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A. Introduction

In this report we describe an electron beam time-of-flight measurement of

the thermal barrier potential in the Berkeley Multiple Mirror Experiment (MMX),

and we examine the feasibility of using the technique to measure the space and

time resolved plasma potential in large tandem mirror experiments.

The measurement is performed by propagating a series of electron beam

pulses along a magnetic field line from one end of a mirror device to the other

(see Fig. 1). The beam electrons slow down or speed up as they move into

regions of negative or positive.plasma potential, respectively. By observing the

time-of-flight of the beam pulses between two nearby detecting stations, the

beam velocity, and thus the corresponding plasma potential, can be determined.

For the actual measurements on the MMX that we report here (see Sec. B),

a negative thermal barrier potential is created in one mirror cell of the MMX by

short pulse, electron cyclotron resonance heating (ECRH). This barrier is subse

quently destroyed on the timescale for passing ions to become trapped in the

heated celL The timescale is 30-50 ^sec for 7^ = Te « 12 eV, Th « 1 keV,

7i w 5 X 1011cm"^ typical in the MMX. The time-of-flight measurement we have

developed has been used to make detailed measurements of barrier potential

for a single MMX discharge on timescales as short as 5 jusec with a potential

resolution as small as ±5 volts. The measurements are corroborated by a

number of additional diagnostics.

In the MMX, the time-of-flight is measured by means of a collector probe

physically inserted into the plasma so as to intercept the beam current. The

time-of-flight can be measured on larger (hotter) tandem mirror devices only if

the beam can be remotely sensed. We have examined three remote sensing

techniques which are illustrated in Fig. 1: (a) beam collisions with plasma neu

trals, yielding optical line radiation (described in Sec. C); (b) beam collisions
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with plasma ions, yielding x-ray bremsstrahlung (described in Sec. D); and (c)

beam current-induced magnetic fields (described in Sec. E).

For all techniques, sources of noise exist, and signal averaging methods

must be used to increase the signal-to-noise ratio. For a given time resolution,

the extraction of the signal from the noise sets a limit on the use of the time-of-

flight measurement.

In Sec. C, we examine the noise sources and the required signal averaging

methods. We estimate the rms uncertainty on the measured potential due to

the noise, and give the scaling of this uncertainty with the plasma and beam

parameters. We give numerical estimates of plasma and beam parameters to

illustrate the feasibility of each remote sensing technique. In Sec. F, we also

examine the effects of beam-plasma instabilities and consider their importance

to the measurement techniques.

Our results are as follows: (a) Optical line radiation techniques appear

feasible in TMX-U, especially in the low density mode of operation. A major

uncertainty is the neutral D density within the hot core at the measurement sta

tions, (b) X-ray bremsstrahlung techniques may only be feasible in TMX-U at the

very highest densities, but may be more attractive in MFTF-B. A major uncer

tainty is the level of bremsstrahlung produced by ECRH hot electrons at the

measurement stations, (c) Beam current, magnetic field techniques appear

feasible for both low and high density tandem mirrors. However, major uncer

tainties are the spectral power density for plasma-produced magnetic field noise

near the beam modulation frequency, and possible current neutralization of the

beam.

For all three techniques, the limitations due to beam-plasma instabilities

are probably not too serious. The critical issues that must be addressed in

future studies are (1) noise levels and (2) received signal strengths.



B. Potential Barrier Measurements in the MMX

A negative electrostatic potential barrier has been created in one mirror

ceil of the MMX by means of ECRH. The potential during the formation and des

truction of the barrier has been measured using the electron beam time-of-

flight diagnostic, with a resolution of ± 5 volts on a 5 microsecond timescale.

The measurements are performed in the magnetic mirror system (MMX)

shown in Fig. 2. The magnetic field is pulsed, with a rise time of 200 fisec and a

decay time of 2 /usee. Plasma injected from a Marshall gun source flows along a

225 cm, 0.18 T, axial magnetic field and through a mirror-quadrupoie field at Tq

into three cells with midplanes at M^q, MQ7t and M7q. Each cell has length

I = 75 cm and midplane field Bq= 0.18 T. The last cell at Mqq is terminated in

a mirror-quadruple field at 7*g and Ty having mirror ratio R = 2.8 and fan eilip-

Ucity Q « 20.

The 10 cm diameter metal chamber wall of the central cell, together with

mesh-covered endplates at Tq and Ty having openings shaped to fit the elliptical

flux surfaces, form a cavity for ECRH that does not obstruct the plasma flow. A 3

jusec, 250 kW, 9.0 GHz, rf heating pulse is injected into the plasma-filled cavity at

M67. This creates a magnetically confined, hot electron density n^ in the center

cell due to ECRH at the two resonance zones, each 6 cm from the mirror

throats.

The sudden appearance of the hot-electron population, and the correspond

ing reduction of the cold-electron population, initiates formation of a negative

potential barrier near throats Tq and Ty as follows: The potential Vy of mid

plane Mq? with respect to midplane if78 is related to the cold (non-magnetically

confined) electron densities tiq? and 7173 by the Boltzmann relation. If

7167 < ^B* a negative potential barrier forms near Ty



77 = -rcln(n7a/7i67) , (1)

where TG is the cold-electron temperature. A similar expression determines Vq.

