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ABSTRACT A detailed analysis is given of the geometric structure of a chaotic

attractor observed with an extremely simple autonomous electrical circuit.

It is third order, reciprocal and has only one nonlinear element: a 3-segment

piecewise-linear resistor. In addition to a sheet-like composition the attractor

contains a "double-scroll" structure, i.e., two sheet-like objects are

curled up together into spiral forms with infinitely many rotations.

Lyapunov exponents and Lyapunov dimension are computed. The attractor has

one positive, one zero and one negative Lyapunov exponent. Lyapunov

dimension turns out to be a fractal between 2 and 3 which agrees with the

structures observed. Power spectra of the three state variables and a

1-dimensional map are also given.
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I. INTRODUCTION

This paper gives a detailed analysis of a chaotic attractor observed

with an extremely simple autonomous electrical circuit which was reported

earlier [1], [2]. The circuit is third order, reciprocal, and has only one

nonlinear element, a 3-segment piecewise-linear resistor.

Consider the circuit of Figure 1(a) where the constitutive relation of

the nonlinear resistor is given by Figure 1 (b). The dynamics is

described by

dv

:1=

dv.
Sa-= G(vn - v ) + ldt "vvCf VC2' ^ \

di.

TT = -vc-

(1.1)

where v^, y^ and iL denote voltage across Cx, voltage across C2 and

current through L, respectively and g(vc ) is the piecewise-linear function
in Fig. 1(b)(+):

g(vCi) =m0 vCi +j (mi -m0) |vc +B |

+2(m° "mi) Ivcx " Bp I U.2)

Figure 2 shows the chaotic attractor observed by solving (1.1) with

1/Cx = 9, 1/C2 = 1, 1/L = 7, G= 0.7, m0 = -0.5,
in!- -0.8, Bp =1 . (1<3)

A typical trajectory in the attractor rotates around one of the two

"holes", say the upper hole, in a counterclockwise direction. After each

rotation the trajectory gets further from the "center" of the hole until a

(t) Our choice of a piecewise-linear function is for convenience
in analysis and programming. As will be seen in Section II,
the piecewise-linearity simplifies the analysis in a significant
manner. Any continuous piecewise-linear function has an explicit
formula which requires only absolute value functions [3].
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certain time after which there are two possiblities: (i) the trajectory

goes back to a position closer to the center of the hole and

repeats a similar process, (ii) the trajectory does not go back to a point

close to the center but descends downward (with respect to the v - axis)
cl
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in a spiral path and "lands" on the lower part of the attractor. The point

it lands is close to the center of the lower hole and it starts rotating

counterclockwise around the lower hole. After this, the behavior is similar

to that in the upper part of the attractor except for the fact that it starts

ascending after rotating around the lower hole several times. The number

of rotations a trajectory makes around a hole before it starts descending

or ascending is random: two to eight times have been observed.

The number of rotations it makes while it descends or ascends is also

random. Detailed reasoning for such behaviors will be given in Section II.

Now, it is interesting to observe that there is a closed orbit (broken

curve) outside the chaotic attractor. It is not a stable limit cycle, since

one does not observe it by simply iterating the Runge-Kutta. Neither it is

a repelling periodic orbit since one does not observe it by iterating the

Runge-Kutta with negative time. It is, rather, a hyperbolic [4] periodic

orbit : its Poincare map is stable in one direction while unstable in

another direction. Newton iteration was used to find an initial point

on this orbit via the "shooting method" [5, Chap. 17].

If the reader feels uncomfortable with the function g of Figure 1(b)

in that it is not eventually passive [11] and there are initial conditions

with which (1.1) diverges, he can simply replace Figure 1(b) with Figure 3.

If B =3, it has no effect on the attractor and on the hyperbolic periodic

orbit, because |v_ (t)|< 3 for all t> 0 on the attractor and on the
cl

additional
hyperbolic periodic orbit. The only difference is the/appearance of a

large stable limit cycle (periodic attractor) as shown in Figure 4

(B ~ 3, m2 = 5), where (1.1) does not diverge with any initial condition.

In Fig. 4 there are three initial conditions:

(i) v (0) = 0.15264
cl

v„ (0) = - 0.02281
C2
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iL (0) = 0.38127

for the chaotic attractor,

(ii) v (0) = 2.532735
cl

vp (0) = 1.285458 x io"3
o2

iL (0) = -3.367482

for the hyperbolic periodic orbit with period 3.54793, and

(iii) v (0) = -3.08832
cl

v_ (0) = -1.0423

iL (0) = 6.93155

for the large periodic attractor with period 2.87.

The attractor appears to persist in a strong manner: the shape does

not seem to change qualitatively with fairly large variations of parameters

It has been observed that the attractor persists for at least the following

parameter ranges:

(i) 8.82 £-^ <10.6, when - =1,^=7 and G=0.7 are fixed,

(ii) 0.5 <̂ <1.08, when ± =9, ±=7and G=0.7 are fixed,

(iii) 5.7 <- <7.13, when ^ =9, £ =1and G=0.7 are fixed, and
^l L2

(iv) 0.68 <G <0.76, when ± =9 ± =1and f=7are fixed.
W t2 L

Since there are two attractors in Fig. 4 (the chaotic attractor and

the periodic attractor), one naturally wonders what object separates the

domain of attraction for the chaotic attractor and the domain of attraction

for the periodic attractor. Similarly, in Fig. 2, one wonders what

distinguishes those initial states that are attracted to the chaotic

attractor and those initial states with which (1.1) diverges. This is an

interesting but a hard question. It appears that the stable

manifold of the hyperbolic periodic orbit decomposes R3 into two regions
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in a very complicated manner.

