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Abstract

A basic idea which underlies test-score semantics is that a
proposition in a natural language may be interpreted as a system
of elastic contraints which is analogous to a nonlinear program.
Viewed in this perspective, meaning representation may be
regarded as a process which (a) identifles the variables which are
constrained, and (b) characterizes the constraints to which they
are subjected. In test-score semantics, this is accomplished
through the construction of a test procedure which tests, scores
and aggregates the elastic constraints which are implicit in the
proposition, yielding an overall test score which serves as a meas-
ure of compatibility between the proposition, on the one hand, and
what is referred to as an explanatory database, on the other.

Test-score semantics provides a framework for the represen-
tation of the meaning of dispositions, that is, propositions which
are preponderantly, but not necessarily always, true. Another
important concept which is a part of test-score semantics is that
of a canonical form, which may be viewed as a possibilistic analog
of an assignment statement. The concepts of a disposition and
canonical form play particularly important roles in the representa-

tion of — and reasoning with -- commonsense knowledge.
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1. Introduction

During the past decade, the emergence of natural language processing as one of
the major areas of research in artificial intelligence has provided a strong stimulus for
the development of computationally-oriented theories of meaning, knowledge

representation and approximate reasoning.

The traditional approaches to the theory of meaning — among which the best
known are truth-conditional semantics, possible-world semantics, Montague semantics,
procedural semantics and, in a broader sense, model-thecoretic semantics — are based
on two-valued logic and the concomitant assumption that the extension of a predicate
is a crisply defined set in a universe of discourse. It may be argued, however, that, in
the case of natural languages, the extension of a predicate is, in general, a fuzzy set in
which the transition from membership to nonmembership is gradual rather than
abrupt. This is true, for example, of such commonly used predicates as tall man, loud
music, attractive woman; quantifiers! such as most, several, few; temporal quantifiers
such as frequently, once in a while, almost always; and qualifiers such as very likely,
gquite true, almost impossible, ete. Indeed, it is evident that almost all concepts in or
about natural languages are fuzzy in nature. Viewed in this perspective, it is hard to
rationalize the almost exclusive use of two-valued logic in the traditional approaches to
the semantics of natural languages.

In a departure from this tradition, we have described in a series of papers starting
in 1971, an approach to the semantics of natural languages based on the theory of
fuzzy sets and, more particularly, on possibility theory. During the past several years,
this approach has evolved into a meaning-representation system termed test-score
semantics (Zadeh, 1978b, 1981), which is computational in nature and which is based
on the premise that almost everything that relates to natural languages is a matter of
degree. Like almost all theories of meaning, test-score semantics is referential in
nature in the sense that it deals with the correspondence between expressions in a
language and their denotations in a universe, or family of universes, of discourse. How-
ever, unlike the traditional approaches to the theory of meaning, test-score semantics
does not make use of the machinery of first-order or intensional logic, and is based,
instead, on fuzzy logic - the logic of approximate or fuzzy reasoning. In what follows,
we shall present an informal exposition of some of the basic ideas underlying test-score
semantics and illustrate its application to the representation of the meaning of various
types of semantic entities, among them propositions, predicates, dispositions and com-

mands.



2. Composition of Meaning

The point of departure in test-score semantics is the assumption that the problem
of meaning representation is that of composing the meaning of a given semantic entity,
s, from a collection of fuzzy relations - termed the composants of s -- whose meaning

is assumed to be known by the addressee of the representation process.

As an illustration, assume that the semantic entity in question is the proposition
P Q Over the past few years Stan made a lot of money. Furthermore, assume that the

relations whose meaning is assumed to be known are:
(a) INCOME [Name; Amount; Year] ,

which is a collection of tuples, e.g., (Ted, 150,000, 1982), whose first element is the
name of an individual; whose second element is the income of that individual; and
whose third element is the year in which the income was made;

(b) FEW [Number; u)] ,

which serves to calibrate the meaning of the fuzzy number few by associating with
each real value of the variable Number, the degree, u, to which that number fits the
intended meaning of few; and

(c) LOT.OF. MONEY [Amount; u] ,

which calibrates the meaning of lof of money by associating with each value of Amount,
the degree, u, to which the value of Amount fits the intended meaning of lot of money.

We shall show at a later point how the meaning of p may be composed from the
meaning of its composants. What is important to note at this juncture is that the
choice of the relations in question reflects our assumption concerning the knowledge
profile of the addressee of the representation process. In this sense, then, the
representation of the meaning of p is strongly dependent on the choice of relations
from which the meaning of p is composed.

