintf. (5.4b)

This small periodic force creates chaotic behavior in (5.4) in a neighborhood of

W(xu). In particular, it can be shown that (5.4) has periodic orbits of period kT
for arbitrary large values of k. For a detailed proof see Kopell and Washburn
[26].

The periodic term p(t) can be created as follows. In place of the single
machine (5.3) consider a coupled system of two lossless generators one of which
has a small inertia constant and the other has a very large inertia. The small

machine will have a negiigable effect on the large machine. If the latter has a
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small initial energy its trajectory will exhibit a small limit cycle. Through the

transmission line coupling the two machines this limit cycle will exert a small

periodic force on the small machine. The behavior of the small machine will

then be similar to that of (5.4). Acomplete analysis is given in [26].

If instead of a single large machine we had several large machines, each of

which had a limit cycle, then the system can exhibit an even more complex

chaotic motion called Arnold diffusion. That observation is due to Salam,

Marsden and Varaiya [43,44].

The results above depend crucially on the assumption of zero damping.

From (2.7) we can see that in the classical model with positive damping there
can be no limit cycle since the energy must be strictly decreasing except at

equilibrium. As a consequence chaotic motion cannot exist either. Neverthe

less, for small time intervals (certainly of intervals of interest in transient stabil

ity), the trajectories of a classical model with small damping will be close to
those with zero damping. Hence the results above do show that during a tran

sient the power system trajectories can appear chaotic or random. Of course, in

[26,43] chaotic motion has been exhibited in relatively contrived examples, and
it would be worth knowing whether realisitc examples can also have such

behavior.

6. Future Directions

Since 1978, progress in direct methods has been rapid and has reached the

stage that one can forsee their adoption for on-line stability analysis.23 This pro

gress has also revealed new bottlenecks in on-line algorithms and in theory.

This section is devoted to articulating these barriers and to offering suggestions

for further research. It begins with algorithms.

The new structure preserving energy functions reviewed in Section 3 need

to be reconsidered with a view towards on-line implementation. Initially, this

may take the form of inventing ways of limiting the number of equilibria to be

investigated to obtain a good approximation to the critical and controlling uep.

In particular, the preservation of the network structure in these functions

should provide a basis for a good prediction of the likely ways in which the

83 We are ignoring the necessity for rapid and reliable detection of faults. That is a prere
quisite for on-line methods and is a conceptually separate issue which also needs much more
research.
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system would separate to create loss of synchronism. The concept of 'saturat

ing cutsets' introduced in [9,31] may ultimately prove valuable in this regard.

The apparent success of the PEBS algorithm for the classical energy function

suggests that it can fruitfully be reformulated for the new functions as well, and

a recent study confirms this promise [45].

The algorithms proposed for on-line implementation were inspired by

advances in theory. However, these algorithms are justified almost exclusively

on the basis of a small number of simulation studies. That is insufficient to

inspire adoption of these algorithms in real-world systems and more work should

be done in several directions. First, the algorithms should be tested on more

realistic system models. But to do this adequately it seems to us not enough

only to study critical clearing times which is the current practice. One should

try to compare the stability boundary estimated by these algorithms with the

true stability boundary.24 Second, there is a need to develop a set of standard

ized test problems that can serve as a means of comparing different algo

rithms.25 Third, it is urgent to direct effort to providing theoretical justification
for proposed algorithms. For example, one should relate PEBS to the true sta

bility boundary.

Theoretical research should be focused on several questions. First, the only

major remaining shortcoming with respect to machine models is the absence of

the excitation system. The voltage-dependent reactive power loads that can now

be incorporated in energy functions is a significant advance. But the modeling

of real power loads should be improved. Second, current results propose energy

functions for a fixed set of loads. In practice, loads are changing continuously.

A major advance in the theory would be to treat loads parametrically and derive

correponding parametric energy functions. This would help in estimating

changes in the stability boundary as a function of changes in loading conditions.

Such results would also more closely tie the analyses of transient stability and

security [11,17,59-61]. The study reported in [3] might suggest ideas for a use
ful parametrization. The geometric viewpoint in [7] may also prove fruitful.

Finally, the studies discussed in Section 5 reveal that our understanding of the
global behavior of power systems is still woefully incomplete.

84 The boundary is a surface in the state space, whereas the critical clearing time is sim
ply a real valued function of the state. Thus a very poor estimate of the boundary can still
yield a good estimate of the clearing time.

85 This suggestion is motivated by the practice inmathematical programming.
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