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Abstract

Simulation is a powerful technique of engineering research. A methodology for the

design, construction and analysis of software to simulate many related processes, both individu

ally and in sequences, is presented. The experience from the SAMPLE software project to

Simulate Integrated Circuit fabrication processes is distilled in the form of principles, models

and guidelines of general applicability.

The goal of simulation is characterized as the substitution of real entities by computations.

This motif of imitation of reality is stated as a general principle: the matching of computational

resources to simulation needs and desires. The design and construction of software to realize

this matching is guided by a systematic mapping between them through traditional intermediate

stages like physical modelling and numerical methods. A state-variable model is used to main

tain uniformity of structure and interaction at all levels in that mapping. The process sequences

are represented by a diagram equally applicable in the real laboratory as well as for the simula

tion software. The user-interaction with the software via input and output is similarly struc

tured to obtain a uniform handling for all processes.

The application of these models and principles to the overall abstract design as well as to

various practical details is illustrated using the SAMPLE software as a comprehensive example.

Their use has resulted in a coherent structure for the SAMPLE family of simulation com

ponents and its documentation. Also shown is their use in analyzing and evaluating the

software in its current form, its past development, new ideas for extending it, and in obtaining

guidelines for future work. D
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Chapter 1

Introduction

§ 1.1 General:

Simulation is a very important tool in modern engineering research and practice. It is one

way of tapping the vast potential of the constantly growing power of digital computers to aid in

understanding and managing various natural phenomena and ever more ambitious engineering

tasks.

In the Integrated Circuit (IC) Electronics field many successful simulation programs have

been written over the years to gain insight into all levels of the technology — from IC fabrica

tion (SUPREM [Anto79l, ICECREM [Ryss80l, SAMPLE (Oldh79,Oldh80l), device structures

(MINIMOS [Selb80]) and circuits (SPICE [Nage75]) to the many higher level systems syn

thesized from them. By their very purpose, these programs are subjected to the demands of

simulating more challenging technologies, processes and phenomena, as well as being able to

utilize well the computing resources, new hardwares, architectures, peripherals, and software

(utilities, languages, operating systems). Under these forces these programs themselves have

evolved to become major pieces of software that need a careful analysis of their design and con

struction.

In this dissertation, the design and structure of the SAMPLE family of simulation pro

grams for IC fabrication processes are discussed from a software project viewpoint. From its

early stages the underlying theme in this project has been the imitation of the actions and

events in a real laboratory by a computer program (a family of programs as designed now)

[Nand78]. Designing the programs to maintain a close correspondence between a real lab and

the simulated structures is a good example of applying a more general principle: Matching the

computational resources to the simulation needs and desires. The simpler the way in which this

match can be obtained the simpler, hence more understandable and manageable, will the

software be. This often involves approximating the laboratory machines, materials and

processes by more tractable models for which code can be written using the available computing

resources. The hardware, including the peripherals, for a project usually does not change

quickly, although different installations tend to use somewhat different set-ups and tend to have



different usage patterns. The software, on the other hand, can start from a simple set of primi

tives, and can grow a lot in its sophistication by building different modules and libraries useful

for the simulation. Once the software starts doing some of the desired tasks, it can be built

upon and refined to a great extent. And the match-point between the simulation tasks and

desires, and the software can move up to have more and better simulation capabilities.

§ 1.2 Dissertation Outline

In Chapter 2 a model of the simulation style is presented along with a description of the

available computing resources for which the programs were written. Chapter 3 presents the sys

tem configuration for the processes that are to be simulated and how they have influenced the

overall software structure. Chapter 4 tells about the structure of the individual simulation pro

cess components. Chapter 5 tells about the programming aspects, the development, evolution

and management of the code. Chapter 6 brings together many points and considerations,

including those mentioned in the previous three chapters, to provide a feeling for the tension

and balance between them and to provide a practical perspective on this whole software activity.

Chapter 7 rounds out the dissertation with a retrospective and outlines of the future directions

for the evolution of this project. •



Chapter 2

Simulation Philosophy, Computing Resources

§ 2.1 General

Once some physical processes are made amenable to analytical or computational investiga

tion, programs can be written to aid the investigation.

What is the nature of the programs so generated? Are they a mere collection of random

idiosyncratic tools or do they have a completeness in representing the processes they claim to

model? From the point of view of a user whose interests are in the physical processes them

selves, these characteristics of a program are judged from the information that can be obtained

by interacting with it as compared to the information that can be obtained by interacting with

the physical processes or entities themselves. This is explicitly stated by a simple input-output

model given in the following section.

§ 2.2 The Substitution View of a Program

A user working with some equipment and entities, say wafers, in a physical laboratory

(Figure 2.1a) can be considered to be observing the wafers for fabricating ICs, performing
some actions on them and observing the effects of those actions on the wafers. This assumes

that the user, for the moment at least, is interested only in the information to be extracted from

the wafers and not the wafers themselves.

If this kind of direct experimentation were replaced by a set-up with a well defined com

munication link through which the desired actions are fed to the experimental apparatus and the

results transmitted back to the user we would have a model of this interaction by information

transfer between the user and the equipment (Figure 2.1b).

Going one step further, the equipment could be substituted by a computer that interprets

the commands coming from the user over the communication link and computes, according to

some programs already put in it, the effect those commands would have had on the wafers and

sends back the computed results (Figure 2.1c). This is the simplest way of specifying a (set of)

simulation program(s).
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This operational view gives an input-output specification that a set of simulation programs

would have to satisfy to be useful in studying the real processes. Ideally, a completely success

ful simulation will be indistinguishable from a real experiment when the only interaction is via

the information transfer over the communication link — barring secondary considerations like

speed of response (Figure 2.Id). (This may sound like the Turing Test for intelligence in com

puters with a laboratory system or process, rather than a human, being simulated by the com

puter. But unlike in the Turing Test only the behaviour of the physical processes is being con

sidered and not the evaluation of any intelligence.)

Even partial substitution of physical processes by simulated processes may be a desired

goal, e.g. when experimental data collection programs are feeding data to a simulation program

or when a simulation program is controlling some part of an experiment. This could point out

the desirable extensions to be made to the program. For example, there should be a con

venient way to enter an experimental wafer profile as a starting profile for the simulation, or to

enter experimentally obtained rate curve data for profile advance in the simulation (both capa

bilities not present in the current version of SAMPLE).

Before discussing other philosophical aspects of the design and implementation of the pro

gram (in section 2.4) let us take a look at the computing resources for this project.

§ 2.3 Computing Resources

The computing and peripheral equipment available to the user shapes many of the opera

tional characteristics of the programs. This equipment forms the lowest, though influential,

level of the computing resources that the user interface of a program deals with. Other higher

level resources, mostly software, may include special-purpose subroutine libraries for graphics

output/input, databases for terminal characteristics, special language processors, program

development systems, project management aids etc. These higher level resources are useful to

the programmer(s) for building the program but are not of direct interest to the end-user.

In the very early stages of development of the SAMPLE program (in 1977) the usage

style was shaped by a system with a batch mode of operation (a CDC 6400 computer with the

Calidoscope operating system). The input was on a card deck and output on a line-printer (Fig

ure 2.2a). The input could be sent from an interactive system (a PDP 11/70 with the Unix

operating system) over a communication line, and the output sent back to the same system; but

that didn't significantly change the nature of the batch interaction. Soon another optional out

put, punched cards containing profile data, was added (by Mike O'Toole) to the program. The

punched cards could be taken to a digital pen-plotter with a card-reader to obtain high resolu

tion graphical profile output (Figure 2.2b). This was useful for presentation purposes but for

most of the work the the main output was the line-printer printout with textual information and
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character-array plots.

Then with the availability of a supermini computer (VAX 11/780) with an interactive sys

tem (Unix) the program development was much facilitated even though the usage style

changed slightly (Figure 2.3a). However no high resolution graphical output was available from

this configuration. (Actually graphics terminals were being used in text-only mode because no

graphics software was yet written to make use of their graphics capabilities.) Soon a communi

cation link set up between this system and the batch system (of Fig. 2.2) with the card-punch

made it possible to use the digital plotter for high-resolution graphical output although it was a

little tedious to go through the various links.

The computer site-configuration that was finally found to be comfortably adequate for our

purposes is shown in Figure 2.3b. The availability of an acceptably high-resolution graphics ter

minal (with graphics display software written for it), with an attached unit to get a hardcopy of

the display, makes it possible for the programs to convey profile information in a convenient

form to the user. Considering that SAMPLE is intended to be used for the study of profiles,

this seems to be a minimal comfortable configuration for its usage. Yet in the interest of wide

portability and usage there is no built-in dependence in the program code on this configuration.

It can display the profiles in the form of character-array plots in the line-printer output. In fact,

the students in a course in IC processing techniques at UC Berkeley use the program in essen

tially the primitive configuration of Figure 2.2a.

For program development and debugging also the configuration of Figure 2.3b has proved

adequate. The availability of a magnetic tape drive and computer network connection (not

shown in Figure 2.3b) makes it quite convenient to port the software to several other comput

ers as well as to transfer data among them. The versatile programming environment provided

by the Unix operating system and its utilities has been a very helpful software resource that has

greatly aided the construction of all this software.

§ 2.4 Methodological Considerations

Section 2.2 gave a very general view of simulation itself. For any specific simulation pro

ject first the physical system(s) to be simulated will have to be outlined in enough detail so

that, at least in principle, the simulation program and the system can be interchanged. For the

SAMPLE project an outline of the system to be simulated is given in Chapter 3.

Before getting into those details some general observations should be noted.

First, in Figure 2.1b, a decision has to be made as to which information is to be

transferred to the user and which actions the user is allowed to invoke. Due to the complexity

of the real processes it is always possible that the decisions made regarding these will have to be
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modified later on. The program should be flexible and extensible to allow this.

Second, to be flexible and extensible to as yet unplanned aspects of the processes to be

studied, the simulation program will have to imitate the events and actions in a real laboratory

as closely as possible (the motifof imitation). Otherwise for the simulation of a slightly modified

process or process-sequence a disproportionately large change would be necessary in the simula

tion program. This would happen when the desired modification violates some assumption

made by the program about the process or the process-sequence. For example, in photolithog

raphy simulation, if the program relied on an assumption that a wafer development process can

only start with an initial flat resist-profile then simulating a two step development with a change

of developer after the resist has been developed for a certain time would not be possible

without code modification — an unnecessary dependence of the user on the programmer. Such

an assumption may easily get built in the program if the code initializes the resist profile at the

start of the development process simulation instead of initializing the wafer to that initial profile

outside the development simulation part of the code.

Third, due to the complexity of the real processes there may be aspects of the dynamics

or details of the processes that are not modelled completely by the program. The degree of this

incompleteness in modelling reality can only be judged by comparing the output of the program

with the results of experiments. For example, if the surface inhibition effect during develop

ment is not modelled by the program then outputs from the program will show noticeable qual

itative differences near the original resist surface when compared with experimental results.

Fourth, the methods used for simulation may have their own peculiarities that may dom

inate over the actual effects in the simulated output (somewhat like an information signal being

masked by noise in its detector). The most well-known examples of such a possibility of mis

direction are the instability effects possible when using some numerical methods for solving

continuum problems. Less glamorous examples could be a sloppy choice of parameters for a

good numerical method, or simply the insufficient resolution in the graphical output device

creating a wrong impression about the accuracy of the results calculated by the program.

The user can maintain a proper perspective on these issues of incompleteness of model

ling, and peculiarities of the simulation and computation techniques by keeping in mind the lay

ered structure of the simulation to be presented in Chapter 4. Such a perspective is an invalu

able aid in obtaining insight in the results of the simulation or the experiment. It is also very

helpful in debugging the code as well as for explanation or justification of correct but apparently

counterintuitive outputs from the program. Short of a complete correctness proof, nothing else

builds up confidence in the program as much as the finding of a convincing explanation or

proof of the validity of some unexpected output from it.
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Fifth, because of the computational nature of the simulation it can easily give the user

more controllability and observability in the entities to be studied than is conveniently possible in

a laboratory [Nand78l. For example the variation of many parameters of the system is usually

far easier with a program that allows it than with a real experimental setup. And there may be

no easy nondestructive way of viewing the profiles in time-evolution for a real wafer.

Now in the next chapter we can look at the system being modelled by the SAMPLE

program(s) and how it affects the interaction of the program(s) with the user (and with each

other). •
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Chapter 3

Processing System Configuration

§ 3.1 General

The goal of the SAMPLE project is to study the IC fabrication processes that shape the

topography on a wafer. In a typical processing sequence, starting with a flat blank wafer, vari

ous planar layers (e.g. oxide) are created on it. A planar layer of a suitable resist is spun on

this wafer in preparation for a lithographic operation. The lithographic operation chosen (from

optical, e-beam, x-ray or ion-beam lithography) creates the first desired nonplanar topographic

pattern in the sensitive resist layer on the wafer. This pattern is further enhanced and

transferred to the other layers on the wafer by different etching and deposition steps. The

deposition step typically adds a new metal layer to connect different parts of the wafer. By suit

able combinations and iterations of etching and deposition steps (Figure 3.1) a complex pattern

can be formed on the wafer. In some sophisticated processing sequences even the lithographic

operations may be repeated using multilayer resists to control the profiles on the wafer. (These

multilayer resist processes are currently outside the simulation capabilities of the SAMPLE

software.)

§ 3.2 Processing Sequences

Figure 3.1 shows the possible processing steps that a wafer may be subjected to in a typi

cal processing sequence. That figure is expanded to figure 3.2 to enumerate the different pro

cessing steps used in a laboratory. Since the equipments and resists used in the different lithog

raphy steps are quite different from each other there is usually no interaction between the vari

ous lithography steps. (This is not true for multilayer resist processes, but that does not affect

the concept of process sequences presented here.) Any given processing sequence in this sys

tem configuration can be represented by a path that the wafer may follow through the different

processing machines. This view of the system configuration emphasizes the processing equip

ment and machines in the laboratory.

Figure 3.3 shows a generalization of this view of the laboratory organization to include as

yet unspecified processes that may be added to it. The wafer is passed through the appropriate
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machines by the user in the order desired to achieve a given processing sequence.