In its strict interpretation -- which is the interpretation underlying Montague
semantics — Frege's principle of compositionality (Hintikka, 1982) (Janssen, 1978)
requires that the meaning of a proposition be composed from the meanings of its con-
stituents. In test-score semantics, the composants of s are, in general, implicit rather
than explicit in s. Furthermore, their number is, in general, much smaller than the
number of constituents in s. As will be seen later, by allowing the meaning of s to be
composed from its composants rather than constituents, test-score semantics
achieves a higher expressive power than is possible under a strict interpretation of

Frege's principle of compositionality (Zadeh, 1983c).
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Since the composants of s serve to explain the meaning of s, they constitute, col-
lectively, a collection of fuzzy relations which is referred to as an ezplanatory data-
base, or ED, for short. In general, the procedure which describes the composition of
the meaning of s involves only the frames of the relations in ED, that is, their names,
their attributes and the domains of their attributes. In test-score semantics, the col-
lection of frames in ED is referred to as the explanatory database frame, or, more sim-
ply, as EDF. In effect, the role played by EDF in test-score semantics is analogous to
that of a collection of possible worlds in possible-world, or, more generally, moedel-
theoretic semantics (McCawley, 1981).

3. Testing and Scoring of Elastic Constraints

A basic idea which underlies test-score semantics -- and motivates its name -- is
that any semantic entity -- and, especially, a proposition - may be viewed as a system
of implicitly defined elastic or, equivalently, fuzzy constraints whose domain is the col-
lection of fuzzy relations in the explanatory database. Viewed in this perspective, the
meaning of a semantic entity, s, may be represented as a procedure which tests,
scores and aggregates the elastic constraints which are induced by s. In more con-
crete terms, assume, for simplicity, that s is a proposition, p. Representation of the
meaning of p through the use of test-score semantics involves, in general, the following
steps.

1. Selection of an appropriate explanatory database, that is, a set of fuzzy rela-
tions which collectively constitute the composants of p.

2. Explicitation of the elastic constraints C;, ..., G, which are induced by p.
For example, in the case of the proposition p 4 Susan is young, the implicit
constrained variable is the age of Susan and the associated elastic constraint
is characterized by the fuzzy predicate young. Less obviously, in the case of
the proposition p A Most students are young, the implicit constrained vari-
able is the proportion of young students among students, and the associated
elastic constraint is characterized by the fuzzy quantifier maost.

3. Characterization of each constraint G, 1 =1, ..., m, by a test which yields
the test score, 7y, representing the degree to which the constraint is satisfied.
Usually, the test score is represented as a number in the interval [0,1]. More
generally, however, a test score may be a fuzzy number or a
probability/possibility distribution over the unit interval. The test scores in
test-score semantics play a role which is somewhat analogous to that of truth
values in truth-conditional semantics.
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4. Aggregation of the partial test scores 7;,...,T» into a smaller number of
test scores 7, . . . , T, represented as an overall vector test score T,
= (... T) . (3.1)

In most cases k = 1, so that the overall test score is a scalar. The overall test
score serves as a measure of the compatibility of p with the explanatory data-
base, ED. Equivalently, 7 may be interpreted as the truth of p given ED or,
equivalently, as the possibility of ED given p. What is important to note is
that the meaning of p is represented not by the overall test score T, but by
the test procedure which computes 7 for any given ED.

As a simple illustration of the concept of a test procedure, consider the proposi-
tion p A Joan is young and attractive. The EDF in this case will be assumed to consist

of the following relations:
EDF A POPULATION [Name; Age; uAttractive] + YOUNG [Age; u] . (3.2)

in which + should be read as "and.”

The relation labeled POPULATION consists of a collection of triples whose first ele-
ment is the name of an individual; whose second element is the age of that individual;
and whose third element is the degree to which the individual in question is attractive.
The relation YOUNG is a collection of pairs whose first element is a value of the variable
Age and whose second element is the degree to which that value of Age satisfies the
elastic constraint characterized by the fuzzy predicate young. In effect, this relation
serves to calibrate the meaning of the fuzzy predicate young in a particular context by
representing its denotation as a fuzzy subset, YOUNG, of the interval [0,100].

With this EDF, the test procedure which computes the overall test score may be

described as follows:
1. Determine the age of Joan by reading the value of Age in POPULATION, with
the variable Name bound to Joan. In symbols, this may be expressed as

Age (Joan) = p, POPULATION [Name = Joan] . (3.3)

In this expression, we use the notation yR[X = a] to signify that X is bound to
a in K and the resulting relation is projected on Y, yielding the values of Y in
the tuples in which X = a (Zadeh, 1978b).

2. Test the elastic constraint induced by the fuzzy predicate young:
T1 = 4 YOUNG[Age = Age(Joan)] . (3.4)
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3. Determine the degree to which Joan is attractive:

Te = pattractios POPULATION[ Name = Joan] . (3.5)

4. Compute the overall test score by aggregating the partial test scores 7, and
T2. For this purpose, we shall use the min operator A as the aggregation
operator, yielding

TETIATL, (3.8)

which signifies that the overall test score is taken to be the smaller of the operands of
A. The overall test score, as expressed by (3.6), represents the compatibility of p &
Joan is young and attractive with the data resident in the explanatory database.