Observations so far are with digital computers. it is easy to

realize (1.1) by a real circuit. Fig. 5 shows the attractor seen by an

oscilloscope. Fig. 6(a) gives the circuitry where the subcircuit within

the box realizes the function g of Fig. 1 (b) at least in the region

where the attractor lies. The constitutive relation observed is given by

Fig. 6(b). Saturation of the Op. Amp. naturally gives rise to eventual

passivity for g. The saturation occurs, however, in regions away from

the attractor and it does not affect the attractor.

The set of parameter values given by (1.3) is different from the one

reported in [1]; namely,

1/C!=10, 1/C2=0.5, 1/L=7, G=0.7, m0= -0.1, mx= -4, B = 1 (1.4)

Equation for g(v_ ) is given by (1.2)

The attractor observed with the set of parameter values in (1.4) is shown

in Fig. 7. Of course, a large stable limit cycle is present in this case

also if one replaces g of Fig. 1 (b) with Fig. 3 (m2=5, B =14). Let us
P

explain why we chose (1.3) instead of (1.4). In Fig. 7, a typical

trajectory in the attractor behaves in a manner similar to that of Fig. 2(a)

except that the "spiral staircase" was not clearly visible and that the

trajectories which go back closer to the center of the hole without de

scending were indiscernible. When Fig. 7 was first observed [1] a natural

question was "What object separates those trajectories which remain in the

upper ring and those which move down to the lower ring ?" If that object was
the structure

detected, then an important part of /of the attractor would be understandable.

We tried to find this "object" numerically by changing initial conditions.

It was extremely sensitive to the initial conditions and we were unable to

detect it. In order to see the reason note that the behavior of (1.1) is

strongly influenced by the eigen values and eigen spaces of its equilibria,
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since it is piecewise-linear and since each region has a unique equilibrium.

Note that (1.1) has three equilibria: one at the origin, one located approxi-

mately at the center of the upper hole, call it P , and another located at the

point symmetric with respect to the origin, call it pT Each equilibrium

has one real eigen value and two complex conjugate eigen values. At P+(and

P ) the real eigen value associated with (1.4) is

Yp * -6.37

and the other two are

<*p ± J Bp * 0.01 ±j 1.82

At the origin, the eigen values are

YQ * 33.07

a ± j 3 * •- 0.21 ± j 1.86
° °

It is clear that YQ» the real eigen value at the origin, completely

overwhelms others, i.e., expansion at the origin is extremely strong and

a digital computer (a finite discrete machine) is unable to show the structure

of the continuous flow generated by (1.1) with (1.4).

With (1.3), the eigen values are

Yp - - 2. 76

<*p ± j Bp* 0.13 ±j 2.13

^o * 1-55

ao ± j *o * -°'68 ± J 1'90

All of them are within a compatible range and the object that we were

looking for turned out to be the stable eigenspace of the origin.

Moreover, an interesting structure different from Lorenz's [7] and

Rossler's [8] has been observed as will be described in the next section.
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Finally, note that the function g of Fig. 1 (b) does not have to be

piecewise-linear to observe qualitatively the same attractor. Let us

replace, for example, g of Fig. 1(b) with the smooth cubic function,

8(V=aovCl f^""' (1-5)
where a0 = 0.8, ax = 0.1. Then with 1/Ci = 9, 1/C2=2, 1/L = 7, G = 0.65,

a chaotic attractor of Fig. 8 has been observed.

In section II we will give a detailed description of the geometric

structure of the attractor. In Section III, we will give our computation

of the Lyapunov exponents which give important quantitative information

associated with an attractor, and then calculate the Lyapunov dimension.

It turns out to be a fractal between 2 and 3. Finally, in Section IV,

we will give the power spectra of the three state variables and a

1-dimensional map at a certain cross section.
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II. GEOMETRIC STRUCTURE OF THE ATTRACTOR

2.1 Preliminary Observations

Recall the dynamics (1.1) and note that the function g of Fig. 1(b)

given by

8(vR) A g(vR; B m0, mi)

is

m° VR + Bp (ml " m0> ,vR ^ B

mi VR • IVRI iBp
m0 vR - B (mx - m0) , v < -B

(2.1)

This function satisfies

g(Bp VR ;Bp» m°9 mi) =Bp 8(VR ;1» m0» ml) (2.2)
Therefore, using the following normalized dimensionless variables and

parameters

x-^vc/Vy =vc2/BP> z=V (bpg)' Tk tG/Cl»
n0 A m0/G, nx A mj/G, S A C2/C1, T A C2/(LG2),

equation (1.1) is transformed into

dx «/J^ = S(y - x - f(x))

dy

aT= x- y + z

dz

d7= ~Ty

where,

fW A g(x; 1, n0, nj)

'n0 x + ni - n0, x > i

nl x » I* | < i

^n0 x - nt + n0, x < -1

- 8 -
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Equation (2.4) is dynamically equivalent to (1.1) but is more convenient

since some of the parameters are normalized. Our analysis below will

be based on (2.4). This form will also be convenient when we discuss

various bifurcations in later papers.

