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Abstract

In this paper we extend the results on the multiple time-scale structure

for linear autonomous systems of the form

x =Aq(e)x

(c.f. Coderch et ai.[l]) to nonlinear autonomous systems. Our main result is

in obtaining conditions under which the linearized system and the nonlinear

system around an equilibrium point have the same time-scale structure.
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Section 1 Introduction

Recently Coderch et a£.[l] carried out a detailed analysis of the multiple

time-scale behavior of singularly perturbed linear systems of the form

x=A0(s)x (1.1)

where A(e) is analytic in the small parameter e e [0, e0]« Here we extend

there results to the nonlinear case

z=g(z.e) (1.2)

where g € C, r some large integer. Our contribution is in showing under

what conditions the nonlinear system has the same multiple time-scale

behavior as the linearized system locally around some equilibrium point.

In the following we briefly review the results of Coderch et ol.[l]. Then

we state some results from center manifold theory and some results

obtained by Fenichei for nonlinear singularly perturbed systems with two

time-scales. Armed with these results we then consider a procedure which

uncovers the multiple time-scale structure of a nonlinear system in a step by

step manner reminiscent to that developed by Coderch et aZ.[l].

In the following we will decompose (1.2) to the form

z = ef(x,y,e) (1.3a)

y=g(x,y,e) (1.3b)
When we consider the above system at the slow time-scale T=t/ s and set e=0

we obtain

x=f(x,y,0)

Q= g(x,y,0)

which is in the semistate form (see Newcomb[7]). Thus, we see that the

approximate evolution of the system (l.3a,b) on the time scale t/e is

described by a semistate equation. More generally, the system (1.2) will



evolve at several time-scales t, t/c, t/e2, ... . The approximate model of (1.2)

at time-scales t/e, t/e2, ... etc. will be in the semistate form. Thus, the sys

tems (1.2) we study are related to semistate systems.

Section 2 linear Case-Review and Preliminaries

Coderch et oi.[l] considered the linear autonomous system

x=A0(e)x(t) (2.1)

where Aq(e) is analytic in s and for all e € [0, e0] <*(Aq(e) c C (the closed left

half plane). The above system is said to have well defined behavior at time-

scale t/a(e) where a() is an order function (a:[0,e0]-*IR+; a(0) = 0, and ot(-)

continuous and monotone increasing), if there exists a continuous matrix

Y(t) such that, for and <5>0, T<«

elo tf^n"expfi4o^/a(E)i" r(')" =0 (2-2)
The system (2.1) is said to be regularly perturbed if

Si1 <BP" exP*4)(£)* i " expfAo(0)* i| |=0 (2.3)
singularly perturbed otherwise. In the case where (2.1) is regularly per

turbed then Y(t) can be chosen to be the constant matrix Pq, the zero eigen

value projection of Aq(Q), for any time-scale. Thus for regularly perturbed

systems no interesting behavior occurs at different time-scales. Coderch et

al. [1] show that (2.1) is singularly perturbed if and only if Ao(e) drops rank

when £=0. In the following we assume this is the case and hence we are deal

ing with a singularly perturbed system.

A matrix A is said to have semisimple null structure (SSNS) if its zero

eigenvalue is semisimple. Equivalently A has SSNS if there exists a change of

basis such that it is of the form



0 01f. (2.4)

where An is nonsingular. The extension of the above definition to A0(s) is

called the multiple semisimple null structure (MSSNS) condition. We show

m [2].[3] .that AQ(s) satisfies the MSSNS condition if and only if there exists

an analytic change of basis T(s) such that AQ(e) can be transformed to:

*o(e)

«uw

0 CmAn(e)

where 4(0) are nonsingular for i=0 m. Here for simplicity we assume

that Aq(e) has full normal rank. AQ(e) is said to have the multiple semistabil-

ity (MSST) condition if ff(4(0))c<f , for i=0 m in (2.5). Coderch et

ai.[l] show that only under the MSST condition does (2.1) have weLI defined

time-scale behavior at all time-scales. The following claim also holds (assume

for simplicity that AQ(e) is in the form (2.5))

Claim 2.1 If A0(s) satisfies the MSST condition then for any <5>0 and T<°°

l) *m iSWn' lexPW»W

exp(I0(0)*j • 0
/ •

0 • 0

0

• exp|4(0)J* •

0' • • /

u) lim tf^Pnl |expMoW'/«M

fori=l, . . . ,m-l and

(2.5)