Further generalization of this interaction between wafers and machines can be made by

replacing the wafer bus by a collection of wafers that have undergone various steps of process

ing (Figure 3.4). This view of the system is oriented towards the wafers — with the machines

performing the selected operations on the wafers and then returning them back to the collec

tion.

If only one wafer is considered then Fig. 3.4 is essentially equivalent to Fig. 3.3. But the

view in Fig 3.4 is more convenient in considering concurrent investigation of different process

ing sequences which may or may not share some processing steps. This is a common situation

in a laboratory when, for example, after generating many wafers with certain common process

ing steps the effects of varying some parameters of the next process are studied by subjecting

the wafers to the different runs of the next process with different values of the control parame

ter.

In Figures 3.3 and 3.4 the processing machines could simply be for observation (e.g. a

microscope) or measurement (e.g. an electrical parameter measuring instrument). In that case

their output is the information about the wafer state that they convey to the user (and ideally

they would not change the state of the wafer). For theoretical completeness one may even

hypothesize an infinite source of blank wafers and an infinite sink of processed wafers as pro

cessing machines available in the system.

There is one point not explicitly expanded in Fig. 3.2. Each of the lithographic processing

operations is physically two distinct processing steps: a resist exposure step followed by a resist

development step (Figure 3.5). The mechanism of exposure varies depending on the type of

lithography used. In optical/uv or x-ray lithography a pattern on a mask is imprinted in the

resist layer using electromagnetic radiation. In e-beam or ion-beam lithography a pattern is

imprinted in the resist by electromagnetically controlling a beam of electrons or ions in a parti

cle gun. The resulting chemical changes in the resist allow the developer used in the develop

ment step to selectively remove portions of the resist layer creating the desired geometric

profiles in it. Due to the close relation between these two steps in the total lithography opera
tion, many times it is convenient to group them together when considering longer processing

sequences. However, since they are physically two distinct steps, it is possible to control each

step independently of the other and then they will have to be considered as separate processes
within Figures 3.2 and 3.3.

Before we look at the details of each processing step and how they are simulated (Chap.

4) let us consider what the processing sequences themselves imply for the simulation
program (s).
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§ 3.3 Simulation of the Processing Sequences

For simulating any processing step by a program the wafer will have to be represented by

data that specifies its physical and chemical states and which can be transformed by routines

(simulated machines) that correspond to the processing steps [Nand78l. In this state-variable

representation, subjecting the wafer to a processing step is simulated by the transformation of

data specifying the wafer state by the corresponding simulated machine to give the processed

wafer state. Physically taking a wafer from one processing step to another corresponds to com

municating the wafer data from one simulated machine to another. And by the motif of imita

tion (§ 2.4) this communication structure should reflect the actual wafer paths through the pro

cessing equipment as represented in Figures 3.2, 3.3 or 3.4.

A Note on Some Terminology to be Used Here: Because the SAMPLE software is on the

verge of a reorganization (§ 5.10, § 7.4) at present (Summer 1984) some terms to be used in

the following discussion need some context and clarification. In all the release versions of the

SAMPLE program up to now, the latest being version 1.5b in May 1983, all the routines for

the simulation machines were implemented as parts of one computer program. This implemen

tation organization will be referred to as Full-Lab-Simulator (FLS) or the "Together-version"

of the program organization. The software is currently being organized as one program per

simulated machine. These programs will be referred to as Individual Machine Simulator (IMS)

programs or the "separated-version" of the program organization (§ 5.10). The high resolution

graphics plot program was always a separate program — first for implementation reasons (§ 2.3)

and later for portability and code management reasons. To avoid unnecessary confusion, its

separateness will be ignored in the following references to the together-version of the software.

Similarly for the Resistance and Capacitance Evaluation program RACPLE [Lee83] which uses

the plot-data file to get the profile information from SAMPLE. Note that a plot program

corresponds to an observation instrument like a Scanning Electron Microscope (SEM) and the

RACPLE program corresponds to an electrical parameter measuring instrument like an

impedance-meter. End of Note.

In the together-version of the SAMPLE software this communication of the wafer state

between the simulated machines was achieved simply by storing the data in a static data struc

ture (Fortran COMMON blocks) accessible to all the machines. This led to only one simulated

wafer being present in the system (no copies were made within memory) and the communica

tion between machines was as shown in Figure 3.3. Furthermore, having one static data

storage area in the program without any adequate provision to store the wafer state outside the

program meant that after invoking a simulation machine the previous state of the wafer was

superseded by the new state and hence not available again unless the steps leading up to that

point were simulated again.



19

By contrast, the separated-version of the SAMPLE software as a family of simulation pro

grams communicating data using files (stored on disk memory) corresponds to the more general

organization of figure 3.4. The aim of this implementation (with communication through files

that store the wafer state) is to allow the user (and the programs) direct access to many of

these wafer files (simulated wafers having undergone certain processing steps) at any time after

simulating them once. The different simulation machines need not all be written in the same

programming language or even be present on the same computer as long as their interface to

the wafer-files is well defined.

In this chapter the interprocess interaction aspects of the simulation were discussed. In

the next chapter the intraprocess structure for the simulation of the component processes in

Figure 3.2, 3.3 and 3.4 will be considered, D
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Chapter 4

Simulation of the Process Steps

§ 4.1 General

The steps in a processing sequence constitute the natural components of the operations in

a laboratory to be studied as units. Usually these are considered as single functional steps

because of the apparatus used or because a single type of physical phenomenon (or a group of

closely related ones) characterizes the actions taking place during that time. These steps could

be subdivided further in terms of the detailed procedures and actions needed to operate the

equipment, or they may be considered together when their combined result is easier to describe

as a unit step than their individual results (e.g. the resist exposure and development steps may

be considered together as one major lithographic step). By the motif of imitation (§ 2.4) the

simulation program should provide similar relatively modular operations for the user and

should be able to accommodate such shifts of viewpoints.

§ 4.2 Structure of the Simulation

A simulation module, a part of a larger program or a separate program, corresponding to a

processing step performs the computations corresponding to the actual phenomenon and pro

duces the computational results to be interpreted in the context of the real process. It bridges

the real phenomenon to the computing resources by a chain of correspondences, or mappings,

as shown in Figure 4.1.

The simulation activity spans a whole range of fields as shown in the figure (Figure 4.1).

The layered structure of this activity makes it possible for us to study and understand it in parts

(divide and conquer). Each layer in the figure is a distinct link of the mapping from one boun

dary (the physical phenomena under investigation) to the other (the available computing

resources). To be meaningful for simulation purposes, each pair of layers has a well-defined

correspondence between them. In one direction (from top to bottom in Figure 4.1) it is the
modelling, analysis, or representation and computation that links them to each other, while in the

other direction it is the interpretation of the results thus obtained, that complements their rela

tionship.
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§ 4.3 Model of the System

For the system to be represented for computation and for the results to be interpreted

across the layers of Figure 4.1 it is useful to have a model of the system that remains conceptu

ally similar through all the transformations and mappings between them. The state-variable

model (Figure 4.2) provides such a common view. The physical state of the system, its

mathematical specification, and its storage representation in the program or computer system is

transformed by operations performed on it, whether in the actual processing step, in a

mathematical form, or as computations. In all these levels the system can be considered as pro

ducing an output and changing its state depending on the input. From an operational

viewpoint, especially for program construction, it is convenient to look at the input as having

two parts: one part that changes the parameters of the system and the other, an activation sig

nal, that causes the process to start modifying the system state ultimately resulting in the next

state for the system. This way the data and the procedures in the program can be matched with

the state and the process respectively.

With this state-variable model for the system the interaction between a user and the sys

tem can be viewed as the attempts by the user to control the system-state through its input and

to understand it by observing its outputs. The extent of such control and the ease of observa

tion of its state may be termed the controllability and the observability of the system, respec

tively. A simulated system should allow the user at least as much controllability and observa

bility as is possible with the actual process. The program, its input language and its output

should be designed to facilitate such interaction with the state of the system as stored in the

data-structure of the program and the process operations as coded in its procedures.

§ 4.4 Program Design for the Simulation Steps

The layered structure of the programs shown in Figure 4.1 and the state-variable

representation of the system given in Figure 4.2 are two central models for the processing step

simulation programs. They provide the foundation and guidelines for the semantic design of

user interaction with the programs and for their construction.

A first use of the layered structure is in classifying the users of the programs based on their

needs and depth of interest in the programs. A user who is interested only in the physical

phenomena looks only at the top layer of Figure 4.1. An example of such a user is the user

hypothesized in Figure 2.1. Such a user is interested only in the results of the physical

phenomena and not in "any of the details" of how the simulation is done (if it is a simulation).

This is a ''''pure user" of the program in the traditional sense. A scientist or research worker

studying these processes in more detail and hence interested in their models, their mathemati

cal formulations and perhaps even the numerical methods used in dealing with the resulting
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computational problems takes more interest in correspondingly more layers below the top one

in that figure. This user's interaction may involve choosing a different model or method for

solving the problem if the program provides such a choice, or specifying or building it if

doesn't, or merely observing how well the methods are doing their tasks. Finally, a user, the

user-analyst-programmer, whose interests reach all the way to the program code, its construc

tion, improvement, maintenance, or even porting and installation on local computing resources

will want to know and interact with more of the details of the program. In practice, there may

be no single person performing the role of the user-analyst-programmer taking detailed interest

in all the levels and these tasks would usually be divided between different members as

engineer/physicist, mathematician, numerical analyst, or programmer as suited.

The layered structure along with this classification of users helps the program designer

structure the user-interaction to be provided by the programs. In its simplest form, user-

interaction is delimited by the input accepted by the program and the output generated by it. If

the program has the ability to handle a choice (regarding parameter values or the Jype of

method to be used or any other options) in its code then the user should be able to specify the

choice in the input. Otherwise the only way to use that ability of the program would be to

modify the portion of the program where that choice has been "hardwired" in it and then to

recompile and execute it i.e. using the compiler for input — not a good way of interacting with

the program (or the user). Similarly, the output should provide as much information as possi

ble at any level, if it is available within the program, as desired by the user. Otherwise once

again the user will have to resort to code modification to get (or suppress the output of) that

information from the program. These simple considerations guide the programmer in the selec

tion and the organization of the contents of the program's input and output, how it will interact

with the different levels of users and also in the organization of its documentation.

The organization of the program is influenced by how the simulation of the simulation

task is viewed at each of these levels. The conceptual division of the task at any level gives rise

to a corresponding division in the overall programming (problem solving) effort. While the

physicist, mathematician, numerical/geometrical analyst, or programmer naturally separate

many of the tasks according to their fields, the situation becomes involved and interesting when

some task cannot be handled well at one level but by a different approach at another level a

good practical solution could be obtained.

One example of the use of a combined perspective on this interaction between levels is to

note the similarity of the computational organization of the wafer exposure step for all four

lithographies handled by the SAMPLE software, even though the physical phenomena seem to

be of two very different types and the computational methods are very different. This similarity

is useful for didactic purposes when explaining the operational features to the users, and for
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keeping the structure of the four lithography simulation programs similar to each other, so sim

plifying their construction (X-ray and ion-beam lithography extensions have been added rela

tively recently as compared to the optical/uv and e-beam lithography routines), as well as in

managing later additions and in maintenance.

In optical lithography, an image of a mask is formed on (in) the resist layer on the wafer,

and the incident radiation causes chemical change in the photosensitive resist layer. Even

assuming that the phenomenon is two dimensional (translational symmetry along the third

dimension) the 2D distribution of light in the resist layer with the reflections at the various

layers' surfaces and the time varying absorption in the resist are difficult to compute. The

chemical effect of this spatially nonuniform and time-varying light distribution on the resist is

modelled by the spatial and temporal variation of the relative concentration, M, of the light

inhibiting species in the resist. The net effect of the exposure step is modelled by the final dis

tribution of this M parameter in the resist layer (the chemical state of the resist). To make this

problem computationally tractable an approximation is made in its formulation: the light enters

the resist surface at normal incidence and all the wafer layers have their surfaces plane and

parallel to each other (during this exposure step). With this assumption the original problem

can be subdivided into two parts: (1) the computation of the incident light distribution (image)

at the top surface of the resist where it is unaffected by the time varying absorption of the

resist, and (2) the effect of this image at points vertically below it in the resist. The computa

tion for the second part can be divided into two subparts: (2a) generation of a table of M distri

butions in a vertical "column" for various standard cumulative dose values of the light incident

on the top surface of the resist (so taking care of the temporal variation), and (2b) the calcula

tion of the actual M distributions in the resist layer by combining the values from part (2a)

with the image values from part (1). This is the division of computation into the "image"

machine, the "standard bleaching (exposure)" machine, and the "actual bleaching (exposure)"

machine in the first few SAMPLE versions [Nand78] (Figure 4.3) (See also § 6.2.5).

For X-ray lithography the computations of the effect on the resist are simpler (no stand

ing waves) but still divisible in similar three parts. For e-beam lithography [Rose81] the similar

ity is not so readily apparent. For this lithography the effect of the exposure step is modelled

by the distribution of absorbed energy in the resist (for representing the exposed state of the

resist). There is no physical mask and a beam of electrons "writes" the desired pattern on the

resist by exposing it in spots. However, for computational purposes the spots can be considered

together as the "surface image" on the resist; the Monte-Carlo computations [Rose8U that give

the effect of an idealized delta-function spot of a given energy on the wafer as the "standard

exposure" part of the computation; and the combination of the results of these two by a convo

lution operation being the "actual exposure" of the computation. The ion-beam lithography
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simulation capability added recently uses computations similar to the e-beam routines but

instead of Monte-Carlo simulation for the "standard exposure" analytic expressions are being

used.

The above example where the actual physical phenomenon of resist exposure is separated

into several computational tasks (image, "standard exposure", and "actual exposure") shows a

few of the points regarding the interaction between the levels of Figure 4.1:

(a) The pure-user's view of the program's capabilities should be complete without resorting to

the details of the lower levels of Figure 4.1. In general at any level of Fig 4.1 the

program's simulation capabilities should be completely describable at that level (complete

ness of the simulation model at every level). This description is usually the documentation

(User Guide) of the program that explains its intended functions (capabilities) and defines

the semantics of its input and output — their organization, contents, and form. The

pure-user should be able to tell the program simply to perform the whole exposure step

without having to specify the individual components (image, standard exposure etc.)

which are not a part of the top level. (Otherwise the program will fail to satisfy the sub

stitution view of § 2.1). In the early versions of the program (June 1978) the user had to

specify these three steps separately. *

Later the standard-exposure and actual-exposure steps were combined into one "expose"

machine ** but to this day (Summer 1984) the image and "expose" steps have to be specified

separately to achieve the effect of the physical exposure step. It also makes the organization of

the radiation (e.g. optical) and the particle beam (e.g. e-beam) lithography systems more

different than it really should be. (A definite spot for cleanup of the program and its input

design.)

