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ABSTRACT

This paper represents Part I of a 2-part paper which provides a rigorous mathematical

proof that the double scroll is indeed chaotic. Our approach is to derive a linearly equivalent

class of piecewise-linear differential equations which includes the double scroll as a special

case. Necessary and sufficient condition for two piecewise-linear vector fields to be linearly

equivalent is that their respective eigenvalues be a scaled version of each other. In the spe

cial case where they are identical, we have exact equivalence in the sense of linear conjugacy.

Explicit normal form equation in the context of global bifurcation is derived and

parametrized by their eigenvalues. Analytical expressions for various Poincare maps are then

derived and used to characterize the birth and the death of the double scroll, as well as to

derive an approximate one-dimensional map in analytic form which is useful for further bifur

cation analysis. In particular, the analytical expressions characterizing various half-return

maps associated with the Poincare map are used in a crucial way to prove the existence of a

Shilnikov-type homoclinic orbit, thereby establishing rigorously the chaotic nature of the dou

ble scroll. These analytical expressions are also fundamental in our in-depth analysis of the

birth (onset of the double scroll) and death (extinction of chaos) of the double scroll.

The unifying theme throughout this paper is to analyze the double scroll system as an

unfolding of a large family of piecewise-linear vector fields in IR3. Using this approach, we
were able to prove that the chaotic dynamics of the double scroll is quite common and robust.

In fact, it is exhibited by a large family (in fact, infinitely many linearly-equivalent circuits )

of vector fields whose associated piecewise-linear differential equations bear no resemblance

to each other. It is therefore remarkable that the normalized eigenvalues, which is a local

concept, completely determines the system's global qualitative behavior.

^This research is supported inpartbythe Joint Services Electronics Program under contract F4962O-84-C-0057.
•L 0. Chua ia with the Electronics Research laboratory, University of California, Berkeley, CA 94720. H. Komuro

is with the Tokyo Metropolitan University, Japan and T. Matsumoto is with Waseda University, Tokyo, Japan.
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1. INTRODUCTION

The double scroll is a strange attractor recently observed from a physical electronic cir

cuit made of 4 linear circuit elements (1 resistor, 1 inductor, and 2 capacitors) and a 2-

terminal nonlinear resistor characterized by a 5-segment v—i curve [1-3]. The nonlinear

resistor can/realized in the laboratory by several equivalent electronic circuits using 2 op

amps [2], 1 op amp and 2 diodes [3], or 2 transistors and 2 diodes [4]. Since its recent

discovery, this rather simple electronic circuit has been observed, both experimentally [5-6]

and by computer simulation [6], to exhibit a surprisingly rich variety of bifurcation

phenomena [6] and routes to chaos [7-9]. Although the chaotic nature of the double scroll

appears to be very convincing from both experimental analysis and computer simulations,

there remains legitimate objections from some critics who demand no less than a rigorous

mathematical proof. Our main objective in this paper is to supply such a proof.

Proving a circuit is chaotic is a non-trivial task. Indeed, only 3 nonlinear circuits have so

far been proved rigorously to be chaotic: the first two circuits [10-11] are described by a

one-dimensional discrete map while the third circuit [12] is described by a Snd-order non-

autonomous differential equation. The double scroll system to be studied in this paper is

described by a 9rd-order autonomous differential equation. In particular, we will choose the

dimensionless form given by (2.4) of [3] which we rewrite in the equivalent form

x = a(y-h(x))

y = x-j/+z

Z = -0y

(1.D

where

h(x) kx+/(x) -m.xx +^-(mo-mjXIx+ll - |x-l|] (1.2)
is the canonical piecewise-linear equation [13] describing an odd-symmetric 3-segment

piecewise-linear curve* having a breakpoint at x = —1 and x = 1 and a slope equal to
m0 = a+1 < 0 at the inner segment and m1 s 6+l>0at the outer segments, respec

tively; namely,

^We include only 3 segments ofthe 5-segment piecewise-linear V—i curve because the2outermost segments do
not play any role in the formation of the double scroll.
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h(x) = Tnix+(m0—mi) , x ^ 1

=moX , |x| <: 1 (13)

—TMiX—(tTIq-77l|) , X ^ —1

Note that (1.1) is slightly simpler than (2.4) in [3] because fi(x) includes both / (x) and x.
The double scroll system is therefore described by 4 parameters \(X,fi,TnQ,mi\t with the dou-

p 12
ble scroll attractor occurring in a neighborhood of (9,14 ~-»— ~~. ~^.

Since the techniques and concepts to be used in proving that the double scroll is chaotic

are quite novel and general, we will develop our theory for a much larger class of piecewise-

linear differential equations of which (l.l) is a special case. Mathematically, our approach is

to consider the vector field associated with the double scroll system as an unfolding of a fam

ily of 3-dimensional continuous piecewise-linear vector fields characterized by 6 parameters,

instead of 4 in the double scroll system. However, unlike the literatures on unfoldings which

consider only differentiable functions [14], our results are novel in the sense that our func

tions are required to be only continuous, not differentiable.*

Because of the nature of piecewise-linear analysis, a substantial amount of symbols and

notations are necessary to avoid ambiguity and clutter. They are summarized in Section 2 for

ease of reference.

The family of piecewise-linear vector fields whose unfolding gives the double scroll sys

tem is defined and characterized in Section 3. The main results in this section are summar

ized in theorems 1, 2, and 3. In particular, we have derived the necessary and sufficient con

ditions for any two vector fields in this family to be linearly conjugate, which is a strong form

of equivalence from the circuit theoretic point of view and an important mathematical pro

perty in the theory of structural stability of vector fields [9]. It is remarkable that while it is

often impossible to establish any topological conjugacy between nonlinear vector fields, we

were able to prove that the necessary and sufficient conditions for linear conjugacy (which is

a special case of topological conjugacy) between 2 piecewise-linear vector fields in our family

is that their eigenvalues in corresponding regions be identical.

This important result, which is stated in two equivalent forms (theorems 1 and 2) allows

us to derive the explicit form of all members of our family of piecewise-linear vector fields

which are equivalent (Le., linearly conjugate) to each other in terms of their eigenvalues

alone. This major result, which is formulated in the form of a canonical piecewise-linear

'Consequently, a moreprecise title for this paper is: "unfoldings of piecewise-linear vectorfields in IR .



equation [13] parametrized by their eigenvalues, will henceforth be called the normal form

equation for the double scroll.* Again, this result is remarkable because finding normal forms
of parametrized nonlinear vector fields is extremely difficult if not impossible.

Our results from Section 3 provide the necessary foundation in Section 4 for deriving

the exact (i.e., analytical) expressions describing various Poincare maps of an important class

of vector fields which are unfoldings of our normal form equation. These results are then used

in a crucial way in Section 5 to prove that homoclintc orbits of the Shilnikov type [9] exist in

the double scroll, thereby providing a rigorous proof that the double scroll is indeed chaotic*

The analytical formula for Poincare maps in Section 4 allows us to derive the exact coor

dinates of the return map of any trajectory of the double scroll system. These coordinates

are used in Section 6 to derive the analytical expression describing the image of several stra

tegic loci (to be defined in Section 6) which allows us to explain the birth (i.e., onset) and the

death (i.e.. extinction) of the double scroll attractor. Unlike the preceding 5 sections, how

ever, where complete mathematical rigor is achieved, some reasonable numerical calcula

tions are used in this section to calculate two curves—called the birth and the death loci —

which bound the region in the a—/? parameter space where the double scroll exists.

Finally, in Section 7, we derive the analytic expression of an "approximate" one-

dimensional map which can be used for further bifurcation analysis of the double scroll.

2. PIECEWISE-LINEAR GEOMETRY AND ITS JORDAN FORM

Unless otherwise stated, vectors and matrices are denoted by lower and upper case bold

face letters, respectively. Vectors in ]R3 are denoted by x = (x,y,z)T. Real and imaginary

part of a complex eigen value will be denoted by u and cj respectively. Real eigenvalues will

be denoted by y. Vector fields will be denoted by£ : IR3 -» IR3. Hence £(x) denotes the vector

field evaluated at x and is therefore itself a vector in IR3 emanating always from the origin 0,

unless otherwise stated.

We will now extract the essential properties of the vector field associated with the double

scroll system (l.l) to define the following family of vector fields 2L.

Definition 2.1. Piecewise-linear vector field family £

^The term "normal form" is used here in the same context as that used in global bifurcation theory of vector
fields [9], and not in the circuit-theoretic sense of a state equation.

•The reader is referred .to an interesting related work by Hees and Chapman [IS] where they used optimization
techniques to locate a fvttorvctinic orbit in the double scroll system.



We define ad to be a family of continuous vector fields f: IR3 -> IR3 satisfying the following
properties:

(P.l) £ is symmetric withrespect to the origin, Le.J £(—x,—y,—z) = —£(x,y,z).

(P.2) There are two planes C/j and £/«j which are symmetric with respect to the origin (i.e.,

(x,y,2 ) e C/a iff (—x,—y, —z) e £/_j) and they partition IR3 into three closed regions
D\t Dq, and D-\, as shown in Fig. 1. Here, the reference frame for (x,y,z) is arbi

trary.

(P.3) In each region Di, (i = -1, 0, l), the vector field £ is affine, i.e.,

D£(x,y,z) = M for (x,y,z) e D%

where Z?f denotes the Jacobian matrix of f(x) and M denotes a 3 X 3 real constant

matrix

(P.4) £ has 3 equilibrium points, one at the origin 0, one in the interior of D\ (labeled P+)
and one in the interior of Z?_i (labeled P~).

(P.5) Each matrix Mi has a pair of complex conjugate eigenvalues (labeled ctq ± Jcjq for M

and CTj ± j'Sj for Af and M , where Qq > 0 and Sj > 0) and a real eigenvalue (labeled

70 for M and 71 for M and M , where 70 * 0 and 71 ^ 0).
«*o *** ~1 ^ 1

(P.6) The eigenspace associated with either the real or the complex eigenvalues* at each

equilibrium point is not parallel to U\ or £/_j.

Notations associated with Fig. 1

For each vector field £ e ;£, define

£* (0) s 2-dimensional eigenspace corresponding to complex eigenvalue cr0 ± j2q at 0.

jE^O) = 1-dimensionaleigenspace corresponding to real eigenvalue 7q at 0.

E° (P+) £ 2-dimensional eigenspace corresponding to complex eigenvalue CTj ± j'Sj at P+.

ET^P*} s 1-dimensional eigenspace corresponding to real eigenvalue 7i at P+.

L0 4 [/,n £c(0), Z,2 £ t/jn £C(P+)

TTo avoid clutter, we will oftenuserow vector (x ,y ,Z ) in place ofcolumn vector (x ,y ,Z) .
♦In the case where the eigenvalue is complex, the eigenspace is defined to be the vector space spanned by the

real and the imaginary part of the complex eigenvector.
Here, superscripts "c" and "r" denote "complex" and "real", respectively.



Lz £ (xe Ul:^x)//Ul\ (ai)

where ^ reads "is parallel to." Here, £(x) ^ t/i means the vector £(x) lies on a plane parallel

to U\. That Lz is a straight line in Fig. 1 follows from the following:

Straight line tangency property:

Let'? be a linear vectorfield in IR3 having a pair ofcomplex conjugate eigenvalues cr ± j u
and a real eigenvalue 7. Let U denote any plane which is not parallel to each eigenspace and

which does not pass through the origin. Then

I^M UCi(x)//U\ (2.2)

is a straight line.

Proof. In Appendix 1 we prove the above assumptions imply that there exists a suitable

coordinate system x s (x',y\z) in IR3 such that*? is transformed into the real Jordan form

[16].

*«**) =
-3 o x'

a 0 y

0 0 7 z'

(as)

and such that the equation for U in the new coordinate system assumes the following

simplified form:

U- \(x,y\z');x-rz = lj (2.4)

For each x e L, (2.2) implies that the vector dot product Q(x),h.y = 0 where h = (l,0,l)r

is a normalvector to U in view of (2.4). SubstitutingTf(x) from (2.3) into the above vector dot

product, and solving for y, we find that L in (2.2) is a straight line defined by the equations

L :y - ox + 7(l-x') ,z = 1-x' (2.5)

where a = cr/3 and 7 s y/u.

Remark: The above straight line L intersects the line f(x ,y .z*) :x = 1, 2 = Oj at the point
(x'.yV) = (l.r.O).

We are now ready to define the following important points in Kg. 1:



A 4 L0 n Ll , B £ ^ n L2
C £ Ux n £-(0) , £ £ t/j n ET(P^)

£ A i0nl2 , F k (x € Lz:$(x)//Lz\

where £(x)^X2 means the vector f (x) lies on C/j and is parallel to the straight line Lo.

For simplicity, we will often suppress the superscript + and write P instead of P+. The
following strategic points play a crucial role in Section 3:

Definition 2.2. Fundamental points of £

The 4 points A. B, E, and P defined above are called the fundamental points of £.

Note that the continuity of the vector field £ implies that

$(A)// E*(P) , S(A)//Ec(0)
((B)//Lx , ((E)//L0

((C)//Er(0) , ((D)// Er(P)

In general each 3X3 matrix M defining a vector field ( e<£ in region Di requires 9*

non-zero parameters. Our next objective is to eliminate as many of these parameters as pos

sible by reducing M to its Jordan form and U±1 to its simplified form.
~i

Let ^q:Dq -» IR3 and ^ :Z?2 -» IR3 denote the appropriate affine transformations which
reduce M and M to the Jordan form in (2.3) while simultaneously transforming the equation

~0 ~ l

describing U±1 to the simplified form in (2.4). It follows from (2.3) and (2.4) that in terms of

the new coordinate system, we have*

a) *o(0) = 0 (2.6)

Wi) = V0 £ l(x,y,z):x + z = lj (2.7)

W-i) = *0 ^ l(x.y,z)* + * = -H (2.B)

^Strictly speaking, we should use X and X to denote vectors inthe new coordinate systems, asin (2.3) and (2.4).
However, we will henceforth suppress the primes and double primes to avoid clutter. Since we will be dealing mostly
with the new coordinate systems in the following sections, no confusion should arise.
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CJq I ~ J ~

o~0 -1 0

1 (T0 0

0 0 70

where cr0 £ cfo/30and7o £ 7(/So-

6) *,(P) = o

*i(tfi) = V, ^ [(*.S/.2):x+* = lj

Cl -1 0

1 *i 0

0 0 7i

(2.9)

(2.10)

(2.11)

(2.12)

where ux k crj/Oj and 7j = ^i/S^ We will henceforth call (2.9) and (2.12) the normalized
Jordan form of JSf and M , respectively.

Definition 2.3. Dq-udU and Pj-unit of £

We define the set f£0» Vb»^oJ as tne ^0" un*i of £ and toe set of (fi, Vj.^j} as the Dy unit

of(-

Geometrically, the Z?o-unit of £ is simply the middle region Dq in its new reference frame

(x\y',z') which we labeled simply as (x,y ,z) in Fig. 2. It is important to keep in mind, how
ever, that these two reference frames involve different coordinate systems.

The images of the important points A. B, C, D, E, and F in Fig. 1 will be denoted by

corresponding subscripts in an obvious way:*

D0:A0 £ *o(i«). B0 $ MB). C0 £ *0(C). D0 £ *<,(£>). E0 * ME). FQ £ *0(F).
D1:Al £ *,(/!). B, ± MB). C, £ *,(C). 0, 4 *,(Z>). *, £ *,(£•). Fj £ *i(/").

Our next goal is to derive the coordinates of each of these points in their new reference

frames. Since A, B, C, D, E, and F are located on various intersection lines in Fig. 1, their

images (under any afline transformation) must lie on corresponding lines in the new refer

ence frames. These lines are images of intersections between various eigenspaces (E° (0) or
^(O)) with the plane U\ in Fig. 1. In particular, it can be shown that

tlfote thatthe same symbols D0 and D\ are used to denote aregion in Fig. 2(a) and &point in Fig. 2(b). There
will be no confusion, however, since its meaning will be clear from the context.



^o(E° (0)) = f(x,y ,z):z = Oj .i.e., the x-y plane t2-13)

^o(Er(0)) = \(x,y,z) :x = y = 0) .i.e., the z-axis (2.14)

*o(L0) = [(x,y,z):x = 1 , z = 0) (2.15)

*o(Zr2) = Kx.y.z):V = cjqx + 7o(l-a0 , 2 = l-«i (2.16)

Since C = £""(0) n £/lt it foUows from (2.14) and (2.7) that C0 = (0,0,1).

Since E = L0 n L2, it follows from (2.15) and (2.16) that Eq = (l,o~0,0).

Since F e L2 and ((F)//Lz, it follows that F0 e ^0(^2) and (q(Fq)/I^q(Lz). Hence the
coordinate of Fq must satisfy

„ =aox ♦ 7o(i-x),.-!-., ap.. StfJL- 2f. (2.17)
1 oV7o ""l

Since i4<> lies on the line ^o(-^o)- we can write An = (l,Po»0) for some jdq e IR-

Since 5 = Lj n I2 and ((B)//Lx, the coordinate of i?o is determined by Bq e ^0(^2)
and (q(Bq) I/BqAq where the "arrow" denotes the vector from Bq to Aq. Since l?o. £o» and Fq
all lie on the line ^0(^2). it follows that

FqBq = fco EqFq (2. IB)

where fc0 is a scaling constant.

Similarly, we can derive the coordinate of A\9 B\% D\t Ex% and Fx in the new reference

frame for the Dyunit in Fig. 2 and obtain

E1Tt=k1F1-Et (2.19)

where fc j is a scaling constant.

For future reference, the explicit coordinate for the image of all strategic points in Fig. 1

are tabulated below.

Strategic points in Z>0-unit (°o - ^c/ ^o- 7o - 7c/ "0)

Aq- (l<p0.0) • (2-2°)

where'

*The two expressions in (2.21) (resp. (2.27)) are equivalent to each other. The value of ICq (resp., k j ) is specified
in (2.33).



Po ^ *o + TT"(^o+l) . *o ^ 7o(Po-^o)/(^o+0 (2.21)
70

Bq = (7o(7o-^o-Po)/ Go . 7o[l ~Po(^o-7o)]/ Go. 1 ~ 7o(7o-^o"Po)/ Go) (2.22)

where Q0 £ (cr0-7o)2 + 1
C0= (0,0,1) (2.23)

E0 = (1.^0.0) (2.24)

*0 = (7o(7o-2a0)/ Qo , 7o[1 - *o(0x>-7o)]/ Go . (*o+1)/ Go) (2.25)

Strategic points in Z^-unit (tfj s c^/ u1 , 72 = ^j/Sj)

^1 =(1*1.0) (2.26)

where

Pi ^ *i + *i(crf+l)/7i , fci A 7i(Pi-*i)/(<7i2+l) (2.27)

#1 = (l.CTj.O) (2.28)

Dx = (0,0,1) (2.29)

E\ = (7i(7i"^i-Pi)/ Gi . 7i[l ~Pi(^i-7i)]/ Q\ . 1 " 7i(7i-*i-PiV Gi) (2.30)

where

Gi ± (cFt-yJ8 + 1 (2.31)

^1 = (71(71-2(70/ Gi . 7i[l - ^,((7,-7!)]/ Gi . (cf?+1)/ Gi) (2.32)

Note that fc0 can not be calculated directly from (2.21) since it depends on p0 which in

turn depends on fco- A similar situation applies to k j in (2.27). However, they can be easily

calculated from the relationship

k0= 1/*,=* 4 -7(/7i (2.33)

which will be derived in Section 3. The relationship

k0k1 = 1 (2.34)

follows from the ratio between the lengths (denoted by | •|) of the following vectors (see Fig.

2):
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The above explicit expressions for the coordinates of the strategic points in the Dq-uuH

and the Z?i-unit will play a crucial role in our derivation of Poincare maps in Section 4.

a CANONICAL PIECEWISE-LINEAR NORMAL FORM

In Section 2 we have defined a very large familyJ- of continuous piecewise-linear vector

fields. From the circuit-theoretic point of view, £ represents the family of all 3rd order

piecewise-linear circuits whose vector fields satisfy (P1)-(P6) of Definition 1. Our objective in

this section is to partition this family into "equivalence classes" so that all vector fields

belonging to a given equivalence class have identical qualitative behaviors. We will define 2

forms of equivalence; namely, linear equivalence and linear conjugacy.

From the circuit-theoretic point of view, two circuits are said to be linearly equivalent

iff, except possibly for a uniform change in the time scale, their respective solutions are qual

itatively identical. If the same property holds with the same time scale, then the two circuits

are said to be linearly conjugate. For example, two 1 st -order autonomous RC circuits [17]

with time constants rl and T2 are linearly equivalent but not linearly conjugate unless

Tj = Tg. Hence, 2 linearly conjugate but distinct vector fields essentially represent the same

circuit but with 2 different choices of state variables which are related to each other by a

linear transformation. We will now define these two concepts precisely.

Definition 3.1. linear Equivalence

Two vector fields ( and ( in IR71 are said to be linearly equivalent iff there exists a linear

transformation G: IR* •* lRn and a real number v > 0 such that*

G o ( = v((' o G) (3.1)

Definition 3.2. linear Conjugacy

Two linearly-equivalent vector fields are said to be linearly conjugate of each other iff

v= 1 in (3.1).

The concept of linear conjugacy is a special case of the well-known concept of topological

conjugacy [9] where the "linear transformation " is replaced by a "homeomorphism." In gen

eral, it is extremely difficult if not impossible to prove two nonlinear vector fields are

'Here, " ° " denotes a "composition" operation. Hence (3.1) implies for each X E IRn,

G(f(*)) = u((\Gx)).
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topologically conjugate, let alone linearly conjugate. It is therefore remarkable that for the

class of vector fields ( E^, we can not only classify them into equivalence classes, but we
can derive the explicit form of one vector field—called the normal form —in each equivalence

class which is selected in accordance to a unified approach.

Recall from Definition 2.1 that for each vector field ( £<£ . the associated eigenvalues

are denoted by cr0 ± j 30 and 7o for M , and "oS ± jSj and 7j for M . Because ( is a continuous
~0 ~1

vector field by definition, these eigenvalues are constrained in some definite way so that arbi

trarily specified eigenvalues of the above form may not correspond to a vector field in<^f. Our
main result in this section is to derive this constraint among the eigenvalues and to use them

to completely characterize the class of all linearly conjugate vector fields.

