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I. Introduction

The Nielsen-Willson theorem [1] gave the topological necessary and sufficient
condition for a transistor circuit to have a unique solution for all values of
circuit parameters. This theorem assumes the transistors are represented by the
Ebers-Mo11 model consisting of two monotone-increasing nonlinear resistors and
two current-controlled current sources (abbreviated as CCCS's) whose current
gains lie between 0 and 1. Since the reverse current gain of real transistors
is less than 0.5, the following practical question naturally arises: If in
the Ebers-Moll model we assume that the reverse current gain oy is restricted to
0<a.< 0.5 and the forward current gain of to 0 < ag < 1, does the feedback
structure in [1] remain. a necessary and sufficient condition for the existence
of a unique solution? To answer this question, it is necessary to generalize
the above theorem to a more general class of CCCS circuits. The same generali-
zation is also desirable for VCVS (voltage-controlled voltage source) circuits.
For, since VCVS circuits can be regarded as a model of op-amp circuits, they
are the most important circuits from the practical viewpoint.

Related to this problem, several results have already been given for some
classes of circuits [2]-[6]. These circuits may be classified by the "active"
elements allowed. They are 1) linear CCCS's whose current gains lie between 0
and » [2], 2) four types of Tinear controlled sources whose controlling coeffi-
cients lie between 0 and = [3], 3) nonlinear op-amps [4], 4) linear op-amps [5],
[6], and 5) linear CCCS's whose current gains 1ie between 0 and 1 [5].

In this paper we consider the most general CCCS (resp., VCVS) circuits com-
posed of dc sources, linear resistors, nonlinear resistors each of which has its
own v-i characteristic represented by a strictly-monotone-increasing function
mapping R onto R (henceforth referred to as a nonlinear resistor in this paper),
and linear CCCS's (resp., VCVS's) whose controlling coefficients o 1ie between
0 and % max (< »). For complete generality, we allow each CCCS (resp., VCVS)
to have its own maximum controlling coefficient.+ In Theorems 1 and 2, we give
the necessary and sufficient conditions for CCCS (resp., VCVS) circuits to have
a unique solution for all values of circuit parameters.++ Theorem 1 corresponds

+A controlling coefficient should be read as a current gain for a CCCS and as
a voltage gain for a VCVS.

**That is, arbitrary strictly-monotone-increasing v-i characteristics of nonlinear
resistors, arbitrary positive values of linear resistors, arbitrarﬁ con§r0111ng
coefficient, o of CCCS's or VCVS's satisfying 0 < cz,u < ® max® and arbitrary

real values of dc sources, which may be connected at any place of a circuit.
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to the case where the controlling coefficients of all CCCS's (resp., VCVS's)
have the same maximum value, that is, %max = %omax = **° = %max’ Theorem 2,
a generalization of Theorem 1, corresponds to the case where each CCCS (resp.,
VCVS) has its own maximum controlling coefficient.

Due to space limitation, only a few simple examples illustrating Theorems
1 and 2 are given. Many more interesting applications of these theorems,
including an alternate proof of the Nielsen-Willson theorem, will be given in
future papers.

II. Symbols, Notations, and Assumption .

Since our results will be stated in completely topological terms, we first
define some graph-theoretic terminologies.

Let N denote a CCCS (resp., VCVS) circuit in which the controlling coeffi-
cient o of each CCCS (resp., VCVS) "p" satisfies 0 < o, < % max" Let the
associated graph G be obtained from N by the following operations.

(i) Short-circuit all dc voltage sources and open-circuit all dc current
sources.
(ii) Replace each linear or nonlinear resistor by a nondirected branch (which
we call a resistor branch).

(i1i) Replace each CCCS (resp., VCVS) "u" by a pair of branches (u,1) as shown
in Fig. 1(a) (resp., (b)).+ These branches are called CCCS (resp., VCVS)
branches.

Note that after applications of operations (i), (ii) and (iii), the result-
ing graph G contains only resistor and CCCS (resp., VCVS) branches.

Assumption 1. We assume without loss of'genera1ity that the associated graph
G is connected.

Graph operations 0(:), S(-), 0/8(-), and j(-) are defined as in the pre-
vious paper [3]. That is, operations O(u) and S(u) mean "open-circuiting the
branch " and “"short-circuiting the branch u," respectively. Operation 0/5(u)
means O(u) or S(u). Operationé}(-), called zero operation, is applied only to
a pair of CCCS or VCVS branches. That is,‘j(u) means " S(input

TSince N contains only one type of controlled sources, it is more convenient
to represent each CCCS by two conventional branches. On the other hand, if
we adopt the unconventional representation as in [3], a similar result can
of course be obtained.




branch yu of the CCCS u) and O(output branch {i of the same CCCS) or O(input
branch u of the VCVS u) and S(output branch {i of the same VCVS).

The following operations will be often applied for the reduction of the
associated graph G.

(1) Apply 0/8(:) to each resistor branch of the associated graph G.
(I1) Apply 9(') to some (possibly none) pairs of CCCS or VCVS branches.

Note that after applications of operations (I) and (II), we have a graph
consisting exclusively of CCCS or VCVS branches, henceforth called a controlled
source graph and denoted by GO'

Let us consider a controlled source graph GO composed exclusively of n
pairs of CCCS (resp., VCVS) branches {(u1,ﬁ]), (uz,ﬁz),..., (un,ﬁn)}. Assume
that in Gy n input branches of CCCS's(resp., VCVS's) (i.e., branchés py, uy,

...,un) form a tree (resp., cotree) of a graph GO. Then we can obtain a fundamental
cutset matrix Cf (resp., loop matrix Bf) with respect to this tree (resp.,
cotree) as follows:

W Hg +=+ Hy L8] Ho oo Hp
Lo |
= ! :
Ce=uy I - qQ . (1a)
. i
' '
un L ' _
e TR ) o W W y
"

Mo | -

where 1 denotes the identity matrix and Q is called the main part of the funda-
mental cutset matrix (resp., loop matrix).
We define A(])(Go) and A(z)(GO) as follows:

s (ey) = 81 (a,6p)
| I+aQ| (2)

ne>



A2) - A(2)(60) = A(z)(A,GO)
A |1+AQ|

(3)

where |M| denotes the determinant of M, o denotes a scalar, and

e ool ].* . (4)

A s
A2 d1ag[au]  max

max’auzmax

III. Main Results

Throughout this paper, a CCCS (resp., VCVS) circuit N is a circuit contain-
ing only linear positive resistors, strictly monotone-increasing nonlinear
resistors, independent voltage and current sources, and linear current-controlled
current sources (resp., voltage-controlled voltage sources) having controlling
coefficients 0 <o < o s B = 1,2,...,k, and a < o,

U Hmax umax
If in addition

= (> 0). (5)

“Imax = %“emax - %“kmax = %max

we say N has identical maximum controlling coefficient O hax’

