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1. INTRODUCTION

1.1. The Impact of the Smalltalk-80 System on SOAR

This document is the definition of the SOAR (Smalitalk On A RISC) architecture and
implementation, and is not meant to be the first exposure of a reader to SOAR, the RISC
approach to architecture, or Smalltalk. This document makes several references to the
Proceedings of CS292R Architectural Investigations Class, April 1983. The Proceedings’ first
chapter was written by Mike Klein and Pete Foley and and was the starting point for this
document. Readers who are unfamiliar with Smalltalk and the RISC I architecture should not
expect to understand everything in this document.

The design and environment of Smalltalk-80 has suggested certain basic directions for
the design of the SOAR (Smalitalk On A RISC) architecture. Smalltalk-80 is an object-
oriented system, which references objects through pointers (called OOPs, or Object Oriented
Pointers). The single exception is small integers, which are represented by their actual
integer value. (To give you some idea of the SOAR vision, ‘emall’ 1s less than
1,078,741,824.) OOPs point to many different kinds of objects, and SOAR uses a tagged
architecture to identify a few important cases. The OOP and its tag are contained in the
same word, making it easy for the hardware to distinguish between different kinds of objects.
To efficiently support generation scavenging, this tag also keeps track of the ‘age’ of an object
[Unga83b).

Exception conditions (accessing an inappropriate object type, accessing objects of a
certain ‘age') are detected by examining the operands’ tags. If a tag mismatch occurs, SOAR
jumps to a trap routine to take care of the offending condition. Shadow registers are included
to catch the operands and opcode that caused the trap [Blau83]. )

The typical Smalltalk-80 application uses deeply-nested sends, but few variables are
passed and few are needed as temporaries. Thus the overlapping register window scheme is
retained from RISC II, but the number of registers per window is reduced from 16 to 8. Eight
register windows can buffer seven methods on the chip, covering 94% of all sends, and six
registers per window are enough for 97% of all sends [Blak83]. The registers in the window
are still numbered from O to 31 as in RISC II, but the nomenclature and structure have
changed.

Smalltalk-80 objects are divided into mary diferent classes. The method corresponding
to a message could be one of the methods in the receiver’s class; however, it could also be one
of the methods in any of the receiver’s superclasses. If the method is not one of the receiver’s
methods, Smalltalk-80 climbs up the superclass chain until it finds the needed method. This
class searching can consume a large amount of time if it is done on every send. On most
sends, however, the receiver is from the same class as the receiver of the previous message,
and therefore the class where the method can be found is the same from one send to the next.
To save time, SOAR supports in-line cacheing which allows the interpreter to skip over the
method search code and allows SOAR to immediately execute the code for the appropriate
method. Our measurements show that this optimization works 95% of the time [DAmb83|.

1.2. Major Polnts of the SOAR Architecture

SOAR has full non-multiplexed 32 bit address and data busses. Addresses are 28 bits
wide and the 4 MSBs of a word are tag bits, usually ignored by external circuitry. Memory
words are 32 bits.

SOAR is a three-stage pipelined architecture. For the most part, this does not enter
into consideration for the system programmer, but the result of some instructions can only be



understood by reference to the pipeline. These will be pointed out in the descriptions of the
individual instructions where necessary. See §7 for more details on the implementation of the
architecture.

SOAR is not a byte-oriented machine, and does not support arbitrary shifts (eliminating
the need for a barrel shifter). Byte-oriented operations are possible, to provide compatibility
with other software environments, by inserting or extracting a byte from a full 32-bit word
and by treating the word as an untagged 32-bit integer. There is no need for the hardware to
align bytes on loads or stores.

Upon a trap, SOAR will jump to an address determined by the opcode of the faulting
instruction and the condition for the trap (vectored trapping). This allows a flexible method
of handling many types of exceptional conditions. See §6.

Support for non-tagged operation is provided. Instruction formats include a bit that
allow the operation to ignore the tags of the operands. This makes it possible for SOAR to
support languages other than Smalltalk-80, such as C or Pascal. Smalltalk compiler writers
have also found it useful when manipulating pointers [Citr83] [Laru83|. In addition, a
software interrupt bit enables a special class of Smalltalk-80 interrupts for calls and jumps.

Addresses can refer to registers or memory locations. Since the registers have memory
addresses, the same data is accessed whether it resides in the register file or in main memory.
The appropriate bits of the memory address are compared to the Saved Window Pointer
(SWP) to determine if the memory address corresponds to the address of a register (see §5).



2. SOAR REGISTERS

2.1. Description of SOAR Register Windows

SOAR register windows are similar to RISC I register windows, with a few significant
changes. SOAR register windows are smaller than RISC 1 (eight vs. sixteen registers per
window). Figure 1 gives the programmer’s view of the SOAR registers.

REGISTER GROUP REG NUM CONTENTS
r31 Scratch
r30 Scratch
r29 Scratch
GLOBAL r28 Scratch
r27 Scratch
r26 . Scratch
25 Scratch
r24 Scratch .
r23 PSW-Program Status Word
r22 CWP-Curreat Window Pointer
SPECIAL r2l TB-Trap Base register

r20 SWP-Saved Window Pointer
rlg SHA-Shadow register A
r18 SHB-Shadow register B
rl7 PC-Program Counter
r16 RZERO-Always 0
rls return address for this method
rl4 receiver/return value
r13 argl/local

HIGH r12 arg2/local
ril arg3/local
r10 arg4/local
r9 arg5/local
18 arg6/local
r7 return address for called methods and traps
r6 receiver/return value
S argl

LOW r4 arg?2
r3 arg3
r2 argd
rl argd
r0 argh

Figure 1 SOAR Register Window



A word or two is in order here to explain the influence of Smalltalk on the register
design of SOAR. Preliminary studies indicated that over 95% of all Smalitalk eontexts do not
peed more than eight registers in a SOAR window [Blak83|. Smalitalk procedures (or
metbods as they are called in the Smalitalk jargon) use few local or temporary variables. The
basic actions of s Smalltalk metbod on SOAR is to compute and load the parameters for the
sext send to an object, and do the send (which translates to a call on SOAR). The method’s
arguments and temporaries are in the HIGH registers. It constructs the arguments for the
object it is about to call in the LOW registers. When the actual call instruction is executed,
the sender’s/caller's LOWs become the recipient’s/callee’s HIGHs. Therefore, the caller
cannot use its LOWs for temporary storage across calls since any method it invokes will be
using those same registers for its HIGHs.

When traps occur the system must be careful to preserve the HIGHs and LOWs of the
method in which the trap occurred. If a trap bandler needs its own windows /registers, then it
will either need to use GLOBAL registers (very carefully!) or it will need to do the equivalent
of a few call instructions to get its own window. See the discussion of window management
software in §5 for some examples.

To simplify the SOAR instruction set, registers 16 through 23 bave special functions (see
Table 2). R16 (rzero) is the only special register available for general use (although with
obvious restrictions given its nature). All others should be used only by system routines, and
even then only in a highly stylized aad conventiopalized manner. For example, because of the
pipelined architecture, data written to 2 special register by an instruction will not appear in
the register or take effect until the second instruction following the one doing the write (i.e.
special registers are not forwarded; see Appendix E). In particular, the architecture definition
does not support writing ioto the PC register, r17.

Two other restrictions simplify the SOAR architecture. First, data may not be loaded
from memory directly into a SPECIAL register; instead, the data must be loaded into 3 local
(HIGH or LOW) register or general purpose GLOBAL register .and then moved to the
SPECIAL register. Data loaded into a SPECIAL register is lost, and the register remains
unafiected. Second. SPECIAL registers may be used oaly in a particular source field (51) and
in the destination field of ipstructions. Using a SPECIAL register in the wrong source field
vields zero for that operand. See §4.1 for descriptions of instruction formats, and Appendix E
for some indication of the reasons for these restrictions.

While it is simplest to think of the special registers as 32-bit values, it should be
recognized that not all 32 bits of some of the special registers exist, and not all of the existing

Reg. Name Bits Function

r23 psw 160 Process Status Word, and Destination Shadow Register
(sez format below).

r22 cwp a4 Current Window Pointer. Points to one of 8 windows.

r2l1 tb s1:10 Trap Baase regieter. Location of trap vector.

r20 sWD =0 Saved Window Pointer. Points to last window sqved.

r19 sha 310 Shadow copy of A input to ALU/shifter. For interrupts.

r18 shb 310 Shadow copy of B input to ALU/shifter. For interrupts.

r17 pe o0 Used for PC-relative addressing & case statemnents.

rl6 rzero 310 Always = 0; Used to sythesize new insiructions.

Table 2 Special Registers



-5

bits are used. The bits that exist in each of the special registers are indicated in the Bites
column in Table 2. The action of the SOAR chip is pot defined if non-zero values are written
into nop-existent bits in the special registers.

Also note that the Trap Base register r21 has bits 28 through 31 even though it is an
address register and therefore only bits O through 27 are significant. Since the architecture is
defined only for a 28-bit address space, a non-zero value in bits 28 through 31 of the tb
register should have no effect.

2.2. The PSW Special Register

PSW<15:8> contains a valid value oply if interrupts are disabled. In that case it
contains the opcode of the last instruction executed when interrupts were enabled. The
contents of this feld is undefined if read while interrupts are enabled. PSW<4:0> always
contains the destination field of the last instruction executed when interrupts were enabled. If
a trap occurs during the execution of an instruction, interrupts are automatically disabled
thereby freezing the current values of these fields. This conveniently provides the trap
handler with information regarding the instruction, and obviates the need for trap handlers to
disassemble instructions.

PSW<5> is the software interrupt request bit (see §4.1). PSW<6> is the
interrupt enable bit. PSW<7> is the iAPX/432 emulation mode bit, and is always
undefined.

|700...0 I opcode (1<30:23>) ! i l Int. Enable 1 Soft. Int. ] D (1<22:18>) J
31 18 15 8 7 ] 5 ‘4 0

Figure 3 Format of the PSW Register




3. SOAR TAGS

SOAR tags are integral to each OOP (Object Oriented Pointer) and provide certain
critical information about the object pointed to by the OOP. The tags are located at the
beginning (MSBs) of the OOPs, and consist of either one or four bits.

Consistent with the Smalltalk-80 Virtual Machine definition, all objects are referenced
by pointers with exactly one exception. To improve performance, small integers are not
represented as objects. Instead, the value of the OOP, ignoring the tag, is the actual value of
the small integer. Thus the architecture distinguishes a true OOP from a ‘pointer’ that
actually contains a value. To allow the largest range of small integers, an integer tag is a
single bit equal to 0. All other tags will begin with 1 and are four bits wide.