(2.8a)

(2.6b)



•ixi) lim sup I Iexp{4o(e)r/em{

0 • 0

0

0 • expi4n(0)M

(2.6c)

From the above claim it follows that the reduced ordered subsystems

(obtained via (2.5))

x'^fOjxj (2.7)
approximate the nontrivial behavior of the overall system at the time-scale

t/e*. Moreover any solution x'(t) of (2.1) is of the form

*2*t*i<*i0 +o(l)
i-0

(2.8)

where xt(-) are solutions of (2.7) with the appropriate initial conditions and

** =

Following we extend the above results to the case where Aq(e) is no longer

analytic in c but continuous.

Consider the autonomous linear system

i=A(e)x (2.9)
where A(e) is C (instead of analytic) in z , e e [0,e0]. A(e) has a Taylor

series expansion around e=0 of the form:

A(e)= A0 + eAx + ••• + 4n + e*+li(e) (2.10)
where m+Kr and Z(-) continuous. Consider applying our results for the

analytic case to the truncated series

A(e) = A0 + sAx* ••• +4 . (2.11)
Assume A{e) has MSST and has full normal rank. This implies there exists an

analytic change of basis T(e) which diagonalizes A(e). The original linear



operator A(s) in the new basis is of the form:

T(e)A(z)T-1(e) =

Aq(e) _
Ci4i(e)

0 EmAm(E)

where all the 4(0) are exponentially stable for i = 0,...m. If we assume that

fn^m then the time-scale structure of A(s) is apparent in (2.12) {i.e., the

system is sufficiently smooth to uncover the time-scale structure in its trun

cated Taylor expansion}. Following we assume this will always be the case and

define the MSST condition for an operator if it has an expansion as in (2.12).

Note this is a generalization of the MSST condition for the class of analytic

operators with full normal rank.

+ 0(emM) (2.12)

Section 3 Nonlinear Systems

In this section we consider nonlinear systems of the form

2=g(z,e) (3.1)
with q G C*. Fenichel [4] gives a complete analysis for the behavior of these

systems in the two time-scale case. We will use his Local results around an

equilibrium point. Our contribution consists of obtaining conditions under

which the multiple time-scale structure for local solutions around an equili

brium point is identical to that of the linearized equation. The main tool we

will use for studying singularly perturbed nonlinear systems is center mani

fold theory. In the following subsection we first state a local version of center

manifold theory as found in Carr [5] and then state the results from Fenichel

[4] that we shall need. In the previous section we relaxed the analyticity

requirement. This was a necessary preliminary step because there is no

guarantee that our system will remain analytic in e once we restrict it to it's



center manifold.

Section 3.1 Center Manifolds and Geometric Singular Perturbation Theory

Fenichel [4] shows that under certain conditions the study of singularly

perturbed nonlinear systems can be simplified by studying their behavior on

the center manifold. In the following we first describe the local theory for

center manifolds. We use Carr's approach ( c.f. [5] ) which is well suited for

our purposes. The proofs can be found in Carr [5].

Consider the system

x=Ax + f(x,y) (3.2a)

y = By +g(x,y) (3.2b)

where /,g e C , /(0,0)=0, ^(0,0)=0, /'(0,0)=0, 0'(O,O)=O. x e IRn, y e JRm

and A and B are constant matrices such that all the eigenvalues of A have

zero real parts while all the eigenvalues of B have negative real parts (Here

prime denotes the Jacobian with respect to both arguments).

Definition 3.1

The graph of the function y =h(x) is a local center manifold for (3.2) if

it is an invariant manifold and if h(0)=0, /i'(0)=0.

Theorem 3.2

There exists a center manifold for (3.2), graph of the function y -h(x) ,

|x | <6 (some <5>0 ) where h is C~l smooth .

The flow on the center manifold is governed by the n-dimensional system

u=Au +f(u,h(u)) (3.3)

The following lemma and theorem link the trajectories on the center mani

fold to those with initial conditions in a neighborhood of the equilibrium



point.

Lemma 3.3

Let (x(t),y(t)) be a solution of (3.2) with \(x(0),y(0))\ sufficiently small.