Theorem 1. A CCCS (resp., VCVS) circuit with identical maximum controlling
coefficient o, has a unique solution for all values of circuit parameters if
and only if the associated graph G satisfies the following three conditions:
1) G contains no loop (resp., cutset) consisting exclusively of input branches
of CCCS (resp., VCVS) branches.
2) G contains no cutset (resp., loop) consisting exclusively of output branches
of CCCS (resp., VCVS) branches.
3) By applying operations (I) and (II) defined in Section II to G, we cannot
obtain a connected controlled source graph G0 such that

s (g 6) <0 (6)

Remark 1: When we examine whether condition 3) of Theorem 1 is satisfied or not,
we need not consider all the controlled source graphs in which input branches form
a tree in the case of CCCS circuits or a cotree in the case of VCVS circuits. It

+Note that A(1) and A(Z) are defined only for a controlled source graph Gp in
which the input branches of CCCS's (resp., VCVS's) form a tree (resp., cotree)

of Gy. Remember furthermore that A(]) and A(Z) are defined by using the funda-
mental cutset matrix (resp., loop matrix) for CCCS (resp., VCVS) circuits.




suffices to consider only controlled source graphs having neither a self-loop
nor a bridge (i.e., a branch which forms a cutset by itself) (see Appendix 1).

Since the above results for CCCS circuits and for VCVS circuits are dual
each other, we will explain Theorem 1 mainly for CCCS circuits.

Example 1. Consider the circuit in Fig. 2(a), of which the associated graph G
is shown in Fig. 2(b). The graph G satisfies conditions 1) and 2) of Theorem
1. By applying operations (I) and (II) to G, we cannot obtain a controlled
source graph G0 in which the input branch 1 forms a tree of G0 and which has no
seh"-]oop.'r Thus condition 3) of Theorem 1 is satisfied by default. Hence,
this circuit has a unique solution for arbitrary values of - Indeed we can

verify the above conclusion by a direct analysis of the circuit.

Example 2. Consider the circuit in Fig. 3(a), of which the associated graph G
is shown in Fig. 3(b). The graph G satisfies conditions 1) and 2) of Theorem 1.
By applying S(R]) we get the controlled source graph G0 in Fig. 3(c). The fun-
damental cutset Tatrix Cf of GO is given by
1 1
Ce = [v:-1]

Therefore ALY AR I 4oy IF “max‘; 1 then A(1),; 0. Therefore we conclude
that if amax‘; 1 then the circuit has a unique solution for all values of circuit
parameters. 1If CGoax > 1, then A(])(amax) < 0. Therefore the circuit does not

have a unique solution for Grax > 1 for at least one choice of circuit parameters.
If the direction of the output branch of the CCCS is reversed, then the

circuit has a unique solution for any maximum current gain o, .. (> 0).

Example 3. Consider the circuit in Fig. 4(a), of which the associated graph

is shown in Fig. 4(b). Note that G satisfies conditions 1) and 2) of Theorem
1. It remains to investigate condition 3). The first step we have to do is to
find a controlled source graph which is obtained from G by applying operations
(1) and (II) and in which the input branches of CCCS's form a tree. By inspec-
tion we can find a total of four such graphs shown in Figs. 4(c)-(f). For
example, the graph in Fig. 4(d) is obtained from G by applying O(R]), S(RZ),
S(R3), and‘é(l) and the graph in Fig. 4(e) by applying O(R]), S(RZ) and S(R3).
However, we need not consider the graphs in Figs. 4(d) and (e) since they have

1~Note that if we open-circuit R2 and R3, node (:) would not be a part of the
input branch. If we short-circuit R, or R3, then the output branch 1 would
form a self-loop (see Remark 1).



a bridge and/or a self-loop (See Remark 1). The fundamental cutset matrices

of the graphs in Figs. 4(c) and (d), denoted by Gc and Gd’ are, respectively,
given by

12 12
(C)_ 1 M 0 -1
C - L
f [ 1t ,1}
2 2
¢ -p ;o

=qa _.. Therefore A(]) are calculated as follows:

Assume that a]max B aZmax max

1 -0,

(1) - max | _ 2
A+ 7(G) o 140, =1+ %pay = %nax
max max
(1) -
AT (Gg) =1+, >0

Observe that if %nax < (/5+1)/2 then A(1)(Gc) 2 0. Thus we conclude: The
circuit in Fig. 4(a) has a unique solution if 0 <o .. <(B+1)/2. If
Grax > (V5 +1)/2 then the circuit does not have a unique solution for some
circuit parameters. ’

If in Fig. 4(a) we reverse the polarity of the output port of the CCCS 2,

then the maximum value Gnax for the circuit to have a unique solution is 1.

Example 4. Consider the VCVS circuit in Fig. 5(a), of which the associated
graph G is shown in Fig. 5(b). Since G satisfies conditions 1) and 2) of
Theorem 1, we will investigate condition 3). The first step we have to do is
to find a controlled source graph Go such that (i) in G0 input branches of
VCVS's form a cotree and (i) Go has neither a self-loop nor a bridge.

Suppose first we apply S(R]) to G. Since then the branch 1 forms a self-
loop, we have to apply 5(1) so that we will get a controlled source graph satis-
fying (i) and (ii) above. From the resulting graph we obtain a controlled
source graph shown in Fig. 5(c).

Next suppose we apply S(R3) to G. Since in this case the branch 2 forms
aself-loop, we have to app]y'g(Z) successively so that we get a graph satisfying
(i) and (ii). From the resulting graph we obtain the controlled source graph in
Fig. 5(d).

Thirdly we apply O(R]) and 0(R3) and let the resulting graph be G,. It
can easily be seen that if we apply 0(R2) to G], we cannot obtain a controlled
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source graph satisfying (i) and (ii). So we apply S(R1) to G]. From the
resulting graph we obtain the graph shown in Fig. 5(e).

The graphs in Figs. 5(c)-(e), denoted by Go» Gys and Gy, are the only
graphs we need to investigate. The fundamental loop matrices of these graphs
are given by

(c) 2

C - 5 .

Be ' = 21 . 1]
1 1

B{d) = 01 : -1

n A

1 2 1 2
B{®) = i[1 o -
2 1:1 0
Assume that Mmax - %2max - %max’ Then A(l)(-) are calculated as follows:

A(])(Gc) =1+ opay

A(])(Gd) =1 - oy
A(])(G‘e) =1+ “ﬁax

Therefore we conclude that the circuit in Fig. 5(a) has a unique solution for
all values of circuit parameters if and only if 0 <o . < 1.
To demonstrate the generality of Theorem 1, we will derive a useful corol-

lary, which can be applied by inspection.

Corollary 1.1. Let N be a circuit containing k CCCS's or k VCVS's having
identical maximum controlling coefficient Chax” If N satisfies conditions 1)
and 2) of Theorem 1 and if

Grax = 1/k (7)

then N has a unique solution for all values of circuit parameters.