Other tags serve two general functions. The first is to keep track of the ‘age’ of an
object for efficient support of generation scavenging [UngaBSb]. SOAR objects can be divided
into four different ‘tenure’ groups, reflecting the number of scavenging operations that the
object has survived.

The other major use of the tags is to distinguish a context object's OOP from other
OOPs. Contexts do not always obey a LIFO stack discipline in Smalltalk-80. Non-LIFO
contexts must be specially identified, so they are not discarded in LIFO order. The context
tag causes a trap oo any store of a context pointer into memory so that it can be marked as
non-LIFO.

The format of the tags is shown in Figure 4. Three possible tag values are undefined,
and are reserved for future uses (if any).

OBJECT POINTED TO 32-BIT POINTER (OOP)
TAG BITS | WORD BITS
Small Integer | O Smallint
Assistant Object | 1000 OOP
Associate Object | 1001 O0P
Full Object | 1010 OOQP
Emeritus Object | 1011 OOP
Context Object | 1111 OOP

Figure { SOAR Tags
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4. SOAR INSTRUCTIONS

On a qualitative level, SOAR instructions are a subset of RISC I instructions. All RISC
I instructions having to do with bit and byte operations have been eliminated. Single-bit |
shifts have been retained and byte insert and byte extract have been added. Less frequently
used arithmetic instructions have also been left out. Trap instructions have been added.
These instructions form a sufficient base for efficient execution of typical Smalltalk-80
programs in which little CPU time is spent performing arithmetic operations.

Instructions contain a special bit (the tag bit) in the opcode field that toggles tag
checking. When this bit is o, SOAR executes the instruction ignoring all tags. This serves
two purposes: SOAR is now compatible with programs written in standard languages such as
C and Pascal, and all system support code (trap routines, garbage collector, memory
allocator, and so forth) can manipulate tags as data.

There is a potential for confusion here. This document refers to the tag bit in the
instruction format. When this tag bit is ONE, for example, ALU instructions trap if the
operands’ tags are incorrect. This is intended to be the default mode of instruction execution.
When the tag bit is zero, the tags of the operands are ignored in the execution of the
instruction. Since tagged execution is intended to be the default, the assembly language
programmer does not need to do anything special. To add two operands and trap if they are
not both small integers the programmer need only write:

add rx,ry,rz tagged add

but if the values in the two registers are to be treated as 32-bit integers and their tags are to
be ignored, then:

%add x,ry,rz JTUNtagged add

In other words, in assembly language programs, the ‘%’ prefix to an instruction turns the tag
bit OFF. Henceforth this document will refer to tagged (tag bit = 1) and untagged (tag bit =
0) instructions.

[A first time reader may wonder how the above could possibly give anyone any trouble.
Historically, the tag bit was called the ‘%’ bit, and the assembly language syntax overloaded
the percent sign by using it to turn the 95’ bit OFF. This caused a great deal of confusion
over whether turning the ‘%’-bit ON caused tag checking (it does), or turning it OFF disabled
it (it does), and with which case the percent sign should be used in the assembly language.
The previous paragraph is not to educate new readers, but to re-educate old ones.|

4.1. Instruction Formats

Instructions follow the basic RISC I format:

0 [s2<8> | —
1 c<iz>
31 0 29 28 23 18 17 131211 7 8 O

01 |TAG|OPCODE<6> | D<5> | S1<5>

Figure 5 Basic Instruction Format
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The D field selects one of the 32 registers as the destination of the result of the
operation performed on the registers specified by S1 and S2. If bit 12 is O, the next five
bits (S2) specify another register; otherwise, the next 12 bits (C) contain a constant.
Since tags occupy the upper four bits of SOAR's 32-bit data word, C specifies the upper 4
tag bits and then extends bit 7.

[C<11:8> | C<7> extended for 20 bits | C<T7:0> |
31 23 8 7 0
Figure 6 Format of Immediate Constant

Immediate constants have the above 32-bit format even for untagged instructions.

The store instruction requires a different format because it needs three operands: the
base register, a constant offset, and the register containing the data to be stored. A store
instruction is unlike other instructions in that it does not write a register. Stores are
restricted to using only one register to form the target address.

[ o |TaG |opcopE<s> [ sccarr> | si<s> [1 [s2<s> | sc<eo> |
3130 20 28 R 18 17 131211 7 8 0

Figure 7 Store Format

The 12-bit store conmstant is broken into two fields to simplify the silicon
implementation. Similar to the constant field C in the basic instruction format, the store
constant SC specifies the upper four bits and then sign extends the lower eight bits. Since
address computations are only 28 bits wide and tags of immediates are never checked, the tag
field of SC is effectively ignored. (See §4.3 for more discussion of immediates.)

[SC<11:8> [ SC<7> extended for 20 bits ] SC<7:0>J
a1 28 27 ' 8 7 0

Figure 8 Format of Store Constant

Skip and trap instructions use the destination field of the basic format as an opcode
extension to specify the condition on which the skip or trap is taken.

0 [s2<5> | —
1 c<12>
31 30 29 28 s 2 18 17 131213 7 6 O

01 |[TAG|OPCODE<6> | COND<LS> | S1<5>

Figure 9 Skip/Trap Instruction Format



Q-

The call and Jump instructions use the large address format shown below:

r 00 ] S1 ] OPCODEL1> | WORD ADDRESS<28>J
31 30 = - -4 0
Figure 10 Call and Jump Format

The Soltware Interrupt (SI) enables software interrupts on calls and jumps if that bit is
s ope. This interrupt is a special class of Smalltalk interrupts that peed only be checked on
calls and jumps. When the system wishes to interrupt a process, care must be taken that the
process is in an interruptible state. For example, if a process is interrupted in the middle of 2
method lookup, it is possible for the in-line cache [Sarop84] [Citr83] to ead up with wrong
values. Therefore, the system relies on the compiler to set the SI bit in call and jump
instructions where the state of the computation is kpown. The system software sets the
Software Interrupt Request bit in the PSW (see Figure 3) when an interrupt is desired. The
hardware cap then check if a software interrupt has been requested by checking PSW<5>
during the execution of the eall or jump, and trap if necessary. Since the SI bit in the above
instruction format occupies the same position as the tag bit in other formats, the assembly
language programmer will write %eall and %Jump to disable the software interrupt trap
check.

4.2. Instruction Set

The SOAR instruction contains a subset of the RISC I instructions. The instruction set
is shown in Table 11 and uses the following conventions:

PC, SWP, CWP  are the registers 17, 20, and 22 respectively;
S1  the pumber in the S1 field of the instruction;
S2  the number in the S2 field of the instruction; -
D  the number in the D field of the instruction;
Rsl, Rs2, Rd  the contents of registers S1, S2, and D, respectively;
C  the contents of the C field of non-store instructions;
SC  the contents of the SC field of store instructions;
RC  either Rs2 or C, as determined by bit 12, the immediate bit;
M|x] the contents of memory location x; and
COND is the contents of the conditional field of skip and trap instructions.

Since it is intended that the default execution mode will be tagged mode, the ‘%’ prefix
means the instruction is executed in non-tagged mode. Much of the detail of instruction
execution is mot in the table. As long as the operands are integers, there is very little
difference between the semantics of the SOAR instructions and RISC I instructions. See the
following sections for the individual instructions. ln these sections we will adopt the
convenient notation of talking about ‘instructions’ and ‘Ozinstructions’ to distinguish tagged
from pon-tagged mode, respectively. The reader might like to scan §6 on traps, interrupts,
and exceptions before continuing.



-10-

1<31:30> = 01,

Opcode lInstruction QOperands QOperation Comments
10-17  [%|RET{I}|N][W] Rs1,C PC = Rst+C Retum
Options as part of return: <P D> option bt
[55] No trap  Rsl==OOP (I <29 >am0) non-LIFO context
{1} Enable Interrupts (1 <e5>emt) PSW<CI> o= 1
[N] RO,RY,..., RSNl (1<2>um1)
W] CWP = CWP + 1 {(I<28>e1) Change window
50 |%|ADD Rs1,RC,Rd Rd ~ Rst + RC integer add
52 [%]SUB Rs1,RC,Rd Rd «~ Rs1 - RC integer subtract
4 [%|XOR Rs1,RC.Rd Rd ~— Rsl xor RC exdusive OR
46 [%]AND Rs1,RC.Rd Rd ~ Rsl & RC logical AND
47 [%]OR Rs1,RC,Rd Rd — Rs1 | RC logicsl OR
40 [%|SRL Rs1,Rd Rd «— Rsl right 1 bit shift right logical
42 [%]SRA Rs1,Rd Rd = Rsl right 1 bit shift mght enthmetic
51 [%]|SLA Rs1,Rd Rd = Rs1 + Rs1 shift left arthmetic
54 |%}INSERT Rs1,RC,Rd Rd ~0; insert byte; nghtmost
byte RC<1:0> of Rd byte 58 bite O
+ Rs1<7:0>. 2 (sb specify bite
56 [%JEXTRACT Rs1,RC,Rd Rd =~ 0; extract bite
RA<€7:0> = byte RC<L1:0> of Rst 2 [sd specify byte
384 |%|LOAD (Rs1)RC,Rd Rd — M[Rsi + RC]
85 LOADC (RSI)RC,Rd Rd «— M[Rs1 + RC] For loading dass of Smallint
36 %LOADM (Rs1)RC,Rd see §4.2.3 Load Multigle: 0 €< d £ 7
30 |%|STORE Rs2,(Rs1)SC M[Rs1 + SC| = Rs2
g2 %STOREM Rs2,(Rs1)SC see §4.2.3 Store Multiple: 0 < S2< 7
20 |%|SKIP COND Rsl, RC i COND(Rs1,RC) PC « PC+2 skip on condition
21-27 [%]TRAPi COND Rs1l,RC i COND(Rs1,RC) R7 — PC, trap on condition
PC ~ Trap Vector Address (7 different traps}
04 NOP do nothing
05 (internal TRAP) see §4.2.8
06 (internal SKIP) see §4.2.8
60-67 (internal LOADI) see §4.2.8 0<i<7?
70-77 (internal STOREI) see §4.2.8 0<i<7
1<31:30> == 00, (Fast Shuffle instructions) T
Opcode Instruction Operands Operation Comments
00-37 |%|CALL Addr R7 « PC, PC = Addr eall
CWP~CWP-1. and change window
40-77  [%]JUMP Addr PC — Addr Fump

Table 11 SOAR Instruction Set
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4.2.1. ALU Instructions

ALU instructions (add, sub, xor, and, and or) perform the expected operation on two
operands. Both operands are expected to be tagged small integers and a tag trap occurs if
they are not.

