
 

 

 

 

 

 

 

 

 

Copyright © 1984, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



PERSISTENCY OF EXCITATION, SUFFICIENT RICHNESS

AND PARAMETER CONVERGENCE IN DISCRETE TIME

ADAPTIVE CONTROL

by

E. W. Bai, and S. S. Sastry

Memorandum No. UCB/ERL M84/91

5 November 1984



PERSISTENCY OF EXCITATION, SUFFICIENT RICHNESS

AND PARAMETER CONVERGENCE IN DISCRETE TIME

ADAPTIVE CONTROL

by

E. W. Bai, and S. S. Sastry

Memorandum No. UCB/ERL M84/91

5 November 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Persistency of Excitation, Sufficient Richness and
Parameter Convergence in Discrete Time Adaptive

Control

E. W.Bai* and S.S.Sastry"

Department of Electrical Engineering and Computer Science
Electronics Research Laboratory

University of California, Berkeley,CA 94720

ABSTRACT

The main result of this paper is to give new techniques for
deriving explicit frequency domain condition on the exogenously
reference trajectory to guarantee parameter convergence in a
class of discrete time adaptive control schemes. Other interesting
results are relations between persistently exciting vector signal
and sufficiently rich scalar signal.
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1. Introduction

In recent years there has been widespread concern about the sensitivity
of adaptive schemes to unmodeled dynamics, output disturbance and the like
(see for eg [l]). We feel that one of the important reason for this concern has
been a lack of understanding of condition under which the adaptive schemes are
genuinely convergent ( that is, their parameter estimators converge in addition
to the equation error.), it has been shown by us for the continuous time case in
[9]. Motivated by results of Anderson and Johnson for the discrete time case in
[4], that adaptive schemes that are exponentially convergent ( both parameter
error and equation error) are robust to the presence of unmodeled dynamics
and output disturbance. In the continuous time model reference adaptive sys
tem, we have characterized the necessary and sufficient conditions for parame
ter convergence in terms of spectral content (sufficient richness) of the exo
genous reference input. In this paper, we pursue this idea further and establish
condition (similar to those of [4]) on the exogenous specified reference trajec
tory which guarantees parameter convergence for discrete time adaptive
schemes of the type proposed by Goodwin,Ramadge and Caines [5,6].(henceforth
abbreviated G.R.C.)

During the course of developing the results, we develop an interesting tech
nique for studying the spectral content of possibly unbounded discrete time sig
nal (arising from unstable plant) which yields a sharper result than a
corresponding one in [6,lemma 3.4.9 pp 78, and 10]. Our results are similar to
those given in Anderson and Johnson [4], however, we feel that our proof and
techniques are independently useful and insightful. Our main result is easily
stated: If the support of the spectral measure of the specified reference trajec
tory has more than N points, where N is the number of unknown parameters in
the G.R.C. scheme, then the parameters are exponentially convergent. While we
have chosen in this paper to focus on G.R.C. scheme with the modified projec
tion parameter update law is for brevity alone. The arguments of this paper are
easily modified for several other common discrete time adaptive schemes. An
example of such schemes is the discrete time model reference scheme [6, pp
199]. For other parameter update laws, such as the least square scheme, it is
also easy to verify that conditions such as those derived in this paper guarantee
parameter convergence ( though it may not be exponential).

• Research supported in part by IBM Corporation undera Faculty Development Award 83-
85. Authors would also like to thank Profs B.D.O.Anderson, K.J.Astrom, M.Bodson and
T.Salcudean for several useful discussions.
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The paper is organized as follows: we discuss in detail two important concepts
-persistent excitation of vector signals and sufficient richness of scalar signals in
section 2. In section 2. we also show that sufficient richness of the input to a
discrete time (not necessarily stable) linear system implies persistent excita
tion of the state vector. In section 3. we apply this machinery to prove parame
ter convergence for the discrete time adaptive scheme of G.R.C. with modified
projection parameter update law.

2. Persistency of excitation (PE) and sufficient richness (SR)

The terms of persistency of excitation and sufficient richness have been widely
used interchangably in the literature. We propose to make a distinction between
them.

