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Abstract

The selection of the “‘best’” parameters for a cache design,
such as size, mapping algorithm, fetch algorithm, line size, etc.,
is dependent on the expected workload. Similarly, the
machine performance is sensitive to the cache performance
which itself depends on the workload.

Most cache designers have been greatly handicapped in
their designs by the lack of realistic cache performance esti-
mates. Published research generally presents data which is
unrealistic in some respects, and available traces are often not
representative.

In this paper, we present measurements from a very wide
variety of traces: there are 49 traces, taken from 8 machine
architectures, (370, 380, VAX, M68000, Z8000, CDC 6400),
coded in 7 source languages. Statistics are shown for miss
ratios, the effectiveness of prefetching in terms of both miss
ratio and its eflect on bus traflic, the frequency of writes, reads
and instruction fetches, and the frequency of branches. Some
general observations are made and a “‘design estimate’ set of
miss ratios are proposed. Some “fudge” factors are proposed
by which statistics for workloads for one machine architecture
can be used to estimate corresponding parameters for another
(as yet unrealized) architecture.

1. Introduction

Almost all medium and high performance machines and
most high performance microprocessors now being designed
will include cache memories to be used for instructions, for
data or for both. There are a number of choices to be made
regarding the cache including size, line size (block size), map-
ping algorithm, replacement algorithm, writeback algorithm,
split (instructions/data) vs. unified, fetch algorithm, et cetera;
see [Smit82] for a detailed discussion of these issues. Making
the “‘best” choices and selecting the “'best’ parameters (with
respect to cost and performance) depends greatly on the work-
load to be expected [Macd84]. For example, a eache which
achieves a 99 hit ratio may cost 805 more than one which
achieves 98%%, may increase the CPU cost by 25% and may
only boost overall CPU performance by 8%; that suggests that
the higher performing cache is not cost eflective. However, if
the same two designs yield hit ratios of 809 and 80% respec-
tively, and if the performance increase would be 50%%, then
different conclusions might well be reached.

Computer architects have been bandicapped by the lack
of generally available re_alisti_c cache workload estimates.
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While there are bundreds of published papers on cache
memories (see [Smit82] for a partial bibliography), only a few
present usable data. A large fraction contain no measure-
ments at all. Almost all of the papers that do present meas-
urements rely on trace driven simulation using a small set of
traces, and for reasons explained further below, those traces
are likely to be unrepresentative of the results to be expected
in practice. There do exist some realistic numbers, as we note
below, but they are hardly enough to constitute a design data-
base.

The purpose of this paper is discuss and explain workload
selection as it relates to cache memory design, and to present
data from which the designer can work. We have used 49
program address traces taken from 6 (or 5, if the 360 and 370
are the same) machine architectures (VAX, 370, 360/91,
78000, CDC 6400, M68000), derived from 7 programming
languages (Fortran, 370 Assembler, APL, C, LISP, AlgolW,
Cobol) to compute overall, instruction and data miss ratios
and bus traffic rates .for various cache designs; these experi-
ments show the variety of workload bebavior possible.
Characteristics of the traces are tabulated and the effects of
some design choices are evaluated. Finally, we present what
we consider to be a “reasonable” set of numbers with which
we believe designers can comfortably work. In that discussion,
we also suggest some “fudge" factors, which indicate how real-
istic {or available) numbers for machine architecture M1 under
workload conditions W1 can be used to estimate similar
parameters for architecture M2 under workload W1ls.

In the remainder of this section, we discuss additional
background for our measurement results. First we consider
the advantages and disadvantages of trace driven simulation.
Then we review some (possible) cases of performance

misprediction and also discuss some published and valid miss
ratio figures. The second section discusses the traces uséd.
The measurement results and apalysis are in section 3, and in
section 4 we propose target workload values and factors by
which one workload can be used to estimate another. Section
5 summarizes our findings.

1.1. Trace Driven Simulation

A program address trace is a trace of the sequence of
(virtual) addresses accessed by a computer program or pro-
gams. Trace driven simulation involves driving a simula-
tion model of a system with a trace of external stimuli rather
than with a random number generator. Trace driven simula-
tion is a very good way to study many aspects of cache design
and performance, for a number of reasons. First, it is superior
to either pure mathematical models or random number driven
simulation because there do not currently exist any generally
accepted or believable models for those characteristics of pro-
gram behavior that determine cache performance; thus it is
pot possible to specify a realistic model nor to drive a simula-
tor with a good representation of a program. A trace properly



represents at least one real program, and in certain respects’
can be expected to drive the simulator correctly.

It is important to note that a trace reflects not only the
program traced and the functional architecture of the machine
(instruction set) but also the design architecture (higher
level implementation). In particular, the number of
memory references is affected by the width of the data
path to memory: fetching two four-byte instructions requires
4, 2 or 1 memory reference, depending on whether the memory
interface is 2, 4 or 8 bytes wide. It also depends on how much
“memory” the interface itself has; if one request is for 4 bytes,
the next request is for the next four bytes, and the interface is
8 bytes wide, then fewer fetches will result if the interface
“remembers” that it has the target four bytes of the second
fetch rather than redoing the fetch. The interface can be quite
complex, as with the Ifetch buffer in the VAX 11/780 [Clar83]
and can behave differently for instructions and data. (A trace
should reflect, to the greatest possible extent, only the func-
tional architecture; the design architecture should and usually
can be emulated in the simulator.)