Remark. In the example under consideration, Joan has two attributes -- Youth and
Attractiveness — of which Youth is measurable in objective terms via Age while Attrac-
tiveness is subjective in nature. For this reason, the degree of attractiveness in the
relation POPULATION is tabulated directly rather than through a measurable attri-
bute. In so doing, we are implicitly taking advantage of the human ability to assign a
(possibly fuzzy) grade of membership in a class without a conscious employment of
quantitative criteria to arrive at its value.

As an additional illustration which relates to a semantic entity other than a propo-

sition, assume that s is a second-order fuzzy predicate, namely,

s Amany large balls . (3.7)

In this case, we shall employ the following EDF:
EDF J POPULATION [Identifier; Size] + (3.8)
LARGE [ Size; u] +
MANY [ Number; u] .

In this EDF, POPULATION is a collection of pairs in which the first element is a label
which identifies a ball, i.e., an identifier, while the second element is the size of that
ball; LARGE is a relation which calibrates the meaning of the fuzzy predicate large;
and MANY is a relation which calibrates the fuzzy number many by associating with
each numerical value of the variable Number the degree to which that value fits the
intended meaning of many.

1. Assume that POPULATION consists of a collection of n balls, by, .. . .b,, of

various sizes. Determine the size of each ball:
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Size (b;) = swe POPULATION[Identifier = b], i =1,...,n . (3.9)
2. For each ball, test the constraint induced by large:
Ti = 4 LARGE[Size = Size(b;)] , i=1,...,n . (3.10)
3. Count the number of large balls by adding the 7;: ?
TCount (LARGE.BALL) = Z;7; . (3.11)
4. Test the constraint induced by many:
T = JMANY[Number = ZCount (LARGE.BALL)] . (3.12)

which represents the overall test score yielded by the test procedure.

The intent of these simple examples is to provide an idea of how the meaning of a
semantic entity, s , may be represented by a test procedure which associates with
each instance of an explanatory database, ED, the degree to which that ED is compati-
ble with s . In the examples which we considered, the degree of compatibility is a sin-
gle number. More generally, however, and particularly in the case of a proposition
which is associated with presuppositions, the degree of compatibility may be vector-
valued.

4. Aggregation and Composition

In test-score semantics, the manner in which the partial test scores are aggre-
gated is left to the discretion of the constructor of the test procedure. It is helpful,
however, to have a collection of standardized rules for dealing with the aggregation and
combination of elastic constraints which are associated with conjunction, disjunction,
implication, quantification and modification. These standardized rules should be
regarded as default rules, that is, rules to be used when the context does not require
special-purpose rules which may provide a better fit to the intended mode of aggrega-
tion. The basic standardized rules 3 in test-score semantics may be summarized as fol-

lows.

Modification rules

If the test score for an elastic constraint C in a specified context is 7, then in the

same context:



(a) the test score fornot Cis1—7T (negation) . (4.1)
(b) the test score for very C is 72 (intensification) (4.2)
(c) the test score for more or less Cis 7V/% . (diffusion) (4.3)
Composition rules

If the test scores for elastic constraints C; and C; in a specified context are 7; and
Ta, respectively, then in the same context:

(a) the test score for C, and Czis T} A T2 (conjunction) (4.4)
(b) the test score for Cyor Cais T, v T2 (disjunction) (4.5)
(c) the test score for if C, then Czis 1 A (1-T;+72)., (implication) (4.8)

where A 4 min and v 4 max.

Quantification rules

These rules apply to semantic entities which contain fuzzy quantifiers, e.g., several
tall men, a few successes, it rained often, many maore cats than dogs, most Frenchmen
are not very tall, etc. In such semantic entities, a fuzzy quantifier serves to provide a
fuzzy characterization of an absolute or relative count of elements in one or more
fuzzy sets.

Since membership in a fuzzy set is a matter of degree, it is not obvious how the
count of elements in a fuzzy set may be defined. Among the various ways in which this
can be done, the simplest is to employ the concept of the power (DeLuca and Termini,
1970) or, equivalently, the sigma-count of a fuzzy set (Zadeh 1975, 1983), which is -
defined as the arithmetic sum of the grades of membership.* More specifically, assume
that F is a fuzzy subset of a finite universe of discourse U = {u,,...,u,} which
comprises the objects #,, ... ,u,. For convenience, F may be represented symboli-
cally as the linear form

F = ﬂl/u‘ + “a/ua +...+Il-n/7‘n N (4.7)

in which the term uy/w;,i =1,...,n, signifies that u;, O0su;<1, is the grade of
membership of %; in F, and the plus sign should be read as "and."

The sigma-count of F, denoted as ZCount (F'), is defined as the arithmetic sum
SOunt (F) ATy ,i=1,....n , (4.8)
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with the understanding that the sum may be rounded if necessary to the nearest
integer. Furthermore, one may stipulate that terms with grades of membership below
a specified threshold be excluded from the summation in order to keep a large number
of terms with low grades of membership from becoming count-equivalent to a small
number of terms with high grades of membership.