We begin with the following observations:

(i) Equation (2.4) is symmetric with respect to the origin, i.e. the vector

field is invariant under the transformation

(x,y,z) (-x, -y, -z). (2.6)

(ii) Consider the equilibria:

(x + f (x) = 0

y = 0 (2.7)-

x + z = 0

It follows from the form of f that (2.4) has a unique equilibrium in

each of the following three subsets of R3 :

'Dx A {(x, y, z)| x >l }

Dq A {(x, y, z)| |x| <1 >

D A {(x, y, z)| x < -1 }
•» —l —

provided that ng, n^ ^ -1. The equilibria are explicitly given by

'?+ = (k, 0, - k)GD!

Q = (0, 0, 0) <= D
o

f =(-k, o, k) e= d_x

where k = (n0 - ni)/(n0 + 1)

(iii) In each of Di, D and D ., (2.4) is linear
o —1

x A (x, y, z), k A (k, 0, -k)
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M (S, T, n) A

- S (n + 1) S 0

1* -11

0 -TO

we can recast (2.4) as follows:

dx

dT

C- (S, T, n0) (x - k), x

M (S, T, nx) x , xG D

(2.11)

(2.12)

, M (S, T, n0; (x + k), x<= D

where we are abusing our notation for tjme: it should have been x instead

of t (see (2.3)). There will be no confusion, however. The set of

parameter values (S, T, n0, nx) corresponding to (1.3) is given (via (2.3))

by

(S, T, n0, ni) =(9, 14|, -y, -f)
Then the matrix

Mp A M(9, 14y, -|)
has real eigen value

v * -3.94
P

amd a pair of complex conjugate eigen values

a ±13
P J p

0.19 ± j 3.05

Similarly, the matrix

5?0 ^ m (9> i4-i)
7, r

has eigen values

2.22

a ± j 6
o J o

- 0.97 ± j 2.71

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Note that the relative sizes of eigen values remain unchanged even after

.s +rescaling via (2.3). Let E (P") be the eigen space corresponding to the

,u, +eigen value y at P" and let E (P ) be the eigen space

f
Throughout this paper, we use the same terminology "eigen space" to denote
the vector space spanned by the real and imaginary parts of the complex
conjugate eigen vectors. - 10 -



corresponding to ap± j3p at P"\ Similarly, let EU(0) and ES(0) be the

eigen spaces corresponding to y and a + j 3 , respectively. Then

dim ES(P") = dim EU(0) = 1

dim E^P*) = dim ES(0) = 2

and they are given explicitly by the following equations:

Esip±} . il±A y z ± k
% Yp(Yp + S(no + 1)} -T(Yp+S(n0+l))

eU(? >:% +Yp +T) (x +k) +SY y"S(z ±k) =0

Eu(0) : -ii- = ___ 1 = z
SY0 Yo(Yo + SUl + 1}) ~T(<y +S(ni+1))

E (Q) : (y2 + y + T) x + Sy y - Sz = 0
o o o

2.2 The Geometric Structure

Now we turn to describe the structure of the attractor. Define

(see Fig. 9)

Ui A Di 0 Dq = ( (x, y, z) |x =1 }

U_l &D_i H Dq = { (x, y, z) |x = -1}

V A { (x, y, z) | x = 0 } = { (x, y, z) | y-x-f(x) = 0 }

L0 A EU(P+) f| Ui

Ll A ES (Q) fl Ui

L2 A V 0 Ux

A A L0 fl Li , B A L0 f| L2
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C AE (0) PI Ulf C" A E (0) fl U_x

D AEs(p+)nu!, d" a es(p") n u_x

F A a point on L0 sufficiently far from B.

Note that Ut, U and V are 2-dimensional objects, L0, Lx and L2 are lines

while A, B, C, C , D, D and F are points. Let <p be the flow generated

by (2.4) and pick an initial condition x e EU(P+) in a neighborhood of

~ . Then, for t>0, the flow V (x ) starts wandering away from P+ on EU(P+).

After winding round P several times in a counterclockwise direction, it hits

the plane Ul at some time, say tt: xxA £ 1 (xo) . The trajectory up to t\ is

a spiral since (2.4) is linear in Dx and since EU(P ) is invariant. Clearly

Xj e L0. Note that the line L2 is a straight line parallel to the z-axis

because x is independent of z. Observe that L2 separates the plane Ui into

two regions, one (to which A belongs) where x < 0 and another where x > 0.

