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Abstract

Techniques formerly developed in the theory of Poincare halfmaps

are modified and applied to the three-region piecewise-1inear

continuous dynamical system of Matsumoto and Chua. Both transfer

and return maps, induced by the trajectories inside the interme

diate region in state space, are formulated as implicit equati

ons. The boundaries of the domains of these maps are determined

explicitly, using the method of calculating the initial points

of touching trajectories subject to specific selection rules. A
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acts on the intermediate region is indicated.
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1• Introduction

In recent years piecewise-linear autonomous <cf. e.g. Cl-53) and

driven <cf. e.g. C6-8D) continuous dynamical systems (specifi

cally with three variables) turned out to be an analytically

accessible rich class of systems. On the one hand, piecewise-

linear models are used to simplify more general nonlinear sys

tems yielding prototypes for their qualitative dynamical beha

vior <cf. C9,103); on the other hand, this class of systems also

is directly applicable to some real physical devices, yielding

quantitative results (cf. CI1,123).

The simplest three-variable models of interest containing

just two regions in state space (that is, two different linear

dynamics separated by a plane), can be treated using the theory

of Poincare halfmaps C3J, no matter whether the flow is of C*

or C1 type, see C3,133 for examples. The system to be dis

cussed in the present paper, taken from C5J, possesses three"

regions and hence two (parallel) separating planes. It repre

sents already the most general example of a whole class of

piecewise-linear systems provided that the switching condition

is controlled by one variable alone. (This is because for models

containing more than three regions, the treatment of the inter

mediate region as given here can be iterated.) We are going to

restrict our attention, however, to the three-region case. In

addition, we shall make use of the prototypic symmetry proper

ties of the example system*
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In general, when the behavior of the system is governed by

more than two different dynamics (three, in the present case), a

new type of state space region, not treated in the theory of

Poincare halfmaps, appears: The so called intermediate region,

being adjacent to two other regions. For a trajectory entering

rig. 1 this region, three ways of dynamical behavior are open in prin

ciple. (1) It may remain there forever - if there is an at

tracting steady state present inside that attracts the trajec

tory fast enough (other types of limiting structures, like limit

cycles, of course cannot appear in a linear, non conservative

dynamics); (2) it may pass through (transfer) this region, even

tually entering the third region; or, (3) it may instead return

to the region it came from. Both, the first and last type of

solution may in general also appear for the leftmost and right

most region, and hence can be treated employing Poincare half-

maps. However, the second type of behavior is new. We shall de

velop a formalism for characterizing it.

Let us, for a moment, forget about the first kind of dyna

mical behavior mentioned above, as it does not lead to any sort

of interesting structures (and, in our present problem, is found

for a set of initial conditions of measure zero only). We then

have to subdivide the sets of entry points into the intermediate

region into those points leading to exit points (for an exact

definition of regions, entry points, and exit points see C143)

that are situated inside the other separating plane (via a

transferring trajectory), and into those belonging to returning

trajectories so that the corresponding exit point lies in the
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same plane. These two kinds of orbits induce two types of point

transformations (cf. C153 Chapter 31) from one separating plane

into the other, or back into the same one, called transfer and

return maps.

Calculating the geometrical locus of all initial points of

touching trajectories C13,163 in the two separating planes, a

technique developed in the theory of Poincare halfmaps, is again

the method of choice in order to determine the boundary between

the domains of the present (two) maps. Unfortunately this pro

cedure does not take account of the case of switching dynamics,

meaning that additional selection rules C133 have to be intro

duced in order to pick the physically meaningful solutions.

In this way by classifying the different types of curves

that subdivide the separating planes, a charting of the canoni

cal parameter space of the dynamics of the intermediate region

can be achieved. This will give more insights into the condi

tions for the appearance of the double-scroll attractor found in

C53 as well as into other chaotic solutions found recently for

the same system C173 and a related model C183.

2. Formulation of the Problem

We are going to investigate the following three-variable, three-

region piecewise-linear system of C* (once continuously dif

ferentiate) type:
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-rr = -a(f(u) + u - v)
at

dV ,« x
-r = u - v + w (1)

dw .

3t = _bv

with the piecewise-straight function

n,u - n, ♦ n, for u<<5. ,
f(u) = \ n,u for tL<u<<J„ , (la)

n#u + n, - n, for 6»<u

We leave the function f (u) undefined for u=^. and

u=£«., respectively, and (as in C143) determine trajectories at

these u values by a limiting process. In the following only

the symmetrical case 0<o: =<v=-<$., assumed in C53, will be con

sidered. Since f(-u)=-f(u) and since there is no other nonhomo-

geneous part at the right-hand side of (1) , the whole dynamics

possesses the symmetry of the function f(u), i.e., is antisym

metric with respect to the origin. This means that all geometri

cal and dynamical structures of the state space (except for the

origin) have to appear twice (with inverted signs). Note that

the shape of f(u), being continuous and antisymmetric, is al

ready the most general possible one C193.

Adopting the notation of C133, we first of all find that

the state space T is, like the function f(u), subdivided into

three parts (called regions):
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T. := <(u,v,w)T

T9 : = <(u,v,w)T
and

T» := <(u,v,w)T

with the two separating planes

u<-6> ,

-£<u< 6y , (2)

&<u > 9

S. := <(u,v,w)Tiu=-£>
and (3)

S«. :=* <(u,v,w)T!u= by ,

respectively.

The steady states of the three partial dynamics are easily

found to be located at

L = I 0 I , L. = I0 I , L » I 0 1 f (4)(1)' L-°(i)' L--(i)
where

k '"T^1 ' <4a>

cf. C53. This immediately implies that L, is a real steady

state C203 for all values of the system parameters. The two

others (L. and L„) are real steady states (located inside T.

or T*, respectively) for k><5 and are virtual steady states

C203 otherwise. For ikl<i all three steady states are located

inside T., while for k<-£, L» (the steady state governing the

dynamics of T») is found inside the region T. while L. (for

reasons of symmetry), is situated inside T«.
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For determining the domains of the transfer and return maps

inside the separating planes, only the dynamics of the interme

diate region T# is relevant. In the following, we therefore

treat this region and its dynamics alone. As we are left with

just one dynamics, up till Section 4, we shall suppress the in

dex "0" (indicating the pertinent dynamics) for the quantities

occuring (like the eigenvalues, for example).

Inside the region T#, the equation of motion can be writ

ten as a homogeneous linear differential equation

jj£ 1 = ©1 (5)

with the state vector l:=(u,v,w)T and the dynamical matrix

r-a(n,+l) a 0
IB :=» | 1 -111 <5*>

0 -b 0

The eigenvalues A, <i=l,2,3) of this matrix are solutions

of the characteristic equation

A' - A* tr IB + A min IB - det IB - 0 , (6)

where the trace, the principal minors, and the determinant of

the matrix IB (all being invariants) are:
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trIB = -a(nt+l)-l = >, + >2 + X, ,

minB = b+ant = A,A, + )|,A, + X2A5 , (6a)
and

detIB = -ab(n,+l) = *,Aa>,

Equation (6) can be solved analytically using Cardano's

formula; this procedure will, however, be omitted here since it

is standard and yields no new insights into the structure of the

problem. One set of parameter values leading to the double-

scroll attractor is given in C53. For this set (a=9, b=14 2/7,

n,=-5/7, and n,=-8/7; k=3/2), one real positive eigenvalue (A,)

and two complex conjugate eigenvalues with negative real part

<^a»As) are found for the dynamics of T9. Thus the steady state

L» possesses saddle-focus character. We are going to take this

property as a prerequisite in our further discussion.