Theorem 3.1. linear Conjugacy Criteria

(a) For each set of eigenvalues defined by the 6 "eigenvalue parameters"

ftfo.So,7o. tfl»«i .7i! (3-2)

there exists a vector field ( €<? having these eigenvalues <=>

S0 > 0 . Zx > 0 , and 707! < 0 (3.3)

(b) Two vector fields ( e £ and (' € *£ are linearly conjugate of each other <=> they have
identical eigenvalues; i.e..

f\rf» K*

o-0 = Oq , «0 = «o . 7o = 7o , v

ax - ax, «i = W!, 7j = yx

ftroof. We will first state and prove Theorem 3.8 and then prove that it is equivalent to

Theorem 3.1. We will then prove Theorem 3.2 since it is easier. Moreover, it is Theorem 3.2

(and not Theorem 3.1) which will be used in the following sections.

Definition 3.3. Normalized eigenvalue parameters

For each set of eigenvalues defined by the 6 eigenvalue parameters fbVwo.7o.tfi»E>i,7iJ,
we define 5 normalized eigenvalue parameters

foVyo.*i.7i.A:} (3.5)

where

„A^0^^7orTA?L.~A2i_fcA_22_ (r>*\Oq = jr-, 70 s ~—. tfl = ~-"» 7l = w—. * - 5^ v3-o;
Wo u0 0i wi 7i

Note that one more parameters must/ specified before the eigenvalues associated with (3.5)

-12-



can be uniquely recovered.

Theorem 3.2. linear Equivalence Criteria

(a) There exists a continuous vector field ( e <£ having (3.5) as normalized eigenvalue
parameters <=>

707i < 0 and k > 0 (3.7)

(b) Two vector fields ( e d. and (' € £ are linearly equivalent <=> they have identical nor
malized eigenvalue parameters. Moreover, the positive scaling constant in (3.1) is given

by

v = Uq/cjq =Sj/Si (3.8)

Note that the eigenvalues of two distinct vector fields having identical normalized eigen

value parameters are generally not identical because one more parameter must be specified

in order to identify the eigenvalues uniquely. It follows from 77ieorem 3.1 that two vector

fields having identical normalized eigenvalue parameters are generally not linearly conjugate

to each other. Indeed, (3.8) implies that the additional condition cjq = &o *s needed for linear

conjugacy.

Lemma 3.1.

Theorems 3.1 and 3.2 are equivalent.

Proof.

=> Suppose Theorem 3.1 holds. Then it follows from (3.3) that 7o7i/3o^i < 0 and nence
(3.7) holds. Conversely, given any fov7o.tfi.7i»* i satisfying (3.7), define

ftfo.3o.7o.tfi.Si,7i$ - ftfo.l.7o.-tfi7c/7i*. ~7o/7i*.-7o/*5 (3.9)

Since cjj ^ - 7</7i* > 0 and 707! = —7o/* < 0, (3.9) satisfies (3.3) and hence Theorem
3.1 implies there exists ( e<£ associated with (3.9). This proves (a) of Theorem 3.2.

To prove (b) of Theorem 3.2, suppose ( and ( are linearly equivalent and hence

CJn . On •
G o £ = 737-£ o G holds for some G. Then the two vector fields ( and (^r)£ are linearly

CJo cj0

conjugate and must have identical eigenvalue parameters (a0,CJ0,7o.^i.Wi»7ii- It follows that

the eigenvalue parameters of ( are given by
OqOq -• 7o% tfi"o UiCj'q 7^0

Uq Oq Uq CJo CJo

(3.6), we obtain the following normalized eigenvalue parameters of ('
r»V rs* *«t nw f* '

~—, 7z—, 7s—, ?c—, —«— = (Oq,7o.o~i.7i»* \, which are identical to those of (.
CJ0 cj0 cjj «i 7i|

-13-
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'«W fW fSt **

„ tfo 7o tfi 7i
Conversely, suppose •75—, w—, w—, w—

[cj0 CJ0 CJj CJj

CJq

pw \ /»s*' ^' fs*' rv* iw'

70 _ £?_ Z?_ £i- Z*_ _Z2_, fhPn
7i J lcj0 cj0 cjj cjj 7j (

CJq
( are linearly conjugate(«tfo.«o.7o.tfi»«i.7i

to each other.

lwoJ
(tfo."o.7o.tfi."i«7i). and hence ( and

l"oJ

The above proves Theorem 3.2 holds.

<= Suppose Theorem 3.2 holds. Then given ( E JL, its associated fc = —70/7i > 0 in view

of (3.7), and hence 7o7i < 0. Moreover, So > 0 and Si > 0 by definition. Hence, (3.3) holds.
set of

Conversely, given any set of eigenvalue parameters (3.2) satisfying (3.3). Its associated/hor-
'tst »s> rw rw fs< '

tfo 7o tfi 7i -7o
malized eigenvalue parameters

CJq CJq CJi CJi 7i
clearly satisfies (3.7). It follows

from Theorem 3.2 that there exists a vector field (' e 2* having these normalized eigenvalue
CJq CJ0

parameters and
1°oJ

(' e ;£ is linearly conjugate to (. Hence
ICJoj

( and ( have identical

eigenvalue parameters; namely, fb*o,So,7o.tfi.Si,7iJ. Hence, (is the desired vector field.

To prove (b) of Theorem 3.1 holds, suppose G ° ( = (' ° G holds for some G. Then, ( and

7i
'rs/ fs« *w

£ have identical normalized eigenvalue parameters tz—, ?c—, tz—, kt
CJq CJ0 CJ2 CJj 7i

2b_ 7b_ £i_ 7i_ ~7o
So S0 ' Sj ' SJ ~'

values.

7i

and v = So/So = 1. Hence, ( and (' have identical eigen-

Conversely, if ( and £ have identical eigenvalues, then they have identical normalized

eigenvalue parameters and v = So/So =1. It follows from Theorem 3.2 (b) that
£ o £ = £ o G and hence ( and £ are linearly conjugate to each other.

This proves Theorem 3.1 holds.

•

Remark

Since two linearly-conjugate vector fields in <£ represent the same circuit (with different
choice of state variables), or two equivalent circuits, the concept of linear conjugacy is too

strong for "qualitative" analysis. Since our goal is to characterize classes of nonlinear circuits

exhibiting similar qualitative behaviors, quantitative differences in circuit time constants are

irrelevant: two series RC circuits with different time constants exhibit identical qualitative

behaviors and belong therefore to the same class. It is not surprising therefore that the

weaker concept of linear equivalence is all that we need to study the qualitative properties of

-14-



piecewise-linear vector fields.

Before proving Theorem 3.2, we need the following result:

Lemma 3.2.

Let ([fx] denote the family of all vector fields in £ having the same normalized eigen-

value parameters fl = (tfo.7o.tfi.7it*)- Let OP, OA, VS and US denote the 4 vectors from

the origin 0 in Fig. 1 to the 4 fundamental points P, At B, and E (Def. 2.2), respectively.

Then the following properties hold:

(a) All polyhedrons whose vertices consist of the origin and the 4 fundamental points of vec

tor fields belonging to the family ([fj.] are similar in the sense that

UP = lU$ + 7nW + nUg (3.10)

where I = l(fj), m = m (jj) and n = n(fi) are real numbers which depend only on fi and
rv rtt ftt f*

hence are identical for all vector fields in (\ji\.

(b) The numbers A:0. kl% and k defined in (2.21), (2.27), and (3.6) are related by

k =fc0= l/*l • (3-11)

(c) There exists a vector field ( E ([fi] <=>

707i < 0 and k > 0 (3.12)

Proof. See Appendix 2.

Proof of Theorem 3.2

Statement (a) is equivalent to statement (c) in Lemma 3.2 and is proved in Appendix

2. It remains to prove statement (b).

=> Suppose there exist a linear transformation G and a real number v > 0 such that

G ° ( ~ v(' ° G, then the eigenvalues of ( and ( must satisfy cr$ ± jfSj = ftfi ± j vu^
and 7i = vy\t (i = 0,1). It follows from (3.6) that their respective normalized eigenvalue
parameters are identical.

<= Let ([fl] be the family of all vector fields in £ having the same fi —(tfo>7o»tfl.7l.*) as

their normalized eigenvalue parameters. Let tf$ ± jcji (cj» > 0) and y^ ^ 0, (i = 0,1)

denote the eigenvalues of ( e ([(jl\ and let crj ± ju'i (S* > 0) and % * 0 (i = 0,1) denote

the eigenvalue of (' E. (\ji\. Denote the fundamental points/( and (' by \A,B,E,P\ and

-15-



[A ,B ,E ,P j, respectively. Let the vector from the origin to these points be denoted by

\A,B,E,P\ and \A,PtE!,P\ respectively.
ft ft ft ft ft ft ft ft

Hence A—(Ag^Ay^) where (Ax,AytAz) denotes the coordinate of the point A.

By (P.3) of Definition 2.1, there exist matrices Mm and M[ (i = 0,1) such that

M'(x-P) , x e D\
ft j ft ft ft

Mx , x e Dq
ft Qft ft

M'(x+P) , x e Dii
ft \ ft ft ft

«*) =

U (x-P) , x e D,
ft I ft ft ft

M x , x e Dq and ('(x) = ,
ft Qf* ft ft

M (x+P) , x e £_!
ft j ft ft ft

(3.13)

where Di and D+ (i = 0, ±1) are the affine regions of ( and (', respectively. It follows from the
continuity of ( and (' that

M [A.B.E] = M [A-P,B-P,E-P]
ft Q ft ft ft M J IV ft f/ ft ft ft

M'[A<PP] = M'[A-P,B'-P,£-P]
ftQ f, ft ft ft I ft f, ft ft ft ft

(3.14)

(3.15)

where [ • ] denotes a 3 x 3 matrix made up of various column vectors defined above.
,that of

Now recall Ahe normalized Jordan forms/ M in (2.9), and M in (2.12) are obtained by
~0 ~i

two appropriate affine transformations %q and ^j. It follows from (2.6) and (2.10) that 4^ and

4*1 can be expressed by

and

tyQ(x) = $ x
ft #vQ ft

*!(*) = $ (X-P)
ft ft j ft ft

(3.16)

(3.17)

where $ and $ are 3X3 matrices to be determined as follow: Since ^q maps \A,B,E\ into
ftQ ft\

{Aq,Bq,Eq\, we have

*[A,B,E] = [A,B,En] =>
ftQ ft ft ft ftQ «xQ ftQ

* =[A B E][A,B,E]->
ftQ ftQ ftQ ftQ ft ft ft

Similarly, since i'j maps [A,B,E\ into \A\,B\,E\\, we have

SdA-P.B-P.E-P] = [A ,B ,E ] =>
ft ft ft ft ft ft wl f \ "* 1

-16-
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* =[A,B,E] [A-P.B-P.E-P]'1
A*] <Vj ft J ft J ft ft ft ft ft ft

It follows from (2.9) and (2.12) that

where

,£-($ M *-l)=J . (i = 0.1)
CJi ~i ~i ~i '"i

tfi -1 0

1 (Ji 0

0 0 7t

(3.19)

(3.20)

(3.21)

Now,by hypothesis, ( and £ have identical normalized eigenvalue parameters. Hence

their respective normalized Jordan forms J and J ' of M and M' are identical. Substituting
'"O ~0 '"O ** 0

(3. IB) into (3.20), we obtain

_ 1/ = fh-\A ,B ,E ] [A,BM~lM [A,B,E][A ,B ,E J"1
«*0 Un fO fQ ft f) ft ft ft ft f\ ft ft ft iwO ftt\ ftQ~0 CJq **0 ~0 "*0

_ 1= £-[A ,B ,E ][A,B',E!]-lM '[A,PtFf][A ,B ,E ]_1 = J'
CJft ***0 "*0 ""0 ft ft ft ftQ ft ft ft ftQ ftQ ftQ ftQ

Let us define next a linear transformation G: ]R3 -> IR3 and a real number v > 0 as follow:

Gd [/.S'.^U.S.S]-1 . 1/ A So/So (3 23)

Premultiplying both sides of (3.22) by Uq[A,P,U!] [A ,B ,E ]_1 and postmultiplying both sides
ft ft ft ftQ ftQ fQ

by [A ,B ,E ] [A,P,E!]~l, we obtain
*^*0 *s'0 's'0 ft ft ft

[AM.^Iab.e^mubma'.b'.eT1^
ft ft ft ft ft ft ftQ ft ft ft

CJq

ICJo J
If
-o

Substituting (3.23) into (3.24) we obtain

vM' = GM GTl
ftQ ft ft Qft

Equation (3.23) implies

v('(*)\d0=G(((G-1x)\Dq), xe D0
ft «• ft ft ft " ft

Now rewrite (3.10) from Lemma 3.2in the following vector form:

-17-
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P= [AB,E][l,rn,n]T , P = [A,P',E!}[1 tm,n]T (3.27)
ft ft ft ft ft ft ft ft

But

GP= G[A,B,E][L>'m,n]T = [AP£][l,m,n]T =P (3.28)

Now solving (3.15) for ^/' and (3.14) for i/ and using (3.25) and (3.23) repeatedly, we obtain
~1 ~i

vM' = vM'[A,B',E!][A-Ptg-PtF!-P]-1
f,\ ftQ ft ft ft ft f, ft f, f, f,

= GM ^1[A,B\^][G(A-'P),G(B--P)ME-P)]'1
(3.29)

= GM [AB,E][A-P.B-P.E-P]-1 jT1

= GM cr1
ft ft J ft

Now for any x e D±i, (3.13) implies
ft

V£'(*) D'y =VAf'(±T^)

= CM GTl(x*P ) (in view of (3.29))
ft ft j ^» ft ft

(3.30)
= Gff (G-!xT ^ (in view of (3.28))

«» »S# J ft ft ft

= GftG"1*) n. (in view of (3.13))
ft ft ft D±\

Equations (3.26) and (3.30) together imply

v((x) = G((CTlx) (3.31)
ft ft ft ft x '

for all x e 2?o u &±\ • Hence (3.1) holds and ( and £' are linearly equivalent. This completes
f*

our proof of Theorem 3.2.
m

Our main result (Theorem 3.1) allows us to partition all vector fields in £. into linearly
•N* ,r\t f*

conjugate equivalence classes, each one parametrized by the eigenvalues uq ± J Uq, 7q,

tfi ±J&1 and 7!- Since all vector fields in £ having the same eigenvalues have identical qual
itative behaviors, it suffices to investigate only one member in each class. Our next theorem

provides a canonical piecewise-linear equation involving 12 parameters each of which is

expressed explicitly in terms of only 6 eigenvalue parameters; namely, ftfo.So,70'tfi.Si,7ii-
Since these are the minimum number of parameters needed to uniquely identify a vector
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field ( e jC , and since there exists a one-to-one correspondence between each linearly-

conjugate equivalence class of vector fields in sC and each equation in (3.32) of Theorem 3.3

below with a fixed set of numerical parameters, we will henceforth call (3.32) the normal form

equation for the vector fields in 2. . Although this term has already been used in circuit

theory to mean "state equations," we have adopted this terminology here at the risk of some

ambiguity in order to be consistent with the terminology used by Poincare, Arnold, etc. [9].

Theorem 3.3. Normal Form Equation for j£

Every linearly conjugate equivalence class of vector fields in "i defined by
ftfo,So,7o,tfi,S1,71J satisfying (3.3) can be described analytically by the following canonical
piecewise-linear equation

an a12 a13 X

a21 a22 a23 y

a31 a32 a33
2

+ <l«-ll-l«+ll) (3.32)

The 12parameters in (3.32) are expressed explicitly in terms of faro>t>0>7o>'7l>&)i'7li as follow.

(tfi2+S?)fCtfo^i)2+S02i
«ii = 7i -

(tfi2+Sf)7i-(tfo+2o)7o

a^_ (tff+S^iCtfi^^Sfj
^ofCtff+SfJ^i-Ctfo+So^oi

_ (tff+Sfft,
a13~

fCtff+Sfftitffo-SoH^o) «
7i

(tfo+S^o (tff+Sf^i-Ctfo+So^o

(tfo2+302)7o(Ctf0^yi)2+S02}
a21 = ~ ~

7if (tff+Sf)?! ~(tf2+S2)7o!

(tfo'+So^fCtfi-^^Sfi
a22 = 7o +

(tf2 + Sf^i-Ctf^+So2)?©

ft _ (tff+Sf)7i f(tfo2+S02)7o(2(tf,-tfo)+7i-7o)
a23~ -7o(tfo^Sg^o I (tff+Smi-Ctfo^S2)^

°31 ~ *21

-19-
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(af+S^j-CSI+So^o
0-32 =

_ (tfl2^S2)71(2(or1--'cr0)4-71--7o)
033 =

(tff+Sf^i-Ctfo+So2)?©

- (tfi2+"i2)7i-(tfo+S02)7o
SCtff+S?)?!

_ ^f+Sf)7i-(tfi+S|)7o

6, =

60 =

6,=

Sftff+S2)?!

_ Ctff+Sf^^^+Sp^o
2(&f+3fffi

13

a23

a.33

Proof. See Appendix 3.

Remark. The equation (3.32) is equivalent to the following equation

z St 1

M (x,y,z)T

where

M (x,y,z-s)T
~i

((x.y.z) =
-0

M =
~o

M (x,y,z+s)T
~i

an ai2 (1—s)a13

a21 a22 (l~s)a23

a31 a32 (l~s)a33

(tfo+S2)7o

\z\ <> 1

2 < -1

M =
~1

an a12 O13

a2l a22 a23

O31 Q-32 a33

S = 1-
(*f+3fff,

and ay (1 -S i, ; -S 3) are denned by (3.33)-(3.4l).
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4. POINCARE AND HALF-RETURN HAPS

Definition 3.1 implies that in so far as the qualitative behaviors are concerned, we only

need to study one member of each linearly equivalent family of vector fields ( € JL.
Theorem 3.2 implies that we can. without loss of generality, choose the simplest vector field

( G.o£ having a given set of normalized eigenvalue parameters {tfo>7o>tfii7i>fc| as defined in
(3.6), where 7©7i < 0 and k > 0.

Note that a piecewise-linear vector field with an arbitrary (tfoi7o«tfi»7i»^) mav be discon
tinuous at the boundary planes U1 and C/.j and hence is not a member of <£ even though it

satisfies (P.1)-(P.6) of Definition 2.1. Theorem 3.5 therefore provides the foundation for this

section by stipulating the additional necessary and sufficient condition (3.7) for such vector

fields to be continuous.* Stated in words, this eigenvalue condition asserts that the realeigen
value associated with the equilibrium point P+ (resp. P") must be opposite in sign to that at
0. Hence, trajectories along the real eigenvector at P* (resp., P~) and those at 0 must have

opposite stability properties.

Since our main motivation in this paper is to characterize the double scroll in [3] where

7o > 0, we will henceforth restrict our analysis to the following subset ji q C j£ of vector

fields, henceforth called the double scroll family ( (tfo»7ottfii7i.^)

^0 ^ f£(tfo.7o.tfi.7i,*01 tfo < 0,7o > O.tfi >0.,7i < 0,k > Oj (4.1)

where (tfo>7o»tfi'7i>^i are the normalized eigenvalue parameters. Stated in words, the eigen
value pattern of any member of the double scroll family at the equilibrium point P+ (resp.
P~) must be a mirror image (except for scales) of that at the origin 0.*

Remark: It follows from Theorem 3.3 that to study the global dynamics of the double scroll

family, it suffices to study the canonical piecewise-linear equation (3.32).

The eigenspaces (defined by the real and imaginary parts of the complex eigenvectors)

of a typical vector field ( e sC q are shown in Fig. 2(a) along with two typical trajectories.

Since all trajectories occur in odd-symmetric pairs (property (P.l)), Fig. 2(a) shows only half

of the salient features. Note that the qualitative behavior of Figs. 9 and 11 in [3] are identical

to that of Fig. 2(a).

The upper trajectory Tj in Fig. 2(a) originates from some point on U\t moves downward,

^Tfaia eigenvalue condition (3.7) is notnecessary for continuity of the vector field if we allow the piecewise-linear
system to have only one equilibrium point instead of three, as stipulated in (P.4).

♦Since the eigenvalue pattern of the feedback system in [18] satisfies this property, it too is a special case of the
double scroll family of vector fields to be investigated in this paper.
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turns around (before reaching C-i) and returns to U\ after a finite amount of time. It contin

ues to move upward before turning around and returns once more to U^* This typical trajec
tory defines a return map. called a Poincare map from some subset S C I/j intoS* We can
decompose this Poincare map into two components: a "half-return map" which maps the ini

tial point on £/j to the first-return point on U\t and a "second-half return map" which maps

the first-return point to the second-return point on Uy

The lower trajectory Tz in Fig. 2(a) also originates from U\t moves downward, penetrates

£/_1( and after some finite amount of time, turns around, and returns to £/_j a second time.

By the odd-symmetry of the vector field, however, we can identify each return point x in E/_i
»v

by its reflected image -x in U\. Similarly, the portion of Tzbelow I/_i can be identified with a
ft

corresponding version of T\ above U\. Through this identification scheme, both typical types

of trajectories Tj and T% actually define the same Poincare map, which in turn is simply the

composition of two half-return maps.

Unfortunately, the half return maps in Fig. 2(a) cannot in general be calculated by an

explicit formula or algorithm because the coordinates of the return points can only be found

by solving a pair of transcendental equations. Since these half return maps will be used in a

crucial way in section 5 to prove the double scroll is indeed chaotic in a rigorous mathemati

cal sense, we must find a new coordinate system so that these half return maps can be easily

calculated and its errors can be rigorously estimated. That such a coordinate system always

exists for any ( e 3. q constitutes one of the key contribution of this paper. Our approach for

deriving this new coordinate system is to work with the greatly simplified but equivalent Jor

dan forms of the regions Dq and D\ in Fig. 2(a), namely, the Dq-xxsX and the Z^-unit in Fig.

2(b) described earlier (Definition 2.3).

