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THE DOUBLE SCROLL FAMILY
PART I: RIGOROUS PROOF OF CHAOS!

Leon 0. Chua, Motomasa Komuro and Takashi Mat.surnot.ot

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory
University of California, Berkeley, CA 94720

ABSTRACT

This paper represents Part I of a 2-part paper which provides a rigorous mathematical
proof that the double scroll is indeed chaotic. Our approach is to derive a linearly equivalent
class of piecewise-linear differential equations which includes the double scroll as a special
case. Necessary and sufficient condition for two piecewise-linear vector fields to be linearly
equivalent is that their respective eigenvalues be a scaled version of each other. In the spe-

cial case where they are identical, we have exact equivalence in the sense of linear conjugacy.

Explicit normal form equation in the context of global bifurcation is derived and
parametrized by their eigenvalues. Analytical expressions for various Poincare maps are then
derived and used to characterize the birth and the death of the double scroll, as well as to
derive an approximate one-dimensional map in analytic form which is useful for further bifur-
cation analysis. In particular, the analytical expressions characterizing various half-return
maps associated with the Poincare map are used in a crucial way to prove the existence of a
Shilnikov-type homoclinic orbit, thereby establishing rigorously the chaotic nature of the dou-
ble scroll. These analytical expressions are also fundamental in our in-depth analysis of the
birth (onset of the double scroll) and death (extinction of chaos) of the double scroll.

The unifying theme throughout this paper is to analyze the double scroll system as an
unfolding of a large family of piecewise-linear vector fields in R3. Using this approach, we
were able to prove that the chaotic dynamics of the double scroll is quite common and robust.
In fact, it is exhibited by a large family (in fact, infinitely many linearly-equivalent circuits )
of vector fields whose associated piecewise-linear differential equations bear no resemblance
to each other. It 'is therefore remarkable that the normalized eigenvalues, which is a local
concept, completely determines the system's glodal qualitative behavior.

This research is supported in part by the Joint Services Electronics Program under contract F49620-84-C-0057.

$L. 0. Chua is with the Electronics Research Laboratory, University of California, Berkeley, CA 84720. M. Komuro
is with the Tokyo Metropolitan University, Jepan and T. Matsumoto is with Waseda University, Tokyo, Japan.



1. INTRODUCTION

The double scroll is a strange attractor recently observed from a physical electronic cir-
cuit made of 4 linear circuit elements (1 resistor, 1 inductor, and 2 capacitors) and a 2-
- terminal nonlinear resistor characterized by a 5-segment v—i curve [1-3]. The nonlinear
resistor can/rgg.lized in the laboratory by several equivalent electronic circuits using 2 op
amps [2], 1 op amp and 2 diodes [3], or 2 transistors and 2 diodes [4]. Since its recent
discovery, this rather simple electronic circuit has been observed, both ezperimentally [5-6]
and by computer simulation [8], to exhibit a surprisingly rich variety of bifurcation
phenomena [6] and routes to chaos [7-8]. Although the chaotic nature of the double scroll
appears to be very convincing from both experimental analysis and computer simulations,
there remains legitimate objections from some critics who demand no less than a rigorous

mathematical proof. Our main objective in this paper is to supply such a proof.

Proving a circuit is chaotic is a non-trivial task. Indeed, only 3 nonlinear circuits have so
far been proved rigorously to be chaotic: the first two circuits [10-11] are described by a
one-dimensional discrete map while the third circuit [12] is described by a 2nd-order non-
autonomous differential equation. The double scroll system to be studied in this paper is
described by a 3rd-order autonomous differential equation. In particular, we will choose the
dimensionless form given by (2.4) of [3] which we rewrite in the equivalent form

2 =aly-h(z))
Y =z-y+z (1.1)
2 = —By

where
h(z) & z4f (@) =mz + =(me-m)[|z+1] = |==1]] (12)

is the canonical piecewise-linear equation [13] describing an odd-symmetric 3-segment
piecewise-linear curvel having a breakpoint at £ = —1 and £ =1 and a slope equal to
mg 8 2+1 <0 at the inner segment and ™, 8 541> 0 at the outer segments, respec-

tively: namely,

. tWe include only 3 segments of the 5-segment piecewise-linear ¥ —% curve because the 2 outermost segments do
~ not play any rale in the formation of the double scroll.



h(z)=mz+(mo-m,;) , z = 1
= mqz el s 1 (13
=mz—(mg-m,) , z < -1

Note that (1.1) is slightly simpler than (2.4) in [3] because h(z) includes both f (z) and z.
The double scroll system is therefore described by 4 parameters {a,f8,m,m}, with the dou-

ble scroll attractor occurring in a neighborhood of {9,14 3—,— ,1?—-, %{

Since the techniques and concepts to be used in proving that the double scroll is chaotic
are quite novel and general, we will develop our theory for a much larger class of piecewise-
linear differential equations of which (1.1) is a special case. Mathematically, our approach is
to consider the vector field associated with the double scroll system as an unfolding of a fam- |
ily of 3-dimensional continuous piecewise-linear vector fields characterized by 8 parameters,
instead of 4 in the double scroll system. However, unlike the literatures on unfoldings which
consider only differentiable functions [14], our results are novel in the sense that our func-
tions are required to be only continuous, not differentiable.

Because of the nature of piecewise-linear analysis, a substantial amount of symbols and
notations are necessary to avoid ambiguity and clutter. They are summarized in Section 2 for
ease of reference.

The family of piecewise-linear vector fields whose unfolding gives the double scroll sys-
tem is defined and characterized in Section 3. The main results in this section are summar-
ized in theorems 1, 2, and 3. In particular, we have derived the necessary and sufficient con-
ditions for any two vector fields in this family to be linearly conjugate, which is a strong form
of equivalence from the circuit theoretic point of view and an important mathematical pro-
perty in the theory of structural stability of vector fields [9]. It is remarkable that while it is
often impossible to establish any topological conjugacy between nonlinear vector fields, we
were able to prove that the necessary and sufficient conditions for linear conjugacy (which is
a special case of topological conjugacy) between 2 piecewise-linear vector fields in our family
is that their eigenvalues in corresponding regions be identical.

This important result, which is stated in two equivalent forms (theorems 1 and 2) allows
us to derive the ezplicit form of all members of our family of piecewise-linear vector fields
which are equivalent (i.e., linearly conjugate) to each other in terms of their eigenvalues
alone. This major result, which is formulated in the form of a cenonical piecewise-linear

t(?&:axaequem.ly. a more precise title for this paper is: "unfoldings of piecewise-linear vector fields in RS,



equation [13] parametrized by their eigenvalues, will henceforth be called the normal form
equation for the double serott.t Again, this result is remarkable because finding normal forms
of parametrized nonlinear vector fields is extremely difficult if not impossible.

Our results from Section 3 provide the necessary foundation in Section 4 for deriving
the ezact (i.e., analytical) expressions describing various Poincare maps of an important class
of vector fields which are unfoldings of our normal form equation. These results are then used
in a crucial way in Section 5 to prove that homoclinic orbits of the Shilnikov type [9] exist in
the double scroll, thereby providing a rigorous proof that the double scroll is indeed chaotict

The analytical formula for Poincaré maps in Section 4 allows us to derive the exact coor-
dinates of the return map of any trajectory of the double scroll system. These coordinates
are used in Section 6 to derive the analytical expression describing the image of several stra-
tegic loci (to be defined in Section 6 ) which allows us to explain the birth (i.e., onset) and the
death (i.e., extinction) of the double scroll attractor. Unlike the preceding 5 sections, how-
ever, where complete mathematical rigor is achieved, some reasonable numnerical calcula-
tions are used in this section to calculate two curves—called the birth and the death loci —
which bound the region in the a—f parameter space where the double scroll exists.

Finally, in Section 7, we derive the analytic expression of an "approximate” one-
dimensional map which can be used for further bifurcation analysis of the double scroll.
2. PIECEWISE-LINEAR GEOMETRY AND ITS JORDAN FORM

Unless otherwise stated, vectors and matrices are denoted by lower and upper case bold-
face letters, respectively. Vectors in R® are denoted by z = (z,y,z)T. Real and imaginary

part of a complex eigen value will be denoted by 0 and @ respectively. Real eigenvalues will
be denoted by 7. Vector fields will be denoted by £ : R3 -+ IR3. Hence &(z) denotes the vector

field evaluated at Z and is therefore itself a vector in RS emanating always from the origin 9.

unless otherwise stated.

We will now extract the essential properties of the vector fleld associated with the double
scroll system (1.1) to define the following family of vector fields Z.

Definition 2.1. Piecewise-linear vector field family

TThe term "normal form"” is used here in the same context as that used in global bifurcation theory of vector
fields [8], and not in the circuit-theoretic sense of a state equation.
reader is referred to an interesting related work by Mees and Chapman [15] where they used optimization
techniques to locate a heteroctinic orbit in the double scrall system.



We define & to be a family of continuous vector fields ¢:R® - IR® satisfying the following
properties:

(P.1) ¢ is symmetric with respect to the origin, ie..! §(~z,-y,~2) = - &z ,y,2).

(P.2) There are two planes U; and U.; which are symmetric with respect to the origin (i.e.,
(z.y.2) € U,iff (~z,—y,—2) € U_;) and they partition R3 into three closed regions
D,, Do, and D._,, as shown in Fig. 1. Here, the reference frame for (z,y,z) is arbi-
trary.

(P.3) Ineachregion D, (i =-1, 0, 1), the vector field £ is affine, i.e.,
Di(z.y.2)=HM  for (zy.z2)c D

where D¢ denotes the Jacobian matrix of £(z) and M denotes a 3 X 3 real constant
~ ~‘
matrix

(P.4) & has 3 equilibrium points, one at the origin O, one in the interior of D; (labeled P*)
and one in the interior of D_, (labeled P~).

(P.5) Each matrix M; has a pair of complez conjugate eigenvalues (labeled Ty + j &g for @0
and 0, + jO, for j!-l and @1' where Gg > 0 and &; > 0) and a real eigenvalue (labeled
%o for @o and ¥, for @_1 and {-ll' where ¥, # 0 and ¥y, # 0).

(P.6) The eigenspace associated with either the real or the complex o.aigenvaluest at each
equilibrium point is not parallel to Uy or U_;.

Notations associated with Fig. 1

For each vector field ¢ € £, define’

E*(0) a 2-dimensional eigenspace corresponding to complez eigenvalue 30 + jWgat 0.

E(0) & 1-dimensional eigenspace corresponding to real eigenvalue ¥, at 0.

E* (P*) 4 >.dimensional eigenspace corresponding to complez eigenvalue ¥, + jo; at P*.

ET(P*) 8 j-gimensional eigenspace corresponding to real eigenvalue %¥; at P*.

Lo & U,nE(0). L, & U, nE(P

7o avoid clutter, we will often use row vector (2 .2 ) in place of column vector (:!: .2 ) T

$in the case where the eigenvalue is complez, the eigenspace is defined to be the vector space spanned by the
real a.nd the imaginary part of the complex eigenvector.

Here, superscripts “c” and "r" denote "complex” and "real”, respectively.



Ly 8 tz € Uy:&z) / Ui} (2.1)

where /| reads "is parallel to.” Here, E(f) // U; means the vector § (s) lies on a plane parallel
to U;. That L is a straight line in Fig. 1 follows from the following:

Straight line tangency property:

Let ¥ be a linear vector field in IR having a pair of complex conjugate eigenvalues ¥ + j &
and a real eigenvalue . Let U denote any plane which is not parallel to each eigenspace and
which does not pass through the origin. Then

L8 fzeU¥) U} (2.2)

is a straight line.

Proof. In Appendiz 1 we prove the above assumptions imply that there exists a suitable
coordinate system z 8 (z',y',z') in R3 such that¥ is transformed into the real Jordan form

[16].

B -3 o :
)= & O ' (2.3)
0 0 %z

and such that the equation for U in the new cocordinate system assumes the following

simplified form:
U={zy.2z):z+2 =1} (2.4)
For each £ € L, (2.2) implies that the vector dot preduct G(f).ﬁ.) = 0 where 4 (1,007
is a normal vector to U in view of (2.4). Substituting?(f) from (2.3) into the above vector dot
product, and solving for ¥, we find that L in (2.2) is a straight line defined by the equations
L:y' =0z +9(1-z) 2'=1-2 (2.5)
whereo & ¥/ T andy & F/3.

-
Remark: The above straight line L intersects the line §(z’,¥’,2):2 = 1, 2’ = 0 at the point
(z'y'.2) = (1,0.0). |
We are now ready to define the following important points in Fig. 1:

*



AéLoﬁLl ’ BéLlﬁLz
cdunE@©, D8 UNE(P
8 fz € Lp:#¢(@) ) L2

where E(f)//La means the vector ¢ (f) lies on U, and is parallel to the straight line L.

For simplicity, we will often suppress the superseript + and write P instead of P*. The
following strategic points play a crucial role in Section 3:

Definition 2.2. Fundamental points of £
The 4 points A, B, E, and P defined above are called the fundamental points of £.
Note that the continuity of the vector field £ implies that

£(4)/ E°(P) . &(4)/ E°(0)
EBY/L, . &EY Lo

€C)/ ET(0) . &D)/ ET(P)
In general, each 3 X 3 matrix Illi defining a vector field ¢ € £ in region D; requires &

non-zero parameters. Our next objective is to eliminate as many of these parameters as pos-
sible by reducing M to its Jordan form and U, to its simplified form.
~T

Let ¥o: Dy » IR® and ¥,:D; » RS denote the appropriate affine transformations which
reduce @o and Ml to the Jordan form in (2.3) while simultaneously transforming the equation

describing U,, to the simplified form in (2.4). It follows from (2.3) and (2.4) that in terms of

the new coordinate system, we have!

a) ¥o(0)=0 (2.8)
Yo(U,) = Vo & f(z.y.2):z+2z =1} (2.7)
Yo(U_y) = Vg 4 f(zy,z2):z+2z=~-1} (2.8)

TSmctly speaking, we should use :l: and a: to denote vectors in the new coordinate systems, as in (2.3) and (2.4).

However, we will henceforth suppress the pnmes and double primes to avoid clutter. Since we will be dealing mostly
with the new coordinate systems in the following sections, no confusion should arise.



oo —1 O

::.I—D\Pols(‘llo‘ 1.1:)] =g(z) & |1 o, Olz (2.9)
Wo ~ ~ ~
0 0 %
where 0y & o/ Tpand 79 & Yo/ T
b) Y (P)=0O (2.10)
¥,(Uy)) =V, 4 {(z,y.2):z +2z =1} (2.11)
(] -1 0
DI @) = 6@ & |1 0 Of (2.12)
' 0 07

where 0, 4 ¥,/ 0y and 7, a %,/ @;. We will henceforth call (2.9) and (2.12) the normalized
Jordan form of Mo and jlll. respectively.

Definition 2.3. Dg-unit and D,-unit of ¢

Ve define the set {£o, Vo, ¥o} as the Dg- unit of £ and the set of {£,,V),¥,] as the Dy- unit
of €.