Definition 1. Ascalar sequence u(t) is said to be sufficiently rich (SR) of order
n, if there exists NeZ^ai >«2 > 0 such that

tn+N

uniformly in to •

u(t + l)
u(t+2)

y.(t+n),

[u(t +l),u(t +2) u(t +n)]>a2I

Definition 2. A vector sequence x(t) e Rn is said to be
persistently exciting(PE), if there exists NeZ+, at> a2>0 such that

«i/^ S x{t)xT(t)^azI

uniformly in t$.

Remarks:

1. The SR condition has an interesting interpretation in the frequency domain.
Roughly speaking, if u(t) has at least n spectral Unes, then u(t) is SR of order n.
We will discuss this further in lemma 2.

2. let U(t)=( u(t+l) u(t+n) )T , then u(t) is SR of order n if and only if U(t)
is PE.

For the continuous case, it has been shown [3] that the PE condition is very
closely related to the autocovariance ofthe signal, a concept reminiscent of the
theory of stationary stochastic process.

Consider the following definition and lemma:

Definition & Asequence x(t) € Rn is saidto have autocavariance Rz(k)^RnXn if
and only if

JJSJ S x(t)xT(t+k)=Rs(k)

uniformly in t0 .

I/rnirnn 1.(Characterisation of PE)
Suppose a vector sequence x(t) e Rn is bounded andhas autocovariance Rx(k),
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then x(t) is PE if and only if Rx(0)> 0.

We will not give the proof, since it is the straightforward modification of a
similar continuous time result in [3].

Remarks:

The PE condition makes precisely the intuition that Rn can be spanned by x(t)
uniformly in N steps when x(t) is PE.

We also have a frequency domain interpretation for PE. Assume that the follow
ing limit exists uniformly in 10

t-tg-n

Then, we say x(t) has a spectral line at vwith amplitude Xfji/feC*. , it may be
proven using techniques similar to [3], if x(t) has spectral lines at frequencies
ui v2. vn with ampUtude X{jvx)tX{jvz) X(jvn) which are linearly indepen
dent, then x(t) is PE.

Lemma 2.(Characterisation of SRin frequency domain)
If a scalar sequence u(t) is bounded and has an autocovariance .then u(t) is SR

of order n if and only if the spectral measure of u(t) is not concentrated on k<n
points.

Proof: Let

U(t)=(u(t+1), ,u{t+n))T
Now since u(t) has autocovariance, wemay define

tn+M

/M0)=Um-L £ U(t)UT(t)=
/^(-Vi+i)

with

M ™Mt=tn+i

/?w(n-l)

Ru(o)

It is weU-known [7,8] that Ru (k) is a positive semidefinite function. Further
from the Herglotz theorem a function Ru(k) defined on the integers is positive
semidefinite if and only if

n

Ru(k)=fe^Su(dw)
-it

where Su(vj) is positive bounded measure.
From lemma 1., u(t) is SRof order n if and only if Ry(0) >0. with

Rrj(0)= f
1

[!.«*". eHn-l)w]Su(dw)
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That is, for any nonzero \, the following inequality holds

XTRu(Q)\=f\\TW\2Su(dw) >0 (2.1)
-n

where

W=(l,e^w e-J(n-i)wy

Now it is easy to show that the inequality (2.1) holds , if and only if Su(w) is
nonzero at least at n points, since

X7>=Ai+X2g-j«,+ ^e-ffo-Owso

has arbitrary but at most (n-1) roots.

Q.E.D.

In Lhe adaptive tracking problem, the design objective is to make the output of
the unknown system track a given reference trajectory. It seems to be reason
able to guess that if reference trajectory is SR, so is the system output. This is
precisely what the foUowing lemma does.

Lemma 3. Suppose there are two scalar sequences y\(t) and y%(t)
satisfying

\ydt)\<M i =l,2

Slvi(0-y2(OI2<~
«=1

then yi(t) is SR of order n if and only if yz(t) is SR of order n.
The proof proceeds by arguments similar to the continuous case [3].

Theorem 1.(Reachability and PE) *
Consider the discrete time system

X(t+l)=AX(t)+bu(t) (2.2)

tG.Z¥ X(t)eRn AzR"*" bzR71*1 u(t)zR

Assume that (2.2) is completely reachable, and the input u(t) is SR of order n,
then there exists N G Z+ and a >0 such that

tQ+N

2 X(t)XT(t)*aI

uniformly in r0.( a is independent of the initial condition of (2.2).)