A tag trap also occurs if the result of an add or a sub instruction overflows, i.e., is
greater than 27 —1 or less than .23 The %instructions operate on their two operands as 32-
bit integers and overflow is not trapped.

As noted in section §2.1, the SPECIAL registers r16—-r23 cannot be used in S2. This
does not matter for the commutative ALU instructions (add, xor, and, and or). However, if
you wish to subtract the contents of a SPECIAL register from any other register, the contents
of the SPECIAL register must be moved to a pon-SPECIAL register first.

The following table covers the operand tag traps that can occur during ALU
instructions, the byte insert/extract instructions, and the shift instructions. Other conditions
(e.g. ALU overflow) can also produce a tag trap and are described in the sections on the

individual instructions.

For ALU operations trap if

(Rsl is oop) | | (source is Rs2 && Rs2 is oop)

Rsl tag RC tag  source result
int int C no trap
int int Rs2 po trap
int oop C no trap
int oop Rs2 TAG TRAP
oop int C TAG TRAP
oop int Rs2 TAG TRAP
oop o0p C TAG TRAP
oop oop Rs2 TAG TRAP

Table 12 ALU Trap Logic

4.2.2. Shift Instructions
The shift instructions cause a tag trap if the two operands are not small integers.

The srl (shift right logical) instruction shifts Rsl right one bit and inserts zeros at bit
positions 30 and 31. %srl inserts a zero at bit position 31.

The sra (shift right arithmetic) instruction shifts register Rsl right ope bit with sign
extension. The sign bit is bit 30 for sra and bit 31 for %sra. The difference in the sign bit is
obvious. What may not be quite so obvious is the necessity for maintaining the tag bit for
integer objects.

The sla {shift left arithmetic) instruction shifts Rsl left one bit and inserts a zero into
bit 0. A tag trap occurs if the bit shifted out of position 30 is different from the bit shifted
into position 30. This instruction is redundant in that the same result could be computed
with an add instruction. Indeed, the actual hardware implementation treats this as another
opcode for add. The assembler simply puts the same register number in S1 and S2.
However, there are instances in which it is not sufficient information simply to know that an
overflow occurred on an add: to preserve the semantics of Smalltalk the trap handler must
know that the programmer’s intention was a left shift, and not an add. Hence this opcode is
pot superfluous or redundant. (Note that sla cannot have a special register as its source.)
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4.2.3. Load/Store Instructions

The load instruction expects a tagged OOP in Rsl and an integer in RC, or an integer
in Rsl and an OOP in Rs2 (immediates in the C field are always considered integers no
matter what value occupies bits 28 through 31). Any other combination results in a tag trap.
The address portions of Rsl and RC are added together. The result is the address of the
memory location whose contents are loaded into the specified register, Rd. Rd cannot be a
SPECIAL register (r16—r23).

The %load instruction computes the eflective address with no tag checking.

The loade (load class) instruction is like sla: it is an opcode that can be used to pass
information to a trap handler. It is a frequent operation in Smalltalk to load the class of an
object. This is accomplished by loading the field of the object containing the OOP to that
object’s class object.

load r12,ClassOffset,r13 ClassOffset is o constant
and r12 contains an OOP

Like all objects in Smalltalk, small integers also have a class. However, trying to load the
class of a small integer will result in a tag trap since both of load’s operands would be
integers. If there were no loadc instruction available, the tag trap handler would have to
perform a series of tests before concluding that the programmer simply was trying to load the
class of a small integer which is a simple, well-defined operation. Using a different opcode for
the loade instruction, however, the tag trap will vector to a unique location. With
programmer (or compiler) discipline that uses the loade instruction for and only for loading
the class of an object, the semantics of Smalltalk is maintained. The trap handler knows
immediately that it was invoked because the OOP for the class of small integers was being
loadced. There are no %loade or |%|storec instructions. Table 13 summarizes the
conditions which produce tag traps during load instructions.

On loads, trap if

(Rsl is int &% (Rs2is int | | source is C)) ||

(source is Rs2 && Rsl is oop && Rs2 is oop )

Rsl tag RC tag source result
int int C TAG TRAP
int int Rs2 TAG TRAP
int oop C TAG TRAP
int oop Rs2 no trap
oop int C no trap
oop int Rs2 no trap
oop oop C no trap
oop oop Rs2 TAG TRAP

Table 13 Load Trap Logic

The store instruction is analogous to load in both its tagged and non-tagged forms.
The obvious difference is that store stores registers into memory and load loads them from
memory. The not-so-obvious difference is that store will trap if (1) the object being stored 1s
younger than the object into which it is being stored; or (2) the object being stored is a
context. %Store does not check the tags of its operands or of the value being stored. In
addition to the traps the load instructions produce, store instructions produce Generation



Scavenge traps as well. The store instruction traps are summarized in Table 14.

On stores trap if
(Rsl is int | | Rs2 is context || Rs2 younger than Rs1)
( Note that an integer or a contezt is never
younger than the object it ia being stored in.)

Rs2is
younger
(where)  (what) than (offset)

Rsl Rs?2 Rsl SC result

int context — —e———— int TAG TRAP
int int — int TAG TRAP
int oop —_— int TAG TRAP
int context — ———— oop TAG TRAP
int int — oop TAG TRAP
int oop — oop TAG TRAP
oop context int GS TRAP
oop int int no trap
oop oop False int po trap
oop oop True int GS TRAP
oop context oop GS TRAP
0op int oop no trap
oop oop False 00op no trap
oop oop True oop GS TRAP

Table 14 Store Trap Logic

To reduce the cost of overfiows and context switches, SOAR has load- and store-
multiple instructions that avoid multiple instruction fetches to access several operands.
Primarily, they reduce the cost of window overflows and context switches, and they come only
in untagged form.

The beginning address of %loadm is Rs1—-RC, and destination field D specifies the
starting register (0 < D < 7). The first register is loaded from M[Rs1—=RC], the next register
is loaded from M|[Rs1—(2*RC)}, and so on until RO is loaded from M|Rs1—{(D+1)*RC)]. The
algorithm can be expressed as follows:

t — Rsl
x —d
Repeat
t —t—-RC
R[x] — M]t]
Xe—x-1
.untilx<0

The beginning address of the %storem is Rs1-SC, and S2 specifies the starting register
(0 € S2 < 7). The first register is stored into M|Rs1-SC]|, the next register is store into
M[Rs1—(2*SC)], and so on until RO is stored into M|[Rs1—(S2+1)*SC|. Algorithmically:
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t = Rsl
x = S2
Repeat
t =t —=SC
M(t] = Rix]
xe=x-1
antil x < 0.

If %loadm or %storem are interrupted (e.g. by a page fault) they must be reexecuted
to guarantee completion.

%zLoadm aod %storem disable the pointer-to-register check on the address. Also, r0
canpot be accessed correctly the frst instruction alter a %loadm.

4.2.4. Skip/Trap Instructions

The skip and trap instructions skip the mext instructioz or trap to a handler,
respectively, if the comparison of the operands satisfes the condition. The conditicns are
shown in Table 15. The condition is calculated from Rsl — RC, and for the purposes of
this table only we define Cy == 1 if there is a carry, Sa == 1 il the sign bit is a oge, Oy = 1
if there is overfiow, and Eq = 1 il Rsl == RC. (There are no such program-accessible entities
in the architecture.) When the instructions are executed the operands are expected to be small
integers. A tag trap results if they are not. All traps that could occur for the subtract
instruction described above can occur on a skip or trap instruction. When the %instructions

- are executed the operands are treated as 32-bit integers and no traps occur.

Iz addition to the signed relational conditions (£,<, 2,> =) and unsigned
relational conditions (<, <, 2,>) evaluated from the expression Rsl — RC, SOAR also
includes bounds checking. The condition INx (OUTx) where x is either O or 1 is true (false) if
and ogly if x < Rs1 € RC. (Tbe hardware will use the ALU to perform Rsl = RC - 1 in
unsigned mode to answer this question and assumes that RC is positive.) INO and OUTO are
included for use by the C or Pascal languages.

Result Test Condition (cond, not cond)
COND Mnemozic
Rs! op RC arith (1<o=18>)

Eq equal 04,05, EQNE

Sn xor Ov less than 2's comp 02,03, LT.GE

(Sm xor Ov) or Eq less thon or equal  £2's comp 06,07, LE.GT
Cy less than unsigned 12,13, LTU,GEU
Cy or Eq less than or equal  unsigned 16,1'78 LEU,GTU

0 never 00,018 NEVER,ALWAYS

Cy 0 < Rs1 <RC 12,13, INO,OUTO
Rs157£0 and (Eq or not Cy) 1 < Rse1 £ RC 22,23, {1,0UT1

Table 15 Test Conditions for skip and trap Instructions
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There are seven trap instructions (trapl, trap2, ... trap?) with their own unique trap
vector locations that allow the programmer to define one-cycle test instructions.

4.2.5. Byte Instructions

SOAR uses word-oriented addressing. The instructions insert and extract have been
designed to make life easier for programs that must manipulate byte data. These instructions
expect both operands to be small integers and will take a tag trap if they are not. Insert uses
RC<1:0> to select a byte position in Rd (bytes are numbered in increasing order right to
left, the rightmost byte is byte0), and the least significant byte of Rsl is placed there. The
rest of Rd is zero. Extract uses RC<1:0> to select a byte of Rsl and stores it in the least
significant byte position of Rd. The rest of Rd is zero.

%insert and Jpextract do not require their operands to be small integers and will not
cause a tag trap.

4.2.6. Call/jump Instructlions

The call instruction decrements the register window pointer, stores the return address in
r15 of the new window, and branches to the target address. The return address is the address
of the call instruction plus one. The %call instruction does all of this while ignoring software
interrupt requests.

A call instruction will cause a Window-Overflow trap if, at the beginning of its
execution, the following is true:

((CWP - 0x10) & 0x70) == (SWP & 0x70)
Note that '%' does not disable the check for window overflow.

The Jump instruction simply branches to the indicated location if there is no
outstanding software interrupt request. %Jump ignores software interrupt requests.

If there is a software interrupt request outstanding when eall or Jump is executed, a
Software Interrupt trap is taken.