Geometrically, the Dg-unit of £ is simply the middle region Dy in its new reference frame
(z',y'.2") which we labeled simply as (,y,2) in Fig. 2. It is important to keep in mind, how-
ever, that these two reference frames involve different coordinate systems. |

The images of the important points A, B, C, D, E, and F in Fig. 1 will be denoted by
corresponding subscripts in an obvious wa‘y:T

Do: 40 & ¥5(4). Bo & ¥o(B), Co & ¥o(C). Dy & ¥o(D), Eo & ¥o(E), Fo & ¥o(F),
D,y:4 4 ¥,(4), B, 8 ¥,(B), C 4 ¥,(C), D, & ¥\(D). E, 4 v, (E), Fy 4 ¥y (F).

Our next goal is to derive the coordinates of each of these points in their new reference
frames. Since A, B, C, D, E, and F are located on various intersection lines in Fig. 1, their
images (under any affine transformation) must lie on corresponding lines in the new refer-
ence frames. These lines are images of intersections between various eigenspaces (E* (0) or
E7T(0)) with the plane U, in Fig. 1. In particular, it can be shown that

TNote that the same symbols Do and Dl are used to denote a region in Fig. 2(a) and a poént in Fig. 2(b). There
will be no confusion, however, since its meaning will be clear from the context.



Yo(E*(0)) = {(z,y.2):2 = 0} ,i.e., the x-y plane (2.139)

Yo(E™(0)) = H(z,y,2):z =y = 0} ,i.e, the z-axis (2.14)
Yo(Lo) = H(z,y,2):z =1, 2 =0} (2.15)
Yo(L2) = {(z.y,2):y = dox + yo(1-2), 2 = 1-z} (2.18)

Since C = E7(0) n U,, it follows from (2.14) and (2.7) that Co = (0,0,1).

Since E = Lg N Ly, it follows from (2.15) and (2.16) that Eq = (1,00,0).

Since F € Lz and &(F) // Lz, it follows that Fg € ¥o(L2) and &(Fo)//Yo(L2). Hence the
coordinate of F'o must satisfy

0T~y _ T+ogY _ Y02

y = 0oz +7(1-z),2 =1z, T = Toye - -1

(2.17)

Since A¢ lies on the line ¥o{Lg), we can write Ag = (1,p0,0) for some pg € R.

Since B = Ly N Ly and &(B)// L,, the coordinate of By is determined by By € ¥o(L3)
and &o(Bo) # EOAOE where the "arrow” denotes the vector from Bg to 4g. Since Bg, E, and Fy
all lie on the line ¥o(L3), it follows that

FoBa = ko EgFg (2.18)
where k is a scaling constant.

Similarly, we can derive the coordinate of 4;, B;, D;, E';, and F; in the new reference
frame for the D;-unit in Fig. 2 and obtain

E\Fy =k, F\Bj (2.19)
where k, is a scaling constant.

For future reference, the explicit coordinate for the image of all strategic points in Fig. 1
are tabulated below:

Strategic points in Dg-unit (og & T/ To 70 & Vo’ To)
AO = (ltPOvo) ’ (2'20)

wbere't

( f’l‘l)xe two expressions in (2.21) (resp. (2.27)) are equivalent to each other. The value of kg (resp., k1 ) is specified
in (2.39).



k
Po & oo+ Z1(05+1), ko & o(pg—00)/ (9F+1) (2:21)

Bo = (7o(70—00=P0)/ Qo . 701 — Po(00—70))/ Q0. 1 — Yo(%0—00—P0)/ Qo)  (2.22)
where @p ) (00=70)* + 1

Co = (0,0,1) (2.23)
Eg = (1,00,0) (2.24)
Fo = (70(70—200)/ Qo , Yol 1 = 00(00=70))/ Qo . (05+1)/ Qo) (2.25)
Strategic points in D,-unit (o, & %,/3,,7, & /%))
A, =(1,p,,0) (2.26)
where
P18 0+ ky(03+1)/ 7 ky & i(@i-01)/ (0F+1) (2.27)
B, = (1,0,,0) (2.28)
D, =(0,0,1) (2.29)

Ey = (nin=01—p1)/ @1, 711l = pi(o1=7))/ @1, 1 = n(r1—01—p1)/ @) (2.30)

where

Q & (o1 +1 (2.31)

Fy = (7,(3:1=20,)/ @1 . mil1 = o4(0,=71))/ @y . (0§+1)/ @) (2.32)

Note that kg can not be calculated directly from (2.21) since it depends on pg which in
turn depends on k. A similar situation applies to &k, in (2.27). However, they can be easily

calculated from the relationship

ko=1/k,=k & =5/%, (2.33)
which will be derived in Section 3. The relationship

ko, =1 (2.34)

follows from the ratio between the lengths (denoted by |- |) of the following vectors (see Fig.
2):



|FoBs| _ |F7B;)
Bl 1B (2.35)

The above explicit expressions for the coordinates of the strategic points in the Dg-unit
and the D;-unit will play a crucial role in our derivation of Poincare maps in Section 4.
3. CANONICAL PIECEWISE-LINEAR NORMAL FORM

In Section 2 we have defined a very large family £ of continuous piecewise-linear vector
flelds. From the circuit-theoretic point of view, 2 represents the family of all 3rd order
piecewise-linear circuits whose vector fields satisfy (P1)-(P6) of Definition 1. Our objective in
this section is to partition this family into "equivalence classes” so that all vector fields

" belonging to a given equivalence class have identical qualitative behaviors. We will define 2
forms of equivalence; namely, linear equivalence and linear conjugacy.

From the circuit-theoretic point of view, two circuits are said to be linearly equivalent
iff, except possibly for a uniform change in the time scale, their respective solutions are qual-
itatively identical. If the same property holds with the same time scale, then the two circuits
are said to be linearly conjugate. For example, two 1 st -order autonomous RC circuits [17]
with time constants 7, and Tp are linearly equivalent but nof linearly conjugate unless
Ti1 = Tz2. Hence, 2 linearly conjugate but distinct vector fields essentially represent the same
circuit but with 2 different choices of state variables which are related to each other by a

linear transformation. We will now define these two concepts precisely.
Definition 3.1. Linear Equivalence

Two vector fields § and E' in IR® are said to be linearly equivalent iff there exists a linear
transformation G:IR® » R and a real number v > 0 such that’

Got=v(f - G) (3.1)

Definition 3.2. Linear Conjugacy
Two linearly-equivalent vector fields are said to be linearly conjugate of each other iff
= 1in (3.1).

The concept of linear conjugacy is a special case of the well-known concept of topological
conjugacy [9] where the "linear transformation " is replaced by a "homeomorphism.” In gen-
eral, it is extremely difficult if not impossible to prove two nonlinear vector fields are

THere, " © " denotes a “composition” operation. Hence (3.1) implies for each Z € IR®,

G(E(=)) = v{E(Ga).



topologically conjugate, let alone linearly conjugate. It is therefore remarkable that for the
class of vector fields § €, we can not only classify them into equivalence classes, but we
can derive the explicit form of one vector fleld--called the normal form --in each equivalence
class which is selected in accordance to a unified approach.

Recall from Definition 2.1 that for each vector field £ €,Z, the associated eigenvalues
are denoled by ¥ + j g and ¥, for Mo. and ¥, + j&; and ¥, for Hl. Because £ is a confinuous

vector field by definition, these eigenvalues are constrained in some definite way so that arbi-
trarily specified eigenvalues of the above form may not correspond to a vector field insf. Our
main result in this section is to derive this constraint among the eigenvalues and to use them
to completely characterize the class of all linearly conjugate vector fields.

Theorem 3.1. Linear Conjugacy Criteria
(a) For each set of eigenvalues defined by the 8 "eigenvalue parameters”
{30,890, 7091, 81,71} (3.2)
there exists a vector fleld ¢ ed having these eigenvalues <=>
0o>0, >0, and¥yy, <0 (3.3)

(b) Two vector fields ¢ € £ and £ € £ are linearly conjugate of each other <=> they have
identical eigenvalues; i.e.,

(3.4)

Proof. We will first state and prove Theorem 3.2 and then prove that it is equivalent to
Theorem 3.1. We will then prove Theorem 3.2 since it is easier. Moreover, it is Theorem 3.2
(and not Theorem 3.1) which will be used in the following sections.

Definition 3.3. Normalized eigenvalue parameters

For each set of eigenvalues defined by the 6 eigenvalue parameters {50,'50%,?:1,5,31;.
we define 5 normalized eigenvalue parameters

{00.70.01.71.k} (3.5)
where
A %o A Yo A 5 A TN A _ 7o
Og = =, = =0 = 5, - ’ k= ~ 3.8
o= B, Y0 Sy 7! 3, 71 5 = (3.8)

Note that one more parameters must/ bsepet.!iﬁe:n:l before the eigenvalues associated with (3.5)

-12-



can be uniguely recovered.
Theorem 3.2. Linear Equivalence Criteria

(a) There exists a continuous vector field £ € & having (3.5) as normalized eigenvalue
parameters <=>

Y%7:<0 and £ >0 (3.7)

(b) Two vector fields § € Z and 5' € af are linearly equivalent <=> they have identical nor-

malized eigenvalue parameters. Moreover, the positive scaling constant in (3.1) is given
by

v=3/Bp =8/ (3.8)

Note that the eigenvalues of two distinct vector fields having identical normalized eigen-
value parameters are generally not identical because one more parameter must be specified
in order to identify the eigenvalues uniquely. It follows from Theorem 3.1 that two vector
flelds having identical normalized eigenvalue parameters are generally not linearly conjugate
to each other. Indeed, (3.8) unphes that the additional condition W = wo is needed for linear

conjugacy.
Lemma 3.1.

Theorems 3.1 and 3.2 are equivalent.

Proof.

=> Suppose Theorem 3.1 holds. Then it follows from (3.3) that g7,/ ©¢%; < O and hence
(3.7) holds. Conversely, given any {0g,70.04,71.k { satisfying (3.7), define

GO'SOF;O:BI »51:‘;1{ é 100a1.70- - 0]70/ 71,‘: s 70/ 71,‘ = 70/ k ; (3'9)

Since O, - - Y0/ 71k > 0 and ¥g¥, = — 7§/ k <0, (3.9) satisfles (3.3) and hence Theorem
3.1 implies there exists § € £ associated with (3.9). This proves (a) of Theorem 3.2.

To prove (b) of Theorem 3.2, suppose & and £ are linearly equwalent. and hence

Gok= -—-£ o & holds for some G. Then the two vector fields £ and (—HE are linearly
Wo @o
conjugate and must have identical eigenvalue parameters {Gg,g, 70,01,51.713- It follows that
Tolo ¢ YoWo 0100 109 Y10
the eigenvalue parameters of & are given by{ 9920 , Wo Z-gw 2 . e 0 , O 0 , 71 9 Using
@o @o o @o @o ]
(36). we obtain the following normalized eigenvalue parameters of E'
Go Yo Oy 7 ¥ .
=, 'ZL. et Z—L. - Z-o— = §00,70.01.71.k }, which are identical to those of £.
Wo W W W 71

-13-



3 ~ 3 ~ ~ 3' ~ 'a.l ~ ~'
Conversely, suppose [—.\,L, -Z,'L, a.L, 7?1' - 7r° = {N? ' Z? , ,J ’ Z,l y = Z—,—?—]. then
Wo W Wy W 71 W W W "N
~ N P A '5 L L L L, VL B , . .
[50.00,70.01.01,71} = [~? (G0.%0,70,91,9,,7;). and hence ¢ and [go-] ¢ are linearly conjugate
Wo 0
to each other.
The above proves Theorem 3.2 holds.

<= Suppose Theorem 3.2 holds. Then given £ € £, its associated k& = —"70/"}1 > 0 in view
of (3.7), and hence Ygy; < 0. Moreover, &g > 0 and @; > 0 by definition. Hence, (3.3) holds.
Conversely, given any set of eigenvalue parameters (3.2) satisfying (3.3). Its assr.:r:iated,i'ie'oex'13

'6’ ~ 3 ~ ~
malized eigenvalue parameters -.,L, Z—P—, -&,L, 7?‘. -:’L clearly satisfies (3.7). It follows
Wo W W W "N

from Theorem 3.2 that there exists a vector field f’ € Z having these normalized eigenvalue
@] .- - : To] I

parameters and |- ¢ € Z is linearly conjugate to £&. Hence | ¢ and £ have identical
Wo @o

eigenvalue parameters; namely, {0 ,80,"70.31.31."71§. Hence, ¢ is the desired vector field.

To prove (b) of Theorem 3.1 holds, suppose G © ¢ = § © G holds for some G. Then, ¢ and

~ ~ ~ ~

] 0 0‘ -
¢ have identical normalized eigenvalue parameters ;..L. ;g'. -L. -Z.L. Yo} =

Wo W W @ "N

~ ~ ~ ~ ~
(¢] () - ' ’ . . .
[~? , Zo . =, -Z%. 7’&} and v & o/ Bg = 1. Hence, £ and ¢ have identical eigen-
W Wy W W 71

values.

Conversely, if £ and .E' have identical eigenvalues, then they have identical normalized
eigenvalue parameters and Vv 4 0o/ ©o=1. It follows from Theorem 3.2 (b) that
G o ¢=¢ o G and hence ¢ and ¢ are linearly conjugate to each other.

This proves Theorem 3.1 holds.

Remark

Since two linearly-conjugate vector fields in &£ represent the same circuit (with different
choice of state variables), or two equivalent circuits, the concept of linear conjugacy is too
strong for "qualitative” analysis. Since our goal is to characterize classes of nonlinear circuits
exhibiting similar qualitative behaviors, quantitative differences in circuit time constants are
irrelevant: two series RC circuits with different time constants exhibit identical qualitative
behaviors and belong therefore to the same class. It is not surprising therefore that the
weaker concept of linear equivalence is all that we need to study the qualitative properties of
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piecewise-linear vector fields.

Before proving Theorem 3.2, we need the following result:
Lemma 3.2.

Let 5[&] denote the family of all vector fields in /£ having the same normalized eigen-
value parameters K 4 (00:70.01.71,k). Let @. 07. OB and OF denote the 4 vectors from

the origin O in Fig. 1 to the 4 fundamenial points P, A, B, and E (Def. 2.2), respectively.
Then the following properties hold:

(a) All polyhedrons whose vertices consist of the origin and the 4 fundamental points of vec-
tor fields belonging to the family & 1] are similar in the sense that

OP=L08+m OB +n OF (3.10)

where l = I(u), m = m(u) and n = n(u) are real numbers which depend only on 1 and

hence are identical for all vector fields in &[u].

(b) The numbers kg, k4, and k defined in (2.21), (2.27), and (3.8) are related by
k=ko=1/k, . (3.11)

(c) There exists a vector field £ € £u] <=>

771 <0 and £ >0 (3.12)

Proof. See Appendix 2.
Proof of Theorem 3.2

Statement (a) is equivalent to statement (c) in Lemma 3. 2and 1is proved in Appendiz
2. It remains to prove statement (b).