4.1. Half-Return Hap 7r0

Consider first the i?o"unit at tne bottom of Fig. 2(b) representing the image of Dq in Fig.

2(a) under the afline transformation ♦© (recall (2.6)-(2.9)). The 3 fundamental points A, B.

and E in Dq map into Aq, Bq, and Eq, respectively. Since L% maps into the straight line Lz*

passing through Bq and #0. it follows from (2.1) and the qualitative nature of trajectories in

'This typical trajectory can never penetrate the upper oblique plane because this plane is an eigenspace and is
therefore an invariant set.

*m the following we will choose S to be the "infinite" wedge A—BE^ C U\ in Pig. 2(a) representing the area
bounded by the 2 straight lines BA and BE , where A and E- denote that these 2 lines both originate from
B and extend to °°.



Dq that the vector field (q(x) has adownward *component for all x to the right of L^ and an

upward component to the left. Hence, any trajectory originating inside the triangular region

LAqBqEq = (z e Vq I x is boundedwithin triangle AqBqEq\ (4.2)

must move down initially. But because the z-axis in the Z?o"unit is the image of an unstable

eigenvector, this trajectory must move toward Vq as depicted by the upper trajec

tory in the 2?o~unit. This trajectory defines the map

i\$\LAqBqCq^Vq (4.3)

via the obvious image

*0 (f) =Voty (4.4a)

where <Pq(x) denotes the flow (in the DQ-unit) from x to the first return point where the tra-
ft ft

jectory first intersects Vq at some time T > 0, where

T=T(x) £ inflt >0|?0(x) e V0i (4.4b)

Consider next a typical trajectory originating from a point in the infinite wedge (angular

region)

jLAqBqEq ^ fa: e V0\x lies within the wedge-like extension of A^o^o^oi (4.5)

to the right of Aq Eq in the Dq-udU as depicted in Fig. 2(b). This trajectory must move down

ward (because it originates to the right of L^) and eventually intersects Vq . This trajectory

corresponds to the portion of Tg within Dq in Fig. 2(a) and defines the map*

TTq : /LAqBqEq\LAqBqEq -+ Vq (4.6)

via the obvious image

ttq (x) = tp^x) (4.7a)

where

T=T(x) £ inflt >0|p0(x) e Vq\ (4.7b)

•Throughout this section, "downward component" or "moving down" (resp.. "upward component" or "moving up")
means the vectorfield entersthe boundary plane Vq from above (resp., leaves Vq from below).

♦The symbol \ denotes set difference operator throughout this paper.
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is the time this trajectory first penetrates Vq . By identifying this return point in Vq with its

reflected odd-symmetric* image in Vq, we candefine the following half-return map

n0: £ AqBqEq + V0 (4.8)

by

ir0(x) =
ttq+(x) x e A^o^o^o

ft ft

-7To~(x) . * E LAqBqEq\LAqBqEq
ft f

In order to derive an algorithm for calculating itn(x) and 7Tq(x), let us magnify the tri-
ft ft

angular region LAqBqEq on Vq and the angular region LAqBqEq on V0 as shown in Fig. 3(a).

Since the z-coordinate of each point (x,y,z) on Vq is simply z = 1—x, it suffices to specify

each point on Vq by its (x,y) coordinate. Our next crucial step is to define a "local" coordi

nate system (u,v) on Vq so that each point x = (x,y)"is uniquely specified in terms of
fQ

(u,v) such that TTn (x) and iTq(x) can be expressed in terms of u and v.
ft ft

We will define our local (u,v) coordinates* as a weighted sum of the 4 corner points Aq,

Bq, Eq, and .Fq whose (x ,y) coordinates have already been found in (2.20), (2.22), (2.24) and

(2.25) in terms of the normalized eigenvalue parameters, namely,

xjiu.v) =u[vAQ +(I-v)Eq] +(l-u)[vB0 +(l-v)F0] (4.10)

where 0 < u < oo and 0 sS v ^ 1. Here, we have abused our notation by denoting the

(x,y) coordinates of the 4 corner points by Aq, Bq, Eq and Fq, respectively. Note that

x (1,1) = AQ, x (1,0) = Eq, x (0,1) = Bq and x (0,0) = Fq. Note also that all points along the
fQ fQ fQ **»0

line segments EqAq and FqBq have a u-coordinate equal to 1 and 0 . respectively. Similarly,

all points along the line segments BqAq and TqEIq have a v-coordinate equal to 1 and 0,

respectively. A typical point H with a (uq,Vq) coordinate can be identified as the intersection

between the u = u0 coordinate line and the v = Vq coordinate line. All points inside the tri

angular region LAqBqEq have 0 < u < 1, and all points inside the angular region /.AqBqEq

outside of the LAqBqEq have 1 < u < oo. Hence, in terms of the (u,v) coordinate systems

^Throughout thispaper, odd-symmetry in IR means symmetry with respect to the origin. Hence.2 points

(x ,y ,z) and (x\y, Z') are odd symmetric iff (x ,y ,2 ) = (—X,—y,—z).
♦The reason for choosing this unconventional coordinate system willbe obvious in Section 4.6.
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(4.2) and (4.5) assume the following equivalent form:

LAqBqEq = lxQ(u,v)\(u,v) e [0,1] x [0.1]j (4#11)

^AqBqEq = \xQ(u,v) | (u,v) e [0,°o) x [0,1]( (4>12)

Theorem 4.1: Calculating the t\q return map

Given x = (^q*Vq)T £ A^o^o-^o*tne return map ttq (x ) is given by
~o

_ Oft ™ * —-" *ttq [xo(u,v)1 =e cos £ —sin £

sin t cos £
x (u,v) (4.13)
~0

where (u/u) is the local coordinate of (xQ,y0) = Ebo(u»v)»Vo(u»1')]* wnere 0 ^ u ^ 1,
0 <, v <, I, and t is the "first-return time" calculated explicitly as follow.

(a) Use the second local coordinate "v" to calculate the inverse return-time function*
defined by

A <rf(Sov)./i>-l
<?o(£ot/-4h/)^>

where

9Po(x) denotes the location of the trajectory in IR3 which originates from x,
f ft

Aqv = x (i,v) denotes the location in ]R3 of a point along the line segment EqAq "v" units

from Eq,

Bqv e x (0,u) denotes the location in IR3 of a point along the line segment FqBq "v "units

from Fq,

h s (1,0,1)™ denotes the normal vector from the origin to Vq- ana" ^.^ denotes the usual

vector dot product in K3.

(b) Use the first local coordinate "u" (0 < u <, 1) to calculate

t - m/f* 2* 0\u+(v,t)=u\ (4.15)
'Given any "return time tQ,0 ^ tf0 < co, and any coordinate line V = Vq, (4.14) implies that there exists a

unique U = UQ 2 U+(l>o.*o) »ueh tnat the trajectory <Pq°(x(uq,VQ)) starting from X (uQ,VQ) at t = 0
**» ^0

would hit Vq at tf = tf q.



Proof. The dynamics in the Do-unit is (2.9) whose flow <pl(x ) from a point x = (xo,yo»2o) is
fQ «*»0

given by

ea°*cos tf -O°otev°sintf 0

***) =
M>

~0

e^sintf e^costf

0 0

Since Aqv •* ?oUov)' ^Ov "* ^o(^Ow) and since for ^xed *• Po(x ) in (4-l6) is a *www
\ **0

transformation, the straight line segment AqvBqv joining Aqj, and Bqv in Fig. 3(a) maps into a

straight line segment <Pq(Aqv)<p0:(Bqv) joining PoUov) and ^o(^Ow)- Now ^ we let

Xq £ ^A(x ). then % must divide the length ofthe vector pS(^Ov)?oU?Ov) mto tne same jwo-
#»» ««0 ~

portion as x (i.e., point H in Fig. 3(a)) divides the vector A^Bq^ into lengths u and 1-u

respectively. In particular'

0

To*
e

|3tttf(£<Jl
It =

<«>SUovM(So,U>

<^(So»)A>-<Vl>

<^o(^ot,-i40l,),/i>

*0

2/0

z0

(4.16)

(4.17)

(4.18)

where (4.18) is simply the ratio between the projections along the normal vector h of the vec

tors in the numerator and the denominator in (4.17), respectively. But

<xo,/i> =<(X0,y0,£0),(i,oj)> =x0 +£0 =l (4.19)

Since xA lies on Vft. Substituting <Xo,/i)= 1 into (4.18) we obtain (4.14), where we
•»U u f f

have written u*(v,t) in place of u to emphasize that the right hand side of (4.14) is a well-

defined continuous single-valued function of v e [0,1] and tf e (0,<»). The superscript "+"
denotes its association with itq to distinguish it from u~(v,t) in Theorem 4.2 which is

associated with 7T(,

tA refer from point xto point yinIR3 ts denoted throughout this paper by Tg. The length of £$ is denoted
by |SJ|.



Remarks

1 Since any initial point x (l,v) lies on the stable eigenspace ^olfi^O)!, <p&{x (l,v)| may

not return to Vq but instead converges to the origin 0 as tf -> oo. In this case, however, it

is logical and convenient to define 7To"fx (l,v)l - Cq = w*o(C) since we have earlier

identified Cq and 0 as the same point. It follows from this definition that u+(i>,tf) •* 1 as

tf -> oo.

It can be shown that the vector field (q(Eq) *s directed from Eq to Aq, (q(Bq) is directed

from Aq to Bq, and (q(Fq) is directed from Fq to Bq, as shown in Fig. 3(a). It follows

from the continuity of ((x) that the vectors along the line segment BqFq are as depicted

in Fig. 3(a).

Since the vector field ((x) has a downward componentfor all x to the right of the line seg

ment EqFq in Fig. 3(a), and since ((x) is directed to the right for all x € EqFq, it follows that
ft f

all trajectories starting on EqFq or slightly to the right of EqFq will first move downward

towards the right before returning to Vq. Hence 7Tq"(x) is continuous even along the points on

EqFq.

In contrast, the vector field ((x) has an upward component for all x to the left of the line
ft ft

segment FqBq in Fig. 3(a). Moreover, since ((x) is directed to the left for all x € FqBq, it fol-
ft ft

lows that the trajectories starting from points along FqBq will first move upward before

returning to Vq whereas trajectories starting from points arbitrarily close to FqBq (but on

the right hand side) will first move downward and return to Vq after a relatively much shorter

time. Consequently, ttq (x) is discontinuous along FqBq. For convenience, we will define
ft

n$(x) =x for all x e Fq~Eq~ (4>2o)

In other words, we define each point x e FqBq as a fixed point of 7io"(x) and hence its first
f> ft

return time is equal to zero; namely,

u+(v,t) A 0 at t =0 (4.21)

3. Between t = 0 and t = », u (v,t) is a continuous but not necessarily

monotonic function of t. The continuity follows from (4.13).

4. Remarks 1-3 imply that a typical inverse return-time function u*(v ,t) has the form
shown in Pig. 3(b): it starts from the origin and approaches u = 1 asymptotically while

making some (possibly none) oscillations in between. It follows from (4.15) that the set
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/*(v) of "first-return times" t as u changes from 0 to 1 is in general not a connected set.

For the example in Fig. 3(b), we have /+(v) = [O.tf j] u (tfg,00).

5. The example in Fig. 3(b) demonstrates that in general the return time tf is a discontinu

ous function of u and hence of the initial point x . This shows that it is in general impos-
~0

sible to express the return time tf as a continuous function of x . Consequently, our algo-
~0

rithm for calculating tf in Theorem 4.1 is the best result obtainable.

Following the same notation and proof as Theorem 4.2, we obtain:

Theorem 4.2: Calculating the 7To~ return map

Given x = (xq>Vq)T e jLAqBqEq\LAqBqEq, the return map 7io*(x ) is given by (4.13),
fQ fQ

where (u,v) is the local coordinates of (xQ,yQ), l<u<oo,0^v ss 1, and tf is the first
return time calculated explicitly as follow:

(a) Use the second local coordinate "v" to calculate the inverse return-time function

<^(5ov)A>+l

*™ " <dtg»-^).»> (422)ft

(b) Use the first local coordinate "u" (Kix<oo) to calculate

tf =inf[t 2* 0|u"(v,tf)=uj (4.23)

It follows from 77ieorems 4.1 and 4.2 thai the half-return map ttq defined in (4.9) can be

explicitly calculated. Le.. without solving any system of nonlinear equations. Here, we assume

that the inverse return time functions u*(v ,tf ) in (4.14) and u~(v ,tf ) in (4.22) have been plot

ted and hence the first return times tf in (4.15) and (4.23) are simply read off these curves.

Tins operation is of course equivalent to finding the inverse of a function of one variable —a

simple reliable task compared to that of solving a system of transcendental equations.

For the rigorous proof and analysis in the following sections, it is never

necessary to calculate the first-return time t. Instead, the image under ttq of

various constant-v lines, which is given explicitly via (4.10), (4.13), (4.14) and

(4.22), is used directly.

Example 4.1: itq with monotone inverse return-time function

Consider the vector field ( with (oVft)»ffi»7i>fc) = (-0-3, 1.5, 0.2, -2.0, 0.75). The images of
the line segments BqAq and FqEq in the Vo-plane under the half return map 7r0 = 7Tq" are
shown in Fig. 4(a) as two "spirals" from Bq to Cq, and from Fq to C0, respectively. We will

henceforth denote such curves by [BqCq] and [FqCq], where [ • ] denotes both end points are
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included.

The images of the line segment ^o^0oo an(^ ^o^0oo (wnere ^Ooo an(^ ^ne» denote the

extension of the respective straight lines to +00) in the Vo-plane under the half return map

Tib = —itq are also shown in Fig. 4(a) by the "spirals" [CqA') and [^qEq^) where AQgo and
i?0oo denote respectively the extension of the respective curves to +«».

The graphs of the inverse return-time functions u = u+(l,tf) along BqAq and

u = u"(l,tf) along AqA are shown in Pigs. 4(b). A magnification of these curves in Fig. 4(c)

shows that both functions are monotone functions.

Example 4.2: itq with non-monotone inverse return-time function

Consider the vector field ( with (cF0,7o»^i,7i,fc) = (-0.2,0.75,0.2,-1.0,0.75). The image

in the Vp-plane under the half return map 7T0 = ITq of the line segment BqAq is shown by the

spiral [BqCq] in Fig. 5(a). Its corresponding inverse return-time function u+(l,t) as shown in

Fig. 5(b) and magnified in Fig. 5(c) is a monotone function as in Example 4.1.

However, the image in the VQ-c\ane under the half return map itq —— itq of the line seg

ment ^o^ooo consist of the union of two disconnected curves (6 Cq\ and [bAQgo). This

phenomenon can be explained by looking at the associated inverse return-time function

u"(l,tf ) in Fig. 5(b) whose magnification in Fig. 5(c) shows a non-monotonic curve with a local

minimum at tfj, and a local maximum at t2- The image of the line segment Xo(Ui,l)xo(u2,l)

under 7Tq = —itq is the spiral [a6 ] in Fig. 5(a).

If we plot the second and the third return maps of Xo(ifci,l)xo(u2,l), we would obtain the

curves (6a] during the time interval tfj < tf £ tf2 and (a 6) during the time interval

tf2 < tf < tffr where tf3 = inf\t > tf 1|u~(l,tf) = uj.

4.2. Half-return Map n 1

Consider next the Z?i-unit on top of Fig. 2(b) representing the image of D1 in Fig. 2(a)

under the affine transformation $i (recall (2.10)-(2.12)). The 3 fundamental points A, B, and

E in D\ map into Ax, B x, and Eh respectively. Here we abuse our notation by using the same

symbol Dx to denote the top region in Fig. 2(a) and a point on the z-axis in the D1 unit in Pig.

2(b). We will inherit the same notations in the preceding section with the exception that all

subscript "0" corresponding to Dq-ixdH should be changed to "1" for the 2?j-unit. Hence, we

define again a local coordinate system (u,v) such that the line segments E~[F\ and A\E~\ in

Vl in Fig. 2 correspond to the v = 0 and v = 1 coordinate line, respectively. Likewise, the

line segments F\B\ and £"1-41 correspond to the u = 0 and u = 1 coordinate line,
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respectively. Any point x inside the wedge (angular region) bounded by B^A and B\E

is uniquely identified by:

x (u,v) = u[vAx + (l-tO^] + (l-u)[vBx + (l-v)Fi],

for 0 ^ u < oo, and 0 <> v & 1 (4.24)

Under this local coordinate system, we can define the triangular region LAiB\Ei and the

angular region L A\B\E\ as follow:

LAlBlEl 4 \x£u,v)\(u,v) e [0.1] x[0,1]) (4.25)

^A1B1E1 * fx (u,v)\(u,v) e [0,oo) x [0,1]J (4.26)
'•I

Finally we define the second half return map

tt^x) : LAiBxEy. -> Vj (4.27a)

via the obvious inverse image

ir^x) = pfr(x) (4.27b)

where ^f^x) denotes the/tou> (in the 2?i-unit) from x to the first return point where the tra-
ft f*

jectory first intersects Vj at some "reverse" time —T < 0, where

T= T(x) k in/ftf >0|pf'(x) e Vjj (4.27c)

Our next theorem shows that 7Ti can be calculated by an explicit algorithm similar to

that of 7T0.

Theorem 4.3: Calculating the TTj return map

Given x = (i,,y,)r e ^A\B\Eu the half-return map 7Ti(x ) is given by
ft\ * ^o

ttJx (u,v)J =e~*1* cos tf sin tf

—sin tf cos tf
x (u.v) (4.28)
~i

where (u,v) is the local coordinates of (x^y^ =[xi(u,iO,yi(u,iOj. where 0 <u < oo,
0 sS v ^ 1, and tf is the "first-return time calculated explicitly as follow:

(a) Use the first local coordinate "u" to calculate the inverse return-time function
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A <9?r'(£,u)A>-iV(utt) k -r-^r- ^—— (4.29)
<<P?(Elu-Alu),h)

ft

where E\u = x (u ,0) denotes the location in IR3 of a point along the line segment FiE\

"u" units from Fit and i4ju = x (u,l) denotes the location in IR3 of a point along the

line segment B^A^"u" units from B\.

(b) Use the second local coordinate "v" (0 ^ v <• l) to calculate

tf =in/ftf ^ 0\v(u,t)=v\ (4.30)

Proof. Follows mutatis mutandis the proof for Theorem 4.1.

a

Example 4.3: 7Tj with non-monotonic inverse return-time function

Consider the vector field ( with (oTo,7o,o?ll7llfc) = (-0.4,0.3,0.2,-1.0,0.3). Since 7Ti(x) is
ft

defined to be the reverse flow, the vector field (\(x) on Vi becomes - (\(x) in following the
ft ft

image of x under 7Tj(x). Hence the direction of ((x) along the line Z^ = ^0(^2) m Fig. 3(a)

must be reversed in the corresponding line L2 = ^(Z^) in Fig. 6. Hence, 7Tj(x) is discontinu

ous along the line segment E\F\ in Fig. 6 whereas it is continuous along the line segment

F\Bi. This is the opposite of 7Tq(x) which is discontinuous along FqBq but continuous along
ft

EqFq. Note that E\F\ corresponds to our v = 0 coordinate line.

The image of F~JB\ under 7Tj is the spiral \F\W\Di\ in Fig. 6. In Appendix 4 we shall

prove that this spiral is tangent to the line E\B\ at F\. The image of the line segment E\A\

is shown in Fig. 6 as part of a large spiral [EiA[ ]. The continuation of this spiral to the right
of Ai is the image of the extension of E\A j beyond A\.

The inverse return-time function v = v(0,t) in Fig. 7(a) and its magnification in Fig. 7(b)

shows that it is a monotonic increasing function of tf. However, the inverse return-time func

tion v =v(l,tf) in Fig. 7(g) and its magnification in Fig. 7(h) shows that it is not monotonic

and has a value larger than 1 for tf3 < tf < tf4 where tf3 s inf\t >0|i>(l,tf) = ljis the time it

takes A\ to go to A\. The time interval ^3^4) therefore corresponds to the time where the

extension of the outer spiral [25*1.4! ] lies to the right of the line segment B\A\ (i.e., the v = 1
coordinate line).

Recall that F\Bi and E^A[correspond to our u = 0 and u = 1 coordinate lines, respec
tively. There exist 0 <ux < uz < 1 such that the corresponding coordinate lines a1e1
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(u = u1§ line) and a&z (u = u2 line) are mapped under tt1 into the following two curves:

(a) 7Ti(tticl) is a spiral [e1F1 WzD{] which is tangent to E~iBi at F\.

(b) 7T1(a2e2) is a curve [e2i?i] which is tangent to AiA\ at B\,

The graph of the inverse return-time functions v =i>(ulttf) is shown in Fig. 7(c) and its

magnification in Fig. 7(d) shows that it is monotonic with an inflection point

at some time tfj. The graph of the inverse function v = v(uZtt) is'^-=0and^=0
dtf dt2

shown in Fig. 7(e) and its magnification in Fig. 7(f) shows that it is non-monotonic with a max

imum value v = 1 at tf = tfg, where tf2 is the time it takes to go from a2 to B\.

Now let /i be the inverse image of F± in Fig. 6, i.e., iTi(f \) = F\. Similarly, let the
inverse image of F\B\ be denoted by [/ia2], namely, the curve J \0,z in Fig. 6. Since the

region bounded by the closed curve e \*zazf ie l ls found to maP m^° tne region bounded by
the closed curve eyF^B^e^^ whereas the neighboring region bounded by the closed curve

f \Q.\Q.2f\ is mapped into the region bounded by the closed curve F\W\D\WzF\ in Fig. 6, it

follows that 7T](x) is discontinuous along the curve / jOi2, in addition to already being discon

tinuous along E\Fi.*

Let us summarize the behaviors of 7Tj in Fig. 6 as follow:

(1) iti(LA\B\E\l = a fan-like closed region UA\B\E\
(4.31)

(shown shaded) in Fig. 6.

(2) TT^B^Ei) = Z>, (4.32)

Here 7T1(^1a2) actually maps into the origin in the unstable eigenspace tyi]Ec (P)j which
becomes a stable equilibrium under the reverse flow pj". It is logical and convenient to

identify the origin with Dt = ^i(P*) in Vv

(3) Since 7Tj is discontinuous along E^Fj, we will define (as in 7T0):

iTi(x) k x for all x e T^F\ (4.33)

In particular.