4.2.7. Return Instruction

Built into the ret instruction are many of the mechanisms needed for the transition
between different states of Smalltalk execution. Its basic action is to get the return address
from Rsl and branch to the return address plus RC. There are no tag traps with the ret
instruction, but there is a Generation Scavenge trap that is taken if the value in Rsl is a
pointer and not an address (all 28-bit addresses in a 32-bit word look like small integers). See
[Samp84] for a use for this mechanism. This trap is disabled for Zoret.

ret! enables interrupts alter returning, meaning that the return will not be interrupted
(assuming, of course, that interrupts were disabled during its execution).

retn will nil registers O through 5 after changing the CWP, the current window pointer.
This is very important for Smalltalk’s (or any system's) garbage collection where hanging
pointers could wreak havoc. Also, the semantics of Smalltalk specifically state that
temporary variables’ initial values will be nil. It is easier to prepare the way for future calls
upon return, rather than performing the nil operation during a call when a window overflow
would cause a trap. Nil's value is 0xB00000O.

retw provides the full inverse of the call instruction by also incrementing the register
window pointer before branching to the return address.
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All combinations of the above suffixes are allowed: retin, retiw, retnw, and retiow.
The only aflect of %instruction for any form of return is to disable the tag check on the value
in Rsl. Of course, if Rsl does not contain an address, and the trap is pot taken, an error will
probably result.

It is important to understand the effective order of the operations of the return
instruction:

(1) read the return address from Rsl;

(2) take a Generation Scavenge trap if Rsl is not an address (tagged mode only);
(3) take a Window Underfiow trap if ((CWP + 0x10) & 0x70) == (SWP & 0x70);
(4) if ‘w’' then change the window pointer;

(5) if ‘i’ enable interrupts;

(6) if ‘n’ then nil registers O through 5 (thereby preserving the return value and the return
address in R6 and R7, respectively);

(7) branch to the return address.

4.2.8. Internal Instructions

Most instructions go straight through the pipeline, eflectively executing in one machine
cycle. Some instructions (e.g. load, store, load, store, and ret) require more than the one
machine cycle allotted. If these instructions are interrupted by a trap, it is sometimes
necessary to know where the instruction was in its multi-cycle execution in order to return
correctly from the handler.

A prime example is the skip instruction: if the skip condition is satisfied, the next
instruction in the instruction stream is skipped, even though it is still fetched. If fetching that
pext instruction causes a page fault trap, handling that trap would lose the information as to
whether the first instruction on the new page is to be executed or not.

The architecture handles this problem and others like it by defining 3 set of “internal”
opcodes that are placed in the pipeline at appropriate points. Some of these opcodes are
merely place holders, others retain information that would otherwise be lost (as in the skip
example), while others have mini-functions associated with them. Only one of these opcodes is
available to the user, nop. In all other cases, however, the opcodes were designed to be used
only by the architecture in a defined sequence and not by the user. Even though the user can
put these opcodes in the instruction stream himself, their execution is undefined if they are
used in that manner.

More information on the exact pature of these opcodes can be found in §7. Ideally,
these opcodes should be hidden from the user - i.e. an illegal opcode trap occurs if a user tries
to use them - but for historical reasons this has not been implemented.

4.3. Immedlates

The immediate fields C and SC must be used with care. Being able to construct OOPs
as well as integers in the immediate field is useful, but also a potential source of programming
error. Due to the pipeline, the instruction:

thisLoc: add pe,0,r0

leaves thisLoc+1 in r0. PC-relative addressing is accomplished with:
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thisLoc: %load  (pc)dataloc — thisLoc — 1, 10

dataloc: data
This is valid for C and SC values in the range 127 to -128.

The assembly language programmer using sa should be aware that the following code
will produce a tag trap:

add rzero,-1,r0
add r0,-1,rl tag trap!

The problem is not the -1 in the second add where the trap is taken. The problem is the ‘-1’
in the frst instruction! If the -1 immediate is stored in the C field of the first add as Oxfif
then when the C field is expanded into a 32-bit integer, the resuiting value stored in r0 will be
OxAGHH. This is not a small integer: it is a context OOP. (Notice the upper four bits.) Hence
the tag trap. For this reason, sa (the SOAR assembler) has the ‘#’ notation for specifying
the tag field of immediates even though the hardware does not check the tag field of
immediates in any instruction. All immediates are treated as 32-bit integers. In the
immediate field, n#m (p3£0) specifies an immediate whose tag bits are n and the lower eight
value bits are m. If n = 0, the specification is a little more difficult. Suffice it to say that all
integers from O#-128 to O#127 are representable (but see Appendix C). Therefore, the
correct code is:

add rzero,0#-1,10
add r0,0#-1,r1 no tag trap

One consequence of the SOAR instruction set that may not be readily apparent is the
lack of the ability to load arbitrary 32-bit constants, or to load the contents of an arbitrary
location from memory with one instruction. Since the number of significant bits in the
immediate field of all instructions is eight bits, offisets can only be in the range -128 to +127.
(Allowable integer constants are not so simply specified: see Appendix C).
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§. REGISTER WINDOW MANAGEMENT

Register windows forced out of the internal register file by an overflow condition are
saved into a register overow area in memory pointed at by the Saved Window Pointer
(SWP). The first window saved into this area is saved at the highest address location and
additional windows are added at lower address locations. (See Figure 16)

The SWP indicates the division between the saved register space and the memory space
that is currently mapped into the register file. SWP<6:4> contains the ‘window number' of
the next window that would be reloaded from memory on window underflow. Or, to state the
dual, SWP <6:4> contains the number of the last window spilled to memory because of
window overflow. The SWP thereby acts as a separator between those windows that have
been spilled to memory and those still in the register file.

To maintain consistency and simplify system software, pointers can access 3 context’s
registers whether they are on the chip or have been spilled into memory. If a 28-bit address
A<27:0> satisfies the following two tests then it to refers to an on-chip register:

(1) A<8> = 1. As mentioned above, all context objects have headers containing the
object's class, length, and so forth. Thus, if A refers to locations 0 though 7 of a
context object, the reference is to the header in memory. However, if A refers to
locations 8 through 15, the reference is to the context’s registers.

(2) (SWP<2T4> — A<2T4D> — 1)<27:7> = 0. This test determines if the memory
access refers to any of the eight register windows on the chip. The action of the chip is
undefined il the SWP allows the overflow area to ‘wrap-around’ memory, i.e. SWP <
0x80.

An overflow condition occurs (and a trap taken) if a call instruction is about to be
executed and (CWP—-SWP)<6:4> = 1. An underfiow condition occurs (and a trap taken) if
a return instruction is about to be executed and (SWP—-CWP)<6:4> = 1.

SOAR has 8 register windows in its internal register file. The overlowed windows are
mapped to the memory block whose address bits <6:4> are the same as the window number.

When overflow occurs, one window will be swapped out to the register spill area. Since
everything is an object in Smalltalk-80, including contexts, this window will be provided with
an object header when it resides in memory. The header needs some space (four words at the
present) in addition to the eight words for the registers. To simplify the hardware, each saved
window will take up sixteen words. The logical and physical representations of a context
object at location obj are shown in Figure 17. Also shown are suggestions for Smalltalk’s use
of the rest of the object.

To create a pointer to a context (i.e. the location of the context object using these
registers) calculate the address of the current window. Using ‘rt’ to be the result register, the
SOAR code is:

%add cwp,0,rt move to non-special register

Cosub sWp,rt,rt compute distance of this window from
the last-saved window

%and rt,0x70,rt isolate the window number

%sub SWD,It It compute the address

To turp this into a context pointer {OOP), set the upper 4 bits of rt to all ones (i.e. ‘or’ in the
context tag Ox{0000000). Appendix A provides more explanation of why the above code
works.
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Logical Phyeical
Addr Addr.
obj+15 | return addr r1S | return addr
obj+14 receiver rl4 receiver
Registers
obj+9 data r9 data
obj+8 data r8 data
obj+7 — obj+7 —
obj+6 — obj+6 —
obj+5 -— obj+5 —_
obj-+4 - obj+4 - Memory
obj+3 Hash obj+3 Hash
obj+2 Flags obj+2 Flags
obj+1 Length obj+1 Length
obj+0 Class obj+0 Class

Figure 17 Logical and Physical representations of Contezts

The code to test if the execution of a call instruction would produce a window overflow
trap (rt is a temporary register):

%add swp,0x10,rt get swp + 1

%oand rt,0x70,rt get the number of the nezt window
to be saved

%oskip ne cwp,rt you're OK if they're not equal

Cojump FULLSTACK otherwise, handle a full register file

To handie a window overflow trap during the execution of a eall: (the return address is
in r7 on entry, and rt must be a GLOBAL register)

Tosub c¢wp,0x10,cwp move the window to be saved into
the LOWs; also ‘‘moves’ the return
address intorlSs

%add swp, 0, rt the actual address+1 of where
the registers will be stored

O%sub swp,0x10,swp compute the context OOF;
the window we want to save is
in the LOWs

%storem r7,(rt)l store registers seven through zero
into Mfrt-1] through Mfrt-&f

Coretiw rl5,—-1 return to re-ezecute the call

Handling a window underflow on a return instruction is a little more subtle:



Coadd ewp,0x20,cwp
%add swp,0x10,rt
%loadm (rt)1,27

Tosub cwp,0x20,cwp
%%add swp,0x10,5wp
oreti r7,—1
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position the window to loaded

in the LOWs

compute the actual address+1 of the
registers (also lets cwp settle)

load registers scven through zero
reset the windows

point at the nezt window to be
reloaded

re-ezecute the foulting return
instruction

See Appendix B for a specific example of how spilling register windows works.



6. TRAPS AND INTERRUPTS

SOAR employs a flexible trapping philosophy to replace the usual execute-on-condition
instructions and to provide for more hardware support for Smalltalk. For example, trapping
on tags allows SOAR to update data structures for dynamic memory management very
efficiently. The cost of the various checks required by some memory management
mechanisms is absorbed in the tag-checking of individual instructions. This section quotes
from {Unga83a).

8.1. Terminology: Interrupt and Trap Condition Names

Table 19 lists the trap conditions, the value of the four VECTOR bits for that trap
type, and groups the traps in order of priority. The trap vector is formed from the TB
register, the VECTOR bits for the trap type, and the opcode of the instruction that was
executing when the trap condition was detected. This is the opcode of the instruction causing
the trap except for instruction page faults. For instruction page faults it is the opcode of the
previous instruction (i.e. the last instruction on the previous page, or the instruction that
jumped into the missing page).

[TB<18> | VECTOR<4> |1<28:23> |
7 10 0 8 5 0

Figure 18 Trap Address Format

The trap handler can obtain the opcode of the trapping instruction from bits <15:8> of the
SHDST/PSW register as well as from the trap address.