A simulator is also much better in many ways than the
construction of prototype designs. It is far faster to build a
simulator, and the design being simulated can be varied casily,
sometimes by just changing an input parameter. Conversely,
a hardware prototype can require man-years to build and can
be varied little if at all. Also, the results of a live workload
tend to yield slightly different results (e.g. 1% to 3%) from run
to run, depending on the random setting of initial conditions
such as the angular position of the disks [Curr75].

For the reasons given above, trace driven simulation has
been used for almost every research paper which presents
cache measurements, with a few exceptions discussed below.

There are, however, several reasons why the results of trace
driven simulations should be taken with a grain of salt. (1) A
trace driven simulation of a million memory addresses, which
is fairly long, represents about 1/30 of a second for a machine
such as the IBM 3081, and only about one second for an
M68000; thus a trace is only a very small sample of a real
workload. (2) Traces seldom are taken from the “messiest”
parts of large programs; more often they are traces of the ini-
tial portions of small programs. (3} It is very difficult to trace
the operating system (OS) and few OS traces are available.
On many machines, bowever, the OS dominates the workload.
(4) Most real machines task switch every few thousand
instructions and are constantly taking interrupts. It is difficult
to include this eflect accurately in a trace driven simulation
and many simulators don't try. (5) The sequence of memory
addresses presented to the cache can vary with hardware
buffers such as prefetch buffers and loop buflers, and is cer-
tainly sensitive to the data path width. Thus the trace itself
may not be completely accurate with respect to the implemen-
tation of the architecture. (8) In running machines, a certain
(usually small) fraction of the cache activity is due to
input/output; this effect is seldom included in trace driven
simulations.

In this paper we are primarily concerned with items 1-3
immediately above. By presenting the results of a very large
pumber of simulations, one can get an idea of the range of pro-
gram behavior. Included are two traces of IBM's MVS operat-
ing system, which should have performance that is close to the
worst likely to be observed.

1.2. Real Workloads and Questionable Estimates

There are only a small number of papers in which provide
measurements taken by hardware monitors from running
machines. In [Mila75] it is reported that a 16K cache on an
IBM 370/165-2 running VS2 had a 0.94 hit ratio, with 1.6

fetches per instruction and .22 stores/instruction; it is also
found that 73% of the CPU cycles were used in supervisor
state. Merrill [Merr74] found cache hit ratios for a 16K cache
in the 370/168 of 0.932 to 0.997 for six applications programs,
and also reports that the performance (MIP rate) of the.
machine increased for one benchmark from 2.07 to 2.34 MIPS
when the cache hit ratio went from 0.969 to 0.9867. In
[Hard80] (see [Smit82] for the data) it is found that the super-
visor miss ratio and problem (user) state miss ratio can respec-
tively be described by the curves 0.3249K +#(-0.5309) and
0.03K ++(-0.1892) for an IBM 370/MVS workload. (Hit ratio ==
1 - miss ratio.) Supervisor and problem state hit ratios are
thus approximately (0.925, 0.948, 0.964) and (0.982, 0.984,
0.986) respectively at (16K, 32K, 64K) bytes. These machines
(IBM 185, 168, Amdakl 470V) all use 32 byte lines. For a 84K
cache, 84 byte lines and workloads of small scientific programs,
large scientific programs, business (Cobol) programs, and
timesharing, the misses per instruction were found to be
0.0015, 0.0114, 0.035 and 0.042 respectively on the Fujitsu

M380 [Hatt83); assuming two memory references per instruc-
tion, that works out to hit ratios respectively of 0.9992, 0.9943,
0.9825 and 0.979. The Synapse machines [Fran84], based on
the M68000 and with a 16K cache per processor and 16 byte *
lines report a hit ratio above 0.95.

A very thorough set of measurements is presented in
[Clar83] for the Digital Equipment Corp. VAX 11/780, which
bhas an 8Kbyte cache and 8 byte lines. The mean hit ratio for
data was found to be 83.5% and for instructions 91.4%;
overall, the figure was about 89.7%. Most interestingly, it is
reported in [Clar83] that a simulation study at DEC using
VAX traces predicted about a 93% hit ratio, significantly
bigher than the 89.7% observed.

The inspiration for this paper came from the first article
to describe the forthcoming Zilog Z80000 [Alpe83] in which the
projected hit ratios for the Z80000's 256 bytes of storage are
reported to be 0.62, 0.75 or 0.88 depending on whether the
(eflective) block size is 2, 4 or 16 bytes. (The machine uses a
sector cache (block/subblock), with a 16 byte sector (large
block) and then fetches either 2 bytes, 4 bytes or 16 bytes
(called a block or subblock)). These figures are considerably
better than this author would expect to occur in practice,
since the results from most other traces are considerably less
favorable. These predictions are off, we believe, not because of
programming errors but because of a poor workload selection:
(1) The traces used to estimate the miss ratios were taken
from a Z8000, which is a 16 bit machine, and the estimates are
for a 32-bit machine. (2) The traces are of a version of Unix
that runs on the Z8000 and which was ported from the PDP-
11; thus the code and data sizes are small. (3) The C compiler
used to compile the programs traced was not very sophisti-
cated and appears to generate an inordinately large number of
sequential instructions between loads, stores and branches.
(Presumably the compiler and other software has matured
since the time the traces were generated.) (4) Many of the
programs traced were small, tightly coded utilities.

It is also worth noting, although we do not further con-
sider the issue in this paper, that projected instruction rates
for some machines are far too high. It is common to estimate
the instruction rate of a microprocessor by assuming that all
instructions execute in the minimum time and memory delays
cause no processor wait states. Such estimates are also {some-
times deliberately) based on faulty workloads.