^These additional discontinuity points occur when we choose our parameters close to those which gave us the
double scroll. They may notoccur inside LAiB\E\ for other choices ofparameters.
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With this definition. TTj becomes continuous at FT^F\.

(4) 7TJ is one-tfo-07ie at all points inside the triangular region LAiB^Ei and its boundary

except the points along the line segment [£7ja2) and the isolated point f \, Le.. on

A^i^XttB^uf/jl).

(5) trf1 is iweU defined at all points in the fan-like region UA\B\Ei except for the two iso
lated points F1 and D\.

(6) The spiral (F\ W\D{) is the set of discontinuous points of tt"1. The function 7T-1 is discon
tinuous at these points because ^^(x) -> / ja2 from the right as x -* Wi from the right,

whereas 7Tf!(x) ~* -^l-Ei from the right as x -» H^i from the left. This follows because the
return map tt^ corresponds to a flow in forward time, and hence has exactly the same
discontinuity property as that of ttq along the corresponding segment FqBq.

Using the above properties, we can now define the inverse half return map TTi as follow:

irf1: BA'^BxE^ - LAlBlEl (4.35)

where n^^i^,. ft K*.V.*) € V,|y &o^x +7j(1-x), x -s lj (4.36)

is the region above the line BtE and to the left of AiA in Fig. 6.

irf1^!) ft Bi (4.37)

Vt^l) ft /l (4-38)

Note that 7Tj"* is discontfimtous along [J7! W\Vi].

4.3. Connection Map $

Since the Z?Q"un^ and the Pj-unit in Fig. 2 have different reference frames, let us

"match" the two units by defining the affine connection map

* £ (*llt/1)°(*olt/,rI (4-39)
where ^i \ yt and^ol Ux denote the restriction of 4^ and 4*0 on U\. Again, since z± = 1—Xj, it

sufiices to find the explicit formula relating (x0,yQ) e Dq to (xj.yj) C Z?i. Since

Aq = (i.p0,0) ^ Ai ^ (l,plt0).
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Hence

*1
= d>

*o

Z/o

fx0-l
hwo~Po

1

Pi

(*!-l)

(Vi-Pi)
f(^o-D]

=£ (yo^Po) for "^ (x°'yo) e/?0

(4.40)

(4.41)

Now since Bq ft (£ox.#Oy) "> #i ft (^lx.^iy) and£o ft (^ox.^Oy) "• #i ft (E\XtEly).it
follows from the action of L in (4.41) that

Six-4 lx

^l»~^lyj = £
^0x~^0x
Boy-Aoy

It follows from (4.42) that

L =
^lx~^lx ^Ix^lx
Bly~Aly Ely~Aly

E\z-Alx

Ely~Aly
= L

•S'ox^Oz
Eoy-Aoy

1-1
^Ox~-^0x •E'ox-^Ox
BQy-AQy Eoy-Aoy

(4.42)

(4.43)

Substituting (2.20). (2.22). (2.24). (2.26). (2.28). and (2.30) for the respective components of

Ai, Bi, Ei into (4.42). we obtain the followinng formula for L:

L-
W+D*i

(etf+l)(*o+l)«i7i

"-7i(*o+l)[% +7o(*<r7o)(*i+l)] 7o7i(*0+D(*i+l)

-7o(fci+l)(oro-7o)[^i(^i"7i)+l]

-7i(*o+0(ffi-7i)[^o^o-7o)+l] 7o(*i+0[^i +7i(^-7i)(*o+D]

where ft ft fo^)2 + 1, k0 ft fc , and kl ft 1/Jfc . (4.44)

Note that L is expressed directly in terms of the normalized eigenvalue parameters

(oo.7o.*i.7i.H

4.4. Poincare Map tt

We will now use the half-return maps ttq and TTj and the connection map $ to define a

Poincare map

i\:Vl -> V[ (4.45a)

where
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Vl ft f(*.V) e Vi|x ^ li (4.45b)

via the formula

tt(x) = n71$'nQ$-l(x) , if x € LAyByE*
f f ft

= *7r0§~1TTf1(x) , if x e Vl\z.AlBlEl
ft ft

(4.46)

Note that 7r( Z.i4151£'1) C £A1B1E1 and nf1 is well defined for all x € Vl\/.AlB1El in

view of(4.36). Here V[ denotes the Vj-plane to the left ofx = 1.

4.5. ^-Portrait of V0

In our study of the global dynamics of the double scroll family in the following sections.

we will often need to look at the image via $ of the half-return map of several line segments

defined as follow:

B^Cl ft *7T0*-1(^7^) =$7To(^o) (4.47)

F\cl ft inQt-^Ftt) = $7r0(Fo^o) (4-48)

CiA'1oo ft *7T0$-1(^^) =^^o(^o^) (4.49)

C^ ft *TT0*-1(^E^) =*7r0(r0T0^) (4.5o/

E^A\ ft ^(F^) (4.51)
The images B\C\% F^C^, C\A , C-JZ and E\A\ for a typical set of normalized eigen-

value parameters (o*o,7o»o~i.7i.fc! for a vector field ( e;£ q are shown in Fig. 8. We will hen

ceforth refer to this picture as the V^-portfraitf of VQ. Note that Cj s $(C0) = ^i(C).

Stated in words, the Vj-portrait of Vq consists of 4 distinct sets of points:

Set1. ivo boundary lines BXA and B1Eleo representing the Vj-coordinates of points
along the boundary lines BqAQoo and B0EQoo of the infinite wedge /-AqBqEq.

Set 2. The boundary line E\A^ of the triangular region LA^B^^.

Set 3. 4 spirals representing the image of points in Set 1 under the TTQ-map (in Po~unft) but

translated into the coordinates on V1.

Set 4. Apartial spiral representing the image of the points in Set 2 under the 7Ti-map.
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In Section 5, we will consider the important case when Set 4 includes the point C\, i.e..

Cj e EXA\.

4.6. Spiral Image Property

The various spirals in Figs. 4(a), 5(a), 6, and 8 were calculated by computers for various

specific sets of parameters. In general, the image under 7To, itq, or Tf\ of any bounded

straight-line segment along a u = Uq or v = Vq coordinate line is always a spiral To prove

this important property, it is convenient to rewrite (4.13) and (4.28) in a more compact form

by identifying a point x = (Xj.ift) in the 1£-plane (i = 0,1) by a complex number (pihasor)

X- (xv+jVi)- For example, (4.28) can be rewritten into the equivalent form
ft

*ifci(u,v)} =XAu^e-^1* (4.52)
where A^u.i;) ft xla(u,v) +jxlb(u,v) andx (u,v) ft [xla(u,v),xlb(u,v)]T.

~1

Now for tf e (0,oo), Ar1[u0,i'(uo,tf)] represents one point along the u =u0 coordinate
line. If v(u0,t) increases monotonically from v=0tov = lasin Fig. 7(a) when u0 = 0,

then Xi(u,v) moves monotonically from v = 0 to v = 1 ast increases from 0 to oo. if

i>(u0,tf) is not monotonic but is bounded between va and vb as in Fig. 7(h), A^juo.fCiio.O]
will move back and forth along portions of the u = u0 coordinate line while moving from va to

vp. In either case, since xfa(u,v) +xfb(u,v) <oo, 7i"ifiio.^(^o»0] -* 0 as tf -> oo. The loci
of points under 7T] along u = it0 is therefore a shrinking spiral whose amplitude is modulated

in accordance with x fix0,v(uo,tf)]. If x rtz0,v (ifco»0| varies only slightly for all tf e (0,oo), as
in the cases shown in Figs. 6 and 8, the shrinking spiral would look almost like a "logarithmic

spiral." The same interpretations apply to ttq and ttq.

In view of the odd symmetry of the vector field (, spiral images under itq, ttq, and 7!^

always occur in odd-symmetric pairs. This proves formally that the cross section along the

U\ and U~\ boundary planes of the double scroll attractor consists of 2 tightly wound odd-

symmetric spirals, thereby justifying our choice of the name "double scroll."

Since the image of ttq , 7To~ and 7Ti of an arbitrary curve or line segment in U\ is in gen

eral a curve with no special properties, it is indeed remarkable that the images along the

u-Uq and v —v0 coordinate lines are always spirals. It is precisely this observation that

prompted us to choose this unconventional local coordinate system.

'We use capital letters to denote phasors.
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APPENDIX
Appendix 1. Derivation of Real Jordan Form

Choose vectors e , e and e in IR3 such that
ftf^ fff f*Q

(1) e is the real part of the complex eigenvector corresponding to a ± ju,

(2) e is the negative imaginary part of the complex eigenvector corresponding to c ± ju,
fb

(3) e is the eigenvector corresponding to y.

If we choose Q s [e ,e ,e ], then / = Q~lMQ transforms an arbitrary 3X3 matrix with
ftn ftf) fQ ft ft ft ft

eigenvalues cr ± ju and 7 into its real Jordan form (see Theorem 3, p. 68 of [16]): Hence,

under this new coordinate system x = Q~*x, ( assumes the following real Jordan form:
ft ft ft

Kt rw '

a —cj 0
M

X

ft

cj a 0

P 0 7
y

H

z

(A1.1)

where x = (x ,y ,z ). Moreover U is represented by
ft

Ix" + my" + 712" = d (A1.2)
either

where f2 + m2 ^ 0, n ^0 and ctf j* 0. because U is not parallel to / eigenspace and does
not pass through the origin.

In the new x" coordinate system, the 3 vectors e , e and e are transformed into 3
axes,

orthonormal / the eigenspace spanned by e and e is transformed into the x —y plane,
fji fb

and the real eigenvector e is transformed into the 2 -axis.
~c

The £/-plane is of course transformed into another plane U not passing through the ori

gin and is not parallel to the x" —y" plane. Our next goal is to rotate U so that it makes a
45°-degree angle with the x" —y" plane, and intersecting it at x = 1.* This can be achieved
by choosing yet another coordinate system x = (x',y',2) such that the 3 orthonormal vectors

ft

e' = [1,0,0], e ft [0,1,0], and e' ft [0,0,1] in the x-coordinate system are transformed
ffl fff ' fQ f

from e , e , and e with the geometrical property which achieves the above transformation;
f\ ^2 "*3

namely, (i) make e parallel to U", (ii) make e perpendicular to e , and such that the tip of

•The choice of 45° and X = 1 is strictly for convenience.
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e lies on if, (iii) make e and e lie on the x" - y plane, (iv) make |e | = |e |, (v) make
f\ N ' f\ f2 ~Z ~1

c = rO.O.dal where d3 is chosen so that the tip of e lies on if. The above requirements
~3 ~3

defined e , e , and e uniquely as follow:
~1 ~2 ~3

e ft (d/(J2+m2))[J,m,0] , (A1.3)

e 4 fd/a2+m2)][-m,tf,0] , (A1.4)
~2 l '

e<s ft (d/n)[0,0,l] (A1.5)
**3

Note that the newcoordinate system x is relatedto x by x = ^"1x", where Q = [e , e , el.
" M A* f f\ f f\ f\ «V2 ~3

In the x'-coordinate system, the expression off and U will assume the form given in (2.3) and
ft

(2.4). To see this, define

Q ft [e ,e ,e ] =
~1 ~1 ~2 ~3

£ 0-1
" 51

dtf/^+m2) -dm/t^+m2) 0
dm./(lz+m2) dl/^-rm2) 0

0 0 d/n

tf/d^+m2) m/d(tf2+m2) 0
-m/d(tf2+m2) tf/d^+m2) 0

0 0 n/d

Then we have'

and

-3 o X
Kt
(7 -w 0

» <

x'

=<?->
~1

<**

u

0

a 0

0 7
<?i y

z

=

r>t

CJ

0

a 0

0 7
y

z

£/:(tf,m,7i) = d

(A1.6)

(A1.7)

(A1.8)

(A1.9)

^Note that Q JQ —J because by choosing e = e , and e 1 e , the first two rows of Q are a pro-
f\ ~~l ~ ~1 ~2- ~1 ~2 ~1

duct of a scalar and a planar rotation, and since the first two rowsof J define a planarrotation.
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<=>

<=>

<=>

(l,m,n) Q
~i

= d

(d.O.d) = d

x + 2 = 1 .

Appendix 2. Proof of Lemma 3.2

To prove Lemma 3.2, we need the following lemma.

Lemma A2.1. OA, OB, and OE are linearly independent.

Proof. Case (i): E ^ B. Assume that OA can be written as a linear combination of OB and

OS. Then, since B,E e Lz, we have A e Lz, and so«40 e ^0(^2). Since Aq = (l,Po,0), from
the equation of ^q(Lz) m (2.16), it follows thatpo = °0- Therefore Aq = &0- Similarly, from

A\ e 4f1(Z»2). we have Pi = (J\ and hence A^ = 2?j. Therefore we obtain E = .4 = B, a con

tradiction.

Case (ii): E = B. Choose a point K on I/2 defined by OR = U2? + f(£). Since E G. Lq and
((E)// Lq, we have A" e Z»0. Since 2T0 = (l.^o-0) and B1 = (l.^.O), from the expression of &
(i = 0,1) in (2.9) and (2.12), it follows that

Kq ft *q(K) =*o(*) +*o(e(^))
=Eq +Uq(q(Eq) =(1,0-0+S0(C7|+1),0)

Hence,

fc)(#o) =(-S0(tT02+l).((7o2+l)(l+C7oc3o),o) .
Since B = E.

•»-
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Kx ft *i(JO =*i(*+«*))
=Bx +S^i(5) =(l.eFj+S^f+O.o) .

Hence,

fi(*i) =(-S,(»r+0.(ffF+0(i+ai3i).o) •
Defining the normal vector h k (1,0,1) of VJ (i =0,1), we obtain

ft

<K(q(Kq) >= - Uq((J§+1) <0 (A2.1)
ft

<h,(i(*i) >= - 3j(af+1) <0 (A2.2)
ft

Now (A2.1) implies that the vector (q(Kq) at the point Kq e ^Q(UX) must point towards the

origin of the eigenspace 4ropc(0)J in the Z?0-unit in Fig. 2(b), i.e., below Vq. This implies that
((K) at K e Ux must point toward the interior of the Po-region, i.e., downwards. However,
(A2.2) implies that the vector (\(K\) at the point K\ G *i(Ui) must point towards the origin

of the eigenspace Sk1[fi,c (P)\ in the 2?runit in Fig. 2(b), i.e.. below Vv This implies that ((K)
at A' € U\ must point towards the interior of the ZVregioh, i.e., upwards. This is a contrad

iction and Lemma A2.1 is proved.
•

We are now ready to prove Lemma 3.2. Given jJL = (vQ,yQ,0\,y\,k), choose any ( e ([fi\.
" ft f

Denote the eignevalue parameters of ( by (cfo>Uoi7o>^i>^ii7i)> Let tne vector from the origin
to the fundamental points \A,B,E,P\ be denoted by \A,B,E,P\ respectively. By Lemma AS. 1,

the matrices [A,B,E] and \A-P,B-P,E-P\ are invertible. Since the affine maps % carry
ft *W»W ft ft ft ft ft f

[A,B,E\ into [Ai,Bi,Ei\, i = 0.1. respectively, $* can be written as follows;

*0(x) =* x , * = [A ,B ,E ][A,B,E\-1 , (x e Dq) (A2.3)
w ft ftQft »*»o ""0 ~o ^o •*»«»••*»•«»

*,(x) =* (x-P) , * =[A,B,E ][A - P,B - P.E - P]"1 . (x e Dx) (A2.4)
iy**' ft\ f ft -t\ f\ f\ f>\ ft ft f f f f f n/

By (2.9) and (2.12), since for i = 0,1,

^-D%^t-\x)]]=J.x (A2.5)
where
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/ ft
~i

we obtain

(Ji -1 0

1 Oi 0

0 0 7t

(Id0(x) = so*r1^Az" ft' "^O ♦^O^O*'

ein1w = s1$-v$(x-p)
* f* ft j M*l'*'l ,v ***

The continuity of £ is equivalent to the condition

elz>0(;) =£b1(x) (A2.B)

for all x € C/j = Dq n Z?i. Since each x € L/t is a linear combination of A #, and Ein view of
*W ft ft ft ft

Lemma A2.1, the continuity of ( is equivalent to the condition that (A2.6) holds for x = A, B,

and E. Substituting x = A, B, E\n (A2.6)-(A2.B), we obtain

*"V $ [A,B,E] = A$-V $ [A - P.5 - P.JS" - P]
"*0 n'0'v0 •** *** mt 'wl *vl'vl ** ft ft ft ft ft

where X s ux/ 30- Defining

FK ft [A ,B ,E ]~V [A ,B ,E ]
«»0 ^0 ***0 "**0 **0 ~0 ~0 **0

and

(A2.6)

(A2.7)

(A2.9)

(A2.10)

W ft [A,B ,E ]"V .[A ,B,E] .
ft J »N»J ««J #vj «wj «<J ««] «<J (A2.ll)

and using (A2.3)-(A2.2). we can rewrite (A2.9) as [A,B,E] W = \[A- P. B - P. £ - P]W . and
ft ft ft fQ ft ft ft ft ft ft ft J

hence

[AS.EKXFF - FK ) = AfP.P.P]^
A«n<n< 'w 1 "^O ft f> ft fi \ (A2.12)

Substituting the coordinate of 4. Bi% and E% (i = 0,1) in (2.20)-(2.24) and (2.26)-(2.31) into

(A2.10)-(A2.11), we obtain after some algebraic simplification the following:

(°o-Po)2-(Po+l) -7o(oo"Po) -(^1+1)
0 7o(°o-Po) 0 (A2.13)

pl+l 0 c§+l
ir--i
•"0 CTq—Pq
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* = -!
~1 0-2-JJ2

(^i-Pi)2-(Pi2 +l) -(crf+1) -7i(<7i-P2)
pf +l af+1 0

0 0 7i(*i-Pi)

(A2.14)

where ft = o\ + (a2 + l)fci/7i (i =0,1). Note that W is determined by only0$, 7* and fc$

(i =0,1). Defining ct ft at -ft (i =0,1), we obtain (1.1.1) W. =(^,0,0). Since \P,P.£} =
P (1.1.1). by(A2.12),
ft

[A.BMXW -W) = XP(1,1,1)FK = XP(ci,0.0) = Ac^P.O.O] . (A2.i5)
»w »w f f\ fQ f iv] f #*» *w »v \ '

The column vectors in (A2.15) can be written as follow:

-[A,BM\W -W)(1,0,0)TP=-i L„_JV ,
•*» ^c • <w>w»n» *»»2 ** 0

0 = (XV-*)(0.1f0)r
«» «*« 2 ***0

0 = (XFK-FT)(0.0.1)7'
f f} »>»o

It foUows from (A2.13). (A2.14). (A2.17). and (A2.1B) that

af+1 7i(o*o"Po)

Since fc0 ft 7o(Po~t7oV (^0 +0 m(2.21). (A2.19) impli

7o
X = -

7i*i

es

Since X = Ui/uq, and since fco = 1/fci as stated in (2.34). we obtain

1 - *. - _ W*o - - ?° - *
*i 7i"i 7i

This proves statement (b) of Lemma 3.2.

To prove statement (a), define

(l.m.nf = -!—(XfC -FCJd.O.O)7,
AC 2 ~ 1 ~0

(A2.16)

(A2.17)

(A2.18)

(A2.19)

(A2.20)

(A2.21)

(A2.22)

This is determined by a0, y0, av ylt and fc in view of (A2.13). (A2.14), (A2.20). and (A2.21). It

follows from (A2.16) that
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P = [AB,£\(l tm,n)T = lA + TnB + nE (A2.23)
f ft ft ft ft ft ft

Hence (3.10) holds.

To prove statement (c) of Lemma 3.2, note that (2.21) and (2.27) imply

,2.^.^.M^L (i =0.. .1) (A2.24)
fi

Using (A2.13). (A2.14). (A2.20). and (A2.24), we obtain

s ft I +m +n = J^(l,U)(7FP -W )(1,0.0.)7'
AC 2 ~1 ~0

(A2.25)

=1- -g-= 1+k*yf(a§+l)/y§(af+l)
Since by (P.4) in Definition 2.1, P = P must be located in the interior of D\, it follows from

(A2.23) that s=i+m+n>l, that is

s - 1 = fc37i2(a|+l)/702(ai2+l) > 0 (A2.26)

Therefore fc > 0 holds. Since —7q/ 72* = X = u^ u0 > 0, we have 7072 < 0. This proves that

( e £M => 7o7i < 0 and fc > 0.
ft

To prove the converse, let fj, = (oro,7o»0'i»7i»fc) De given such that 7072 < 0 and fc > 0.
ft

Using (A2.21), define X, ct. W , W . (l,m,n) ands by (A2.20), (A2.24). (A2.13). (A2.14), (A2.22),
~0 ~1

and (A2.25) respectively. Define 4 vectors as follows:

£ =(1.1.1) . £=(l.-(J+n)/m.l) (A2.23)

E=(-(l+m)/n,l,l) , P=(0,0,s) .
f f

Using (A2.23), we obtain

[A,B,E] Wn = \[A - P,B - P,E-P] W (A2.24)
ft ft ft ftQ ft ft ft ft ft ft f\ » '

This guarantees that the vector field ( defined by

((x) ft \[A-P,B-P,E-P]W{A-PtB-P.E-PYl(x-P) ,z s* 1
ft ft ft ft ft ft ft ft i ft ft ft ft ft ft f, ft

ft [A,B,E]W [A,B,Z\-lx ,\z\ -s 1 (A2>25)
ft ft ft ftQ ft ft ft ft » /

ft \[A- P,B- P,E- P]W [A- P,B - P,E - P]~\x+P) ,z <: -1
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for x = (x,yfz)Tt is continuous. Moreover we can verify that the piecewise-linear vector field
ft

( as defined in (A2.25) satisfies (P.1)-(P.6) in Definition 2.1. Therefore ( e &. This proves
statement (c).