=> Suppose there exist a linear transformation G and a real number v > 0 such that
G o £= vt o G, then the eigenvalues of ¢ and £ must satisfy 7; + jO; = V0; + jVi;
and ¥; = vy, (i = 0,1). It follows from (3.8) that their respective normalized eigenvalue

parameters are identical.
<= Let f[a.] be the family of all vector fields in & having the same u = (0¢,70,01,71.k) as

their normalized eigenvalue parameters. Let T; + j©; (@; > 0) and %; # 0, (i = 0,1)
denote the eigenvalues of ¢ € £[u] and let G, + jO; (T; > 0) g¥d Y; # 0 (i = 0,1) denote

the eigenvalue of ¢ € E[&] Denote the fundamental points/¢ and ¢ by {4,B,E,P} and
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{A,B',E',P'}, respectively. Let the vector from the origin to these pointéi be denoted by
ié.é,@.f} and ié,g,g .}:l respectively.

Hence 4= (A:.4,.4;) where (4;,4,.4;) denotes the coordinate of the point 4.

By (P.3) of Definition 2.1, there exist matrices M and M (i = 0,1) such that
~3 ~

W (z-P) . z <D, W(z-P) . z €D
tz)=| Mz . ze€Doand £(z)= {1;35 ., € Dy (3.13)
@1(:24—5) » T €D, M;(::+P) , z €D,

\ \

where D; and D; (i = 0, +1) are the affine regions of ¢ and ¢, respectively. It follows from the
continuity of ¢ and ¢ that

M [ABE) = M [4-P.E-P.E-F) (.14
WI4HE) = B 4-PE-PE-F] 19

where [ - ] denotes a 3 X 3 matrix made up of va:f’:ious column vectors defined above.
0

that
Now recall Ahe normalized Jordan forms/ {10 in (2.9), and @l in (2.12) are obtained by

two appropriate affine transformations ¥ and ¥;. It follows from (2.8) and (2.10) that ¥, and
¥, can be expressed by

Yo(z) = go z (3.16)
and
¥1(z) = ¢ (z—F) (3.17)

where go and 2’1 are 3 X 3 matrices to be determined as follow: Since Vo maps {4,B,E} into
§40,B0.E o}, we have
¢ (45D =(4,5,5) =>

8,=14,8,E) (42.E)" ©19)

Similarly, since ¥; maps {4,B,F} into {4;,B,E}, we have
Wl4-PE-PE-P=(4,8,E) =



=[4,5,E) (4-P.B-PE-PI" (3.19)

1t follows from (2.9) and (2.12) that

—(<I> Mé Y=y, (i=01) (3.20)
~t ~E o~
where
|.0'-5 -1 0
J 811 0, 0 (3.21)
Nz
0 0 %

Now,by hypothesis, £ and ¢ have identical normalized eigenvalue parameters. Hence
their respective normalized Jordan forms J0 and JO' of Mo and Mo' are identical. Substituting

(3.18) into (3.20), we obtain

-1
[é'g'g] [éo'go’go]
(3.22)

(4,5, ENAEET M4 BENA BT =,

Let us define next a linear transformation G : R® - IR and a real number v > 0 as follow:

8 [4.B.ENAB.E" , v & B/ (3.23)

[A'.E'.E'][ABE'] 1M [ABE'][A B.E)]=

~ ~ o~

Premultiplying both sides of (3.22) by @g[4,5,E'] [4!1‘.).30,]:'.'0]'1 and postmultiplying both sides
by (4,8, .B.E], i
y [~0 go go] [.ﬂ g g] we obtain
(X
—°] M (3.24)
Wo ~0
Substituting (3.23) into (3.24) we obtain
UM GHM G

GG (3.25)
Equation (3.23) implies
v€(2)|p, = KEG'2)|p,). z € Dy (3.26)

Now rewrite (3.10) from Lemma 3.2in the following vector form:
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P=[ABE]lm a7, '}3 = [é’,g,g][l,m,n]r | (3.27)

But
GP NG{A,B,E][l mn]T = [AEE][! mn]l = (3.28)

~ ~ o~

Now solving (3.15) for jlll and (3.14) for Illl and using (3.25) and (3.23) repeatedly, we obtain

i, = v 14,8 B4 -P.B-F BT
G 14 B.ENGe-P.8B-D) AE-PI

~

(3.29)

GH (4.8 Ell4-P.B-P.E-FI G

~

= GM G!

~~ i~

Now for any = € D,;. (3.13) implies

vE(@)|p,, = vM (zFF)

GM G"(:FFP' ) (in view of (3.29))

(3.30)
= g}ill(g"iﬁ {’) (in view of (3.28))

= gg(g-lf) DL, (in view of (3.13))

Equations (3.26) and (3.30) together imply
vE(z) = GE(G'z) (3.31)

forall z € Do U D,;. Hence (3.1) holds and ¢ and ¢ are linearly equivalent. This completes

our proof of Theorem 3.2.

Our main result (Theorem 3.1) allows us to partition all vector fields in L into linearly
conjugate equivalence classes, each one parametrized by the eigenvalues 30 + § o "70,
(Y] ?51 and ¥;. Since all vector fields in £ having the same eigenvalues have identical qual-
itative behaviors, it suffices to investigate only one member in each class. Our next theorem
provides a canonical piecewise-linear equation involving 12 parameters each of which is
expressed ezplicitly in terms of only 6 eigenvalue parameters; namely, {Fo.80,70.01.01,7:3-

Since these are the minimum number of parameters needed to uniquely identify a vector
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fleld £ € £, and since there exists a one-to-one correspondence between each linearly-
conjugate equivalence class of vector fields in  and each eguation in (3.32) of Theorem 3.3
below with a fixed set of numerical parameters, we will henceforth call (3.32) the normal form
equation for the vector fields in £ . Although this term has already been used in circuit
theory to mean "state equations,” we have adopted this terminology here at the risk of some
ambiguity in order to be consistent with the terminology used by Poincare, Arnold, ete. [9].

Theorem 3.3. Normal Form Equation for Z
Every Hnearly conjugate equivalence class of vector fields in L defined by

{00,990, 70.01,01,7,} satisfying (3.3) can be described analytically by the following canonical

piecewise-linear equation
[ 4

z| |21 232 233 by
N = lagy @z azlyl + (|z—1]—|z+1]) b2 (3.32)
z| |az a3 ag|lZ b3

The 12 parameters in (3.32) are expressed explicitly in terms of {Tq,0q,¥0,01,&1, 71} as follow:

~  (OF+33)1(F—7,)2+ 08

e =% -
O 5 G i1 (3.34)
Fol @+, (68 +85)70} |
@3 = @FE+33), {G? +BF51 (0@1-50) +%1~%0) -% (3.35)
@2+32, | (024027, -(B2+5EM0 |

_ _ (G§+88) %ot (Go—7,)2+a83

3T +32)5, ~ 02+ 58 50l (3.38)

2 =5, + SEHEDIG 045 -
(@2 + B3>, —(08+358)0 ‘

== @2+T7)7, [ (G8+88)70(2(8,~F0) +71~F0) —%, (3.38)
@+ | @2+32%,—(F3+58) '

@3 = az; (3.39)



a5 = (T8 +85)1(G,—%0)2+5%F
@O+ —-(F5+58)%

3= (G243, (2(5,—F0) +71—Y0)
G577~ +58%

_ BRHORB, -8R
2(FF+3)7,

13

_ (BR+325,-(5+38%
R(GF+3)%,

_ BR3P -(8+38M0
2(FF+5N

Proof. See Appendiz 3.

223

233

Remark. The equation (3.32) is equivalent to the following equation
4

Ml(x,y,z-s)r Loz =21

(zy.,2z) = yo(z,y,z)T , lz| = 1

M](z,y,z+s)r , 2z < -1

where
a;; 212 (1-s)a,; 2;; 212 Q3
M =loz oz (1-s)ag| . M =loz 2z @z
a3 agz (1-s)ass 23; Q32 Q33
s=1- (50"'00)70
(51*'01)71

and g;; (1 < i,j < 3)are defined by (3.33)-(3.41).

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)



4. POINCARE AND HALF-RETURN MAPS

Definition 3.1 implies that in so far as the gqualifative behaviors are concerned, we only
need to study one member of each linearly equivalent family of vector fields § € L.
Theorem 3.2 implies that we can, without loss of generality, choose the simplest vector field -
te Z having a given set of normalized eigenvalue parameters {04,70,0;,71,k} as defined in
(3.8), where 79y; < Oand k > 0.

Note that a piecewise-linear vector field with an arbifrary {0o,70,01,71.k } may be discon-
tinuous at the boundary planes U; and U_,; and hence is not a member of £ even though it
satisfies (P.1)-(P.6) of Definition 2.1. Theorem 3.2 therefore provides the foundation for this
section by stipulating the additional necessary and sufficient condition (3.7) for such vector
fields to be continuous.! Stated in words, this eigenvalue condition asserts that the real eigen-
value associated with the equilibrium point P* (resp. P~) must be opposite in sign to that at
0. Hence, trajectories along the real eigenvector at P* (resp., P~) and those at O must have
opposite stability properties.

Since our main motivation in this paper is to characterize the double scroll in [3] where
70 > 0. we will henceforth restrict our analysis to the following subset £ o C &£ of vector
fields, henceforth called the double scroll family £ (0g,70,01,71.k )

i0 Q is(aov‘rovols?l»k) |00 < 0»70 > 0101 > o‘i?l < O’k > 0; (4“ 1)

where {0g,70,01,7;.k} are the normalized eigenvalue parameters. Stated in words, the eigen-
value patiern of any member of the double scroll family at the equilibrium point pP* (resp.
P~) must be a mirror image (except for scales) of that at the origin o}

Remark: It follows from Theorem 3.3 that to study the global dynamics of the double scroll
family, it suffices to study the canonical piecewise-linear equation (3.32).

The eigenspaces (defined by the real and imaginary parts of the complex eigenvectors)
of a typical vector field ¢ € £ are shown in Fig. 2(a) along with two typical trajectories.
Since all trajectories occur in odd-symmetric pairs (property (P.1)), Fig. 2(a) shows only half
of the salient features. Note that the qualitative behavior of Figs. 9 and 11 in [3] are identical
to that of Fig. 2(a).

The upper trajectory I'; in Fig. 2(a) originates from some point on U;, moves downward,

This eigenvalue condition (3.7) is not necessary for continuity of the vector field if we allow the piecewise-linear
system to have only ons equilibrium point instead of three, as stipulated in (P.4).
ince the eigenwalue pattern of the feedback system in [18] satisfles this property, it too is a special case of the
double scroll family of vector fields to be investigated in this paper.



turns around (before reaching U.,) and returns to U; after a finite amount of time. It contin-
ues to move upward before turning around and returns once more to U 1.1 This typical trajec-
tory defines a return map, called a Poincare map from some subset S C Uj into S ¥ We can
decompose this Poincare map into two components: a "half-return map" which maps the ini-
tial point on U; to the first-return point on U,, and a "second-half return map" which maps
the first-return point to the second-return point on Uj.

The lower trajectory I's in Fig. 2(a) also originates from U,, moves downward, penetrates
U_,. and after some finite amount of time, turns around, and returns to U_, a second time.

By the odd-symmetry of the vector field, however, we can identify each return point z in U_
by its reflected image -z in U;. Similarly, the portion of 'z below U_; can be identified with a

corresponding version of ['; above U;. Through this identification scheme, both typical types
of trajectories I'y and I'; actually define the same Poincare map, which in turn is simply the
composition of two half-return maps.

Unfortunately, the half return maps in Fig. 2(a) cannot in general be calculated by an
explicit formula or algorithm because the coordinates of the return points can only be found
by solving a pair of transcendental equations. Since these hailf return maps will be used in a
crucial way in section 5 to prove the double scroll is indeed chaotic in a rigorous mathemati-
cal sense, we must find a new coordinate éystem so that these half return maps can be easily
calculated and its errors can be rigorously estimated. That such a coordinate system always
exists for any £ € £ g constitutes one of the key contribution of this paper. Our approach for
deriving this new coordinate system is to work with the greatly simplified but equivalent Jor-
dan forms of the regions Dy and D, in Fig. 2(a), namely, the Dg-unit and the D;-unit in Fig.
2(b) described earlier (Definition 2.3).

4.1. Half-Return Map m,

Consider first the Dg-unit at the bottom of Fig. 2(b) representing the image of Dy in Fig.
2(a) under the affine transformation ¥ (recall (2.6)-(2.9)). The 3 fundamental points A, B,
and E in Dy map into Ag. By, and Ej, respectively. Since Lz maps into the straight line Ly
passing through Bg and E), it follows from (2.1) and the qualitative nature of trajectories in

This typical trajectory can never penetrate the upper oblique plane because this plane is an eigenspace and is
therefore an invariant set.

¥ the following we will choose S to be the “infinite” wedge A BE = C U, in Fig. 2(a) representing the area
bounded by the 2 straight lines BA _ and BE _, where A and B oo denote that these 2 lines both originate from
B and extend to 00,



Dg that the vector field fo(f) has a downward | component for all Z to the right of L3, and an
upward component to the left. Hence, any trajectory originating inside the triangular region

AApBoE 4 iz e V| z is bounded within triangle ApBoE o} (4.2)
must move down initially. But because the z-axis in the Dg-unit is the image of an unstable

eigenvector, this trajectory must move toward V¥ as depicted by the upper trajec-
tory in the Dy-unit. This trajectory defines the map

ng :A40BoCo » Vo (4.3)
.via the obvious image

3 (2) = ¢d(z) , (4.42)
where ;poT (f) denotes the flow (in the Dy-unit) from T to the ﬁrst' return point where the tra-

jectory first intersects Vj at some time T > 0, where
T = T(z) 8 infit > 0lpl(z) € Vol . (4.4b)
Consider next a typical trajectory originating from a point in the infinite wedge (angular
region)

LAgBoE, A ff € Volz lies within the wedge-like extension of A4¢BoEo}  (4.5)

to the right of Ag Eg in the Dg-unit as depicted in Fig. 2(b). This trajectory must move down-
ward (because it originates to the right of L)) and eventually intersects Vg . This trajectory

corresponds to the portion of I'; within Dy in Fig. 2(a) and defines the mapt
g : LAoBoEo\A4oBoEq » Vo (4.8)

via the obvious image
75(z) = ¢d(z) (4.72)
where

T = T(z) 8 infit > 0|pf(z) € V5 (4.7b)

tTln'oughout. this section, "downward component” or “moving down" (resp., "upward component” or “moving up*)
means the vector fleld enters the boundary plane Vg from above (resp., leaves Vo from below).

$The symbol \ denotes set difference operator throughout this paper.



is the time this trajectory first penetrates Vg . By identifying this return point in Vg with its
reflected odd-syrmnetrict image in Vj, we can define the following half-return map

To: L AoBoEo nd Vo (4-.8)
by

€ AAoBoEy
€ LAoBoEo\ A4oBoE)

g (2)

z
z (4.9)

"O(f) = ~m5(z) .