As to the eigenvectors of the dynamical matrix IB, they are

found to be

t1 = / *-4+n,+l I (7)
a

:^-(^+nl+l)
Ai a •

The eigenvectors determine the transformation matrix

|H := (t',ta,t*) (8)

which diagonal izes IB:
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A, 0 0
JL 5s5 IHMEIH =[0 >,0 ] (9)

,0 0 A,

We left the eigenvectors unnormal ized. So in the first row

of IH (which gives the transformation to the u variable, the

one controlling the switching of the dynamics) only "l's" ap

pear. This yields a more transparent representation of our sub

sequent results. (See C133 for related expressions using norma

lized eigenvectors.)

The equation of motion, written in diagonalized coordinates

(in k-space, taking the eigenvectors (7) as a basis, with coor—

dinates x, y, and z), then reads

fc( M = 5t k =-^-k * <10)

As was shown in C133, the dynamics of the system can be

formulated in the space IRxC (rather than (RxCa, cf. also C213)

by introducing a new metrics and dropping the side condition

(z^y). Further on, by a nonsingular transformation of time

(stretching by a factor of IReAai), the equation of motion in

reduced, diagonal ized coordinates x and y (with xeiR and

y€(C) becomes simply:

dx

dt "*H
and (11)

jjj* = (-l+ia>)y ,
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whereby the canonical parameters C133

s- iRrri >a and *•- Hefc! >a <Ua>

were used.

Thus, after an (in parameter space) local gauging process

C133, 5 is the growth factor in the direction of the real ei

genvector while Oi is the angular frequency of the focal motion

(with shrinking amplitude in positive time).

The two switching conditions Ju! = 0 read in x,y coordi

nates:

x + 2f o +<& , (12)

where the complex variable y was written as "f+i? (^,|61R).

This (Eqs. 11 and 12) is our final representation of the prob

lem. Only the equation of motion (11) together with the

switching condition (12) will be treated further on.

Let us now investigate how the dynamics of the system pro

duces further geometrical structures inside the two separating

planes St. For reasons of symmetry it suffices to treat just

one of these two planes. We are going to choose S.. (All re

sults carry over to S» by a change of sign in all coordina

tes. )
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In x,y coordinates, the separating plane S. is given by

(12) using the "-" sign: i.e., every point inside this plane is

characterized by its x and J coordinates, while the value of

ff is a linear function of x alone:

^_(x> := - *—-— • (13)

An analogous expression holds true for the plane S«, (with the

sign of & changed)•

An additional geometrical property comes from the dynamics

of the system: it divides the separating plane S. into two

halves:

Si := Uu,v,w)Tiu=-<J, u..>0>
and ^ (14)

Si := <(u,v,w)Tiu=-o, u..<0> ,

Here u.. is the derivative of u with respect to t, taken

inside S.:

u„ := ~| = fx + 2ReC(-l+icn) C7.(x)+ij) 3
dt 19m

(15)

(S+Dx +<£ - 2coj .

In between these two halfplanes there is found a separating

straight line
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W. := <(u,v,w)Tlu=-d, li,.=0> ; (16)

it can be written in x,| coordinates as

j_(x) . Lijgu* (16a)

by setting the right-hand side of (15) equal to zero (cf. C133

for a related expression). Inside the halfplane S*, trajecto

ries always cross the separating plane from T. towards T#,

while inside Si the systems runs in the opposite direction.

Along the straight line W-, and of course along W„ too, the

trajectories are tangential to S_ or S», respectively.

The character of the u extrema of the trajectories along

the line W_ can be determined by calculating the second deri

vative of u with respect to t, along W..

u*. := 3-4J =» S*x + 2ReC(-l+ia>)*(if.(x)+i|1^(x))3
dt ik

=* x(($+l)a+<s,a) + <J(cuM)

Hence there exists a point on W. with x coordinate

x- a ~° (s+l )*+«>* '

and f coordinate

(17)

(18a)

5 "" •" 2<i> (S+!)+«>
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where the curvature of the trajectory at its extremal u value

vanishes (cf. C223 for an analogous result). At this point

(going along W.) , the extremum changes its character. For x

values greater than x». the trajectories possess a minimum of

u at the points of W., while for smaller values of x we find

maxima of the u components on the orbits.

ria« 2 Since for any bounded initial point a unique solution of

the system exists, due to the C1 character of the flow (the

derivatives with respect to t match inside the separating

planes S*) , the above results could be found by looking just at

the dynamics acting on T., without considering the regions T.

and T„.

We are now in the position to define transfer and return

maps on the separating plane S.. A trajectory entering T. in

a point of Si may either leave this region again by crossing

the same separating plane (returning to T.) or by crossing the

other plane S», eventually entering T„ (transferring). Hence

the dynamics of T. induces two different types of maps. A

transfer map (with range inside S*) ,

T: ST -» s;5 (x,|) f-»r(x,j) , (19a)

and a return map (with range inside S.) ,

$s Si -* SI; (x,f> r-»A(x,f> . (19b)
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A concrete, implicit representation of these two maps can

be obtained by inserting the solution of the linear differential

equation (11) with initial point (x ,^.(x)+if)T in St into the

switching conditions, i.e., by calculating the u component of

the. trajectory with the above initial condition, namely,

u(t) = xe?t + 2ReC(^.(x)+ic6)e<",*lc,*t3 , (20)

and requiring u(T^)=+J C133. This yields:

xeST+ + 2ReC(7.(x)+ij>e*"I*lwn3 = J , (21a)
and

xe*T- + 2ReC(^.(x)+iS>e<M*tt,',r-3 - -J . (21b)

Equation (21a) is valid for the transfer map & while

(21b) is the one that applies for the return map &. Note that

these equations differ only by the signs of o on the two

right-hand sides.

The two expressions (21a) and (21b) are scalar, transcen

dental implicit equations for the time at which the trajectory

fulfills the switching condition u«^ or u=-^, respectively.

Thus

3-(x,J> » (xe*r'f <*.<x>+if>e'-,#ii"V
and ^ (22)

£(x9f) » <xe,V<Vx)+if>e,-t >T

For finite values of the entry coordinates x and /, the

equations (21a) and (21b) both yield a countable infinity of
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negative solutions (T values) C163, but there are either no or

at most a finite number of solutions found on the positive half-

line IR*. This is a direct consequence of the "Lemma from Anal

ysis", shown in the Appendix. To apply it, we just have to esti

mate the exponentially decreasing amplitude of the oscillatory

term by the constant 271f-<x> +fa (that is the value at t=0)

and do an appropriate shift and rescaling of both time (by a

factor of 1/f) and amplitude (by a factor of 1/x).

The only physically meaningful solution, for both x and

f given, is the smallest positive solution found' for either of

the two equations. This corresponds to the first time that the

trajectory with initial condition (x ,^-(x )+i/)T meets the re

quirements of one of the switching conditions, provided there is

any positive solution at all present. Otherwise, the system is

attracted by the steady state L. and hence remains forever in

side the region T9.

3, The Domains of the Transfer and the Return Hap

3.1, General Properties

If all (positive) solutions of the implicit equations (21a) and

(21b) could be found for arbitrary finite values of x and /,

it would be easy to determine the domains of the transfer and

return map, respectively, by just selecting* the smallest posi

tive solution of both equations. Unfortunately these
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transcendental equations cannot be solved analytically. So we

have to apply a different approach in order to obtain a result

in closed form.

Let us first discuss the properties of the statical and

dynamical manifolds C133 that correspond to the dynamics of T,.

The stable manifold M. (meaning that perturbations off this

manifold are damped away by the dynamics of the system) of the

steady state L* is spanned by the real eigenvector t1 alone.

This manifold intersects the two separating planes S* in the

points h»ss(x»<(,0)T, with

x,j 2= +<J , (23a)

where the "♦" applies for the intersection with S„ and the M-"

for the one with S— This simple form is a consequence of (12)

(and hence the lack of normalisation of the eigenvectors).