Since £ (xQ) hits the plane Ui downward (recall that the motion is

counterclockwise) at t = t\, one sees that xj belongs to the line segment

FB, i.e., x <0 at Xj. The "fate" of £ (xx) depends crucially on which

part of FB xx lies. (see Fig. 10)

Case 1 xj = A

t sNumerical observations show that £ (A) never hits U 1. Since AGE (0)

s t
and since E (0) is invariant, £ (xx) approaches the origin asymptotically

as t -*• °°. The trajectory is a spiral with infinitely many rotations because

(2.4) is linear in D and E (0) is invariant.
o ~~

Case 2 xL e Interior AB

In this case£ (xx) has two components: one which is in ES(0) and

approaches the origin asymptotically and another which stays on 0C

CE (0) and wanders away from the origin. This means that V*" (xi) moves up

along a spiral"with central axis 0C and then eventually hits Ui again from
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below: x2 A £ 2 (xx). The number of rotations of </(x ) around OC can

get arbitrarily large without bound if x is very close to A. These processes

naturally give rise to the map

! : 15 — Vi

defined by

? (Sl> = x2

The image Y (AB) is a spiral with center at C which is tangent to L0 at B.

After hitting Ux, the trajectory y> (x2) has two components : one which

stays in E (P ) and moves away from P in a spiral manner and another in
s, +. i ^
E (P ) which approaches P asymptotically. Therefore £ (x2) ascends in a

spiral path with central axis DP and flattens itself onto EU(P+) from

below.

Case 3 X]_ e Interior FA

^ (x ) has two components. One component stays in E (Q)and asymptoticaly

approaches 0 in a spiral manner. Another component stays in E (0) and moves

away from 0 on 0C~-. This means that £ (x:) descends along a spiral with

central axis 3C-, hits U^ at x2 A/2 (?l) and enters the region D^
eventually. The closer ?1 to the point A, the larger the number of rotations

of ^ (xx) around 0CT After entering into D , the flow ^,t(x2) consists of two

components : one which is in E (P ) and moves away from P~ and another

which stays in E (P ) and asymptotically approaches P~. Therefore, ^ (x2)

descends spirally with the central axis DP~ and eventually flattens

itself onto E (P ) from above.

In order to grasp the whole picture, pick a rectangle abed in

Dj in such away that ad is on EU(P+) and be lies below EU (P+), i.e.,

on the side to which D belongs. Fig. 11 shows how the rectangle abed

changes its shape while flowing along <? . Suppose that the rectangle

is thin enough and that it.is chosen appropriately in such a way that

the trajectories starting on the line segment ef hit L- . Then, after
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hitting L0, they approach the origin asymptotically in a spiral

manner with infinitely many rotations. Trajectories starting in the

rectangle abfe stay within Dx or return to Dx eventually even if they once

spend sometime in Dq. Trajectories with initial states in the rectangle

cdef leave Dx, enter Dq, hit U_x and enter D . They turn round p" and

flatten themselves onto EU (p") from above. Since (2.4) is symmetric

with respect to the origin, one sees that a similar argument applies to a

rectangle abed in region V located symmetrically with respect to

the origin. Assembling all the information, one obtains a whole picture

(Fig. 12). Observe that the rectangle abed is mapped into two spiral

regions with infinitely many rotations: abfe is mapped into one spiral

region and cdef into another spiral region. Note that ES(0) plays an

important role in determining the fate of a trajectory after hitting Ul

or U_i. It differentiates those trajectories which descend (resp. ascend)

from those which survive in the upper part (resp. lower part). This is barely

discernible in Fig. 2(a) if one takes a careful look at it. There are two thin

gaps between the sets of trajectories and ES (0) is sitting in these gaps.

Finally, let us explain why one observes a sheet-like structure in the-

attractor. First let J (t) be the fundamental matrix solution to the

variational equation of (2.4) along a trajectory ^ (x0). Then its determinant

det <I> (t) satisfies [6]

j£ (det J(t)) =divergence (-^ ^(xq)) (det *(t))
and it gives the linearized contraction or expansion rate of volume

elements along a trajectory £ (x0). In Di and D_1,
,. , d t, v% 25divergence {— £ (x0))= trace M j

and in D ,
o

divergence (t:/(x0))= trace M = -|.

It follows that volume elements are sharply contracted in D^ and D

- 14 -



Even though volume elements are expanded in D , the rate of expansion is

very mild (2/7) and as a whole, volume elements are contracted.

This naturally gives rise to a "sheet-like" structure. Perhaps, a good

way of explaining the whole picture described above would be the "double-

scroll" structure since two sheet-like objects are curled up together

into spiral forms with infinitely many rotations-while maintaining some

space between the two scrolls which gradually decreases, thus causing them

to meet eventually at some limit point. In order to see the structure

more clearly let us look at the cross sections of the attractor.

Fig. 13 (b) - (k) show cross sections of the attractor taken at

U(r) A { (x, y, z) | x = r }

r = 0.25 k, k = 0, 1, ..., 8

and at U(2.20). (The cross section at U(2.25) is extremely small.)

Fig. 13 (a) shows positions of the cross sections. On the cross section

at U(1.00), various line segments and points related to Fig. 9 - Fig. 12 are

super imposed. One can clearly observe the double-scroll structure and

how the scrolls flatten themselves gradually. The cross section at U(1.75)

(Fig. 13(i)) is particularly interesting. The sheet-like structure is

clearly discernible : it is folded many times. Moreover, one can observe

that the flattening of the left portion is sharper than that of the

right portion so that the spirals still survive on the right portion

while they flatten themselves on the left portion. This stems from the

+

fact that trajectories rotate around P counterclockwise and hence they

flatten onto E (P ) as time goes. Note that theoretically, the two

scrolls are curled up infinitely many times even though numerical results

reveal only several of them. One can also observe how E (Q) cuts the

attractor. In Fig. 13 (b), (c) and (d), there are small gaps in the

s

spirals. Since E (Q) is sitting in the gaps, the trajectories cannot
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get there (as long as numerical computations go). Those gaps correspond to

the gaps in Fig. 2(a) as explained earlier. Fig. 14 is our final picture

showing the structure of our attractor after several simplifications.