Proof. See Appendix 2.

Corollary 1.1 is the best result that we can obtain in the sense that if
L 1/k then there exists a circuit which does not have a unique solution
for some choice of circuit parameters (See Appendix 3).



Theorem 2. (General CCCS or VCVS circuit)

Consider a CCCS (resp., VCVS) circuit containing k CCCS's (resp., VCVS)
whose controlling coefficients o, satisfy 0 < @, < % max (u=1,2,...,k). Then
the circuit has a unique solution for all values of circuit parameters if and
only if in addition to conditions 1) and 2) of Theorem 1 the following condi-
tion holds.

3') By applying operations (I) and (II) defined in Section II to G, we cannot

obtain a connected controlled source graph Gy such that

22y <0 (8)

Remark 2: When we examine whether condition 3') is satisfied or not, it
suffices to consider only controlled source graphs in which input branches of
CCCS's (resp., VCVS's) form a tree (resp., cotree) and which has neither a self-
loop nor a bridge.

Observe that Theorem 1 is a special case of Theorem 2. The proof of
Theorem 2 is given in Section V.

Corresponding to Corollary 1.1 we have:

Corollary 2.1. Consider a CCCS (resp., VCVS) circuit containing k CCCS's (resp.,

k VCVS's) whose controlling coefficients o satisfies 0 < o < aumax-(u§1,2,

...,k). If the circuit satisfies conditions 1) and 2) of Theorem 1 and if

2] Jmax < (9)

then the circuit has a unique solution for all values of circuit parameters.

Proof. See Appendix 4.

Corollary 2.1 is also the best result possible in the sense that if (9)
does not hold then there exists a circuit which does not have a unique solution
for some choice of circuit parameters.

Example 5. Consider the flip-flop circuit N in Fig. 6(a) where arrows repre-
senting the emitters of the transistors T] and T2 are not shown intentionally.
Note that N. is a typical circuit having a feedback structure [1]. By repre-
senting two transistors in Fig. 6(a) by the Ebers-Mo11 model, we have the
circuit in Fig. 6(b), of which the associated graph G is shown in Fig. 6(c).
Here the CCCS branches (1,?) and (2,§) belong to the transistor T, and the



branches (3,3) and (4,3) to the transistor T,. Let o denote the current gain
of the CCCS uand assume that o  max < 1.

By applying operations (I) and (II) to G, we obtain many controlled
source graphs, of which only three graphs, denoted by Ga’ Gb and Gc’ are shown
in Figs. 7(a)-(c). By noting Remark 2, we can easily verify that it suffices
to consider only the above three graphs. Now the fundamental cutset matrices

of these graphs are given by

1 4 1 3
c(a)=1[] E-1 1]
LI 1: 1 o0

2 3 2 3
c(b)_z[1 0 -1]
o3 1101 A

2 4 2 4

Therefore we have

T-04nax  “Imax

(2) - = = -
AY(G;) " . 1= %pax ¥ “Imax “max
4max

-az
WD) - o

- +
o 1-a ®3max * %2max “3max
3max 3max

1-0omax  “2max

A(Z)(GC) = 1

* %max - %max’

%gmax | "®4max

Since 0 < ¢ < 1, we have A(z)(Ga) 0 and A(z)(Gb) > 0. Therefore, if

(2) HmaX = e
A (Gc) > 0, that is, if

v

®omax * %4max <1

then NT has a unique solution for all values of circuit parameters. We



therefore conclude that if both 0y and @, are reverse current gains, and if
%omax - “amax < 0.5, then NT cannot function as a flip-flop circuit. If, how-
ever, either a, Or o, is forward current gain, then we can expect NT to function
as a flip-flop circuit.

Remark 3: This example shows the important fact that in general the Nielsen
and Willson theorem is not valid for transistor circuits if the reverse current
gains are less than 0.5.

Example 6. Consider the circuit in Fig. 4(a) again. A(z)(-) are calculated for
the graphs in Figs. 4(c) and (d) as follows:

(2) = -
A6 =1+ apray * %imax “2max

A(Z)(Gd) =1 +a

2max >0

Therefore if o, - <1+ aé%ax’ then the circuit has a unique solution. For
example, if Gomax = 0.5 and %max - 3, then the circuit has a unique solution
(cf. Example 3).

If we reverse the polarity of the output port of CCCS 2, we can easily
show that the necessary and sufficient condition for a solution to be unique

is: (0 <) “2max=; 1 and Oy max is an arbitrary positive number.

Example 7. Consider again the circuit in Fig. 5(a). A(z)(-) are calculated for
the graphs in Figs. 5(c)-(e) as follows:

A(Z)(Gc)

+
1 “Imax %2max

1 -

A(2)(6‘d) *“Imax

A(2)('39) =1+ ax

From this we conclude the circuit has a unique solution if 0 < %max < 1 and

0<a
2max cas
If we reverse the polarity of the output port of VCVS 1, then the condition

for a unique solution is %1max 1.

< o,

%omax =
Example 8. Consider the VCVS circuit in Fig. 8(a), of which the associated
graph G is shown in Fig. 8(b). By applying operations (I) and (I1) to G, we
find 6 controlled source graphs in Figs. 8(c)-(h) need be considered. Other
controlled source graphs obtained by the above operations either
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(i) has no cotree composed only of input branches of VCVS's, or
(ii) has a self-loop or a bridge (see Remark 2).

The fundamental loop matrices of the graphs in Figs. 8(c)-(h), denoted by
G, Gd, cees Gh’ are given by

1 2 1 2

o [ 0 71]
fFooz2]l 111 o
13 13
p{d) - B D] ]
f 3L 1 a1
23 2 3
(o . 3[1 A
f 3 1 -1 o]
1
8{f) =01 : 13
2 2

8{M = 3011 1]

Therefore A(z)(~) are calculated as follows:

(2 ) 1 -O‘lrﬁax
A6 = . =1+ onax %2max
%2max
2) ]+a1max “max -
A"(6y) = ) 4o =1+ opay ¥ %3pax
%3max 3max
(2 ) 1 'a2max 'aZmax
A(Ge) = ) 1 =1-%mnax ~%2max *3max
%3max

A(2)(Gf) =1+ *1max
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1 -

2
o )(Gg) *omax

A(Z)(Gh)

1+ agnay

We conclude from this that if 1 - Gomax "
Fig. 8(a) has a unique solution.

Gomax *3pax = O» then the circuit in
If in Fig. 8(a) Mmax = %2max - “3max” %max’ then the. circuit has a unique
solution for oy, < (v/B-1)/2.

As an application of Theorem 2, we show that when we connect two circuits
in some classes of circuits having a unique solution, the resulting circuit also
has a unique solution.

In the following a CCCS or a VCVS one-port N] is said to have a unique
solution if in both cases where the input port is open-circuited and short-
circuited N] has a unique solution for all values of circuit parameters. Simi-
larly, a CCCS or a VCVS two-port N2 is said to have a unique solution if for
any combination where the input port and the output port are open-circuited and/
or short-circuited N2 has a unique solution for all values of circuit parameters.