In the case of a pair of fuzzy sets, (F, G), the relative sigma-count, denoted by
LCount(F/ G), may be interpreted as the proportion of elements of F which are in G.
More explicitly,

TCount(F N G)
LCount(F/G) = S Count (G) " (4.9)
~ where F' N G, the intersection of ¥" and G, is defined by
I"‘i'nc(u) =pup(u) A pe(u), v e U . (4.10)

Thus, in terms of the membership functions of F' and G, the relative sigma-count of F
and G may be expressed as

Sipr(w) A pe(w)

BCrnt(F/ 6) = =y o)

(4.11)

The concept of a relative sigma-count provides a basis for computing the test

score for the elastic constraint induced by the proposition
plQA'sare B's , (4.12)

where A and B are fuzzy sets - or, equivalently, fuzzy predicates -- and @ is a fuzzy
quantifier such as maost, many, almost all, few, etc. More specifically, if ug is the
membership function of @, then

P ~ T = g (SCount(B/ 4)) , (4.13)

where 7 is the compatibility of p with an explanatory database whose constituents are
the fuzzy relations 4, B and @, and the arrow - should be read as “induces” or

"translates into.”
As an illustration of the rules discussed above, consider the proposition
p A Most Frenchmen are neither very tall nor very fat. (4.14)

The EDF in this case will be assumed to have the following relations as consti-

tuents:

EDF A POPULATION.FRENCHMEN [Name; Weight ; Height ] +
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FAT [ Weight; Height; u] +
TALL [ Height; u) +
MOST [ Proportion; u] .

In this EDF, the first relation is a listing of a representative group of Frenchmen, with

Weight and Height being the attributes of Name; the second relation serves to cali-

brate the fuzzy predicate fat as a function of Weight and Height; the third relation

calibrates the fuzzy predicate tall; and the last relation calibrates the fuzzy quantifier

most as a function of Proportion. Correspondingly, the test procedure with computes

the overall test score and thus represents the meaning of p assumes the following

form:

1.

Let Name; be the name of ith Frenchman in POPULATION. For each

Nameg,i =1, ...,m, find the weight and height of Name;:
Weight (Name;) = yegne POPULATION[Name = Name,] . (4.15)
Height (Name,;) = goigne POPULATION[Name = Name,;] . (4.18)

For each Name;, compute the test scores for the constraints induced by fat
and tall:

oy = , FAT[Weight = Weight (Name,) ; (4.17)
Height = Height (Namae,)]

Bi = , TALL[Height = Height (Name,)] . (4.18)

Intensify the constraints induced by faf and tall to account for the modifier
very. Using (4.2), the corresponding test scores may be expressed as:

'’ =o? ,i=1....m (4.19)
B = B . (4.20)

Modify the constraints induced by very fat and very tall to account for the
negation not:

1 -aiz (4.21)

o' = 1-a;”
B =1-6;"

1-82 . (4.22)

For each Name;, aggregate conjunctively the test scores for the constraints
induced by not very fat and not very tall:
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i=(1-a®) AQ1-8% , i=1....m. (4.23)

The resulting test score represents the degree to which Name; is not very fat
and not very tall.

8. By using the relative sigma-count, compute the proportion of Frenchmen who
are not very fat and not very tall:
R |
p= T (4.24)

= %{:f(l-a‘-z) A (1-83) .

7. Compute the test score for the constraint induced by most:
T = ,MOST[Proportion = p] . (4.25)

This test score is the desired overall test score for the proposition under con-
sideration, and the test procedure which computes T represents the meaning

of p.

8. Vector test scores

In the examples considered so far, the overall test score is a scalar. In the case of
the following example (Zadeh, 1981):

p A By far the richest man in France is bald ,° (5.1)
the overall test score assumes the form of an ordered pair,
T8(T0. ) .
in which 7 is the test score associated with the fuzzy presupposition
p° A There erists by for the richest man in France , (5.2)

and Tp is the degree to which the by far the richest man in France is bald. The presup-
position expressed by (5.2) is fuzzy by virtue of the fuzziness of the predicate by far
the richest man in France. What this implies is that the existence of by far the richest

man in France is a matter of degree.
To represent the meaning of p (5.1), we choose the following EDF:
EDF A POPULATION [Name; Wealth;uBald] + (5.3)
BY.FAR.RICHEST [ Wealth1; Wealth2;u] .
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In the first relation in (5.3), Wealth is interpreted as the net worth of Name and
pBald is the degree to which Name is bald. In the second relation, Wealth1 is the
wealth of the richest man, Wealth?2 is the wealth of the second richest man, and 4 is
the degree to which Wealth1 and Wealth2 qualify the richest man in France (who is

assumed to be unique) to be regarded as by far the richest man in France.

To compute the compatibility of p with the explanatory database, perform the fol-

lowing test.

1. Sort POPULATION in descending order of Wealth. Denote the result by POPU-
LATION ¢ and let Name; be the ith name in POPULATION 4.