•

Appendix 3. Proof of Theorem 3.3

Let rcr0.«0.7o.^i.«i.7i! be given such that S0 > 0, Z1> 0, and 707i < 0. Put
M= (<7o.7o.ffi.7i.fc) ft (tf(/20.7o/2o,cri/32,7i/"2,-70/7i)- As shown in (A2.22), I = l(ft),
ft **

m = 77i (fj) and n = 71 (fi) are given by
ft ft

(L,m,n) = -J— (\W -W )(1.0,0)7' . (A3.1)
XC2 ~1 ~0

Using Cj = ul-pl = -fc0(tfo + l)/7o (by (A2.24)). X= ~7o/7ifco (by (A2.20)) and fc0 = k (by
(A2.21)), and substituting (A2.13) and (A2.14) for W, we obtain after simplification:

I = - fc7o7i(2(c7o7ifc+ori7o) + 7o7i(fc +l))/ f7o2(*f+0 i (A3.2)

m = f(7ifc+ffi)2 + 11/ (fff+1) (A3.3)

n = fc37?f(7ofc+ffo)2 + «/ (7o2(fff+l)i (A3.4)

s=£+m+7L = l+ fca7f(tfo+l)/f7o(tff+l)i (A3.5)

Defining A* = (Pi+Oif}i and 7i = 2b\ + 7i (i = 0,1), we can rewrite (A3.2)-(A3.5) as follow:

' =7o7i(7,i-r0)/Ai (A3.6)

m=- f7o7i(7'i-(7o+7i)) " A,)/ Aj (A3.7)

n =f/o7i (7,o-(7o+7i)) ~AqJ/ A, (A3.B)

s = 1 -Ao/A2 (A3.9)

The vector field ( defined by (A2.25) has eigenvalues a0 ± jl. 70 (in P0"region) and &\/Uq)
(0\±j 1), &i/ «o)7l ( m ^-region), because matrix FP is similar to J (i = 0,1) in (A2.5) and

f<i fti

A= S2/So- Hence, the piecewise-linearvector field
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((x) ft u^A - PfB - P,E - P]W [A - P,B - P,E - Pj'Hx-P) , z =* 1
<V ft ft f ft f f f\ f «V«V «»» »V f ft ft

ft u0[A,B,E]W [AB.Ei^x ,\z\ <; 1 (Aaio)
ft f ft ftQ ft ft ft ft

ft u1[A-P,B-P,E-P]W[A-P,B-P,E-P]-1(x'rP) . a * -1
~ ~ ~ mm mm2~ ~ ~ ~ ~ ~ ~ ~

where x = (x.^/.z)7* must have eigenvalues a* + JSi and*7i in the Di-region (i = 0,1). Substi-
ft _

tuting (A3.6)-(A3.9) into (A2.23), (A2.13)-(A2.14) into (A3.10), and expressing A B, E, and Pin
ft ft ft ft

terms of cL &L, and 7$ (i = 0,1). we can recast ((x) in (A3.10) in terms of only the 6 eigenvalue
ft

parameters. Finally, we can verify, after some involved algebraic manipulations, that (3.32) is

equivalent to (A3.10).
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Leon O. Chua, Motomasa Komuro and Takashi Matsumoto*
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ABSTRACT

This paper represents Part II of a 2-part paper which provides a rigorous mathematical

proof that the double scroll is indeed chaotic. Our approach is to derive a linearly equivalent

class of piecewise-linear differential equations which includes the double scroll as a special

case. Necessary and sufficient condition for two piecewise-linear vector fields to be linearly

equivalent is that their respective eigenvalues be a scaled version of each other. In the spe

cial case where they are identical, we have exact equivalence in the sense of linear conjugacy.

Explicit normal form equation in the context of global bifurcation is derived and

parametrized by their eigenvalues. Analytical expressions for various Poincare maps are then

derived and used to characterize the birth and the death of the double scroll, as well as to

derive an approximate one-dimensional map in analytic form which is useful for further bifur

cation analysis. In particular, the analytical expressions characterizing various half-return

maps associated with the Poincare map are used in a crucial way to prove the existence of a

Shilnikov-type homoclinic orbit, thereby establishing rigorously the chaotic nature of the dou

ble scroll. These analytical expressions are also fundamental in our in-depth analysis of the

birth (onset of the double scroll) and death (extinction of chaos) of the double scroll.

The unifying theme throughout this paper is to analyze the double scroll system as an

unfolding of a large family of piecewise-linear vector fields in IR9. Using this approach, we
were able to prove that the chaotic dynamics of the double scroll is quite common and robust.

In fact, it is exhibited by a large family (in fact, infinitely many linearly-equvualent circuits )

of vector fields whose associated piecewise-linear differential equations bear no resemblance

to each other. It is therefore remarkable that the normalized eigenvalues, which is a local

concept, completely determines the system's global qualitative behavior.

^This research is supported in part bythe Joint Services Electronics Program under contract F49820-84-C-0057.
*L 0. Chua is with the Electronics Research laboratory, University of California, Berkeley, CA 94720. II. Komuro

is with the Tokyo Metropolitan University, Japan and T. Matsumoto is with Waseda University, Tokyo, Japan.
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5. PROOF OF CHAOS IN THE DOUBLE SCROLL

An equilibrium point Q of a vector field ( is said to have a homoclinic point if there exists

a trajectory which tends to Q as t -» +00 and as t -* —00. Such a trajectory is called a

homoclinic orbit through Q. The significance of homoclinic orbits is given by the following

important result:

Shilnikov's Theorem [9,15,19]^
Let ( be a continuous piecewise-linear vector field associated with a 3rd order auto

nomous system x = f(x), x e IR3. Assume the origin is an equilibrium point with a pair of
ft ft ft ft

complex eigenvalues a ± ju ( a<0, &)**0 ) and a real eigenvalue 7 > 0 satisfying \a\ < y. If in
addition, ( has a homoclinic orbit through the origin, then ( can be infinitesimally perturbed

into a nearby vector field ( with a countable set of horseshoes.

Since horseshoes give rise to extremely complicated behaviors typically observed in

chaotic systems [9], one of the few rigorous methods to prove a system is chaotic is to apply

Shilnikov's theorem. In this section, we will prove the double scroll family (4.l) is chaotic by

showing Shilnikov's theorem is satisfied. In particular, we will prove that there exist parame

ters such that the trajectory along the unstable real eigenvector ^(O) from the origin will
enter the stable eigenspace E° (0) in Fig. 2(a) and hence return to the origin. By symmetry,
the trajectory along the other unstable real eigenvector would behave in the same way. These

2 special trajectories are shown in Fig. 9(b) and are therefore both homoclinic orbits.

Theorem 5.1: Homoclinic orbits in the double scroll family

Let ( be any vector field in the double scroll family

£ 0 ^ lf(oo.7o.*i.7i.*) ko < °.7o > °>ai > °»7i < °»fc > °i (5,1)
Assume ( satisfies the following conditions:

(i) Let Cj ^ ^i(C) map under TTf! into a point on the line segment A\E\ in the Z>j-unit
of x

(see the Vj-portrait/V0 in Fig. 9(a).4"

(ii) In the DQ-umt (Fig. 2(b)), no trajectory starting from points on the line segment .do-Eo in
the eigenspace 2=0 intersects the boundary line x = —1.

txhe original Shilnikov theorem requires /(•) to be an analytic function. The piecewise linear version we invoke
ft

in this paper is used in [15,19].
^Recall C istheintersection oftheunstable real eigenvector attheorigin with theupper boundary Ui in Pig.

2(a) and TX\ isthe half-return map defined inSection 4.2. Condition (i) means that E\A\ ^^t\E\A\) must pass
through the point C\.
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Then £ has a homoclinic orbit through the origin.

If, in addition,

(iii) | (701 <70 (5.2)

Then £ is chaotic in the sense of Shilnikov*s theorem.

Proof.

Theorem 3.2 guarantees that the vector field £ E^ois continuous and the half-return

map 7TJ is well defined.

Consider the trajectory Tq through the origin and moving upward along the unstable real

eigenvector Er(0) in Fig. 2(a) until it hits C/j at point C. Since Cj = ^\(C) and

C\ - T*il{C{) e AXE\ = ^i(AE) (see Fig. 9(a)) in view of condition (i), it follows that the
trajectory F^ through C must land at a point Cg on segment ~KE in Fig. 2(a). But SE lies on
the stable eigenspace Ec(0) at the origin, and since condition (ii) guarantees that the trajec

tory Tqz through C% will not intersect the lower boundary C/_i, it follows that T^g must remain

on the eigenspace Ec (0) and converge to the origin as t -> oo. Since T - To UTc UTc2

tends to the origin as t -» +oo and t -* —oo, it is a homoclinic orbit.

If in addition | cr01 < 7o then the hypotheses of Shilnikov*s theorem are satisfied and

hence £ is chaotic.
•

Theorem 5.2: Chaos in the double scroll

The double scroll system (l.l)-(1.3) is chaotic in the sense of Shilnikov*s theorem for

some parameters m0, mlt a and /S. In particular, if mQ = —1/7, m1 = 2/7 and a = 7, then

there exists some 0 in the range 6.5 ^ jS ^ 10.5 such that the hypotheses of Shilnikov's

theorem are satisfied.

Before we can prove Theorem 5.2, we will need 4 lemmas to be stated and proved below.

To avoid repetition, we make the following assumption:

HkmtEng Assumption:

The parameters for all lemmas are:

m0 = - 1/7 , ml = 2/7 , a = 7 , 0 e J &[6.5,10.5] (5.3)

Also, we will use the abbreviated notation

Xtina^X<6 (resp., \ i in 6 ^ X 2s a) (5.4)



a ^ min(X) ^ max(X) ^ 6 as0 increases monotonically inthe range/.

l£mma5.1

As P increases monotonically from ft = 6.5 to fiz = 10.5. the following parameters also
vary monotonically as indicated:'

(i) or01 in -1.066296 -s cr0 ^ - 0.906832

So tin 1.382371 ^ 30 ^ 2.228686 (5.5)

704- in 2.132590 ^ y0 7> 1.813664

(ii) 0X 4 in 0.295297 St a2 ^ 0.138551

Sj tin 1.879726 *s Sj ^ 2.527628 (5.6)

7i t in -3.590593 < ^ ^ - 3.277103

(iii) cr0tin-0.771352 as o© ^ -0.406890

a, *in 0.157096 fe a, ^ 0.054814
(5.7)

704inl.542704 ^ 7o ^ 0.813782

7! tin-1.910168 *s 7i ^ -1.296513

(iv) Jfco/7o tin 0.384997 ^ *o/7o * 0.680079

*l/7i 4 in -0.881427 & *i/7i ^ -1.393659

Moreover, the above bounds can be calculated to any desired accuracy.

Proof. It follows from (1.1)-(1.3) that the real eigenvalue % corresponding to m = m^ (i =
0,1) is a real root of the characteristic polynomial equation

x3 + (am +l)x2 + (am-a+jS) x + o/5m = 0 (5.9)

Solving (5.9) for 0 we obtain

/S =0(x) k a-x(x +l)- °fm (5.10)
*" ^x ' x+am

It follows from (5.10) that if a > 0 and am > 1, then j!:(-w,-am) -* IR is an increasing
bijection (i.e., one-to-one and onto), and if a > 0 and am < 0, then /5: (am ,oo) ->]R is a

^Recall the following definitions: for i =0or 1, 0\ = % / 3,, Ji = 7i / CJj,

*0 ^ I/A, 4 fc k -Vri.ft ^ <«*-»>* + i-Pi ± °i +("«?+l)(*i/7i).



decreasing bijection. Hence, for a = 7 and m0 = -1/7 (resp., m1 = 2/7). 70 (resp., 7i)

decreases (resp., increases) and satisfies

1.813664 ^ min(70) ^ max(70) ^ 2.132590

(resp. ,-3.590593 ^ minf^) ^ max Oft) ^ -3.277103)

as /? increases from 6.5 to 10.5.

Now the solutions of (5.9) are related to its coefficients as follow:

2*i + 7i = - (omt+l) ,3<8 + S? +^Ji = afo-l) + jS

7i(er£+2ft = -a/STTij

Solving for ^i and2f from (5.12), we obtain for i =0, 1:

% - 1 L~ \ y%2 _ 1i =" i<ami+l+7i) . 2f = - -kaw1*-1^)8 " 5

Combining (5.11) and (5.13), we obtain properties (i) and (ii).

Property (iii) follows directly from properties (i) and (ii) and the assumptions (70 < 0,

70 > 0, and &50 > 0.

Property (iv) follows from properties (i) and (ii) and the relationships

oftrc*

0 _

70

7o
/

7o

[30j
CJQ

7i

l _

7i

7i

7o
/

7i

u
U 7o

(5.11) -

(5.12)

(5.13)

(5.14)

Finally, note that the bounds in properties (i)-(iv) can be calculated to be exact to any

number of digits because (5.10) and (5.13) are rational expressions.

Our next goal is to examine the loci of points obtained by applying the half-return map TTi

to the segment E^A[ (i.e., u = 1, 0 ^ v ^ 1) on Vy. they are obtained by substituting

u = 1 and v = v(l,t) for t e 7(1) into (4.28), where 7(1) denotes the set of "first-return

times" for v e [0,1]:

- e l'0 =w1fxjl.v(1.0)] = cos t sin t

—sin t cos t x(l,w(1.0] (5.15)

for t e 7(1). Using the phasor notation (4.52), (5.15) assumes the following compact form

X(t) =j(l^(l,0]e'(ai+yi)< , t e 7(1) (5.16)



Similarly, it follows from (4.13) that the loci of points obtained by applying the half-
return map TTo to the segment BqA0 (i.e., v = 1 . 0 sS u ^ 1) on V0 assumes the following

compact form

*(0=*L+(1,0. ,e(a°+il)' , t e 7+(l) (5.17)

where X is the phasor associated with x and 7+(l) is the set of "first-return times" for

u e [0,1]. We have already identified the set of points in (5.16) and (5.17) as portions of a
shrinking spiral whose amplitude is modulated in time. Our next lemma shows that these two

spirals are sandwiched between two logarithmic spirals.

lamina 5.2*

(i) For each B e J, and any time t e 7(1), the magnitude of x(0 of the spiral (5.16) in V1

is bounded by two exponentials:

|^|e-"' & \x{t)\ * I*,!."* (5.1B)

(ii) For each B e J, and any time t e 7+(l). the magnitude of x(t) of the spiral (5.17) in V0

is bounded by two exponentials:

\A0\e°* > |x(OI * \BQ\e0<* (5.19)

(iii) For each /3 e J,

l*il * \A1\b'°^ (5.20)

where t?j ^ 0 denotes the angle subtended by the two vectors QE*i and G4j on the
plane Vj.

(iv) For each 0 e J,

14,1 * \Eo\e0"0 (5.21)

where "&q ^ 0 denotes the angle subtended by the two vectors UEq and OAq on the

plane Vq*

Proof.

'In Lemma 5.2, A\, Aq, E\, and Eq are represented by their x-y coordinates and henceare 2-dimensional vec
tors.



(i) It suffices to show that

141 * |x(l,u(U))l * Itfil (5.22)
Since x (l,v) = OEi + v£,.4i, i> € [0,1], it follows from plane geometry that

|« (l.t»)|»= [v\Ztft\ +<5^1.l^>!8+ f|£,il2-<C?i.£^>!2 (5.23)

If we can show that

<5£f1,If747>>0 (5.24)

then (5.23) would imply (5.22) because |x (l,v) |2 is an increasing function of v e [0,1]

and since |4,| = |x (1,1) | and |£,| = |x (1,0)|.

To prove (5.24), we make use of the first two coordinates of E\ from (2.30) and A\ from

(2.26) to write

5^1 =(yi(7l-*i-jw)/ $l .7lU -Pi(^i-7i)]/ Ql] (5-25)

E^?=(ki(^i-7i) +1+JiPiVQi .bibi(^i-7i) +1] ~7ii/$i) (5.26)
Calculating the inner product between (5.25) and (5.26), we obtain

<UeitF^t> = - *i7i(P f +0/ Qi (5.27)

Using (5.27) and Lemma 5.1 (iii) (a, > 0, 7i < 0), we obtain the desired inequality (5.24).

(ii) This is proved by the same method as in (i).

(iii) From (5.24), we have 0<tf, <^ Hence

i^tamJ, (5.28)

Moreover, since 0.054814 ^ (7, ^ 0.157096 (Lemma 5.1) it is easy to verify that

1-2*!*, * e'2*1*1 (5-29)

Since (5.20) is equivalent to

1*118/1412 * e'2a^ (5.30)

it follows from (5.29) that to prove (iii) of Lemma 5.2 is equivalent to proving

\El\z/\Al\z < 1 - 2a, tan 0, (5.31)

Now projecting i4, and £*, onto the z = 0 plane as before, we can suppress the z-
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coordinate in (2.26) and (2.30) and obtain after simplification:

Uil8=7>f + 1. I*iI8 =??(P?+D/<?i <532>

Now define the normal vector to E\ as follow:

E^ k (-71(1-Pi(ct1-7i)/^i.7i(7i-0'1-j>1)/^1) (5.33)
then it follows from (2.30) that

\EX\ = I*,11 and Etf, ±Utff- (5.34)

A straightforward calculation shows

tam?1 =<^1,0^iL>/<C!2„QE>1>= l/(a,-7i) (5.35)

Substituting (5.32), (5.35), and (5.28) into (5.31) and solving for J\ we obtain

2
7i ^ cr. 1 +

of-1 (5.36)

Hence proving (iii) of Lemma 5.2 is equivalent to proving (5.36) holds over the parameter

range assumed by 7, and o~, for /? e J. To verify this, note that the right hand side of

(5.36) decreases over the range 0.054814 sS a1 ^ 0.157096 with a minimum value equal

to -0.1650. Since the maximum value assumed by y\ is -1.296515 (lemma 5.1 (iii)), it fol

lows that (5.36) holds for all 0 € J.
u

(iv) It follows from (2.20) and (2.24) that (5.21) is equivalent to

U+J>!) - (l+ofte2***0 > 0 (5.37)

To prove this, let us define the function

g(t) k 1+tan2(p+*) - (1+aDe2*0* , t e [0/tf0] (5.38)

and

<p 4 tan-'cro e (- |-, 0) (5.39)
It is easy to verify that

0(0) = 0 (5.41)

g'(t) = 2 tan(?+*)U + tan2(?+0] - 2t70(l+<7o)e2ao' (5.42)



g'(0) = 0 (5.43)

g\t) > 0 for 0 < t < 2— tp (5.44)

where (5.44) follows from aQ <0and - ^-< <p <0. Since #0 = (L^o). Pis the "negative"

angle between TMq and the x-axis. Hence, 0<t?q < "5— <P falls within the range of t in
(5.44). Moreover, since i4o = (1.Po) and ^ + i?o is the angle between OAq and the x-axis,

it follows that tan(p+7?o) = Po- Hence, letting t = t?0 m (538) we obtain

^(*o) = (l+pJ)-(l+cro8)ea^>0 • (5.45)

Lemma 5.3

For each |J £ /, the double scroll system (l.l)-(1.3) is a member of the double-scroll

family (5.1) and satisfies hypotheses (ii) and (iii) of Theorem 5.1.

Proof.

It follows from Lemma 5.1 that for each 0 £ J, Oq < 0, 70 > 0, a, > 0, 7, < 0, and k > 0.

Hence, the vector field £ £ £ defined by (l.l)-(1.3) is a member of £q C £ in (5.1) for all
fi £ J. Moreover, the ranges assumed by a0 and 7o in Lemma 5.1 (iii) imply | o~0| < 7o f°r a11
/5 £ c/. Hence, we need only prove hypothesis (ii) of Theorem 5.1 holds for all /? £ «7.

Suppressing the z-coordinate from(2.20) and (2.21), we can write

Aq =(l,Po) . Po =°o +^(^l) (5-46>
where-0.771352 ^ (70 ^ - 0.406890 and 0.813782 «£ 70 ^ 1.542704. Since

&oPo ^ max(a0) + max

we have

l7oJ
(maxfao2) +l) «0.39 <0.4 (5.47)

Mo I2 =1+Po <1-16 and y>0 - taiT^o) e (0, ^ (5.48)

where <pQ is the angle between UAq and the x-axis. Now, for t ^ —— ^q»



|*(l,l)exp[((7o+.7l)*]l ^ \AQ\exp[a0
~0

*--*

as vTl6 exp[^-max(a0)] « 0.78 <1
(5.49)

Since 0 < cPq < T? it can be shown that the trajectory x (t) starting from Aq remains in the
4 ~0

region x > 0 for all 0 < t < -r— <pn. Consequently, x (t) never reaches the line x = —1 for

t > 0; namely,

^(U)^"**1* I* >0! c f(x.y) |* >- 1! (5.50)
where each phasor on the left at any time t > 0 is identified as a point in the x-y plane. Simi

larly, it can be shown that the trajectory x (t) starting from En never reaches the line
~0

X = —1 for t > 0; namely,

|*(l,0)e(<">+J,)< \t >0} c {(z.y)|x >-U (5.51)

Since

Xq(1,v) =vXQ(lA) +(1-^)^(1,0) , v £ [0.1] (5.52)

and since at any time t, the flow of a linear system is a linear function of the initial state, it

can be shown that

f*(l,v)e(ao+J1)' \t >Oj C \(x,y)\x >-lj (5.53)

Lemma 5.4.

Let C, ^ *,(C) = (xc,yc) and F, £ *,(F) = (xF,yF) on the V,-plane in Fig. 2(b).
Then for every /S £ /, we have

xc < xF < 1 and yc > 0 (5.54)

Moreover, C, is a continuous function of 0 for all (3 £ J.

ftoof. From (2.32), we identify

*F = 7i(7i-2o-,")/$i . VF = 7i[l " *i(<7i-7i)]/ £i (5.55)

Since C, = $(Cq) = $(0,0) when projected onto the x—y plane, where $ is the connection
map defined in (4.40) and (4.44), we can calculate the exact coordinates of Xq and yc as

-10-



follow:

xc = 1 - (gf-H)[((70-»-7ofci)2-H]
(*02+0$i

(5.56)

yc uZiUzEtolL. |ML|t#lW+u+̂ -rtnw
From (5.55) and (5.57) we obtain

•7ofci(7ofci~2^o) > °
<7f+l

(5.58)

because 7o&i > 0 and Oq < 0 for /S £ J (Lemma 5.1). Hence Xq < xp. The fact that xp < 1

follows from the geometry of the 2?,-unit in Fig. 2(b) where .4,27, lies on the line x = 1. To

prove yc in (5.57) is positive, it suffices to show

(*?+!)*i7of*i7bt*l(*l-7i) + 1] + 2<7o7i(<7i-7,)S > [1 " <7l(*l-7i)]7?(<7o+l) (5.59)

because 7, < 0 for /5 £ J. We can rewrite (5.59) as follow:

(af+lW

Since for all /5 £ J,

^1(^1-71)
k ,70cr.