These expressions are invalid in the limit 7157 -» 0, where the ion flow dynamics

must be considered. For this case, the potentials can be estimated by equating

the total ion flux to the total electron flux entering the center cell Using, for

example, a Bohm velocity for the ions, we have (for Vq, Vy < 0)

(n56+n78)(rc/ enii)1'2= [nw exp(Vq/ Tc)
-+ titb exp(77/ 7tc)](8rc/Trm)1/2

where 771$ and 771 are the ion and electron masses and £ is the natural base.

Assuming, for simplicity, that the Boltzmann relation is valid for the densities

and potentials between M$q and M73,

n56exp(76/rc) = n7aexp(77/rc) , (3)

we obtain

V?=Tr
7l7Q « £ 7T771

(4)

A similar expression holds for Vq. For hydrogen ions with 7155 = 7173, we find

V7=Vq* -3.3 Tc . (5)

The potential barrier is destroyed on the timescale for ions to enter into

and become trapped in the center cell. By quasi-neutrality, cold electrons

accompany the trapped ions, and therefore 7137 increases on the ion trapping

timescale. The final state in this idealized model (7155 = nh = 7173 = const and

TQ = const, initially) is 7137 = 7ih and Vq = Vy = 0. The total electron density

(hot + cold) rises to twice its initial value after barrier destruction. Non-ideal

effects important in the experiment include: initial axial density variations.



non-zero ion transit time, heating of cold electrons by hot electrons, and plasma

loss processes during barrier formation and decay.

The electron beam probe system, illustrated in Fig. 3, consists of an elec

tron gun located at MyQ and a beam collector at Mqq. The electron gun gen

erates an electron beam having current 7& « 100 fik and voltage V& = 150—200

V that propagates along the magnetic axis to the collector. The gun consists of a

tungsten filament and grid located inside a 0.32 cm diameter, stainless steel

tube. A 0.32 cm diameter, mesh-covered hole in the side of the tube serves as

the gun anode. The beam collector is identical in construction, with the filament

replaced by a collector plate.

To determine beam time-of-flight, the beam current is modulated at

/ = 10 MHz, and the phase delay of the signal received at the collector is meas

ured. To provide high signal-to-noise ratio, a digital, phase-locked loop is used.

The beam modulation is synchronized to a 100 MHz transient digitizer, and the

received current, after passing through a tuned amplifier (v^ =4xl04ijn,

/ = 10 MHz, A/ « 1.3 MHz), is digitized. The 32 k samples are processed sub

sequently as follows: A sine wave is fitted to each group of twenty consecutive

samples, and its amplitude Aj and phase <Pj are determined by a least square

error criterion. Fifty consecutive values of sin <Pj (and cos cpj) so determined

are then averaged to obtain the mean phase <p and its standard deviation s over

the five or ten microsecond sampling interval. It is easily seen that the standard

deviation for a set of phases (pj chosen randomly from the interval (0,27r) is

7T/3. Thus measured phases having s > 0.6 are not considered significant.

The phase (p(x) due to an axial potential distribution 7(x), with respect to

the beam cathode at x = 0, is given by

<p(x)=ut(x) =u?-t~- (6)
JQ V{X)
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where

v(x) = 2e7(aQ
U/2

771

is the beam velocity. If we assume a simple square well model for the potential

(see Fig. 4), then the phase change &<p at x =21 due to the creation of a nega

tive barrier of magnitude $bar and length I is

1-1/2

Ac*=^ 1-
*bar

For $bar « Vb, we find

1 CJL *barA^«
2 vb Vb

- 1 (7)

(8)

Equation (6) has been verified experimentally by applying a -45 V, 100 pisec

pulse to a 2.5 cm diameter ring electrode placed on axis at the midplane of the

center cell. The dependence of k<p on Vb in (7) has also been verified over the

range from 100 to 200 volts. Finally, the time response of the beam diagnostic

has been measured by applying a 20 V, peak-to-peak, 25 kHz square wave modu

lation in series with the cathode voltage. These measurements yield a response

time that is less than 5 ju sec.

Figure 5a shows the raw data v^ (t) versus t for a single plasma discharge

shot, with the ECRH applied at t =0. Although ten samples of vout per modula

tion period l/f are digitized, only every other sample is plotted in the figure. If

the output were a constant amplitude sinusoid at the frequency f, then five hor

izontal lines of "dots" should appear. The successive dots on each line are

separated by exactly one modulation period. This behavior can be seen in the

time interval before ECRH. Variations in signal amplitude and phase cause the

lines to vary with time; noise produces a scattering in the dots for each line.

This behavior can be seen in the figure, especially after ECRH. Figure 5b shows



the behavior of the phase delay L(p versus time after the data reduction to

increase the signal-to-noise ratio. The phase is constant before ECRH, and

abruptly increases by about 1.2 radians after heating. Using (7), this increase

corresponds to a barrier ^^ « 65 V. The standard deviations s of the reduced

data are small except during the first 10-20 /xsec after ECRH, when the noise

from the pulsed magnetron power supply and/or the sudden plasma heating

dominates. After the initial phase delay, the phase change returns toward its

initial value on a 50 /4sec time scale.