The unstable manifold M„ (unstable in the sense that per—

turbations off this manifold are amplified by the dynamics) is

the focal plane of the steady state L,. This manifold inter

sects the two separating planes in two straight lines ^: cha

racterized by x=0 and ♦I a^#» or ^a_, respectively, with.

7t 8=s ±| , <23b)
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cf. again (12).

The statical manifolds mentioned are limiting cases of more

general, so called dynamical manifolds Mi cf. C133. These mani

folds are constructed by taking all points "of all trajectories

(for positive and negative times) that differ in their initial

conditions by just a phase (of the initial y coordinate),

without considering the switching of dynamics, i.e., they are

confined to one dynamics. The geometric shapes of the dynamical

manifolds are logarithmic double-cones, with the one-dimensional

(in this case stable) manifold behaving as an axis of rotational

symmetry, and the two-dimensional (in this case unstable) mani

fold being the separating plane between the two branches. By

construction, corresponding entry and exit points of the region

T. must be situated on the intersection curves of one of the

separating planes with the pertinent dynamical manifold. As

there are two separating planes present for T., however, both

intersecting this manifold, the dynamics need not map an entry

point into the same plane and hence onto the same intersection

curve, as it was the case for two-region systems C3,133.

Fig. 3 Employing the classification used in C33, the types of in

tersection curves appearing inside S. are Jl-curves, Cartesian

leaves, and isolae with base lines, valid for the halfplane

x<0, while only il-curves appear for x>0. Inside the other sepa

rating plane, S„, we find the same situation with the signs of

x interchanged. Again the curve 6>*=S+1 C133 inside the cano

nical parameter space of the dynamics from T. marks the
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boundary for the appearance of complicated isolae C33. (For a

detailed discussion of complicated isolae and their importance

far the maps induced, see C13,223.)

3.2, The Line x=0

Let us now investigate the implications of the structures

discussed obove for the solutions of the implicit equations

(21a) and (21b). First of all we finds

THEOREM 1 For x*0 there is at least one solution of either

(21a) or (21b) present inside the positive halfline IR*. **♦

PROOF Due to the symmetry of the problem, we can assume x>0

without loss of generality. In this case at least one solution

can be demonstrated.

For a trajectory starting at the initial point

(x ,^.(x)+if )T we know from (20)

u(0) = x + 2^.(x) =» -J . (24)

Let us first treat the case x<d. If we choose

t. =| ln^*- , <2S)
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then, after the time t,, the u component of the trajectory

arrives at

u(t,) = xe5t"+ 2e"t4C*^.(x)cos<utl - fsin<ytt3 . (26a)

The first term of (26a) now by construction has reached the

value x9+=6 (Fig. 3), while the influence of the second (os

cillatory) term is still unknown. This term, however, certainly

vanishes at a time t» inside the interval Ct,,tl+'??'/o3, so that

we find:

u(t») « xe**1 > xe8t"= S > -£ =• u(0) . (26b)

Since u(t) is continuous everywhere, the intermediate

value theorem (Bolzano) applies, proving the existence of a f

with u(*r)=<$.

If now x-><J, we can choose t,=0 and (26b) is now changed

to

u(t,) = xesti ^ x >y 6 > S = u(0) , (27)

while all the other arguments carry through unchanged. Q.E.D.

This theorem reflects the fact that L», the steady state

at the origin of the state space, is of saddle-focus type and

hence cannot attract any trajectory unless the system enters the

region T9 inside the unstable manifold M„ (characterized by
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x=0). Remains the question for which initial values of J the

latter possibility is realized, so that no positive solution,

neither of (21a) nor of (21b), exits.

Inside the unstable manifold Ma all trajectories starting

in a point of 2". are of the form

y(t) = (7».+iS >e"1*1"* , (28)

i.e., the orbits are shrinking exponential spirals. Writing them

in polar coordinates with R(t)=ly(t)I the radius and

)f (t)=arg y(t) the phase of y(t), we find:

R(t) = R,e"%
and (29)

t<t) = #. + CJt

where

r. s= R(0> =7ti-+ia
and (29a)

X. j= "Y(0) = fr - arctan|- .

We now need some results from C163 concerning the proper

ties of flat spirals like (28). First of all the extremal u

values of the trajectories in question are found at the phases

X««.!3-arctanlA>+2im (maximum) and at X#I-=fl*-arctanl/ti/-»-2frn (mi

nimum), where n is any nonnegative integer. So an easy crite

rion whether a trajectory can fulfill the switching conditions

(21a) is to calculate its maximal u value. This yields the

condition:
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u(t..„) = R. cos^ exp(-tM.) > & (30)

with

t... = XasaZZi . <30a)

It suffices to treat this case, since )CMa is always

smaller than *.,„ by a amount of TT. Hence for a flat shrinking

spiral, starting at an u value of -J, the switching condition

cannot be fulfilled for positive times at u=-o if it is not

satisfied at u^S for an earlier time; if, on the other hand,

this is the case, the smallest solution of (21a) and (21b) has

already been found.

A critical situation is reached for an initial f-/»

leading to u(ta-.)=ei. For all possible initial points (from 2".)

with l|l smaller than this given one, no positive solution of

(21a), and hence of (21b) too, appears, while for all absolute

Fig. 4 values of f greater than this given one, the entry points lead

to transferring trajectories, i.e., these points belong to 3) (T)

the domain of the transfer map T.

A concrete calculation of the critical j value means to

solve the equation

u(tMB) = R, cos^ exp(-tMB) » <5 (31)

for R#. This, however, is impossible in closed form, since t,OT

itself is (via X., cf. (30a)) a function of R;. As was shown
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in C163, Rv is a fixed point of the function

where

1 1**-*,* '
F'(R) = a exp(- ± arctan " Tf" ) , (32)

a = ^7a?+l exp(-(fl*-arctan->> • (32a)

This fixed point is stable for all values of Cu>0, as can

be tested immediately by the criterion, C163,

F"(R) > R (33)

with

R := ff=-]/wVl , (33a)

yielding:

F"(R) = R exp(^(IT-2arctani)) . (34)

Since 0<cj<*» one always finds 0<arctanl/ej<7772, and hence the

numerical value of the exponential in (34) is greater than 1

for all possible values of Co, proving stability of the fixed

point.

As far as the numerical properties are concerned, the above

mentioned fixed point algorithm converges rather fast. In addi-

tion, luckily R in all cases is contained inside the basin of

attraction of the fixed point, meaning that this point is an
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universal initial point for the fixed point iteration. If F"(R)

comes close to R itself, however, the speed of convergence

drops rapidly. (For this, analytically known, fixed point we

find dF(R)/dR=*-l, i.e., it is indifferently stable.) Due to the

fact that dF"/dR<0 at all fixed points of the function F"

C163, these points are always approached on an alternating or—

bit. So the convergence can be improved considerably (for small

values of Co up to a factor of 10* and more) and may be even

made possible in numerical practice, by using

Rt.t » F"(R.) + d(R,-F"(Rl)) (35a)

for the fixed point iteration instead of the ordinary

Ri*i = F"(R.) (35b)

formula.

The d in (35a) is a damping factor that should be taken from a

range of about 0.2 to 0.8 in order to obtain good results.

Now it is easy to determine the basin of attraction of the

saddle-focus L#. One end point of this range is the intersec

tion of 2f. and W., yielding the f value £/2o, cf. (16a).

So the range in question is just the open interval (/.,<^/26*)

(where f,:=*-"[Ri-jl. ) on the straight line 2f_. Only for these

entry points with exactly vanishing x component (a structur

ally unstable situation) the system remains forever inside T»,
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converging towards the steady state L,

3.3. The Range x>8

After having classified the line ?. of the separating

plane S., let us now turn to values of x greater than zero.

For this portion we find:

THEOREM 2 All entry points of T. situated inside S. with

x>0 are initial points of transferring trajectories.