This document uses the terms ‘traps’ and ‘interrupts’ as if they are somehow different.
In fact, software interrupts, hardware interrupts, and exceptional conditions all use the same
trapping mechanism. Despite this, our vocabulary tends to follow traditional usage in which
the word ‘trap’ refers to an exceptional condition caused by the executing igstruction.

Name Vector Pri Class | Explanation

ILL 0 A illegal opcode: 1<31>==1 or (I<31>w=m0 and 1<28:23>==unused)
TT 1 B tag trap: illegal tags or ALU overflow

SWI 2 B software interrupt

WO 3 C window overflow {calls)

WU 4 C window underfiow (on returns)

DPF 5 C data page fault

Ti 6 C trap instruction

GS 7 D GS trap{stor= new into old, store context, nonLIFO ret)
IPF 8 E instruction page fault

I/O 9 F I/0O request

Table 19 Interrupts in Priority Order (A is highest)



‘Interrupt’ refers to an exceptional condition raised external to the executing instruction.

In order to make SOAR an efficieat Smalltalk vehicle, it has been designed so that
programs can leave crucial information in the instruction stream. The primary examples are
the functionally redundant loade and sla instructions. Not so obvious is that all 64 opcodes
in 1<28:23> are available to the programmer. Because of the trapping mechanism, illegal
opcodes become software definable “extracodes” to “expand” the instruction set: there is a
unique trap vector for each illegal opcode. Those opcodes that are not recognized by SOAR
will take an illegal opcode trap. The programmer can then write a trap handler that will
execute a user-defined function. An obvious and simple application is the setting of different
flavors of breakpoints in a debugger. The primary advantage of using illegal opcodes in this
fashion (as opposed to just inserting calls in-line) is that data can be stored in the rest of the
instruction either by the compiler or the program. The trap bandler can easily retrieve the
data. (Note, however, that an illegal opcode trap precludes meaningful data in any but the
opcode shadow register.)

The trap instructions have been designed to give the user flexibility in the design of
single cycle test instructions. Since special action (a trap) is taken only if the condition is
satisfied, the program is penalized only one cycle for the test. Obviously this can be used to
advantage il the condition being tested must be checked frequently, bas a short code sequence
to compute the condition, and has a global action to be performed if the cordition is true.

8.2. Trap Priorities

Although there may be more than one reason for a trap to occur, the hardware will
select only one of them. To simplify the interface to the trap handler code, the reasons are
prioritized. The lowest priority traps are /O and Instruction Page Fault because these need
not be serviced immediately. If 7/0 or IPF occur simultaneously with another trap, the other
trap is handled, and the /O or IPF occurs when returning from the interrupt handler. The
general rule in the case where there are two traps that must be serviced simultaneously is that
the less frequent one is given higher priority and its trap handler must check for the more
frequent trap. Generally, this is most simply done by re-executing the faulting instruction, if
possible. Otherwise, the other trap possibilities must be checked and, if a fault condition
exists, a trap call emulated.

Thus the more frequent traps are faster because they need not take the time to check
for the other interrupt conditions. For example, a return instruction may incur a tag trap
(non-address in the return address register), and it may cause a window underflow at the same
time. The tag trap is given higher priority and handled first. Before returning, the trap
handler must also check for window underflow. There are two things to note. First, window
uanderflow is the only trap condition that must be checked in this particular example. None of
the other traps are possibilities. Second, in this particular example the easiest way to check
for window underfiow is to put a legal return address in the return register and reexecute the
return instruction that caused the initial fault.

Table 20 lists, for each instruction family, the possible traps and interrupts from highest
to lowest priority that can occur for each class of instruction.

6.3. Capturing Information and Reexecuting Instructlons

The shadow registers in SOAR capture all the information necessary to allow any
interrupted instruction to complete. The shadow registers are lcaded each cycle when
interrupts are enabled. When a trap is taken interrupts are automatically disabled, thereby
preserving the operands of the faulting instruction. Trap handlers must use only those
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A B C D E F
Call ILL SwWI WO IPF 1/0O
Jump ILL SWI IPF 1/0O
Return ILL WU GS [PF /O
ALU oL TT IPF I/O
Skip oL TT IPF 1/O
Trap oL TT TI IPF 1/0
Shift LL TT PF  1/0
Load LL TT DPF IPF 1/0
Store LL TT DPF GS IPF IO
Byte ILL PF 1/0
Nop ILL PF  1/0
(STORE) | * DPF s 1/0
(LOAD:I) * DPF * 1/0
(SKIP) * PF I/O
(TRAP) |* + 1/0

(* can occur only if the instruction is in the instruction stream)

Table 20 Interrupt Priority per Instruction Family (left-to-right)

instructions that cannot produce traps (including page faults!) until the shadow registers are
saved. This means that the handler cannot use tagged instruction, calls, rets, or loads or
stores that could cause data page faults. Instruction page faults are prevented by keeping
the handler pages locked in memory. If a trap handler (mistakenly) causes 3 trap before
saving the shadow registers, the trap address would be computed using the previously
shadowed opcode. The newly invoked trap handler would almost certainly be handling the
wrong trap with the wrong operands in the shadow registers.

However, safe use of non-tagged instructions will store the operands and enable
interrupts (which enables operand shadowing). At that point, all instructions are again
available for use.

SOAR saves the PC in R7 on a trap or interrupt. The value in that register after a trap
is the address plus one of the instruction whose execution was interrupted. The first
instruction at the trap address must be a jump.

6.3.1. An Apparent Ambiguity Explalned

Because the trap address is formed from the trap vector and bits <28:23> of the
instruction, and because use those bits of the instruction as part of their address field, it is
possible for a trap occurring during a call instruction to vector to one of many possible
locations depending on the upper bits of the address field. Furthermore, it is possible for traps
occurring during call and Jump instructions to vector to locations used by other opcode/trap
vector pairs. However, SOAR has been designed such that this causes no ambiguity. The
only overlapping vectors are for the Instruction Page Fault and the 1/O Interrupt, and neither
of these care which instruction’s opcode is used to invoke the handler.



7. SOAR IMPLEMENTATION

7.1. Major Points of the Implementation

SOAR is a three-stage pipelined architecture. The standard SOAR instruction requires
three machine cycles to traverse the pipeline: InstrFetch, Operate, WriteResult. Each
machine cycle is composed of three non overlapping clock phases, PHI1, PHIZ, and PHI3 (see
" Table 23 and Figure 24). Some instructions (load, loadm, loadc, store, storem, trap, and
ret) require extra cycles. For example the load and store instructions require four cycles:
InstrFetch, Operate, Ofetch/Ostore, and WriteResult. Because of the three-stage pipeline, a
full instruction is eflectively executed in each machine cycle except for the noted instructions.
Table 21 shows results from recent simulations that indicate that SOAR should operate with
a 500ns machine cycie.

The SOAR design incorporates a concept called the Fast Shuffie ™. Since the
processor is fetching the next instruction while executing the current imstructiom, it is
necessary to detect those conditions when the next instruction to be fetched is not in the next
sequential location in memory. '

All latches internal to SOAR are pseudo-static, so that debugging and testing can
proceed in more flexible ways, and so that external devices can force SOAR to wait for
arbitrary lengths of time, as might be expected when SOAR is used with apother processor
[Blom83].

7.2. SOAR Block Diagram
Figure 22 is a block diagram of the SOAR architecture.

7.3. The Pipeline

When counting the number of memory cycles a piece of code will require to execute, the
following rules obtain:

(1) Lo=ad and store instructions take two cycles.

(2) Storem and loadm take the number of cycles equal to the number of registers being
stored/loaded, plus one.

(3) Ret instructions take two cycles.

(4) Skip instructions take ome memory cycle. If the skip condition is satisfied and the
following instruction is skipped, add one cycle; if the condition is not satisfied, then

Pre Charge 150 ns
Register Read 130 ns
ALU Operation 160 ns
Non Overlap 60 ns

TOTAL 500 ns |

Table 21 Predicted Cycle Times for SOAR



Figure 22 SOAR Block Diagram
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count the following instruction normally.

(5) Trap instructions take one memory cycle if the trap condition is not satisfied. Add one
cycle if the condition is satisfied and the trap is taken. (Don't forget to count the jump
instruction in the trap vector.)

(6)  All other instructions take one memory cycle.

How this is achieved with the pipeline architecture is described in the following sections.

7.3.1. Standard Instruction Execution

The majority of the SOAR instructions execute in three cycles. Because of the pipelined
architecture, these cycles overlap with the cycles of other executing instructions.. Each cycle
copsists of three phases that are described in Table 23. Figure 24 depicts how the cycles of
executing instructions overlap. In the following sections, we will often refer to the instructions
in that figure as I1, 12, I3, ... That is, instruction I1 is the instruction fetched during IF1, etc.

Referring to Figures 15 and 17, we can trace the flow of standard instructioans through
the SOAR pipeline. Assume that we are reading the first instruction onto the chip from
location Addr.

Cycle 1 PHI1 Instruction Fetch
PHI2 Instruction Fetch
PHI3 Ipstruction Fetch

Cycle 2 PHI1  Pre Charge
PHIZ Register Read
PHI3 ALU Operation
Cycle 3 PHI1
PHI2
PHI3 Register Write

Table 28 SOAR Instruction Cycle

<« [F1 —>
| . , PC1 , RR1 , ALUI | RW1
I ) { i 1 i

-

<« [F2 —>
. \ PC2 | RR2  ALUZ , Rw2
i | | 1

——
-4

' IF3 PC3 , RR3 A ALU3

] !

1 I i 1 ] |

Figure 2{ Timing for Standard Arithmetic/Shift Instruction.
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Cycle 1: The address Addr of the instruction is sent to the external memory circuitry in
PHI1 of [F1. By PHI3 of IF1, the content of that memory location is available on the
DATABUSin and is loaded into CPIPElm, SRC1m, SRC2m, and DST1m which correspond to
the opcode, S1, S2, and D fields of the instruction. We will call this instruction I1.

Cycle 2: At the beginning of the next eycle, the address Addr+1 of the next instruction
(I2) goes out to external memory, and instruction I1 is clocked into CPIPEls, SRC1s, SRC2s,
and DST1s. The opcode in CPIPEls controls the register read during PHI2 and the ALU
operation during PHI3 for instruction 11. The result of the ALU operation is placed in the
DSTm. Also in PHI3, 11 is sent to CPIPE2m and DST2m, and I2 is sent to CPIPElm,
SRC1lm, SRC2m, ans DST1m.