In order to derive an algorithm for calculating 7y (z) and 75 (z), let us magnify the tri-

engular region AAgBoE on Vg and the angular region £ AgBoEqon Vg as shown in Fig. 3(a).
Since the z-coordinate of each point (z,5,2) on Vj is simply 2 ='1-z, it suffices to specify
each point on Vg by its (z,y) coordinate. Our next crucial step is to define a "local” coordi-
nate system (w,v) on ¥, so that each point z = (z,y)T is uniquely specified in terms of

(w,v) such that 7§ (f) and 7y (:f) can be expressed in terms of ¥ and v.

We will define our local (u,v) coordinates? as a weighted sum of the 4 corner points Ao,
By, E,, and F whose (z,y) coordinates have already been found in (2.20), (2.22), (2.24) and
(2.25) in terms of the normalized eigenvalue parameters, namely,

fo(u-v) = u[vdgy + (1=v)Eq] + (1—u)[vBy + (1-v)F) (4.10)

where 0 < 4 < o0 and 0 € v = 1. Here, we have abused our notation by denoting the
(z,y) coordinates of the 4 corner points by Ag, By, Eg and Fg, respectively. Note that
fo(l,l) = Aq. 50(1.0) = E, 50(0.1) = Bgand 20(0.0) = Fg. Note also that all points along the

line segments Epdg and FgBg have a u-coordinate equal to 1 and 0, respectively. Similarly,
all points along the line segments Hodg and FgE( have a v-coordinate equal to 1 and 0,
respectively. A typical point H with a (2¢,v¢) coordinate can be identified as the intersection
between the 4 = u( coordinate line and the v = v coordinate line. All points inside the tri-
angular region AdoBoE( have 0 < u < 1, and all points inside the angular region ZA4¢B0F¢
outside of the A4gBoF have 1 < u < o, Hence, in terms of the (u,v) coordinate systems

Throughout this paper, odd-symmetry in R® means symmetry with respect to the origin. Hence,2 points

(z.,y.2) and (z',y',2") are odd symmetric i (z',y,2") = (—z,~y.,—2).
e reason for choosing this unconventional coordinate system will be obvious in Section 4.6.



(4.2) and (4.5) assume the followiné equivalent form:
A4oBoEo = {z (uv)|(u.v) € [0,1] x [0,1]3 (4.11)

£40BoEo = {z (u,v)|(uv) € [0,00) x [0,1]} (4.12)

Theorem 4.1: Calculating the 7§ return map

Given z 4 (zo.Yo)T € A4yBoFE,, the return map mg (.3'0 ) is given by

l’cos t —sin t

g [fo(u »v)] = e sint cost fo(u"v) (4.13)

where (u,v) is the local coordinate of (Zg,¥q) = [zo(u,'v),yo(u.,v)]. where 0 < © < |,
0O = v = 1, and ! is the "first-return time" calculated explicitly as follow:

(a) Use the second local coordinate "v" to calculate the inverse return-time function!

defined by
wtwt) & (pé(Bo).h>—1 £19)
' {@é(Boy—Aw).h) '
" where
¢6(:1~:) denotes the location of the trajectory in RS which originates from z,

Aoy 4 :fo(l,v) denotes the location in IR of a point along the line segment Egdg "v" units
from E,

By, & :50(0,1)) denotes the location in IR® of a point along the line segment FoBp "v" units
from F,

LL ) (1,0,1)T  denotes the normal vector from the origin to Vp. and {, ) denotes the usual

vector dot product in IR3,

(b) Use the first local coordinate “u" (0 < u < 1) to calculate
t = mf{t = OIu"'(v,t) =u§ (4.15)

1Given any “"return time £, 0 < ¢ o < ©0, and any coordinate line ¥ = Vg, (4.14) implies that there exists a
unigue U = ug =2 u*(vg,tp) such that the trajectory ®0°(z(w0,v0)) starting from fo("'o'”f’) ett =0
would hit Vgat £ = £,



Proof. The dynamics in the Dg-unit is (2.9) whose flow ¢6(£°) from a point £ = (z0.¥0.20)T is
given by
e’ cost —e™sint 0 |[zg
np“,(fo) =le®sint e®™cost 0 ||yo (4.18)
0 0 e”"t 20
Since Agy * ¢§(A0w). Bov = 9§(Boy) and since for fized t, ;05(50) in (4.16) is a linear
transformation, the straight line segment 4, B, joining Ag, and By, in Fig. 3(a) maps into a

straight line segment ©3(4dg,) ?5(Boy) joining 9§(Ag,) and 9§(Bg,). Now if we let
:’:’0 4 ¢6(£° ), then :z,o must divide the length of the vector p§(Ag, )9§(Boy) into the same pro-

portion as :l~:° (i.e., point H in Fig. 3(a)) divides the vector m into lengths u and 1-u
respectively. In part.iculart

w _ E9iBa)
ut(1=%) o840 )0 (Bl |
] EorlBai > (4.17)
B (905(-40.;)?5(30.;5-2)

u:

_ <¢Ct)(30u)t£"> = <§0-L">
" {eb(Boy—A)h)

(4.18)

where (4.18) is simply the ratio between the projections along the normal vector .’3’ of the vec-

tors in the numerator and the denominator in (4.17), respectively. But
<%0»L1>=((20990’20)5(] ,0,1)) = io + 20 =1 (4.19)

since 20 1ies on VO‘ Substituting <§°'ﬁ'> = 1 into (4.18) we obtain (4.14), where we

have written uw*(v,L] in place of u to emphasize that the right hand side of (4.14) is a well-
defined continuous single-valued function of v € [0,1] and ¢ € (0,%0). The superscript "+
denotes its association with md to distinguish it from w~(v,f) in Theorem 4.2 which is
associated with

a
I%chr from point z to point y in R3 is denoted throughout this paper by ZY. The length of ZY is denoted
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Remarks _

1. Since any initial point 50(1.11) lies on the stable eigenspace ‘I’Q[E"’ (0)] ¢6[x°(1.v)] may
not return to ¥, but instead converges to the origin 0 as £ - oo, In this case, however, it
is logical and convenient to define mg [:to(l.v )] A Co = ¥o(C) since we have earlier

identified Cp and O as the same point. It follows from this definition that u*(v,t) -+ 1 as

t - co,

2. It can be shown that the vector field £g(E)) is directed from Eg to Ag, £o(By) is directed
from Ap to By, and &o(Fp) is directed from Fg to Bg, as shown in Fig. 3(a). It follows
from the continuity of E(f) that the vectors along the line segment ByFg are as depicted

in Fig. 3(a).
Since the vector field £(z) has a downward component for all x to the right of the line seg-
ment EgFy in Fig. 3(a), and since ¢(z) is directed to the right for all £ € EgFy, it follows that

all trajectories starting on EgFg or slightly to the right of EgFg will first move downward
towards the right before returning to V. Hence ng () is continuous even along the points on

EoF,.

In contrast, the vector field {(z) has an upward component for all £ to the left of the line
segment FgBg in Fig. 3(a). Moreover, since £(z) is directed to the left for all z € FoFB,,. it fol-

lows that the trajectories starting from points along FgBy will first move upward before
returning to Vg whereas trajectories starting from points arbitrarily close to FgBg (but on
the right hand side) will first move downward and return to Vj after a relatively much shorter
time. Consequently, g (z) is discontinuous along FoBo For convenience, we will define

ny (f) =z forallz € FoB, (4.20)

In other words, we define each point z € FBj as a fixed point of 71¢ (z) and hence its first

return time is equal to zero; namely,

u+(v,t) 80 at t

0 (4.21)

3. Between t=0and t = =, u+(v,t) is a continuous but not necessarily
monotonic function of t. The continuity follows from (4.13).

4. Remarks 1-3 imply that a typical inverse return-time function u*(v,t) has the form
shown in Fig. 3(b): it starts from the origin and approaches u = 1 asymptotically while
making some (possibly none) oscillations in between. It follows from (4.15) that the set
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I*(v) of "first-return times" t as u changes from O to 1 is in general not a connected set.
For the example in Fig. 3(b), we have I*(v) =[0,£;] U (¢5,00).

5. The example in Fig. 3(b) demonstrates that in general the return time ¢ is a discontinu- .
ous function of 4 and hence of the initial point fo . This shows that it is in general impos-

sible to express the return time { as a continuous function of :50 . Consequently, our algo-
rithm for calculating ¢ in Theorem 4.1 is the best result obtainable.
Following the same notation and proof as Theorem 4.2, we obtain:
Theorem 4.2: Calculating the g return map
Given z 4 (0.y0)T € LAgBoEo\ AAgBoE . the return map mg (:Eo) is given by (4.13),

where (u,v) is the local coordinates of (Zg,Yg), 1 <% <,0 < v < 1, and ¢ is the first
return time calculated explicitly as follow:

(a) Use the second local coordinate "v" to calculate the inverse return-time function

((Bow) h>+1

u-(v,t) & 4.22
{9é(Bov—A40,).h) (#.22)

(b) Use the first local coordinate "u" (1<u <) to calculate
t =infit = 0|u~(v,t) =uj (4.23)

It follows from Theorems 4.1 and 4.2 that the half-return map g defined in (4.9) can be
explicitly calculated, i.e., without solving any system of nonlinear equations. Here, we assume
that the inverse return time functions u*(v,t) in (4.14) and ¥~ (v ,¢) in (4.22) have been plot-
ted and hence the first return times ¢ in (4.15) and (4.23) are simply read off these curves.
This operation is of course equivalent to finding the inverse of a function of one variable - a

simple reliable task compared to that of solving a system of transcendental equations.

For the rigorous proof and analysis in the following sections, it is never
necessary to calculate the first-return time t. Instead, the image under ‘rro of

various constant-v lines, whichis given explicitly via (4.10), (4.13), (4.14) and
(4.22), is used directly.

Example 4.1: mg with monotone inverse return-time function

Consider the vector field £ with (09,70,0,,7;.k) = (-0.3, 1.5, 0.2, -2.0, 0.75). The images of
the line segments Bod, and FoFy in the Vg-plane under the half return map 7y = g are
shown in Fig. 4(a) as two "spirals” from By to Cp and from Fg to Cp, respectively. We will
benceforth denote such curves by [50?0] and [}?'o?o]. where [ - ] denotes both end points are
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included.

The images of the line segment Z@; and E'Eo: (where A, and E_ denote the

extension of the respective straight lines to +0) in the Vj-plane under the half return map
P N - N '

flp = —mg are also shown in Fig. 4(a) by the "spirals” [COAO_,) and [CoE ) where 4, and

E'('m denote respectively the extension of the respective curves to +00.

The graphs of the inverse return-time functions u = wu*(1,£) along BgAy and
u =u~(1,t) along Z@o‘» are shown in Figs. 4(b). A magnification of these curves in Fig. 4(c)
shows that both functions are monotone functions.

Example 4.2: o with non-monotone inverse return-time function

Consider the vector field ¢ with (0q,70,01,71.k) = (~0.2,0.75,0.2,~1.0,0.75). The image
in the Vg-_piane under the half return map g = 7§ of the line segment Bgdg is shown by the
spiral [BoCo] in Fig. 5(a). Its corresponding inverse return-time function u*(1,£) as shown in
Fig. 5(b) and magnified in Fig. 5(c) is a monotone function as in Ezample ¢.1.

However, the image in the Vg-plane under the half return map mg = — g of the line seg-
ment Apd _ consist of the union of two disconnected curves (;’a] and [g;l:o) This

phenomenon can be explained by looking at the associated inverse return-time function
% ~(1,¢) in Fig. 5(b) whose magnification in Fig. 5(c) shows a non-monotonic curve with a local
minimum at ¢,, and a local mazimum at {,. The image of the line segment Zgo(w,,1)zg(uz, 1)
under mg = — mg is the spiral [ab ] in Fig. 5(a).

If we plot the second and the third return maps of Tg(u,1)To(u2,1), we would obtain the
curves (ba’] during the time interval £; <¢ < £, and (a'b) during the time interval
tp <t < ta wheretg=1infit > t;|u"(1,t) = uyl.

4.2. Half-return Map 7,

Consider next the D;-unit on top of Fig. 2(b) representing the image of D, in Fig. 2(a)
under the affine transformation ¥, (recall (2.10)(2.12)). The 3 fundamental points A, B, and
E in D, map into A,, B,, and E,, respectively. Here we abuse our notation by using the same
symbol D, to denote the top region in Fig. 2(a) and a point on the z-axis in the D, unit in Fig.
2(b). We will inherit the same notations in the preceding section with the exception that all
subscript "0" corresponding to Dy-unit should be changed to "1” for the D;-unit. Hence, we
define again a local coordinate system (u,v) such that the line segments E,F'; and 4,5 in
V, in Fig. 2 correspond to the ¥ = 0 and v = 1 coordinate line, respectively. Likewise, the
line segments F1HB,; and E,4; correspond to the w =0 and u =1 coordinate line,
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respectively. Any point z inside the wedge (angular region) bounded by E,Zl - and B E 100
is uniquely identified by:

Ei(u,v) = uvd; + (1—v)E,;] + (1—u)[vB; + (1=v)F,],

for0 < u <oo,and0 s v s 1 (4.24)

Under this local coordinate system, we can define the triangular region A4,B;F; and the
angular region L A1B,E, as follow:

AA4,B\E, & ffl(u-")i(uﬂ) € [0.1] x[0,1]3 (4.25)

L ABIE, & fz (uw)l(uw) € [0,) x[0,1 (4.26)

Finally we define the second half return map

m(z): LA\BL1E, » V) | (4.27a)
via the obvious inverse image
m(z) = o1 (z) (4.27b)

where @7 T(f) denotes the flow (in the Dj-unit) from Z to the first return point where the tra-

jectory first intersects V; at some "reverse"” time —7T < 0, where

T =T(z) & infit > Oler(z) € Vi} (4.27¢)

Our next theorem shows that m; can be calculated by an explicit algorithm similar to
that of mg.

Theorem 4.3: Calculating the m; return map
Given 21 & (z l,yl)r € LA,B,F,, the half-return map n,(so ) is given by

—o,t lcost sint
'rr,[f](u,v)] =e —sin t cos ¢

:El(u ) (4.28)

where (u,v) is the local coordinates of (%) = [z,(u,v),y,(u,v )]. where 0 < u < oo,
0 € v < 1, and ¢ is the "first-return time calculated explicitly as follow:

(a) Use the first local coordinate "u” to calculate the inverse return-time function



(¢l.t(Elu)v’~L>—1
<¢1—‘(Elu —Alu)-ﬁ')

v(u,t) 2 (4.29)

where Ey, 4 21('"' ,0) denotes the location in IR3 of a point along the line segment F7E;
"u” units from F;, and A, 4 fl(u,l) denotes the location in RS of a point along the
line segment B4, "u" units from B,.
(b) Use the second local coordinate "v" (0 < v < 1) to calculate
t =infit = 0|lv(u,t) =v} (4.30)

Proof. Follows mutatis mutandis the proof for Theorem 4.1.