Theorem 3. If a CCCS (resp., VCVS) two-port having a unique solution is termi-
nated in a CCCS (resp., VCVS) one-port having a unique solution, then the
resulting one-port has a unique solution.

Proof. See Appendix 5.

Theorem 4. If two CCCS (resp., VCVS) two-port having a unique solution are
connected in cascade, then the resulting two-port has a unique solution.

Proof. We can prove Theorem 4 in a similar way as that of Theorem 3 in Appen-
dix 5.

These theorems can be used to synthesize many CCCS or VCVS circuit having
a unique solution.

IV. Special Case Where O hax =1

Let us focus our attention on the special case where the maximum current
gain Onax of CCCS's equals 1 in Theorem 1 since this is the most important
situation in practice. We assume in this section that the current gain o of
each CCCS satisfies 0 < au < 1. Note that A(])(GO) < 0 means in this case
that

|1 +Qq| <0 (10)

-12-



where [I ; Q] is the fundamental cutset matrix of GO.

Consider the 3 CCCS circuits in Figs. 9(a)-(c). Here, each diamond-shape
symbol denotes a CCCS, each box labelled L, L; (i=0,1,...,n) denotes an arbi-
trary connected circuit composed of dc sources and linear/nonlinear resistors
and each box labelled Ci (i=1,2,...) denotes either the circuit in Fig. 10(a)
or the circuit in Fig. 10(b).

Theorem 5. The CCCS circuits in Figs. 9(a)-(c) have a unique solution for all
values of circuit parameters if they satisfy conditions 1) and 2) of Theorem 1.

Proof. See Appendix 6

Remark 4. The circuits in Figs. 9(a) and (b) can be regarded as a generalization
of a grounded-base transistor circuit. The circuits in Fig. 10 include the
Ebers-Moll model as a special case.

Remark 5. In Fig. 9(a) the directions of both controlling and controlled current-
sources can be taken arbitrarily, but in Fig. 9(b) they must be assigned as
shown in the figure.

Remark 6. There exists a VCVS version of Theorem 5, but it is omitted because
the configurations are not very interesting.

Theorem 6. A circuit made of transistors (modelled by Ebers-Mo11 model), dc
sources, linear and/or nonlinear resistors has a feedback structure in the sense
defined in [1] if and only if by applying operations (I) and (II) in Section II
to the associated graph we obtain a controlled source graph G0 such that

2 (1,6) < 0

The detailed proof of Theorem 6 as.well as its application to derive the
Hielsen-Willson theorem will be given in a future paper.

V. Outline of the Proof of Theorem 2
Since the dual discussion holds for a CCCS circuit and a VCVS circuit, we
will prove Theorem 2 only for a CCCS circuit.

5.1. Analytical condition for a solution to be unique

Consider a CCCS circuit N which contains k CCCS's and m nonlinear resis-
tors. Then N can be represented as in Fig. 11 where the (2k+m)-port No
contains only linear resistors and dc sources. Let

-13-
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L]

. <
N

-3

[ Voie1 ]

Vok+m

Tk

L -

[T
a2

| T2k

ok |

i
| T2k+m |

The characteristics of the CCCS's and the nonlinear resistors are represented

by
Va =0
Ib = AIa
-Vc = F(Ic)
where
A= diag[a],az,...,ak]
satisfies
0< o, < aumax
and
ELPYRY
fnli2kem)
satisfies: ) )

s H=1s2, «10

s k
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Assumption 2. fﬁ (u=1,...,m) are strictly monotone-increasing functions mapping
R onto R.

Suppose for the moment the following assumption is satisfied.

Assumption 3. N0 has the following impedance representation:

T . R « - _ ]
va Zaa zab zac Ia Ea
Vol = | Zoa Zbb Zbe |+ | E |- (14)
ch_ _an Zcb ch ] _Ic ) LEc i

Equations (11)-(14) are the basic equations for our present analysis. Set.

Zaa+ZabA zac
T = (15)

Zea*Zebh  Zec?D

where D is a positive definite diagonal matrix, henceforth denoted by D (> 0).

Lemma 1. For any given values of linear resistors, the circuit in Fig. 11 has
a unique solution for all A and all fu satisfying (12b) and Assumption 2 if and
only if

(i) T>0 for all A and al1 D (> 0), and (16a)
(i9) |Zaa| # 0. (16b)

Proof. See Appendix 7.
Let K be a set of numbers {1,2,...,k} and let K] and K2 denote a partition
of-K, i.ef, K1 ) Ky = K and K1 n K2 = ¢. Let
A Zab A

aa ac

zca Zcb ZCC+D = [p] ’p2)°"9pk5q] ,q2"" ’qkzr‘l ’r29""rm] (]7)
— e e
k k m

be denoted by 2k+m column vectors, Pys Pos «ees Moo and let

Ty = Itystosecaatyirse,r] (18)
where
pu+quuumax for u ¢ K]
tu = (19)
pu for u € K2

Then we have:
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Leiinma 2. The condition (16a) is equivalent to the following conditions:

r,> 0 for al1 D (> 0) and for any partition of K (20a)
and

r, > 0 for some D (> 0) and for at least one partition of K (20b)

This lemma can easily be proved by using Lemma A.2 in [3].
Since {Z,,| > 0 (see (A7.3)), we have

r,>0fork =¢, K =KandD»wT (21)

Therefore the condition (20b) is always satisfied. So it remains to investi-
gate only the condition (20a).

5.2. Topological Condition for Uniqueness

Let us analyze the condition for (20a) to be satisfied for all values of
Tinear resistors and all D (> 0).

Let

Zaa Zab Zac
Zha Zpp Ipc (22)

cha zcb ch+D

N2
1]

Then Z is the impedance matrix of the (2k+m)-port N in Fig. 12, which is
obtained from No in Fig. 11 by (i) short-circuiting all voltage sources, (i1)
open-circuiting all current sources, and (iii) connecting a resistor Y, (u=1,
2,...,m) in series with the (2k+u)-th port. It is clear that condition (20a)
depends on Z only.

The associated graph G of the (2k+m)-port N is defined as a graph obtained
from N by replacing each resistor (including Yu)’ each port u(u=1,2,...,k),
each port p+k (u=1,2,...,k), and each port 2k+u (p=1,2,...,m), respectively,
by directed branches Ru’ au, bu and cuj*'The direction ofRunwy be arbitrarily
chosen. However, the directions of 3, b, , and cu must be chosen to be the

u b4 >
same as those of the port currents. The graph G is connected by Assumption 1.

+D + o means that each diagonal element is positive and sufficiently large.

++In this section and Appendix 8 we call the branches 2, bu, and Cyy» 3= b-, and
c-branches, respectively. An a-branch and a b-branch™are brancheS which are
called an input and an output branch of a CCCS in the previous sections.