Now it is clear that the attractor reported in this paper has a

structure different from Lorenz's [7] and RSssler's [8] since the double-

scroll structure has not been observed with the latter attractors.

Recall that the Lorenz equation (at the popular parameter values O = 10,

3 = 8/3, p = 28) has three equilibria : one at the origin, one in the

half space x > 0 and another in the half space x < 0. Note that the
the

origin belongs to the Lorenz attractor and that /same is true for our

attractor. The origin for the Lorenz attractor, however, is a saddle,

i.e., all eigen values are real, whereas in our case the origin has one

positive real eigen value and a pair of complex conjugate eigen values.

Recall also that the Lorenz equation is symmetric with respect to the

z-axis while (1.1) is symmetric with respect to the origin. As for the

Rossler equation [8], recall that it has only two equilibria. Furthermore,

the attractor does not contain any equilibrium.

One of the reviewers for [1] pointed out that Sparrow [9] and

Brockett [10] had observed chaotic attractors in feedback systems with

3-segment piecewise-linear feedback characteristics. Their equations also

have three equilibria. The one reported in [9] does not appear to have the

double-scroll structure. It does not seem to contain any equilibrium.

Furthermore, the equilibrium in the middle has one negative real eigen

value and a pair of complex conjugate eigen values with positive real

part, which is different from ours.

The dynamics reported in [10] has the same type of equilibria as ours.

It is not clear if it has the double-scroll structure described above.

In order to see a possible difference, recall the set Dx defined by (2.8).
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A trajectory with initial condition in Dx (and in the attractor) first

rotates around P several times before hitting D . We have observed, however,

by simulation, that with the dynamics reported in [10], a trajectory with

initial condition in the region corresponding to D.. seems to always penetrate

IL while winding around the equilibrium corresponding to P .

Note also that the circuit of Fig. 1 has no coupling elements and hence

reciprocal [11], while the systems in [7]-[10] do not appear to be realizable

by reciprocal circuits.
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III. LYAPUNOV EXPONENTS AND LYAPUNOV DIMENSION

3.1 Lyapunov Exponents

First let us write (1.1) as

dx

dt= £ <S> (3-D

where x = (v , v , i ) and let <p (x0) be its flow with initial condition
Lj u2 L —

So. (We are abusing the notation x. There will be no confusion, however.)

Lyapunov exponents are a generalization of characteristic exponents for

periodic orbits to more general non-periodic orbits. If A is a periodic

T
orbit with period T and if x0€A, then the eigen values of (D^ ) , denoted

x0

by e 1, e 2 and e 3, are called the characteristic multipliers for A.

The numbers In e lf In e 2 and In e 3 are called the characteristic exponents.

They give the expansion and the contraction rates of vectors in the

tangent space T r3 aiong ^, Since A is a closed curve, at least one of
50

the three numbers, say e *, must be 1, and hence lne 1=0. If, in addition,

In e 2, In e 3 < 0, then A will be a periodic attractor, i.e., a stable

limit cycle (Fig. 15(a)). If In e 2 < 0 and In e 3 > 0, then A will be a

hyperbolic periodic orbit (Fig. 15(b)). Now let A be a non-periodic in

variant set, e.g., a chaotic attractor. There is a difficulty in defining

characteristic multipliers for A. Recall that for a closed orbit, the eigen

T T
values of (Dv ) are well defined since (Dv ) maps T R3 into itself.

~~ SO ~ Xq r xq

On the other hand, such argument is not valid for A if it is non-periodic

t O
since (Dv> ) does not necessarily map T R* into itself for any t.

" x0 x0

The definition of Lyapunov exponents requires the invariance of tangent

subbundles. Suppose that for all t > 0, there are linear subspaces E1 ^t —
~~ (xo)

E.!£t(x0) " E3Vt(x ln V(x )^ 3nd numbers yl (x0> >-V2 (x0) >- W3 (x0)

Of course, In e = A, for the periodic case. The above choice is meant to

draw the analogy with the Lyapunov exponents for non-periodic case where the
natural log is traditionally used.
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such that

(i) (d/),v . Ek = Ek _ (3.2)

(ii) dim Ek = 4- k (3.3)
- (?0)

(iii) yk (x0) =lim _1_ N(D^T)X() §M
t ->- » T n n iT

Us II

for all e e Ek - Ek+1
x0 x0 '

k = 1, 2, 3.

The numbers Vi (x0), u2 (x0) and u3 (x0) are called the Lyapunov exponents

f°r A if xqgA. They give the average linearized expansion and contraction

rates on an orbit. Note that E* - E2 consists of vectors in T K3 which
X0 XQ XO

expand at the fastest rate, E2 - E3 consists of vectors which expand
x0 ?0

3
at the next fastest rate and the vectors in E expand at the slowest

x0

rate. In many cases the vectors in E3 are contracted if A is an attractor
So

The conditions under which Lyapunov exponents exist are strong [12]

and are hard to check. Here we will only give our numerical results.