7i<7o
+ 1 -1

^-= - |L> 0and a.fo-y.) >0
7i^o ao

we have

-11-

fci7o*i

7i^o n > 1 - "l(^l-Ti) (5.60)

(5.61)



Left side of (5.60) - right side of (5.60)

(gf+l)afrf
(aJ+l)of»&

^2 ~2— 1 (because ^ = 0*/^ , i = 0,1)
0o"*"wo

•n ***

=^S— 1 (because 7«(ci?+3?) =- a/577^ ,i =0,1)
m o7i

fe """IL °— 1 » 0.0102 (because m0=- i-, mt = f}
min^, x "7*7

>0

i-S\ -i ("i-7i)

(5.62)

Since% is a continuous function of /S in view of (5.10), it follows from (5.13) that 0\, u*,
and ki are also continuous function of /5 for i = 0,1. Since Cj = (xc,yc) is given in (5.56) and

(5.57), C\ is a continuous function of /?.

•

5.2. Proof of Theorem 5.2

It follows from Lemma 5.3 that it suffices for us to prove that hypothesis (i) of Theorem

5.1 holds for some fi £ J, i.e., we must prove that there exists some /? £ J such that

C, £ TTi(EiAi) as depicted in the Vj-portrait of Vq in Fig. 9(a) when this happens.

To do this, let us draw two concentric circles Sa and S5 with center at /?, = (0,0) in the

Vj-piane and a radius equal to |i4,| and |JEjIe" \ respectively, as shown in Fig. 10. Let I

be the horizontal line through D\ (i.e., the x-axis) and V be the vertical line through F\.

Clearly, V is to the left of the x =l line in view of Lemma 5.4 Let 5B intersect I and V at

points a and a', respectively. Let S$ intersect I at a point 6 to the left of Z?,. Depending on

the value of | £", | and a,, 5& either intersects I' at ftuo points, in which case the upper point
where

is labelled o', or otherwise, let 6' be the point / ^ intersects I to the right of 2?lt as shown

in Fig. 10. Let g be the upper point where S5 intersect the y -axis. Let R denote the region

enclosed by the closed contour formed by either ao.'b'gba (if 6' lies on V) or aa'fb'gba (if

6' lies on I). In other words, R denotes the portion of the ring (area between Sa and S5)
above the x-axis and to the left of I'. Hence, R is a simply-connected region.

-12-



Consider next the two logarithmic spirals

XE(t) =JFexpt-fa+jl)*] , t fe 0 (5.63)

and

^(0 =Aexpl-fa+j l)t] , t*0 (5.64)

Note that X (t) and X (t) correspond to the two shrinking spirals A\d"dd' (starting from A\

at £=0) and E\cc' (starting from E\ at £=0), respectively, as shown in Fig. 10. Since

|D\E\\ < |D\A\\ in view of Lemma 5.2 ( i ), d" lies on the extension of the line 1F\E\.

Since both \X (t)\ and \X (01 shrink exponentially with the same rate on, the time

tg c it takes X (t) to go from Ei to c (where it first intersects I) is equal to the time £^"d it

takes X (t) to go from d" to d (where it first intersects I). Note that f£ c = i^«^ = /LEiD^d

(in radians) where Z-.Ej.Djd is the angle between D\Ei and Z?,o!. Since /LE-J)\d < 27T, it fol
lows that d must lie to the left of c which in turn must lie to the left of 6.

Depending on o~,, the continuation of the shrinking spiral from points d and c may either

intersect I' or I. Let this point of intersection be d' and c', respectively. Let t^> denote the

time it takes to go from d to d' and let tcc> denote the time it takes to go from c to e'. Since

t&> < 27T and £cc- < 2iT, both d' and c' must lie outside of S^ in Fig. 10, and c' must be below

d' in view of Lemma 5.2(iii). Hence, d must lie between a and c whereas d' must lie between

a' and c' in Fig. 10.

Recall next the image under 77, of the line segment

E^[ - \(x(u,v), y(u,v))\u = l, 0^v^ lj (5.65)

and its extension beyondA\ (v > 1) is given by*

X(t) =*(l/y(U))exp[-(ai+J 1)*] . * * 0 (5.66)

A part of this image is shown by the bold spiral E\ee' in Fig. 10 (it corresponds to a part of

E\A\ in Fig. 6 and (4.51)). Here, e s X(t^ is the point at which X(t) first intersects I at

some time £i and e' = J^is) is the point at which X(t) first intersects either I' or I to the
«w «»

right of Pj (if it does not intersect V) at some time tz. Since both e and e' lie to the left of

^Recall from Fig. 6thatthe image under 7T, ofthe extension of theline segment to theright ofA, corresponds
e extension ofthe outerspiral beyond A' j to the right and hence must liein the region withV > 1.to the
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x=l, its associated starting point X (l.v(l.t)) must lie to the left of the v~l line. Hence, we
~i

must have 0 < v (Mi) < 1, i = 1,2, and

XiUvd.ti)) € A&l , i=l,2 (5.67) .

It follows that e must lie between c and d, and e' must lie between c' and d' in Fig. 10 for all

P e J.

If we can show that there exists some P e / such that C\ = ^(C) lies on the bold

spiral ee"', we will be done. Since Cj is a function of p (assuming a, m0, and mi are fixed) we

will denote this function by Cj(j5). Now suppose it is possible to find a /5j € J such that

£i(0i) is located outside of 5a, and a /?2 e «/ such that CiQEfe) is located inside of 5b.

Lemma 5.4 guarantees that C,(/?) must lie in the simply-connected region

H £ \(x,y)\x^XF , y^Of (5.68)

Since C,(/?) is a continuous function (Lemma 5.4). the set (assuming without loss of gen

erality £,< 02.)

Tc fi [Ci(fi)\Pi * P <> p2\ ZH (5.69)

is a plane curve (parametrized by P) starting from a point (P = /?,) outside Sa and ending at

a point (P = /?g) inside 5*5. Since this curve must lie within H, rc must cross the ee' spiral at

some point Pq, Pi < Po< Pz- Hence, hypothesis (i) of theorem 5.1 is satisfied when P = /Sq.

It remains for us to show there exist /?, and /?g with the above stipulated properties. When

P = 10.5, we calculate (x,, yJ) using (5.56)-(5.57) and obtain

|C,(10.5)| w0.7064 <0.8 < \El\e~2!nai w0.9151 (5.70)

Similarly, when P = 6.5, we obtain

|C,(6.5)| « 1.4155 > 1.3 > \AX\ « 1.2477 (5.71)

Hence, /S, = 6.5 and P% = 10.5 represent one (out of many) valid choice. •

Remarks:

1. By computer simulation, we have found the approximate value of Pq w 8.6. The V,-

portrait of Vq corresponding to P = 10.5, 8.6, and 6.5 are shown in Figs. 11(a), (b), and

(c), respectively. It follows from Theorem 5.2 that the double scroll system (l.l)-(l.3) has
1 2a homoclinic orbit when m.Q = — ~, rrij = -•-, a = 7, and/5 = 8.6.

1 22. Using the parameters (a, p, m0, mx) = (7, 8.6, ——, —) we have confirmed by
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computer simulation the existence of a double scroll attractor similar to those reported

in [1-5].

3. Mees and Chapman [15] have also carefully analyzed the dynamics of the double scroll

system (l.l)-(1.3) and confirmed the existence also of heteroclinic orbits.

4. Additional insights and conditions for the appearance of the double-scroll attractor are

given in [20].
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6. BIFURCATION ANALYSIS

By extensive and systematic computer simulations of the double scroll system (l.l)-(1.3)
over a wide range of parameters (a,/J,m0»mi) which include those cited previously in [1-6],
we have observed two distinct types of chaotic attractors, in addition to various stable

periodic orbits (both period-doubling types and periodic window types). The first type of

chaotic attractor is sandwiched between the eigenspace through P+ and the eigenspace
through 0, see Fig. 2(a), and is henceforth referred to as a Rbssler screw-type attractor*
because it bears a strong resemblance to a screw-like structure first reported by Rbssler

[21]. An odd-symmetric image of this attractor has also been observed between the eigen-

spaces through P~ and 0, as expected. These two Rbssler screw-type attractors are

separated by the eigenspace through 0. The second type of chaotic attractor is the double

scroll which has already been extensively reported [1-6] and which spans all three regions

Z?_,, Dq, and D\ in Fig. 2(a). As we increase the value of a for fixedP,mQ and m,, we

observed that the two disjoint Rbssler screw-type attractors grow in size until eventually they

collided and gave birth to the double scroll [6]. As we increase a further, the double scroll

grows while the co-existing unstable saddle-type periodic orbit shrinks in size until eventually

they too collided with each other and the double scroll disappears thereafter [6]. This evolu

tion scenario—henceforth called the birth and death of the double scroll—has been found to be

quite typical over wide ranges of /3,m0 and m,.

Our objective in this section is to use the analytical tools we have developed in the previ

ous sections to carry out a rigorous analysis of the above bifurcation phenomena. Among

other things, we will give a rigorous derivation of the locations of the Rbssler screw-type

attractor and the double scroll attractor. This in-depth analysis in turn leads to an algorithm

for actually calculating the bifurcation boundaries (see Fig. 17)—henceforth called the birth

and death boundaries —in the a—/5 plane which separate the double-scroll attractors and their

periodic windows from the other attractors (both chaotic and periodic).

Before getting into the formal details, examine the typical trajectories T, and T2 in Pig.
left2(a) again. Note that F, and r2 originate from a point on £/, to the right, and the hrespec-

twely, of the boundary line L0 passing through A and E. This line therefore bifurcates the

set of all trajectories which return to D\ from those which continue downward to /?_,. Recall

next that all trajectories originating from i/j to the left of L2 (passing through E and B)

must move down while those on the right of L2 must move up. Finally, note that if |y, | is

•For simplicity, we will refer to both "spiral" and "screw" attractors reported in [6] as a Rbsslerscrew-type at
tractor.
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large, as is the case when the Rbssler screw-type attractor and the double scroll have been

observed, all trajectories originating on either side of the top eigenspace E° (P) get sucked in

rapidly toward E°(P) and eventually cross C/j along an infinitesimally thin "slit" centered at
the line Z, passing through A and B.

We will shortly show that the triangle LABE bounded by the 3 lines Lq,Lx and L2 is cru

cial in predicting the asymptotic behavior of the trajectories. As before, we will switch back

and forth into the new reference frames corresponding to the Pj-unit and Do-umi in Fig. 2(b)

in order to take advantage of the analytical equations characterizing the Poincare map n in

(4.46) and its associated half-return maps ttq in (4.9) and TTi in (4.27). Moreover, since it is

essential to follow the dynamics originating from LAqBqEq s ^?q(LABE), and taking place in

the ZPo'11™^ but viewed from the reference frame in the Z?i-unit, the "Vi-portrait of Vn"
section

defined in A.5 (recall Fig. 8) will play a crucial role in our analysis. In particular, the dynam

ics taking place within the Z?o-unit can be "translated" into the Dy-umt via the "pull-up map"

tt2 £ Stto*-1 •^i^i^i -> Vi (8.1)

6.1. Trapping Region

The Vj-P°rtrait of Vq corresponding to the parameters (a, P, ttiq, mi) = (4.0, 4.53, -1.7,

2/7) (which corresponds to (Oo,70'ai»7i»*0 = (-0.721, 1.075, 0.074, -1.600, 0.530)) is shown in

Fig. 12. Note that in terms of the local coordinates (u,v),u = 1 along AiEi and u = 1.53

along AiuEiu, respectively. Recalling Fig. 8, we can identify the following images under the

above pull-up map 7T2:

B^C, =7T2(F^7), F\CX =7T2(F^E7) (6.2)

CiA\u = ir2(iM,u ).CiElu = -n2(EiEXu ) (6.3)

^£?u= n2(AluElu),F\W\Di =tt,(F^7 ) (6.4)

Recall that Ci = 7T2(^i) = ^2(^1) and any point on B\Fi is defined to be a fixed point of 7r2.

Let Sa denote the "snake-like' area bounded by B\C\tF\C\ and B1F1 and let St denote the

area bounded by C,i4jtt, C,^i'u, and A'iuElu. We will often refer to Sa and S6 as "snakes"
and call
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Si £ Sa\jSb =*2(*AiuBiElu) (6.5)

as the double-snake area.

Let O ^lu-^i^iu denote the fan-like region bounded by AiuBi, BiEiu, and

EiuA'iu = *i(EiuAiu ) (8-6)

Note that the double-snake area Si is bounded within DA\uBiEiu. Had we chosen EiuAiu
nearer to EiAi where u is closer to 1, the corresponding fan-like region UA\uBiEiu could
actually cross the double-snake area 5,. Since a key assumption in our following analysis is

that 5jCD ^lu^i^iu' we must choose u to be sufficiently large. However, as we will see in

Section 6.3, u should not be chosen too large either. For the parameters associated with Fig.

12, u = 1.53 is a satisfactory choice.

Translating the above definitions back into U1 in Fig. 2(a), we can interpret the

corresponding snake-Uke area 5 £ ^r^i) as the set of all points *fi(Sa) where returning
trajectories of the type Tx originating from LABE intersect the t/j plane, and the set
*T \Sb) representing the odd-symmetric image of the set of all points where returning tra
jectories of the type T2 originating from LABE\LABE intersect the £/_, plane. Since
7Tf (uAiuBiEiu) =AAiuBiEiu and since S,c UA'XuBiEiu. it follows that
wf (^l) c hA\uB\Eiu> Consequently ifwe restrict our Poincare mapn: Vj -» Vj to the region

3 £LAluBiElu {6 7)
henceforth called the trapping region, then n(3 ) C J. Hence we have isolated a small area
on V, where the Poincare map n maps into itself.

Since the double-snake area 5, does not intersect with the spiral FxWiDi =^i(F\B\)
except F\, it can be proved (see Appendix 5) that

(1) n: 0 •* 3 is acontinuous function (6.8)

(2) tt( J ) is acompact (i.e., bounded and closed) subset of 0 (6.9)

It follows from (6.9) that1

A^ rWT»(3) (610)

~*Wed«*rtethentMterat*<«rfrby7rn:e.f.. 7T°( J ) 4J ,*!( J ) Atr(0);*2(3) * 7t(ttCJ)),
etc
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is 7r-invariant in the sense that

w(A) = A (6.11)

because

ir(rw,n»(0)) =*C3™H0)nir*O)n...)

z*(3)rml(3)™?C3)n • • • (6.12)

= nnasltr*(a)= O nl^i^&^^oTTO)

and because 7r(A) DA is proved in Appendix 5.

If we define

A, 4 Autt2(A) (6.13a)

and

A4 closure of u^0?< j*f'(Ai) u(-^(Ai)]] (6.13b)
where uf (x) is the flow associated with (1.1)-(1.3), then 7i can be interpreted as the closure* of

*»»

the Rbssler screw-type attractors, or the double scroll, depending on the parameters. We will

henceforth call A an attracfor of the double scroll system (l.l)-(1.3).

Since 7Tn (3) C interior 3 for all nSs2, it follows (see Appendix 5) that there exists

an open neighborhood N(A) of A which satisfies

A=n^o^(^(A)] (6.14)
Hence A possesses the properties of an attractor defined by several researchers including

Hurley [22j.

Observe that the region 3 in (6.7) is called a trapping region ofAbecause J is a neigh
borhood of A and every trajectory originating from 3 tends to A under the Poincare map 7T.
Although there exists some attractor A in the literature which contains no dense orbits* our
computer simulations strongly suggest that both the Rbssler screw-type and the double scroll

attractors contain at least one dense orbit.

The macroscopic structure of A associated with (l.l)-(1.3) has been carefully analyzed by

computer simulations in [3]where we have discovered that each x = constant cross section of

A consist? of 2 tightly-wound spirals-hence the name double scroll-for some parameter

^It is traditional to define an attractor as a closed set. Ifwsdo not tako the closure,

A would exclude the origin and hence wouldnot be closed. ^
^Roughly speaking. Ahas adense orbit means that every trajectory originating from Avisits aneighborhood of

every point ofTL This implies that numerical errors incomputer simulation are sufficient toguarantee that theentire

attractor A will be observed by integrating from a single initial point.
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values. For example, the double-snake area Sa\jSt defined in (6.5) and shown in Fig. 12 (see

also the upper snakes Sa and Sb in Fig. 14(b)) corresponds to the x = 1 cross section.

The microscopic (local) structure of A, however, is much more complicated. Indeed,

since A contains infinitely many horseshoes at least for some parameters (recall Theorem 5.2

), we can expect that the local structure of A consists of a product between a manifold and a

Cantor set similar to that described in [23].

Observe, however, that if the magnitude of the real eigenvalue % at P* (7i<0) is very
large compared to the real part of the other eigenvalues, then the setAi must be tightly

squeezed near the curve*

A, 4 (Z&l uXjTp u(5~C, uC^J (6.15)
The reason responsible for this important property is due to the strong rate of contraction of

the trajectory component along the real eigenvector Er(P) in Fig. 2(a) on the one hand, and

the fact that trajectories passing through points on A\ represent the asymptotic behaviors.

Le., long after the trajectory component along Er(P) has shrunk to an infinitesimal value,

thereby ensuring that the trajectories through A] are literally coasting on the surface of

E°(P) in Fig. 2(a). This mechanism explains why the double scroll in [3] must cross the l/j

and £/_j plane along a very thin contour.

The above analysis shows that in so far as computer simulation is concerned, all trajec-

tones originating from the attractor A can enter Dq from Di only through the

inflnttesimaUy-th&n gate centered at ♦{"l(Jfi^ET{) C Llt henceforth called the upper entrance
gate, or at ^f\\A\A ) Cij, henceforth called the lower entrance gate. Likewise, returning

trajectories exiting from Dq to Z?j can do so only through the infinUesimaUy-thin gate cen

tered at ^fil(BiCi), henceforth called the upper exit gate, and, (by symmetry of the
vectorfield £) returning trajectories exiting from Dq to Z?_i can only do so through the

xnfinitesirnally thin gate - ^f!(CiA' ), henceforth called the lowerexit gate.

We will often abuse our terminology by also calling A\B\, AiAlao, BiCi, and C\A' as
the upper entrance gate, lower entrance gate, upper exit gate, and lower exit gate, respec-

tively. Their union Ay will henceforth be called A-gates. These gates will play a crucial role in

our following bifurcation analysis.

'For the parameter assumed in Fig. 12, we can replace A by A lu.
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6.2. Birth of the double scroll

Our computer simulations in [6] consistently show that as a increases (for fixed P,TnQ,

and 77i j), the 2 Rbssler screw-type attractors eventually collide with each other, and that the
double scroll suddenly emerges after any further infinitesimal Increase, in a. We will hen

ceforth refer to this collision process as the birth of the double scroll. Our objective in this

section is to derive the bifurcation value a which herald this event

A qualitative picture of the structure of a Rbssler screw-type attractor corresponding to

the value of a at the collision point is shown in Fig. 13(a). Note that the attractor "funnels

through" the upper entrance gate SE where its extreme left point on Ux coincides with A in

Fig. 13(a). Any further decrease in P would cause this attractor to expand with its extreme

left point on t/j appearing to the left of A, thereby causing this trajectory to move downward

and eventually link up with its twin from the D-\ region.

Translating this picture into the VVplane, we obtain the Vj-portrait of Vq in Fig. 13(b),

where we have assumed* that ExAi = iXi(X^El) intersects the line ^f\(L{) = {(x,y)|x = 1}
at A'i as shown in Fig. 13(b). The snake area Sa bounded by BiCi% FjCj, and BiFi is
tangent to E\Q\A[ = Vi(E\A\ ) at Q\. Since the Rbssler screw-type attractor above the
eigenspace Ec (0) is not connected to its twin below E° (0). only one snake Sa is shown in Fig

13(b).*

The rrf1 image of the upper snake Sa gives rise to another snake-like region
Sa 6 TrfHSo) in Fig 13(b). Since Sa =TTf17T2(A4151£,i) = it(bAiBiEi), the lower snake
Sa is the image of the triangular region LAiB\E\ under the Poincare map n. Consequently

Sa must be tangent to E^K[ at Qi = TTf1(Qi).

It follows from the above analysis that the birth of the double scroll must occur at such a

parameter value that the upper snake Sa is tangent to n^E^A^). A computer calculated

example of such a situation is shown in Fig. 13(c). which corresponds to the parameter values

(a,/5Fm0,m1) = (8.8. 14.3.-1/7.2/7).

8.3. Death of the Double Scroll

Using a "shooting method" [24»], we have discovered [3] an unstable (saddle-type)

periodic orbit actually co-exists with the double scroll. As we increase a while fixing p,mQ

and rri], we observe the periodic orbit shrinks while the double scroll grows in size. At the

parameter a0 (or just below to be precise) where they collide with each other, the double

scroll suddenly disappears while the unstable periodic orbit continues to exist. We refer to

tFor some parameter values 1Ti(AiE\ ) may clear theX = 1line and spiral toward Fi asine j.r j inFig. 6.
♦Recall Zsnakes Sa and5© are presentin Fig. 12and (6.5).
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this collision event as the death of the double scroll and our goal is to derive the parameter P

when this occurs.

Figure 14(a) shows the doulbe scroll at the verge of colliding with the periodic orbit T
(shown dotted). Let T* intersect Ux at point H~ in its downward swing and at point H+ in its
return upward swing. Note that H~ must lie to the right of the line L\ because as T moves

down through H~ in Fig. 14(a), it will first hit £/_j and turn around without hitting EC(P~),
and eventually hit U-i in its upward swing at a point H" fi —H" to the left of Li (odd sym

metric image of Li). Hence, H~ E. LABE.