In addition to the electron beam diagnostic, the following diagnostics are

also used: A swept frequency 35 GHz microwave interferometer in the central

cell midplane M$y measures the total electron density 7137 at 6 jusec intervals. A

silicon, lithium-drifted, x-ray detector at MQy measures the hot-electron tem

perature Tfc and the hot-electron decay rate. A diamagnetic loop at if37 deter

mines the hot-electron nh 7\ product. A nude, fast ionization gauge is used to

determine the increase in gas pressure due to the firing of the plasma source

and the emission of neutrals from the chamber walls. Sets of Langmuir probes

at if56 and if73 are used to determine the electron densities 7i5Q and n7Q and

floating potentials in these cells. Voltage-swept Langmuir probes are used to

determine the electron temperatures Tqq and TyQ. Emitting probes are used to

measure the plasma potentials 753 and 778. Probes cannot be used in the cen

tral cell if37 during ECRH, due to arcing at the probe tips, and destruction of

the hot electron distribution.

Figure 6 shows the set of data for the single plasma discharge shot of Fig. 5,

having strong ECRH. In Fig. 6a, the x-ray pulses observed after ECRH are

intense and persist over the entire 200 ^ec interval. In Fig. 6b, the ion satura

tion current of a Langmuir probe in M73, adjacent to the ECRH cell M37, shows

an initial increase in density (and possibly temperature), followed by a decay



over 20 fisec back to its initial value. A similar behavior is seen in Fig. 6c for the

density in M&, as measured with the swept interferometer. Finally, Fig. 6d

shows the phase delay measured by the electron beam diagnostic. The max

imum phase change Aip w —1.2 radians corresponds to a negative barrier, from

(7), of $tar at 65 volts.

To understand the time dependent behavior of the measured density and

phase change in the ECRH cell, a one-dimensional, three cell model of the ion

and electron flows into and out of the cell has been developed. The model incor

porates the following assumptions and effects:

(a) The cold electron and the ion temperature is Tc = const.

(b) A square well potential barrier is used.

(c) Charge neutrality is valid for all times.

(d) Finite ion transit times are included.

(e) Partial ion trapping due to collisional scattering is included.

(f) Production of cold plasma by hot-electron ionization of neutrals is

described.

For T < 0 (before ECRH), the potentials across the two cells are deter

mined from the cold electron densities through the Boltzmann relations. These

densities are known from Langmuir probe and microwave interferometer meas

urements. For t > 0 (after ECRH), the equations for the two potentials are

found by requiring that net charge must not flow across either of the two cell

interfaces (see Fig. 7):

r„ i-r<! = r83-r«-(i -xn r<3 . O)

re3-ri3 = re2-r<2-u-#) rt\ . do)

Here the Ps are the particle fluxes, X^ is the ion trapping fraction, and "*"
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denotes evaluation at a time that is delayed by an ion transit time Tj; e.g.,

f 0 , * < ft
r"(0 =I r^-ro, t>Ti

etc. We also require the rate equation for ion (and, by quasi-neutrality, cold

electron) trapping in the heated cell:

£jJr-= i-[r„ +ri3 - 2ri2 - a-tfXr/j+rA) + 5U . (ID

where

is the cold plasma production rate due to hot electron ionization of neutrals.

Equations (9)-(ll) have been solved numerically using a finite difference

method for given values of 7i^1(i) and 7ii3(£), known from Langmuir probe meas

urements, the given initial value 7i$2(0) = 7i0, known from the interferometer

measurement, the temperature Tc, known from swept probe measurements, the

neutral pressure, known from fast ion gauge measurements, the potential 73 of

cell 3 with respect to the chamber wall, known from emissive probe measure

ments, and a choice of initial cold electron density 7tcg(0). A numerical solution

for the data of Fig. 6 with n^O) = 0.01 tl$2(0) is shown in Fig. 8. The barrier

potential in Fig. 8a has a maximum amplitude of 3.5 Tc and decays on a times

cale of about 40 fJaec. The cold electron density in Fig. 8b rises abruptly to

fWi0/ 2. The total electron density (hot + cold) in Fig. 8c and the phase shift in

Fig. 8d are roughly similar to the actual density and phase shift seen in Fig. 6c

and Fig. 6d, respectively. The essential features of the experimental observa

tions seem to be modeled quite well in the theory. However, the timescale for

the theoretical phase shift is somewhat shorter than that seen experimentally.

Further studies will be necessary to bring the theory and experiment into closer
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agreement.

C. Remote Detection Using Neutral Atom Targets

1. Measurement technique

In this section we present quantitatively the measurement technique and

obtain expressions for the mean electrostatic potential 7 and its root mean

square deviation A^-ms- We first consider the process of electron beam excita

tion of optical line radiation from neutral gas atoms. We let

71a = neutral atom density (cm )

-3715 = electron beam density (cm )

rig = plasma electron density (cm )

(ov \ = beam-atom excitation rate (cm /sec)

\av\ = plasma electron-atom excitation rate (cm /sec)

Aft = beam-neutral interaction volume (cm )

Aq = plasma electron-neutral interaction volume (cm )

Roughly, we estimate (see Fig. 9) that

Afc = TTTb2l ,
and

Ag = 4rbr9l ,

where rb and re are respectively the beam and plasma radii, and I is the

interaction length. Then the photon generation rates for the beam and for the

plasma electrons are, respectively,

Rb = rianb{avybAb , (photons/sec) (12)

R9 =71^71^ (ov X&g , (photons/sec)
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Now we let

/ = beam density modulation frequency (Hz),

CI = solid angle seen by the optics (steradians),

J = number of sample intervals per modulation period,

M = number of modulation cycles.