They give, however, good quantitative information about the attractor

described in the previous sections. The computations are non trivial

since one does not know the invariant splitting E t(x \, k = 1, 2, 3.

One can, however, compute ux (x0), the largest exponent, numerically

provided that uj (x0), u2 (x0) and y3 (x0) are not too close to each

other. In order to explain this, let x0 e A and pick any e ex U3
x0

Then

i in I' <»*?>.„, II (3.4)

would give ux (x0) for T large, because the subspace with the fastest

expansion rate would eventually dominate others and the vector (DV ) e
' xq

- 19 -



would be in E1! - E2 T for any eGT R3, T large.
~ ^x0) £ (x0) x0

Computations of u2 (x0) and p3 (Xq) need some more care since
TQ?£ )XQ eis dominated by JE1^ -E2^T(x and one does not know how

o compute E ^T E^ In orcjer to overcome this, one computes

Mi(x0) + u2(x0) (3.5)

instead of u2 (x0). First note that the number (3.5) gives the average

expansion or contraction rate of an area element of E1 - e3 • Let ei and
x0 So

?2 span E - e3 . Then the exterior product e^ /\ e2 is the parallelepiped

generated by ej and e2 [13]. Therefore,

M <8*>X0S1 A(D,T)XQe2 ||
:fln : (3.6)

II Si A §2 ||

would give (3.5) for T large. A numerical difficulty arises since

t become

-~ xo -1 a ~~ ^x ~2 wou*d eventually belong to or/very close to

K <^T, " E i( . for the reason explained before. Hence the angle
:~ (Xq) £ (Xq)

between (D£T) eL and (D</> ) e2 gets smaller and smaller, and numerical
x0 ~~ x0 ~

inaccuracy will be serious. In order to overcome this difficulty,

recall that the map :

(?1 e2) »• §i A e2

is bilinear, i.e., linear in each argument, and rewrite (3.6) as

x lit (8«)x AXDJJ1) ] (e Ae2) II
Y In —-2 £2 : (3.7)

>T) A (DVT]
- x0 —'

II 51 A e2 |

where

(D£T) A (d*T) (3.8)
-~ xo ~~ x0

- 20 -



is the induced linear map [13]. Since this is a 3 x 3 matrix and since

?12 A §! /\ e2 (3.9)

is a 3-dimensional vector, one can compute (3.5) without the above difficulty

The initial vector §i2 of (3.9) can be chosen arbitrarily for the same

reason as e Qf (3.4) can be chosen arbitrarily, provided that

^1 (xo) + ^2 (?2) dominates yj (so) + "3 (so) and u2 (xq) + u3 (so) by

reasonable margins.

Finally, there is also a difficulty in computing u3 (sq) alone

for the same reason as before. One computes, instead,

Ml (x0) + u2 (s0) + u3 (x0) (3.10)

which gives the average contraction or expansion rate of a volume element

in E* assuming that E = T R3. An argument similar to the above
e0 SO SO

shows that

, || [(D/) A(d/) A(p£T) ](eiAe2 A e3) ||
— In ~o eO SoJ x-i ~z ~3/ '' (3.11)

II§1 A e2 A e3 ||

would eventually give (3.10), where

sPan { §1, e2j e3} = E = t R3
-0 x0

3.2 Computations

the

Based on the above arguments, we computed /Lyapunov exponent

^1 (xo) by solving the variational equation

^ =(5EV (x0) I (3-12)
with

y (0) = e, || e || = 1,

- 21 -



and computing

| In II y (T) ||
Our computation gives

Hi (x0> * 0.23

where

So = ( - 1.7713, 0.0527854, 1.74606)

e = (-i- -±- -i- > "

T = 3000

(3.13)

(3.14)

(3.15)

Of course, one has to renormalize y(t) after each reasonable amount of

time since ||y(t)|| gets very large. More specifically, letting T = nx,

one sees that

iln(||y(T)||/||j(0)||) —Indl (J?£nT) y (0) ||/||y(0)||)
1 x0~

=̂ ln(|| (8&T)x((n.1)T) y((n-l)x)||/||y(0)||)

« — In
nx

11 ^a"T)»((n-l)T) 2«n-l)T)||
II (^T)x((n-2)x) I«»-«0||

I' (gg\((,-2)x) ? «"-'>*>! I

II (S^T)x((„-3)T)r «n-3>T>n

II «£T> x„ ? (0) |x0

n-1

— Z In

nT k=0

II y (0) 11

11 y (kt) 11

- 22 -
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If one renormalizes

11 y (kx) ||=i

at each k, then

n-1

f In || y(T) || =̂ - Z In ll(D/)x(kT) y(kx)|| (3.17)

In our case, we chose x = 10 with the Runge-Kutta step size 0.005.

Our experience indicates that (3.14) is insensitive to the initial

tangent vector e and to the initial condition xQ. The time T = 3000 seems

to be enough for the convergence.