PROOF This proof is similar to that for Theorem 1. We have

to investigate the behavior of the u component of the trajec

tory, i.e., the function u(t), cf. (20). Let us first suppose

the switching condition (21b) to be fulfilled for some Ta. To

abbreviate the notation, we decompose u(t) into an exponen

tially growing term e(t):=xe**>0 and an oscillatory term

o(t) :='7-(x)cos«ut-fsir»jt with an exponentially decreasing ampli

tude a(t):«2e"%>0. Then at Ta, where (21b) is fulfilled, by

construction the following inequality holds true:

u(Ta) =» e(ra) + a(ra)o(ra) - -J » u(0)

a(r,)o(ra) - -<J - e(ra)

a(Ta)o(ra> < -<J

(36)

Now for t,:=Ta-o/A/>0 the amplitudes show a(t,)>a(Ta)

while the oscillatory term just changes its sign o(tl)=-o(Ta) ,

hence
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a(t,)o(tt) > i . (37)

But since e(t)>0 for all values of t, to obtain u(tt) from

the left-hand side of (37) we have to add a positive quantity to

the product a(t,)o(tt). Hence u(tt) too is certainly greater

than 6. So, by the intermediate value theorem there exists a

solution T, of (21a) inside the open interval (0,tt). This

shows that for initial points from the halfplane x>0, for every

positive solution Ta of (21b) a corresponding positive solu

tion of (21a) can be found that is smaller than Ta-fT/^.

If, on the other hand, there is no positive solution of

(21b) present, then the solution guaranteed by Theorem 1 (since

x£0) has to be a slution of (21a). Q.E.D.

This theorem shows that for x>0 the first positive solu

tion of the equation lu(t) !=»^ always fulfills (21a), meaning

that no returning trajectories with initial x coordinates

greater than zero appear. It also reflects the fact that for the

upper half plane only il-curves are found as intersections of

dynamical manifolds with S..

3.4. The Range x<0

Now, as the remaining main problem we have to treat the

portion of S* possessing x<0. There we cannot use the above

arguments .(with changed signs inside S.) because only the



- 26 - November 29, 1985

function e(t) is antisymmetric with respect to x, whereas

a(t) behaves independently of x and o(t) is a nonhomogene-

ous linear function of this initial coordinate.

Inside the mentioned portion of St we meet both transfer—

ring and returning trajectories. To visualize this situation,

first imagine an entry point with x value less than x«. (cf.

(15b)) and an initial / close to f»-(x) (cf. (14b)). Since

the maximal u value of a trajectory continuously depends on

the initial condition, there is a strip of entry points to the

left of the straight line W. leading to maximal u values of

the trajectories from the interval (-<J,-<J +£>. Since these values

are less than 6, those initial points certainly give rise to

returning trajectories.

On the other hand we can choose \j\ and simultaneously

the initial amplitude (being 2|f7.f(x)+ia ) big enough such that

at t,:=s7T/2w the following condition

u(t,) » xe*'"1- 2e~t</> 6 (38)

is fulfilled. This equation can easily be solved for /,

yielding:

-I >e«.iris!!: . <38a)



- 27 - November 29, 1985

Since the u maximum of the trajectories in general is not

located at the phase "X9+Tt/2, all f fulfilling (38a) are cer—

tainly situated inside oD(T) the domain of the transfer map 3*.

Fig. 5 So we now have found examples for both types of initial points

(leading to transferring and to returning trajectories, respec

tively, cf. Fig. 5).

A similar argument can be used to show the following

THEOREM 3 For x<0 all transferring trajectories intersect

the plane S* for a time T<2fr/w. ***

This means that a solution that does not intersect S* du

ring the first turn around the stable manifold is a returning

trajectory. This theorem is again a consequence of the fact that

inside S* for x<0 only Jl-curves appear.

PROOF Let the first u-maximum of the trajectory in question

be located at tt<2V7ct. If there occurs no intersection during

this turn, i.e., u(tt)<o, then for the next maximum at ta we

find, due to the maximum property of u(t), o(ta)>0,

a(ta) < a(t,) . (39a)

We can therefore employ the Lemma of the Appendix to estimate

u(ta) » e(ta) + a(ta)o(ta) < e(ta) + a(t,)o(ta) . (39b)
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This yields u(ta)<u(t,)<0. The above process may be iterated,

showing that all subsequent u maxima are smaller than o too.

Since x^0, Theorem 1 guarantees at least one solution. In the

present case, this must be a solution of (21b), i.e., a re

turning trajectory. Q.E.D.

The preceding arguments show how to find the boundary bet

ween the domains of the transfer and the return map. A limiting

case is reached when the first u maximum of a trajectory ex

actly reaches the value &, i.e., when the trajectory touches

the plane S* in a point of the line W*. These points are cer

tainly maxima of the u component of the trajectories since

their x values are less than zero and, on the other hand, x^

is positive. So the trajectory has to fulfill (21a) while simul

taneously the derivative of u with respect to t must vanish

at this point:

$xe*T - 2e_rC (<7-(x)+6»j)coscar + (^^.(x)-/) sin«^T3 = 0 . (40)

Compare (15) for a similar condition on the initial points in

side S..

Now we have to calculate the entry points that are initial

values for the last-mentioned type of orbits, called touching

trajectories. This procedure was developed in principle in

C16,223. Since we cannot analytically solve (21a) alone, it is

also not possible to solve it simultaneously with (40); so we

have to adopt a different approach.
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First of all let us think of the whole state space being

governed by the dynamics of T, only; i.e., for the moment we

ignore the switching of dynamics. Secondly, we formulate an in

verse problem. To do this let us look for the geometric locus of

all initial points of trajectories fulfilling the switching con

dition u=£ after a certain, fixed amount of time. For this

purpose we rewrite (21a) using the definittion of *[.(x):

xe* - 2e"T C—=-cos6jt + fsino>T3 = & , (41)

and solve for f, yielding the function fT(x) (being linear in

x):

|T(x) =er>r"COS"r x-8^J . (42)
*r 2sin^T 2sin*»T

So the curves of equal mapping durations C16,223 are simply

straight lines inside the separating plane S..

Note that in contrast to the /r(x) found in C16,223,

which reproduces the equation for W. as T goes to zero, here

the second term of the expression (42) diverges in the same li

mit. This singularity reflects the fact that for finite values

of the initial coordinate J no transfer through the region J9

can happen in no time. However, if if I itself goes to infini

ty, written in cylindrical coordinates, it becomes clear that

the phase difference and hence the mapping time between the en

try point and the exit point shrinks to zero.
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The lines |r(x) are not parallel for different values of

T, i.e., they may intersect each other. Such an intersection

point (say of f-?;(x) and fr(x>) means that the trajectory

starting there fulfills the switching condition (without actu

ally switching through) at time T4 and thereafter at time Ta.

Certainly the second solution, fa, is an artifact due to the as

sumption of a homogeneous dynamics acting; on the whole state

space. However, if we think of T, being the first and Ta the

second solution of (21a) and if we decrease the interval legth

^ := T, - T, , (43)

i.e., the time the trajectory runs inside the region T* under

the dynamics of TB, then in the limit for at —>fd we find a

:ig. 7 touching trajectory (cf. Fig. 7). So we have to calculate the

intersection points of the straight lines fT(x) and fr*Ar*x* >

i.e., to solve the equation

^(x) = fT^r(x) (44)

and then take the limit at—>0 of this expression (cf. Fig. 8).