The observation time interval; i.e., the time resolution of the measurement, is

T = M/f .

We have divided each modulation period T = l/f into / equal subintervals

A£ = r/ J. There are thus three time scales: Af, T and T.

During a period T, we observe within each subinterval A£

Mb =V^b ^~A* (photons) (14)

JV* =V#* T^-Ai (photons) (15)

where r\ < 1 is the detector efficiency. We consider Nb as the "signal" and Ne as

the "noise." We expect Nb to oscillate at frequency /, while NB will be steady

(dc), with fluctuations due to photon counting statistics. The fluctuations in N9

must be considered because Nb is very small compared to Ne (Note that

715 « 7i8 and At, < Aq ). We must use averaging techniques to increase the

signal-to-noise ratio of the measurement. Since Ne has a large dc component,

we use a baseline subtraction technique, in which samples of the detector out

put taken without the beam (at some submultiple frequency synchronized to the

beam modulation frequency) are alternately subtracted from the samples of the

detector output taken with the beam (see Fig. 10). In this manner, the photon

baseline for the noise is subtracted, leaving only its fluctuation level. This is a
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standard technique performed using boxcar integrators (analog) or transient

digitizers (digital).

Taking M samples for each subinterval j (one sample during each modula

tion period as shown in Fig. 10), we obtain the rms fluctuation level (noise)

Frns = (MNe)1/z (photons) (16)

The signal is present for half the samples, yielding

Sj =jj-MN^tj) (photons) , (17)

where tj (modulo t) is the subinterval time. Since Nb « Ne, the fluctuations in

Sj are not important. The signal-to-noise ratio is defined as

and increases as the square root of the number of samples taken. The output

signal from the detector, after averaging, is the set of / values

Pj^Sj+Fj (photons) , (19)

where Fj is the number of noise photons in the jth subinterval

We now determine the phase <p from the values of Pj, and estimate the rms

phase uncertainty {Afp)rma. For simplicity we assume that the signal, uncor-

rupted by noise, has the form

S(t) = SQ sin(cj*+<p0) , (20)

where cj = 2irf, and Sq and <p$ are the amplitude and phase to be determined.

(It is easy to add a constant term to S if required).

To determine the "best fit" values of .So and cpQ, we minimize the mean

squared error
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• = 2 (SW-PjfAt . (21)
7=1

Setting de / d(pQ = 0 and de / dS$ = 0, we obtain the two equations

2 Pj cos(cj^-+^) =0 (22)

S = j-S ^sin^.+p) . (23)

Equation (22) determines the "best fit" phase ^, and (23) yields the "best

fit" amplitude E.

The uncertainty in Tp can be found by inserting (20) into (22):

2 So syn(ojtj+<po) cos(orfj+^) + 2 F* cos(«fy+^) = 0 /24\
J i K J

We assume that y is close to <pQ and that the i^y's are small. We thus put Tp = <pQ

in the second term in (24), and put

P = <Po + h*P > btp « 27T

in the first term. We then obtain the relation

Sq ^r&tp =2 Fj cos(Grfy+po) . (25)
.J

Recall that the Fj are Gaussian-distributed random variables, having 7y = 0 and

Averaging over this distribution, we obtain Sp = 0 and

(A^2 =(A?™)* =J-%~ • (26)
Using (12)-(17), we obtain

where
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NT =V-fi^71*71**™* <<™ \ A* T (28)

is the total number of beam photons that would be detected during a time inter

val T if the beam density was ti^^^ during the entire interval. As expected, we

note that Acprms depends only on the averaging time T, and not on r or At.

We now relate the mean potential V and its rms deviation AT^j to the

mean phase lp and its rms deviation A(prms • The phase is given in terms of the

potential by the equation

*>(*) =«*(x) =«(f^1/3 f <& Wx-)]-1'8 , (89)

where V(x) is the potential with respect to the electron beam cathode. Solving

for V, we obtain

V(x) =fflsL^,)]-" , (30)

where tp' = d(p/dx.

We use the values of (p obtained at two axial locations (see Fig. 1) to determine

¥=^p- . (3D

where L is the axial separation. We note that <p' has the mean

r = 2e?l. (32)

and the rms deviation

t^.-^ba.. . (33)

Thus V has the mean
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T7- rag2 ' . .

and the rms deviation

A^as =J7^T*<P™S • (35)

Inserting (33) and (34) into (35), we obtain

W m>2 * (36)

where 4, =2.7x10s mA1//2-sec.

We want to minimize AV^^ since we cannot distinguish two measurements

of V that differ by AT^s or less. We therefore examine the scaling of AT^ms

with the system parameters. Before doing this, we eliminate the beam density

as a parameter in favor of the beam perveance K by writing

Ib = enbvbTvrbz^KV^z , (37)

which yields

e 2e Trrf

Inserting (38) into (27) and (28), we obtain

2 32 "b <<">>« nr>
n^jnKz<<Jv^lTna<<7U\ V? • (39)

47T 2e3

Inserting (39) into (36) and setting V « Vi, we obtain the final result

/at/ >2- 1024e4 1 nB <^X rbr( Vu

rrm2 ^K^Q na <ov\ ILZ <ov\T
(40)
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For design of the electron beam probe diagnostic system, we should there

fore choose

f.K, T), Q, l.L. and T

as large as possible, and choose

Vb andr6

as small as possible (we assume here that (, ov ^ is roughlyindependent ofv).