In order to compute (3.7) let

y &<?/> 91, s A(D*6) e,
XQ ~ = r~~ 'Xn £2.

K~ Si, z A (DV Z)
SO

Then

— (y A z) =_ A ; + y A ^

=Ĉ ^(xo) l 3A z+yA[ (DF)it( z]

• =[(??V(X0) A i+1A (^V(x0) ^YA z (3.18)

where 1 is the 3x3 identity matrix. (An explicit formula is given in the

APPENDIX). Therefore, solving the "2-dimensional" variational equation

(3.18) with

II (yAz) (0) || = || ?12 || =i

one can compute

T ln II(y A z) (T) ||.

Our computation gives

Ml (x0) + u2 (x0) * 0#23 (3.19)

where x0 and T are the same as before and
_i 1_ _J^_

%l2 = (/y-v-r-' /y->-
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Again (3.19) appears to depend neither on x0 nor e,2.

Finally, observing that

<2Z\ A (D/) A (d/) = det /j/) (3.20)
~w ~0 TN«— Xn

and

d- det W") = trace (np)
~° - (x0^ ~~'x0

one can compute (3.11). Our computation with the same x0 and T gives

Ml (x0) + y2 (x0) + u3 (x0) * _o.05 (3.22)

The convergence, however, seems to be very slow. At T = 3000 it is still

increasing in an extremely slow manner. Further computations would not be

very meaningful for numerical reasons. It is enough for our present purpose.

It follows from (3.14), (3.19) and (3.22) that

'Mi (x0) s: 0.23

p2 (x0) * 0 (3.23)

.M3 (xQ) * - 0.28

This shows that in the attractor observed, certain line elements are expanded,

area elements are preserved and volume elements are contracted. This agrees

with the sheet-like structure described in Section II. It would be interesting

to compare (3.23) with those of Lorenz attractor. Even though the parameter

values in [14] are different (a = 16, $ = 4, p = 40) from the popular ones,
for

they are enough/our present purpose:

'Vl <xo) * 1.37

M2 (x0) x 0 (3.24)

kM3 (x0) * -22.37

The Lorenz attractor has much sharper expansion and contraction rates than

the attractor reported in this paper. Note also that in the Lorenz attractor,

volume elements are contracted uniformly since divergence = const. = -21.

oT ^t (d/)^ = trace (DF)it det ^ (3 2i)
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3.3 Lyapunov Dimension

Dimension of a chaotic attractor is one of the very few quantitative

measures which are associated with chaotic attractors. Among the many

different definitions of dimension of chaotic attractors [15] we compute

the Lyapunov dimension since it naturally comes from Lyapunov exponents.

We are not saying that this is the most appropriate one. Recall (3.23)

and recall that our numerical results indicate that these numbers do not

seem to depend on xq. Assume that this is, in fact, the case. Then, since

y1} pj + u2 > 0 and since Uj + u2 + u3 < 0, Lyapunov dimension is given

by [15]

d_ = 2 + Ml * M2 * 2.82 (3.25)
I II M3 I

Let us compare this with the Lorenz attractor. It follows from (3.24)

that for the Lorenz attractor,

dL =2+20f" * 2-06 <3-26>
Both of them are fractals between 2 and 3 which agree with the sheet-like

structure observed. While d of our attractor is close to 3, d of the
L L

Lorenz attractor is close to 2. In this sense, our attractor is "thicker"

than the Lorenz attractor (with 0=16, 8=4, p= 40).
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IV. POWER SPECTRA AND 1-DIMENSIONAL MAP

4.1 Power Spectra

Figure 16 shows the power spectra for the three state variables. In

each case N = 216 Runge-Kutta iterations were performed with a step size

(t)equal to 0.04. ' The figures show the components of the first M=N/24=212

normalized frequencies in log-log scale. The vertical scale is 10 dB/division.

In each case, there is a sharp peak at f = 828. One has -^rx- x 0.04 * 3.166

and this corresponds to the time a typical trajectory takes in rotating around

5 or ? • Power spectra for v and i have notable lower frequency components
L»l Li

while power spectrum for v does not have such lower frequency components.
^2

+ -
This stems from the fact that the v -component of P and P is zero while

C2 ~

the v -component and the i -component are nonzero, and therefore, the
\*i L

oscillations of v_ have essentially no bias while oscillations of v„ and iT
C2 J Ci L

are biased. The peak in the lower frequency components is at f = 48 which

corresponds to the fact that the trajectory has gone "up and down" for

48 times, i.e., it has traversed the process Di •*• D -*- D__ (see Section II)

for 48 times and D , -*• D -*- D„ for another 48 times.
-1 o 1

Figure 17 shows power spectra for v_ and v_ observed with the circuit
Cl L2

of Fig. 6.

Finally, Fig. 18 shows a 1-dimensional map for i observed at the cross
Lt

section vc = -1.6, i.e., it consists of the plots of i_ (t ) versus :L (t ..),

where t is the n-th time for which v (t) hits the plane v. = -1.6 from below,
Ll Cl

Details of such 1-dimensional maps will be reported in a later paper.