-16-



For the moment let us assume that
Assumption 4. There exists no loop consisting exclusively of a-, b-, and
c-branches.

The case where Assumption 4 does not hold will be treated in Section 5.3.
Let

my = rank of G-total number of a-, b-, and c-branches (23)

From Assumption 4 it follows that My 2 0. We can modify G by adding mg 9-
branches, gu (u=1,2,...,m0) so that all the a-, b-, c-, and g-branches form a
tree, say T, of G. For simplicity we denote hereafter the modified graph by
the same symbol G as before.

Let the fundamental cutset matrix of G with respect to T be

T T

-

Ce = [1 : CZ]

and let the rows of Ce be arranged in the order of a-, b-, c-, and g-branches.
Without loss of generality we will investigate the condition

r,>0 (24)
for
Ky = {1,2,.000k b (02kq2K) (25)
Ky = {k;#1,k #2,. .. .k}
Set
K = k = ky. (26)

Then CL can be written as in Fig. 13 where M = {1,2,...,m} and MO = {1,2,..,,m0}
and a,, means the set of branches 3, (u € Kl) and so on. Let

=crle
H=CR ¢ (27)

where the prime means the transpose of a matrix and R is a diagonal matrix
whose diagonal glements are the values of linear resistors including Yu in Fig.
12. Note that Z in (22) is the upper left-most (2k+m) x (2k+m) principal sub-
matrix of H | (see Appendix 8).

Let B denote a matrix and let B denote the matrix obtained from B by adding
the product of the (s+u)-th row (u=1,2,...,§) and Au to the (t+u)-th row. We
represent 8 by Fig. 14(a) where A = diag [A{s)ys...50g).  Similarly Fig. 14(b)
denotes the matrix obtained from B by adding the product of the (s+u)-th

-17-



lw_vl

duLs
suwniod 3yj abueyousajuy (LiL)
SuWN|0d J3yzo 03 suwniod aAoqe ay3 ppy (LL)
L+ Aq suwnjod awos Aidi3ini (1)

(€) 1 - = d
pue | F aJe mpcmso—m LeuobeLp asoym xtLajew
LeuobeLp Jeinbuisuou e si oa adaym ‘gl b4 uy Amvo ojulL Awwo UMOjSURLY URD BM
f1aretadoadde (Lir)-(t) suotjedado Auejuaws|d Huimo( |04 dYy3 3Ino BuLhuued Ag
*3L JLWO [[LIM
oM ‘[¢] ul t euwd] 40 ey} O} JR|LWiS SL BUMR| SLY3} JO jooud 3y3 3duls

(2¢) 0> 9
1ey3 yons Oy ue s3sixa aasyg 4L ALuo pue i

(L) 0>

'3eU3 0S SJUOISLSDU JO SIN|BA Y3} ISOOYD URD Y “§ PULR]

eol

(o€) 9'9 = 9

191 pue ((q)8i
¢-dsaua) (e)gL 614 uL saul| ([eoL343A °dsad) anbiiqo Aq papeys Xtajeuqns ay3 »o
JURU LULIB]BP 3Y3 d30uUdp AN@ ¢ *dsau) Lo uER| om 0} mc—ncoammggou suwn{od pue Apvo
30 SMOJ [|e jO pasiadwod ©Xiajew ay3j a3ouap Amvo 397  °S3YduerUQ J03SLS3U

os.Tx 30 18s Aueuajique ue ajousp om 397 -°saull ([eoL343A ©-dsau) anbiiqo Aq
papeys ((q)zL ©-dsaa) (e)zL -Bid ui xiajewqns ayz st ANJU ¢ *dsau) FAQ ENETT

(62) | |2}y, 4t ]

se oo 33LlJ4M ued am ¢(/z) butrsn £Ag
.O@ 40 ubLs ay3l JapLSUOD 03 JuUBLOLLINS SL 3L ‘0 < |H| 3duLs (9L -bid °93%) Au

40 OWg pue Nxa ,Fg <Dy smou 3y3 40 pasodwod Xtuajew ayj 30udp A—wu 191
‘g XLpuaddy 39S °3004d

L
*614 UL S3UL| anbiL|{q0 AQ PaPEYS X|AJBUGNS BY] 4O JURULUISISP 3y} St Op auaym
(82) O, _IH]
€ ewus

‘uwngod y3-(r+3) aug o3 "y pue (%¢°°*¢z¢|=) uwnyod



(e=£1) (34)
62 = e|Do| |P|
we have
6= |I+AK]QI.

Lemma 5. Let 6(3) be a graph obtained from G in Section 5.2 by the following
operations:
(i) Apply S(+) to each c-branch and 0(:) to each g-branch.
(ii) Apply S(-) to resistor branches belonging to Ry and 0(-) to all of the
remaining resistor branches.

(iii) Apply 9(~) to CCCS branches of CCCS k]+1, k]+2,...,k.

Then 6(3) is a connected graph with a tree 3 and has the fundamental cutset
matrix 2 bKl

Cm(°3) =aql1: Q]

if and only if 6 # O.
We omit the proof of this lemma, since it is similar to that of Lemma 5
in [3].
' " From Lemmas 5 and 4 we obtain Theorem 2.

5.3. On Assumptions 3 and 4

Assumption 3 means that there exists no cutset consisting exclusively of
a-, b-, and c- branches. We need not consider the case where the cutset
includes an a-branch or a c-branch. The reason is the same as that of Appendix
8 in [3]. If there exists a cutset of b-branches only, then the voltages of
controlled sources corresponding to the b-branches included in this cutset
cannot be determined uniquely. Thus Condition 2) of Theorems 1 and 2 is
necessary.

The dual discussion holds for Assumption 4.
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Appendix 1. On the Remarks 1 and 2

We consider only Remark 2 because the same discussion holds for Remark 1.
Let us consider the case of CCCS circuits and let GO be a controlled source
graph in which input branches 1, 2, ..., n form a tree of GO. Suppose that
the branch 1 is a self-loop. Then the fundamental cutset matrix of G0 is

written as

¢e = [1:0] =

~ ~

1 2

o it

~

n

1
2

R

0 q

(A1.1)

.

Therefore if |I+AQ] < O then |I+A]Q1| < 0 where A; is the matrix A with the
first row and column deleted. Now [I;Qi] is the fundamental cutset matrix of
the graph G, obtained from Gy by applying operation 3(1). Thus if A(Go) <0
then there exists a graph G] such that G] has fewer vertices than G0 and

A(G]) < 0.

Suppose next that the branch 1 is a bridge. Then the fundamental cutset
matrix of GO is given by

Cf = [I;Q]

Therefore if |I+AQ| < O then |I+A;Q| < O where

1
2

n

1
1

N>

"

\ AN\ o -

Thus we have the same conclusion as before.

(A1.2)

A] is the same as in the above.