2. Determine the degree to which the richest man in France is bald:

Tp = uBas POPULATION[Name = Name,] . (5.4)

3. Determine the wealth of the richest and second richest men in France:
W, = geaun POPULATION[Name = Name,]
Wy = yequn POPULATION ([ Name = Name,)] .

4. Determine the degree to which the richest man in France is by far the richest man

in France:

To = uBY.FAR RICHEST[ Wealth1 = w,, Wealth2 = wg] . (5.5)

5. The overall test score is taken to be the ordered pair
T= (Tg ’ Tp) . (5'6)

Thus, instead of aggregating T and T2 into a single test score, we maintain their
separate identities in the overall test score. We do this because the aggregated test

score

T=To A Tp
would be creating a misleading impression when 7, is small, that is, when the test
score for the constraint on the existence of by far the richest man in France is low.

More generally, the need for a vector test score arises when the degree of sum-
marization which is implicit in a scalar test score may be excessive in relation to the
purpose of meaning-representation in a particular context. As an illustration, consider

the proposition
p A Berkeley has a temperate climate |, (5.7)

and suppose that the intended meaning of p is represented by the following three
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propositions:
P & The average temperature in Berkeley is around 70° .
p2 & The fraction of hot days is small .

Pps A The fraction of cold days is small .

The EDF for p will be assumed to be the union of the EDF's for p;, P2 and p3, which

EDF, A AROUND[T;; Ts: p] .
EDF3 A HOT[T; u) + SMALL[ Proportion. ; u] .
EDF3 A COLD[T; ] + SMALL[ Praportion ; u] .

In AROUND, u is the degree to which a temperature, T,, is around Tg; in HOT, uis
the degree to which T is hot; in COLD, u is the degree to which T is cold; and in
SMALL, u is the degree to which Proportion is small. Note that all of these relations
serve to calibrate the meanings of the predicates which they represent.

Now suppose that the overall test scores for p;, pz and pg are 7, T2 and Ts, respec-
tively. We can compute the overall test score by aggregating these test scores, yield-
ing

TETIAT2ZA TS . (5.8)

On the other hand, for some purposes, the single test score represented by (5.8) might
be insufficiently informative. Then, a vector test score represented by the triple

7=(T], T2, T3) (5.9)

might be more appropriate.

8. Representation of the Meaning of Dispositions

A concept which plays an important role in natural languages is that of a disposi-
tion. Informally, a disposition is a proposition which is preponderantly, but not neces-
sarily always, true. For example, snow is whife is a disposition, as are the propositions
trees are green, small cars are unsafe, John is always drunk, overeating causes obe-
sity, etc. Technically, a disposition may be defined as a proposition with implicit fuzzy
quantifiers (Zadeh, 1983bc). This definition is a dispositional definition in the sense
that it, too, is a disposition. It should be noted that what is usually called common-
sense knowledge may be viewed as a collection of dispositions (Zadeh, 1983d).
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Usually, a disposition may be derived from a dispositional proposition by a
suppression of one or more fuzzy quantifiers. For example, by suppressing the fuzzy

temporal quantifier usually in the dispositional proposition
dp 4 Usually snow is white , (6.1)
we obtain the disposition
d 4 Snow is white . (8.2)
Similarly, by suppressing the fuzzy quantifier most of in the dispositional proposition
dp A Most of those who overeat are obese , (8.3)
we arrive at the disposition
d A Those who overeat are obese , (6.4)
which, in an associational sense of causality (Suppes, 1970) may be expressed as
d A Overeating causes obesity . (6.5)
As a further illustration, by suppressing the fuzzy quantifiers most and mostly in the
dispositional proposition
dp 4 Most young men like maostly young women , (6.8)

we obtain the disposition

d 4 Young men like young women . (6.7)

Frequently, a proposition with nonfuzzy quantifiers is intended to be understood as
a dispositional proposition. For example,

p A John is always drunk |, (8.8)
would usually be understood as
dp A John is frequently drunk , (8.9)

in which the fuzzy temporal quantifier frequently conveys the intended meaning of
always. (Note, however, that the fuzzy quantifier frequently in (6.9) cannot be
suppressed without distorting the intended meaning of p.) The replacement of a non-
fuzzy quantifier with a fuzzy quantifier is an instance of fuzzification.

More generally, the transformation of a proposition with implicit fuzzy quantifiers
into one in which the fuzzy quantifiers are explicit may be viewed as an instance of
ezplicitation. The process of explicitation constitutes the first step in representing the

meaning of a disposition.
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In general, explicitation is an interpretation-dependent process in the sense that
the restoration of suppressed fuzzy quantifiers and/or the fuzzification of nonfuzzy

quantifiers depends on the intended meaning of the disposition. As an illustration, con-
sider the disposition

d & Overeating causes obesity . (6.10)

The intended meaning of this disposition may be conveyed by the restored dispositional
proposition

dp A Most of those who overeat are obese . (8.11)
On the other hand, the intended meaning of the disposition
d A Heavy smoking causes lung cancer , (6.12)
which is similiar in form to (6.10), may be conveyed by the dispositional proposition
dp 4 The proportion of cases of lung cancer among |
heavy smokers is much higher than among nonsmokers.
Similarly,
d A Young men like young women (8.13)
has a number of different inerpretations, among them:
(a) dp A Most young men like most young women , (6.14)
and, what appears to be much more reasonable: '
(b) dp A Most young men like mostly young women . (8.15)

At a later point in this section, we shall use (8.15) to illustrate the representation of the
meaning of a disposition through the use of test-score semantics.