Another example of a similar deficiency in keeping levels separate is found in the SAM

PLE documentation in the. explanation of the input statement that causes the simulation of the

e-beam exposure of the wafer. Instead of explaining its action as the simulation of the expo

sure step it merely tells that the statement causes the program to "... run the convolution ..."

and it needs "the Monte-Carlo data file" ([SUG83] part 2). An explanation whose incomplete

ness often causes a new user a lot of unnecessary confusion and later grief due to incorrect

simulation results because of incorrect usage of the Monte-Carlo data files. ***

Saying that specifying the three steps in the input can be considered to be the same as specifying the physically
wholesome one step is merely claiming the non-existence of the symptoms, when the real disease is the flawed
design of its input language. The above is a simple example of thinking at a lower level and losing sight of the
forest for the trees. The effect of such flaws is cumulative and one of their results is a loss of flexibility and
capacity to extend to different situations because the design is unnecessarily bogged down in lower level details.

Thanks to Dr. Mike OToole for a dinner invitation and discussion that led to this action. (Summer 1979)

Then why isn't the documentation corrected? Answer: for bureaucratic reasons. The purpose of pointing out
the above example is merely to show the clarification afforded by the perspective offered by Figure 4.1 even in
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(b) The same layered structure can be used to give a meaningful structure to the output pro

duced by the program. The output for different steps in the processing sequence is natur

ally concatenated in the same sequence. However, even when there are multiple computa

tional steps in the simulation of a simple processing step (e.g. for the lithographic expo

sure process as described above) the outputs of these individual computational substeps

should not be mixed in a haphazard manner. Usually such mixup arises when the pro

gram is modified without attention to this simple output-structuring guideline (concept).

The mixing unnecessarily spreads related pieces of information textually apart in the out

put and results in a loss of cohesiveness in the presentation of the information. A current

example of this is the output of the e-beam lithography exposure simulation machine's

output in SAMPLE versions upto 1.5b. This can be corrected easily by rearranging it

(and is (slowly) being done now).

Another element of structure in the textual output produced by the program is the nesting

of the output information according to the top-to-bottom hierarchy of layers in Figure 4.1. The out

put from one level provides the context for the output from the level below it. (Except that at

the lowermost level some code installation and implementation problems may show up to be

more related to the computing resources being used rather than the simulation being per

formed. In any case, the output should show this nesting according to its context.) Indicating

the nested nature of the (textual) output by indentation (similar to the indentation used by pro

grammers for program code in a block-structured language where each nested block is indented

one level further than its surrounding block) makes the output easier to grasp visually. (The

importance of visual layout.) For example, in the output for a simulation step the parameters of

the physical process being simulated should be at the outermost nesting (hence indentation)

level. Then as the information at the lower levels is being output it should be nested inside

that. The details of the numerical method i.e. discretization, grid-size, the location of grid

points, the number of grid divisions should have a further nesting (indentation) level, and

details of program code (e.g. the number of array elements used for storage, diagnostic mes

sages like "subr xyz called with parameter values ..."), when output, should be indented even

further.

Usually due to the limited width of the textual output device some compromise in such

indentation is necessary. Also for the visual balance in the output layout some information (e.g.

plots) may be better presented centered within the available output width of the display or

printing device. Even with such compromises in the output layout due to the nature of the

documentation, and how a deviation can be harmful. Even though the project administration is an integral part
of a technical project that is not the topic of discussion here.
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output medium and for reasons of visual aesthetics, the concepts of sequence and nesting

enhance the output understandability for the user. And in the process of attempting this

coherent output structure the insight gained in the computational organization and hierarchy is

in itself valuable to the programmer/designer.

(c) An interesting situation occurs when the program exhibits some peculiar behaviour that

seems like an error at one level but may simply be an "interface quirk" between the lev

els, or just a limitation at one level being propagated to another level where its peculiarity

is enhanced and becomes noticeable or bothersome.

An example of this is a problem noticed by Dr. Douglas A. Bernard * in Fall 1983 when

trying to see how the photolithography simulation was performing at the vertical boundaries of

the computation window. He simulated two full periods of a simple mask being printed on a

resist layer (Figure 4.4a) so that the region at the center had the same physical processing con

ditions as the region at the two boundaries. Any computational errors at the boundaries could

be detected easily by comparing the boundary portion of the profiles with the center portion.

The horizontal image from the mask (sketched in Figure 4.4b) as plotted on the screen of a

high resolution digital graphics display didn't show any problems at the boundaries. But in the

developed profiles the center portion lagged significantly behind the boundary regions so that

the developer broke through the resist layer (in the simulation) at very different times at the

boundaries as compared to the central region (Figure 4.4c).

This was very confusing because the profile advancement algorithm used for the simula

tion of the development tries to move the boundary points vertically downwards. So the com

putations should not be affected by the boundary location of the points when they are moving

vertically downwards in the actual processing. Therefore these points should have the same

movement as in the center region in Figure 4.4c.

The explanation of this discrepancy between the actual simulation and its expected

behaviour lies in the discretization used for the location of the grid points at which the horizon

tal image intensity is computed by the program. The expressions used for the evaluation of the

image are indeed symmetric and periodic along the horizontal direction. The grid points are

uniformly spaced in the window. But because the program uses an even number (50) of grid

points, hence an odd number (50-1=49) of grid divisions, in the horizontal window with the

end points located on the two boundaries there is no grid point located at the center of the win

dow. Because the image intensity is concave downwards in the central region the intensity at

the two grid points on either side of the center is slightly smaller than the intensity at the peak

of Philips Research Laboratories Sunnyvale, Signetics Corporation, California, U.S.A.



(a)
Mask

Space

(b) 1 -»

Image

Simulation window

(2 periods wide)

Line Space Line

30

•>

Space

> *

• Resist

Layer

♦ * *—*—^-^—4—4—*--hI

*- grid points -*

Figure 4.4 Example of an unexpected interaction between the levels
of Fig. 4.1. Sketches of the:

a) Cross section of Mask. Simulation window.
b) Image from the mask
c) The simulated resist profile
d) The source of error (due to the location of

the grid points, An exaggerated sketch)



31

(which is at the center). But the intensity at the boundary points has the full peak intensity

value. Though this is a very small (second order) difference and is easily missed in a visual

inspection of the image plot, it is propagated to the computation of the vertical standing waves

of intensity and M in the resist. Then in the development process where an extremely non

linear relation between M and the development rate amplifies this difference enough so that the

cumulative development time for breaking through the intensity (and M) node locations along

a vertical path happens to show up loudly at the last node. Once this was realized the flat top in

the center peak of the image plot of Figure 4.4b was easily noticed (sketched separately in Fig

ure 4.4d).

This showed that even though the numerical (and the simulation) performance of the

image and development routines is individually very good, combined together they did not

stand up well to the critical test of this simulation. And the explanation was to be found in an

unexpected place. ** Looking back at how the explanation was arrived at shows a clear help

from the layered structure of this simulation shown in Figure 4.1. The symmetry of the physi

cal situation was unviolated at the physical/mathematical formulation level, and also at the

geometrical/numerical computation method, but not in the choice of the numerical parameter

values chosen in the discretization (grid point locations). So without wasting time at the lower

levels for "code debugging" the explanation could be found quickly. *** Moreover this points

out that an input statement allowing the user to choose the locations (or number) of grid points

would be a worthwhile addition to the program for improving the controllability of the discreti

zation.

§ 4.5 Rumination

An analysis of the problem to be solved will reveal many of its characteristics that would

lead to a solution. Many characteristics of a solution found, if any, would get shaped by the

approach. The various aspects of the problem and the solution uncovered by the analysis pro

vide an intrinsic framework for organizing further efforts. In the preceding chapter (Chap. 3) a

framework was shown for the process sequences and the communication of simulation wafer

results from one simulation machine to another. In this chapter the structure of the simulation

efforts for the individual processes was examined. The various layers or levels of the simulation

(Figure 4.1) and the interplay of representation and interpretation between them has influenced the

nature of most efforts in our group in studying the physical phenomena involved in IC

This can be a very touchy situation in a multiperson project.

For lack of time a rigorous verification has not been carried through. Without it this explanation remains only a
hypothesis. A familiarity with the values encountered in such simulations tends to make me believe in the
correctness of this hypothesis.
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processing.* The concepts outlined here, the static model of Figure 4.1 and the execution plans

in Figures 3.4 and 4.2, have provided the framework for the software written (and being writ

ten) and have helped in classifying various new ideas and approaches from many people by pro

viding a clearcut perspective to evaluate their potential contribution to the overall effort.

In the next chapter we examine the other part of Figure 4.1 — the computing resources,

by focussing on the software issues and the software project aspects of this effort. D

See the references listed at the end of part 1 of SAMPLE User Guide (SUG831. Also, other research workers us
ingcomputations to model physical phenomena seem to converge to a similar philosophy [Xxxx82l.
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Chapter 5

Structure and Implementation of the Software

§ 5.1 General

In discussing the basic design and structure of the simulation efforts and the program, the

contents of the user interaction were considered mainly from the simulation goals point of

view. In this chapter the user interaction will be considered from the computing resources

point of view. Fortunately, these two views give mostly an orthogonal set of components for

the program structure for user interaction, and hence for the user interface. So it is possible to

choose the form of interaction from a variety of styles and still satisfy the same information

content requirements for the user.

The software aspects of the structure and implementation of such interactions, the

management of the software, its evolution, and its design for growth are the topics of discus

sion in this chapter. Details of the code and other aspects that can be seen easily by studying

the code, or various standard textbooks, are avoided. The intention is to convey the general

philosophy and directions followed, so that the program framework can be understood easily

and a perspective obtained for the continuation of this software project.

§ 5.2 I/O: Devices and Device Handlers

The primary interaction device that we* have been using for communicating with the

computer and the program(s) is a video terminal with an alphanumeric keyboard for input to

the system and a display for output from it. The communication is by sequences of characters

sent over a communication line. A terminal, along with the ability to use disk files for feeding

input to the program and for storing the output from it, a line-printer for getting hardcopies,

and postprocessor plotting programs for displaying graphical output on the terminal screen help

achieve an adequately comfortable interaction with the program at present (Fig. 2.3).

The SAMPLE Group at the University of California, Berkeley, California, U.S.A.
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Even though we do not make use of various new peripheral devices like graphics tablets

(digitizers), light pens, or electronic mice, it is interesting to consider how they could be used if

they become sufficiently accessible and available in the future.

Graphics tablets or lightpens could be used to enter various graphical and geometrical

entities to the program. For example, the initial profiles for etching or deposition, or the

development rate as a function of the M parameter could be specified by entering a curve

graphically rather than by describing it with an alphanumeric (textual) input. Since such dev

ices communicate their information as character sequences (say, as encoded coordinate values

in their frames of reference) in theory they do not change the nature or meaning of the input

quantities for the program.

The "I/O devices" for interaction need not be physical devices. They could be general

computing resources like a screen management software package (e.g. the curses library

[Arno81] on 4.2BSD Unix), that makes screen oriented menu-style interaction easy to imple

ment. Again, they do not change the nature or meaning of the information, though they can

make a vast difference for the convenience of using the program(s).

Interrupts are a different type of mechanisms for communicating with programs due to the

asynchronous nature of their interaction. They could be used to signal the program to change its

course of computations interactively. Consider the following scenario: The program displays

the resist or wafer profiles as it computes them with small steps of the simulated time (i.e. it

has run-time graphics capabilities), and the user observing these profiles suddenly decides to stop

that simulation at a particular profile shape to investigate the effect of the next simulated pro

cess step (e.g. a deposition step following etching) on that shape. To do this without interrupt

mechanisms would involve either (a) trial-and-error for the choice of total profile advance time

(simulated time) on the user's part if all intermediate profiles are not shown; or (b) a volumi

nous output from which the user decides on the desired simulation time; or (c) asking the user

at every simulation time increment step whether to continue with the profile advance step or to

go to the next processing simulation step on the program's part*. None of these other methods

seems to be as direct, elegant, and convenient as using interrupts for this type of inherently

asynchronous interaction**. In the absence of general purpose device support libraries or other

Other possibilities to imitate the asynchronous interaction may be: (a) at each profile advance step the program
would wait for user input (a "blocked"-read) and if there is no input for a certain time a timer process would
wake it up to abandon the read and continue the computations; or (b) the program would wait a certain small
amount of real time (to allow the relatively slow response speed of the user) after each profile step and then try
to see if there is any new input typed by the user (a "non-blocked read"). If there is none then continueon the
profile advance computations.

Prof. Oldham :- "This corresponds to a real laboratory process, viz. end-point detection in manual mode. The
considerations above have their counterparts in the real laboratory. The equipment dependence makes it
difficult there too."

Indeed, many of the special user-interaction techniques used in computer- and video-games could be adapted for
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language facilities (say, for interrupt handling or for graphics output) the programming

difficulty or lack of portability arising from overdependence on a particular system configuration

would tend to deter the programmer from utilizing many features of the available devices.

However, being aware of such possibilities would help in writing software that could be con

veniently extended in these directions at some future time.

§ 5.3 I/O: Communication Channels

The communication between a program in execution and the user, using the physical dev

ices, occurs along fairly similar channels on most contemporary computer systems *. Each

computer system provides an environment for the user with system-specific means of invoking

the program, storing data in its file system, and other means of storing and communicating data

between the user and the program (Figure 5.1).