Cycle 3: The address Addr+2 of I3 is sent to the external memory, 11 is clocked into
CPIPE?2s and DST2s, and 12 is clocked into CPIPEls, SRC1s, SRC2s, and DST1s. Writing
the result of I1 (sitting in DSTs at this point) is controlled by the opcode in CPIPE2s. The
register operands for 12 are read during PHI2, and the result of I1 is written into the
designated register during PHI3.

As you can see, even in this simplified picture of how instructions find their way through
the pipeline, there are many overlapping tasks being performed by the hardware. The
overlapped nature of the execution cycle imposes some restrictions on the programmer that
may pot be understandable from a traditional fetch/execute view of the instruction cycle.
Modifications to the above paradigm and explanations of non-obvious consequences are in the
following sections. Appendix E contains an encapsulation of these restrictions.

As a shorthand, any movement of data from, e.g. CPIPElm, SRClm, SRC2m, and
DST1m into CPIPEls, SRCls, SRC2s and DST1s will be indicated by just noting that
CPIPE1m is moved into CPIPEls, with the movement of the rest of the decoded instruction
implicit. Also, it should be noted that a common technique for handling special situations is
to ‘force’ the internal opcodes into the pipeline, usually into CPIPEls.

7.3.2. Register Forwarding

As can be seen from Figure 24, if I1 stores its results in, say, r9 and I2 is to read r9 as
one of its operands, we have a problem. I1 does not store its result in r9 until PHI3 of its
third cycle (RW1), well after 12 reads r9 in PHI2 of its second cycle (RR2). Instruction decode
detects this conflict and ‘forwards’ the result of I1 to the register read phase of 12; i.e. the
value for r9 is not read from the register file, but is obtained from DSTs. However, this is
done only for registers 0 through 15 (LOWs and HIGHs) and registers 24 through 31
(GLOBALS). The SPECIAL registers are not forwarded.

7.3.3. Fast Shuffle Instructions and Return

The call and jump instructions produce another kind of perturbation in the nice three-
cvele execution model described above. In Figure 24 we see that, if the instruction fetched
during IF2 is a eall or Jump and this is not acted on until its second cycle, then the next
instruction in the instruction stream will already be in the process of being fetched (IF3).
Therefore, the chip checks during instruction fetch to see if the incoming instruction is a call
or Jump (actually the check is made when the instruction is initially loaded into CPIPE1m
during PHI3 of the instruction fetch). If the instruction is a jump or eall, the hardware does
a Fast Shuffie: the target of the call or jump is used as the address at which the next
instruction is to be fetched. The instruction fetched during IF3 is then the correct instruction
and no cycles are wasted. See Figure 25.
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Figure 25 Timing for callJump and ret

If 11 is a skip instruction, and the just-fetched 12 is 2 eall or Jump, then the Fast
Shuffie mechanism will be used only when the skip condition is not satisfied. If the condition is
satisfed then the following instruction's opcode is replaced with the internal instruction SKIP.

The ret instruction also faces a similar problem as the eall and Jump, with the added
complication that its target is not known until the end of its second cycle. (Therefore the Fast
Shuffie mechanism cannot be used to prevenmt the fetch of the next instruction in the
instruction stream.) [F 12 is a ret, the instruction following it in memory never finds its way
into CPIPEls: the ret instead forces 3 nop opcode into CPIPEls and nop becomes 13. The
result of the address computation during the ret’s ALU operation is fed directly into PC and
the MAL in PHI3 of the ret's second cycle. 14 is the first instruction at the return address.

7.3.4. Load and Store Instructlons

The load and store instructions require two memory accesses to execute: instruction
fetch and operand fetch/write. The target address of the load or store is computed in the
instruction's second cycle and is therefore not available until the instruction’s third cycle.
Also, storeing or loading during the third cycle conflicts with the instruction fetch of the
next instruction from memory (see Figure 26).

Let us work through how a load imstruction works. During the second cycle of [2 the
instruction following the load in memory is fetched. By the end of PHI3 of IF'3, the new
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Figure 26 Timing for Stendard SOAR Load and Store

instruction has been loaded into CPIPEIm. However, at the beginning of the load’s memory
access cycle (it’s third cycle), I3 is not clocked into CPIPEls: it is heid in CPIPElm for the
entire cycle. Instead of receiving CPIPElm, CPIPEls receives one of the internal opcodes
(LOADO). It is this opcode that will become I3, and the old I3 waiting in CPIPE1m becomes
14. The new I3, LOADO, is the instruction that stores the loaded data into the proper register
in its third cycle. I4 (the old I3) is not interrupted, nor is its execution affected in any way: it
is simply forced to wait one cycle. So instead of a new instruction being fetched during [F4,
the waiting instruction is allowed to move to CPIPE1ls.

A store works analogously. Instead of forcing LOADO into CPIPEls, another internal
instruction STOREOD is used. And since there is no register write, there is nothing for the
third cycle of the STORED to do. So, even though the store actually executes in three
cycles, we charge the ‘extra’ cycle of the following instruction to the store.

7.3.5. Loadm and Storem Instructions

Shown in Figure 27 is the result of executing ‘loadm (rx)1,rl’ and ‘storem rl,(rx)1’ (i.e.
only two registers are loaded/stored). These instructions work very much as described for the
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normal load and store, and make use of other internal instructions, LOADT through LOADO

and STORE? through STOREQ.

first cale
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i i | i ] i i l

loadm
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Figure 27 Timing for Loadm and Storem



7.3.6. Traps

Traps introduce new complications, but there are some general ‘rules’ that can help
explain their impact on the pipeline. (1) If an instruction produces a trap (e.g. a tag trap), it
will be manifested during that instruction’s second cycle (the execution cycle when the opcode
is in CPIPEls). This is true even for instructions with illegal opcodes: their illegality is
detectable during their fetch cycle, and, therefore, they have nothing to execute during the
second cycle, but the trap is delayed. This principle can be considered a corollary of the more
general: (2) When a trap is taken (the flow of execution is interrupted by a transfer to the
trap vector), the instruction in its execution cycle (whose opcode is in CPIPEls) is the
instruction 'charged’: i.e. whose opcode and operands are captured in the shadow registers.

7.4. Polnter-to-Register

SOAR loads and stores are conceptually different from the loads and stores of RISC 1
and RISC II. The 28bit address that is the destination of a store or the origin of a load can
refer to either an on-chip register or to a location in main memory. Figure 26 shows the usual
timing for SOAR loads and stores, where the eflective address does not refer to a register
on-chip. The sequeace of events is straightforward: Instruction Fetch takes all of the first
cycle; the efective address computation, consisting of reading the register holding the index

Trap!
“_"ilFl%—"‘PCjRR,ALU[ L RW]

i i b i ‘

TRAP - CPTPElm
nop — CPIPE2s

— IF2
F 1 1

-
-4
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e—IF3—> . 1 . . |
1] 11 1 1 | ] ] I
(Jump)
trap vector address
‘-[IF41—) { 1 ' i RW‘
] 1 1 1 l i 1 l

first Instroction of trap handler

@€ IF5 —3 rc , RR ALU|
1 i

Figure 28 Timing for Traps



and adding the offset, occupies the second cycle; broadcasting the effective address and
latching the incoming data occurs in the third cycle; and, for load, the final write into the
on-chip register occurs in the last phase of the fourth cycle.

This scheme is complicated by the fact that the eflective address may be an access to an
on-chip register. The extra operations needed to accornmodate this instance must occur on
every load and every store, but must not slow the operation down. It is not known whether
the accessed location is on-chip or not until the end of the load/store’s second cycle, so the
check for pointer-to-register is made in PHI1 of the memory access cycle. If the load’s
eflective address is referring to a register it must be read during PHI2 of that cycle, and
passed through the ALU to the destination register during PHI3. The LOADO internal
instruction then writes the result in the appropriate register as usual without having to know
where the data came from. (The LOADO’s third cycle is pictured in Figure 29 as an extension
to the load instruction).

For pointer-to-register stores, much of the above is applicable. The test for pointer-to-
register is done in PHII of the store’s memory access cycle. A store into a register is eflected
by reading the appropriate register during PHI2, and writing it in PHI3.

Since the low order seven bits of the Effective Address generated by the ALU can specify
a register to be accessed on-chip, a 6-bit bus is provided between the ALU and the Register
Decode logic (Address<3> is not included in the bus). The source of this bus is the DSTs.
The Register Decode logic selects among three alternatives for the Register Window Number:
CWP, CWP—1 (eflectively), and DST<6:4> (DST<2:0> specifies the register in the
window). “Flip CWP" in Figure 29 simply refers to the decision of which alternative to use.

LOAD

IF Pass
] | | | PC | RR ALU ‘ PC , RR ALU | | RW l
{ i i I ] i EA i i 1 |
flip CWP J A
Ptr-to-reg compare 4m restore CWP
flip CV
1F P A4
‘ | ; | PC \ RR | ALU \ RR | RW
I 1 1 ‘ i ] EA | i i

STORE

Figure 29 Pointer-to-Register Load and Store Timing



7.5. Hardware Interface

7.5.1. SOAR Signals

Shown in Figure 30 is a preliminary description of the signal pinout of SOAR.

SIGNAL PINS TYPE COMMENTS

D00 - D31 32 Bidirectional Data Bus

AD0 - A31 22 Output Address Bus

vCC 3 Power

GND 3 Ground

VEB 1 Substrate Bias

RD/WR* 1 Output Read/Write Control
I/D* 1 Outpaut Instruction/Data fetch
WAIT*® 1 Inpat

WAITACK® 1 Outpat

PHI1* 1 Input Phase 1 Clock

PHI2* 1 Ioput Phase 2 Clock

PHI3* 1 Input Phase 3 Clock
FSHCNTL® 1 Qutput Fast Shuffle Control
RESET* 1 Inpat Reset: PSW — 0, PC — OFFFFFFO .
PAGE® 1 Inpat Page Fault Interrupt
10 1 Input 1/0 Interrupt
TOTAL 82

Figure 80 SOAR Signals
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7.5.2. Memory interface

Shown in Figure 31 is the external circuitry needed to interface SOAR to memory.

Some observations help to explain the reasoning behind this design.

(1)
(2)

(3)

(4)

SOAR does not have a muitiplexed Data/Address bus. Hence, there is no need for
external address and data latches.

The rate of memory accesses by the CPU is exactly once per machine cycle. Thus only
a single RD/WR®* control line is needed to distinguish reads from writes. pointer-to-
register loads and stores are a possible exception to the '‘once per machine cycle’ rule,
since it doesn't matter what the memory system does with the address location.
Whether the real address location gets read or written is immaterial.