The concept of a dispositional proposition opens the door to the construction of a
number of other concepts with a dispositional flavor, e.g., dispositional predicate,
dispositional containment (in the sense of set inclusion), dispositional command,
dispositional preference relation, etc. For example, smokes in Virginia smokes
cigarettes; like in Young men like young women; like in Prenchmen are like Spanicrds;
loves in Ann loves men are dispositional predicates. Keep under refrigeration, Avoid
overeating, Stay away from bald men are dispositional commands; and Gentlemen
prefer blondes, Mike is a better tennis player than (Qaudine, Tokyo is much safer than

New York, are examples of dispositional preference or ordering relations.
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As an illustration of how the meaning of a dispositional predicate may be defined,

consider the proposition
d A Virginia smokes cigarettes , (6.18)
which is a disposition by virtue of containing the dispositional predicate smokes.
Asume that the intended meaning of d is conveyed by the proposition
p A On the average Virginia smokes at least a few cigarettes a day , (6.17)

in which smokes is used in its literal {nondispositional) sense. At this point, we can
employ test-score semantics to represent the meaning of p. Specifically, let the follow-
ing relations be the constituents of EDF:

EDF A RECORD[Day; Number] + (6.18)
FEW[ Number; u],

in which RECORD is a daily record of the number of cigarettes smoked by Virginia dur-
ing a representative period, say a month; and FEW is a fuzzy relation which calibrates
the meaning of the fuzzy number few.

The steps in the test procedure which represents the meaning of p may be
described as follows:

1. Llet Day; denote the ith day in RECORD,i =1,...,30. Determine the
number of cigarettes smoked by Virginia on Day;:
Number(Day;) = yumber RECORD[Day = Day;] . (6.19)

2. Compute the average number of cigarettes smoked by Virginia during the

period under consideration:
p= -é%-E‘MAmber(Dcyi) . (6.20)

3. Test the constraint induced by the fuzzy quantifier af least a few:
T = ,= FEW[Number = p] , (8.21)

in which = FEW represents the relation at least a few, and T is the overall test

score.

The ability to represent the meaning of a dispositional pred.icate is of use in
representing the meaning of complex dispositions. This aspect of the representa-
tion of the meaning of dispositions is illustrated by the following example (Zadeh,
1983b):
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d A Young men like young women , (6.22)
which will be interpreted as the proposition

P & Most young men like mostly young women . (6.23)

Now, in d the predicate
D A likes young women
may be viewed as a dispositional predicate, so that (8.23) may be rewritten as
P A Most young men are D . (6.24)

In this way, representation of the meaning of d (6.22) may be accomplished in two
steps: first, we construct a test procedure to represent the meaning of D, and
second, a test procedure is constructed to represent the meaning of p (6.24).

We shall assurne that the EDF for p consists of the following relations:
EDF A POPULATION [Name; Age; Sex] + (6.25)
LIKE [Name 1; Name 2; u] +
YOUNG|[Age; u] +
MUCH.HIGHER [ Proportion 1; Proportion?2; u] +
MOST [Proportion; u] .

In LIKE, u is the degree to which Name 1 likes Name 2; and in MUCH. HIGHER,
L is the degree to which Proportion 1 is much higher than Proportion2.

The meaning of D may be represented by the following test procedure:

1. Divide POPULATION into the population of males, M.POPULATION, and .
population of females, F. POPULATION:

H.POPULATION = ygmq .sge POPULATION [Sez = Male] (6.28)
F.POPULATION = ygmq 490 POPULATION [Sez = Female] ,

where ngme,age POPULATION denotes the projection of POPULATION on
the attributes Name and Age.

2. Foreach Name; .j =1, ...,K, in F.POPULATION, find the age of Name;:
A; = pgo F.POPULATION[Name = Name;] . (6.27)

3. For each Name; , find the degree to which Name; is young:
oy =, YOUNG[Age = 4;] , (6.28)
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where o; may be interpreted as the grade of membership of Name; in

the fuzzy set, Y¥, of young women.
4. For each Name; ,i =1, ...,L, in M. POPULATION, find the age of Name;:

By = sgo M.POPULATION[Name = Name,;] . (6.29)

5. TFor each Name;, find the degree to which Name; is young:

6‘ = » YOUNG[AQB = Bt] . (6.30)
where 6; may be interpreted as the grade of membership of Name; in the
fuzzy set, YM, of young men.