Other than the brute force approach of having the data "hardwired" in the source code of

the program, the more flexible means of getting it to the program are by using an input device

like a keyboard, or disk files, or command-line arguments to the program. Similarly the output

from the program may be channeled onto the standard display output device or various files for

different types of output information. The files may be physical devices as is easily allowed in

the Unix system. Figure 5.2 shows a generalized view of these I/O channels including the

asynchronous signals (interrupts) from the user of the program, from the system, or from the

processor (e.g. a floating point overflow trap), and possible invocations of other programs from

the user-invoked program, say, to send automatic mail to the program maintainer in case some

abnormal conditions are detected during the program execution.

The outputs for "direct human consumption" and for "post-processing" by other pro

grams are often not mutually exclusive. Further, different types of information to the user may

be grouped together and directed to a single channel (device or file) for implementation con

venience. Such folding (or multiplexing) of different channels onto one may arise when the

output relates to different levels shown in Fig. 4.1 or when the program is producing different

types of information in alternate steps. Without proper output design and organization this

would result in a confusing mixup of the information on that physical device (or file). For

example, if the echo of the input lines from the standard input and the computational results

from the simulation are both sent to the standard output then if the input interface routines

perform a lookahead on the standard input that lookahead may result in the echo of input lines

interaction with the simulation programs.

For the purpose of this discussion, the term channel is used for denoting ways of getting data to and from the
program when using it, free of the operational details of the I/O devices but still dependent on the computer
and system support.
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Figure 5.1 Intermediaries for data communication between the user and the program
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being out of step ("ahead in phase") with the simulation output. The situation could become

more confusing if there are diagnostic messages (for the input) interspersed in the same output

channel and they are not at their right place because of the missed synchronization between the

echo of input lines and the simulation output. One solution, currently followed for SAMPLE

input statements, is to extend the input language syntax by defining an explicit token for

separating (or terminating) the individual statements which would indicate the end of a state

ment to the input routines, thus obviating the lookahead*.

An example of the mixing of the outputs from the same level occurs in the simulation of

the optical image for a multi-wavelength case when the user wants data for plotting both the

Optical Transfer Function (OTF) and the image component at each wavelength. Since the OTF

and image component are both computed for one wavelength before proceeding to the next,

outputting them to an output channel when they are computed will mix them up with each

other (e.g. if they are to be sent to the same output channel, like the card-punch in Figure

2.2b). A solution is to store (at least one of) them in a buffer space till the output for one is

finished and then output the buffered data. Another solution would be to output only one of

them (the image) during the computations and when that output is finished recompute the

other (the OTF) and output it then**.

Similar problems arise in handling the input to the program when it gets voluminous. A

main input channel to the program is the standard input via which the user specifies various

parameters and gives simulation commands to the program. The syntax and semantics of this

language has to be designed for convenience of usage as well as precision of communication.

Just like the mixups of the outputs from various levels there could be mixups in the intended

level (in Fig. 4.1) for an input command. A "produce verbose diagnostic output" command

will have to be made more precise as to the level at which it is intended. The diagnostic extra

output may be intended for debugging or checking the input-interface only, or the detailed phy

sical results from the simulation. And a specification of a "mask" or wafer parameters in opti

cal lithography would have to be distinguished from similar specifications in x-ray lithography.

The point here is that folding or multiplexing of various types of inputs may occur onto one

input channel. This input will have to be "demultiplexed" by the program's input interface (or

in general user-interface) to send the information to the appropriate parts. In the program

Whether it is a statement-separator token (and optional) or statement-terminator token (and optional) has no
practical effect on its usage.

Digression:- Actually, the way the program developed over time, a doubly redundant combination of buffering
and recomputation is used for the plot data channel. The image components are buffered, and the OTF com
ponents are recalculated and buffered too. These vestigial features of the code organization arose due to uncer
tainties in the direction of growth for the program in the beginning, and make those parts unnecessarily more
involved. They should be cleaned up now. /End of digression.
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design this may be "solved" by an elaborate input language design (e.g. by having distinct

statements for each distinct elementary input type, as is done now, or by having some kind of

context hierarchy with some kind of block structure to allow simple elementary statements to

be applicable to different parts of the program depending on their input-context). Or another

solution would be to separate the inputs to different channels (different files are also different

channels) for different levels, say, by having all input interface debugging options read from a

certain file, or allowing the wafer profiles to come from a specified file while other commands

are entered on the "standard input". This illustrates how simple considerations like the

number and types of input channels to be used will quickly affect aspects of the input language

design.

When there are many potentially parallel input channels to the program for specifying the

same item, a decision has to be made as to which specification will supersede which other

specification. Usually this is a simple matter of using the input from the more flexible channel

to supersede the input from a less easily changed channel. For example, the "hardwired"

default values in the program's source code are superseded by their respecification using the

command line arguments (if the program can handle them), which in their turn are superseded

by the input entered via the standard input channel as the program is executing. Further, if the

output results of the program are to be reproduced in a different run for documentation,

demonstration, or verification, all the relevant inputs on all the input channels will have to be

reproduced as of the reference run. Though obvious in principle, due attention is needed in

practice to avoid errors, especially when comparing with a slightly modified version of the pro

gram or outputs from two different installations.

Currently (Summer 1984) no asynchronous signals are used by SAMPLE, neither are any

command line arguments (or the Environment variables of the Unix shell). All disk-files used

for I/O are simple sequential in nature and in human readable text format to simplify the

development and verification of the program and for communication and transmission to

different installations. All the input channels, except for the interrupts, are character sequential

in nature and so, in principle, the same language defined for the standard input could be used

for communication over all of them. However, for efficiency or coding convenience it is some

times more suitable to allow different syntax on some channels. For example, the e-beam

delta-function exposure, the data obtained by Monte Carlo methods, is more conveniently

looked at as an "array of numbers to be read" rather than an "input statement to be inter

preted".

The association ("binding") of input channels to physical devices may be under program

control. This is particularly true for disk files used by the program. The program may use fixed

names for the files when looking for specific input information (e.g. e-beam delta function
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exposure data) or when producing specific output information (e.g. for the plot data). This

static binding is useful enough for separating different types of information, but it is far more

convenient for the user to be able to specify the name bindings in the input. Such dynamic

binding may be used, say, to change some wafer parameters during an e-beam lithography

simulation run and then use a different delta function exposure data file suitable for the new

wafer parameters, or to tell the program to output the plot data for the optical image in a file

separate from that used to store the OTF curves or the wafer profiles. Another example of

such meta-input capabilities to "specify an input channel in the input" could be the usage of

"include" files to specify another file with (previously stored) input commands to be executed

as if those commands came from the original input channel itself (See [Kern76] section 3.3, pp.

74ff). These meta-input capabilities do not change the simulation functionality but they do

enhance the user-interaction power of the software.

§ 5.4 Styles of Interaction

The interaction style of a program is closely related to its functional design. The opera

tional design, which enables the user to make use of its functional capabilities reflects the view

of the system as built in the program. For the SAMPLE program(s) the user-interaction is

designed with simple atomic transactions (unit-transactions) of either parameter setting or

activation signals being given to the program to match the state-variable model (§ 4.3) for the

system.

Accordingly, the input language (for the standard input channel) is a simple non

procedural command language where each statement either sets some simulation, system, or

program parameter (s), or activates a state transformation corresponding to a physical processing

step for the system being simulated (these are the statements that tell the program to "run" a

simulated "machine")***. Since the state-variable model can be applied at all levels of Figure

4.1 this can give as much controllability and observability over the program as desired****.

The operational part of the user-interaction may be considered as merely interacting with

the computing resources — the peripherals, file system, and the processor. The input-interface

could be a simple command line-interpreter that waits for a new (textual) command statement

from the input channel, or a fancier menu-oriented front-end for the program (or even a

The minor deviations where the input statement causes some parameters to be set and then a machine to be
"run" (e.g. the statement causing the thermal diffusion machine to be run for optical lithography also specifies
the diffusion sigma) are not significant here. But for the inertia/reluctance involved in changing a working and
documented program, they can easily be split into parameter-setting and action statements.

The program could use some more statements for merely enquiring the current values of the state. Their ab
sence is not strongly felt yet because when an action statement is executed the values of most state-variables of
interest are printed out. Another reason being the tendency to use the program in batch mode with already
prepared input files for the standard input.
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multiple-window style interface for providing concurrent channels for inputs at various levels of

Figure 4.1, or for various machines of Figure 3.4, through different windows if enough

hardware and software support is available for writing it). The difference between the simple

text-statement-at-a-time and the other (menu or screen oriented) types of interaction styles

arises mainly from who takes the initiative for the interaction — the user or the program. For

the command interpreter style the user has to (remember and) enter the input statements

whereas in a menu the desired action has merely to be chosen from an enumeration of allowed

actions (with a few numeric parameters specified by other means). While convenient for

novice and casual users, the forced interaction of menu-style interfaces is a hindrance to the

expert user who may want to enter input before the program prompts for it, and totally unsuit

able for running the program in a batch mode, say, for running a suite of test or demonstration

input files overnight without explicit user intervention. These considerations along with the

simplicity of programming required and the minimal demands made on the input peripherals

have resulted in the choice of a textual command-statement input interface for the SAMPLE

program(s).

§ 5.5 The Input-interface

Once the decision is made to treat the input as a sequence of unit-transaction (textual)

command statements, the input interface is easily constructed in a traditional fashion with a lex

ical analyzer (and a set of operating system and file-system interaction routines), parser, and

semantic routines [Nand78l.

Since the input statements are chosen from a finite set of parameter-setting and

activation-signal action statements the input language is a type 3 language (i.e. a regular

language recognizable by a finite state automaton). To simplify it even further (in version

1.5b) all statements have exactly the same syntax: a header keyword followed by some

numbers; and a common internal representation in the input-interface: an "action-index" (the

"TRIAL number") followed by a list of (the rest of) the parameters as they appeared in the

input. This simplicity is reflected in the input by having another equivalent form for all the

keywords (except "TRIAL") as the keyword TRIAL followed by the action-index as a number
*

To execute a statement, essentially the top-level controller branches to a portion of the

code corresponding to the action-index, and performs the action associated with that index

using the rest of the (numerical) parameters, if any, in the input statement. These actions

So, in theory, even the keyword TRIAL is not necessary! (That is because the statement separator token of §
5.3 and § 5.7 is sufficient to delimit the statements.)
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range from the simple, e.g. setting the optical wavelength to be used, that are performed by a

few statements of program code, to the extensive e.g. the simulation of an optical development

step, that have their own modules with many routines in them.

The connection between the input handling routines and the semantic routines that per

form the actions indicated in the input statements is by a simple list of numbers containing the

action number and the rest of the (numerical) parameters, and a controller that tries to get the

next statement (i.e. the action number and parameters from the next statement) and then exe

cute it. The controller tries to execute all statements unless an error is detected.

In any invocation of the program the top level actions are (1) the initialization of various

levels — the I/O units, the input interface, the simulation lab; followed by (2) the repetitious

loop of getting the next statement and executing it, as long as the end-of-input is not reached

or the program hasn't stopped due to some other serious non-recoverable error in the simula

tion routines (see the code for other small details of handling the error-flags for the input inter

face); followed by (3) the termination routines that do a little clean-up like closing-any open

output units, or printing some execution time statistics for the user. The details of this control

structure for these actions should be clear from the amply commented code module, modOl, for

the top-level controller (see also [Nand78]).

§ 5.6 Automation to Help the Programmer

The simplicity and uniform handling of the input statements at the top level of the

program's design eases the tasks of building, maintaining and extending the design and the

code. It also helps in identifying the tasks where program generators could be used to automat

ically generate portions of the code that are well understood. A judicious use of such program

generation tools, if available, could enhance the power and usability of the input interface with

comparatively little effort in applying them.

Currently the only use of any automation in code generation for the program is the usage

of a small preprocessor program that takes a list of keywords and their corresponding action

indices (TRIAL numbers) and generates the (Fortran) data initialization statements for the

tables in which the program stores them. The file* containing the user- (programmer-)

specified keyword/action-number pairs looks like (only the first few lines in the file are shown

here):

File ucbesvax:~samsoft/release/ucb/kwd/kwd2trial
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# Keywords to Trial numbers mapping for SAMPLE.
# Experimental version (Sep 05, 1981) (SNN). (Jan 17, 1983. SNN)
#

#234567890 ####

end -2 (currently just like the stop stmt below)
stop -1 stop the simulation, exit from the program
recover 0 'recover' from syntax error
exectimes 5 system execution times (cpu, system, real time)
lprwidth 6 line-printer width (columns) to be available for plots
ifcdbd 7 user interface debugging output depth
help 8 runtimehelp

#

# The previous kwd-style stmts are now treated like mapped-kwd-stmt s.
lambda 201 wavelength specification
dose 202 exposure amount
proj 204 projection type optical printing system
contact 205 contact type optical printing system
line 206 a single line mask
space 207 a single space mask
linespace 208 a periodic pattern of lines and spaces on the mask

where lines starting with "#" are comments in the file. The Preprocessor program converts

these lines into the following (Fortran) DATA statements (again, only a first few lines are

shown here):
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c

c

c

c

c

c

c

block data mpkwtr

include 'cblexsc2'

Keywords to Trial numbers mapping for SAMPLE.
Experimental version (Sep 05, 1981) (SNN). (Jan 17, 1983

#

#

#

#2

en

34567890

d

da ta
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da ta

da t a
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da ta

da t a
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###

c stop
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SNN)

where the array elements jrwt2(i=l to 10, j) hold the j-th keyword, and mpw2tr(j) holds the

corresponding action number. At the end of the array element initialization statements another

statement is generated to initialize the variable that holds the total number of the entries (=

the maximum value of j) in these tables, followed by statements for the type and size declara

tion of the array variables holding these table entries. Then using a file inclusion program **,

and Unix utilities like make and ed the statements are put in the proper sequence for a Fortran

BLOCK DATA subprogram, without programmer intervention.

For help in reconstructing the original file with the keyword/action-number pairs, the ori

ginal lines (including comments) from it are output in the form of Fortran COMMENT state

ments. If desired, these can easily be put back in the original file form by using a Unix pipeline

***. Such "inversion" capability is very convenient for checking the mutual consistency of

See lKern76] section 3.3, pp. 74fT.

(grep '*c ' bdfile Icolrm 1 21tail +n)
where bdfile contains the BLOCK DATA subprogram generated by the procedure above. The value of n for
"tail +n" is chosen to remove the few extraneous lines not part of the original file. That could be avoided by
having a distinct character other than a space in column 2 of the comment line holding the original lines.
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these files.