Then there exists positive C\ and jjl such that

|i/(O-M^(O)l^ie-^|y(0)-M^(0))| (3.4)
for all teO.

Theorem 3.4

Assume that the zero solution of (3.2) is stable. Let (x(t),y(t)) be a solu

tion of (3.2) with (x(0),y(0)) sufficiently small Then there exists a solution

u(t) of (3.3) such that as t -»«»

*(t)-u(t)"+0(e-*) (3.5a)

y(*) = /i(u(O) + 0(e-*) (3.5b)
where 7>0 is a constant dependent only on the matrix B e IR'mxm

As an example of the application of center manifold theory consider the

singularly perturbed system

x=f{x,y%z) (3.6a)

zy = By -¥g{x,y,z) (3.6b)
where /(0,0,0)=0 flr(0,0,0)=0, flf'(0,0.0)=0 and a(B)c<t . If we now consider

the faster time-scale r-t/z and augment the state space by £ (suspension

technique) we have

x' = ef(x,y,B) (3.7a)

e' = 0 (3.7b)

y'=By +g(xty,s) (3.7c)
Theorem 3.2 can now be applied to the above system. Note that the Jacobian

for (3.7) is of the form



0 0 0

0 0 0

P 0 B,
hence there exists a function y=h(x,E) whose graph is a center manifold for

(3.7). On the center manifold the dynamical system is governed by the equa

tion

x' =e/(x,/i(s,e),£):=e/(x,e) (3.8)

Studying the system on the center manifold reduces the dimensionality of

the problem and the dynamics occur at a slower time-scale than for the

overall system. For this reason the center manifold is sometimes referred to

as the slow manifold. Lemma 3.7 implies any arbitrary solution starting

sufficiently close to the equilibrium point tends to the center manifold at an

exponential rate at the fast time-scale. For the autonomous case x=Aq(e)x

an analogous step was performed when obtaining the operator Ai(e) (see

Coderch et al.[l] ). In that case we restricted the study to the range space of

the 0-group eigenvalue projection Pq(b). This yielded

Pq(e)x = P0(z)AQ(e)x = eAi(t)Pfa)z (3.9)

In fact for the "nonlinear system"

&-A0(e)x (3.10a)

e = 0 (3.10b)

the center manifold is \ R(Po(e))x(-Bq,e0) j. (Here R(P0(s)) is the range

space of Pq(e)).

Example (3.6) is a special case of a singularly perturbed system- the

separation of slow and fast variables is explicit. Fenichel considers the more

general case

z=q(z,B) (3.11)

where q eC", z e M an open subset of Rn. Under certain conditions



similar to the SSNS condition for the linear case (3.11) can be changed to the

form (3.7) after a coordinate change. Fenichel [4] defines (3.11) to be a

singularly perturbed problem if for e*0 the equilibrium points of (3.11) are

isolated while at e=0 a subset of the equilibrium points forms a i/-dimensional

manifold A (i/<n). Coderch et al. [l] obtain an analogous definition for the

linear autonomous system x=Aq(e)x by showing it to be a singularly per

turbed problem iff Aq(e) drops rank at e=0 (if we assume A0(e) has full nor

mal rank then the definitions are equivalent).

Consider now the case when (3.11) is singularly perturbed. Linearizing

(3.11) around some zQ € Ayields

tfi" =/tyi(z0fO)d'z (3.12)

The square matrix Diq(zQ,Q) has v zero eigenvalues whose eigenvectors span

the tangent space of A at Zq. These are called trivial with the remaining

eigenvalues nontrivial. Fenichel shows that under the assumption that the

nontrivial eigenvalues all have non-zero real parts then the system equations

on the center manifold can be studied at the slower time-scale (cf.[4]

Theorem 9.1 p75 ). In analogy to the linear case we have the following

definitions.

Definition 3.5 (Nonlinear semi-simple null structure)

The system (3.1) is said to have nonlinear semisimple null structure

(NLSSNS) at the point zq if ail its nontrivial eigenvalues have non-zero real

part.

Note that in particular Diq(z0,0) has SSNS.
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Definition 3.6 (Nonlinear semistable)

The system (3.1) is said to have nonlinear semistability (NLSST) at the

point z0 if all its nontrivial eigenvalues have negative real parts.

Under the NLSST condition we have the following lemma.