For xT , the x component of the intersection point, we

find, using x^Si

re«»ur-cos6>r _ e'^^cos^r+AT) 1
*t,«i-I 2sin*r 2sin«u(r+AT) J

c . (45)
m rV+cosfrr _ eT**r+cosfi>(t+at) |

X**[ 2sinc*r " 2sinw(r+Ar) J



- 31 - November 29, 1985

This can be solved for xr.Af/x,* yielding:

*U£ = Mill (46)
x^ NrUr)

with

Zt(at) = sin*(r+*r) <er+cos&r> - sinwr(eT*4r+coso(T+Ar))

and (46a)

NT(AT) = sin</(r+4r) (e,XM,r-cosoT) - sinoT(e,ft,,,r**r,-coso(r+dT)) .

Fig. 8 Unfortunately both functions ZT(AT*) and NTlar) vanish

at the origin, so the expression for XTtAT/x»» is undefined as

AT goes to zero. Since both functions approach zero linearly,

the limit can, however, be taken regularly by using 1'Hospital's

rule, i.e., investigating the limits of the derivatives

and

d tz(T) :a lim-j—Zt(AT> = <o + e'(^cos«>T-5in<;T) (47a>

n(T) := lim^—K.(^r) = -^ + e,?*uT(ocosor-(j+l)sinoT). (47b)

This quotient remains finite for T>0 and hence yields an

analytical expression for the x components of the entry points

of touching trajectories:

xT := lim Xt.at = x^ -7—r . (48)

Now the J components of these points are easily found by

inserting x*r into (42). This is the main result of the present

paper: We have found a parameter representation of the boundary
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curve P<T) in the (system independent) x,J representation of

the plane S.:

P(T) := (xT,fr(xr))T (49)

Comparing this to analoguous expressions for frlxr* *n

C16,223, we find only a different sign for the co and the

sin«nT terms in the expression for z (T) while in n (f> only

the sign of the sinor term is changed. These changes of signs,

however, result in the existence or nonexistence of the limits

T->0 and T—»«•. For T-»0 (48) diverges like (42). Expanding

n (7 > at the origin up to second order yields

n(T> » -^((S+l)'+wa) + 0(t"> , (50)

i.e., there is a second order singularity of k? at the origin.

This means that there is no finite entry point leading to a

touching trajectory with mapping time zero. This is an obvious

result, if we keep in mind that there is no transfer in no time

through T. for finite initial coordinates. The other limiting

case, T~^wi simply yields x —>0. This limit, however, is due to

Theorem 3 not relevant for our problem since it describes tra

jectories, running inside the focal plane MH, that touch S»

after having crossed it an infinite number of times. (These two

results are different from those found for an analogous problem

in C16,223; there both limits exist and are relevant for the



- 33 - November 29, 1995

system behavior.)

Now it is interesting to recall the limiting behavior of

|r(x), cf. (42), where we found that the second term diverges as

T—>0. The first term, however, stays finite, so that

Urn fT(x) =~fx-l^ . (51)

This means that in the present limit the lines fT(x) tend to

be parallel to the boundary between Si and $T, i.e., to the

straight line W. of (16).

Although the behavior of the functions z (t) and n(T)

(especially the induced pole structure of xr) is interesting in

its own right, we are going to restrict our discussion to the

physically relevant interval of T space. Due to Theorem 2 and

3 only T values smaller than 2fT/ej • and x values smaller

than zero belong to this range. So let us first find out, which

one of these two restrictions is more severe. It turns out that

the second condition selects the- physically meaningful interval

out of T space.

THEOREM 4 The function xT changes its sign at some

0<T,<fl76> for the first time. For all T from the interval

(0,r»), the curve T(T) is smooth (C0*) and all its points are

situated inside the halfplane S^. ***
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This theorem therefore states that for the interval in

question all initial points of touching trajectories show x

values less than zero and are entry points of the region T».

Meaning, the trajectories belonging to these initial points stay

inside T9 for all t€(0,T).

Before proving the theorem itself, we are going to show

some properties of the functions z(r) and n(r).

LEMMA The functions z(T) and n(T) have their first zeros

at T.<#A/ and at T„<2fr/f/, respectively, where T9<Tm. ***

PROOF of the LEMMA For reasons of abbreviation we write:

Z (T) a Co + e,(T) Ot(T)
and (52)

n(T) a -o + ew(r) o.(r>

where

and

e,(t) :a ©T

o, (T) :=Ocos^T - sin^r

ew(r) := e€*M,r

o„(r) :a^cosor- (J+Dsinwr

(52a)

The behavior of both functions for T —>0 we already know.

There z (T) approaches the finite value 2«Jf while n(r) vani

shes to second order like -T*/2 ((? +i)1+oa)o, cf. (50). Thus the

first nonnegative zero of n(T) is already found. Unfortunately

the other zeros of the two functions cannot be obtained analyti

cally, so we have to estimate (giving inequalities for) them.
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Let us rewrite the equations (52) to solve (z(T)=0 and

n(T)=0), by shifting the constant Co term towards the right-

hand side, to obtain a more intuitive formulation of the equa

tions:

e,(T)- o.CD = •- cj
and (53)

e. <T)»o.<r> « ej .

Since the amplitudes of the oscillatory terms are growing

exponentially, for T—>oo we know that the solutions of (53)

converge towards the solutions of the equations

ot(T) a 0
and (54)

0.(7") a 0

These equations can be solved analytically and yield the

results:

T„ a ^(arctan^ + nff) , n=0,l,2...

as well as (55)

r— a Q<arctan§Tr+ n1r> ' nas0»if2...

Note that at these values of T the products e.(r>o,(T)

and e„Cr)oll(r> , respectively, too vanish. Although we are in

terested in the first positive zeros of the functions z(T) and

n(T), i.e., in the behavior for small values of T, the above

results will help us to estimate these solutions of (53).
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First let us show the existence of solutions of (53) inside

the intervals (0,$*/«>/) and (0,2ft7o) , respectively. We just have

to calculate the oscillatory terms at T=1T/cj and f=2^7</. There

we find

o,(0) = co , a, (J) = -Co
and (56)

*—) a — Co . O (——Ow(,-) a -Cj , Op(--) = ^ ,

since at these points the two amplitude functions e,(f) and

e„(r) both show values greater than 1, we can estimate the

functions z(T) and n<T), so:

z(0) = 2o> 0 and z(-) = -Me^-l) < 0

as well as (57)

n(0) = a, n(-) = -^(e^+l) < 0, and n(|^) =^(ea0>u-l) >0 .

Hence the intermediate value theorem applies, proving the exist

ence of solutions of (53) that are smaller than ft/Co and 2fT/e*,

respectively.

To obtain a better estimate for the solutions of (53), let

us have a look at the extremal values of ot(T) and o„(r).

They are found to be situated at

T.« «^(?r-arctan£ + nir) ,n=0,l,2
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and <58>

T- = ,-(1T-arctan^^ + nfr) , n=0,l,2 ...
•" o CO

The mentioned extremal values, of course, are shifted by a

distance of W2tj from their corresponding zeros of o, (T) and

o„(T), respectively. Since at these points the absolute values

of both products e, (r)o,(r) and em<T)am<T) are greater than

to, we can again employ the intermediate value theorem and obtain

(by looking at the first minimum of z(T) and the first maximum

of n(T>) the intervals where the solutions of (53) reside:

11 fX
T« € (-arctanfe,-(arctano + -))

O CO £

and <59)

T. e <i<17+arctan^r)Ii(|2+arctan1^T)) .

Since for finite positive values of 5 and Co the arctan

function always yields results from (0,7T/2) , the intersection of

the two intervals in (59) is empty and hence T„>TB. Q.E.D.

Using the result of the Lemma, we now can give a

PROOF of THEOREM 4 Let us first look at the limiting beha

vior of JT(xT) as T approaches zero. Inserting the expres

sion for the limiting behavior of xr (48,50) into equation

(42) yields in this limit:

lim !?(xT) = lim -[ i2?,*1* *—rr ♦ rM *•• - <*0>
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Hence f7(xt) diverges towards -<* as f goes to zero. This

yields one end of the limiting behavior of the boundary curve

T(r>.