The above example is admittedly very simple considering the current state of the art

[Aho77l. But it serves to indicate the power of automatic code-segment generation whenever it

can be used to help perform a well defined and well understood task. (And the technique of

allowing easy inversion of various files is helpful in maintaining and verifying these files.)

§ 5.7 Input Language Enhancements

The input language to the program with one-action per statement and a syntax stripped

down to a minimal form of a keyword followed by numerical parameters only is very austere

indeed. With good mnemonic choices for (some) keywords, capability for adding comments,

and formatting freedom for the input statements (putting more than one statement per line or

using more than one line for a statement, and a token — the semicolon, for use in explicitly

terminating a statement at a given line to denote the absence of further, hopefully optional,

numerical parameters) it has continued to serve well over the years. By judiciously choosing

the most frequently used values as the default values for the parameters needed by the pro

gram, and a consistent and simple user-model (the state-variable model) for the inner workings

of the program, most of the input sets are only a few lines (about 5 to 20) long. Because

meaningful simulations can be carried out with such short inputs to the program no crucial

needs arose for changing the input language.

However, many enhancements, both cosmetic and deeper, in terms of the user-interaction

power, can be made to the input language without taking away its "hands-on" unit-transaction

flavour for simulation.

Macro handling and file-inclusion [Kern76] would make it easier to use common input data

for a set of related simulation runs. Expression parsing and evaluation by the input interface

would make specifications like "quarter wavelength thick" oxide layer easier to input and keep

consistent if some values are changed. Extending the expression-specification further, func

tions could be defined in the input for use during the simulation. For example, this would

make it easier to change the development rate function in optical lithography when investigat

ing the different rate functions. Such coupling between the input (language) and (the program

ming language used to write) the code would encourage experimentation with various physical

models by making it easier to perform. It can be implemented by constructing an intermediate

form for the function/expression in the input interface and interpreting it as often as needed

during the simulation.

Some of the ideas of structured programming can be readily applied to the input language.

The basic concepts of sequence (grouping), conditional execution, and iteration [Dahl72l are as

applicable to the input language for this (set of) program(s) as they are for a general purpose
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programming language. The input-interface may be likened to a command-interpreter for a

computer operating system (e.g. the sA, or csh for Unix). For the "simulation machine/lab"

provided by the program it interprets the commands given by the user. The user may want to

execute a group of statements if some condition holds (e.g. the contrast figure of the optical

image is in a certain range, or the occurrence of an event like the developer breaking through

the resist). Or the user may want to repeat (iterate) some steps with change of some process

ing parameter (e.g. starting with an initial profile examine metal deposition profiles with

different angles of deposition). Enabling the input-interpreter to make such user-specified deci

sions would let the user explore the simulations more freely. The uniform nature of handling

the current single-action input statements is amenable to these structure extensions to the input

language in the same way that such structures are handled by csh in (the Berkeley) Unix, or the

way that ratfor extends Fortran [Kern76] except that instead of translating the structured (com

pound) statements into their elementary statement components and outputting them, the ele

mentary statements are executed (interpreted).

§ 5.8 Software Modules

The top-down decomposition of the programming task gives rise to some of the natural

modular divisions according to the functions to be performed. The division into a user inter

face and a simulated laboratory is the main modular decomposition for the program. The user

interface has its own sub-modules of lexical analyzer, parser, and related routines. The simu

lated laboratory is a collection of simulation modules as simulated machines.

This much top-down division gives a good organization for the program to implement a

few initial versions and get a better understanding of the programming task. As the program

evolves many common programming tasks are noticed within similar modules (e.g. profile

advance routines for most of the profile shaping processes). For the current version of the

SAMPLE program such common or related tasks are very noticeable within each level of Figure

4.1. Grouping the routines handling such generally useful tasks into their own modules has

obvious benefits for the software development and management. These modules represent the

abstractions of the tasks performed by them in a conveniently usable form.

Currently such "bottom-up" modules in SAMPLE are a few collections of routines

("libraries") in their own source code files. They are:

• math library / numerical routines (mod22)

• geometrical/graphical library routines (mod23)

• output and plot library for simple functions e.g. for producing line-printer plots with char

acter arrays, putting the profiles in plot-data file (mod21)



47

• system specific routines e.g. date/time routines, flushing output buffers and some charac

ter string handling routines (mod08)

• buffer subroutines for matching residual discrepancies between the user interface and the

simulation routines as they tend to evolve independently (mod07).

Once the program is working the efforts to "clean it up" by grouping such general rou

tines in general purpose modules and libraries smooths the way for further growth, code

improvements and maintenance. It signifies the maturing of the software that may not be

apparent to the "pure user", because the (simulation) functional capabilities of the program

may not show the change immediately.

These modules (have the potential to) become independent software products in their

own right. They allow the higher levels of the software to be reorganized easily. This could

give rise to some powerful combinations of the software for the end user. An example of this

is the high resolution plotting software for displaying curves and profiles on a graphics terminal

screen or a digital plotter. Initially separate from the simulation program because of the

configuration of the simulation computer and the graphics plotter devices used (§ 2.3), it has

been kept separate to avoid the main simulation programs from getting too device dependent.

By making a simple library of these routines they are now accessible to other programs as a

plotting library. The plot post-processor programs being just one such application program

based on that library to serve the SAMPLE simulation program's plotting needs. However, the

power of this easily usable library is apparent when they are combined with the SAMPLE com

putation routines to display the (intermediate and all) profiles as soon as they are computed by

the program. This run-time graphics capability was used on a couple of occasions to debug some

problems in the profile advance routines, and the geometrical profile adjusting routines. By

being able to quickly link them with the computation routines the problems were located and

corrected with ease. And § 5.2 shows how such run-time graphics capability could increase the

user-interaction power of the program.

Collecting the general routines into their own modules and then using the modules as

higher-level abstractions for performing their tasks helps in the evolution and maintenance of

the software, creates independently usable software products, and can have a synergistic effect

when used with other software.

§ 5.9 Versions of the Software

For any piece of software undergoing continuous development, being worked on by

different people, and probably being modified at different installations, numerous changes, big

and small, occur even when starting from the same initial version. To well utilize the efforts

put in making all these modifications and improvements in the software (documentation being
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a part of it) it is usually desired to consolidate all of them together in the form of a new ver

sion. Before that can be achieved, merely keeping track of all the changes and finally extracting

them becomes a major organizational and logistic problem for the software project. *

The term "version" connotes different things in different contexts. A new version

implies a piece of software with some changes from the version it started from. To get some

insight for controlling it, first it is necessary to keep track of the genealogy of any given version

upto some commonly agreed upon point**. Assuming a general purpose programming language

unhampered by any unduly constraining limitations of real computer systems (i.e. assuming

fairly generous computing resources) a reference version of the software can be written. To

install this on a real computer system some changes may be necessary. These are the inherent

portability considerations like memory size, precision of numerical data storage and computa

tions, access to facilities not defined in the programming language (e.g. date, time routines, or

special file system access routines). With these changes to the reference version we get the

actual installed site-specific or system specific version for the real programming environment of

a system and peripherals ***.

It is important to have at least one up-to-date installed and executable version as close to

the reference version as possible. This can serve as the release version when the program is to

be ported to another machine (installation). No unnecessary system dependent code optimiza

tions or tunings should be performed on this version to avoid having to undo them for a

different computer system. The installed versions for different computers can be tuned to their

computing environments for performance or local usage style reasons.

At UC Berkeley the local installed version of SAMPLE for general usage by the SAMPLE

group is kept as free of system dependencies as possible*. Once every few months or a year,

when it is relatively unchanging, the source code at that point is made the next release version

of the program. By having the local version as close to the reference version (which exists only

in concept and not in actual source form on the machine) and by making it the release version

at specific times they all remain consistent with each other. Since the program identifies its ver

sion and the date and time of the run at the beginning of the output any bugs or undesirable

behaviour can be traced to the version concerned.

The discussion here is geared to the SAMPLE software project.

In theory there is always the null point to start from.

So in Figure 4.1 the second level from bottom may be separated into two sublevelsas (a) an installation specific
version, below (b) the reference version of the code.

This is the version on the "ucbesvax" machine, a VAX 11/780 running a 4.2BSD Unix system (and the 177
compiler). The source code is kept in the directory ucbesvax:"samsoft/release/ucb/ . The documentation and
input/output examples are kept in different directories on the same machine.
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It is intended that the release versions and the local general usage version(s) would form

a chain i.e. a sequence in which every version except the current one has exactly one child in

the sequence. But when any copies are made and modified (usually by different persons) the

resulting tree of versions soon starts to grow in different directions. These diverging versions

present a difficult organizational problem if any changes in two different versions from the same

parent are mutually inconsistent or incompatible. The problem is not of merely keeping track

of them (where tools like sees, Source Code Control System [Roch75], on Unix can be very

helpful) but that of merging them together to produce a single general version. Just adding

user specifiable flags in the code to choose between different modifications, if they pertain to

the same portions, produces a convoluted code which is difficult to debug, maintain or docu

ment for the user. The only way to avoid unnecessarily diverging versions, and to control and

merge those which are necessary due to differing directions of the work (as opposed to different

directions of coding) is to have a common vision and understanding for the development

efforts and control the coding either voluntarily or administratively.

§ 5.10 Splitting the program into Stand-alone Simulated Machines

§ 5.10.1 Motivation

The SAMPLE program initially had only optical lithography simulation in it (Spring

1978). Yet when porting it to some minicomputers (PDP11/40 with RSX-11M, HP1000 with

RTE-4B) substantial effort had to be put in to make it fit in the available memory of the minis

using code overlays. With the addition of etching and deposition simulation to the program the

memory size requirements grew even further. After the addition of e-beam lithography to all

that it has become utterly impractical to even try to port it as a whole to small memory mini

computers. While super-minicomputers with virtual memory have been increasingly replacing

less powerful minis, the rapid proliferation of powerful (16 bit) microcomputer systems at

ever-decreasing prices makes it very attractive to be able to utilize them for running the pro

gram.

That alone is sufficient motivation to try to divide the program so that by running the

simulation in parts advantage can be taken of these smaller but easily accessible computing

resources. But an even more persuasive factor has been instrumental in prompting us to split

the program: A natural subdivision exists in the program's simulation functionality as different

physical processes, and the growth and development of the software in so many different direc

tions has become increasingly more difficult to manage with all of it lumped together in one

program.
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Figure 3.2 (and its generalizations in Figures 3.3 and 3.4) shows the structure of the

simulation task as the simulation of separate processing steps in a user specified sequence. If

the user is concerned with only one of the processing steps, a quite common situation, all the

other process simulation parts are not useful for these simulation runs. For the

programmer(s), initially it is convenient to have everything together when a new simulated pro

cess is added to the program — that way all the required global variables and routines are easily

accessible to the new code without worrying much about the details of communicating the vari

ables from the old simulation steps to the new, and without the work of isolating the required

common routines from the old code for linking with the new one. Slowly, even if the first pro

gram is designed with a good top-down and modular structure, the addition of the new code

may perturb and erode that structure and eventually make it inconvenient to add any new code

without violating the assumptions of the old one. This may occur because the function, struc

ture, assumptions, requirements or details of these new tasks to be performed may be

significantly different from those of the old tasks. For example, the assumption of an isotropic

development mechanism with a development rate independent of the orientation of the surface

normal in optical resists may be entirely unsuitable for many of the anisotropic etching rate

mechanisms which affect the surface differently depending upon its orientation. So even

though the overall control flow of the program is still very similar, and many of the same lower

level support routines may be used for profile adjustment (checker, deloop of [OToo79],

[Jewe79l and [Jewe77]) and the same output and plot routines used for displaying the profiles,

the different rate functions and associated data requirements make the profile advancement

code quite different. Trying to make all such differences special cases of a very generalized

theoretical model, even if possible, has its own problems. It requires modifying the previously

written and debugged code, and it may adversely affect its understandability, and the execution

time and size requirements. (If it doesn't have any of these problems then the changes once

made will quickly be "forgotten". But if it has any of these problems they will have a cumula

tive deteriorating effect on the software that could not be ignored for long.) Iteratively refining

("cleaning up") the code and with the perspective gained from the efforts, building better

software modules for general usage (§ 5.8) seems to be the only practical approach in the

absence of an a priori insight into the simulation and programming tasks.

At the current stage of the program * splitting it up into stand-alone simulated machines

that use some of the common general purpose software modules of § 5.8 and share a common

front end (user- or input-interface) module seems to be the proper way to handle the above

problems and many others that arise when there are different programmers trying to extend it

Version l.Sc which is essentially verl.5b of May 1983 with some extensions.
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to different simulated processes.

§ 5.10.2 The Clone-and-Trim Strategy for Splitting

When splitting the program into one simulated process per new program the conceptual

integrity of the simulation or software philosophy and design should not be made to suffer.

Otherwise, the changes will only produce a diverging version of the software that may not dis

place the original one, and hence lead to more problems than were there before. Maintaining

continuity of goals and approach will ensure that no other useful changes will be hindered by

the organizational changes made to the program for splitting. Therefore, after the splitting the

users should still be able to simulate sequences of processing steps as in a real laboratory — the

way it was possible with the all-together form of the software.

The adherence to the simple design of chapters 3 and 4, which is independent of the

simulated machines being together in one program or each being a separate program by itself,

and an implementation that preserves this simplicity makes it very straightforward to achieve

the separation by a clone-and-trim strategy as follows.

Since the basic entity to be communicated between the machines is the wafer being pro

cessed, the problem is simply that of communicating the information representing the wafer

(i.e. the state of the wafer) from one program to another. This can be achieved by writing that

information to a file and then reading that file from the other program. So by providing the

user with a pair of input statements to "put the wafer in a file named ..." and to "get the wafer

from a file named ..." the problem of communicating the wafer with another program (even

with itself) can be solved. After adding this put/get capability to the program that has all the

simulated machines in it, it is a simple matter of making a copy of this program (i.e. cloning it)

and then pruning out from this clone all the capabilities not essential to the simulation of pro

cess X and for wafer communication (i.e. trimming the clone) to get a stand-alone simulator for

process X that can communicate with the original program. Repeating this procedure for each

of the processes being simulated gives the desired separation of the original program into

separate simulation-machines that can communicate the simulated wafer with each other.