Example 4.3: 7; with non-monotonic inverse return-time function

Consider the vector field ¢ with (00,70.91,71.k) = (=0.4,0.3,0.2,~1.0,0.3). Since 771(:3) is
defined to be the reverse flow, the vector field 51(:5) on V; becomes - fl(f) in following the
image of Z under ﬂ,(.::). Hence the direction of t(f) along the line Ly = ¥o(L2) in Fig. 3(a)
must be reversed in the corresponding line Lz = ¥(L5) in Fig. 8. Hence, 171(3) is discontinu-

ous along the line segment E,T, in Fig. 6 whereas it is continuous along the line segment
F,B,. This is the opposite of o(z) which is discontinuous along F3B, but continuous along
EoF%. Note that E 1F'§ corresponds to our v = 0 coordinate line.

/\

The image of F; B, under 7, is the spiral [F;#,D,] in Fig. 6. In Appendiz 4 we shall

prove that this spiral is tangent to the line £, B, at F;. The image of the line segment F;4,
P

is shown in Fig. 8 as part of a large spiral [E;4, ]. The continuation of this spiral to the right

of 4, is the image of the extension of E 4, beyond 4.

The inverse return-time function v = v(0,2) in Fig. 7(a) and its magnification in Fig. 7(b)
shows that it is a monotonic increasing function of £. However, the inverse return-time func-
tion v = v(1,2) in Fig. 7(g) and its magnification in Fig. 7(h) shows that it is nof monotonic
and has a value larger than 1 for {3 < ¢ < ¢, where {3 A infit > 0|v(1,2) = 1} is the time it
takes A4, to go to A;. The time interval (¢3,¢4) therefore corresponds to the time where the

extension of the outer spiral [E;4,; ] lies to the right of the line segment F;4; (i.e., the v = 1
coordinate line).

Recall that F'; 5, and E;4, correspond to our ¥ = 0 and u = 1 coordinate lines, respec-
tively. There exist 0 < u; < up <1 such that the corresponding coordinate lines @,e;
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(u = u,, line) and @ge; (4 = ug line) are mapped under ; into the following two curves:
(a) my(aye,)is a spiral [eyFyW2D;] which is tangent to E1 B, at F;.
(b) my(azey)is a curve [;2?1] which is tangent to 414, at B.
The graph of the inverse return-time functions v = v(u4,t) is shown in Fig. 7(c) and its

magnification in Fig. 7(d) shows that it is monotonic with an inflection point

%t?_: 0 and %:%—= 0| at some time £;. The graph of the inverse function v = v(up,t) is

shown in Fig. 7(e) and its magnification in Fig. 7(f) shows that it is non-monotonic with a max-
imum value v = 1 at £ = £p, where {3 is the time it takes to go from a3 to B,;.

Now let f, be the inverse image of F; in Fig. 6, i.e.,, m(f,) = F;. Similarly, let the
! N —
inverse image of F;F, be denoted by [f ;25], namely, the curve f;2; in Fig. 6. Since the
region bounded by the closed curve e;e,a,f 1€, is found to map into the region bounded by
the closed curve e,F;Beze; whereas the neighboring region bounded by the closed curve
7N P

J12122f ; is mapped into the region bounded by the closed curve F WD, W2F; in Fig. 6, it
follows that n,(f) is discontinuous along the curve f ;a,, in addition to already being discon-

tinuous along E,F I.T
Let us summarize the behaviors of m; in Fig. 8 as follow:

(1) m(AA,B,E,) = a fan-like closed region 0A4;B,E, (450
4.31
(shown shaded) in Fig. 6.

(2) m(Bye,) =D, (4.32)

Here 7;(F;a3) actually maps into the origin in the unstable eigenspace ¥, [E"" (P)] which

becomes a stable equilibrium under the reverse flow ¢ t Ltis logical and convenient to
identify the arigin with Dy = ¥,(P*) in V,.

(3) Since m, is discontinuous along E;F;, we will define (as in m):

w,(f) é z forall z € EF, (4.33)

In particular,

These additional discontinuity pci.r%aAoccw when we choose our parameters close to those which gave us the
double scroll. They msy not occur inmide 84 ; B, E'y for other chaices of parameters.



m(f1) = m(Fy) = Fy (4.34)

(4)

(5

(6)

With this definition, 71, becomes continuous at EF;.

T; is one-to-one at all points inside the triangular region A4;B{F, and its boundary
except the points along the line segment [F;a;) and the isolated point f,, i.e., on
A4, B E \([Biaz) v S 1)).

mi! is well defined at all points in the fan-like region 0OA;B5,E; except for the two iso-

lated points F'; and D;.
) -1
The spiral (F; W,D,) is the set of discontinuous points of 7~1. The function ™! is discon- -
—
tinuous at these points because 77 }(z) - f ;@5 from the right as z -+ W, from the right,
whereas n7Y(z) » F,B; from the right as £ + W, from the left. This follows because the
return map 7y ! corresponds to a flow in forward time, and hence has exactly the same
discontinuity property as that of 7y along the corresponding segment m.

Using the above properties, we can now define the inverse half return map m; ! as follow:

7[1—11 DA;ooBlEloo nd LAIBIE1 (4.35)

where l:IA;mBlEm & {(zy,2) € Vily =2 gz + 7,(1—z), 2 < 1} (4.38)

is the region above the line B, F 100 @nd to the left of A IA; o iR Fig. 6.
a7i(D,) & B, (4.37)

mi(F)) & Ja (4.38)

7~
Note that ;! is discontinuous along [Fy WD,].
4.3. Connection Map ¢

Since the Dg-unit and the D;-unit in Fig. 2 have different reference frames, let us

"match” the two units by defining the affine connection map

& 8 (%,]p) ° (¥oly)™ . (4.39)

where ¥, |y, and¥g| y, denote the restriction of ¥; and ¥ on U;. Again, since 2; = 1-z;, it

suffices to find the explicit formula relating (zg.%g) € Do to (z,%:) € D;. Since
Ap = (1,00,0) » 4, = (1,p,,0). '



Til %o _ zo—-1 1 £40)

Li]—@Lo-éLo‘Po+L1 (
Hence

(z,-1) (zo—-1) ,

(yxl‘Pl) =L (yoo-Po) for any (zo.y0) € Do (4.41)

Now since By & (Bo;.Boy) » B1 & (Byz.Byy) and Eo & (Eoz.Eqy) » By & (E1z.Eyy). it
follows from the action of £, in (4.41) that

Biz=A)z [Bor=Agz| [E1z=4;2 [Eoz—Aoz
B, — :LlB _ 'I.E _ =7 _ (4.42)
1w~ A| " ~|Boy—Agy 1w~ Ay| ~ < |Eoy—Aoy
It follows from (4.42) that
L= rBlz"Alz Elz-Alz] rBOz-AOz EOE-AOz -1 (4 43)
~— Bly—Aly Ely"Aly lBoy-Aoy EQy—AQy

Substituting (2.20), (2.22), (2.24), (2.26), (2.28), and (2.30) for the respective components of
4A;, B;, E; into (4.42), we obtain the followinng formula for é:

(o3+1)k,

L=
~  (0§+1)(ko+1)@m

—7:1(ko+1)[ Qo + 70(00—70) (k;+1)] Yov1(ko+1)(ky+1)

=0k 1+1)(gg—70)[01(01—71) +1]
= n(ko+1)(o,=7)[00(0o—70) +1] 7o(k 1 +1)[@; + 7:1(01—71) (kot+1)]
where §; & (0;=7:)% + 1, kg 8 £, and ky 8 1/k. (4.44)

Note that L is expressed directly in terms of the normalized eigenvalue parameters
{00 70,01, 71,63
4.4. Poincare Map
We will now use the half-return maps Tg and m; and the connection map $ to define a
Poincare map
nVy -V (4.45a)
where



V: 8 {(z.y) € Vy|z = 1} (4.45b)

via the formula

ﬂ(f) = ﬂ'f’@ﬂoé—l(f) , if f € LA]B]EI
(4.48)

= &med~lnri(z) | if T € VI\ 24,B,E,

Note that TT( LAIBIEI) - LAIBIEI and "'l'l-1 is well defined for all f € V’l\ LA]BIEI in
view of (4.36). Here V’l denotes the Vj-plane to the left of x = 1.
- 4.5. V,-Portrait of V,

In our study of the global dynamics of the double scroll family in the following sections,
we will often need to look at the image via ® of the half-return map of several line segments
defined as follow:

B,C, 8 émyé-(A;F,) = &mo(A5H0) . (4.47)
1”:1?1 8 §me~!(FIE;) = & mo(FoEo) (4.48)
Cra. & @med (TA) = emo(AA) (4.49)
CiE 8 emgd~\(EED) = dmo(EE) (4.50)
2'—1;1 & m(E) ' (4.51)

AN TN TN TN -
The images B,C,, F',C;. Ci4,,. C1E |, and F14, for a typical set of normalized eigen-

value parameters {00,70,01,71.k} for a vector field § € £ o are shown in Fig. 8. We .will hen-
ceforth refer to this picture as the V,-portrait of V. Note that C, 4 ®(Cop) = ¥,(C).

Stated in words, the V-portrait of ¥} consists of 4 distinct sets of points:
Setl. Two boundary lines BIT;; and BTE'; representing the V;-coordinates of points
along the boundary lines Fo4 _, and BFEOTO of the infinite wedge £ 4oBoF .
Set2. The boundary line E A4, of the triangular region A4,5,E,.

Set 3. 4 spirals representing the image of points in Set 1 under the mg-map (in Dg-unit) but

translated into the coordinates on V.

Set4. A partial spiral representing the image of the points in Set 2 under the m;-map.
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In Section 5, we will consider the important case when Set 4 includes the point C}, i.e.,
C, € EA;.

4.6. Spiral Image Property '

The various spirals in Figs. 4(a), 5(a), 8, and 8 were calculated by computers for various
specific sets of parameters. In general, the image under g, g, or m; of any bounded
straight-line segment along a 4 = ug or v = v coordinate line is always a spiral. To prove
this important property, it is convenient to rewrite (4.13) and (4.28) in a more compact form

by identifying a point Z = (z;,y;) in the V;-plane (i = 0,1) by a complez number (phasor)

X= (z; +5y;).T For example, (4.28) can be rewritten into the equivalent form

m [ (u )] = Xy(u p)e~CH ! (4.52)

where X,(u,v) 4 Z1q(u,v) +jzl¢,(u,v)and:£l(u,v) 4 (210 (wv), 24 (u,2)]7.

Now for t € (0,00), X, Eu.o,v ('u.o,t)] represents one point along the w = % coordinate
line. If v(uq.t) increases monotonically from v =0 to v =1 as in Fig. 7(a) when ug = 0,
then X;(u,v) moves monotonically from v =0 to v = 1 as t increases from 0 to oo, If
v(uq.t) is not monotonic but is bounded between ¥, and v, as in Fig. 7(h), X, [u.o,‘u (uo,t)]
will move back and forth along portions of the ¥ = wg coordinate line while moving from v, to
1. In either case, since z5(u,v) + 2% (u,v) < oo, 7"1[’-"0:” (uo,t)] - 0 as ¢t -+ oco. The loci
of points under m, along ¥ = Uy is therefore a shrinking spiral whose amplitude is modulated
in accordance with z {uo,‘v (uo,t)]. If z {u.o,'v ('u.o,t)] varies only slightly for all { € (0,0), as
in the cases shown in Figs. 8 and 8, the shrinking spiral would look almost like a "logarithmic
spiral.” The same interpretations apply to g and 7g.

In view of the odd symmetry of the vector field £, spiral images under ng, mg, and M,
always occur in odd-symmetric pairs. This proves formally that the cross section alogg the
U, and U_; boundary planes of the double scroll attractor consists of 2 tightly wound odd-
symmetric spirals, thereby justifying our choice of the name ''double scroll.”

Since the image of 1§, g and 74 of an arbitrary curve or line segment in U, is in gen-
eral a curve with no special properties, it is indeed remarkable that the images along the
©=ug and v = Yo coordinate lines are always spirals. It is precisely this observation that

prompted us to choose this unconventional local coordinate system .

~36-
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APPENDIX
Appendix 1. Derivation of Real Jordan Form

Choose vectorse ,e and e in RS such that

~a ~b ~c

(1) gc is the real part of the complex eigenvector corresponding to ¥ + j O,
(2) € is the negative imaginary part of the complex eigenvector corresponding to'¢ + j O,

(3) e is the eigenvector corresponding to .
~C

If we choose @ A [e ,eb ,e ], then J = @ 1MQ transforms an arbitrary 3 X 3 matrix with
~¢ ~ ~C ~ ~ ~~

eigenvalues ¥ + j© and ¥ into its real Jordan form (see Theorem 3, p. 68 of [16]): Hence,
under this new coordinate system z = & ’z.~E assumes the following real Jordan form:

0 -w 0 e
Hz)=[8 & ol (A1.1)
0 0 "7 2"
where f = (z",y".2"). Moreover U is represented by
Iz"+my" +nz"=d (A1.2)

either
where 124+ m2# 0, n # 0 and d # 0, because U is not parallel to / eigenspace and does

not pass through the origin.

In the new = coordinate system, the 3 vectors e , eb and e are transformed into 3
axes,

orthonormal / the eigenspace spanned by € and eb is transformed into the T — y"plane.
~g ~

and the real eigenvector € is transformed into the 2"-axis.
~C

The U-plane is of course transformed into another plane U" not passing through the ori-
gin and is not parallel to the z" - y" plane. Our next goal is to rotate U” so that it makes a
45°-degree angle with the ~ — ¥’ plane, and intersecting it at z” = 1.¥ This can be achieved
by choosing yet another coordinate system £ = (z',¥',2") such that the 3 orthonormal vectors
e’ 4 [1,00] e; 8 [0,1,0], and e’ & [0,0,1] in the z-coordinate system are transformed
~c ~ ~c ~

from 31' 22 . and 53 with the geometrical property which achieves the above transformation;

namely, (i) make e, parallel to U", (ii) make e perpendicular to e, and such that the tip of

The choice o? 45° and T = 1 is strictly for convenience.



¢ lies on U, (iii) make g and e lie on the z" -y plane, (iv) make Iszl = Igll, (v) make
e = [0,0,d3] where dg3 is chosen so that the tip of e lies on U". The above requirements

defined 51' 52. and ga uniquely as follow:

e 4 [d/ (L2+m2)][l,m,0] , (A1.3)
e, A [d/ (l2+mz)][-m, L,0], (A1.4)
e & (d/n)[0,0,1] (AL.5)
Note that the new coordinate system :E' is related to 1:" by f’ = Ql'lg:‘". where Q [!21 e es]

In the f'-coordinate system, the expression of ¥ and U will assume the form given in (2.3) and

(2.4). To see this, define

dl/ (13+m? —-dm/(2+m? 0
Q & [e e el= dm/(2+m? dl/(*+m? 0 |, (A1.6)
! ! 0 0 d/n
1
x z" [ l/d(l%+m? m/d{l?+m? 0 [z
14 | = -m/d(1?+m?) 1/d(%+m? 0 |k~ (AL.7)
z' Z" 0 0 n/dJ z”
Then we have'!
g -0 Tx- 5 - 0ljz
?(f') = 91—1 o5 T oly|l=[ T ol (A1.8)
0 0% |z 0 0 ¥z
and
[ -
U:mn)ly|=d (A1.9)
zl'

TNote that Q-IJQ = Jbecause by choosing Iell = |e2| ande le, t.heﬁrsttworowson are a pro-

~e ]

duct of a scalar and a planar rotat.xon and since the first two rows of J deﬁne a planar rotation.