Appendix 2. Proof of Corollary 1.1
Let

£(0) = A1sq] | (h2.1)

where Q = [qij] is a totally unimodular matrix of order n. We have, of course,

f(x) > 0 for A sufficiently large (A2.2)

A(.l)("‘max) = [ Tropa,Ql

_.n -1
= Onax %max1*Ql

= a;ax f(“;lx) (h2.3)

Suppose that f(A) = 0 does not have a positive root. Then by (A2.2) we
have

max) >0 (A2.4)

So we consider the case where f(A) = 0 has a positive root. Let Ao (> 0) be
the maximum positive root of f(A) = 0. Then we have
f(A) > 0 for Mg A <o

Note that Ao is an eigenvalue of the matrix - Q.
The following lemma is well-known [8].

Lemma A.1. Let B = [bij] be an nxn complex matrix and let Au (u=1,...,n) be
eigenvalues of the matrix B. Then

n n
Al < min [12?2n[j21 |b; 51 ] , 122_2:1 [121 bij” (A2.6)
Since Q is totally unimodular, we have by definition
Q45 =0, ¢ 1 (A2.7)
Therefore it follows from Lemma A.1, (A2.6) and (A2.7) that
0 < Xg . (A2.8)
From (A2.3), (A2.5) and (A2.8) we conclude that
A(”(amax) 20 for o  21/n (A2.9)

Now consider the circuit described in Corollary 1.1. From the associated
graph of the circuit we can obtain in general many controlied source graphs.
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Some may contain k pairs of controlled source branches and others contain less

than k pairs of controlled source branches. However if Orax < 1/k then

>
[T +an,, Qf =0

for the matrix Q of order n (L k) since 1/n> 1/k (> “max)'
This completes the proof of Corollary 1.1.



Appendix 3. A Comment on Corollary 1.1
For example, consider a circuit N from which we can derive a controlled

source graph GO such that the main part of the fundamental cutset or loop
matrix of GO is given by

S T
Q= [-1 -1 ... (A3.1)

N I -1

L

It is apparent that such a.§raph G0 and a circuit N exists. For the matrix Q
of (A3.1), we have

|T+a Q] <0 for a . > 1/k. . (A3.2)



Appendix 4. Proof of Corollary 2.1
Let
f(A) = |AI+AQ | (A4.1)

where A and Q are given by (1) and (4). For A sufficiently large, we have
f(A) >0 (A4.2)

Suppose f(A) = 0 has a positive root (otherwise we have f(A) > 0 for A
real) and let )‘0 be the maximum positive root. Of course 7‘0 is an eigenvalue
of the matrix -AQ. Then we have

f(x) 20 for Ao SA<w (A4.3)

Let B = [bij] = AQ. Then by (9) we have
k
|b,

n
<
1 1j|=<“1.§] c‘u].max = 1.21 *imax

21 (A4.4)

ne-13

i
Therefore it follows from Lemma A.1 in Appendix 2 and (A4.4) that
<
Ag = 1 (A4.5)
In particular by setting A = 1 in (A4.3), we have
[T+AQ] 2 0, (A4.6)
completing the proof of Corollary 2.1.
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Appendix 5. Proof of Theorem 3

Let us consider the CCCS one-port N in Fig. A.1 where N(]) (resp., N(Z))
is a one-port (resp., two-port) with a unique solution. Let N L (open) (resp.,
N(]) (short)) denote the one-port N(]) with the input port open-circuited
(resp., short-circuited) and N(z) (open; short) denote the two-port N(Z) with
the input port open-circuited and the output port short-circuited. Similarly
N(z) (short; open) etc., are defined.

First consider N(open). By applying operations (I) and (II) to the asso-
ciated graph of N (open) we get some graphs Gy in which input branches of CCCS's
form a tree ?f)GO' The graph Go(g?n be partitioned {ggo two parts; one(g§rt
belongs to N and is called Go' and another to N and is called GO (see
Fig. A.2). There exist two cases to be considered.

(i) The input branches of CCCS's form a tree of Gé]).

In this case the main part Q of the fundamental cutset matrix of GO is

given by

Q,////

0 | g

Q= (A5.1)

where the rows of Q] (resp., 02) correspond to the input branches in 651) (resp.,
Géz)). By (A5.1) we have

|1+AQ| = |I+A'|Q-|l |I+A202l
Since Q] (resp., Qz) is the main part of the fundamental cutset matrix of the

graph Gé] (resp., Géz) with 2-2' short-circuited) which is obtained from N(])
(open) (resp., N(Z) (open; short)), we have

|I+A]Q]| 20 (A5.2)
and
|I+A2Q2| 20 (A5.3)

by definition. Therefore we conclude
|14+AQ] 2 0 (A5.4)

(ii) The input branches of CCCS's form a tree of Géz).
In this case we have

Q ’ 0
t /OOC )



where Q] (resp., Qz) is the main part of the fundamental cutset matrix of the
graph G with 2-2' short-circuited (resp., Géz)) which is obtained from
N(]) (short) (resp., N(z) (open; open)). Therefore it follows that

>
| 1+A10; 2 0
|I+A2Qzl 20
Thus we have

|1+AQ| 2 0 (A5.5)

From (A5.4) and (A5.5) we conclude that N (open) has a unique solution.
' Next consider N (short). Similar discussion holds in this case and we
conclude that N (short) has a unique solution. Thus we have Theorem 3.



Appendix 6. Proof of Theorem 5

Let GO be any controlled source graph obtained from the associated graph
of the circuits in Fig. 9 by applying operations (I) and (II) and assume that
the input branches of the CCCS's form a tree of GO.+ Then, to prove Theorem 5,
it is sufficient to show that A(1)(GO) = |1+Q| 2 0. Here [I:Q] is the funda-
mental cutset matrix of GO. Referring to Remark 1 in Sectioﬁ IIl we can
assume without loss of generality that GO satisfies:

Assumption A.1. No input branch is a bridge.

Assumption A.2. No output branch is a self-lcop.
\le will prove the theorem for each circuit in Fig. 9.

Case 1: Circuit in Fig. 9(a).

Without loss ongenera1ity we assume Go consists of n pairs of CCCS
branches, (1,1), (2,2), ..., (n,n). By referring to Assumptions A.1 and A.2 and
the configuration in Fig. 2(a)and by noting the input branches form a tree of GO,
we see that in GO each input branch is in parallel with only onf output branch.
Thus G0 can_ be drawn generally as in Fig. A.3 where (“]’“2’ .,un) is a permuta-
tion of (1 2 n). The directions of i and u in Fig. A.3 may or may not be
identical. The main part (that is, Q) of the fundamenta] cutset matrix of the
graph in Fig. A.3 can be written (by remembering the CCCS branches appropriately)
as the direct sum of the following types of matrices.