Since there is no zero of n(r) and no zero of sinA/r

inside the open interval (0,T.) (Tt<ff/*/), the functions xr (46)

and fr<xT) (42) show no singularities on this interval and are

both smooth (in fact are C*).

In addition, due to the Lemma, there can be no change of

sign of the function xr prior to TB, so at T=t, the curve

»(T) leaves the halfplane x<0 for the first time, selecting

the physically meaningful branch of the curve, called r.(T).

Remains to show that this branch of the curve is situated

inside S*, i.e., that for all positive values of r smaller

than T8 the curve P(f) is situated to the left of the

straight line W. and hence the following condition

fT(xT) < f-(xT)
or equivalently

fT<xT> - f*-<*T> < 0 <61>

is fulfilled. Inserting the results obtained so far (14b,42,and

48) and using the identity x^a^ the left-hand side of (61)

may be written ass

F(T> :a Cf,(T) - f,(T) - f,(T>3 x^
(62)



e<s»"T-cosc^
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§+l\ z(T) _ eT+cos&>r 1_ I
2co J n(T) "" 2sin^r 2oj **

The second and third term (fa(T) and f3(T)) of F(T) are

certainly positive for the interval in question and hence will

yield a negative contribution, while the influence of the first

term f,(T) is still unknown. For this fuction we define:

f(T) :a o el**"T - cocosor - (S+l)sina»T (63)

And so f|(T), the first term of F(t), can be written as

* 2co&\nttr n(T)
(64)

About the second factor (z(T)/n(T)> we already know that it

is negative for the interval (0,T,) in question, while the sine

function in the denominator of the first factor is certainly

positive there, so let us investigate the behavior of f(T).

Here we find at the origin

f (0) = 0 ,

f'(0) a 0 f (65)

f"(0) a &>( (J+1 )*+«,*) ,

with "'" meaning the derivative with respect to T.

This shows that f (T) possesses a minimum at the origin.

Here again we can apply the Lemma from the Appendix (after a
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shifting of the phase and a rescaling of the amplitudes) finding

that all subsequent minima of f(T) take values greater than

zero. Hence f (T) shows positive values for all T>0, it espe

cially does not change its sign inside the open interval (0,ft).

So far we have demonstrated that the three terms of the

function F(T) all separately yield negative contributions for

the range of T mentioned. This means that the whole' function

only takes negative values inside the interval <0,Tt) , and hence

r.(T) is situated completely inside the interior of s!. Q.E.D.

Note that in the function f,(T) for T —>0 the factors

f (t) and n(T) cancel (except for the sign) and hence the

first and second term of F(T) both diverge only to first order

like -1/6*7 (independently of the canonical parameter £),

yielding in this limits

lim F(r) =» -[!? ♦ 5z]*- • <**>

3,5, Conclusion

By now, the domains of the transfer and return maps inside^

the halfplane Si have been demonstrated explicitly by calcu

lating their boundaries. Thus we know that the halfplane of en

try points is divided into three portions-* (l)oD(T) the domain

of the transfer map T containing all points with x values
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greater than zero as well as the points of Z. to the left of

f. and the points of Si to the left of the curve f_(T): i.e.,

Fig. 9 those entry points of T, with absolute values of J, and hence

initial radius, big enough. (2) <£(&) the domain of the return

map 5L containing the points with negative values of x in

between the curve T.(t) and the straight line W.. (3) The ba

sin of attraction of the saddle-focus L. (which, due to the

saddle character of the steady state, is just the f interval

(f.,J/2*>) on the straight line 2"., so that it is of measure

zero inside the plane S.).

Note that fT<xr, >» the f value of the end point of

P_(T) , is equal to f,, the end point of the basin of attraction

of the steady state Lt. Thus it suffices to determine either

f9 - by the mentioned fixed point algorithm, for example - or

Ts, using a root finder, like Newton's method, for example.

In practice f#a fr^(x^) can be calculated from T,, but on

the other hand TB cannot be found analytically from f,. So

the second way yields the result faster. However, computing both

quantities independently gives a good criterion for the consist

ency of the calculations.

A, Criteria for the Appearance of the Double-Scroll Attractor

After having characterized the behavior of the system inside the-

intermediate state space region T., let us finally discuss some
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criteria for the appearance of the double-scroll attrac-

tor. Due to the symmetry of the problem it suffices to treat

just one half of the state space; let us choose the one with u

values less then zero.

The attractor itself is well characterized in C53, so we

omit this task here. We just mention one facts The two steady

states L- and L#, like L,, are of the saddle-focus type. The

character of the dynamics acting inside T. (and inside T* as

well), however, is of the opposite type to the dynamics of T99

i.e., the real eigenvalue turns out to be negative while the

real part of the two complex conjugate eigenvalues is greater

than zero.

The first criterion for the appearance of the double-

scroll, as already mentioned above, is the reality of the steady

state L. (and, equivalently L#) , i.e., k>6 (cf. (4aH.

Otherwise, if this steady state would be a virtual one, the only

possible type of intersection curves of the dynamical manifolds

from T. with the separating plane S. would be Jl-curves.

Hence every trajectory entering T. would leave this region af

ter more or less half a turn around the real eigenvector C133 of

L- and thus no scroll structure could be found inside this re

gion.

Let us now apply the results of C133 to the dynamics acting

on T-. For the appearance••of a scroll structure inside this re

gion of state space a trajectory has to run several times around
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the unstable manifold (real eigenvector) of the steady state

L., i.e., its entry point must be situated either on a simple

isola corresponding to the dynamics of T., or on that portion

of a complicated isola that is not mapped to the other part of

the same isola, situated inside the range of the halfmap. In

consequence the corresponding exit point is situated on the base

line belonging to the isola in question.

If the relaxation towards the focal plane of the steady

state is fast enough, as is the case in the example treated in

C53, where §.a20.74 was found (note that since we discuss dif

ferent dynamics in the present Section, we add an index "-",

"0", or "+", respectively, to the quantities characterizing the

dynamics), all base lines are located very close to the inter—

section line of the focal plane of L. with S., called <T—

(this is not to be confused with the 2V belonging to the dy

namics of T0). For this example the base lines are almost in

distinguishable from this intersection line (see Fig. 10). To

give a rough estimate of this fact we calculate the Cartesian

point x.« C133 that is the limit of all maximum distances of

the base lines from the line 2*_. This quantity turns out to be

(<*-k)/(S.+l)a0.04&«5-k) , i.e., less than 57. of the distance that

the intersection point of the real eigenvector has from 2 —

Fig. 10 So we can treat the question of exit points (with the cor

responding entry points being situated on an isola) as an almost

"flat spiral problem" E163 and calculate the interval of pos

sible exit points along S*_ (in close analogy to what we did



- 44 - November 29, 1985

for Z"«-, calculating the basin of attraction of the steady

state L.) . Now it is not hard to find out whether this portion

of 5f— intersects (in a set theoretical sence) both the do

mains of the transfer and the return map, or whether it inter

sects just one of them (cf. Fig. 10). This yields a sufficent

condition for the appearance of transferring trajectories inside

a chaotic attractor. If, on the other hand, the mentioned por

tion of 2"— does not intersect the domain of *T, there may,

nevertheless, exist entry points of T#, situated on i^-curves of

T. that lead to transferring trajectories of a chaotic attrac

tor.

For the case of a slow relaxation towards the focal plane

inside the region T., the "flat spiral exit points" are a poor

approximation of the real system behavior and hence one has to

investigate the intersection of the image of all isolae with the

domains of the maps T and o\f respectively. This needs a

little more effort. It can be done, however, by calculating the

Cartesian leaf, as a limiting case for isolae, with all its

boundaries inside Si. (This is shown in C223.) Thereafter one

has to take the intersection with the domains of the two point

transfomations, acting on T».