Lemma 3.7

If the system (3.1) has nonlinear semistability at z0 then there exists a

local change of coordinates

<p(zfs) = (x,y) ,x € 1RV . y e 1RM . tp € C"1, <p(zQ,0)=(0,Q) such that (3.11) is

locally of the form

z=ef(x,y,E) (3.13a)

y=g(x,y,e) (3.13b)

with / (0,0,0)=0, g (0,0,0)=0 and £20(0,0,0) exponentially stable.

Proof

The proof follows directly from Lemma 5.1 and Theorem 11.1 in Fenichel

w.

Remarks

i) The SST condition in the linear case suffices to obtain a linear change

of basis T(e) so that the system becomes:

• _ Uo(s) 0
Z"|0 eA1(e) (3.14)

i\w/

similar to (3.13).

ii) The lemma above yields the decoupling of the state variables into the

'slow' and 'fast* variables.
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iii) In the definition of NLSSNS and NLSST the system is assumed to be

singularly perturbed (as defined by Fenichel) if it has trivial eigenvalues.

This assumption is independent of the structure of the linearized system

(i.e., SSNS or SST).

In the following section we generalize the MSST condition to the non

linear case. In particular we consider the connection between the multiple

time-scale structure of the linearized system and the time-scale structure of

the nonlinear system locally around some equilibrium point.

3.2. Nonlinear Multiple Time-Scale Structure

Assume (3.1) has NLSST at the point z0. Then by Lemma 3.3 under a suit

able change of coordinates it is of the form (3.13). By NLSST, it follows that

the Jacobian

£i?i/(0,0,e) e02/(O,O,e) , .
/^(O.O.e) A£(0.0.e) <•*.">;

satisfies the SST condition. This implies that there exists an analytic change

of basis (x,y)-*T{e;){zty) which diagonalizes (3.15) up to order 0(em). Here m

is assumed sufficiently large such that the time-scale structure of (3.15) is

determined by smaller powers of e as described in §2. The fact that

D& (0,0,0) is exponentially stable implies that

T'(0)=|F j
where F=D2g(Q.0,Q)~1Dig (0,0,0). Hence the system equations in the new

coordinates remain in the form (3.13). Thus assume we have already per

formed the change of coordinates and that

A2/(0.0,e)~0(em) (3.16a)

0i0(O.O,e)~O(em) (3.16b)
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in (3.15). Applying the suspension technique to (3.13) and expanding in a

Taylor series around (0,0) yields

x = Ef(x,y,s) (3.17a)

"e =0 (3.17b)

y =D2g(0,0,0)y + D3g (0,0.0) e + g{x,y,s) (3.17c)

This is almost in the form (3.2) used in Theorem 3.2 . In order to achieve this

we remove the linear term in e in (3.17c) by performing another change of

basis (x,ytE)-*N(x,y,E) where N is of the form

/ 0 0
OIF ~ (3.18)
,0 0 /I

with F = \(Dig(0.0,0))~lDsg(0,0,0)]. Again assume this has been done and set

2?aflr(0,0,0)=0 in (3.17c). Now we can apply Theorem 3.2 and deduce the

existence of a function t/=/i(x,e) whose graph is a center manifold for (3.7).

The differential equation on the center manifold can be reduced to:

il =e/(u,/i(u,e),e):=e/(u,e) (3.19)

Having obtained the above preliminary results by assuming the equili

brium point Zq satisfies the NLSST condition we shall now consider first the

case where the linearized system (3.12) also satisfies the MSST condition for

exactly the two time-scales t and t/e (i.e. in (3.12) Diq(zQt0) has eigenvalues

of order 0(1) and 0(e) but none of order 0(e2). This implies that in the new

coordinates (x.y), Dxf (0,0,0) in (3.15) is exponentially stable. Following we

describe the time-scale behavior of the nonlinear system by obtaining

reduced-order models approximating the overall system at these two time-

scales. Consider the reduced order equation (3.19) we have

Dj(0,0)^Dxf(0,h(0,0\0) +Dzf' (Q,h(0,Q),0)Dih(0,0)
Since /i(0,0)=0 and Z?i/(0,/i(0,0),0) is exponentially stable it follows that
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£i/(0.0) is exponentially stable (Dzf (0,0,0)=0 by (3.16)). Thus our reduced