Let Hi £ *i(H~) and Hi &*i(H+). Since Hf and Hf are fixed points of tt, we have

Ht = wjtfff) = n2(Hr) (6.16)

as shown in the Vj-portrait of V0 in Fig. 14(b). Note that a double-snake area Sx = SauSb
now appears in Fig. 14(b) because the double scroll in Fig. 14(a) intersects U\ on both sides of

the line Lq. The TTf1 image of Sa and Sb is shown in Fig. 14(b) by another double-snake area

Sa ^ tTfl(S«.) and Sb k ^(St).
Now given the coordinates of //" as obtained by the shooting method, we can identify the

corresponding local coordinates (u0,Vq) of //f, namely

Hi =Xi(uQtv0). (6.17)

From this we can define the local coordinates of AiUq and EiUQ as follows:

^lu0 ="0^1 + (l-^o)^l. ^lu0 =i*oEi+(l-i*o)*,l (6-1B)

Since EiUaAiUQ passes through the point //f, it\(E\u^iuJ passes through the point H* as
shown in Fig. 14(b). In Appendix 6, we will show that EiUoAiUq is an excellent approximation

of the stable manifold

WS(HT) = (; e ^AiBiEi\ifl(x) -> /ffasn -> ooj, (619)

thatislT(//r)wj£-1U(^1Uo.

Now let A [/. denote the intersection of the double scroll attractor with Ul and define

Ai= ♦](A[/1). By definition, the death of the double scroll occurs whenAiintersects the points

Hi (and Hi). This condition is equivalent to the condition that Ai touches the stable mani

folds W9(Hf) because x € W*(Hi) n A, implies H+ = lim7Tn(x) belongs to

WS(H*) nAiCAi. Since the upper exit gate BiCi approximates a portion of A^as stated in
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Section 6.1, the parameter value where BxCi touches EiUqA'iUq =ni(A^E^K*Ws(Hi')
gives an excellent approximation of the value, at which the double scroll disappears.

The preceding analysis shows that the Vj-portrait of VQ corresponding to the death of the

double scroll must be as shown in Fig. 14(b). Observe that the upper snake Sa must be

tangent to Qi and, correspondingly, the lower snake Sa must be tangent to Qi.

To show that the double scroll would disappear if the parameter is further tuned so that

Qi crosses the stable manifold Ws(Hi ) w^iu^Iuq an(^ moves below J5"itto4itto, we note that
in this case* the iterates of Q\ under tt would eventually leave the trapping region 3 and fail
to converge to an attractor within C7.

A computer calculated Vj-portrait of V0 corresponding to the death of the double scroll

is shown in Fig. 14(c), where (at/5,77io,77ii) = (10.73, 14.3,-1/7.2/7).

6.4. Hole-Filing and Heteroclinic Orbits

All the double scrolls given in [1-6], have a hole centered at P* and P~ because the
parameters were such that no trajectory in A passes through the point D in Fig. 2(a) where

the real eigenvector Er(P*) hits Uy It is possible, however, to choose parameters such that

D lies on A. For example, when (o,/5,77io,77io) = (9.85, 14,3,-1/7,2/7), the corresponding Vy

portrait of V0 is as shown in Fig. 15(a). Note that Dx = ^\(D) lies on the lower exit gate
CiA' = TT\iA\A ). Now, assuming* that the set Ahas a dense orbit under the "discrete"

Poincart map tt: 3 ~* 23 defined in (6.7), then since CiA converges (under tt) rapidly to a

point in A) = Au 7T2(A), it follows that we can make an infinitesimally-small perturbation on jS

so that Di lics on Aj = Au ir2(A^ Under this condition, there exists a trajectory originating from
Dq in Fig. 2(a) which exits Ui at exactly the point D. Such a trajectory would then follow the
real eigenvector ET(P^) and converges rapidly toward P*. Since P* is an "unstable focus" when
restricted to the eigenspace EC(P*), it follows that the resulting double scroll will not have a hole
and is henceforth called a hole-filling orbit. The double scroll in Tig. 15(b) is a case in point.

Clearly, another hold-filling orbit exists when Di lies on the upper exit gate

C^B] =tt^.4^7).
*The unstable manifold YP1 (Hf) in this case must "be asubset of Sb because Wu (H^) isan invariant set

and the only invariant setin Fig. 14(b) other than Ws (Hi ) which contains Hi is «S0. Amore detail discussion of
thestable and unstable manifolds ofH^ and H \ isgiven inAppendix 6.

$This assumption is consistent with oil computer simulations ofthedouble scroll observed sofar. Note that the

dense orbit here differs from that associated withA in (8.14): the denseorbit in A pertains to a "continuous flow,"

whereas the dense orbit in A refers to a "discrete map."
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Suppose in addition to 2?j e CiA'loo in Fig. 15(a) the point B\ = wf1(^i) lies on the
tower entrance gate AiAiao in Fig. 15(a).' This implies that B\ - "R2(Bi) lies on the lotaer
exit gate CiA . Now assuming Pj lies between f?i and Cj on Ci-4l0O, then the hole-filling

orbit starting from P+ would, after entering Dq from above, continue to move downward and

eventually hit t/.j at D~~ =*4'i"1(£i) where the lower eigenvector Er(P~) intersects £/_j. By
the odd symmetry of £, the return orbit would be a symmetric image and hence must exit t/j

at D. Such a hole-filling orbit is called a heteroclinic orbit.

Since Shilnikov's theorem also applies when the "homoclinic orbit" in the hypotheses is

replaced by a "heteroclinic" orbit [15,25], any rigorous demonstration of the existence of a

heteroclinic orbit would also prove the existence of chaos in the double scroll system (1.1)-

(1.3) in the sense of Shilnikov. Such a demonstration has been given recently in [15] where a

computer calculated hole-filling heteroclinic orbit is shown.

6.5. Homoclinic Orbits [26]

We have already proved the existence of at least one homoclinic orbit through the equili

brium point 0 in Section 4. To complete our bifurcation analysis, Figure 16 shows the Vy

portrait on V0 associated with such a homoclinic orbit, where (a,p,mQ,m^ = (4.1,4.7,-

1/7,2/7). Note that the point Cj lies on EiA\ as required by hypothesis (i) of 77ieorem 5.1.

Homoclinic orbits through the other two equilibrium points P+ and P" can also occur
under appropriate parameter values. In particular, they occur when one of the following two

conditions is satisfied:

l.(a) B i = 7Tf (Bi) lies on the upper entrance gate AiBi, as shown in Fig. 15(a).

(b) Di lies between B J' = n2(BJ) and Bi on the upperexit gate BiCy

2.(a) B i = tt'^j^i) lies on the lower entrance gate AiA .

(b) Z7] lies on the upper exit gate B-^C^ (between Bx and C2).

6.6. Bifurcation Diagram

Using the conditions derived in Sections 6.4 and 6.5tor the birth and death of the double

scroll, we carry out a detailed (double-precision) computer bifurcation analysis of the a—P

parameter plane (with m0 = -1/7 and ttij = 2/7 ). First, we derive the set of all (a,p) for

which the eigenvalue at P* is pure imaginary, i.e., when aj = 0. It turns out that by fixing m0

*Note that f?j corresponds to the point a2Fig. 6except that for the parameter used in Fig. 6, a2lies on the
w£per enirwjics gate.
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= 1/7, this set can be derived explicitly, namely

P = (l-mi)a(mia+l) (6.21)

Substituting TTij = 2/7 into (6.21), we obtain curve (D in Fig. 17. It follows from the Hopf
bifurcation theorem that any parameter (a,P) where P+ and P" are sinks (i.e., crj < 0 and

7i < 0) lie above curve (J) , henceforth called the Hopf bifurcation curve, and that for (a,p)
in a small band to the right of this Hopf bifurcation curve, we can expect nearly sinusoidal

oscillations.

The sets of (a,P) which give rise to the birth and the death of the double scroll are given

by curve (§) and curve (§) , respectively. It is natural to call.curves ® and ® the birth
boundary and the death boundary, respectively.

It follows from our preceding analysis that those parameters (a,P) associated with the

period-doubling and the Rbssler screw-type attractor must all lie between the Hopf bifurca

tion curve (D and the birth boundary curve (§) . All parameters associated with the double
scroll must lie between this birth and the death boundary.
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7. One-Dimensional-Poincare Hap.

Our analysis in Section 6 shows that the qualitative behavior of the double-scroll system

(l.l)-(l.3) is determined essentially by the S-iivmensional Poincare map tt of points on an

inflnitesimally- thin "ribbon" centered along the two entrance gates AiBx and AiA1O0 which -

correspond to the semi-infinite line h\ CLi in Fig. 1 to the left of point B. Since this "ribbon"
is "numerically" indistinguishable from Lj when |7i| is relatively large compared to the
other eigenvalues, it is natural therefore to define a 1-dimensional approximation tt of the

Poincare map TT by restricting its domain to L'i, and compare its qualitative behaviors with
those of tt. By brute-force computer integration of the system (1.1)-(1.3), we have constructed

such a 1-D Poincare map for many parameter values. Our "numerical" results show that

inspite of the inevitable local truncation and round-off errors, this 1-D Poincare map

predicted all of the qualitative behaviors that we have so far observed by computation simula

tion (including period-doubling, periodic windows) and by rigorous analysis in the preceding

sections (e.g., Rbssler screw-type attractors and the double scroll).

This remarkable observation motivates a more rigorous analysis of this 1-D discrete map.

In order to do this, it is necessary to describe this 1-D map in analytic form. Our main objec

tive in this final section is to derive this 1-D map tt* and analyze its qualitative behaviors. It
turns out that a much simpler analytical expression for tt is possible if we choose the domain

of the function tt* to be another semi-infinite line segment P+N and its extension beyond N
to N^ at infinity as shown in Fig. 1. This line is constructed by connecting the point Me^. (1,0,0)

and point j7* by a straight line and extending it beyond AT to oo and deleting the portion P M in
Fig. 1. In other words, we will define the 1-D Poincare* map

n*:PrNZ*PrN~ (7.1)
OO no *

In order for tt to be well defined, we must make the following two assumptions:

(1) the spiral C A'^ (i.e., ♦J!1 of the lower exit gate Cji4' ) on Ui ofFig. 1 does not inter

sect the line L2 through points E, F, and B.

(2) the point D (where the real eigenvector hits £/j) on £/j in Fig. 1 is located on the left of

To prove that rr in (7.1) is well-defined under the above assumptions, it is more con

venient to translate our analysis into the 2?j-unit in Fig. 2(b) via the coordinate transforma

tion ^r*i. which we redraw in Fig. 18(a). Consider the rectangular region
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Wt ± \(x,y,z) e IR3 | x * 0, y=0l (7.2)

passing through the line segments ZWj and UDV Since 0 = 4r1(P+), Dx = ^i(D), and
JVj = ^1(7^), it follows that W} corresponds to the plane W in Fig. 1 passing through the two

line segments P*D and ND.

Now, in terms of the local coordinates (u,v), points along the line BXA are uniquely

identified by a single coordinate u since v = l on this line. In particular, any point x(u) on

this line is described by

x(u) = x (u,l), 0 ss u ss 1 if x(u) e ^1^1 (7.3)
~1

Ku<oo if x(u) e A7A~~
«»» ' * i°°

Since BiA lies on the eigenspace 4rj(£,c(P+)), all trajectories originating from BiA
(in backward time),

must remain on the x —y plane in Fig. 18(a) while spiraling inward? /and must eventually hit

UN\ (on the negative x-axis) at some point a cKsfanceT X(u) from 0 after a time interval

tt—0, where D = -arg x(u) = —tajT^Xyfa)/xx(u)]. Here, Xx(u) and Xy(u) denote the

x and 3/ component of x(u), respectively. Clearly,
Mr

X(u) = |x(u)|exp[-ai(TT +arg x(u)] ^ 0 (74)

Now, assumption 1 is equivalent to the condition the lower exit gate Cj^' does noi touch or

intersect the line through B-,F., ,E- in Fig. 18(a). It follows from our analysis of Figs. 4 and 5
that both inverse'return functions u+(l,£) in (4.14) and u"(l,f) in (4.22) are strictly mono

tone functions and hence have a unique inverse. Hence, any point X(u) > 0 on Ni X(0)

maps uniquely into a point x(u) on BiAloo via the flow <p\, where X(0) is the limiting point

which maps (under (p\) into B\. Note that any point Q>i between X(0) and 0 in Fig. 18(a) must
map (under (f{) into a point d2, where

d2 = e2™1 • dx (7.5)

because the expanding logarithmic spiral from dj can not touch W\A~.

The upper exit gate B1C1 = it2(EiA^) and the lower exit gate CiA'loo = it2(AiA1oo) are
shown in Fig. 18(a). Note that each point x(*u) on BiA map under tt2 uniquely into a point

twedefine X(lL ) asthe distance from 0 since we want the domain ofTT tobe part of the positive real axis.
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y(u) with coordinates (yx('lL), Vy(u). yz(u))- Now assumption Sis equivalent to the condi

tion that the point D\ in Fig. 18(a) is located below (relative to Vjplane) the lower exit gate
CiA' . It follows from this condition that the flow tp\ from y(u) must intersect the Wt rec

tangle at YXu). This translates into Fig. 1 to mean that trajectories starting from the exit

gates BC and CA'^ will always intersect the plane W=^fH^i)- Hence, the exitgates ByCi
and CiA'loo in Fig. 18(a) must map into another double spiral on Wx as shown in Fig. 18(a),

where each point y(u) maps into

y'= (-\y(u) I expfo^TT-arg y(u))], 0, yz(u) expfrifr - arg y(u))]) (7.6\

Now, if 17j I is relatively large, which is the case in the double scroll, then the double

spiral on Wi in reality is squeezed into a thin line sitting inflnitesimally close to 7Vloo0. Con

sequently, for all computation purposes, we can approximate Y(u) as the point Y(u) on
NO. Note that Y(u) is a positive real number given by

Y(u) = \y(u)\ expIo^Tr-arg v(u)], O^ussc© (77)

Since u = u+(l,£) for 0 ^ u £ 1 is given explicitly by (4.14) and since u = u~(l,t)
for 1 < u < oo is given explicitly by (4.22). we can specify the graph of the Poincare map TT

for X(u) > X(0) by the following explicit parametric equations:

(*(u),y(u)] =
(*(u+(l,0).n"+(U))] . 0* t <00 for 0
\x(u-(l,t)),Y(u-(l,t))) ,0<*<°oforl<u<oo

^ u < 1

(7.8)

Equation (7.8) defines the 1-D Poincare map TT* for ail X(u) between X(0) and N . For

points X(u) between A'(O) and 0, where u <0,t we simply make use of(7.5^ namely,

Y(u) = e2™1 X(u) , u<0 (7.9)

We will henceforth call (7.1), (7.8), and (7.9) the 1-Ddouble scroll Poincare' map.

A typical graph of tt* corresponding to the parameters (oq, 7o« 0"i. 7i» *0 = (-0.42, 0.50.

'For convenience, we extend our local coordinate 14 ^ 0 to include negative 14 in order to parametrize the
points between ^(0) and 0.



0.15, -1.5. 0.20) is shown in Fig. 18(b). Note that since U\ is a constant, the graph from X = 0

to X' = X(0) is always a straight line with a slope equal to e °l. Note also that to emphasize
that the one-dimensional Poincaremap tt* as defined by (7.1), (7.8), and (7.9) is valid not only
for system (1.1)-(1.3), but also for the entire double-scroll family of vector fields f £ i^Q.we

use the normalized eigenvalue parameters instead of the usual (a, p, m0, m{) in Fig. 18(b).

Translating the Vj-portrait of V0 in Fig. 18(a) back into Fig. 1, we can identify the above

1-D double scroll Poincare map as

*,:P*NZ->PfHZ (7.10)

The point B' on P+N is identified with the point ^(0). For each point x £ P*B, tt* is a

linear map from P*B onto F+tt (B). For points x € BN^, it* is a continuous nonlinear

mapfrom B'N^ into P^N^.

We close this paper by exhibiting several different graphs of the 1-D double scroll Poin

care map tt which illustrates the various qualitative behaviors analyzed in Section 6.

7.1. 1-D Poincare Map tt* for Birth of DoubleScroll

The graph of tt* for the parameter (a, p, m0, mj) = (8.8, 14.3, -1/7, 2/7) is shown in
Fig. 19(a). Note that the maximum value of Y on the interval [0, X(l)] is equal to X(\)\ i.e.,

the point Y(u0) = max Y(u) coincides with the point X(l). Hence tt*(X(u0)) = X(l)
Osusl

maps precisely through point Ai where it = 1. All other trajectories have Y(u) < X(i) and

hence can only enter Dq through the upper gate B\Ai. Hence, by definition, the graph in Fig.

19(a) heralds the birth of the double scroll.

7.2. 1-D Poincare map n* for Death of the Double Scroll

The graph of tt* for the parameter (a, P, m0, m{) = (10.73, 14.3, -1/7, 2/7) is shown in
Fig. 19(b). Note that Xff is an unstable fixed point of TT* and the maximum value max Y(u)
on the interval [0, A'(l)] is equal to Xjj. Since Xjj > X(l), Xjj corresponds to u>l this situa

tion corresponds to the case where the unstable (saddle-type) periodic orbit through Xy col

lides with the double scroll. It follows that the graph in Fig. 19(b) heralds the death of the dou

ble scroll.

7.3. 1-D Poincare map tt* for a Hole-Filling Orbit

The graph of tt* for the parameter (a, p, m0, m{) = (9.85, 14.3, -1/7. 2/7) is shown in
Fig. 19(c). Note that on the interval [A'(l), oo], the minimum value of Y(u) is zero, namely,

min Y(u) = 0. Since max Y(u) > X(l), the attractor A is a double scroll. Now min
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Y(u) = 0 implies that the spiral through Y(u) associated with this point is tangent to the
z-axis. This situation corresponds to the case where CA'^ in Fig. 1 passes through D. Hence,

the graph in Fig. 19(c) is associated with a hole-filling orbit.

7.4. 1-D Poincare Haptt* for a HomoclinicOrbit

The graph of tt* for the parameter (a, P, m0, m,) = (4.1, 4.7. -1/7, 2/7) is shown in Fig.
19(d). Note that X(l) is a fixed point and hence7(1) = TT*(AXl)) = *(!). Since u =l at
point Ai, this implies that the trajectory originating from X(l) would enter Dq through Ai on
the stable eigenspace through 0 andhenceconverges to 0. This trajectory continues along the
unstable eigenvector through 0 until it hits Ux at C, which is identified with Ct in Fig. 18(a).
Since Y(l) = X(l), the trajectory continuing from Ci must intersect Wi at a point Y'(i)
whose projection Y(l) is precisely equal to X(l). Hence this trajectory is a homoclinic orbit
of the origin and the graph in Fig. 19(d) therefore predicts the existence of the homoclinic

orbit proved earlier in Section 5.

7.5. Periodic points of the ID Poincare map tt*

In this section, we will describe the correspondence between the periodic points of the ID

Poincare map rr* and the periodic orbits in the double scroll system. The ID Poincare map TT
gives an excellent approximation under the condition that l7il is relatively large compared

to the other eigenvalues, and that A is infinitesimally thin. This condition implies that each

periodic orbit of the double scroll system has at least one stable direction (i.e. the magnitude

of at least one characteristic exponent is less than one). In particular, a stable periodic point

of TT* corresponds to a stable periodic orbit and an unstable periodic point of tt corresponds
to a saddle-type periodic orbit of the double scroll. Since Ynmx = maxoius l^C1*)
corresponds to the outermost orbit of A, if the period-n points

\X = (Tr*)n(A'), n'(X) (ttT-WJ satisfy

(tt*)*(*) ^ ^max . 0 * i «= n-1 (7.11)

the periodic orbit of the double scroll system corresponding to X is located in the attractor

A. Define

a & X(l). (7.12)

As shown later, the type of periodic orbit of the double scroll system is determined by the

position of the point a relative to the periodic points of tt .

(1) Fixed point Xx = n'(Xi)
Case (i): 0 < Xx < a
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Figure 20(a) shows a fixed point Xi of TT* with Xi = X(u) for some 0 < u < 1. The
corresponding period-1 orbit in the double scroll system is depicted in Figure 20(b). The tra
jectory originating from Xt would enter Dq through a point on the upper entrance gate AE,
return to Di and hit X\. By symmetry, we have a pair of periodic orbits as shown in Figure

20(b). The essential features of this situation are summarized in the "abstract sketch" shown

in Figure 20(c), where N~ = -N.a' = -A"(l) and X\ = -AV

Case(ii): a < Xx < co.

Figure 21(a) shows a fixed point Xi with Xi = X(u) for some u > 1. The trajectory ori

ginating from Xi would enter Dq through a point on the lower entrance gate AA^. continue its

downward motion until it hits X\ = —Xi. Therefore we have a period-1 orbit as shown in the

abstract sketch in figure 21(b).

(2) Period-2point \X2 = i\'(Xi),Xi = n\X2)\
Case (i): 0 < Xx < X2 < a

Two period-2 points Xi and X2 satisfying (i) are shown in Figure 22(a). The trajectory ori

ginating from Xi would enter Dq through the upper entrance gate, return to Di and hit X2.

The trajectory continuing from X2 would enter Dq again through the upper entrance gate, and

eventually return to X{. Therefore we have a pair of period-2 orbits as depicted in Figure

22(b).

Case (ii): a < Xx < X2.

Two period-2 points satisfying (ii) are shown in Figure 23(a). The trajectory originating

from Xi would enter Dq through the lower entrance gate, continue its downward motion

through Dq and hit X2 = —X2. Note that Xi and Xi (resp, X2 and X2) of the double scroll

system are "identified" as one point Xi (resp. X2) in the graph of tt . The trajectory continu

ing from X'2 would enter and continue its upward motion through Dq before returning to Xy

Therefore we have a pair of period-1 orbits as depicted in Figure 23(b), even though TT in Fig

ure 23(a) seems to suggest that we have a period-2 orbit. It follows from this analysis that the

period-doubling of a fixed point X of tt* with a < X < «» (as in Fig. 21(a)) in Figure 23(a)
corresponds to the splitting of the single "odd-symmetric" period-1 orbit into two period-1

orbits in Figure 23(b). Note that each of the orbits in Figure 23(b) is not odd symmetric, but

the two orbits are odd-symmetric image of each other in view of the symmetry of the vector

field. The orbit in Figure 21(b) exists by itself because it already exhibits odd symmetry.