2, Numerical estimates

The modulation frequency / will be limited by the transition time for the

line radiation of the gas atoms observed, and by the wavelength vb/ f of the

beam bunches. For the Balmer lines of hydrogen, the transition rate is w 64

MHz; for Lyman a, the rate and cross sections are higher: w 164 MHz. However,

the optics in the vacuum uv are more difficult. We thus choose

/ w 40MHz.

For the vb we will choose, this yields a reasonable beam wavelength.

We consider the use of a magnetron injection gun. Such a gun with

K c* 6X10"6 has been operated in TMX-U. We choose a reasonable value

K * 10-5 A/ V*/2 .

We choose a detection efficiency

7? « 0.3 .
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A 6" diameter lens placed 30" from the plasma is presently used for the

Thompson scattering diagnostic in TMX-U. We assume that the same solid angle

can be chosen for the electron beam probe:

Q = .031 steradians .

We choose an interaction length and an axial separation between measure

ment stations

I =£ = 30 cm

We choose an averaging time

T = 10"2 sec.

These later choices specify the space and time resolution of the measurement.

The beam voltage must be of the order of the typical potentials in the

experiment. A reasonable lower limit might be

*i«2kV.

The beam diameter is limited by the observing optics, magnetic field line

wandering etc. A reasonable lower limit is

rb = 1 cm.

With these parameters, the beam velocity is

vb = 2.7X109 cm/sec,

the beam current is
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Ib = 0.89 A,

the beam density is

-3nb = 6.6xl08cm ,

and the beam interaction volume is

Ae, w94 cm3.

We estimate the plasma parameters as follows: A 20 cm parabolic radius

leads to an average plasma radius

re w 13 cm,

and an interaction volume

A9 = 1560 cm3.

The plasma electron density is taken to be

7ie « 5xlOncm~3 .

The plasma electron and beam excitation cross sections are estimated as fol

lows: The Lyman a cross section for 250 eV plasma electrons is

0.34 X 10"16cm2. We estimate the cross section for production of radiation
o

above 2200 Ato be roughly half this value:

C7e w0.17XlO~16cm2.

For a 2 kV beam, we. estimate
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ab w .04xlO""18cm2.

The plasma-electron excitation rate is then

(ov >* » l.lxlO"8 cm3/sec.

and the beam excitation rate is

(ov\* l.lXlO^cmVsec.

The neutral pressure is a difficult parameter to estimate. We adapt the

estimate

p0 «5xl0~7torr ,

such that the neutral density is

n* w 1.7xl010cm*3.

We note in passing that the neutral atom density in a fast neutral beam is of

order 1010 cm . Therefore, if the neutral pressure is much below 2xl0~7 torr,

then a neutral beam may be injected into the interaction volume to achieve a

density of order 1010 cm" .

For the above parameters, we have the following estimates using (12) and

(13):

Rb « 1.2X1013 (photons/sec)

R9 w 1.5X1017 (photons/sec)

M = 4X105 (number of cycles averaged)
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For J = 10 subintervals, we find using (14) and (15) that

Nbmax « 22 (photons)

JV««2.8xl05 (photons) .

Using (16), and (17), we obtain

F-rma w 3.3xl05 (noise photons /subinterval)

£jmax w 4.4x106 (signal photons/subinterval) .

Using (28), we obtain

NT = 8.6X107 (photons) ,

and, using (27), we obtain

Aprms = -034 radians .

finally, using (40) we obtain the rms potential deviation

AVrm. * 67 V .

If we are willing to accept a potential uncertainty a factor of VTO larger

(r-210 V), then we can, for example, reduce the solid angle or the neutral density

by a factor of 10 or increase the plasma electron density by a factor of 10. We

conclude that the measurement is feasible on TMX-U, at least for certain operat

ing Tegimes. More careful theoretical and numerical studies should be done to

refine these estimates. Experimental work should be initiated to explore the

physics issues and to determine the limitations of the method.

D. Remote Detection Using Plasma Ion Targets
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1. Measurement technique

We detect x-rays at 2-10 keV. This method has also been suggested by Klin-

kowstein. There is no limit on transition rate as for an optical line, so we choose

/ =t;b/Xor

1 771 X2 (41>

and let I = L = X/2. The target density na in (40) is replaced by Z2^, where

7Lj is the ion density and Z is the effective charge.

The rate constant (ov \ for x-ray bremsstrahlung photons is estimated as

follows: the total power radiated per beam electron is

_ eHZe)^

where h is Planck's constant.

The energy spectrum of the power is roughly flat up to the energy Eb of the

incident electron and falls precipitously thereafter. Assuming the detection of

x-rays in the range iTnnn to ft, the number of photons emitted/sec-electron is

/
1 px JB. _ P* ,_ ft

dE = -Tr-ln
hi hlU.

sola
•^ ft ft Emn

The rate constant is then

ft<™>*= °Yg]\. ^127re^7n2c4/i ^ £ mm

c ,_ ft= 1.44xlO-22Z2 —In -sr2— (mVsec)
v6 ^min

Using Vb = —mi^2/ e, we obtain

<Ov\ = Cb Z2VT1/2 ln( V6/ Fndn) (42)
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where

C6=7.3xl0-20 (m3-V1/2/sec) .