2. The Traces (Our Workload)

We have selected 49 traces from those available to us for
apalysis. These traces are derived from 6 machine architec-
tures: the IBM 370, the IBM 360/91, the DEC VAX, the Zilog



78000, the CDC 6400, and the Motorola 68000; we refer to
these as 5.5 different architectures due to the close similarity
between the 360/91 and the 370. Two of the traces were split
into 5 sections each, so there are up to 57 sets of data for some
measurements. (The two traces which were sectioned were

split for two reasons: (a) they were very long and therefore
could be easily subdivided, and (b) the use of garbage collec-
tion in Lisp programs suggested the possibility of anomalous
behavior within those sections containing garbage collection.)
The traces used are listed and described in this section; it
should be noted that in addition to functional architecture
differences between the machines traced, there are also design
architecture differences embodied in the traces, which are also
described below.

For the IBM 370, nine traces were examined: FCOMP1
(Fortran compile of program that solves Reynolds partial
differential equations (2330 lines)), CCOMP1 (Cobol compile,
240 lines, accounting report), FGOl (Fortran Go {execution)
step, factor analysis, 1249 lines, single precision), FGO2 (For-
tran Go step, double precision analysis of satellite information,
2057 lines, FortG compiler), FGO3 (Fortran Go step, double
precision numerical analysis, 840 lines, FortG compiler), CGO1
(Cobol Go step, fixed assets program doing tax transaction
selection), CGO2 (Cobol Go Step, projects depreciation of
fixed assets), and MVS1 and MVS2 (different standard MVS
workloads at Amdahl Corp.). These traces were generated at
Amdahl, and correctly reflect the architecture of the Amdahl
470: a cache with a four byte interface to the CPU.

Thirteen traces for the Zilog Z8000 microprocessor were
also analyzed; these are the same traces as were analyzed in
{Alpe83]. Each trace is for a program which is part of the
UNIX system software. These Z8000 traces are: ZOD (octal
dump of core images), ZSORT (sort program), ZVI (screen edi-
tor), ZGREP (search a file for a pattern), ZPR (format a file
for the line printer), ZCPP (C compiler preprocessor), ZC3 (C
compiler third pass - optimizer), ZC4 (C compiler fourth pass -
lister), ZDIFF (compare files), ZED (line editor), ZSED (stream
editor), ZNM (load module name listing) and ZLD (link edi-
tor). These traces were generated at Zilog Corporation and
correctly reflect the Z8000: a two byte memory interface is
assumed.

Fourteen traces for the DEC VAX were used. These
traces were: VCCOM (the C compiler compiling a C program
of 125 lines, written in C), VTROFF (the photo typesetter
text formatting system, written in C), VPUZZLE (the well
known “‘puzzle” program; used by Baskett to test raw CPU
power, written in C), VOTMDL (parser/constructor, written
in Pascal, uses set operations), VSPICE (the Spice circuit
simulator, written in Fortran), VLS (Unix utility which lists
files, in C), VAWK (text processing language, in C), VC2
(assembly language peep hole optimizer, in C), VSEDX (text
processing stream editor, in C), VQSORT (internal quick sort
of 10,000 integers, in C), VYMERGE (a parse table compact-
ing program, in C), VTOWERS (Towers of Hanoi, 14 disks, in
C), LISPC (Vax Lisp Compiler, written in LISP) and VAX-
IMA (VAXIMA symbolic algebraic manipulation program
derived from Macsyma, written in LISP). Both the LISPC
and VAXIMA traces have been cut into many sections of
1,000,000 memory references each; LISPC2..LISPC14 are the
initial portions of sections 2, 5, 8, 11 and 14 of the trace and
similarly for VAXIMAL..VAXIMA25. A four byte memory
interface is used for all VAX traces, but without any
“memory"; i.e. after each data or instruction fetch, all unused
bytes are discarded; this lack of memory will overstate the fre-
quency of instruction fetches relative to a more efficient design
architecture. (The actual VAX 11/780 implementation is quite
a bit more complicated than this, and we don’t attempt to
simulate it.)

There are five traces for the CDC 6400: TWODI (For-
tran Go of a program that solves the two dimensional scatter-
ing problem of an infinite circular cylinder), PPAS (start up
portion of Fortran Go of a phase plane analysis program solv-
ing a set of two simultaneous differential equations), PPAL
(same as PPAS, except that tracing began after program had
gone into iteration loops), DIPOLE (Fortran Go of a program
that solves a three dimensional scattering problem for a cube
using the dipole approximation technique} and MOTIS (For-
tran Go of an MOS circuit analysis program). These traces
assume a one word (80 bit) memory interface for data and a
one instruction (15 or 30 bits) interface for instructions; i.e.
there is no memory in the instruction interface.

There were four traces for the IBM 380/91 used:
WATEX (execution of a Fortran program compiled using the
Watfiv compiler; the program is a combinatorial search rou-
tine), WATFIV (Fortran compilation of the WATEX program
using the Watfiv Fortran compiler, the compiler presumably
written in assembler), APL (execution of an APL program
which does plots at a terminal; interpreter presumably written
in assembler), and FFT (execution of FFT program written in
Algol, compiled with the AlgolW compiler). These programs
bave been extensively analyzed in [Smit76], [Smit70] and
[Smit82). These traces assume an 8 byte interface with
memory, but with no memory; all bytes are discarded after
each individual fetch.

Finally, there are four short traces for the Motorola
68000. The programs are: PLO (the PLO program from Wirth,
“Algorithms + Data Structures = Programs”), MATCH (pat-
tern matching program from Kernighan and Plauger,
“Software Tools in Pascal”), SORT (quicksort) and STAT
(trace statistics program); each source program is written in
PASCAL. These traces were gathered with a hardware moni-
tor from a working 68000 in real time, and only differentiate
between fetches (reads and ifetches) and writes; they reflect
the actual implementation of the 63000.