Proof: Note that

X(t-hj)=j^X(t)+f;A^bu(t+i-l) (2.3)
i=l

Since the eigenvalues of A are not inside the unit disc ,it is easy to see that the
difficulty is the initial condition term. We deal with this as foUows, define the
characteristic polynomial of A.

ja(z)=zn+a1zn"1+ +On

•The idea for the proof of this theorem was given to us by T.Salcudean. (unpublished notes-
to appear)
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Now define

We have

5-

V(t)=X(t+n)+alX(t+n-l) + +OnX(t)

V(t)=AnX(t)+flAn-ibu(t+i-l)
i-l

n-1

+alAn~lX(t)+ 2 alAn"l"ibu(t+i-l)+.
i=l

+an-1AX(t)+an-lbu(t)+anX(t)

From the Cayley-HamUton theorem, it may readily be seen that the contribu
tion of the initial condition term to V(t) is identicaUy zero. Thus

V(t)=[An-lb+a1An~zb+ +an_16 Ab+axb,b]

-iM?"=G[u(t) u(*+n-l)]

u(t)
u(t + l)

u(t+n-l)

where

G=[An~lb +a1An~*b +...+an_16 Ab +a26,6 ]

Since (A,b) is reachable, G is a full rank matrix, hence it foUows from the
definition 1. and the hypothesis that

2 V(t)V*(t)=G £
U(t)

p.(t+n-l)
[u(t) ,u(r+n-l)]Gr

t=*n+l t=tn+l

2»aGGT>yI

uniformly in tQ , where 7=acrmjn(GG7') , let

r(fo)=[^o+l). V(tQ+2) V(tQ+N)]

Then from (2.4)

Y(t0)Y^(t0)^yI

Now observe that

Y(t0)=[X(tQ+i),X(to+2) ,X(to+n+M)]M
with M e rW+hW given by

M=

On 0
On-1 °*

. <*n-l

0

6
, # On

ax .

1 ai
0 1

o*-i

6 6 1
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Using (2.5)

r(t0)YT(t0)=WMMTWT
where

W=[X(t0+l).X(t0+'d) ,X(t0+n+N)]
the following equation then foUows immediately

WMMT WT^amtJ<MMT) WWT
or

WWT*t - —WMKTWT- Y(tdYT(*o)
ffnm(AMf*' OmzxiMM1)

Since Mis a constant matrix, and a^MM7) is nonzero and independent of *0
We have

tQ+n+N

S x(t)xT(t)>

This completes the proof.

Q.E.D.
FoUowing is the dual of the theorem 1.

Theorem 2.(Observability and SR )
Consider the discrete time system

X(t+l)=AX(t)

y(t)=cx(t)

t<zZ+,X(t)<=:Rn,AG:Rn*n,CeRlyn,y(t)zR
Suppose system is completely observable and X(t) is PE, then y(t) is SR of order
n.

It is essential to note that the proof of the theorem 1. uses only the reachabU-
lty. It allows one to deal with unstable systems. From a practical point of view,
this is important, since the stability of the model may not be known prior to
applying adaptive control.

From the lemma 2., it is easy to see that the input containing a linear combi
nation of n/2 sinusoids is enough to produce PE states. Asimilar result in [5]
needs 2n sinusoids for the same purpose. (Note that a sinusoid of nonzero fre
quency v has symmetric spectrum at both v and -i/.)

In the next section, we will use the results obtained here to estabUsh the global
exponential convergence of the G.R.C. scheme.

3. Exponential convergence

To study the exponential convergence of aU existing discrete time adaptive
control schemes individually is tedious, and many schemes are related. There
fore, for brevity, we discuss the G.R.C. scheme with the modified projection algo
rithm for parameter update law.
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Consider the plant which is modeled by

2/(0+aiy('-l)+ +any(t-n)=0ou(t-d)+ pmu(t-d-7n) (3.1)
That is

a(z-l)y(t)=z-d^(z^)u(t)
where

a(z~l)=l+alz~1+ +an2~n

/J(«"l)=ft+|9i*"l+ +/?mz"m
Assume f30*0 and that d, m n are known, but not the values a* and ft. Further,
assume that a(z~l) and 0(z~l) are coprime and that the zeros of &(z~l) lie inside
the unit disk.