There are three significant noise sources in the detection of beam-produced

x-ray photons. Two possible background noise sources are plasma, hot-

electron-produced x-ray photons, and plasma, cold-electron-produced photons.

As will be shown, these background noise sources can be made small in cer

tain regions of a tandem mirror by proper choice of beam energy. However, the

basic reaction rate (42) is very small, such that statistical fluctuations in the

signal (beam-produced) photons may be dominant. We can estimate the contri

bution of signal photon fluctuations to the rms phase uncertainty as follows: For

the signal photons S(t) given by (20), we have an rms fluctuation

^rms«(So/2)1/2 (photons) . (43)

The rms uncertainty in the phase lp due to this source is, using (26),

(A^)2=^T=l4r- (44)
where Nf is the total number of beam produced photons that would be detected

during the time interval T if the beam density was nbmax{S{t) = Sq)during the

entire interval.

Refenring to (27), we see that (44) corresponds to an additional noise pho

ton rate

Y^iwa <ov \ &b (m3/ sec) (45)

in the numerator of (27).

We consider now the two external noise sources: plasma hot electrons hav

ing Th, » Vb, and plasma cold electrons having Tc » Vb.
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For Maxwellian hot electrons, we have

/* = {2tt)z/2vS
•exp

mv2

2k Th

We estimate the production of x-rays having energies below Vb as arising from a

sphere in velocity space of radius vb. This yields

"fc<<™)>A *nh(ov\
Th

3/2

4 (48)

For cold plasma electrons at temperature TG « Vb, the production of x-rays

having energies near or somewhat below Vb arises from the Maxwellian tail hav

ing v > vb. This yields

n*<ovyeA9*ne(ov\ iLe-^'Ae . (47)

Using (41) and (42) in (40), and replacing the noise rate nz((jv \A^ in (40) by

the sum of (45), (46), and (47) we obtain the scaling law

(aV >2 - 5096e3 rbreVb1/2
KaY77ns) " irmCb jfrjOKT

„ ( V* V*/2.-r, ( Vb ^-y»/r«j^ Wf'bnH\-=—) +7le(-5r-;e +nbmax TZZZ
Th 32rfl

ZSlntVfc/Vnta)

(48)

2. Numerical estimates

We first choose all parameters as before (X/ 2 = I =30 cm; f = 45 MHz),

except that we take

Q « 10"3 ,

since x-rays cannot be focused. For an optimistic case, we ignore the plasma

electron noise (n^ w^ «0in the noise term) and choose

Z« 1-
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rii « 5xlOn cm"3

Vb/ V^ * 2.72

Then

(w \ w 1.6X10"15 cm3/sec.

Rb « 4.9X107 photons/sec.

if«4.5xl05 .

Again for J = 10 subintervals, using (14), we obtain

Nbmax w 2.6X10"6 photons .

Using (17) and (43), we obtain

«^o = Sjmaa w -59 (signal photons/subinterval)

Frms « .54 (noise photons/subinterval)

Using (28) with n^ replaced by tlj, we obtain

JV-j* » 11.7 photons ,

and using (44), we obtain

Atpjms « .29 radians .

Finally, using (36), we obtain the rms potential deviation

AK— * 520 V .

This uncertainty is too large, and thus the measurement is not feasible for this

(low) ion density. We see from (48) that increasing ti$ by a factor of ten,

7% = 5xl012 cm"3 ,

will decrease the uncertainty to
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AT' « 164 V .'rms

However, the measurement technique looks marginal except at the highest ion

densities. It may be more attractive in MFTF-B, since both 7L$ and AT^j may be

considerably larger than in TMX-U.

E. Remote Detection Using Beam Magnetic Fields

1. Basic feasibility

We consider the use of a magnetic field detection coil located near the

chamber wall to detect the modulated electron beam current. The basic con

cept of the measurement is shown in Fig. 11, and follows from ampere's law

.2*2 = fiQl . (49)

For simplicity, we assume a travelling beam modulated at frequency a with con

stant velocity vb and initial phase <p:

J. = x J0sin[Q(t —-2-) + <p]
vb

Substituting this expression into (49), in the x direction, we obtain

P op

a

If we multiply by J 2npdp and integrate both sides, we have
"0

B«=^sm[u(t-^-) +<p] . (50)

For the Rogowski coil, the voltage signal produced by dB#/ dt is

vlU) =N̂ -= NAL g£-e CoS [„(t - i.) +9] (51)

where N is the number of turns, A^ is the cross sectional area of a single turn,

and a is the radius of the coiL If we choose:
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N- 10 ,

w = 27TX2X107 rad./ sec. ,

and

a = 0.30 m ,

then

Vq =NAL %r^-u =7.4 volts.
° L 27ra

This a very large signal and demonstrates the basic feasibility of the technique.

Rather than using a Rogowski coil around the entire plasma, we can insert a

smaller, ^-detecting coil (not a Rogowski coil) near the chamber wall (see Fig.