3. Experimental Results

A number of different cache designs were simulated, each
for some or all of the traces; not all experiments were run
with all traces because of the large number of cases. In this
section, we present some of the results of those simulations.

3.1. Overall Miss Ratios

Table 1 shows the miss ratios for 57 traces (treating the
LISPC and VAXIMA traces as five each) for a fully associative
cache managed with LRU replacement, demand fetch, no task
switch purges, copy back with fetch on write, and 16 byte
lines. The length of each trace is shown in table 2. The same
data is plotted in figure 1. The full associativity and the lack
of task switching indicate that in a real machine, performance
would be lower. There are many interesting observations to
be made regarding this data, and we do so an item at a time.

The worst performance (highest miss ratio) is observed
for the MVS1 and MVS2 traces and for the CGO1, CGO2,
WATFIV, FCOMP! and CCOMP1 traces. The first two are
from the world’s largest operating system, which is known to
have poor locality. The Fortran (FCOMP1), Cobol
{CCOMP1) and Watfiv (WATFIV) compilers are also large,
mature pieces of software. It is worth comparing these results
with those from [Hard80], which are reproduced in figure 2.
The MVS2 trace corresponds fairly well with the MVS trace
miss ratios from [Hard80), although the line size for [Hard80] is
32 bytes as compared with 18 bytes here. (In the range of
memory sizes from 18K to 64K, the miss ratio drops rapidly
with increasing line size [Smit82], [Kuma79], which suggests
that even the MVS2 trace doesn’t perform as badly as MVS
does in practice.) The problem state results from [Hard80] are
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MISS RATICS FOR VARIETY OF TRACES
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Figure 1 CACHE SIZE (BYTES)

in rough correspondence with the miss ratios from the traces
taken from the 370 and 380/91 when adjustment is made for
the line size change.

The very best results occur for the 68000 traces, which
have an average miss ratio at, 1024 bytes, for example, of
1.7%, but those are very short traces of very small toy pro-
grams. The next best results generally occur for the Z8000
traces, which average out to a miss ratio of 3.1% at 1024
bytes, as compared to an average miss ratio for the 370 and
360 programs of 17% at 1K; similar disparities are evident
over the range of cache sizes. For reasons explained above, we
are inclined to believe that the Z8000 traces (and the M88000
traces) will be poor predictors of the performance to be
expected from the Z80000. The VAX programs, except those
written in LISP, average to a miss ratio of 4.8% at 1K, but
many of those traces also come from small, tightly coded Unix
utilities, and some (VPUZZLE and VTOWERS) are toy pro-
grams.

The programs written in LISP have average miss ratios
of (1115, 5.5%, 2.4%, 1.55%) at (1K, 4K, 16K, 84K) respec-
tively. While those miss ratios are worse than for the other
VAX traces, they are better than for the 370 and 360 traces
and are not distressingly high. This result may be somewhat
surprising, since it has been claimed or speculated by some
that LISP programs would have very poor locality and would
run poorly on machines with caches.

The traces from the 6400 have miss ratios near the mid-
dle of the group of all of the traces.

3.2. Trace Characteristics

In table 2 we have tabulated the characteristics of each
trace. In this section we discuss that table.

The frequency of instruction fetches is significantly higher
for the Z8000 traces at 75.1% and the CDC 6400 traces at 77.2
than for any of the others, and the frequency of writes is
correspondingly lower. (Because the 6400 traces suppose an
Ifetch sequence with no memory, it significantly overstates the
pumber of fetches to memory for instructions that would take
place in most reasonable machine implementations. Our data
shows one fetch per instruction, where in most implemesnta-
tions, 2 to 4 instructions would be loaded each time.)
Although for the M68000, we can't differentiate between reads
and instruction fetches, even the M68000 traces have higher
frequencies of writes than the Z8000 traces. (The sample is
too small to be very sure.) This very high frequency of instruc-
tion fetches suggests ope of two possibilities: either the com-
piler is generating poor code, such that it takes a large number
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of instructions to accomplish something, or the instructions
aren't very powerful. It also suggests a reason why the miss
ratios are so low: long sequential sequences of short instruc-
tions yield high hit ratios in a cache with a line size
significantly longer than the fetch size. All of these factors can
be expected to change with the move to the 32 bit Z80000: (a)
The instructions will be more powerful, so the frequency of
memory references due to instruction fetches should drop. (b)
The compiler should be more mature and better, with the
same result. (c) With the larger fetch size, the benefits of
sequentiality on the hit ratio will be lessened.

Within the set of traces for each machine architecture,
the fraction of memory references which are data reads
is remarkably stable. while the fraction of writes varies
widely and inversely with the frequency of instruction fetches.
With the exception of the Cobol traces for the 370, the frac-
tion of reads is insensitive to the source language. We can
suggest no good explanation of this result, but find it very
interesting and possibly significant.

From our data, for both the 370 and the VAX it is
reasonable to use as a rule of thumb that half of the
memory references are instruction fetches, or conversely,
there are two memory references per instruction. For all of
the architectures, it seems to be satisfactory to say that reads
(on the average) outnumber writes by about 2 to 1.