Case (iii): Xx < a < X2.

Two period-2 points satisfying (iii) are shown in Figure 24(a). The trajectory originating

from Xi would enter Dq through the upper entrance gate, return to Di and hit X2. The
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trajectory continuing from X2 would then enter Dq through the lower entrance gate, pass Dq
and hit X\ = —X\. The portion of the trajectory from X\ to Xi must be "symmetric" to the

portion of the trajectory from Xt to X\ with respect to the origin. Therefore this situation

corresponds a period-3 orbit in the double scroll system as depicted in Figure 24(b).

(3) Periods point pf = (n0)n(X), ir'(X) , (ttT'Wj.

Let the above period-n point be ordered as follows:

0<Xi<X2<. . .<Xn<co (7.13)

where we assume X = Xx without loss of generality. Then the type of period-n orbit of tt is

uniquely characterized by a permutation of the / \2, 3, .... n) following the index 1. For

example, the permutation (l, 4, 2, 3, 5) corresponds to the following periodic points:

0<A'1<^2<^3<^4<^5<oo (7.14)

The type of periodic orbit of the double scroll system is therefore determined by the position

of the symbol a among the symbols [0, Xit X2 Xn, oo) along the half-line P+N, where
P+ may be 0 and N may be oo. Hence, the total number Nj of distinct types of periodic

orbits of the double scroll system is equal to

NT = (n-1)! x(n + l) = (n + l)!/n. (7.15)

For example, in the case of n=3, we have 8 different types of periodic orbits in the double

scroll system. Figures 25(b) and 26(b) show two periodic orbits corresponding to the following

two "dynamic routes":

(i) 0<AV<^2<a <A3<oo, (7.16)

(H) 0 < Xi < a < X2 < X3 < oo. (7.17)
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APPENDIX

Appendix4. ir^FJB^) is tangent to BiEi at Fi
Proof. By Theorem 4.3. the spiral FiWxDi = ni(FiBi) is defined explicitly by

and

Since

x(0 = «"ai'
cos t sin t

—sin t cos t

Bx = (1. aj)31.
~1

(v(t)B+{l-v(t))F)
~1 ~1

where v(t) 4 v(0,t).0 ^ * < oo (u = 0, see Fig. 6)

F, = (71(71-2(70/ ft, 7i[l - <Ji(°i-7i)]/Qi)T.

(A4.1)

(A4.2)

(A4.3)

x(t) k i«(0 =«",l<
~ etc ~

—0*

cos t sin t

—sin t cos t

—sin t cos c

—cos t —sin t
{v(t)BH\-v(t))F)

~1 ~1

+ e
cos t sin £

—sin r cos t
v'(t)(B-F) .

~i ~i

Substituting t = 0 and f (0) = 0 in (A4.4), and making use of (A4.2)-(A4.3), we obtain

x(0) = (7i + v'(0))(B-F).
r* *** 1 'wl

(AAA)

(A4.5)

Since 7j + v'(0) is a scalar, x'(0) is a vector in the direction of B —F , i.e., along the line

segment W7eI. Since x(0) = F\% it follows that x(t) is tangent to B^E^ at Fi when c=0.

Appendix 5: Properties of Trapping Region

(1) In Fig. 6, if x tends to F\ from the inside of the "curvilinear wedge" region bounded by

WiFi and F\e^, TTf1(x) tends to Flt and so lim Trf1^) = ^i * /i = T*il(F\). However, if x

tends to Fi fromthe outside of this "curvilinear wedge" region, TTf*(x) tends to / j, and so lim

Trf*(x) = /1 = TTf l{Fi). Since the double-snake area Si = Sa u S6 in Fig. 12lies outside of

this "curvilinear wedge" region near F\, it follows that

Vlsr^-A/lju Sjtf^ (A5.1)

is a homeomorphism from the compact domain S\ into LA\U Bi Eiu. Since 7T2\AA\U Bi Eiu
: A4lu f?j i?iu -» Sj is continuous, we have

•33-



n\J: J= teiuBiEiu->3 (A»-2)

is continuous. Since the image of a compact set under a continuous map is compact, tt( "O ) is
a compact subset of 3. This proved (6.8) and (6.9).

(2) Equation (6.9) implies tt(A) C A. Hence, to prove (6.11), we only need to prove tt(A) D A.
Take x e A = nn ^ 0TTn(j). Since x e TTn+1(J ), and since tt*1 (3) is compact, the set

Yn = TT-1(x)riTTn(7) (A5.3)

is non-empty and compact. Since

yn+1 =w->(«) n jr»+1(3) c Yn =^(i) n a»CJ). (A5.4)

we have Y = nn j. 0 Yn C nn ^ 0 TTnC3) is non-empty and tt(Y) = x. Therefore,

x = Tr(y) e Tr(nnas07Tn(7)) = w(A) (A5.5)

that is, A C tt(A).

(3) In Fig. 12, we can observe that TTf1 maps 5j\ \Bi\ into the interior of A^iu Bi Eiu.
However, the point Bi maps into the point a2 on BiAiu in Fig. 6. From this we have

tt(^) c fa2j u interior 0 (A5.6)

Since a2 * B\% we have

tt(u2) = Trf1 Tr2(a2) € interior J* (A5.7)

Therefore, it follows that

t^O) c tr(a2) u tt( interior 3) (A5.B)

c interior J (A5/9)

because tt( interior J) c interior 3. It follows from tt(3 ) c 1J that

TTn(3) c interior 3. (A5.10)

To prove existence of an open neighborhood N(A) which satisfies (6.14), take a small open ball

27(ft) at ft such that

f^Wft)) c interior 0. (A5.ll)

Then the set
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Ni £ B(Ci) u interior Si u interior J (A5.12)

is an open neighborhood of A] in the Vj-plane which satisfies

Ai = rWoTT^Ap.
"St r<w

Choose a small neighborhood N(A) of A in the double scroll system such that any trajectory

originating in N(A) intersects ft u £/_i only at points belonging to the set

^fH^i) u (~*f!(^i)). where JVj is defined in (A5.12). Then N(K) satisfies (6.14).
In the more general situation, the double-snake area Si may intersect the spiral

FiW\Di = TTj^ift). Figure 27(a) shows the Vj-portrait of Vq with such a double-snake area

Sh where (a, p, mQ, mx) = (4, 4.85. -1/7, 2/7) and u = 2. Note that the spiral -Fi^ift

intersects the spiral .4iuft = ~z (AiAiu ) at two points a and 6, and the spiral

E"iuCi = tt2(£'1£'iu) at two points d and c. Since FiFPift is the set of discontinuous points

of TTf1 (see (6) in Example 4.3), it follows that the set rrf^Si) = n(hAiuBiEiu) must be as
depicted in Figure 27(b),+where ft =TTf*(ft). ttC41u) =TTf1(i4"ltt), Tr(fttt) =TTf l(E"iu),
tt(Fi) = TTf^Fj) =/j and n(Bi) = rrf^ft) = a2 (see Fig. 6). where ft, i4"lu, E'\u are

indicated in Pig. 12(a). In this case, we expect that 3 = LAiu Bi ftu to be a trapping
region and that A = r>nSiQTTn(3) ls a 7T-invariant compact subset of ZJ• The proof of this

statement, however, is complicated because we must consider the discontinuity of the map

Appendix 6. EiUqA iUq approximates Ws (Hf)

Suppose that the magnitude of the real eigenvalue Ji at P (ji < 0) is very large com

pared to the real part of the other eigenvalue. This is equivalent to considering the limit as

7j -» —oo. Hence, upon substituting 7j = 7i/3i and o^ = o^i/Ui into the coordinates for Fi

and Ei, and then taking the limit as 7j -> —oo, we obtain

^1 = (7i(7i-2c71)/[(7i-^i)2+1],7i[1-^i(^i-7i)]/[(7i-^i)2+1])

= Gi(7i-2&i)/ [(7i-^i)2+Sf], 7i[3i-*i<»i-7i)]/ [(7i-^i)2+Sf])

•* (l,Gi) = Bi , as 7j-» -oo (A6.1)

and

Ei = (7i(7i-^i-Pi)/[(7i-CTi)2+l].7i[l-Pi(^-7i)]/[(7i-^)2+l])

+

The symbol D ( ) in Fig. 27(b) denotes a curvillinear region with boundary
points listed inside the parentheses.
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"* (l»Pi) = Ax , as 7j -» -oo. (A6.2)

It follows from (A6.1) and (A6.2) that

Eiu0 = UqEi + (l-^o)^i •+ ^0^1 + (l-^o)^i = AiUq (A6.3)

Under this condition the arc EiUgHiA'iUQ shrinks to one point ftUo = Hf = AiUq under
TTf1, and therefore also under TT. Therefore the arc Eiu^\Uq may be considered as the stable
manifold ^(Hf) asyx -» -00, i.e. fttto^iwo w Ws(Hi). This implies that

^iu0^iu0 =nrllEZjE9)"*TliW'(nn) =*"W> (A6.4)

-86-



Acknowledgement

M. Komuro would like to thank Y. Takahoshi of Tokyo University for many valuable discus
sions.

REFERENCES

[I] T. Matsumoto, "A chaotic attractor from Chua's circuit," IEEE Trans, on Circuits and

Systems, vol. CAS-31, pp. 1055-1058. Dec. 1984.

[2] G.-Q. Zhong and F. Ayrom, "Experimental confirmation of chaos from Chua's circuit," Int.
J. of Circuit Theory and Applications, voL 13, pp. 93-98, Jan. 1985.

[3] T. Matsumoto, L. 0. Chua, and M. Komuro, "The double scroll," IEEE Trans, on Circuits

and Systems, vol. CAS-32, no. 8, pp. 797-818, August 1985.

[4] T. Matsumoto, L. 0. Chua, and K. Tokurnasu, "Double Scroll via a two-transistor circuit," in

preparation.

[5] G.-Q. Zhong and F. Ayrom, "Periodicity and chaos in Chua's circuit," IEEE Trans, on Cir

cuits and Systems, vol. CAS-32, no. 5, pp. 501-503. May 1985.

[6] T. Matsumoto, L. 0. Chua, and M. Komuro, "The double scroll bifurcations," Int. J. of Cir

cuit Theory and Applications, in press.

[7] J. P. Eckmann, "Roads to turbulence in dissipative dynamical systems." Review of

Modern Physics, vol. 53. no. 4. Part 1, pp. 643-654. Oct. 1981.
Universality

[8] P.Cvitanovic. / in chaos, Adam Hilger Ltd., Bristol 1984.

[9] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and biurca

tions of vector fields, Springer Verlag, New York, 1983.

[10] Y. S. Tang, A 1. Mees, and L. 0. Chua, "Synchronization and chaos," IEEE Trans, on Cir

cuits and Systems, vol. CAS-30, p. 620-626, Sept. 1983.

[II] A. Rodriguez-Vasquez, J. L. Huertas. and L. 0. Chua, "Chaos in a switched-capacitor cir

cuit," IEEE Trans, on Circuits and Systems, vol. CAS-32, pp. 1083-1085, Oct. 1985.

[12] F. M. A. Salam and S. S. Sastry, "Dynamics of the forced Josephson junction circuit: The

regions of chaos," IEEE Trans, on Circuits and Systems, vol. CAS-32, pp. 784-796, August

1985.

[13] L. 0. Chua and R. Ying. "Canonical piecewise-linear analysis." IEEE Trans, on Circuits and

Systems, vol. CAS-30. pp. 125-140. March 1983.

[14] Th. Brbcker Differential germs and catastrophes, Cambridge University Press, Cam

bridge, England, 1975.

-87-



[15] A. 1. Mees and P. B. Chapman, "Homoclinic and heteroclinic orbits in the double scroll
attractor. IEEE Trans, on Circuits and Systems, submitted.

[16] M. W. Hirsh and S. Smale, Differential Equations, Dynamical Systems, and Linear Alge

bra, Academic Press, New York, 1974.

[17] L. 0. Chua. C. A. Desoer, and E. S. Kuh, Linear and Nonlinear Circuits, McGraw-Hill, New

York. NY 1969.

[18] R. W. Brockett, "On conditions leading to chaos in feedback systems," Proc. 1982 CDC.

Dec. 1982.

[19] A. Arneodo. P. Coulett and C. Tresser, "Possible new strange attractors with spiral struc

ture," Communications in Mathematical Physics, voL 79, pp. 573-579,1981.

[20] C. Kahlert and L. 0. Chua, "Transfer maps and return maps for piecewise-linear three-

region dyanamical systems," University of California, Berkeley, Electronics Research

Laboratory Memorandum No. UCB/ERL M85/101, November 29, 1985.

[21] Otto E. Rbssler. "Continuous chaos-Four prototype equations," Annals of N.Y. Academy

of Science, Vol. 31, 1979, pp. 376-392.

[22] M. Hurley, "Attractors: persistence and density of their basins," 7rans. i4mer. Math.

Society, vol. 269, pp. 247-271.

[23] R. F. Williams, "Expanding attractors," IHES Publication, Math., vol 43, pp. 169-203, 1974.

[24] L. 0. Chua and P. M. lin, Computer-Aided Analysis of Electronic Circuits: Algorithms and

Computational Techniques, Prentice Hall, Englewood, NJ, 1975.

[25] C. T. Sparrow, "Chaos in a three-dimensional single loop feedback system with a

piecewise-linear feedback function," J. Math. Analy. Appl. vol. 83, pp. 275-291, 1981.

[26] P. Glendinning and C. Sparrow, "Local and global behavior near homoclinic orbits," J.

Stat. Phys., vol. 35, pp. 645-697, 1984.

[27] M. Yuri, "The existence of an invariant stable foliation and the problem of reducing to a

one-dimensional map," Tokyo J. Math., vol. 6, pp. 247-266, 1983.

-SB-



Figure Captions

Fig. 1. Eigenspaces of the equilibria and related sets.

Jig. 2. Geometrical structure and typical trajectories of the original piecewise-linear sys

tem and their images in the Dq—unit and Dj—unit of the transformed system (real

Jordan form), (a) Original system and typical trajectories, (b) Dq—,Di—units and

half-return maps.

Fig. 3. Geometrical interpretations of the local u—v coordinate system for representing

the half-return map ttq. (a) Details of the DQ-uml: thick arrows denote the direction

of the vector field at various points along L2q = ^q(L2) where all vectors lie on the
V0-plane. (b) Graph of a possible inverse return-time function u = u+(v ,t). Here,
I*(v) denotes the set of first-return times which is not connected whenever u*(v,t)
is not a monotone function.

Fig. 4. TT0 associated with a monotone inverse return-time functions, (a) V0-plane.

(°0» 7o» °~i» 7i. *0 = (-0-3, 1.5, 0.2, -2.0, 0.75). (b) Graph of the inverse return-time
functions u = I4~(l,r)andu = i4+(l,c). (c) Magnification of (b) over the region

0.90 <u < 1.10.

Fig. 5. ttq associated with a non-monotone inverse return-time functions, (a) VQ-p\ane. (uq,

70. OV 7j, k) = (-0.2, 0.75. 0.2, -1.0, 0.75) The positions of points a, b\ x (uj.l) and

x (u2 1) are not exact but are exaggerated to give more space, (b) Graph of the
~0

inverse return-time functions u = u~(l,t) and u = u*(l,t). (c) Magnification of

(b) over the region 0.90 <u < 1.10.

Fig. 6. Vi-plane. (oq, 70, ult 7i, *0 = (-0.4. 0.3. 0.2. -1.0. 0.3). FiWxDi ^ 7Ti(F\B^),
c^Fi^i ^ ^i(^h), ez&\ ^ ^li^zl -M^i ^ ^(^T^) and
/i = iiil(Fi). The position of f 1 is exaggerated in this figure for clarity. The

actual position of /1 is "inflnitesimally" close to a.j.

Fig. 7. Graphs of the inverse return-time functions v = v (u ,t). The parameter values are

the same as those of Fig. 6. (a) v = v(0,t). (b) Magnification of (a) over the region

0.995 < v < 1.005. (c) v =v(ultt) where ux = 0.570. (d) Magnification of (c) over

the region 0.995 < v < 1.005. (e) v = v(u2, t) where u2 = 0.786. (f) Magnification

of (e) over the region 0.995 < v < 1.005. (g) v =v(l,t). (h) Magnification of (g)

over the region 0.995 <v < 1.005.

Fig. 8. ^-portrait of V0 for (a0, 70, ov ylt k) = (-0.4, 0.5, 0.05, -2.0. 0.25).



Fig. 9. Homoclinic orbits, (a) Vi-portrait of Vq. (b) Two odd-symmetric homoclinic orbits

through the origin.

Fig. 10. The two circles bounding Sa and 5<, on the Vj-plane and related arcs.

Fig. 11. Vj-portrait of Vq and the two bounding circles Sa and S5 (which appear as ellipses

due to unequal horizontal and vertical scales). The parameters (a, p, m0, ttij) are:

(a) (10.5. 7, -1/7, 2/7): (b) (8.6. 7. -1/7, 2/7); (c) (6.5. 7, -1/7, 2/7).

Fig. 12. Vrportrait of VQ with trapping region 0 £ A4ju Bi Eiu.

Fig. 13. Geometrical structure at the birth of the double scroll, (a) Macroscopic picture of

the original system, (b) Enlargement of the Vj-portrait of Vq. BiCi = tt2(B^A[) is

tangent to £^\ k -n^A^K^ at Qx. Sa £ TTf\Sa) is an "inflnitesimally" thin set
(infinitely many layers compressed into a sheet) whose actual location is very close

to AiBi. (c) Vrportrait of Vq for (a, 0, m0, mj = (8.8, 14.3. -1/7, 2/7).

B^di k tt2(F^Q is tangent to E^\ £ ^(1^) at Qv
Fig. 14. Geometrical structure at the death of the double scroll, (a) Macroscopic picture of

the original system, (b) Enlargement of the Vj-portrait of Vq. Hi and //f denote

the position of the saddle-type periodic orbit. ^jCj 5 ir2(BiAi) is tangent to
EiUgAiu0 - ^liEiugAiuQj at Qv SauSb is an "inflnitesimally" thin set
(infinitely many layers compressed into a sheet) whose actual location is very close

to 4iUo#i. (c) Vj-portrait of V0for (a,P,m0,mi) = (10.73,14.3.-1/7,2/7).

Fig. 15. A hole-filling double scroll appears when (a, p, mQ, m{) = (9.85, 14.3, -1/7, 2/7).

(a) Vj-portrait of Vq. (b) The double scroll with hole-filling orbits.

Fig. 16. The Vj-portrait of Vq which give rise to two odd-symmetric homoclinic orbits

through the origin when (a,j81m0,m1) = (4.1, 4.7, -1/7, 2/7).

Fig. 17. The bifurcation diagram on the a—P plane (drawn with (7710,771!) = (-1/7, 2/7)).

Fig. IB. Geometrical interpretation of the definition of the 1-D Poincar6 map tt*. (a) Wx
plane in the Z?runit. (b) Graph of TT* for (oo,7o.<7i,7i,A:) = (-0.42, 0.5, 0.15, -1.5,
0.2).

Fig. 19. 1-D Poincare maps corresponding to (a) the birth of the double scroll when

(atp,mQ,mi) = (8.8. 14.3, -1/7, 2/7); (b) the death of the double scroll when

(a,p,mQ,mi) = (10.73, 14.3, -1/7. 2/7); (c) a hole-filling double scroll when

(a,p,mQ,mi) = (9.85, 14.3, -1/7. 2/7); (d) the existence of two odd-symmetric

homoclinic orbits when (a,/3,m0,m1) = (4.1, 4.7, -1/7, 2/7).
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Fig. 20. Fixed point Xi of tt* with 0<A"i<a. (a) Graph of 1-D Poincare map tt*. (b)
Corresponding periodic orbits in the original double-scroll system, (c) Abstraction of

the main features of (b).

Fig. 21. One Period-1 fixed point Xx of tt* with a<X\<co, (a) Graph of 1-D Poincare map TT .
(b) Abstraction of the corresponding periodic orbits in the original double-scroll sys

tem.

Fig. 22. Two Period-2 points Xi and X2 with 0<Xx<X2<a. (a) Graph of 1-D Poincare map tt*.
(b) Abstraction of the corresponding periodic orbits in the original double-scroll sys

tem.

Fig. 23. Two Period-2 points X\ and X2 with a<A'1<Ar2<°°. (a) Graph of 1-D Poincare map

tt*. (b) Abstraction of corresponding periodic orbits in the original double-scroll

system.

Fig. 24. Two Period-2 points Xi and X2 with Xx<a<X2. (a) Graph of 1-D Poincare map TT*. (b)
Abstraction of the corresponding periodic orbit in the original double-scroll system.

Fig. 25. Three Period-3 points Xlt X2, and Xz with 0<X1<X2<*<Sz. (a) Graph of 1-D

Poincare map tt . (b) Abstraction of the corresponding periodic orbit in the original

double-scroll system.

Fig. 26. Three Period-3 points A'lt X2 and Xz with 0<Xl<a<X2<Xz. (a) Graph of 1-D Poin

care* map TT . (b) Abstraction of the corresponding periodic orbits in the origi

nal double-scroll system.

Fig. 27. A general trapping region corresponding to (a,p,m0,mi) = (4, 4.85, -1/7, 2/7) and

14=2. (a) V^-portrait of Vq. The snake A'iuCiEiu intersects the spiral
F\"W\D\ - Ki(FiBi ), which coincides with the set of discontinuous points of rrf1.
(b) Illustration of tt(A.41u Bx £1u). Tne snake-like area Tr(Ai4JU Bx J5*lu) is actu

ally an "infinitesimal" thin set located very near BiAXu.
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Fig. 1

U=Ec(0)nUi

Li=Ec(P+)nUi

L2={XcUi:^(x)/Ui}

A=LonLi

B=LiHL2

C=Er(0)nUi

D = Er(P+)OUi

E=L0nL2

F={XeL2:f(X)//L2>
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