=>

z
(t,m,n) Ql =d
z'
=>
fz'
(d.0d)y'| =2
z'
<=>
z+z =1.

Appendix 2. Proof of Lemma 3.2
To prove Lemma 3.2, we need the following lemma.

Lemma A2.1. 04, 0B, and OF are linearly independent.

(A1.10)

(A1.11)

(A1.12)

Proof. Case (i): E # B. Assume that 04 can be written as a linear combination of 0B and
OF. Then, since B,E € Ly, we have A € Ly, and so Ag € ¥o(Lz). Since 4 = (1,p0.0), from
the equation of ¥p(L3z) in (2.186), it follows that pg = 0g. Therefore 49 = Eo. Similarly, from
A, € ¥,(L3), we have p, = 0y and hence 4; = B,. Therefore we obtain £ = 4 = B, a con-

tradiction.

Case (ii): E = B. Choose a point K on U, defined by 0K = OF + £&(E). Since E € Lg and
¢(E)/ Lg we have K € Lg. Since Eg = (1,00,0) and B, = (1,0,,0), from the expression of §;

(i=0,1) in (2.9) and (2.12), it follows that
Ko & ¥o(K) = ¥o(E) + %olt(2)]

= Eqo + Goo(Eo) = [1,00+?30(03+1),0]

Hence,

§olKo) = [~BoloB+1).(08+1)(1+06%0).0] .

Since B=E,



8 w,(K) = ¥y [B+e(B))
=B, + 5;&(B) = [1.01+31(o,2+ 1),0] .
Hence,
g1(Ky) = [-B(07+1).(0F+1)(1+0,B)).0) .

Defining the normal vector h 4 (1,0,1) of ¥; (i =0,1), we obtain

Chéo(Ko) > = — To(og+1) < 0 (A2.1)

Chgy(Ky) Y= —By(of+1) <0 (a2.2)

Now (A2.1) implies that the vector £o(Kj) at the point Ko € ¥o(U,) must point towards the
origin of the eigenspace \I’O[E"’ (0)] in the Dg-unit in Fig. 2(b), i.e., below Vg This implies that

¢(K) at K € U, must point toward the interior of the Dg-region, i.e., downwards. However,
(A2 2) implies that the vector §;(K}) at the point K; € ¥,(U;) must point towards the origin

of the eigenspace \PI[E" (P)] in the D;-unit in Fig. 2(b), i.e., below V;. This implies that §(K)

at K € U, must point towards the interior of the Dj-region, i.e., upwards. This is a contrad-
iction and Lemma A2.1 is proved.

[ ]
We are now ready to prove Lemma 3.2. Given i = (00.70.01,71.k), choose any & € S[E]

Denote the eignevalue parameters of £ by G ,80,70.'5'1.5131). Let the vector from the origin
to the fundamental points {4,B,E,P| be denoted by {.ﬂ.g,gf} respectively. By Lemma A2.1,

the matrices [4,B,E] and [é—f,é’—f.E’-P] are invertible. Since the affine maps ¥; carry

{A,B.E} into {4;,B;,E;}. i = 0,1, respectively, ; can be written as follows;

= = -1
¥olz) = gof ' 20 [‘éo'go'go]'[é'g’éj » (2 € Do) (A2.3)
W@ =2 @P.& =M4.5El4-PE-PE-F", (zeDy (2.0

By (2.9) and (2.12), since for i = 0,1,
1 . -1 =
D% @) = L= (a2.5)

where



o; =1 O

J 811 o, 0],
~i
0 0 7%
we obtain
£l py(2) = T ' & = (A2.8)
&1p,(z) = wﬂ"lJ J & (z=P) (A2.7)

The continuity of ¢ is equivalent to the condition
€l py(z) = &l p,(2) (A2.8)
forallz € U; = Dy n D;. Since each z € U, is a linear combination of 4, B, and F in view of

Lemma A2. 1, the continuity of £ is equivalent to the condition that (A2.8) holds for = A, B,
and E. Substituting z = A, B, E in (A2.6)-(A2.8), we obtain

'1:{0? [ABE'] A@"{lgl[ﬁl PB PE' P] (A2.9)
where A & ©y/ G Defining
A -1
8 (4.8 ET (4.5 E] (A2.10)
and
[A1 B .E ]"J [A B E ] (A2.11)
and using (A2.3)-(A2.2), we can rewrite (A2.9) as [ABE"W = 7\[4~4 P.B-P E- ~]y , and
hence
[4B.ENH - W) =NPEPW, . (42.12)

Substituting the coordinate of 4;, B;, and E; (i = 0,1) in (2.20)-(2.24) and (2.26)-(2.31) into
(A2.10)-(A2.11), we obtain after some algebraic simplification the following:

[(0o—po)2—(E+1) —70lo0—P0) —(0§+1)
W = 0 O, 0 A2.13
~0 " To—Po ; Yo(oo—Po) ! (A2.13)
potl 0 o5+1

~41-



(0y=p1)?=(p§+1) —(0%+1) —71(01—p))
W= —L pE+1 o2+1 0 (A2.14)

~1 01=P)
0 0 71(01—P))

where p; = 0; + (0f + 1)k;/7; (i=0,1). Note that W is determined by only 0;, 7; and k;
~E

(i = 0,1). Defining c; A a; —p; (i = 0,1), we obtain (1,1,1) Z'Vi = (c;,0,0). Since [f,f,f] =
P(1,1,1), by (A2.12),

[ABEIOF,-1) = ALY, = ABe1,0,0) = AesPO] 1219
The column vectors in (A2.15) can be written as follow:
=1 - T
P= 3 [4.B.EJAW —¥ )(1,0,0) (A2.16)
0= (Ayl-yo)(o.l,o)T (A2.17)
0= (¥ -¥)3(00.1)" (A2.18)
It follows from (A2.13), (A2.14), (A2.17), and {A2.18) that
2
01=P 0o +1
A= = A2.19
7o of+1  7:1(oo—Po) (h2.19)
Since kg & 75(po—00)/ (08+1) in (2.21), (A2.19) implies
Y0
A=-— A2.20
"iko ( )
Since A = ©;/ Wg, and since kg = 1/ k, as stated in (2.34), we obtain
1 Yoo _ _ Yo
A g =T __ T A2.21
ky ° 7191 o ¢ )
This proves statement (b) of Lemma 3.2.
To prove statement (a), define
r__1_ - T
(t.mn)" = ) (AW —# )(1.0,0) (A2.22)

This is determined by 0g, Yo. 0. 7;. and k in view of (A2.13), (A2.14), (A2.20), and (A2.21). It
follows from (A2.16) that



f:[.ﬂ. ,g‘](l mn) = l4+ mB+nE

~

Hence (3.10) holds.
To prove statement (c) of Lemma 3.2, note that (2.21) and (2.27) imply

(g2
Ci 4 oi—pi=-f'(—o;ti)— (i =0,1)

Using (A2.13), (A2.14), (A2.20), and (A2.24), we obtain

4 = ..1_ -— T
sel+m+n vy (1.1,1)(‘711"1 ‘7!0)(1,0,0.)

=1- Kc—' 1 + k3y§(08+1)/ y§(of+1)
1

(A2.29)

(A2.24)

(A2.25)

Since by (P.4) in Definition 2.1, P = PT must be located in the interior of D, it follows from

(A2.23)thats =l + m + n > 1, thatis
s — 1= k3%%0d+1)/ v8(0%+1) > 0

(A2.28)

Therefore k > O holds. Since = 7o/ 7;k = A = &,/ & > 0, we have 757; < 0. This proves that

€ € &u] => 7071 <Oandk > 0.

To prove the converse, let u = (09,%.01,71,k) be given such that 757; <0 and k& > 0.

Using (A2.21), define A, c;, W W, (L, n) and s by (A2.20), (A2.24), (A2.13), (A2.14), (A2.22),

and (A2.25) respectively. Define 4 vectors as follows:
é =(1,1,1) , B=(1,-(l+n)/m,1)

§'= (-(t+m)/n,1,1) , P= (0,0,s) .

Using (A2.23), we obtain
[AB.EIW =MA-PB—-PE-FPIW

~"~0 ~ ~ ~T~]

This guarantees that the vector field ¢ defined by

e(f) AMA-PB-PE-PF p_/l[:g PB-PE- P]“(x—P) 1
8 [AB.EW [AB.Ez Lzl =1
& N4-P.B-PE-PIW[A-PB-PE-PIz+F) ,z = -1

~“43-

(A2.23)

(A2.24)

(A2.25)



forz = (z.y.2)T. is continuous. Moreover we can verify that the piecewise-linear vector field

¢ as defined in (A2.25) satisfies (P.1)-(P.6) in Definition 2.1. Therefore £ € Z . This proves
statement (c).

Appendix 3. Proot of Theorem 3.3
Let [T5.9070.01,0, %} be given such that >0, ©; >0, and Y7 <0. Put
E' = (00n70:01'71:k) é (50/80:;0/80'31/81v71/81'-";0/;1)0 As shown in (A2.22), l= L(E’)'

m= m(&) and n = n(;i.) are given by
=1 T
l' ’ - - »Vy . )
(t.mmn) v (AF —¥(1,0,0) (A3.1)

Using ¢, = 03=p; = —ko(0§+1)/ 7o (by (A2.24)), A = —yo/ 71k (by (A2.20)) and ko = & (by
(A2.21)), and substituting (A2.13) and (A2.14) for ¥ , we obtain after simplification:
~i

L = — kygn(2(ognk +0170) + yors(k + 1)}/ B0+ 1)) (a3.2)
m = {(7,k+0,)% + 1}/ (6¥+1) . (A3.3)
n = kS (yok +00)? + 13/ 7803 +1)] (A3.4)
s=l+m+n=1+k3od+1)/ {78(03+1)] (A3.5)

Defining &; = (G2+02)¥; and T; = 20; +¥; (i = 0,1), we can rewrite (A3.2)-(A3.5) as follow:

L =%7(T=To)/ A (A3.6)
m = = Fgh[T1=Got3)] - b3/ &, (43.7)
n = Féh [To-(-70+'-7,)] - Ao}/ A (A3.8)
s=1-80/4 (A3.9)

The vector field ¢ defined by (A2.25) has eigenvalues 0g + j 1. g (in Dg-region) and (&,/ )
(0325 1), (&;/ ©)7; ( in Dj-region), because matrix Yi is similar to ‘{' (i = 0,1) in (A2.5) and

A = 3,/ To Hence, the piecewise-linear vector field



¢@) & Bil4-PE-PE-PWIA-PE-PE-FI"z-P) .z = 1
& BlaBEIN [ABE S Nzl =1 (a3.10)
4 8i4-PB-PE-PIW[4-PE-PE-F@+D) .2 < -1

where Z = (z,v.2)T must have eigenvalues ¥; + j&; and ¥; in the D;-region (i = 0,1). Substi-
tuting (A3.8)-(A3.9) into (A2.23), (A2.13)-(A2.14) into (A3.10), and expressing A E. §'. and f in
terms of 0;, @;, and ¥; (i = 0,1), we can recast $(:£) in (A3.10) in terms of only the 6 eigenvalue

parameters. Finally, we can verify, after some involved algebraic manipulations, that (3.32) is
equivalent to (A3.10).
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PART I RIGOROUS ANALYSIS OF BIFURCATION PHENOMENA
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ABSTRACT

This paper represents Part Il of a 2-part paper which provides a rigorous mathematical
proof that the double scroll is indeed chaotic. Our approach is to derive a linearly equivalent
class of piecewise-linear differential equations which includes the double scroll as a special
case. Necessary and sufficient condition for two piecewise-linear vector fields to be linearly
equivalent is that their respective eigenvalues be a scaled version of each other. In the spe-
cial case where they are identical, we have exact equivalence in the sense of linear conjugacy.

Explicit normal ‘ Jorm equation in the context of global bifurcation is derived and
parametrized by their eigenvalues. Analytical expressions for various Poincare maps are then
derived and used to characterize the dbirth and the death of the double scroll, as well as to
derive an approximate one-dimensional map in analytic form which is useful for further bifur-
cation analysis. In particular, the analytical expressions characterizing various half-sreturn
maps associated with the Poincare map are used in a crucial way to prove the existence of a
Shilnikov-type homoclinic orbit, thereby establishing rigorously the chaotic nature of the dou-
ble scroll. These analytical expressions are also fundamental in our in-depth analysis of the
birth (onset of the double scroll) and death (extinction of chaos) of the double scroll.

The unifying theme throughout this paper is to analyze the double scroll system as an
unfolding of a large family of piecewise-linear vector fields in RS, Using this approach, we
were able to prove that the chaotic dynamics of the double scroll is quite common and robust.
In fact, it is exhibited by a large family (in fact, infinitely many linearly-equivalent circuits )
of vector flelds whose associated piecewise-linear differential equations bear no resemblance
to each other. It is therefore remarkable that the normalized eigenvalues, which is a local

concept, completely determines the system's global qualitative behavior.
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5. PROOF OF CHAOS IN THE DOUBLE SCROLL
An equilibrium point @ of a vector field £ is said to have a homoclinic point if there exists

a trajectory which tends to @ as ¢ » +oc and as £ » —oo. Such a trajectory is called a
homoclinic orbit through &. The significance of homoclinic orbits is given by the following
important result: )
Shilnikov’s Theorem [9, 15, 197t

Let & be a continuous piecewise-linear vector field associated with a 3rd order auto-
nomous system f = f(z), z € IR3. Assume the origin is an equilibrium point with a pair of
complex eigenvalues 0 + jw ( 0<0, w#0 ) and a real eigenvalue y > O satisfying |o| < 7. Ifin
addition, £ has a homoclinic orbit through the origin, then ¢ can be infinitesimally perturbed

into a nearby vector field E' with a countable set of horseshoes.

Since horseshoes give rise to extremely complicated behaviors typically observed in
chaotic systems [9]. one of the few rigorous methods to prove a system is chaotic is to apply
Shilnikov's theorem. In this section, we will prove the double scroll family (4.1) is chaotic by
showing Shilnikov's theorem is satisfied. In particular, we will prove that there exist parame-
ters such that the trajectory along the unstable real eigenvector E” (0) from the origin will
enter the stable eigenspace E° (0) in Fig. 2(a) and hence return to the origin. By symmetry,
the trajectory along the other unstable real eigenvector would behave in the same way. These
2 special trajectories are shown in Fig. 9(b) and are therefore both homoclinic orbits.