The columns in table 2 labeled “#llines”, “#Dlines” and
“Aspace” are, during the period traced, respectively the
number of (16 byte) distinct lines referenced by an instruction
fetch, the number of lines referenced by a data read or write
and the total number of bytes in the lines referenced
(18¢(#llines + #Dlines)). The purpose of the Aspace
(address space) column is to indicate the size of the programs
traced, as an aid to determining whether the programs are in
any way representative. As can be seen, the average sizes of
2868 bytes for the M68000 traces and 11361 bytes for the

28000 traces suggest that those programs are small. Some-
what larger are the averages for the VAX traces - 23032
(excluding the Lisp programs), the 360/91 programs - 28396,
and the CDC 6400 programs (21308). The Lisp programs
(61598 bytes) and the 370 programs (68439 bytes) are the larg-
est. The latter two sets of data represent large batch pro-
grams and a large operating system. The middle group is a
mixture of batch programs (CDC, 380, VAX) and utilities
(VAX). The first group contains primarily utilities and toy
programs.



From the Aspace figures, one can see the limitations of
using traces, or at least small, short traces, to evaluate the
performance of large caches. These trace runs extend at most
to 500,000 memory references, and most are for 250,000
memory references. (The traces themselves are, with a few
exceptions, much longer, but computer time is a limited
resource. The last column shows the trace length used in each
case.) With only a few exceptions the traces reference less than
64Kbytes of memory, and it makes little sense to estimate miss
ratios for caches over 32K with this data, unless the traces are
run for much longer periods and also unless multiple traces are
combined in a realistic simulation of multiprogramming.

Comparing the #llines and #Dlines column shows the
great variability in the ratio of the two measures. Some
traces, such as CGOl, CGO2, VAXIMAI, VAXIMAZ2S,
VQSORT, and VYMRGE, show small pumbers of instructions
manipulating large amounts of data. Others, such as ZVI,
ZGREP, and VAXIMA7, show a large ratio of data to instruc-
tions, although that condition is less common. An examina-
tion of the averages for those columns shows that in most
cases, the size of the data space is larger than that for
the instruction space. Specifically, 34 of the 57 traces show
larger numbers of data lines than instruction lines; 10 of the
23 showing the converse are for the Z8000. The average
pumber of data lines is significantly larger than the number of
instruction lines for each set of traces except for the Z800O.

The column labeled “%Branch” gives the fraction of
instruction fetch references that appear to be successful
branches. This is determined by comparing the addresses of
successive instruction fetches. If the second onme is either less
than the first or is more than 8 (bytes) greater, then the first is
counted as a branch. This counting mechanism is needed
because the address traces do not otherwise identify branch
instructions. This mechanism will miss a few branches which
jump over fewer than 8 bytes.

The frequency of branches is highest (17.5%) for the
VAX traces (excluding Lisp) with the frequency for the 380/91
(16.%), VAX/Lisp traces (14.1%), and 370 (14.0%) traces close
behind. The results for the Z8000 (10.55%) and the CDC6400
(4.2%) are much lower. For a few cases, the same or a similar
program were traced for both the Z8000 and the VAX, and in
those cases, the frequency of branches for the VAX is 2 to 4
times as high. The higher frequency of 28000 instructions,

and the lower rate of loads, stores and branches suggests that
the VAX instructions individually do a lot more than the
Z8000 instructions.

The frequency of branches does not seem to be related to
the source language. Within the set of traces for each
machine, there is substantial variation in the frequency of
branches.

3.3. Write Back Activity

An important parameter aflecting the design of the cache
and memory system of a computer is the frequency of writes
to memory. For a machine which uses write through, by
which memory is written to on every store instruction, the
write frequency is usually just the frequency in the trace of
stores to memory. (The exception would be an implementa-
tion in which adjacent short writes are combined into a longer
write, as when two 2-byte writes are combined into a four byte
write to a memory with at least a 4 byte wide interface.) If the
machine uses copy-back, however, the frequency of writes to
memory is the miss ratio times the probability that a line to
be pushed is dirty. The number of bytes transferred is that
quantity times the line size.

In table 3, we present some data on the probability that
a line to be pushed is dirty. The simulations on which these

measurements are based are somewhat different than those dis-
cussed above. In this case, a 32Kbyte memory is simulated,
partitioned into a 16Kbyte data cache and 16Kbyte instruc-
tion cache, and every 20,000 memory references, the cache is
purged to simulate multiprogramming. The total number of
lines pushed comprises those that are pushed as part of a line
fetch (replacement), and also those pushed when the cache is
artificially purged. The “fraction data pushes dirty” is just
the fraction of all data lines that are pushed that have been
modified (written to) since the time they were fetched. Four
of the entries in that table (LISP Compiler, VAXIMA, Z8000-
assorted, CDC 6400 - assorted) represent multiprogramming
simulations, in which the traces were run through the simula-
tor in a round robin manner, switching and purging every
20,000 memory references. (We believe that the value 20,000
is reasonable and representative, but the results are definitely
sensitive to that figure.) The Z8000 assortment consists of ZVI,
ZGREP, ZPR, ZOD, ZSORT; the CDC 6400 assortment
includes all five CDC 6400 traces; the LISP Compiler and
VAXIMA mixtures include the five trace sections described
earlier.

Trace(s) Fraction Data Line
Pushes Dirty
LISP Compiler - 5 Sections .26
VAXIMA - 5 Sections .23
VCCOM .63
VSPICE .37
VOTMD1 .49
VPUZZLE T7
VTROFF .27
FGO1 .56
FGO2 .43
CGO1 .35
FCOMP1 .63
CCOMP1 .22
MVSH .48
MVs2 .56
28000 - Assorted .48
CDC 6400 - Assorted .80
Average .47

Table 3

Averaging over all of the results presented, the probabil-
ity of a data push being dirty is 0.47, which is close enough to
0.5 to say that as a rule of thumb, bhalf of the data lines
pushed will be dirty. The standard deviation of the
pumbers in this table, however, is 0.18, and a quick examina-
tion shows that the range is 0.22 to 0.80, which is quite wide.
Thus while 50% is a reasonable target to which to design, in
practice the variation will be wide. There also appears to be

po pattern to the numbers; even two different compilers for
the same machine (FCOMP1, CCOMP1) have widely different
probabilities of pushing a dirty data line.