As a last step let us, for a moment, think of the dynamics

of T., and hence the structures determined by this dynamics, as

fixed. Then by varying $• and (o9 (the canonical parameters

of the dynamics of T,) we can change the domains of the trans

fer and return map to intersect the relevant exit points of T.
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(or not to do so, respectively). Calculating the limiting condi

tions for such intersections yields relations between $• and

co9m These relations lead to a charting of the canonical parame

ter space of the dynamics of T#, similar to the charts pre

sented in C13,223. A detailed discussion of this topic, however,

will be the subject of a subsequent paper C233.

5. Discussion

In this paper we treated a piecewise-linear continuous dynamical

system showing the "piecewise-linear double-scroll" C53 (for a

topological equivalent nonlinear system cf. C243) and other

types of chaotic attractors C173. The special appeal of this

model is its being realized in Chua's circuit C53 and hence an

experimentally easy to handle real life system (behaving almost

piecewise-linearly)f Our aim was to obtain a better under

standing of the appearance of chaotic solutions of this system

by means of dynamical stuctures present inside the intermediate

region of state space. (The contributions to the chaotic behav

ior coming from the dynamics of the regions T. and T», re

spectively, can be described by means of Poincare halfmaps

C223.)

The system in question is among the simplest of the piece

wise-linear type. The switching of dynamics is controlled by

just one variable (u), and hence the boundaries of the different

regions of state space are two parallel, flat (so called
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separating) planes. In addition, the equation of motion is anti

symmetric, so all statical and dynamical structures of the state

space, including the attractors, have to possess the same sym

metry. This means that the mentioned structures either them

selves are antisymmetric with respect to the origin or appear

twice, like a pair of particle and antiparticle.

Nevertheless, as there are more than two regions present in

state space, new problems, not treated in the literature until

now, arise. In the present case two different kinds of regions

have to be distinguished. The first type, the leftmost and

rightmost regions, T. and T», respectively, is well known from

the theory of Poincare halfmaps: it is limited by one boundary

only and hence the whole dynamics inside can be characterized by

the intersection of its dynamical manifolds with the single se

parating plane present as was found. For the other type, the

intermediate region, two boundaries exist, giving this region a

finite extension in one direction of state space. Here too, the

dynamics is described completely by the intersection curves of

the dynamical manifolds with the separating planes. These inter

section curves, however, are only partially physically meaning

ful (and partially not). This is due to the fact that two

switching conditions are competing for the smallest solution,

i.e., the first time that the trajectory in question leaves the

region.

The two generic types of behavior inside the intermediate

region give rise to two different point transformations, which
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were called transfer and return maps, respectively. For the ex

ample of the double-scroll attractor both maps are made use of

by a solution running inside the attractor. So, in addition to

the separating mechanisms that stem from the dynamics of the

leftmost and rightmost regions T. and T», respectively C223,

another separating and hence potentially chaos producing struc

ture appears for the intermediate region TB. Two trajectories

having adjacent entry points into T, and being situated on

both sides of the curve P.(t) (i.e., inside the domains of

different maps) are separated very fast. While one solution re

turns to the region it came from, the other transfers the inter—

mediate region and eventually enters the third region of state

space. So after an interval of time of about 2J7/c> , two adjacent

points are found at opposite ends of the attractor. This is an

excellent example for a "sensitive dependence on initial condi

tions" C253. If this mechanism is used by the trajectories

running inside the attractor, it readily gives rise to .a posi

tive Lyapunov exponent C263.

The boundary between the domains of the two point transfor

mations in question can be determined by picking up the initial

points of touching trajectories. These special orbits, in the

case treated, enter the region T. through one separating

plane, say S., and after about half a turn around the stable

manifold of the steady state fulfill the other switching condi

tion at their maximum u values, i.e., at points of the

straight line W», thus being transversal points. This means

that trajectories with the same initial x value as a touching
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trajectory and closely adjacent f values will either leave the

region T, close to the touching point or stay inside this re

gion temporarily in order then eventually to leave J9 towards

T. again.

Although the farmost biggest portion of the separating

plane S. is covered by £)<T)t the domain of the transfer map

T, for the present system also attractors were found without any

transferring solutions, cf. C173. These solutions can in fact be

described by means of even simpler, two region, models. In this

case the separatrix in between the two symmetic attractors is

exactly of dimension two and can be calculated explicitly C273.

On the other hand it is also not hard to construct a system

without returning trajectories inside the attractor. The crucial

point is the matching of the different dynamics. There is just

one severe restriction on the interaction of the dynamics that

is due to the C1 character of the flow, (leaving the two lines

WV invariant for the different dynamics), while the intersec

tions of the statical manifolds of the dynamics with the sepa

rating planes are almost completely arbitrary. So by shifting

these structures relatively to each other, the character of the

attractor, if there is any at all present, can be determined.

To conclude, the results presented here concerning the pro

perties of the transfer and return maps are completely indepen

dent of the special example system and the parameters chosen.

They are valid for all piecewise-linear dynamical systems pos

sessing intermediate regions with a steady state of saddle-focus
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type and the discussed symmetry properties. Thus our results

provide an universal tool for the treatment of a whole class of

dynamical systems.
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Appendix

Here we show some propertioes of functions that are the sum of

an exponential and an oscillatory term. This kind of functions

appears several times in this paper (20, 47, and 63).

LEMMA from Analysis For positive values of its argument, the

function

F(t) a e* + a sincot (A. 1)

possesses either no or a finite even number of zeros and extrema

(counted including degeneracies). The phase shift of subsequent

zeros or extrema, respectively, grows monotonically in absolute

value. ***

PROOF We assume a>0 and cj>0j the case a<0 can be

treated similarly by shifting the phase by -ir and rescaling

the amplitude with e*'": for «o<0 one finds a sin-ota-a sinot

so that the above procedure goes through again.

First we show that for positive values of t there is at

most a finite number of disjoint intervals of length 2fr/o that

contain zeros of F(t). At tat„8saln a, the exponential reaches

the value of the amplitude a of the sine and hence there can

be no zero of F(t) for values greater than tM. So all roots

of F(t) are situated inside the interval (0,ln a3. Since a

is finite this interval can be covered completely by a finite
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union of disjoint intervals of length 2frA> .

In the following it suffices to look at the interval

(0,2fi"/«*3. All the subsequent intervals of this length can be

treated by shifting t for 2ft/f and rescaling the amplitude

a by a factor of e"a ".

For 0<t<iT/«/ both terms of F(t) are positive so there

can be no zero inside this interval. Hence a first negative cri

terion for the existence of a zero of F(t) is

4 £ , a« a*'" .. (A.2)

In this case, no zero can occur since for all subsequent values

of t the maximal absolute value of the sine cannot compensate

for the exponential. On the other hand a positive criterion

would be:

t«, >, §£ , a >, e*"" , (A. 3)

Here, the intermediate value theorem assures a zero inside the

interval (HY6 ,3fT/2«,3 since

F(£> = e*'* >0
and (A.4)

F(p) a e**»~- a^ 0 .
26/ x
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For t-a-€(T7/o,3fr/2A/) , no criterion exists. However, if

there is a zero of F(t) present, it must be situated inside

The possible orders of the zeros of F(t) are easily found

by looking at a power series expansion of this function at a

zero. Let us assume a zero at tat,: then (as all functions that

appear are analytical)

F(t) =F(t.) +F'(t,)(t-t,) +^F"(t,) (t-t,)a + ...

= (efc"+a sinart,) + (e^+aeucoscot,) (t-t,) (A.5)

+ -(et4-ae/sinot,) (t-t,)a + .