(f) It is well known that FFT is very efficient if the number of samples
is a power of 2.
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APPENDIX

Here we will give an explicit formula for (3.18). Let {e^, e2, e3}

be the standard basis for R3. Then *\ A e2 =e12, e2 A e3 =§?3, §1 A e3 =e13

are the standard basis for ( R2 )*, the set of all alternating bilinear

functions on R3 x R3 [ 13 ] where A denotes the exterior product. They satisfy,

e.Ae.=-e.Ae & A_ ft-1 ~J ~j /N e±» Si A e± = Q.

Since (see (1.1))

(DF)

- ± (G + (Dg) )
cl v

one can easily compute

P (G + (Dg) )
cl

(DF)xAi=

1 A (DF) =
-~ x

4 gc2
0

0

0

Therefore

(DF) A 1 + 1 a (DF)

- (G(V i> +i ^- >
0

1

L

Cl

Cl

" F Gc2

1

C2

0

0

- 27 -
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Cl

0

1

c2

- £ (G +(Dg) )

1

c2

i cc2

-i(G+(Dg) )
l>1



Remark Theoretically, there is a difficulty in using (3.12), (3.18)

and (3.21) because g is piecewise-linear and Dg has discontinuities at

VCi = ±1# Numerically» however, there seem to be no problem if one chooses

a small enough Rung-Kutta step size.
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Figure Captions

Fig. 1. A simple autonomous circuit with a Chaotic attractor.

(a) The circuitry. (b) Constitutive relation of. the resistor.

Fig. 2. The Chaotic attractor and hyperbolic periodic orbit.

(a) Projection onto the (i , v )-plane. (b) Projection onto
L Li l

the (i , v )-plane. (c) Projection onto the (v_ , V )-plane.
L L>2 Ci C2

Runge-Kutta was iterated 10000 times with step size 0.04. Initial

conditions: vc (0) = 0.15264, vQ (0) = -0.02281, iL(0) = 0.38127

for the attractor and v (0) = 2.532735, v (0) = 1.285458 * 10_3,
ci C2

i, (0) = -3.367482 for the hyperbolic periodic orbit with period

3.54793. The length of each arrow is 2.5.

Fig. 3. A modified constitutive relation of the resistor.

Fig. 4. The large stable limit cycle with the chaotic attractor and

hyperbolic periodic orbit. (a) Projection onto the (i , v )-plane,
L Ci

(b) Projection onto the (i , v )-plane. (c) Projection onto the
L L2

(v_ , v )-plane. Initial conditions for the large stable limit
Ci C2

cycle : v (0) = -3.08832, v (0) = -1.0423, i (0) = 6.93155 with
L»i C2 L

period 2.87.

Fig. 5. The chaotic attractor observed by a circuit realization: Projection

onto the (v , v )-plane. Horizontal scale :1V /division.
Ci C2

Vertical scale :IV / division.

Fig. 6. Circuit realization. (a) The circuitry which realizes (1.1)

with appropriate rescaling. The box with broken lines realizes

g of Fig. 1(b). (b) Observed constitutive relation of g.

Horizontal scale ; 2V/division. Vertical scale :2mA/division.
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Fig. 7. The chaotic attractor and hyperbolic periodic orbit observed with

the set of parameter values (1.4). Initial conditions :v (0)=1.45305,
cl

VC2(0) = -4-36956, iL(0) =0.15034 for the attractor, and v (0) =

10.00717, vC2(0) =1.80100, iL(0) =-23.90375 for the hyperbolic

periodic orbit with period 3.93165. The length of each arrow is 15.

Fig. 8. The chaotic attractor and hyperbolic periodic orbit with the

smooth resistor constitutive relation (1.5). Initial conditions :

vCi(0) =1.47147, vC2(0) =0.83242, ^(0) =2.23418 for the
attractor, and v (0) = 9.998048, V (0) = 1.980972 i (0) =

W C2 ' L

-10.908448 for the hyperbolic periodic orbit with period 4.49.

The length of each arrow is 11.

Fig. 9. Eigen spaces of the equilibria and related sets.

Fig. 10. Description of typical trajectories in the attractor.

Fig. 11. Deformations of a rectangle along a trajectory.

Fig. 12. Geometric structure of the attractor.

Fig. 13. Cross sections of the attractor. (a) Locations of cross sections.

(b) Cross section.at vc =0.00. (c) Cross section at v =0.25.
1 Ci

(d) Cross section at v = 0.50. (e) Cross section at v =0.75.
W Ci

(f) Cross section at vQ =1.00 with related sets. (g) Cross

section at v = 1.25. (h) Cross section at v = 1.50.
W Ci

(i) Cross section at v = 1.75. (j) Cross section at v =2.00.
W Ci

(k) Cross section at v = 2.20. All of them have the same

scaling.

Fig. 14. A detailed geometric model for the attractor.

Fig. 15. Characteristic exponents for periodic orbits. (a) Stable limit

cycle. (b) Hyperbolic periodic orbit.
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Fig. 16. Power spectra for the three state variables: (a) v , (b) v ,
cl L2

(c) i Vertical scale : 10 dB/division. Horizontal axis :

normalized frequency.

Fig. 17. Power spectra observed with the circuit of Fig. 6 : (a) v_ , (b) v_
Ci C2

Fig. 18. 1-dimensional map for i at the cross section vc = -1.6.
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