It is not necessary to trim all the clones to have only one process per program. If desired,

some clones may be trimmed only partially to retain the ability to simulate more than one pro

cess. The original program is simply a clone that was not trimmed at all (null trimming). And,

in concept, the process of trimming can be reversed to join the different simulators together if

name-conflicts and data structure incompatibilities are resolved in the code, and the control

flow merged to satisfy the programming language requirements and the simulation design.
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Making some adjustments in the software design would greatly facilitate the application of

the above scheme to get the separate simulators. First, any unnecessary dependency in the

input language for the program on any particular process to be simulated should be eliminated.

Indeed this was one reason behind the cleanup of the input language syntax and processing to

get the austere form described in § 5.5. (The enhancements suggested in § 5.7 do not affect

this.) The software modules of § 5.8 are a good idea with or without this separation, and, of

course, they help in the separation process because of the cleanliness and conciseness they

induce in the rest of the code that uses them.

The put/get capabilities are easy to implement in a minimal form by not allowing the user

any choice for the file name. That way the viability of the idea can be tested without struggling

to change the current syntax of the input language which does not allow character strings as

parameters following the initial keyword in an input statement. Later the syntax can be

extended to allow user-specified file names in the input statements. From a conceptual view

point, the files are but a representation of the (simulated) wafers and their names are essen

tially the names of the wafers allowing symbolic access to them from the input language — thus

making the job of keeping track of different wafers undergoing different processes easier for the

user.

With these simulated wafers existing outside the programs in the form of files used for

communication from one program to another, the programs can be considered to have a four

channel input structure as shown in Figure 5.3. The two channels (one for input and one for

output) for the human user could be expanded further to the possibilities illustrated in Figure

5.2. And the two "wafer-channels" correspond to the communication link with the wafer col

lection in Figure 3.4 which could be a sophisticated data base when viewed from the simulated

machines.*

That brings us back to the contents of the "wafer-files" communicated between programs.

For simplicity, the first implementation is planned to have only the top profile of the wafer in

the form of the coordinates of the (string-) points at some small intervals along the profile.

This is adequate at present because even in the all-together form of the program only this string

of points representing the profile is the main part of the data communicated between the simu

lated machines. (The general problem of representing the full state of the wafer does not seem

to have a simple solution because of the different types and the total amount of information

Details like the Monte-Carlo data file of § 4.4 and § 5.3 for e-beam lithography simulation are details of a
different level and so of a different nature. Remember that the Monte-Carlo data file is associated with a subdi
vision of a computational step (as in going from Figure 4.3b to Figure 4.3c). Such files do fit in the general pic
ture of Figure S.2 but it is not necessary to twist the concept being presented in Figure 5.3 merely to accommo
date them in that figure. It is not the intention to address such subdivisions in Figure 5.3.



(simulated)
wafer —

(file)

Commands

from user

•^

Simulation

Program

Figure 5.3 The uniform I/O structure of the programs for communication
with the human user and with other programs

(simulated)
> wafer

(file)

printed, plotted
> output
for the user



54

needed to be able to specify that.)

§ 5.10.3 Further Discussion of the Splitting

The software organization changes brought about by the splitting make explicit some

aspects of the design which were not noticed when all processes were in one program. The plot

postprocessor program which was separate for implementation reasons (§ 2.3) can be seen to be

a simulated process — simulating the microscope (§ 3.2). It should read the wafer profiles

from the same files that other programs use for communicating with each other. If profiles can

be generated mathematically, or digitized from experiments, or constructed interactively at a

graphics terminal that can be considered to be another "source of wafers'* for the simulation.

Another example is the choice of default values, including the default geometry and

profile used for the initialization of the wafer for each process. In the all-together version the

optical lithography dominated the initialization because of the course of evolution of the pro

gram. This caused problems when the user wanted to simulate e-beam lithography, because it

assumes a different wafer layer structure. So some patches were put in the program to override

the optical layer initialization with the layer structure appropriate for the e-beam lithography

simulation when the user invoked that process. For etching and deposition there was a related

problem. They were to take their starting profile from one of the lithographies or the user

could specify certain (piecewise linear) mathematical shapes by an input statement. They could

also continue from the final profiles from each other. But to be consistent with the idea that

there is always a default wafer (profile) present in the system, they needed a default profile in

case no other simulation was run before them in the same invocation of the program. To com

plicate the matter further, the string of points that represented the (top) profile was not actually

initialized in the lithography routines till the development process was started. So if the user

wanted to start with the etching or deposition process (why? *) there was no starting profile

present and caused (uninitialized variables and related) problems at the code level. Patches to

set a flag to detect the presence of a lithography developed profile were put in the program to

cope with this situation. But the real problem viz. the independence of the starting wafer

profile on the process (or none) to be simulated, was not properly addressed by them.

This same point was missed when early in the project an input statement was added to

"continue development" for optical lithography (say, for using a different developer, or plasma

Whatever reason the user may have in mind, the program should have an overall consistent response. Having a
default profile present is part of this consistency. Also, the etching and deposition machines point out the fact
that the starting profile may come from somewhere else, some other process. This was the important point
missed in the earlier design and control flow of the program because of the strong assumption of a flat starting
profile to simplify the calculations required in the optical and e-beam lithography routines. The flat profile got
"hardwired" into the program because of that.
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ashing on the first profile). The profile initialization code (to a horizontal string of points) was

skipped under the control of a "do not reinitialize the profile" flag rather than moving the

profile initialization out of the development machine. Only when the idea of separating the

program forced the profile to be "recognized" as an integral part of the wafer that is communi

cated from process to process were all these profile initialization or reinitialization problems

clearly seen to be higher level problems and not just a situation to be patched at code level and

documented with the corresponding awkwardness.

Among other advantages of splitting the program are that the smaller component pro

grams can be understood, managed, and experimented on with greater ease by a person (or a

small group). Because of their smaller size, hence smaller memory requirements, they will be

portable to a larger range of machines encouraging more usage and development. By having a

commonly agreed upon wafer-file structure, its contents and format, the programs need not all

be written in the same programming language or even be present on the same computer system

as long as the wafer files can be communicated with ease between the programs. And of

course, being able to store and retrieve the state of the wafer (a partial state of the program) in

a disk file itself makes splits in a processing run (i.e. applying a certain sequence of processes

upto one point and then proceeding with slightly differing process steps thereon) easier to simu

late without duplicating the common part of the simulation.

The decision to have only the top-wafer profile, not even the layer-geometry, in the files

to be communicated between the simulation machines was made for the simplicity of imple

menting it. The profile is the main part communicated between the machines even in the

together-version of the program. Even though that decision would imply that the user will

have to duplicate some information (e.g. layer thicknesses, the physical and chemical parame

ters for the layers) separately in the (textual) input to the program this seems to be an accept

able price for the ease of managing the software. Further, the wafer-file could have a self-

identifying header of one or a few lines that would identify its "version" (telling about its con

tents and format) so that if any more items of information are to be stored in it the programs

would know about that additional information; thus allowing a systematic way for further

software development.

Will the splitting cause more problems later on for controlling the versions of each of the

separate simulated machines? It will certainly be easier to modify each individual program

independently. But any such changes would not affect the other programs. And that is the

main strength of this separated organization. Any changes that seem to get too difficult to

manage for one program would be easier to discard, to fall back on a previous version of that

program. So a "survival of the fittest" mode of evolution can operate more freely than for the

together version. Any inherent design or technical problems that would come up or be noticed
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would have been present in the together version too; because, in principle, the separate pro

grams can all be joined together in one (§ 5.10.2). •
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Chapter 6

Some Notes on the Methodology

§ 6.1 General

The preceding chapters have illustrated four major aspects in this software project: the

computational resources (Chap. 2), the system configurations and major component processes

to be simulated (Chap. 3), the path along which they are to be mapped on each other (Chap.

4), and the software itself — the considerations, facets, issues and solutions that make this a

software engineering project (Chap. 5). This software project is part of an overall engineering

research activity that also involves theoretical analyses of the physics and chemistry of the

phenomena, and experimental investigations of the processes. The discussion of these latter

two is outside the scope of this dissertation *.

The following sections bring together some points that were not mentioned in the earlier

chapters in the interest of brevity or for maintaining the continuity of discussion. They are

loosely arranged from general principles to specific points within each section.

§ 6.2 General Programming Principles and Practical Aspects

Correctness is the prime overriding property for a program. No compromises should be

made regarding that. Correctness by design and construction should be one goal for the pro

ject. No bugs that are detected should be allowed to remain. Note that correctness of the code

is distinct from, though it may be closely related to, the numerical accuracy limitations arising

from limitations of modelling or of numerical methods (Figure 4.1).

Simplicity is a highly desirable quality. It helps the understandability of the software and

hence helps achieve its correctness. The maintenance and growth are easier to manage when

starting from a simple, minimal design.

See the references at the end of part 1 of [SUG83].
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§ 6.2.1 Some Misleading Sources of Numerical Errors Encountered in the Past

When constructing the software, its completeness at all levels (Figure 4.1) is easier to

achieve if the programmer and the end-user use the same version of the program. The pro

grammer should not have any extra tools or "hook-ups" in the code that are removed in the

version available to the user. Mostly this is useful for tracking down any errors, or verifying

their absence, for some specified input data. Many times an error at one level is wrongly attri

buted to another level (in Figure 4.1) by the end-user. Only by having diagnostic output capa

bility (hook-ups) at all levels under scrutiny can the real problem be identified and the issue

settled. (See also the example of Figure 4.4 in § 4.4.) In this regard it is interesting to note

that every once in a while a user or user-programmer claims a need for "DOUBLE PRECI

SION" when some answers seem to be wrong. Every time this issue was raised regarding the

SAMPLE simulations, careful investigation showed the problem to be somewhere else.

The first time this issue caused a serious concern was when the program was ported from

CDC6400 system to a DEC-10 system (in Summer 1978). The CDC with 60 bits per word had

approximately 14 decimal digits precision for the Fortran REAL variables. The DEC10 system

with 36 bits per word had "only" about 7 significant digits for them. So when the developed

resist profiles showed a few strange distortions the smaller word size and precision was thought

to be the culprit. However, a dogged investigation (by John G. Mouton) revealed the source of

the problem to be the difference in the range definition of the imaginary part of the complex

natural logarithm function, CLOG, as computed by the two systems. The CDC Fortran library

had a CLOG with a range of -it to it radians for the imaginary part, while the DEC-10 Fortran

library returned values in the range 0 to 27r. The manuals for both systems claimed their

CLOG functions to be ANSI standard [ANSI66]. But their conformance to the Standard did not

ensure the same computations on the two systems because the definition in the standard itself

is incomplete regarding the range of the CLOG imaginary component. Once the problem was

identified it was easy to adjust the range on the other system (DEC-10) to be as expected by

the code i.e. to be the same as on the CDC6400 where the code was developed. Incidentally,

later a different approach at the geometrical level (Figure 4.1) obviated the need for the CLOG

function in the computations. (See [Jewe79] as compared to Appendix E of [OToo79].)

Another time this issue came up was after the program was ported to the VAX 11/780

(after Spring 1979). The program produced slightly different profile outputs when compiled

with a debugging option to the compiler as compared to the output without that debugging

option (in February 1981). Since the VAX with 32 bits per word has only about 7 significant

digits of precision for the REAL variables, once again the smaller precision was thought to be

the problem. The fact that the compiler produced machine code to perform the computations

in double precision with or without the debugging option, but caused more intermediate
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conversions of double precision quantities to single precision with the option on, seemed to

lend credence to the claimed "need for double precision". This time a copy of the program

was modified (by Claudio A. Fasce) to produce a "double precision version" where all declara

tions of floating point variables, constants, and functions were converted to their double preci

sion forms *. The profiles from the single precision version and the double precision version

had no significant shape differences so once again the claim of the "need for double precision"

was found to be unjustified **.

There were a couple of other cries of "insufficient machine precision" raised that turned

out to be uninteresting false alarms. However, there were three interesting situations (one of

which has not been well-resolved yet) that were instructive.

The first of them was when it was observed (by Pradeep K. Jain, in early 1981) that by

increasing the number of vertically placed grid points in the resist during optical exposure com

putations for a wafer with Aluminum substrate, the simulated time for developer breakthrough

in the resist was drastically increased. At first, the code changes were suspected to be incorrect

because the changes made in one module (the optical exposure simulation machine) were

affecting another module (the photoresist development machine). But careful checking and

experimental evidence of very long breakthrough times for photo-resist layers on Aluminum

substrates showed that the difference was caused by the increased accuracy resulting from the

larger number of vertical grid points! The strong reflectivity of Aluminum substrate caused

strong nodes of light intensity in the photoresist where the development rate was extremely

small compared to the rate in the well-exposed anti-node region (remember Figure 4.4 in §

4.4?). With fewer grid points the small node regions were not well covered by the grid, so the

faster rates in the broader anti-node regions masked the effect of nodes in the profile advance

computations. But with more grid points the node regions were better covered and hence the

extremely slow rate there dominated the profile advance time — just the way it happens in a

real lab. This experience once again impressed upon us the need for better numerical tech

niques to deal with the peculiar physical problems we are dealing with in this project.

The second example showed that the arithmetic precision was (ironically) more than

enough for the computation. For simulating metal deposition at high temperatures, the original

code of the deposition simulation machine (by Chia-Kang Sung) used a piecewise linear

approximation to the Gaussian error function using interpolation from values stored in a table.

ANSI standard does not define DOUBLE PRECISION forms for COMPLEX variables (though the local J77
compiler on the VAX11/780 with Unix did allow it).

Compilers on both these systems (DEC-10, and VAX11/780 with Unix) did not provide the user with any op
tion to automatically convert all single precision floating point quantities and declarations to double precision. So
the changes needed to introduce double precision had to be made by a tedious manual process.
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The table only accommodated values within a three standard deviation (3<r) range for the

function's argument. Beyond that the code abruptly truncated the function values to zero for

the tails of the Gaussian curve. The values were integrated numerically for use in the simula

tion computation. When all this was replaced by an accurate algebraic approximation (by

Ginetto Addiego) the resulting profiles showed pronounced wiggles in regions expected to be

flat. This was diagnosed to be due to the instabilities caused by the accurate approximation that

did not enjoy the "damping" effect of the tail truncation in the simpler approximation, so even

minor disturbances propagated from nearby curved portion of the profile were growing larger

rather than dying down. Finally the original less accurate approximation with truncated tails

was left in the code as it was because overall it seemed to give sufficiently accurate profile

shapes.