S] = [€]
- - ~\
0 €
s, 0 g O | 622 (A6.1)
0o - >
O o
€ 0
| P ] J
€ € = + 1.
Since

1+e=00r2

|1+5,|

(A6.2)

1+ (-'I)pﬂe-', 52,...,ep=0 or 2

+The phrase "of the CCCS's" will be omitted hereafter.



we have
|1+Q] > 0 (6.3)

for G0 We therefore conclude that we cannot derive a contro11ed source graph
GO such that A(])(G ) < 0 for the circuit in Fig. 9(a).

Case 2: Circuit in Fig. 9(b).

Without loss of generality we can replace each Li (i=0,1,...,m) in Fig.
9(b) by a single resistor branch, ry. When we apply operations (1) and (II) to
the associated graph there occur three cases:
(i) AN rs (i=0,1,...,m) are short-circuited.

This case corresponds to a special case of Fig. 9(a). Therefore we cannot
derive any controlled source graph G0 such that A(])(Go) < 0.
(ii) Some of rs (i=1,2,...,m) are open-circuited.

In this case we cannot obtain a graph G0 in which the input branches form
a tree of GO‘ For, if rs is open-circuited, then an input branch cannot reach

one of the terminal points of the branch r.,unless all output branches connected
to the branch r; are open-circuited. Even in the latter case an isolated point

remains (and therefore Go.cannot be connected). So we don't need toconsider this case.

(iii) o is open-circuited and rs (i=1,2,...,m) are short-circuited.
, As before we assume w1thout loss of general1ty that G0 consists of n pairs
of CCCS branches, (1, 1), (2, 2), cees (N, n) Let the common initial vertex of
all input branches be Vo and a terminal vertex of the branch i be vy Since
the input branches form a tree, all v; (i=0,1,...,n) are distinct. A1l output
branches have a common vertex (grounded terminal), say v. The vertex v may be
Vor The case v = Vo reduces to that in Fig. 9(a). Therefore we assume v # Vo
Without loss of generality we assume v = Vo The terminal vertex of each output
branch is one of v (i=0,1,...,n-1). By referring to Assumptions A.1 and A.2,
it suffices to consider only the following two cases:
(a) Each v; (i=0,1,...,n-1) is a terminal vertex of some output branch (see
Fig. A.4).

In this case the main part, Q, of the fundamental cutset matrix of G0 can
be written as



10|00

OO0 (A6.4)
O 10| -0

O|0|0]|«

~1-1...-1-1...-1-1...-1 J

after we renumber the CCCS branches appropriately. Here, Q], 02, ... are
matrices of the type S] or S, (in which € and €; are all 1) in Case 1 and QO
is

0 1 ]

Q, = 0 1 O . (A6.5)

| -1-1-1

Since
|I+Qi| =0or 2 (i=1,2,...) ( |
A6.6
|1+4Qy| = 0 or 1
we have
[T +Q| 20.

(b) The vertex Vo is not a terminal vertex of any output branch.
In this case Gg can be drawn as in Fig. A.5, where (u],uz,...,un) is a
permutation of (1,2,...,R).

Assume that the main part Q of the fundamental cutset matrix of G0 can be
written as

o | o

)

where Q1 and 02 are square matrices. Then

(AR6.7)
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II+QI = |I+Q'|| II"'Qz‘

holds. If |I+Q] < 0, then either |I+Q1| <0or |I+QZI < 0 holds. Since both
[IEQ]] and [I;Qz] are the fundamental cutset matrices of the graphs obtained
by applying operation ?(-) to Go, it suffices to consider Q] and Q2 instead
of Q itself. So we can assume without loss of generality that:

Assumption A.3. Q cannot be written as in (A6.7) even by renumbering the CCCS
branches appropriately. Then in Fig. A.5 we have to consider four cases depend-
ing on the value of M and Ho.
(b.1) uy = 1 and My =N

In this case by Assumption A.3 we have

n=2

and Fig. A.5 becomes Fig. A.6. Since in this case

11T
Q= [j :] (A6.8)
1A

we have
|1+Q] =
(b.2) uy =1 and y, # n

In this case we can draw Fig. A.5 as Fig. A.7 without loss of genera11ty
Then we have

1

Q= 0 1 (R6.9)
o O
0 1
-1 -1 ... -1 -1
from which we have

2 1

|1+Q| = 10 =150
0o 1 O

(A6.10)
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(b.3) up #1 and Mo =N

Without loss of generality Fig. A.5 can be redrawn as in Fig. A.38. Then
the main part Q of the fundamental cutset matrix of Go is given by

0 1 1
Q= 0 1 (::> (A6.11)
0 1
. g

1 "0 0

Lf‘ o BT, -1_

Therefore we have
1 )
I+4Q = 1 1 n

-1 -1 . . . <1 0

1 when n is even
(A6.12)

0 otherwise

(b.4) uys up # 1, 1
This case is more complicated. Even in this case, however, we can
verify by the same consideration mentioned above that |I+Q| > O holds.
In any case case we have |I+Q| 2 0.

Case 3: Circuit in Fig. 9(c).

As in Case 2 we can replace each Li (i=0,1,...,4) in Figs. 10(a) and (b)
by a resistor branch, rye First we consider a simple case where m = 1 in Fig.
9(c) and where C] is a circuit in Fig. 10(b). Suppose that we apply operation
O(ro) to the associated graph G. In addition we apply operations (I) and (II)
such that the resulting graph Go has a tree composed of the input branches
only. Then G0 is one of three graphs in Fig. A.9. In Fig. A.9(a) we have

A-12



Q = (A6.]3)
and in Fig
Q= (A6.14)

In any casé we have
|1+ = 0

Thus if we apply O(ro) to the associated graph, then we get |I+Q| = 0. Even
when we replace the circuit in Fig. 10(b) by that in Fig. 10(a), the same
conclusion holds if we apply O(ro).

We will next consider the general case where m = 1. Even in this case
we get the same conclusion so long as we apply 0(-) to some ror Therefore
it suffices to consider only the case where we apply S(-) to every o in
Figs. 10(a) and (b). Since this case is a special case of Fig. 9(a), we
conclude A(])(Go) 2 0. ,

This completes the proof of Theorem 5.
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Appendix 7. Proof of Lemma 1

Necessity: Substituting (11) into (14) we have

Z -+Z A 2 1 0 E
ab ac a + = o a (A7.1)
Z +Zch ch Ic F(Ic) EC
If lzaal 0, then the rank of the matrix [Zaa ab ] is less than k

because Z is a positive semi-definite matrix. This means that if |Za | =0,
then the first k equations of (A7.1) are not satisfied for some‘Ea. There-
fore we see that

|z (A7.2)

aJ 7
is necessary for the circuit to have a unique solution. Since Z as well as
Z.. is a semi-positive definite matrix, (A7.2) means

aa
lzaal > 0. (A7.3)
Consider the linear case where
F(I ) = DI
D= d1ag[d], 9see .,d ] 0 < di < (A7.48)

Thenv(A7.1) becomes
Z, +ZabA A 1 E

ac a a
Zoatleph  Zoct0 | e =< E. (A7.5)
g;bﬁ (A7.55 we see the condition
T # 0 for all A and al11 D (> 0) (A7.6)

is necessary for (A7.5) to have a unique solution. Under the condition (A7.3),
(A7.6) implies (16a). Thus (16) is a necessary condition.