11). The above analysis holds for this coil configuration also.

2. Plasma neutralization

A critical issue that must be examined is shielding of the electron beam

current-induced magnetic field. In an isotropic plasma, the dispersion equation

is

2 „2

^ +*i =^(i-%)«-'-%-,
c2 CJ2 c2

where fc, and k± are the parallel and perpendicular wavenumbers excited by

the beam current, and fcp"1 = c/ cjp is the coilisionless skin depth. For

71* w1012 cm"3, kf1 « 0.5 cm. For kx « fcp, we find k± » ikj,, such that the

magnetic field decays radially from the beam with a characteristic decay dis

tance fcp"1 that is very short. Fortunately, the presence of a strong magnetic

field (and, possibly, finite resistivity) modifies this result. For a « o^, Alfven
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waves can propagate, and these carry the beam current-induced magnetic field

to the outer radius of the plasma, where the field can be detected using a loop

antenna. The strength of the magnetic field at the antenna must be determined

by solving the appropriate boundary value problem. This theoretical study

bears crucially on the feasibility of magnetic detection of the electron beam

phase, since it determines the observed signal strength for a given beam

current level. In addition, experimental studies of beam current-induced mag

netic fields should be performed to verify the theoretical models.

3. Spatial resolution and time response

For a modulated electron beam propagating in a vacuum, the axial spatial

resolution L for detection of the beam phase is limited by the quasistatic

(Laplace equation) solution to

L **» a

where a is the radial location of the loop antenna: a £ ra, the plasma radius.

This is an acceptable axial spatial resolution in tandem mirrors. However, the

effect of the plasma dispersion in modifying this result must be studied.

The response time of a coil is limited by the coil inductance L, and the

capacitance C and resistance R seen at the coil terminals. First considering

resistive effects, we have the circuit shown in Fig. 12a, with time constant

T = L/R . (52)

The self-inductance of an JV-turn cylindrical coil of radius r0 and length I is

where K is given in the table below.
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r0/L 0 .2 .6 1.0 2.0 4.0 10.0

K 1 .85 .65 .53 .37 .24 .12 1

There are two possible operating regimes for T: (a) T « 1/ / = 271"/ cj and

(b) T » 1//. In the short time constant regime (a), the coil is capable of pass

ing the modulation signal, and the voltage output scales as

. . dB# dib .

V^ ' ~ ~dT~~ ~dT~ Q%b^ '

This regime may be preferable because of relative immunity to low frequency,

magnetic field induced noise. For this regime we require L small and R large.

Using the parameters specified in Sec. El again, one can calculate the induc

tance assuming that R/1 w 2:

L «5/,&H .

In order to obtain a small T, we choose R = 500 Q, so that

r = L/ R = .01 Msec. « l/f = .05 Msec.

The total capacitance C (internal and external) seen by the coil also limits the

frequency response of the coil. We require (see Fig. 12b)

l/(uC)»R ,

which leads to

c « eopF .

This is a reasonable design requirement to meet.

In the second regime (b) of operation, the signal is integrated, so that the

voltage output scales as
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v(t) ~ib(t) .

The signal amplitude is a factor of gjt below that of regime (a) which may be

acceptable since the magnetic noise is also reduced To determine T we can

choose appropriate values of L and R such that cjt » 1, or we can use an

external integrator (Fig. 12c). For'the same example as in (a), if we choose

R = 10 Q, we obtain

r = L/R w 0.5 Msec « l/f .

This regime is advantageous since the general impedance level is low, thus relax

ing the requirements on keeping C low, and gaining immunity against electros

tatic pickup at the coil. However, the coil can be well-shielded electrostatically,

and thus the impedance level need not be held very low. Further studies must

be done to optimize the coil inductance, capacitance and resistance to maxim

ize the signal-to-noise ratio.

Electrostatic shielding is accomplished by surrounding the coil with a

grounded metal shelL The magnetic field penetration time through the shell is

Ts~——

where rs is the shell radius, 6 is the shell thickness (assumed smaller than a

skin depth) and a is the shell conductivity. For stainless steel with (5 w 0.5 mm,

rs = 1 cm, rs « 60 Msec » 1//. Therefore a slot is necessary in the shell to

allow for magnetic field penetration into the loop at the modulation frequency

/.

4. Noise sources and bandwidth reduction techniques

The primary source of noise for this technique will be plasma-induced mag

netic field fluctuations. The level of these fluctuations is difficult to estimate

theoretically, and therefore noise levels must be determined experimentally.
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First, a survey of measurements in existing tandem mirrors must be performed.

Based on this survey, it may be necessary to perform certain experiments to

determine the magnetic field, spectral noise levels in the frequency range of

interest. Such a study, along with the study of antenna signal strength in Sec.

E3, must be used to optimize the beam modulation frequency.

To increase the signal-to-noise ratio, bandwidth limiting or phase-sensitive

detection techniques will probably be required, as described in Sees. C and D.

Analog techniques include the use of notch filters, tunned amplifiers, or lock-in

amplifiers. The latter (phase-sensitive detection) technique is available in the

required frequency range and yields the greatest immunity from noise and filter

phase characteristics. Phase-sensitive detection can also be done digitally by

post-processing the output voltage collected using transient digitizers, as

described in Sec. B.