The third case (encountered by Prof. A. R. Neureuther) seems to involve the cumulative

effect of the round off error in numerical computations. In optical lithography simulation when

the development rate has very small and very large values in different regions (nodes and

antinodes) of the resist, the program tries to take a large number (>> 400) of profile advances

with smaller simulated time steps (i.e. far more than 400 points in the grid along the time

dimension) to compute the final profile shapes. However that seems to produce much

smoother profiles than those found in a real laboratory experiment. Limiting the total number

of profiles (to about 400), causing correspondingly larger time steps, seems to produce satisfac

tory agreement with experimentally observed profiles. Because the program's original estimate

of the total number of profile advances is supposed to be reasonably minimal while still main

taining sufficient accuracy in the computations, it seems very strange that a far smaller number

of steps produces a better agreement with experiments in these cases. However, for lack of

time and personnel resources, and because it seems to work, this problem has not been care

fully tracked down yet.

These examples show (numerical) problems for which it is not easy to get good (accurate

and fast) solutions. The numerical methods themselves are outside the scope of this disserta

tion. The examples were given to show the importance of keeping the software verifiable and

testable at all levels (of Figure 4.1) at all times to properly diagnose any problems or concerns

that may arise regarding its behaviour and output results. Often the optional diagnostic output

is the most useful and convenient tool for such verification (see also § 4.4).

§ 6.2.2 An Example of Version Divergence

The story of the example above, of the Aluminum substrate and the vertical grid points,

continues further. Instead of the brute force method of increasing the number of vertical grid

points (with the corresponding increase in the run time and the memory requirements) a
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different approach was tried (by Fasce in Spring 1981, and once again by Addiego in Summer

1981). Because the problem arises due to the shift in the placement of the grid points with

respect to the position of the light intensity nodes, it was decided to locate the grid such that

every node will have a grid point on it. This caused the two end intervals of the grid to be, in

general, different from the interval being used inbetween. This solution was implemented (in

two versions) and worked as expected. However, there is another simulated machine (the

"diffusion" machine) that simulates the effect of post-exposure baking on the resist. That

effect is modelled by a diffusion of the M-parameter species, and computed by a two dimen

sional (2D) convolution of the M-parameter matrix, corresponding to the 2D placement of the

grid points, with a 2D "impulse response" function. The non-uniform spacing of the vertical

grid points would require a much longer computation to perform the convolution in this simu

lated machine *. For that reason, and because the "diffusion" simulation is not used often,

that code was not modified to handle the different grid intervals. As a result the shifted-grid

solution has not been integrated into the local standard version of the SAMPLE software. And

as more and more small modifications accumulate in the local standard version it diverges

further and further away from the code implementing the solution — a version divergence

problem (§ 5.9) that does not seem to have a clean and easy solution.

§ 6.2.3 Portability and Related Considerations

Easier access to the program, by being able to use many different computer systems (com

puting resources) was one of the main goals of this software project *. This desire implied that

the software be written in a widely available language, be independent of any peculiar hardware

features or special software libraries, and be portable as a whole to another site having a reason

able amount of computing resources (§ 2.3, § 5.2 and § 5.3).

Accordingly, the software was written in standard Fortran IV [ANSI661 and is portable to

any computer system with a standard Fortran compiler and sufficient memory. The few devia

tions from Standard Fortran IV, for file handling and character string manipulation, are coded

in standard Fortran 77 [ANSI781. The access to the system specific routines (e.g. date and time

functions) is through clearly isolated routines that are easy to modify or turn off when porting

to a different system. All this has resulted in a portable set of simulation tools that are being

used at numerous installations. The feedback from all this usage has contributed many

This 2D convolution can be performed as two ID convolutions because the effect of the Gaussian function used
as the "impulse response" is separable in the two orthogonal directions of the axes due to the linearity of the
convolution operation [Nand801. Even with the resultant large savings in the computations the effect of different
grid interval sizes in the vertical direction would be a despairingly large computation time and memory require
ments.

In part this was due to the nature of support (funding) for this project in the early stages.
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valuable ideas to the software and the project.

While the goal of portability has proved to be an important one, it is useful to be aware of

the restrictions it has imposed on the programming effort. More modern programming

languages like Pascal [Jens75], C lKern78], or Fortran preprocessors like Ratfor [Kern76] have

been widely available for many years now. The richer control structures and data types pro

vided by them, along with the freedom from many lexical restrictions, increase programmer

productivity and would be very helpful for programming the non-numeric parts of the software

dealing with user-interaction and file-system interfacing. Even though Fortran can be used to

get the task done, as all this software readily demonstrates, constraints imposed by Standard

Fortran are often felt as a dragging force on the growth of the software.

A large size is an hindrance to portability (§5.10.1). It prevents the user, from utilizing

the plentiful resources of the small computer systems. But it would be a mistake to distort a

clean organization of the software and code to simplify overlaying of the code on minicomput

ers. Such distortion may occur if "portability" to such computers is considered necessary

enough for the software. For quite some time the program did not have any major modules

other than the user interface and the individual simulated machines. Many common routines

(e.g. geometrical routines for profile adjustment, routines for producing plots on the line-

printer, or some mathematical or numerical routines) were not grouped together to form gen

eral "library" modules — partly in order to avoid the trouble of linking such modules, called

from various machines, into one-level overlay tree structure required for some minicomputers

(e.g. the HP1000 with RTE operaing system, 1979) *. However, with the further familiarity

and understanding gained over time such general purpose library modules are being formed to

clean up the code and its organization.

Another aspect of portability is the method and medium used for transferring the software

from one installation to another. On one occasion we used punched cards to transfer the pro

gram to a minicomputer. Recently, transferring it electronically over a computer network

within campus and to some outside installations has become possible and convenient. But the

most widely used medium is the magnetic tape **. The storage capacity of commonly available

tapes (1200 feet or longer) is large enough to hold all the source code of this project along with

• Another reason for not forming such libraries earlier was that the small variations in the copies of such routines
used by different programmers working on different machines were difficult to reconcile with each other because
of a lack of good communication between them and due to the looseness in the group's organization. (There
was a time when four persons working on the program were all using different systems on campus to edit and
store the source code without a convenient means of transferring it from one system to another.) Because of
the fluidity of the code being worked on by a person, and its rigidity when the same person was not available to
work on it (for whatever reason), it was difficult to bring together some of the diverging versions of the shar-
abie modules.

•* The floppy disk may soon become another viable option ona smart terminal or personal computer.



63

the documentations, many input/output examples, and instructions for installation, all on the

same tape. The format chosen is usually a tradeoff between ease of writing the tapes on the

sender's (our) system and the ease of reading it on the recipient's system which is often of a

different type. To help the recipient read the many files off the tape in a convenient and sys

tematic manner, putting some bootstrap files on it is a good idea for a release-tape design. A

bootstrap file may contain the computer commands (if the sender is familiar with the recipient's

computer system) that can be read into a command script file to be executed to read (the rest

of) the tape. Or it may simply contain a list of the files on the tape so that the recipient may

edit it to generate a suitable command script file to extract the other files off the tape. Having

such a command script file for the system on which the tape was originally written is helpful

when reading it back in to verify its completeness or to diagnose any problems regarding it. A

command file for compiling and linking the source code is another of such useful tools *. And

a well-designed and complete "release tape" will be equally valuable as a backup or archival

storage tape for the project.

§ 6.2.4 Design for Growth and the TRIAL Statement

The users of a program are a valuable source of ideas. Their collective insight can be

tapped by making it easy for them to shape the program to their needs and desires. When the

users can modify a program, experiment with it at all levels (of Figure 4.1) and enhance it

without going through an external agent, the programmer, a triple advantage is accrued: the

users get what they want, the "programmer" is not burdened with all the work, and the pro

gram acquires the enhancements that make it more useful for other users.

The TRIAL statement in the input language to the SAMPLE program was introduced

with these very ideas in mind. It implements the essence of user interfacing by simplifying it to

a minimal form. To use it, the user enters the keyword TRIAL followed by some numerical

parameters. The program collects the parameter list in an array and calls a routine to execute

(interpret) the TRIAL statement. By convention, the first number (which must be present in

the statement) indicates the action to be performed with the rest of the parameters, if any (§

5.5). The user can put in the code that will check the action number and perform the action

corresponding to it. The state-variable model for the program allows all actions to be treated as

parameter setting or activation of a state-transformation procedure ** (§ 4.3). Thus it is easy to

integrate a new action into the program.

See also [Gris82] for some good ideas on release tape design.

Combinations of parameter setting and state-transformation activationare not needed and are not encouraged in
order to maintain a simple and non-duplicated set of activation commands.
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The simplicity of this arrangement combined with the easily comprehensible user-models

of the simulated system (§ 3.2, § 4.2, and § 4.3) and the modular structure of the program (§

5.8) have resulted in an overwhelming contribution to the functional capabilities of this simula

tion tool by various persons. As the word "TRIAL" indicates, this was originally meant to let

the users try various things on a TRIAL-and-error basis — to be filtered out and incorporated

in a "permanent" manner later by a "programmer". But soon after its introduction, the

number of (actions performed by) TRIAL statements far exceeded the number of originally

provided statements (actions). And by a straightforward macro-like mapping of other keywords

to the keyword TRIAL and an action-index (§ 5.6 and § 5.5), now all input statements are

treated in the same manner as the "TRIAL statement". This has been an instructive lesson in

simplicity.

The introduction of character strings in the input (e.g. for filenames (§ 5.10.2)) or any of

the input language enhancements considered in § 5.7 do not change the nature of this TRIAL-

statement concept*. The input statements with their various parameters are only the means

used by a user to interact with the simulated laboratory, just as the commands with all their

command-line arguments are the means used by a computer user to interact with a computer or

an operating system **. And the less artificial the distinctions are between the "system-

provided" utilities and the users' contributions (as in Unix), the more responsive will the evo

lution of the system be to serve the users.

§ 6.2.5 Handling Multiple Wavelengths in Optical Lithography

The initial versions of the optical lithography were for single wavelength illumination.

Then they were generalized to handle multiple wavelengths. Two points regarding this general

ization are noted here.

First, the proportion of incident energy (dose) at each wavelength is, in general, different

for every point in the aerial image of the mask (i.e. the image intensity curves for individual

wavelengths are not related to each other by a simple proportionality factor). Because of this, a

separation of the "bleaching" computation into standard exposure and actual exposure (see

Figure 4.3) is not strictly correct for the multi-wavelength case. However, this separation,

which allows an efficient computation of the exposure simulation process, was maintained by

introducing a new approximation. The standard exposure computation is performed assuming

the same proportion of energy (the weights for the wavelengths) as in the incident illumination

In particular, any future extensions for providing control structures in the input language to allow compound
statements or actions (e.g. looping commands) should be built upon the simple unit-actions of these (TRIAL-
Statements as discussed in § S.7.

This analogy also holds for the newer styles of user interaction with menus, windows, or whatever (§ 5.4).
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(as if there were no mask present). Then the actual exposure of a column of resist below a

horizontal grid point (on the top surface, for which the aerial image is computed) is computed

by interpolation on the standard exposure computation (the columns of the matrix) with

respect to the total image energy incident at the top surface. This amounts to approximating

the component curves of the image intensity, at the different wavelengths, by curves propor

tional to their sum, with the proportion being that of the no-mask (i.e. wide open space) case.

This approximation is justified by the smallness of the horizontal shift of the steepest part of

the image components for a mask edge, and the good agreement of the simulation results with

actual laboratory experiments. But when simulating thin lines or spaces whose widths are close

to the horizontal shifts between the steeper edge images this approximation may be in serious

error. Let the user beware.

Second, the original input statements for entering the wavelength related information (the

LAMBDA, RESMODEL, and LAYERS statements) cannot handle all the information needed

for the multi-wavelength case. The two statements added for the multi-wavelength case

(TRIAL 21, and TRIAL 31) supersede the original input statements for wavelength informa

tion but they do not address the layer thickness information. So the user is forced to use the

old statements for specifying the thickness information for the wafer layers, and then supersede

the wavelength related information by the latter statements. A cleanup of the input statements

could be done by introducing a new statement for specifying the thicknesses (only) of the wafer

layers and then eliminating the old statements (RESMODEL and LAYERS). This cleanup

would prevent the confusion in the new user's mind about the proper sequence for entering the

"old" and the "new" statements *.

These examples **, of how a generalization (from single wavelength to multi-wavelength

illumination) at a top level (Figure 4.1) affects the previous work below it, may be applicable

once again if the other lithography processes being simulated are generalized in a similar

manner.

§ 6.2.6 Miscellaneous Notes

An interpretation aspect of Figure 4.1: The plasma ashing process which removes materi

als at uniform isotropic rates can be simulated by using the etching simulation machine with

isotropic rates, or using the (optical) lithography simulation's development machine with its

rate parameters adjusted to give a constant (i.e. uniform and isotropic) rate. Similarly the

Because of inertia, this cleanup has not been done yet. Also, this example shows that an input statement should
address only one type of information.

See also the discussion of image and OTF plot-data outputs for the multi-wavelength case in § 5.3.
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Chemical Vapour Deposition (CVD) process may be simulated using the etching simulation

machine with a negative isotropic rate. Thus the same routines may be interpreted as simulat

ing different types of physical machines. Incidentally, the deposition simulation machine is

tailored to simulate various metal deposition machine configurations used in a real laboratory

and cannot handle the isotropic rates needed for CVD.

Using floppy disks as wafers: Many workstations or personal computers with their own

removable media storage are now being used to communicate with each other and with larger

machines. This gives a new tangible feel for the wafer files of § 5.10.2 or the wafer collection

of Figure 3.4. By storing these wafer files (simulated wafers) or wafer collections on floppy

disks that can be conveniently carried around or sent to another place it will be practical to

maintain a good communication between different simulated processes on different computers

at different sites. This may have the same effect on the usage of such simulation programs that

specialized processing at different laboratories can have on the processing of a batch of real

wafers.