It is possible to deduce a variation with cache size in the
probability that a pushed line will be dirty. Clearly, the larger
the cache, the longer the mean residence time of a line before
it gets pushed and the higher the probability that it will be
dirty. Likewise, if the mean time between cache purges (task
switches) could be extended, the probability that a data line
which is removed is dirty would increase. We have not col-
lected the data necessary to characterize this trend, but we
would expect it to be small, since a line that is to be modified
is usually modified shortly after it is first referenced.



3.4. Instruction and Data Miss Ratios

From the same set of simulations used to generate table
3, we collected the miss ratios for the instructions in the
instruction cache and the data references in the data cache;
those miss ratios appear in figures 3 and 4. (Please note that
the vertical scale differs between figures 3 and 4.)

Again, there is a very wide range of miss ratios among
the various traces. The data miss ratios tend to be higher for
small cache sizes; thereafter, the instruction or data miss ratio
may be lower.

It is interesting to use this data to speculate on the per-
formance to be expected from the 258 byte, 4 bytes/block
instruction cache in the Motorola 68020 [Macg84]. The miss
ratios for a 256 byte, 18bytes/block, cache can be seen from
figure 3 to range from almost 0.0 to about 0.32. Miss ratios
for a block size of 4 should be greater because it takes 4
fetches to load 16 bytes, rather than 1 fetch. If the average
instruction is 3 bytes long, and ope executes 7 instructions
between branches (reasonable figures), then on the average 21
bytes of instructions will be fetched sequentially; the 4 byte
block size captures little of this sequentiality. I would be
inclined to predict miss ratios in the range of 0.2 to 0.6 with
this design for most workloads. (This estimate is derived by
extrapolating from the miss ratios in table 1, adjusting for the
smaller line size. We also take into account miss ratio data for
4 byte lines, collected for another paper in preparation and not
presented here. In section 4, we suggest that 0.25 is a reason-
able point estimate for a 258 byte instruction cache with 16
byte lines, when used with a 32-bit architecture.)

3.5. The Effect of Prefetching

Prefetching has been strongly advocated previously by
this author as a means to significantly reduce the miss ratio of
a cache [Smit82, Smit78]. An additional set of simulations was
run to evaluate the effectiveness of prefetching over a large
variety of traces. These simulations use the same sets of traces
and parameter values as were used to generate table 3: Two
cache organizations were simulated, a unified (instructions and
data) and a split (separate instruction and data caches) design.
Each was simulated with and without prefetch always; prefetch
aliways verifies that line i+1 is in the cache at the time line i is
referenced, and if it is not in the cache, then it prefetches it.
At intervals of 20,000 memory references (except for the
MB88000 traces, where the interval was 15,000), the cache is
purged, to simulate multiprogramming.

IFETCH MISS RATIOS FOR VARIETY OF TRACES

AL AL B A LA NN IR
B 16 BYTE LINES, FULLY ASSOCIATIVE -
C ° ° ° LRU REPLACENENT, PURGE b
Lo 4
© 03k 3 o ° —
P L : o : ° . B
= F i ]
r § [} § g 8 -
n L 8 o . ]
Y ooz~ 38 ° g ° —
= - s o R 4
o [ ¢ e ° 3 i
- < -

EP— i o ® R o Z

=3 L o

- 0.1 i o o g o 3 8 o 6 o —
° . 8 ° ° ° 1
o o 8 8 ° o ° ° 1
i S 0 s g 3 &8 & 8 7
2 ]
0.0 ° ° ° 8 3 ! ' ‘ ‘ —
102 108 104 10°

CACHE SIZE (BYTES)

Figure 3

DATA MISS RATIOS FOR VARIETY OF TRACES

B S A A
o 16 BYTE LINES, FULLY ASSOCIATIVE -

9 o LRU REPLACEMENT, PURGE -
= 06— 8 —
< L & o J
e L 8 i
7} L ° ]
2} - ! g . i
= 04 ° 2 : —
% SRR ]
< B SR - ]
& - o L] § . 4
: 02 : ° % o —
A S ]

o

[= - ° g % -
- ° e § § ! 4

00 = il e ]

Figure 4 10% 103 104 10°
CACHE SIZE (BYTES)

3.5.1. Prefetch Miss Ratios

The miss ratios for the unified cache, and for the instruc-
tion and data caches, both with and without prefetching, were
tabulated and the ratio of the miss ratios with to without pre-
fetching are plotted in figures §, 6 and 7. The vertical scale is
logarithmic and is different in each case.
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There are several observations to be made from figures 5,
6 and 7. First, it can be seen that prefetching is increas-
ingly useful with increasing cache sizse. The reason for
this is simple: as the cache becomes larger, the residence times
of lines increases, and the probability that a prefetched line
will be used increases; conversely, the probability that the line
removed to make space for the prefetched line will soon be
peeded again decreases. The prefetch miss ratio is almost
always below the demand fetch miss ratio once the cache is
above 256 bytes, but the benefits aren't significant and con-
sistent until the cache is somewhat larger. Note that the
results in figure 5 are not monotonic; it is possible for the
demand fetch miss ratio to drop faster with increasing cache
size than the prefetch miss ratio, and what seems to have hap-
pened in a few cases is that with demand fetch an important
loop becomes cache resident, while for prefetch, it doesn’t
quite fit.