Theorem 5.1: Homoclinic orbits in the double scroll family
Let £ be any vector fleld in the double scroll family

Lo 8 (£(00.70.01.71.k) 10 < 0,70 > 0,0, > 0,7, < 0,k > 0} (5.1)
Assume § satisfies the following conditions: |

(i) Let C, 4 ¥,(C) map_under 77! into a point on the line segment 4,E] in the D;-unit
(see the V;-portrait/Vpin Fig. 9(a).t

.(ii) In the Dg-unit (Fig. 2(b)), no trajectory starting from points on the line segment 4gEyp in
the eigenspace z = 0 intersects the boundary line z = -1,

The original Shilnikov theorem requires f () to be an analytic function. The piecewise linear version we invoke
in this paper is used in {15,19].
*Recall C is the intersection of the unstable real eigenvector at the origin with the upper boundary U, in Fig.

~
2(a) and 7Ty is the half-return map defined in Section 4.2. Condition (i) means that Eq4A, =771(E 1A1) must pass
through the point C;.



Then £ has a homoclinic orbit through the origin.
If, in addition,

(i) lool <70 (5.2)

Then ¢ is chaotic in the sense of Shilnikov’s theorem.
Proof.

Theorem 3.2 guarantees that the vector field £ € X ¢ is continuous and the half-return
map 7 is well defined.

Consider the trajectory I'y through the origin and moving upward along the unstable real
eigenvector E7(0) in Fig. 2(a) until it hits U; at point C. Since C; = ¥,(C) and
C; & n7Y(C,) € A3E; = ¥,(ZE) (see Fig. 9(a)) in view of condition (i), it follows that the
trajectory I'p through C must land at a point Cp on segment AF in Fig. 2(a). But 4AF lies on
‘the stable eigenspace E°(0) at the origin, and since condition (ii) guarantees that the trajec-
tory I'c, through C will not intersect the lower boundary U_,, it follows that I'c, must remain

on the eigenspace E°(0) and converge to the origin as £ - oo, Since I A TouTeuTlg,
tends to the originasf - +00 and { - —o0, it is a homoclinic orbit.

If in addition |og| < 70 then the hypotheses of Shilnikov’s theorem are satisfied and
hence £ is chaotic.

Theorem 5.2: Chaos in the double scroll

The double scroll system (1.1)-(1.3) is chaotic in the sense of Shilnikov's theorem for
some parameters Mg, ™, a and . In particular, if mg=—1/7,m; =2/ 7and a = 7, then
there exists some f in the range 6.5 < B < 10.5 such that the hypotheses of Shilnikov's
theorem are satisfied.

Before we can prove Theorem 5.2, we will need 4 lemmas to be stated and proved below.
To avoid repetition, we make the following assumption:

Randing Assumption:
The parameters for all lemmas are:
me=—1/7, m;=2/7, a=7, g €J & [65,10.5] (5.3)
Also, we will use the abbreviated notation

Atinae = A < b (resp,Adind = A = a) (5.4)

3



a < min()\) < max(\) < b as g increases monotonically in the range J.
Lemma 5.1

As B increases monotonically from §; = 8.5 to Sz = 10.5, the following parameters also
vary monotonically as indicated:!

(i) Totin —1.066296 = Ty = — 0.906832
Oo tin 1.382371 < Ty < 2.226686 (5.5)
Yo ¢+ in 2.132590 = ¥, = 1.813664

(i) 7, +in 0.295297 = ¥; = 0.138551
O, +in 1.879726 < ©; < 2.527628 (5.8)
¥, tin —3.580593 < ¥, < — 3.277103

(iii) ogtin —0.771352 = 0 < — 0.406890
0, 4 in 0.157096 = 0, = 0.054814

(5.7)
Y041in1.542704 = 7o = 0.813782
7:tin —1.910168 = 7, = —1.296513
(iv) ko/ 7 tin 0.384997 < ko/7o < 0.680079 ,
5.8)

ky/7, +in —0.881427 = ky/7; = -1.393659
Moreover, the above bounds can be calculated to any desired accuracy.

Proof. It follows from (1.1)-(1.3) that the real eigenvalue %; corresponding tom =m; (i =
0.1) is a real root of the characteristic polynomial equation

z3 + (am+1)z?% + (arh. —-a+f)z +afm =0 (5.9)

Solving (5.9) for 8 we obtain

B=pz) & a—z(z+1) - ;%%"‘7;- (5.10)

It follows from (5.10) that if a > 0 and am > 1, then B:(—o0,—am) » R is an increasing
bijection (i.e., one-to-one and onto), and if a > 0 and am <0, then §:(am,o) >R is a

TRecall the following definitions: fori=0or 1, 0; 4 0/ 9. % A Y/ ©;,
ko & 17k, 8 k 8 —F/%. @ & (Gi—n)? + Ly 8 o + (oF+1)(ki/ ).



decreasing bijection. Hence, for a =7 and mg = -1/7 (resp., my = 2/7), ¥ (resp.. ¥1)
decreases (resp., increases) and satisfies

1.813664 < min(y,) < max(¥,) < 2.1832590

(resp.,—3.580583 < min(¥,) < max (¥;) < —3.277103) 6.1
as f§ increases from 6.5 to 10.5.
Now the solutions of (5.9) are related to its coefficients as follow:
2; +% = — (am;+1) ,FF+ SF + %, = a(m;—-1) + 8
H@HED = —apms (512
Solving for ¥; and & from (5.12), we obtain for i = 0, 1:
% = — Hom+14%) , BF = - Ham,-1-%)° - ':;f";zZ—';,T (5.13)

Combining (5.11) and (5.13), we obtain properties (i) and (ii).

Property (iii) follows directly from properties (i) and (ii) and the assumptions 0 < 0,
70 > 0, and &g > 0.

Property (iv) follows from properties (i) and (ii) and the relationships

_°_=_[Z,_°.]/Z_°]=_~_°,_l=_zl/[;14=-~_l (5.14)
%0 71 Wo 7 71 Y0 Wy 70

Finally, note that the bounds in properties (i)-(iv) can be calculated to be exact to any

number of digits because (5.10) and (5.13) are rational expressions.

Our next goal is to examine the loci of points obtained by applying the half-return map m;
to the segment E 4, (i.e, . =1, 0 = v < 1) on V}: they are obtained by substituting
w=1and v =v(1,t) for ¢ € I(1) into (4.28), where I(1) denotes the set of "first-return
times” forv € [0,1):

() = mfz [t (L)) = e oty 2] el 5.15)

fort € I(1). Using the phasor notation (4.52), (5.15) assumes the following compact form
X(t) = X[I.v(l.t)]e-("‘m)‘ . t € I(1) (5.18)
~ ~l



Similarly, it follows from (4.13) that the loci of points obtained by applying the half-
return map 7§ to the segment Bodg (i.e.. v =1,0 = u < 1) on V¥, assumes the following

compact form
X(t) = {(o['u,*‘(l,t),l]e(%ﬁ‘)‘ , t € I*(1) | (5.17)

where ']50 is the phasor associated with :50 and J*(1) is the set of "first-return times" for

u € [0,1]. We have already identified the set of points in (5.16) and (5.17) as portions of a
shrinking spiral whose amplitude is modulated in time. Our next lemma shows that these two
spirals are sandwiched between two logarithmic spirals.

Lemma 5.21'
(i) Foreachf € J, and any time ¢ € I(1), the magnitude of f(t) of the spiral (5.18) in V;

is bounded by two exponentials:

|4;1e™ = |a(t)| = |Eyle™ (5.18)

(i) Foreachf € J, and any time £ € I*(1), the magnitude of Z(¢) of the spiral (5.17) in Vg
is bounded by two exponentials:
|40le®™ = |z(¢)| = |Bole™ (5.19)

(iii) For each 8 € J,
|E,| < |4,]e™"™ (5.20)

where ¥; = O denotes the angle subtended by the two vectors OF; and O4; on the
plane Vl'

(iv) Foreach 8 € J,

|4g| = |Eo|e® (5.21)
where U9 = O denotes the angle subtended by the two vectors O—E'-o and -071_0 on the
plane Vo.

Proof.

tin Lemma 5.2, A 1+ Ao £, and E are represented by their x-y coardinates and hence are 2-dimensional vec-
tors.



(i) It suffices to show that
4l = Iz o)l = 1B (5.22)
Since sl(l,v) = OF) + vE A v € [0,1], it follows from plane geometry that

|z (10)12 = (] BT | + KOBLEADS? + (1 B4 |? - COBL BV 2 (5.23)

If we can show that

(OELEAY>0 (5.24)
then (5.23) would imply (5.22) because I:'i':l(l,‘u)l2 is an increasing function of v € [0,1]
and since |4,] = |§1(1,1)| and |E,| = Ifl(l,O)I.

To prove (5.24), we make use of the first two coordinates of E'; from (2.30) and 4, from
(2.26) to write

OF, = [‘Yl(')’l“ox-?x)/ &1, nlt =piloy—7)l/ Qn] (5.25)

EA; = [[01(01‘71) + 1+ 719,/ Q1. tpiloy(oy=71) + 1] =737 @y) (5.26)
Calculating the inner product between (5.25) and (5.26), we obtain

OB, EA)y = —oyn(pf+1)/ @ (5.27)
Using (5.27) and Lemma 5.1 (iii) (o7 > 0, 7; < 0), we obtain the desired inequality (5.24).
(ii) This is proved by the same method as in (i).

(iii) From (5.24), we have 0 < 9; < g— Hence

9, <tan? (5.28)
1 1

Moreover, since 0.054814 < 0; < 0.157096 (Lemma 5.1) it is easy to verify that

1 -20,9; < e ~201% (5.29)
Since (5.20) is equivalent to

|E, |2/ |4,|2 = e (5.30)
it follows from (5.29) that to prove (iii) of Lemma 5.2 is equivalent to proving

|E,|2/ 14,12 = 1 - 20, tan ¥, (5.31)

Now projecting A; and E'y onto the z = 0 plane as before, we can suppress the z-

-27-



coordinate in (2.26) and (2.30) and obtain after simplification:
|4112=pF + 1, |E\|2=28@f+1)/ @ (5.32)
Now define the normal vector to £ as follow:

Ef 8 [‘71(1'13 1(01=71)/ @1, 1i(71-0,-P21)/ Q:] (5.33)
then it follows from (2.30) that
|Ey| = |E{| and OF, L OEY (5.34)
A strdghtfoﬁad calculation shows
tan 9, = 04,0} )/ K04 OB ) = 1/ (03-7) (5.35)
Substituting (5.32), (5.35), and (5.28) into (5.31) and solving for 7; we obtain
7 S oyl + 0122_1 (5.36)

Hence proving (iii) of Lemma 5.2 is equivalent to proving (5.368) holds over the parameter
range assumed by 7, and 0, for 8 € J. To verify this, note that the right hand side of
(5.36) decreases over the range 0.054814 < 0; = 0.157088 with a minimum value equal
to -0.1850. Since the maximum value assumed by 7, is -1.298515 (lemma 5.1 (iii)), it fol-
lows that (5.38) holds for all8 € J.

(iv) 1t follows from (2.20) and (2.24) that (5.21) is equivalent to

(14+p8) — (1+0B)e®® 5 0 (5.37)
To prove this, let us define the function
g(t) 81+ tan®(p+t) — (1+a°2)ez°°t , t € [0,9) (5.38)
and
@ 4 tan~lo, € (- 12'— 0) (5.39)

It is easy to verify that
g(0)=0 (5.41)

g'(t) = 2tan(p+t)[1 + tan(p+t)] — 204(1 +08)e > (5.42)



g(0)=0 (5.43)
g(t)>0 for 0<¢t < g——¢ (5.44)

where (5.44) follows from 0p < 0 and — g—< @ < 0. Since Eg = (1,0p), @ is the “negative"

angle between Wo and the x-axis. Hence, 0 < 95 < g—— @ falls within the range of ¢ in
(5.44). Moreover, since Ag = (1,p0) and ¢ + Vg is the angle between O4p and the x-axis,
it follows that tan(¢+9) = po. Hence, letting ¢ = Vg in (5.38) we obtain

g (%) = (1+p) = (14+0§)e®™ >0 « (5.45)
Lemma 5.3

For each # € J, the double scroll system (1.1)-(1.3) is a member of the double-scroll
famnily (5.1) and satisfies hypotheses (ii) and (iii) of Theorem 5.1.

Proof.

It follows from Lemma 5.1 that for eachf € J, 090<0,79> 0,07 >0,7;<0,and k > 0.
Hence, the vector field ¢ € £ defined by (1.1)-(1.3) is a member of Lo C Z in (5.1) for all
B € J. Moreover, the ranges assumed by 0 and 7 in Lemma 5.1 (iii) imply |og| < 70 for all
B € J. Hence, we need only prove hypothesis (ii) of Theorem 5.1 holds forall § € J.

Suppressing the z-coordinate from(2.20) and (2.21), we can write

Ao=(1.po) , Po=0o+ t—z(ﬂgﬂ) (5.46)
where -0.771352 < 0gp < -0.406890 and 0.813782 < 7, < 1.542704. Since

Po < max(ogg) + max[%‘;—] [max(ag) + 1] ~0.39 < 0.4 (5.47)
we have

|4012=1+p& <1.16 and ¢, & tan™!(py) € (O, (5.48)

AP

where ¢y is the angle between DZO and the x-axis. Now, forf 2 12'—- Yo



lz_(o(i-l)eXP[(Uo"‘j Nt]] = |Ao|327’[00[1—27"‘ %o
(5.49)

< V1.16 exp[z—max(oo)] N0.78< 1

Since 0 < g < % it can be shown that the trajectory z (¢) starting from A4 remains in the
regionz >0forall 0 < ¢ < g—— @o- Consequently, :fo(t) never reaches the line z = — 1 for
t > 0; namely,

(X (1.1 > 0) ¢ Yz )|z > -1 (5.50)

where each phasor on the left at any time ¢ > 0 is identified as a point in the x-y plane. Simi-
larly, it can be shown that the trajectory z:o(t) starting from E never reaches the line

z = —1for t > 0; namely,

£ (1,00e“ |2 > 0} ¢ f(zy) |z > 13 (5.51)
Since
{(o(l,v) =v.i(°(1,1) + (1_”)2«(0(1'0)’ v € [0,1] (5.52)

and since at any time £, the flow of a linear system is a linear function of the initial state, it
can be shown that

(X (1) |t > 0 ¢ {zy)lz > -1} (5.53)
Lemma 5.4.