8. For each Name;, find the degree to which Name; likes Name; :

By = u LIKE[Neme 1 = Name, ;Name2 = Name;] , (6.31)
with the understanding that 8y may be interpreted as the grade of
membership of Name; in the fuzzy set, WL;, of women whom Name; likes.

7. For each Name;, find the degree to which Name, likes Name; and Name;
is young:
Y =% N By - (8.32)

Note: As in previous examples, we employ the aggregation operator min
(A) to represent the meaning of conjunction. In effect, ;; is the grade
of membership of Name; in the intersection of the fuzzy sets WL; and YW.

8. Compute the relative sigma-count of young women among the women
whom Name; likes:

p; = SCount (YW/ WL;) : (8.33)

_ TCount (YW N WL)
T Count (WL,)

=Ly
Z; By

= 2,' a!- /\ ﬂq
ZiBy
9. Compute the relative sigma-count of (not young) women among the
women whom Name; likes:

- (15:‘21_’\ By (6.34)
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10. Compute the degree to which p; and ; satisfy the constraint induced by
MUCH. HIGHER:

Ty = 4 MUCH.HIGHER|[ Proportion 1 = p;; Proportion2 = ;] . (6.35)

This test score represents the overall test score for the proposition
"Name; is D," and may be interpreted as the grade of membership of
Name; in the fuzzy set, D, of men who have property D.

We are now in a position to compute the overall test score for p. Thus, on con-
tinuing the test, we have

11. Compute the relative sigma-count of men who have property D among
young men:

p = ZCount(D/ YH) (8.38)

_ ZCount(D N YM)
T Count (YM)

= BT A\ b
Z; 6;

12. Test the constraint induced by MOST:
T = 4, MOST[ Proportion = p] . (6.37)
The test score expressed by (8.37) represents the overall test score for
the disposition d 4 Young men like young women.
As the final example in this Section, we shall consider the dispositional com-
mand:
¢ 4 Stay away from bald men . (8.38)
In general, to represent the meaning of a command, ¢, it is necessary to asso-
ciate with ¢ its compliance criterion, cc, which may then be viewed as the

definition of ¢. In the case of ¢ (8.28), the compliance criterion will be assumed to

be represented by the proposition

cc 4 Staying away from most bald men . (6.39)
To represent the meaning of cc (6.29), we shall employ the following EDF:
EDF A RECORD [Name; uBald; Action] + (6.40)
MOST [ Proportion; u] .
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In this EDF, the relation RECORD is the record of successive actions which consti-
tute the execution of ¢ over a representative period of time; uBald is the degree
to which Name is bald; and Action is a variable which takes the value 1 if Name is

stayed away from and O otherwise.
The steps in the test procedure are the following:
1. For each Name; in RECORD, i =1, ...,n, find (a) the degree to which
Name; is bald, and (b) the action taken: '
(2) wBald (Name;) = ,RECORD[Name = Name;] (6.41)

(b) Action (Name;) = guon RECORD[Name = Name;] .

2. Using the relative sigma-count, find the proportion of cases in which the
command is complied with:

_ 34 Action(Name,)uBold(Name,)

T, pBald(Name,) (6.42)
3. Test the constraint induced by the fuzzy quantifier most:
T = ,MOST[Proportion =p] . (6.43)

The computed value of T represents the degree of compliance over the period
under consideration; and the test procedure which yields 7 represents the mean-
ing of the dispositional command (8.38).

7. The Concept of a Canonical Form and its Application to the Representation of
Meaning

When the meaning of a proposition, p, is represented as a test procedure, it
may be hard to discern in the description of the procedure the underlying struc-

ture of the process through which the meaning of p is constructed from the mean-
ings of the composants of p.

A concept which makes it easier to perceive the logical structure of p and
thus to develop a better understanding of the meaning representation process, is
that of a canonical form of p, abbreviated as cf (p) (Zadeh, 1981).

The concept of a canonical form relates to the basic idea which underlies
test-score semantics, namely, that any semantic entity -- and, in particular, a pro-
position -- may be viewed as a system of elastic constraints whose domain is a col-
lection of relations in the explanatory database. Equivalently, let X, ... ,X, be a

collection of variables which are constrained by p. Then, the canonical form of p
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may be expressed as

cf(p)AXis F , (7.1)

where X = (X;, ... ,X,) is the constrained variable which is usually implicit in p,
and F is a fuzzy relation, likewise implicit in p, which plays the role of an elastic
(or fuzzy) constraint on X. The relation between p and its canonical form will be
expressed as

p-oXisF, (7.2)

signifying that the canonical form may be viewed as a representation of the mean-
ing of p.

In general, the constrained variable X in cf (p) is not uniquely determined by
p. and is dependent on the focus of attention in the meaning-representation pro-
cess. To place this in evidence, we shall refer to X as the focal variable.