system is regularly perturbed and locally around u=0 the solutions on the

center manifold behave like 0(e^-7*€)) for some y>0. At the fast time-scale t

we have for any T<°°

lS8- tfHfol K*(*>.v(0) -(*(o).nO)lI =0 (3.20)
where Y() solves the differential equation

fy) =Bs9 (0.0,0) Y(t) +g(x(0),Y(t),0) (3.21)
with initial condition Y(0)=y(Q). The above follows from the continuity of the

solution of the ordinary differential equation (3.17) with respect to the

parameter e on a compact interval. At the slow time-scale we have the fol

lowing approximation. For any <5>0

11m «o \\(x(t/E),y(t/E))-(X(t)MX(t),0))\ | =0 (3.22)

whereX() solves

k(t)=f(X(t),h(X(t),0),0) = f(X(t),0) , *(0)=x(0) (3.23)
To prove this requires a little more work. By the MSST condition it follows

that the zero solution of (3.17) is stable (Le.

| \(x(t),y(t)\ | =0(| |(x(0).y(0),e)| |) for *=s0 and sufficiently small initial con

ditions). Therefore we can apply Theorem 3.4 to deduce that

x(t) =u(t) + 0(e-*) andy(t)=h(u(t),E) + 0(e"^) for some y>0 and where

u(t) solve (3.19) withii(0)=x(0). Thus for any <5<0 we have

lim sup \\(x(t/s),y(t/E))-(u(t/E),h(u(t/e),B))\ | =0 (3.24)

For any 7,<« we have

lim. SHPJ N('/«) ~*(0I I =0 (3.25)
by continuity with respect to the parameter e. The reduced equation being

regularly perturbed implies Ve e (0,e0], 3 K>0 and y>0 such that V

r<«andf>T
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||u(*/e)||<Ae->'r

\\X(t)\\<Ke-yr
Thus

14

(3.26a)

(3.26b)

lim sup \\u(t/s)-X(t)\\<lim sup \\u(t/e) - X(t)\\ + ZKe -*T
c*Q1 e [o,<•»] eKD ( e [o. 7*1

for any r<°°. Hence

ljm« Iff-]1 W«> -*(OI I=0 (3.27)
which together with (3.24) implies (3.22). Locally around (x,y)=(0,0)

(x(t),y(t))=0(e~yt) + 0(e"ft/t) thus having nontrivial behavior only at

time-scales t and t/e.

Proposition 3.8

Assume (3.1) has nonlinear semistability (NLSST) at z0 and Diq(z0,E)

satisfies the MSST condition for the two time-scales t and t/e then the solu

tions of (3.1) starting in a neighborhood of z0 have two time-scale with

corresponding reduced-order approximating equations.

The extension of the above proposition to the multiple time-scale case

appears obvious but as we show in the following example care must be taken

when more than the two time-scales t and t/e are involved.

Example 3.9

l)=
—e2x —exy
-y-5e =/(^.|/.£)

For this example we have

Df(0,0,s) =

Hence the NLSST condition is satisfied. Nonetheless asymptotically as

f-»co x(t) approaches the solutions of

-ez 0
0 -1

(3.28)
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u=4e2u. u(0)=x(0) (3.29)
This can be seen by inspection. It also follows from the fact that the center

manifold for (3.28) is y= -5e and its reduced equation is u=4ezu. (Note that

the above center manifold differs from that of Theorem 3.2 because (3.28) is

not in the form (3.2)). Thus our system (3.28) is unstable around (x=0,y=0).

The previous theorem cannot be generalized, as is, to the multiple

time-scale case because even though the linearization around the equili

brium point satisfies the MSST condition when we consider the linearization

of the reduced system on the center manifold it need not satisfy the MSST

condition as it occurred in the previous example. For the two time-scale case

the property of the center manifold /i(0)=0 implies that the Jacobian of the

reduced equation (3.19) is exponentially stable thus eliminating this possibil

ity from occurring. In order to extend our results to the multiple time-scale

case we would like the reduced equation (3.19) to retain the same MSST con

dition for its linearization around the equilibrium point as that for the origi

nal system except that the fastest time-scale is eliminated. In this way a step

by step procedure from one reduced equation to another will result in a com

plete time-scale decomposition for the original system. In order to accom

plish this we add the following assumption.