From figure 6, we observe that prefetching seems to
always cut the instruction fetch miss ratio, and for large
cache sizes (>8K) always by more than 60%. This result is
not surprising, since most instruction execution is sequential,
as is prefetching. In most cases, the miss ratio for large caches
is less than 309 of its level for demand fetch. It is also worth
observing that the effectiveness of instruction prefetching
increases with decreasing block (line) size, so with its small 4
byte line size, the M68000 instruction cache could expect a
dramatically lower miss ratio with the use of prefetching.

Data prefetching can also be observed to be effective for
large caches, and for data caches of 8Kbytes or more,
prefetching always causes the data miss ratio to drop,
with the average drop on the order of 50%. For smaller cache
sizes, prefetching is much less effective, and in some cases
increases the miss ratio. That prefetching is effective for data
has been previously observed [Smit78]; data is often stored and
referenced sequentially. On the other hand, there is certainly
less locality in data than in instructions, leading to the lesser
effectiveness.

3.5.2. Prefetch Memory Traffic Rates

Associated with prefetching are some problems,
difficulties and disadvantages, discussed in some detail in
[Smit82). One of the most important costs when using pre-
fetching is an unavoidable increase in the traffic between the
cache and main memory, since prefetching not only fetches
what is needed, but sometimes fetches that which is not
needed and will not be referenced. In a microprocessor based
system with a shared bus, the traffic capacity of the bus limits
the number of microprocessors that can be used, and thus
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although prefetching cuts the miss ratio of each processor and
presumably increases its performance, the increase in traffic
can lower the maximum possible system performance level.

In figures 8, 9 and 10 we have computed the factor by
which the memory traffic increases when “prefetch always” is
used. The average increase is shown in table 4. (The average
is computed by summing the prefetch traflic for all of the
traces and dividing it by the demand fetch traffic; it is not just



Cache Unified Instruction Data
Size Cache Cache Cache
32 2.870 1.519 2.440

64 2.138 1.463 2.349
128 1.879 1.368 2.064
256 1.679 1.356 1.942
512 1.547 1.407 1.949
1024 1.602 1.313 1.851
2048 1.476 1.309 1.707
4096 1.537 1.246 1.621
8192 1.389 1.258 1.411
16384 1.269 1.194 1.340
32768 1.213 1.191 1.335
65536 1.209 1.191 1.335

Table 4

Average ratio of memory traffic for
prefetch to demand fetch. (Sum of
prefetch memory traffic divided by
sum of demand fetch memory traffic.)

an average of the pumbers in figures 8, 9 and 10, which would
be misleading.) It can be seen that the traflic increases less for
the instruction cache than for the data cache. For the
instruction cache, the percent by which memory traffic
increases due to prefetching levels off at about 20%
(factor of 1.2 as much traffic) beyond 4K bytes, and for
the data cache, beyond 8K bytes, it stablises at about
30%% to 40%. Whether or not this level of increase is accept-
able depends on the specific system design.

4. Rules of Thumb, Fudge Factors and Consensus Miss
Ratios

In the preceding section (3), we examined a variety of
measurements from trace driven simulations using a large
pumber and variety of program address traces. One of pur-
poses of that discussion was to show the range of behavior
observed, and to see if behavior could be related to facts about
the traces, such as the machine architecture or the source
language. In this section, we take the data in the previous sec-
tion, combine it with data previously published (e.g. [Smit82],
and figure 2), add to that the author's additional experience
with cache memory studies and consulting projects, and pro-
duce a set of opinions. Some of these opinions could be
further justified with additional simulations, but those are
beyond the scope of this paper. The purpose of these opinions
is not to match exactly any one trace or the characteristics of
any specific existing workload, but to provide guidance to the
designer as to (approximately) what workload to expect.

4.1. Overall Miss Ratios

In table 5, we have created what we consider to be rea-
sonable miss ratios to use as a design estimate for a 32 bit
architecture running fairly large programs and a mature (i.e.
large) operating system. The unified miss ratios were
estimated from data in figures 1 and 2, and the instruction

and data miss ratios came from figures 3 and 4. In each case,
the number picked is towards the worst of the values
observed, perhaps at the 85'th percentile or so. In the range of
32 bytes to 512 bytes, doubling the cache size seems to cut the
miss ratio by about 14%; from 512 to 64K, by about 27%, and
overall, by about 23%.

For validation of the data in table 5, we can compare
with the results reported in [Clar83). First, however, it is
important to take note of the complex VAX 11/780 design
architecture. That machine has an instruction buffer which
prefetches in a complicated manner, not matching ours
exactly. That machine also uses a set associative cache with 2

Design Target Miss Ratios

Cache Size Unified Instructicns Data

32 .50 .33 +55

64 .40 .30 .45
128 <35 .27 .35
256 .30 .25 .28
512 .27 .23 .20
1024 .21 .20 .16
2048 A7 .15 .12
4096 .12 .10 .10
8192 .08 .06 .08
16384 .06 .05 .06
32768 .04 .03 .04
65536 .03 .02 .03

With 16 byte line. Table §

elements per set. (The eflect of the latter on the miss ratio
should be small.) Thus, while we compare figures from [Clar83]
with ours, they do not represent exactly same thing.