As a simple illustration, consider the proposition
p 4 Janet has blue eyes . (7.3)
In this case, the focal variable may be expressed as
X A Color (Eyes (Janet)) ,

and the elastic constraint is represented by the fuzzy relation BLUE. Thus, we

can write

p - Color (Fyes (Janet)) is BLUE . (7.4)

As an additional illustration, consider the proposition
p A Dick is much taller than Nina. ~ (7.5).
Here, the focal variable has two components, X = (X}, Xz), where
X, = Height (Dick)
Xa = Height (Nina) ;

and the elastic constraint is characterized by the fuzzy relation MUCH.TALLER
[Height 1; Height2; u], in which u is the degree to which Height 1 is much taller
than Height2. In this case, we have

p - (Height (Dick), Height (Nina)) is MUCH. TALLER . (7.8)

To meke the meaning of a canonical form more precise, it is necessary to
introduce the concept of a possibility distribution (Zadeh, 1978a). Specifically, let
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X be an n-ary variable (X;, ... ,X,;) in which X;,i =1, ... ,n, takes values in a
universe of discourse U}, implying that X takes values in U = U; X UaX - - * X Up.
Informally, the possibility distribution of X, expressed as Iy, is the fuzzy set of
possible values of X, with the understanding that the possibility that X may take a
value u € U, written as Poss {X = «}, is a number in the interval [0,1].

In terms of the possibility distribution of X, the canonical form of p may be
interpreted as the assignment of F to Ily. Thus, we may write

poXisF-Ily=F, . (7.7)
in which the equation

nx =F (7.8)
is termed the possibility assignment equation (Zadeh 1978b). In effect, this equa-

tion signifies that the canonical form cf (p) & X is F implies that
Poss{iX=ul=up(u) , velU, (7.9)
where up is the membership function of F. It is in this sense that F, acting as an
elastic constraint on X, restricts the possible values which X can take in U. An
important implication of this observation is that a proposition, p, may be inter-

preted as an implict assignment statement which characterizes the possibility dis-
tribution of the focal variable in p.

As an illustration, consider the disposition
d 4 Overeating causes obesity , (7.10)
which upon restoration becomes

p A Most of those who overeat are obese . (7.11)

If the focal variable in this case is chosen to be the relative sigma-count of
those who are obese among those who overeat, the canonical form of p (7.11)
becomes

T Count (OBESE/ OVEREAT) is MOST , (7.12)
which in virtue of (7.9) implies that
Poss {Z Count (OBESE / OVEREAT) = u} = uyasr(u) . {7.13)

where uygsr is the membership function of #MOST. What is important to note is
that (7.13) is equivalent to the assertion that the overall test score for p is
expressed by
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T = pygst(ECount (OBESE / OVEREAT)) , (7.14)
in which OBESE, OVEREAT and MOST play the roles of composants of p.

It is of interest to observe that the notion of a semantic network may be

viewed as a special case of the concept of a canonical form. As a simple illustra-
tion, consider the proposition

P A Ron gave Shelley a red pin . (7.15)
As a semantic network, this proposition may be represented in the standard form:
Agent (GIVE) = Ron (7.16)
Recipient (GIVE) = Shelley
Time (GIVE) = Past
Object (GIVE) = Pin
Color (Pin) = Red

Now, if we identify X, with Agent (GIVE), X, with Recipient (G/VE), etc., the seman-
tic network representation (7.16) may be regarded as a canonical form in which
X= (X1. e .Xs). and

X 1 = Ron (7. 17)

Xz = Shelley

Xa = Past

Xq, = Pin

Xg = Red
More generally, since any semantic network may be expressed as a collection of
triples of the form (Object, Attribute, Attribute Value), it can be transformed at
once into a canonical form. However, since a canonical form has a much greater
expressive power than a semantic netowrk, it may be difficult to transform a

canonical form into a semantic network. A simple example of a proposition for
which this is true is

p A Over the past several years the combined income of (7.18)

Patricia's close friends was about half a million dollars.
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Concluding Remark

We have described some of the basic ideas underlying test-score semantics
and illustrated its application to the representation of the meaning of proposi-
tions, predicates, dispositions and commands. These ideas are simple in nature
and, with a little practice, it is easy to learn how to use test-score semantics to
represent the meaning of almost any semantic entity through the construction of
an explanatory database and a test procedure. What is much more difficult, how-
ever, is to write a program which could construct an explanatory database and a
test procedure without human assistance. This is a longer range problem whose
complete solution must await the development of a substantially better under-
standing of natural languages and knowledge representation than we have at this

juncture.

Notes

1. It should be noted that a quantifier may be viewed as a second order predi-
cate.

2. As will be seen presently, this mode of counting yields the so-called sigma-
count of large balls. An alternative way of counting the number of large balls
is described in Zadeh (1981).

3. Standardized rules for aggregation and combination may be likened to
ready-made clothing.

4. A more detailed discussion of various types of counts may be found in Zadeh
(1981, 1983a) and Dubois (1982). Note that the power or the sigma-count of a
fuzzy set may be viewed as a special case of its measure (Zadeh, 1968). '

5. This proposition is a fuzzy version of the familiar example " The King of France
is bald,"” which is associated with the presupposition "There ezists the King of

France."
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