T. Electron Beam-Plasma Instabilities

For all remote detection techniques, beam-plasma instabilities may lead to

dispersion in beam parallel velocity and a reduction in measured signal

strength. In addition, beam phase shift may no longer be related simply to vari

ations in plasma potential: i.e., the electron beam may slow down due to beam-

plasma interactions.

The problem of a filamentary electron beam propagating along the axis of a

plasma-filled waveguide is illustrated in Fig. 13. This problem has been con-

sidered previously, %%J and one can apply the results directly. If a and upb are

far from cj^ or ««, there is no synchronous interaction, and one can, under the

assumption 6 « a of a filamentary beam, write

,2 «,2„2

(/S"ft) - Fiji—111
i

ge&
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where (So = cj/ vb, and

P% + g»JT, =0 .

Here £ is the longitudinal wavenumber, qB is the transverse wavenumber. and

2 2

#^ =1 ^2 ap*
o2-a2i a2-a2e

are the parallel and perpendicular dielectric tensor components.

We let 6 = 0.5 cm, n* = 1012 cm"3, Vb =5 kV, B0 = 0.5 T, Ib = 10 A, and

c; = 2TT-20 MHz = 1.3X108 rad/sec. For these parameters, 0O« 3 m""1,

iifi « -144 and #j| « -2X105, such thatwe obtain

(£-ft>)2*-.013 ,

yielding Im jS w 0.11 m "1i or a growth length of 9 m. Thus the system is weakly

unstable. At the modulation frequency cj, non-synchronous growth from an ini

tial large amplitude may play an important role in beam velocity diffusion.

Since cjpb is not too far from cj^, it may be important to estimate the max

imum growth rate, which occurs at synchronous interaction. Assuming cj £ cj^,

we obtain

where

•"8~ 2 V 2«p« J

1/3

•^TO

.3 - TT2 6:

and Xoi = 2.405 is the first zero of the Bessel function Jq, and Nq is the Bessel

function of the second kind. Using the same parameters as for non-synchronous

interaction, we estimate
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(Im 0)ma w 0.4 m'1

or a growth length of 2.5 m. This is a significant spatial growth rate. Synchro

nous growth from noise may also be important in beam velocity diffusion.

Assuming that the beam-plasma interaction is fully developed, we expect

that the original beam distribution function

fb(v) = 6(v-vb)

diffuses strongly in velocity space to form a quasiiinear plateau:

fbfr) = 1/^b .« <vb
= 0 , v > vb .

The phase modulation for this diffused beam has been considered, with the

result that the beam density modulation persists, and reaches a quasiequili-

brium value for distances x » jSq"1 downstream of the applied beam modula

tion. Thus a strongly diffused, quasiiinear beam can successfully be used for

beam time-of-flight measurements. We also note that electron beam, time of

flight measurmeents have been successfully made on the MMX device. However,

further studies of this problem must be performed to understand the transition

from a monoenergetic to a quasiiinear beam distribution and to estimate the

timescale for quasiiinear beam formulation.
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FIGURE CAPTIONS

Fig. 1. Remote sensing for electron beam, time-of-flight measurements to

determine the electrostatic potential V(x) in large tandem mirror

experiments.

Fig. 2. Electron beam time-of-flight measurement of thermal barrier potential

on the Multiple Mirror Experiment (MMX).

Fig. 3. Electron beam diagnostic setup on the MMX.

Fig. 4. Square well model for thermal barrier formation and destruction.

Big. 5. A typical time-of-flight measurement for one experimental discharge

shot; (a) raw data vQvi {t) vs t, digitized at 100 MHz sampling rate, with

every other sample shown; (b) reduced data; showing beam phase delay

Atp(t) vs t, with averaging over 100 rf cycles, yielding 10 fJ&ec time

resolution. The rms deviation is shown as the vertical line. The circles

are points whose rms deviations exceed 0.8 radians.

Fig. 6. Experimental data for the discharge shot of Fig. 5; (a) Si(Li) detector

signal showing x-ray pulse heights (keV) vs time t; (b) Langmuir probe

ion saturation current J^ vs t in midplane My$; (c) interferometer

measurement of density riQy in the ECRH cell vs t; (d) electron beam

phase delay Atpvst.

Big. 7. Three-cell, one-dimensional dynamic model of potential barrier forma

tion and destruction in the MMX. T9 and I* are electron and ion fluxes

respectively; Xi is the ion trapping fraction, and "*" denotes evaluation

delayed by an ion transit time.

Fig. 8. Solution of the dynamic model of Fig. 7 for the data of Fig. 8; (a) nor

malized barrier potential $/ TG vs t; (b) normalized cold electron den

sity 7ic2/7i0 vs t in the ECRH ceil; (c) normalized ion density 7^3/ 7i0 vs
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t in the ECRH cell; (d) phase delay Asp vs t.

Big. 9. Definitions of beam and plasma interaction volumes.

Big. 10. Signal averaging procedure that incorporates a baseline subtraction

technique.

Fig. 11. Detection of electron beam current using a Rogowski coil or a B#-

detecting loop.

Fig. 12. Equivalent circuit models for a coil.

Fig. 13. Beam-plasma interaction geometry for a filamentary beam in a plasma

filled waveguide; 6 « a.
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