Clark reports data miss ratios of 16.5% and instruction
miss ratios of 8.6%, for an 8 byte line. He also reports an
overall read miss ratio of 10.3%. (lnstruction miss ratios are
for a design with an 8 byte data path and memory.) For a
cache size of 8Kbytes, the miss ratio can usually be close to
halved by changing to 18 byte lines {Smit82], so our figure of
8% would be closer to 12% to 16% for an 8Kbyte cache with 8
byte lines. This compares to the actual 10.3% or 12.5%
((16.5+ 8.8)/2) figure, which is not out of line. Clark also
reports the results of an experiment in which he effectively
halved the cache size, to 4Kbytes. The data, instruction and
overall miss ratios are reported to be 23.1%, 15.7% and 17.5%,
which compares to our prediction of 12% for twice the line
size, or about 18% - 209 for an 8 byte line size. (We are less
close for the instruction and data figures, where we claim miss
ratios for the two that are approximately equal, and Clark
finds better results for instruction fetch than for data refer-
ence. This is likely due to the very different fetch mechanisms
for instructions and data in the 11/780.)

It is also interesting to compare our predictions with
those in [Alpe83] for the Z80000. There, it is suggested that
with 18 byte blocks, the 256 byte cache will bave a miss ratio
of 12%; we predict about 30%.

4.2. Architecture Type

Although it is generally seems clear that a machine with
a small, simple instruction set (like the RISC machine
[Patt85)) will require more instructions to accomplish a given
amount of work, it is hard to document that from table 2
because of the varying workloads, source languages, design
architectures and compilers. One would expect that the fre-
quency of instructions would be lowest for the VAX, which is
the most complicated architecture and has the most powerful
instructions, next lowest for the 360/370 and highest for the
CDC6400 which has few and simple instructions. (We are
omitting the Z8000 from this discussion since it is a 16-bit
architecture.) If one looks at table 2, the frequency of instruc-
tions increases in this order: 370, VAX, 360/91 and CDC 6400.

The VAX traces were all generated under Unix, and Unix
compnlers are generally not considered to produce highly
efficient code. Likewise, the Watfiv and AlgolW compilers pro-
duce poor code. Also, as noted earlier, the VAX traces may
overstate the frequency of imstructions, due to the lack of
“memory” in the instruction fetch mechanism. The IBM 370
and the CDCB400 compilers are mature and should produce
efficient, optimized code.



Comparing the IBM 370 traces (55% instructions, exclud-
ing the Cobol traces) and the CDC 6400 traces (77% instruc-
tions) we find the expected result. Based on these two data
points, we claim that the ratio of instructions to data
loads & stores will range from about 1:1 for relatively
complex (32 bit) architectures up to sbout 3:1 for
extremely simplified architectures, assuming a standard
(single) register set.

It should be evident that with simplified architectures,
instruction sequences will be longer. Thus, large block sizes
and sequential prefetching will be relatively more useful than
for complex architectures. On the other hand, code sizes will
be larger, suggesting that for the same block size, the miss
ratio may be higher for the simple architecture. (In [Patt83] is
it suggested that this problem can be overcome by using data
compression techniques on the code.)

The frequencies of loads and stores reflects both
the number of registers and the degree of register use
optimization in the compiler. More registers mean that
more information can be kept in the registers, rather than
being loaded and unloaded, but that advantage may be more
thap offset by a compiler which loads and stores all the regis-
ters when a procedure call occurs. These two factors have to
be balanced off in predicting the change when moving to a new
architecture; our data in table 2 isn’t sufficient to make any
definite statement. The approach taken in “RISC"” machines
[Patt85] is that of multiple register sets, arranged as a stack;
this should significantly cut the amount of memory traffic rela-
tive to a similar architecture with only one register set.

It is alsoc worth noting that the frequency of branches
seems to and should have the same trends with architecture
type as the frequency of instructions. If instructions are sim-
ple and not very powerful, the distance between successful
branches should be large, and conversely. The data in table 2
tends to copfirm this impression, with higher frequencies of
successful branches for the VAX and 370, and lower frequen-
cies for the Z8000 and CDC8400. That data can be used to
make reasonable estimates of branch frequencies in an as yet
unimplemented architecture by interpolating among the
machines for which we show information, based on the archi-
tecture complexity.

5. Conclusions

There have been two purposes to this paper. First, we
have presented the results of a very large number of trace
driven simulations along with a discussion of the advantages
and disadvantages of that approach. That has been in order
to give the reader an understanding of the value and
meaning of workload selection for cache evaluation.
The second goal of this paper has been to propose some miss
ratios and other parameter values which can be used
by the computer architect in designing a new machine
and in predicting its performance. The latter bas been
based not only on the data presented here but on the profes-
sional opinion and experience of the author, and should be
taken with suitable “error bounds.” When in doubt, it is
better (at least for one’s own use, as opposed to marketing) to
lean in the pessimistic direction and make conservative esti-
mates. It is also worth noting that from the data here, and
without any known case otherwise, caches always work; 3
cache of any reasonable size always has a hit ratio bigh enough
to make it worth while. The traffic ratio, however, may not be
lower than 1.0 [Hillg4] and that parameter needs to be care-
fully watched. (Traffic ratio is the ratio of the memory traffic
with a cache to that without a cache.)

There are two principal ways in which this work needs to
be extended. First, the effect of line size on miss ratio needs to
be quantified beyond the general statements made here and
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the results in [Smit82] and [Kuma79]; research on this topic is
in progress. Second, our sample workloads here could be use-
fully augmented in two ways; first the quantity could be
increased by increasing the number of traces per machine and
the number of machines traced; second, the quality could be
improved by obtaining traces that are comparable with respect

_ to assumptions about instruction buffering strategies and with

regard to the quality of the compilers used.
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