By construction the first term vanishes (F(t,)=0), implying:

e** a -a sinwt, . (A.5a)

If the zero is of order two, the second term too must be

equal to zero. As a criterion for this type of zero we obtain

t, a - arctanw . (A.5b)

For the third term we find, using the above results:

F"(t,) = -a(l+^)sin6JtJ
(A.5c)

a -a7l+6*a' # 0
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As this term cannot vanish unless a=0, the highest possi

ble order of zeros that may appear in F(t) is two.

To see that the roots of F(t) always appear in pairs we

again employ the intermediate value theorem. First of all we

find that F(^/o)aeff/4/>0. Let the first zero of F(t) be situ

ated at fT/co<tM<ZTr/2to, and let us, for a moment, assume this

zero to be of first order. Then F'(t,)<0, meaning that there is

an open interval (t,,tj) with F(t)<0 for all values of t be

longing to this interval. For t=2frA/, however, we know

F(2ff/6*)aea *>0, so the intermediate value theorem guarantees the

existence of another first order zero at t,, present in the in

terval (t^,2fT/^). Since F'(ta)>0, this is the last zero in this

interval.

Now it is easy to see also that there is no other zero pre

sent inside (t,,ta). We just have to investigate the behavior of

the derivative of F(t). For ff/o <t<2rr/cj and hence for

t€(t,,ta), the derivatives of both the sine and the exponential

are stricly increasing, so the curvature of F(t) is always

positive for this region. This excludes another pair of zeros

inside the interval in question.

Let us now estimate the deviation of the zeros of F(t)

from the corresponding zeros of the pure sine function. To this

end we write the equation F(t)=0 as
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1 e*
t a - arcsin(-—) . (A.6)

cj a

This shows that when picking the pertinent branch of the

arcsine function, the zeros of F(t) showing negative slope

will appear retarded (and those with positive slope advanced)

compared to the zeros of the pure sine function. In either case

the absolute value of the argument of the arcsine for subsequent

zeros of F(t) increases and so does, due to the monotone be

havior of the arcsine, the absolute value of the deviation

(phase shift).

This shows that only the last zero of F(t) can be of se

cond order. In this case the sum of the absolute values of the

shifts corresponding to t, and ta yields exactly 'TT/co, So

the two first order zeros coalesce. This can only happen inside

the interval (fl7o,3fT/2«/> , yielding t(BM<3fr/2</, and hence there

are no further zeros present

The behavior of the derivative of F(t) can be investi

gated in a completely analogous fashion. Here we have to treat

the function

F'(t) a e* + aeucosot . (A.7)

It can be brought into the form of (A.l) by introducing a

new amplitude a':=oa and shifting the t axis by an amount of

-ir/2cj (i.e., rescaling the amplitude by a factor of e*'*** and
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converting the cosine into a sine). This procedure neither adds

nor removes any zero of the function. Thereafter all arguments

carry through unchanged. Q.E.D.
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Captions

Figure 1 Numerical integration of Equation (1) for

T = 0 .. 250. The trajectory shown runs inside the attractor.

One sees that sometimes it changes from one scroll to the other

(tranferring the intermediate region bounded by the two planes

S. and S») and sometimes it enters the intermediate region in

order to only return towards the same scroll. System parameters:

a = 9, b = 14 2/7, n. = -5/7, n, « -8/7, &» 1. Axes for the

state space plot: u =» -2.2 ..2.2, v = -0.4 .. 0.4,

w = -3.25 .. 3.25. Axes for the time plots: u = -2.2 .. 2.4,

v » -0.4 .. 0.45, w = -3.25 .. 3.5, T = 0 .. 250.

Figure 2 Geometry of the separating plane S. in a x»/

representation. The sets of entry (S*) and exit points (Si) of

the region T, are indicated as well as the two straight lines

T. (see text of next Section) and W„ (which includes the

point x*.). Parameters: § = 1, «>= 1, ^ = 1. Axes: x * -1 .. 1,

! - -1 .. 1.

Figure 3 A dynamical manifold M, truncated by the two sepa

rating planes S. and S*. For the example shown, the branch of

M having positive x values, i.e., the branch above the un

stable manifold MM, intersects S» in an isola plus its cor—

responding base line, while an Jl-curve is found for the inter

section with the plane S_. For values of x less then zero,

the opposite holds true. Parameters: J = 1, ^ = 2, ^ = 1. Axes:

x = -0.25 .. 1.25, ^ = -1.125 .. 0.625, J = -1.25 .. 1.25. Here



- 61 - November 29, 1985

and in the following figures visualizing the state space the

origin is indicated by a "X" while an "0" marks the positi

ons of the points ht (being the intersection points of the

stable manifold M. with the separating planes S„ and S_, re

spectively) .

Figure 4 Three trajectories running inside the unstable ma

nifold M„. The touching trajectory is the limiting case. For

absolute values of the initial J greater than /,, the trajec

tory leaves T. entering T«., while for smaller absolute values

of / the trajectory is attracted by the steady state L,. Note

that no trajectory can return to the region T.. Parameters:

^ = 7.5, <$= l, r, = i.66(=l.lr2) , r, = 1.51, r, = 1.36(=0.?r,) .

Figure 5 Examples for a transferring and a returning trajec

tory with initial points being from S— Parameters: S ° 1»

Co » 2, 6 a 1. Axes: x » -1.25 .. 1.25, *{ * -1-125 .. 1.125,

J = -0.9 .. 0.9. Initial coordinates for the transferring tra

jectory: xM = x„.+0.375, $„ « I..(x^)-0.3; and for the returning

trajectory: x*. = 0.1, f^ » /^(x^-O.S.

Figure 6 Example of a touching trajectory also showing two

other orbits starting at the same x value but having closely

adjacent values of the initial J. Parameters: $ = 1, <0 = 2,

<5 = 1. Axes: x » -1.5 .. 1, y = -1 .. 1.25, j » -2 .. 1. Initial

x values for all three trajectories: x. • -0.281. For the

touching, transferring, and returning trajectory, respectively,

the initial / values are: fOT = -1.62, f^ = fw -0.25,

f*. =f« +0.25.
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Figure 7 Schematic representation of trajectories running

inside the region T„ under the dynamics of TB. For 4i"—>0

these orbits necessarily approach a touching trajectory.

Figure 8 The lines of equal mapping duration fr(x) in the

x<0 portion of the separating plane S. for T * 0.1 .. tr/t> ,

with increment &r= 0.0236. Since AT is rather small, the

intersection points of these lines virtually coincide with entry

points of touching trajectories (cf. text). Parameters: ? = 1,

cj a> if 6 = 1. Axes: x = -2 .. 0.2, J = -8 .. 1.

Figure 9 • Partition of the separating plane S.. The curve r

is the geometic locus of all initial points of touching trajec

tories. Only the portion of this curve with x values less than

zero (/*.) yields physically meaningful results and is plotted.

Parameters: 5*1, «0 = 1, «J = 1. Axes: x = -2 .. 0.2,

1 = -8 .. 1.

Figure 10 The plane S. (u=-l) in a v,w representation

(original coordinates).

(a) The solid portions of the dashed straight lines 2"%. and

7L are the basin of attraction of the steady state L9 and the

"flat spiral exit points" of T. (cf. text), respectively. For

a continuation (run for 300 units of time) of the soution shown

in Fig. 1 the entry points of the region T# are indicated by

an "E" while a "X" is used for the exit points. Axes:

v = -0.3 .. 1, w = 0 .. 2.5.
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(b) Poincare cross section showing the exit points of T,. Axes:

v = -0.3 .. 0.2, w = 0 .. 1.2.

(c) One-dimensional map for the v component of the entry

points of T, being situated almost exactly on the straight

line Z"—. Axes: v„ = -0 .. 0.5, v^, = 0 .. 0.5. The points of

(b) and (c) were obtained simultaneously simulating the system

for 8000 units of time.
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