The write strobe used by external memory should be formed from the RD/WR* line
output by SOAR and the PHI3 clock signal generated by the external clock logic. It is
important to use the PHI3 directly from the external clock generator, as using a write
strobe generated on-chip would mean that the data and address would become invalid
simultaneous with the write strobe. The illustrated scheme may run into problems if the
memory has a long hold time from write invalid.

External drivers must be tri-stated upon receipt of WAITACK from SOAR. The
internal address bus driver will not be tri-stated during WAIT states.

7.5.3. Fast Shufle ™ jumps

In the RISC design, the PC is sent out early in the cycle, and the fetched instruction is

received later in that cycle. The Fast Shuffie ™ mechanism examines the incoming opcode in
this same cycle and, if the instruction is a call or jump, the target address is immediately
loaded into the PC and used for the next instruction fetch. If a skip instruction is being
executed while the call or jJump is being fetched, the PC is not loaded with the target
address if the skip condition succeeds: i.e. if the skip condition is satisfied, the call or Jump

/

SOAR y
RD /Lm:z > \l\ Cbg —g}—c' WIR

Address

Data Data

I/DE Clock enable MEMORY
tshentl REGISTER
P O output epable

{ [l\l/ Address

Figure 81 Ezternal Circuitry for Memory Interface



would not be executed.

SOAR's design allows the Fast Shuffle, but for simplicity, only provides a control signal
(fshcntl) for external logic (see Figure 31). This external circuitry consists of a 28 bit register,
latched to the lower 28 bits of the data bus during an instruction fetch, and a 28 bit
multiplexor that drives the system address bus. SOAR’s control line (FSHCNTL) is the
control input to the multiplexor that selects inputs of the multiplexor. The 1/D* control line
is used to emable the 28 bit register. The register takes data only when I/D* is high
(indicating an instruction fetch). For most cases (no Fast Shuffle), SOAR's address bus should
drive the system address bus. For the Fast Shuffle case, the address comes {rom the external
register that contains the jump address that was latched from the data bus during the
previous instruction fetch.

The major problem with building all the necessary hardware on-chip is that the address
coming in on the data bus during instruction fetch must in any case be able to drive the
address bus pads in time for the very next cycle's instruction fetch. Chip layout
considerations indicate that there is no clean way to route this data bus to address bus so
that SOAR can still run at top speed. Moving the data pads very close to the address pads
speeds up the Fast Shuffle bypass, but the layout for pormal instruction execution is messy.
Conversely, laying SOAR out like RISC I results in a large distance between the data and
address pads and requires that SOAR run slower to accommodate the Fast Shuffle bypass.

7.8. Factors Affecting Performance of SOAR

Several factors have been identified to have significant bearings on the final ievel of
performance of SOAR executing typical Smalltalk-80 code.

(1) The critical paths determining the cycle time of SOAR is the sum of the three phases in
the second cycle and the amount of time needed to guarantee sufficient non-overlap
between these cycles. Even though the typical SOAR instruction takes three cycles to
execute, the second cycle is always the limiting factor since the operations performed in
the first and third cycles have more time than is needed. This assumes that we have
sufficiently fast external memory so that a complete memory access can be done in one

SOAR cycle.

(2) The pointer-to-register scheme imposes some strict requirements on the SOAR circuitry
so that cycle time is not stretched. The Effective Address and the SWP must be
compared quickly, preferably by a special comparator.

(3) The critical paths of PHI1 are instruction decode and condition checking. These must
both be fast. We have had to redesign our PLAs to achieve this.

(4) The critical path of PHI2 is reading the registers, driving the busses to the ALU inputs
and setting up some of the ALU logic.

(5) The critical path of phase 3 is letting the carry chain settle, and then driving the
Effective Address bus from the ALU into the PC and MAL.

(6) Register file decode is on the critical path. Therefore, source register decode starts in
the previous PHI3 (for destination register in PHI1) to allow for maximum time for
decode.

(7) For reasons of simplicity, the DST latch is of the master-slave type, which means
propagation from DST latch to the Register Decode logic must be included in the
register decode time (Phil). If this propagation time proves to be significantly longer
than then propagation times from the Instruction Latches to the Register Decode Logic,
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then this critical path can be shortened by making the DST latch a master-only flow-
through latch. (The master is used for source decoders, and the slaves are used for
destination decoders. See above.)
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10. APPENDIX A: Memory addresses of windows

Question: what is the memory sddress of the context object containing 3 specific
window?

Corollary question: how does changing the SWP and/or CWP change the sddress
computation?

Assume that SWP is initially FOO (all numbers here are in hex, and all memory diagrams
have location tero at the top). Then the (present and future) addresses of the windows are:

E40 | W4
ES0 | WS
ES0 | Wé
E70 | W7
E30 | WO
ES0 | W1
EAC | W2
EBO | W3
ECO | W4
EDO | W3
EE0 | W6
EF0 | WV
F00 :

The table below shows the addresses of the windows at various values of SWP. In other
wortds, if the SWP is now EEO, then the curreat address of window 2, that is, where window 2
wil] be stored on overflow, is EAQ. '

window

SWP= 0 1 2 3 4 ) 6 7
Foo XXX E90 EA0 EBO ECO EDO EEQ EFO
EFO E380 EQ0 EA0 EBO ECO EDO EE0 XXX
EEO ES0 Eo0 EA0 EBO ECO ED0 XXX E70
EDO E80 ESO EA0 EB0O ECo XXX E6&0 70
ECO ES0 ES0 EA0 EB0 XXX ES0 E60 E70
EBO E80 ES0 EA0 XXX E40 E30 ES0 E70
EAO ER0 Eg0 XXX E30 E40 ES0 E60 E70
E90 Es0 XXX E20 E30 E40 ES0 ES0 70
ES0 XXX El0 E20 E30 E40 E30 ES0 70
E70 EOO E10 E20 E30 E40 ESO Es0 XXX

Note that the XXX eatries cannot happen and do pot concern us. That is, SWP<6:4>
can pever equal CWP <6:4> unless the two registers were initialized incorrectly. Consider:
that would mean that the last window saved, window SWP <6:4>, occupied the window that
is currently the HIGH registers of the executing procedure. Then either the window was just
saved by the winsdow overfiow handler, in which case the SWP would have been decremented
by the call, or it was just restored/reloaded by the window underfow handler, in which case
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the SWP would have been incremented by the ret. In neither case wil
SWP<6:4>=CWP<6:4>. Of course, this will happen briefly during the execution of the
window under-/overflow trap handlers. But after all, they are EXCEPTION handlers. No
user code should ever be in this state.

Another way of looking at it is that call instructions ‘push down’ the value of
SWP<6:4> when necessary so that it is always at least one less than CWP <6:4>. Return
instructions always ‘push up’ the value of SWP <6:4> when necessary so that it is always at
most one more than CWP<6:4>. When the SWP must be ‘pushed’, a window over- or
underfliow trap occurs. At mno time do the return or eall instructions allow
SWP<6:4>=CWP<6:4>.

From the discussion above, it is easy to confirm that the address A(i) of window i is:
Afi) =SWP - ((SWP-(i*10))&70) 0<=i<=7

(remember that all numbers are in hex). If one is interested in the address of the current
window, use CWP in place of (i * 10} in the expression. The SOAR code for this computation
would look like that given in section §5.
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11. APPENDIX B: Interaction of Windows, SWP, and CWP

The interaction of the register file, CWP, and SWP is not difficult to grasp intuitively.
Getting all of the numbers to work out in detail, hbowever, is a wheel of a different magnitude.
This appendix will hopefully prevesnt others from having to reinvent this wheel. (Also, see
[Kate83] for an alternative explanation in the context of RISC I.)

Assume the CWP is initialized to 7, and the SWP is initialized to some value, the last
seven bits of which are zero (note below that only the last eight bits are displayed: x 1s a
binary digit and w is the other binary digit). Assume that we have a root program Pl with
procedures P2, P3, ...

ACTION CWP| SWP on~chip windows

{after action) w7 w6 w5 w4 w3 w2 wl w0
initialize 7 Ix000 0000 | IH IL = = = = = =
P1 calls P2 6 [|x000 0000 1H 2H 2L = = = = =
P2 calls P3 5 |x000 0000 | 1H 2H 3H 3L = - = =
P3 calls P4 4 Ix000 0000 | 1H 2H 3H 4H 4L - -~ -
P4 calls P5 3 |x000 0000 | 1H 2H 3H 4H SH 5L - =
PS5 calls P6 2 {x000 0000 | 1H 2H 3H 4H SH 6H 6L -~
P6 calls P7 1 {x000 0000 | 1H 2H 3H 4H 5H 6H TH 7L
P7 calls P8, trap 1 {x000 0000 | 1H 2H 3H 4H SH 6H TH TL

decr SWP and CWP, store w7 (1H) into M[w111 1000] thru M{w111 1111]
' 0 |wll1 0000 | 8L 2H 3H 4H SH 6H 7H 8H
P8 calls P9, trap 7 w111 0000 | TL 2H 3H 4H SH 6H 7TH TH
decr SWP and CWP, store w6 (2H) into M[w110 1000] thru M[w110 111]]
7 |w110 0000 | 9H 9L 3H 4H 5H 6H TH 8H
P9 calls Pa, trap 6 w110 0000 | TH TL 3H 4H 5H 6H 7H 8H
decr SWP and CWP, store w5 (3H) into M|w101 1000| thru M{w101 1111]

6 |wi01 0000 | 9H aH al 4H 5H 6H 7H 8H
Pa returns to P9 7 (w101 0000 | 9H 9L - 4H 5H 6H 7H 8H
P9 returns to P8 0 |wl01 0000 | 8L - - 4H SH 6H 7H 8H
P8 returns to P7 1 w101 0000 - = -~ 4H SH 6H TH 7
P7 returns to P6 2 'wl01 0000 - = = 4H S5H 6H 6L -
P6 returns to P5 3 |wi01 0000 | = - - 4H SH 5L - =
P35 returns to P4 4 |wl01 0000 - = = 4H 4L - - -
P4 returns to P3, trap 4 w101 0000 { = - - THTL - - -
read M{w101 1000] thru M{w101 1111] (3H) into w5, incr SWP and CWP

5 |w110 0000 - - 3H3AL - = = -
P3 returns to P2, trap 5 |wll0 0000 -~ - THTL = = = -~
read M{w110 1000] thru M{w110 1111] (2H) into w6, incr SWP and CWP

6 |wlll 0000 - 2H 2L = = = - -
P2 returns to P1, trap 6 |(wlll 0000 - THTL = =« = - -

read M{w111 1000 thru M{w111 1111] (1H) into w7, incr SWP and CWP

7 |x000 0000 | 1H 1L - = = = - -
And we are back to the original state. Of course, any more returns
after this point would result in a major system error.
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12. APPENDIX C: Avallable Integer Constants

At first glance it may appear that only integers in the range -128 to +127 can be
represented in immediate fields: not so. Remember that the upper four bits are not discarded,
simply shifted up to the high end. Here is an exhaustive list of the ranges of 32-bit untagged
integers representable in the 12 bits of the immediate fields.