Assumption 3.10 Persistence of the Equilibrium Point z0

0 = g(z0,e) for e small

Suppose Diq(zQ,s) satisfies the MSST condition then (3.15) also satisfies the

MSST condition in the same manner. If we assume (as discussed previously)

that the off diagonal terms are of some order 0(em) for large enough m (i.e.,

we assume the slowest time-scale is t/ew, m,<m ) then Z?i/(0,0,e) must also

satisfy the MSST condition with one less time-scale than the original system.
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The Jacobian of the reduced equation (3.19) satisfies

/?1/(0,e)=i?l/(0,/i(0,e).e) + £8/(0./L(0(e)le)£i/i(0,e)
Now the persistence of the equilibrium point z0 implies that (x.y.e) = (0,0,e)

is an equilibrium point for (3.17). This implies that (O.O.e) is on the center

manifold. Therefore h(0,s)=0. This fact plus the fact that I?2/(0,0,e)~0(em)

implies that Dif(Q,s) is equal Z71/(0,0,e) up to order 0(em) so that they

satisfy the same MSST condition. Hence we are now in a position to extend

the definition of the MSST condition to the nonlinear case. If we assume that

Zq is a persistent equilibrium point and Diq(zQ,E) satisfies the MSST condi

tion then the linearization of the reduced equation

u = e/(u,e)

eDi/(0,e) satisfies the same MSST condition as the original system except

that the fastest time-scale is eliminated. If we assume the reduced equation

(3.19) satisfies the NLSST we can repeat the whole procedure and obtain

another reduced equation whose linearization has two time-scales less than

the original system. Thus if we continue in this fashion the process ends at

the step where we are at the slowest time-scale and the reduced equation is

regularly perturbed. We make the following definition:

Definition 3.11 (Nonlinear Multiple Semistability )

The system is said to satisfy the nonlinear semistability assumption at

Zq if Zq is a persistent equilibrium point, Dxq(zQ%z) satisfies the MSST condi

tion and each subsequent reduced equation satisfies the NLSST condition .

As was done in (3.19) we must choose at each step a center manifold to

obtain the reduced system. As these manifolds are not unique the question

arises as to whether the choice of manifolds will effect the NLSST condition

for the reduced equation. We show below that this is not the case. If we
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consider the set of equations (3.17) since D&(0,0,0) is exponentially stable it

follows by the implicit function theorem that there exists a unique function

y=p(x,e), with p(0,0)=0 and p(v) continuous in a small neighborhood

around (x,e)=(0,0) such that

O= J0Zff(O.O,O)p(x,e) + g(x,p(x,s),s) (3.32)

The equilibrium points for the reduced system (3.19) are the solutions of

0 = /(x,/>(x,0).0) (3.34)

Thus the reduced system (3.19) is singularly perturbed if (3.34) has a mani

fold of solutions in IR"regardless of the center manifold chosen. Similarly for

the subsequent reduced equations where we now obtain the equilibrium

points by studying the reduced equation

u=f(u,p(utE),s)

which is independent of the choice of center manifolds.

Proposition 3.12

If (3.1) satisfies the NLMSST condition around the point z0 then the solu

tions of (3.1) in a neighborhood of z0 have the same time-scale structure as

the linearized system. Furthermore reduced-order models approximating

the overall system at specific time-scales t/e4 can be obtained.

proof

Consider the series of reduced equations constructed from the NLMSST

condition. If a reduced equation derived from (3.17) is stable around the

equilibrium point (0,0) it follows by Lemma 3.3 that the general equation is

also stable around the equilibrium point (0,0,0). At the slowest time-scale the

Jacobian of the reduced equation is exponentially stable implying stability.

Thus working backwards it follows that all the reduced equations are stable
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around the equilibrium point and thus the overall equation (3.1) is stable

around z0. We can thus apply Theorem 3.4 at each step of the process to

show that any solution of (3.1) is of the form

z(*) =2o0r7'fii<) (3.35)

where 7t>0. Thus excluding nontrivial behavior at all slower time-scales t/efc

for k>ffi. As in the two time-scale case reduced-order differential equations

can be constructed which approximate the solution of the overall system at

specific time-scales. For the time-scale t (3.20) holds where Y() solves

(3.21). We also have

lim supn\ \(x(t/B)-y(t/z)) - (X(*).M*(O.0)| I=0 (3.36)
where X(-) solves (3.23). If we consider the reduced equation (3.19) at the

slower time-scale t/e: it=/(u,e), by another change of basis <p it can be

transformed to:

^i =e/i(^i.^2.«) (3.37a)

U2 = gi(ultu2,e) (3.37b)

similar to (3.17). We then have

lim sjgp^l \{x(t/t),y{t/s)) - (f^iuM, ^(0)./i(5-1(ui(°). W)).Q) 11 =0 (3.38)
where Uz solves

#2=0i(*Ui(O).C/2.O) . U2(0)=u2(0) (3.39)
and

Hm ag> \|(»«/e2).(v(«/e2)) -?"l( rJl(t).kl{rJl(t).0)).hG^( y1(t).*1(!7l(O.0>).0)J I=0
where hi(v) is the center manifold for (3.37) and U\ solves

&is/i(tfi.*i(tfi.0).0) A (3.41)
and so on. The proof of the above are similar to the two time-scale case. At

the slowest time-scale the uniform approximation occurs on the infinite time
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interval [£,«»].

Consider the following examples.

Example 3.13 (Regularly perturbed)

x = -ex - x3 + xy (3.42a)

y = -y + yz - x2 (3.42b)
Its center manifold is the graph of y=/i(x,e)=x2 + cubic terms. Now if we

set e=0 the above system has three equilibrium points. Hence if we con

sidered any action at the slower time-scale it would be simply to lie on one of

these equilibrium points. The point (0,e) is an equilibrium point and the

linearized system around 0 is.

11=[-o£ -°JB ***
Thus the linearized version has a two time-scale structure.

Example 3.14 (Two time-scale)

x =-y-s(x+x3) (3.44a)

y =-y (3.44b)
Satisfies the NLSST condition. It's center manifold is h(x,s)=0. The reduced

order fast system is

F(*)=-nO. Y(0) =y(0) (3.45a)

k(t)=-Y(t), *(0)=x(0) (3-45b)
The slow system is

&(t)=-(X(t) + X(t)*) , X(0)=x(0) (3.46a)

y =0 (3.46b)



Example 3.15 (Three time-scale)

AQ 0 0

0 eyix 0

0 0 e242

where object, . The fastest time-scale reduced system is:

'• "

?o

?1 =

*2
^ J

s/ofao.*1.^2)
+ &fi(x0,zltx2)

ir0=i4o(0)ATo. *(0)=x0(0) ^i=X!(0) , *2=x2(0)
The approximating reduced order system for the time-scale t/e is:

*i=ili^i. X1(0)=x1(0) ,XQ=0, *2=x2(0)
and that for the slowest time-scale t/e8:

X2-AZX2% *2(0)=x2(0) . X0=0, and X^O

As illustrated by the previous examples the multiple time-scale struc

ture for nonlinear systems around an equilibrium point does not follow

directly from that of the linearized equations. More assumptions are needed

to guarantee the multiple time-scale structure persists for the nonlinear sys

tem. In practice e will be some fixed number hence in the region where the

linearized equations are a good approximation for the overall system the

behavior of the nonlinear system can be predicted from the linear system.

For example consider

x = -ex + x3 (3.49a)

y = -y (3.49b)

for a fixed e. If in our domain of interest e and | |x | | are comparable then

the above system has only one time-scale. If on the other hand e»| |x | | in

the domain of interest then the above system can be approximated by the

two time-scale system

x - —ex

y- -y

20

(3.47)

(3.48a)

(3.48b)

(3.48c)

(3.50a)

(3.50b)
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Remark

Dynamical systems which exhibit jump behavior (see Sastry and

Desoer[6]) also have dynamics which occur at different time-scales. The pos

sibility of this occurring in our case is excluded by the stability assumptions

we place on the equilibrium point.

Section 4 Conclusion

We have extended Coderch et al.[i] results to the nonlinear case by

applying Fenichel's results in a step by step procedure similar to that done

for the linear case. Analytically the time-scale structure for the nonlinear

case does not follow directly from the linearized equations around the equili

brium point. In practice the linearized equations predict the correct time-

scale structure if we restrict our system to the domain where the linearized

equations approximate the nonlinear system.

In the nonlinear case the computational difficulties involved in calculat

ing the center manifolds and the change of coordinates are much greater

than for the linear case perhaps making it unfeasible in general to calculate

reduced order models. More research needs to be done in this area.
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