Sufficiency: Suppose that (16) is satisfied. Then (A7.3) holds. If
IZaa+L A| < 0 for some A, then for sufficiently large D, T < 0 follows, a
contradiction. Therefore we see |[Z_.+Z,,A[>0. If |Z .+ Z.pRl = 0 for some
A, we can choose A such that lZaa+ZabA| < 0 because A belongs to an open set
and because (A7.3) holds. Therefore we conclude that (16a) implies IZaa abAl
> 0.

From (A7.1) we have
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F(Ic) +BI. =D (A7.7)

where

- -1
B = ch - (zca+zch)(Zaa+ZabA) Zac
-1 (A7.8)
b= - B¢+ (Zg*Z A2+ pR) K,
Under the condition lzaa+zabA| > 0, Eq. (16a) means
|B+D| > O for all D > 0. (A7.9)

Applying Lemma A.1 in [3], we conclude that (A7.7) has a unique solution
for all fu.

This completes the proof.
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Appendix 8. Proof of Lemma 3

First we will describe the relation between H in (27) and Z. 1In order
to calculate f, we connect a current source j to each of the a-, b-, c-,
and g-branches. Here Jju = 0 (u=2k+m+1,2km+2,... ,2k+m+m0). Let the voltage
of each current source be us. Then we have a standard cutset equation

-HU =4 (A8.1)
where _ ) _ 5
Uy 3
U= |.12 and J = .]'2 (A8.2)
Iok+m
0
U2k+m+m (:)
L 0 3 - -

From (A8.1) we see that Z is the upper left-most (2k+m) x (2k+m) principal sub-
matrix of H']. Now T is the detemminant of the submatrix shaded by oblique
lines in Fig. A.10.

There exists a well-known relation between the minors of a matrix and
of its inverse matrix (see Lemma A.3 in [3]). By using Lemma A.3 in [3],
we will describe T in terms of H.

We will write T_ symbolically as follows:

1 2 ces k.I
]@a]max(k"']), 2@a2max(k+2) cee k]@dk]max(k"l'k]),

k1+'l, ceoy ky 2k#1, ..., 2km

r =7

-]

(A8.3)
k]+1, vees ky 2k+1, ..., 2kim

The upper line enclosed within the parenthesis denotes suffixes of rows

included in T_and the lower line denotes suffixes of columns included in

r.. Here “®°‘umax(k+“) denotes that the p-th column of T is the sum of

the u-th column of Z and the product of the (k+u)-th column and % max (see
Fig. A.10). ThereforeT_in (A8.3) can be expanded as follows:
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. [152,0000k, 2k, Ll 2kem
r, =2
1,2, 00 0k, 2kH],... 2k

/A
sk, 2k+1,.., ,2k+m

- 1,2,...,k, 2k+1,...,2k+m
* %max K41 .2

; 1, 2, 3,....k, 2k+1,...,2k+n 6.4
+ q .
2max =\ 1 k42,3,....k, 2k+1,....2kHm
~ ]’ooo,k ‘],k ,k +],...,k,2k+],-..,2k+m
1715kpsky
+ Ck.max z
1 Vavon skysktky s kp+, .k, 2KH L 2kem

+
%Imax®2max

- 1, 2, 3,...,k, 2k+1,...,2k+m
yA
k+1,k+2,3,...,k, 2k+1,...,2k+m

+ LY

JA

: - 1, 2, ...,k], k]+1,...,k,2k+1,...,2k+m
+ almax“Zmax""’“k]max

k+1,k+2,...,k+k],k]+1,...,k,2k+1,...2k+m
By applying Lemma A.3 in [3] to each term in (A8.4), we get

-1 k+1,...,2k,2k4mH1,. . ., 2kHmim
T = [H| H :
k1,..0 52K, 2km+] .. L 2kHmmgy

K+1,k+2,. .., 2K, . ..
- H
1max 1,k42, ... ,2K,. ..

(A8.5)
K+1,k+2,k#35. .2 52K, . .. |
- H
2maxT 41, 2, k43,... 02K
KH, oo ktky skekg# e n 2K, e
* CinaxtanaxSgmar” | kps kikgH, 2K,

Now (A8.5) can be expressed compactly as follows:
k+1, ...,k+k], k+k]+1,

- -1
I, = [H] 'H e
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...,2k,2k+m+'l,...,2k+m+m0
(A8.6)

oo 32Ky 2kt .. ,2k+m+m0

This gives the determinant of the shaded part in Fig. 15.
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Figure Captions
Fig. 1. Graph representations of a CCCS and a VCVS.

Fig. 2. Circuit and its associated graph for Example 1.

Fig. 3. Graph and controlled source graphs associated with the circuit for Example 2.
Fig. 4. Graph and controlled source graphs associated with the circuit for Example 3.
Fig. 5. Graph and controlled source graphs associated with the circuit for Example 4.
Fig. 6. Flip-flop circuit for Example 5.

Fig. 7. Controlled source graphs obtained from the associated graph in Fig. 6.

Fig. 8. Circuit for Example 8.

Fig. 9. Circuits having a unique solution.

Fig. 10. Subcircuits for the circuit in Fig. 9(c)

Fig. 11. Circuit containing CCCS's and m nonlinear resistors.

Fig. 12. Linear resistive (2k+m)-port corresponding to Z in (22).

Fig. 13. The main part of the fundamental cutset matrix of the graph G.

Fig. 14. Representation of B.

Fig. 15. The coefficient matrix H in (27) and 89 in (28).

Fig. 16. Submstrix of CL in Fig. 13.

Fig. 17. Matrices CL] and CL2 in (29).

Fig. 18. Illustrations of 8 and 62 in (30).

Fig. 19. Matrix obtained from sz) by applying operations (i)-(iii) in

Section 5.2.

Fig. A-1. Connection of a two-port N(z) and a one-port N(]), where both N(1)
: and N(z) have a unique solution.

Fig. A.2. Graph representation of the circuit in Fig. A.1.

Fig. A.3. Controlled source graph in the Case 1 of Appendix 6.

Fig. A.4. Controlled source graph in the item (a) of Case 2 of Appendix 6.

Fig. A.5. General configuration of controlled source graphs in the item (b)
of Case 2 of Appendix 6.

Fig. A.6. Controlled source graph in the item (b) of Case 2.

Fig. A.7. General configuration of controlled source graphs in the item
(b.2) of Case 2.

Fig. A.8. General configuration of controlled source graphs in the item (b.3)
of Case 2.

Fig. A.9. Graphs for the explanation in the Case 3.

Fig. A.10. Illustration of T_.
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