2147483648  (0x8000000) -2147483521  (0x8000071)
1879048320  (Ox8£1180) -1879048065  (0x900007f)
-1610612864  (OxOff80) -1610612609  {0xa00007)
1342177408  (Oxaff30) 1342177153 (0xb000OT7T)
1073741952  (Oxbfms0) 1073741697  (0xc000071)
805306496  (Oxcfifi30) .805306241  (0xd000OT!)
.536871040  (Oxdff30) 536870785  (0xe00007!)
-268435584  (Oxeffi30) 268435329  (Oxf000071)
-128  (OxHr30) 127 (0x000007f)
268435328  (0x0f880) 268435583  (0x1000071)
536870784  (Ox16880) 536871039  (0x200007f)
805306240  (0x2880) 805306495  (0x3000071)
1073741696  (Ox3MH80) 1073741951  (0x400007f)
1342177152 (Ox4f180) 1342177407  (0x500007t)
1610612608  (0Ox5HH80) 1610612863  (0x6000071)
1870048064  (Ox6HA80) 1879048319  (0x700007()
2147483520  (Ox7H80) 2147483647  (Ox7HEN)

Equivalent values when the immediates are 31-bit tagged integers:

-1073741824  (0x4000000) 1073741697  (0x400007T)
-805306496  (Ox4ff30) -805306241  (0x500007)
-536871040  (0x5HE80) .536870785  (0x6000071)
268435584  (0x6880) .268435329  (0x7000071)

-128  (Ox7H880) 127 (0x000007f)
268435328  (OxOf30) 268435583  (0x1000071)
536870784  (Ox16H80) 536871039  (0x200007)
805306240  (0x2f130) 805306495  (0x3000071)

1073741696  (0x3MH80) 1073741823  (Ox38H)




43~

13. APPENDIX D: Trap Vector Assignments

These tables show which traps can occur on which instructions by listing them as they
appear in the trap vector. The first column of each table is the number of the trap appended
to the opcode of the interrupted instruction.

trap: ILL
tb+(octal) | opcode | handler happeas when ...
0000-0003 - * illegalOpcode
0004 nop illegalOpcode3l I<81> =1
0005 (TRAP) illegalOpcode3l I<81>=1
0006 (SKIP) illegalOpcode3l I<81>==1
0007 illegalOpcode
0010 ret illegalOpcode3l I1<81>=1
0011 retw illegalOpcode3l I<81>=1
0012 retn illegalOpcode3l I1<81> =1
0013 retaw illegalOpcode3l I<81>=1
0014 reti illegalOpcode3l I<81>=1
0015 retiw illegalOpcode31 I<81>=1
0016 retin illegalOpcode3l I<81>=1
0017 retinw illegalOpcode31 I<81>=1
0020 skip illegalOpcode3l I1<81 > =1
0021-0027 trapi illegalOpcode3l <81 >=1
0030 store illegalOpcode3l I<81>=1
0031 illegalOpcode
0032 storem illegalOpcode31 I<81>=1
0033 illegalOpcode
0034 load illegalOpcode31 I<81>=1
0035 loade illegalOpcode31 I1<81>=1
0036 loadm illegalOpcode31 I<381>=1
0037 illegalOpcode
0040 srl illegalOpcode31 I<81>=1
0041 illegalOpcode
0042 sra illegalOpcode31 I<81>=1
0043 illegalOpcode
0044 xor illegalOpcode31 I<81>=1
0045 illegalOpcode
0046 and illegalOpcode3l I<81>=1
0047 or illegalOpcode31 I<81>=1
00350 add illegalOpcode3l I<81>=1
0051 sla illegalOpcode31 I<81>=1
0052 sub illegalOpcode31 I<81> =1
0053 illegalOpcode
0054 insert illegalOpcode31 I<81>=1
0055 illegalOpcode
0056 extract illegalOpcode3l I<81>=1
0057 illegalOpcode
0060-0067 (LOAD:I) illegalOpcodell I<81>=1
0070-0077 {STOREI) illegalOpcode3l I<81>=1




trap: TT
tb+{octal) opcode | handler | happens when ...
0100-0117 * can? happen
0120 skip alaTagTrap (S1smo0p || Se=o0p)
0121 trapl aluTagTrap (S1meoop | | S2meo0p)
0122 trap2 aluTagTrap (S1==oop || SLa=oop)
0123 trap3 aluTagTrap {S1m=o0p | | S2==o0p)
0124 trap4 aluTagTrap (S1==o0p || S&==oop)
0125 traps aluTagTrap (S1meoop || S2==o0p)
0126 trapd aiuTagTrap (Sl=moop || S2==oop)
0127 trap? aluTagTrap (S1m=oop || S2==oop)
0130 store storeTagTrap seec Table 14
0131-0133 * cant happen
0134 load loadTagTrapl see Table 18
0135 joade SITagTrap eee Table 18
0136-0137 * cant happen
0140 srl aluTagTrap (S1=moop || S2mmoop)
0141 . con? happen
0142 sra aluTagTrap (S1smmoop || S2meoop)
0143 ¢ can® happen
0144 xor aluTagTrap (S1=00p || S&==ocp)
0145 . eant happen
0146 and aluTagTrap (S1==00p || S2=eoop)
0147 or aluTagTrap (S1=o00p || S2=o00p)
0150 add aluTagTrap (S1=o00p || S2=00p)
0151 sia aluTagTrap (S1=o0p || S&=o00p)
0152 sub aluTagTrap (S1=o0p || §2=00p)
0153-0177 i can 't happen
trap: SWI
th+{octal) opcode |  bandler | happens when ...
0200-0237 call SWITrap tagged call and PSW<S> =1
0240-0277 jump SWITrap tagged jump and PSW<S5> =1
trap: WO
tb+{octal) opcode l handler | happens when ...
0300-0337 call WOFTrap (c]. §4.2.6)
0340-0377 . can ' happen
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trap: WU
tb+(octal) opcode ] handler ] happens when ...
0400-0407 * can't happen
0410 ret * can? happen
0411 retw WUFTrap (cf- §4.2.7)
0412 retn * cant happen
0413 retow WUFTrap (cf. §4.2.7)
0414 reti * can't happen
0415 retiw WUFTrap (cf. §84.2.7)
0416 retin . can't happen
0417 retinw WUFTrap (¢ §4.2.7)
0420-0477 * can't happen
trap: DPF
tb+(octal) opcode I handler [ happens when ...
0500-0527 * can't happen
0530 store dataPageFlt page fault
0531 * can't happen
0532 storem dataPageFlt page fault
0533 * can't happen
0534 load dataPageFit page fault
0535 loadc dataPageFlt page fault
0536 loadm dataPageFlt page fault
0537-0577 * can't happen
trap: TI1
tb+{octal) opcode ] handler l happens when ...
0600-0620 * can't happen
0621 trapl trapllnstruction operands satisfy condition
0622 trap2 trap2instruction operands satisfy condition
0623 trap3 trap3lnstruction operands satisfy condition
0624 trap4 trap4lnstruction operands satisfy condition
0625 trapS trapSinstruction operands satisfy condition
0626 trap6 trap6lnstruction operands satisfy condition
0627 trap7 trap7Instruction operands satisfy condition
0630-0677 ¢ can't happen
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trap: GS
tb+(octal) opcode handler l bappens when ...
0700-0707 * can't happen
0710 ret geTrap S1=o00p
0711 retw geTrap S1=o00p
0712 retn geTrap S1=00p
0713 retow geTrap S1==00p
0714 reti geTrap S1=00p
715 retiw geTrap S1==o0p
0716 retin geTrap Sl=o0p
0717 retinw geTrap S1=00p
0720-0727 * cant happen
0730 store geTrap S2 older than S1, contezt
0731-0777 * can't happen
trap: IPF .
tb+(octal) opcode | bandler | happens when ...
1000-1077 {(any) instrPageFit page fault
trap: 10
tb+{octal) opcode [ handler I happens when ...
1100-1177 (any) [OInterrupt 1/0 interrupt
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14. APPENDIX E: Caveats

This section summarizes the ‘“caveats” and some of the surprising features of the
architecture. We will also try to give some rationale for why things are the way they are.

Do not use the SPECIAL registers in fleld S2; do not use a SPECIAL
register In the S1 fleld of an lastruction when the S2 fleld requires register
forwarding. In general, the register designated by the S1 field of an instruction is put on the
A-bus (refer to Figure 22), and the register designated in the S2 field is put on the B-bus. The
S2 field may not designate a special register because there is no way to get some of the special
registers (particularly CWP and PSW) onto the B-bus. The reason the other special registers
(SWP., TB, PC, SHA, and SHB) cannot be put on the B-bus via the D-bus is that the result of
the previous instruction is placed on the D-bus to find its way to the A-bus or B-bus, as
appropriate, when register forwarding occurs. Hence, none of the special registers may be put
in the S2 field of an instruction. Moreover, putting a special register in the Si field when the
S2 field requires register forwarding causes the forwarded value from DSTs and the value of
the PC, SWP, or TB registers to compete for the D-bus. (Actually, only PC, SWP and TB
canpot be used in S1 under these circumstances, since SHA, SHB, CWP, and PSW can safely
go to the A-bus.) The following is an example of what is prohibited.

add r10,r11,r6 Jtagged add
add SWP,r6,15 76 requires forwarding,
; conflicts with SWP

Do not use the SPECIAL registers in the destination fleld of load
Instructions.

Do not write to the PC register.

Do not assume the memory system ignores bits 28 through 31 in the Trap
Base register.

Bit 12, the Immediate bit, of store instructions must be = 1,

The destination fleld D of return instructions must be zero.

Do not read PSW<15:8>, SHA, and SHB with Interrupts enabled.
PSW<15:8>, registers SHA, and SHB contain valid values only if interrupts are disabled.
Their contents are undefined if read while interrupts are enabled. This is because they are
implemented as flow-through latches, not as registers. Therefore, if one tries to read them
when interrupts are enabled, they would be shadowing at the same time. The remainder of
the PSW register behaves as defined in §2.2.

Do not attempt to read r0 after a loadm: walt one cycle.

Do not attempt to use the internal opcodes In the Instruction stream.