The objective of the adaptive control is to get y(t) to track a given reference
trajectory.

First convert the model to a d-step-ahead predictor form [5].

y(t+d)=a0y(t)+a1y(t-l)+ (^-^(r-n +l)

+b0u(t)+ +&m+d+1u(*-77i-d+l) (3.2)

where 6o»*0 Consider the control law and update law by (3.3) and (3.4) respec
tively.

<pT(t)*(t)=y\t+d) (3.3)

Tj(0=^(r-l)+a(0^-d)[c+^r(f-d)^(r-d)]-1[y(0-9?7'^-dWf--l)] (3.4)
where fl(f ) is parameter estimate, y*(t) is a reference output and

<p(t)=[y(t),y(t-l),...,y(t-l+n).u(t) u(t-m-d +l)]T

For this scheme, Goodwin and co-workers [5,6] have shown the following
facts:

(1) y(t) and u(t) are bounded.

(2) Um[y(f)-V#(*)]=0
f-»oo

(3) Um£[y(0-V(0]2<«
n^°«=i

Thus the scheme above has attractive global convergence properties,
however, the rate of convergence is not guaranteed to be exponential. More
over, nothing can be said about the parameter errors. It is known [4] that if
(p(t) is PE, then both the output error and parameter error will converge to zero
exponentiaUy. We wiU find condition on the reference trajectory which wiU
guarantee that <p(t) is PE.

Lemma 4. Consider the system (3.1), described by the predictor form (3.2),
then fp (t) is PE if either of the foUowing conditions holds:

1. u(t) is SR of order (n+m+d), or the spectral measure of the u(t) is
not concertrated on k < (n+m+d) points and y(t) is bounded.
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2. y(t) is SR of order (n+m+d), or the spectral measure of the y(t) is
not concertrated on k < (n+m+d) points and u(t) is bounded.

Proof:

The proof of 1. and 2. proceed by similar arguments, hence we only prove 2.
here.

From theorem 1., we know that if the system is reachable, then the SRof input
implies that state variable is PE. What we do next is to use exactly this idea to
buUd a system, whose input is y(t) and state is <p (t).

From the predictor form (3.2)

u(t)=-±-y(t+d)-?±y(t)- -^Lj^-n+i)
bo

6i
6

&o

(r-l)-...~
0 6q

u(t-m-d + l)

Using (3.1), we rewrite the above equation as

u(t)=-^y(t+d)+ciy(t-l)+ +cny(t-n)
+cn+1u(r-l)+ +cn+rn+du(t-d-m)

where ct (i= 1,2,....n+m+d) are constants.

Now it is not difficult to check that the vector <p (t) is generated by the foUow-
ing state equation with the input y(t).

V(*-l)
y(t-2)

u(t

y.(t—m+d)

1 vPK -Ox

1

-a2 -On 0 &0
0

V(r4i +1)
u(t) =

Cl C2

6 6
cn cn+1

1
cn+d

utf-Tn—d + l), 6 6 6 6 6

or

0

cn+m-t-d vft-Ti) 0
l/b0

0

y(t+d)

<p(t)=A<p(t-l)+by(t+d)

It may be verified from the same transformation as in [5] that coprimeness of
a(z~l) and ^(z"1) guarantees that

rank [XI-A b ]=n +m+d for any Xe C

This implies the system is completely reachable. By theorem l.t the SR of y(t)
impUes the PE of tp (t).

Q.E.D.

Theorem 2. If reference output y * (t) is SR of order (n+m+d), or the spectral
measure of the y* (t) is not concertrated on k<(n+m+d) points, then the output
error and parameter error converge to zero exponentially.
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Proof: This foUows directly from theorem 1., lemma 3., and lemma 4,.

4.Conclusion:

We have given a condition in terms of spectral measure for parameter conver
gence of the adaptive control of not necessarUy stable linear system. The paper
has dealt only with the exponential convergence of G.RC. scheme with modified
projection parameter update law, but the idea is more general and may be
readily extended to several other discrete time adaptive schemes.
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