Human readability of all communication files: The use of a human readable form for the

communication files is to be preferred over any machine dependent binary encoded formats.

The latter may make efficient use of storage and processor time for reading and writing them,

but the former are conveniently communicated over any ordinary communication links between

different computers (e.g. when using ordinary electronic mail) and are easy to diagnose if any

mistakes occur or are suspected.

Documentation structure for the "User Guide": There should be different types of docu

mentation for the program corresponding to the various models given in Chapters 2 to 5. Fig

ure 4.1 covers most of the anatomical structure of the software. The User Guide may be

arranged such that the topics in each layer are covered in a sequence (one layer after another)

starting at the top layer. Then the users can read it up to their depth of interest in the program.

This was one of the main considerations in the organization of the SAMPLE User Guide

[SUG831. For a "programmer" who is going to install the program on another computer system

the relevant documentation of the lower most level is the "installation guide" (including the

description of the "tape" (§ 6.2.3)). Documentation and its structure is an important con

sideration because if some point is difficult to document or explain then that could be a strong

indication of some awkwardness in the software or its design that should be tended to.

Which way is up? : The need for the two types of documentation — "User Guide"

oriented towards users interested mainly in the physical laboratory systems and their simulation,

and "installation guide" for the programmer concerned with utilizing the available computing

resources, merely symbolizes the two basic extremities in the software design efforts. These

are the two ends, the top and the bottom layers, of Figure 4.1. The software project aims to
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bridge these two with the user as the implicit third reference point (for whose use the software

and the documentation are written). While the design of the user interaction and the input

language (§ 5.3, § 5.4) seems orthogonal to the vertical dimension of Figure 4.1, for the

software project as a whole there is a constant movement along a three sided ladder of the

functional capabilities of simulation of different physical processes, the utilization of the avail

able computing resources, and the interaction of the user with these two (the user interface).

The software project moves ahead by moving forward along any of these three sides. At every

step there may be newer tradeoffs to be made between them. Depending upon the difficulty of

the problems encountered when moving along these three sides, the focus will be shifted to

make one of them the dominant or the "up" end. Any equilibrium position approached is

soon disturbed by a desire for more or the movement of one of the three sides: newer physical

processes to be simulated, newer or previously unused computing resources to be used, or try

ing to make it more convenient for the user to use. During the course of the project, if this

constant shift and exchange of the "up" end is not kept in the proper perspective it may distort

a "top-down" structure of the software. And the software may acquire many appendages that

were very useful at the time they were added but are not that valuable any more.

Is there a "pure programmer" counterpart of the "pure user"? *: In a project of this

size, this question arises in various forms and degrees, particularly if the tasks from the

different layers of Figure 4.1 are to be divided between different persons. Though rough divi

sions can be made as user, analyst, programmer (going from top to bottom of Figure 4.1), the

boundaries between them are quite mobile and often tend to get very fuzzy. Without good

communication between them a good vision of the overall project may not be present in the

group; which may result in a lot of mutually incompatible activities without a common fruit.

There is no "pure programmer" for a project like this. But this is hardly surprising because

there is no "pure user" either. The substitution view of § 2.2 is an ideal that can only be

approached but may never be fully attained; thus leaving the users aware of the simulation

nature of their activity.

§ 6.3 Frustrations in a Group Project

The SAMPLE software could not have progressed through all its useful states and

acquired its current useful capabilities without the contributions of many different persons who

worked on, used, evaluated, criticized and continually improved it as a collective effort. And

the loose organization of the group has many times provided useful freedom from undue con

straints and formalities. Yet there are frustrations that may be noted down.

See the discussion of classification of users, in § 4.4.
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First, in an University environment, working on a project one of whose main goals is to

consolidate the physical insights into generally usable program leads to a constant tension

between "research" work and "product" work. It is worsened when the sharing of these tasks

between different persons is in very different proportions (for whatever reasons)*.

The second frustration, related to the first, is when decisions regarding the software and

documentation management cannot be enforced (or are not enforced) for reasons other than

the technical points involved. Again this is particularly damaging for the group when the waste

ful consequences of not implementing the decisions affect (or get distributed among) the

members in different proportions. Simple examples of this can be seen when obsolete or

diverging versions of the code or documentation are not purged after the common standard

version has been carefully updated and verified, or when the administration of the project fails

to implement the necessary decisions because they were delegated without delegating the

authority necessary to enforce them **. The obsolete versions pop up unexpectedly (or worse

still when they pop up dreadfully expectedly) and invalidate a lot of the work put in the previ

ous updating. When more than one person contributes to it (because of lack of communication

or poor project administration) undoing the bad effects has a significantly deteriorating effect on

the general morale and group unity. Most of such compounded effects could have been

avoided at hardly any cost by not being complacent about letting obsolete versions remain

accessible and by not being complacent about unjustified claims of ignorance or of lack of

confidence in the updates and cleanups done by others.

Perhaps all this is a part of the social process within whose context a research project

operates. From a detached (academic?) viewpoint, even the problems leading to these frustra

tions make an interesting study. D

All the talk about the proofof the research pudding being in showing a piece of code that "works" is not much
of a guideline when the tasks of devising the different recipes, actually cooking them, and then eating the work
ing product are shared in different proportions by different persons.
"Feedback" is not of much consequence if it is not used to correct the error.
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Chapter 7

A Retrospective and Directions for Future Work

§ 7.1 General

The SAMPLE project is still growing and evolving in different directions and at different

levels. The designs, plans, significant decisions and observations shaping this project have been

presented in this dissertation to serve as an exposition and documentation of its structure.

Because of the planned continuity of this work some of the decisions and actions in the past are

geared towards things yet to be done in the future. In this final chapter we take a look back on

this dissertation (§ 7.2), and on this project (§ 7.3), and then towards the future in an effort to

outline the directions of future work (§ 7.4). Naturally, there is a considerable overlap between

them.

§ 7.2 Summary of the Previous Chapters

Matching the computational resources to the simulation needs and desires has been the

theme of this software project (§ 1.1, Chap. 4). Its goal was characterized as the substitution

view in § 2.2. Its approach of first formulating a view of the processes to be modelled and then

systematically mapping them through various levels to the computational resources was

described in Chapters 3 and 4 respectively. Chapters 2 and 5 examined the computational

resources, and the software approaches to get the most out of them. Chapter 5 also described

the process of building the software in some general ways that are particularly relevant to this

project. Chapter 6 continued in the same vein to bring together Chapters 3, 4, and 5 within the

common context of this simulation project. Together they document the many aspects and

details of this software — its structure, environment, context and its growth process.

§ 7.3 A Retrospective on this Software Project

In the evolution of this software it has been constantly observed that the solutions

obtained are always with respect to the problems addressed, the resources, constraints and the

stage in the evolution of the project. As some problems get solved the relevance or importance

of others at the same or different levels (Fig. 4.1) is often significantly changed. Only a good
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overall understanding, e.g. in the form of models as shown in Figures 3.4, 4.1, and 4.2 can help

maintain a proper perspective over this constantly changing landscape.

Neither the software nor this dissertation or the concepts and models presented therein

emerged top-down, or by any a priori process, in their current form. A large number of itera

tions of "design - implementation - use - evaluation - redesign" shaped the software, the docu

mentation, and their overall implementation in their current state. The models and approaches

learned in the process have been presented in this dissertation. They should be useful for

understanding the reasoning behind what has been done and for continuing it. Even ifz. totally

different approach is adopted later, this work would serve well as a concrete example for com

parison with the future work and ideas coming up. Also, by putting the ideas in a written form,

this dissertation should be useful for evaluating the current design by itself.

One simple attempt for judging the significance of this work is to answer questions like

"What has been learned from all this?", "What are the results?", "What is the product of all

this effort?" The answer to the first question is given in the paragraphs above and detailed

throughout the previous chapters. The results and the product have been the understanding of

the problems, the understanding of the ways of solving them and the solutions obtained. On a

more pragmatic level the software itself is a visible product along with its usage as a learning

and investigation tool by students in IC courses and research workers in the field *.

Two other questions, sometimes encountered in slightly modified forms, may be

addressed here. Question 1: "How would you do it all over again with what has been learned

in doing it by now?" The answer would be simply: By applying the models and principles out

lined so carefully in the previous chapters. If that seems to lead to a product quite similar to

what has already been done it is only because the ever-present iterations of "design - imple

ment - learn - redesign" have brought the current work as close to the understanding gained as

is possible within the current working environment. And question 2: "If you had your choice

what programming language facilities and computing resources would be useful for this work?

If you could design them yourself how would you do it?" This question partially inverts the

constraints of the form "available resources" by the "freedom" (problem?) to design them.

The obvious answers are faster CPUs, larger memories, and the wish for better graphics

interaction capabilities, and somehow (how?) more convenient methods of interconnecting

software modules. But the detailed answers would emerge only by studying how, in Figure 4.1,

the original simulation problems are getting mapped onto the computing resources. Essentially

this question only pushes a "fixed boundary" of the original problem from "computational

resources" to their design and the technology of building them as mastered by the problem

See the list of publications at the end of part 1 of [SUG83J.
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solvers **.

§ 7.4 Directions for Future Work

Many areas for further work are noticeable in the description and discussion in the previ

ous chapters. However, some directions that are not addressed by the software at present are

not mentioned there. This section presents many directions of future work at various levels in

this project.

For the immediate future, the program should be split up and a format should be defined

for the communication files (§ 5.10). Further, all the simulation processes (simulated

machines) need a better documentation at various levels (of Fig. 4.1). The User Guide

ISUG831 gives many details for using the program but there is no good documentation of some

of the crucial details like the discretizations used by the program. A systematic top-down (in

Fig. 4.1) documentation of the simulation machines and the general code modules would be

helpful for the persons working on the code, and it may also reveal some ideas for cleaning up

or refining the software. The need for such documentation is apparent every time some such

detail or the intention of a previous programmer who had worked on that part of the software

in the past has to be deciphered by reading the code.

Another item that should be addressed soon is the refinement of the current "release

tape" structure to include the "bootstrap" files and other tools to make it a good "archival

tape" for this software (§ 6.2.3).

For the longer range planning of the project many extensions of this project may be

undertaken. The simulation functionality could be extended to multilayer resist techniques,

investigation of proximity phenomena, two dimensional mask patterns and many other prob

lems that other members of the SAMPLE group are more conversant with.

From the programming side, the details of the wafer-files (§ 5.10.3) could be refined and

extended to handle more information about the wafers without losing the simplicity of a

minimal format. A code module of routines for easy access to these files should be written.

Input language extensions should be designed to make the data abstractions more transparent to

the user. The user should be able to say "for wafer xyz perform the processing steps of ... ".

Many parts of the code should be converted to be "data-driven" so that the code can be gen

eralized and managed more easily by the programmer(s). This would be particularly helpful for

the input interface module (§ 5.6). Run-time graphics capabilities should be introduced to

make the interaction with the program more direct for the user (§ 5.2, § 5.8).

See also the ideas of Prof. Kenneth G. Wilson of Cornell University, Ithaca, New York, U.S.A. [Wiis83l.
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The database for the wafers (the wafer collection of Figure 3.4) could be extended to

include the properties of materials, and even the default settings or some other preferred set

tings of the processes. That would make it easier to adjust them, and to specify the wafer com

ponents directly by specifying the materials rather than their individual physical properties and

parameters like refractive indices, development or etching rates etc. It would also make their

specification more self-consistent. Probably this would involve some kind of a relational data

base structure because the wafer materials as well as the process parameters, e.g. wavelength

used for optical lithography, and components, e.g. the developer being used, together deter

mine the values of parameters like refractive indices and development rates; and it would allow

the user to change the wafer materials or the process components with an input specification at

least as simple as one in a laboratory process specification sheet. *

More ambitious plans regarding simulation functionality and its programming may be

undertaken in attempts to join the current software with other process and device simulator

programs. Similarly, the simulation software may be joined with other experimental data collec

tion software. In this regard Figure 7.1 and its generalization in Figure 7.2 show a grand map

for the construction of a software network from different programs that approach the various IC

engineering problems from different sides (experimental, computational, or theoretical).

Though this would be a gigantic undertaking, sketching it out would give many ideas for attack

ing parts of it within an overall coherent perspective. A start can be made by finding meaning

ful abstractions and their implementation designs for interfacing the different programs within

the fields shown in those figures. Even with a minimal interfacing such combinations of pro

grams would be powerful application tools within their domains of applicability.

Another useful type of software linkage would be to wrap this simulation software with an

optimization oriented software package like the DELIGHT system developed at UC Berkeley

[Nye83l. After introducing the proper communication links to such software, the optimization

package could be used to systematically search for a combination of parameters to achieve some

specified objective that has been expressed using a variety of conditions on the results of the

simulated processes.

How many of the above directions will actually be pursued will probably depend on the

many factors faced by the people involved. Other directions may open up in the course of fol

lowing any given direction, and serendipitous results may also reward the efforts. As a planned

engineering project with a continual feedback and the freedom to change a few goals along the

way many functionality aims would undoubtedly get set to solve problems as they are encoun

tered or noticed. Perhaps the only constant part of the structure may be the existence of a

See also [Reid84].



X

©

^

Laboratory
(experiments!
measurements)

Aim

Process Specification
_jk

Simulation
(computations)

IC Fabrication Process Simulation

^__ _.

Device Specs

\f^ N

expt/measurement

Circuit Specs
. i

expt/measurement

Functional Specs
x.

Device Simulation

1

Timing
aspects

Circuit Simulation

£.
Logic

.aspects

73

Figure 7.1 Combining simulation and experiments for a range of IC electronics fields
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Fields:

Figure 7.2 A diagram showing the tools and fields in IC electronics engineering
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mapping from real phenomena to computations. That is necessary if the project is to stay

relevant in the engineering sense. Yet there would always be many improvisations within the

mapping depending on the people performing it. Similarly, the design of the user-interface

would always be dictated in its function by the motif of imitation (§ 2.4) and in its capabilities

by the available skills and resources. But its style would be determined by the people — the

users (§ 4.4), who are an integral part of the whole process. For it is the usage of the software

product that will determine its course of evolution, shape its being, and prove its worth.

Dream of plans and force them into implementations. Whatever the results, analyze them and

continue on to the next dream.

a
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