Let C, & ¥,(C) = (zc.yc) and Fy & ¥,(F) = (zp,yF) on the Vj-plane in Fig. 2(b).
Then for every 8 € J, we have

Zo<zp <1 and yo>0 (5.54)
Moreover, C, is a continuous function of 8 forall g € J.
Proof. From (2.32), we identify

zp = 1(71-207) /@1 . yr = 7il1 = 0y(0—71))/ @, (5.55)

Since C; = $(Cp) = 9(0,0) when projected onto the £—y plane, where 9 is the connection
map defined in (4.40) and (4.44), we can calculate the exact coordinates of Zo and Y¢ as

-10-



follow:

(01 +1)[(og+70k,)2+1)
(0§+1)@,

nil1-oy(0y=7)] _ (0f + )70k,
@ (08+ 1)@

From (5.55) and (5.57) we obtain

Yo = tkyyolor(o3—r1) + 1] + 2ogy,(03—71)3 (5.57)

+1
RGN
because 7pk; > 0 and 0g < 0 for 8 € J (Lemma 5.1). Hence Zp < zp. The fact that zp < 1

follows from the geometry of the D;-unit in Fig. 2(b) where A, B lies on the line z = 1. To
prove Yo in (5.57) is positive, it suffices to show

Tp —Z¢ Yok 1(7ok 1—R0g) > 0 (5.58)

(034 1)k otk 170[01(01—7) + 1] + 2ogyi(o01=71)} > [1 — 04(01=71)}r¥(08+1) (5.59)
because 7, < Ofor 8 € J. We can rewrite (5.59) as follow:

of+1)o, o k700

Ea’ +1; : { 1)[[ LA g ——H;’o‘ z}> 1= oy(@1—71) (5.60)
Since forallg € J,

k700

—;llg;'L= 00 ~—> 0 and 0’1(0’1—71) >0 (5.61)

we have

-11-



Left side of (5.60) - right side of (5.60)

(0’ +1)U° _
- peer pin -3 -

(0f+1)085F

+ [z—ln =1+ 01(0y—7)
Jo

(o +1)0100
= ;Z:—;é— 1 (becauseo; =%;/%;, i =0,1) (5.62)
= leo -1 (because?;(G#+3?) = — afm; ,i =0,1)
Mo”1
> —Z_mrr;lnn’;(?i_ 1 ~0.0102 (because mgo=— -,-17—. m, = % |
>0

Since ¥; is a continuous function of # in view of (5.10), it follows from (5.13) that 0,, Z’,-.
and k; are also continuous function of 8 for i = 0,1. Since C; = (z¢,Yc) is given in (5.58) and
(5.57), C, is a continuous function of 8.

6.2. Proof of Theorem 5.2

It follows from Lemma 5.3 that it suffices for us to prove that hypothesis (i) of Theorem
6.1 holds for some 8 € J, i.e., we must prove that there exists some § € J such that
C, € m(F4;) es depicted in the V;-portrait of V; in Fig. 9(a) when this happens.

To do this, let us draw two concentric circles S; and S, with center at D; = (0,0) in the
Vi-plane and a radius equal to |4,] and | E;| e ~2m™, respectively, as shown in Fig. 10. Let 1
be the horizontal line through D, (i.e., the x-axis) and .’ be the vertical line through F;.
Clearly, !’ is to the left of the Z=1 line in view of Lemma 5.4 Let S, intersect I and !’ at
points @ and @', respectively. Let S, intersect |l at a point b to the left of D,. Depending on
the value of | E,| and 0,, Sy either mtersect: }f' ?et. two points, in which case the upper point
is labelled &', or otherwise, let ' be the point ]S, intersects I to the right of D, as shown
in Fig. 10. Let g be the upper point where S, mtersect the y-axis. Let R denote the region
enclosed by the closed contour formed by either aa’'b’gba (if b’ lies on l’) or aa'fb’'gba (if
b’ lies on l). In other words, R denotes the portion of the ring (area between S, and S,)
above the z-axis and to the left of l'. Hence, R is a simply-connected region.

-12-



Consider next the two logarithmic spirals

X (6) = Eexpl~(o,+j1)t] , £ 20 (5.6)
and .
{(A(t) = élexp[—(a,-l-j 1)t] , t=20 (5.64)

———
Note that é’A (t) and '{(E(t) correspond to the two shrinking spirals 4,d''dd’ (starting from 4,
A~

at £=0) and E'jcc’' (starting from FE; at t=0), respectively, as shown in Fig. 10. Since
|D;E;} < | D147 in view of Lemma 5.2 (i ), d* lies on the extension of the line D;E7.

Since both I{(E(t)l and I{A(t)l shrink exponentially with the same rate o,, the time
Lg,c it takes Z(E(t) to go from E; to c (where it first intersects l) is equal to the time g it
takes -)v(A (¢) to go from d" to d (where it first intersects l). Note that g, = {3+q = £EDyd

(in radians) where £ E,D,d is the angle between D,E} and D;d. Since £E,Dd < 2m, it fol-
lows that d must lie to the left of ¢ which in turn must lie to the left of b.

Depending on 03, the continuation of the shrinking spiral from points d and ¢ may either
intersect I’ or L. Let this point of intersection be d' and c¢’, respectively. Let {34- denote the
time it takes to go from d to d' and let £+ denote the time it takes to go from ¢ to £'. Since
tgq < 27 and £, < 27, both d' and ¢’ must lie outside of S; in Fig. 10, and ¢’ must be below
d’ in view of Lemma 5.2(iii). Hence, d must lie between @ and ¢ whereas d' must lie between
a' and ¢’ in Fig. 10.

Recall next the image under T, of the line segment

Ed, = {(z(uw) yuv)|u=1,0=v =1} (5.65)
and its extension beyond 4, (v > 1) is given by'

X(¢) = X (10 (L6exp[~(oy+i D] , £ 20 (5.66)

—

A part of this image is shown by the bold spiral E,ee’ in Fig. 10 (it corresponds to a part of
=
E,A'; in Fig. 6 and (4.51)). Here, e 8 X(t,) is the point at which X(¢) first intersects [ at
some time £, and e’ & X(t2) is the point at which X(¢) first intersects either L’ or { to the

right of D, (if it does not intersect !') at some time £,. Since both e and e’ lie to the left of

TRecall from Fig. 6 that the image under 7y of the extension of the line segment to the right of Al corresponds
to the extension of the outer spiral beyond A'; to the right and hence must lie in the region with v >1



z=1, its associated starting point )~(1(1,v(1,t)) must lie'to the left of the ¥ =1 line. Hence, we
must have 0 < v(1,4;) < 1,4 = 1,2, and

X (Qw(Lg)) € 4F) |, i=1.2 (5.67)
It follows that e must lie between ¢ and d, and e’ must lie between ¢’ and d' in Fig 10 for all
g elJ.

If we can show that there exists some 8 € J such that C; é ¥,(C) lies on the bold
spiral ee’, we will be done. Since C; is a function of 8 (assuming &, Mg, and ™ are fixed) we
will denote this function by C;(8). Now suppose it is possible to find a f; € J such that
Cy(B;) is located outside of Sz, and a Bz € J such that Cy(Bz) is located inside of Sp.
Lemma 5.4 guarantees that Cy(f) must lie in the simply-connected region

HA (zy)lz<Xr , y=20} . (5.68)

Since C,(B) is a continuous function (Lemma 5.4), the set (assuming without loss of gen-
erality f8; < B2.) .

T. & (Cy(B)IBy = B =< Bz} H (5.69)

is a plane curve (parametrized by ) starting from a point (8 = f;) outside S, and ending at
apoint (8 = B) inside Sp. Since this curve must lie within H, I, must cross the ee ' spiral at
some point By, 8; < B < B2. Hence, hypothesis (i) of theorem 5.1 is satisfied when 8 = .

It remains for us to show there exist f; and Sz with the above stipulated properties. When
B = 10.5, we calculate (:'C , yc) using (5.568)-(5.57) and obtain

| C;(10.5)] ® 0.7084 < 0.8 < | E,|e "™ ~ 0.9151 (5.70)

Similarly, when 8 = 6.5, we obtain

| C1(6.5)| » 1.4155 > 1.3 > |4,| ~ 1.2477 (5.71)
Hence, f; = 6.5 and B8, = 10.5 represent one (out of many) valid choice. a
Remarks:

1. By computer simulation, we have found the approximate value of 8o~ 8.6. The V;-
portrait of Vj corresponding to 8 = 10.5, 8.6, and 6.5 are shown in Figs. 11(a), (b), and

(c). respectively. It follows from Theorem 5.2 that the double scroll system (1.1)-(1.3) has

g—.a = 7,andf8 = 8.6.

a homaoclinic orbil whenmg = — -1—. m = 3

7

L 3—) we have confirmed by

2. Using the parameters (a, 8, mq, m,) = (7, 8.6, - =

-14-



computer simulation the existence of a double scroll attractor similar to those reported
in [1-5].

Mees and Chapman [15] have also carefully analyzed the dynamics of the double scroll
systemn (1.1)-(1.3) and confirmed the existence also of heteroclinic orbits.

Additional insights and conditions for the appearance of the double-scroll attractor are

given in [20].



6. BIFURCATION ANALYSIS

By extensive and systematic computer simulations of the double scroll system (1.1)-(1.3)
over a wide range of parameters (a,8,7¢,7m ) which include those cited previously in [1-8],
we have observed two distinct types of chaotic attractors, in addition to various stable
periodic orbits (both period-doubling types and periodic window types). The first type of
chaotic attractor is sandwiched between the eigenspace through P* and the eigenspace
through O, see Fig. 2(a), and is henceforth referred to as a Kossler screw-type attractor!
because it bears a strong resemblance to a screw-like structure first reported by Rossler
[21]). An odd-symmetric image of this attractor has also been observed between the eigen-
spaces through P~ and 0, as expected. These two ROssler screw-type attractors are
separated by the eigenspace through 0. The second type of chaotic attractor is the double
scroll which has already been extensively reported [1-8] and which spans all three regions
D_,, Doy, and D, in Fig. 2(a). As we increase the value of a for fixed 8,mo and M, we
observed that the two disjoint ROssler screw-type attractors grow in size until eventually they
collided and gave birth to the double scroll [8]. As we increase a further, the double scroll
grows while the co-existing unstable saddle-type periodic orbit shrinks in size until eventually
they too collided with each other and the double scroll disappears thereafter [6]. This evolu-
tion scenario--henceforth called the dirth and death of the double scroll--has been found to be
quite typical over wide ranges of §,mg and ™Mm,.

Our objective in this section is to use the analytical tools we have developed in the previ-
ous sections to carry out a rigorous analysis of the above bifurcation phenomena. Among
other things, we will give a rigorous derivation of the locations of the Rossler screw-type
attractor and the double scroll attractor. This in-depth analysis in turn leads to an algorithm
for actually calculating the bifurcation boundaries (see Fig. 17)—henceforth called the birth
and death boundaries -in the a—p8 plane which separate the double-scroll attractors and their
periodic windows from the other attractors (both chaotic and periodic).

Before getting into the formal details, examine the typical trajectories I'; and I's in Fig.
2(a) again. Note that I'; and I'; originate from a point on U, to the right, and the /rlees%%c-
tively, of the boundary line Lq passing through A and E. This line therefore bifurcates the
set of all trajectories which return to D, from those which continue downward to D_;. Recall
next that all trajectories originating from U, to the left of Ly (passing through E and B)
must move down while those on the right of L must move up. Finally, note that if |71| is

t'F'ou' aimplicity, we will refer to both “spirai” and “screw” attractars reported in [6] as a ROssler screw-type at-
tractor.



large, as is the case when the Rossler screw-type attractor and the double scroll have been
observed, all trajectories originating on either side of the top eigenspace E° (P) get sucked in
rapidly toward E* (P) and eventually cross U; along an infinitesimally thin "slit” centered at
the line L, passing through 4 and B.

We will shortly show that the triangle AABE bounded by the 3 lines Lg,L; and L is cru-
cial in predicting the asymptotic behavior of the trajectories. As before, we will switch back
and forth into the new reference frames corresponding to the D;-unit and Dy-unit in Fig. 2(b)
in order to take advantage of the analytical equations characterizing the Poincare map 7 in
(4.48) and its associated half-return maps g in (4.9) and m; in (4.27). Moreover, since it is
essential to follow the dynamics originating from A4gBoE, 2 4 ¥o(AABE), and taking place in
the Do-umt. but v1ewed from the reference frame in the D;-unit, the "V;-portrait of Vy"
defined 1n/4 5 (recall Fig. 8) will play a crucial role in our analysis. In particular, the dynam-
ics taking place within the Dg-unit can be "translated” into the D;-unit via the "pull-up map”

2 & &ngd=': £4,B,E, » V, (6.1)

6.1. Trapping Region

The V;-portrait of Vj corresponding to the parameters (a, 8, mo m,) = (4.0, 4.53, -1.7,
2/7) (which corresponds to (0g,7%.01,71.k) = (-0.721, 1.075, 0.074, -1.800, 0.530)) is shown in
Fig. 12. Note that in terms of the local coordinates (w,v),u = 1 along 4,E; and © = 1.53
along A4 E1u. respectively. Recalling Fig. 8, we can identify the following images under the
above pull-up map ma:

— —

B\Cy = ny(B Ay ), F1C, = my(FLEY) (8.2)
TN T e

CiAry = Mo(A1A1y ).C1Ey = m(E1Ew ) (6.3)
A Ey, = m(Ay B ) Fy WDy = my(F By ) (6.4)

Recall that Cy = mp(4,) = mp(E;) and any point on F,F] is defined to be a fixed point of ;.
=
Let S; denote the "snake-like” area bounded by B,C 1.f 1Ci and B F and let S, denote the
ﬁ 0wy ” " - ” "
area bounded by Cy4:y. C1E,,. and 4,,F,,. We will often refer to S, and S, as "snakes
and call



S, & S,USy = m2(84,, By Ey,) (6.5)

as the double-snake area.
Let O A3, B1E 1y denote the fan-like region bounded by A1y By, B1E 14, and
=N
EruAyp = m(E4y,) (8.8)

Note that the double-snake area S, is bounded within D A, B1E;,. Had we chosen B34,
nearer to E;4, where u is closer to 1, the corresponding fan-like region 0 A4, B1E, could
actually cross the double-snake area S;. Since a key assumption in our following analysis is
that S;C O A, BE),. we must choose u to be sufficiently large. However, as we will see in
Section 6.3, u should not be chosen too large either. For the parameters associated with Fig.
12, u = 1.53 is a satisfactory choice.

Translating the above definitions back into U; in Fig. 2(a), we can interpret the

corresponding snake-like area S & ¥;YS) as the set of all points ¥{}(S;) where returning
traiectories of the type I originating from AABE intersect the U, plane, and the set
Yi(Sy) representing the odd-symmetric image of the set of all points where returning tra-
jectories of the type I'; originating from £ ABE\AABE intersect the U, plane. Since

770 AwB1Ey) = 84,,B,Ey, and since S,cO ApB1Ey,. it follows that
771(S,) CAAyy B 1Eyy. Consequently if we restrict our Poincare map w: V; - V; to the region

J 8 a4,,8,E,, (8.7)

henceforth called the trapping region, then m(J) C J. Hence we have isolated a small area
on V; where the Poincare map 7 maps into itself.

TN ———
Since the double-snake area S; does not intersect with the spiral F' 1W1Dy = m(F,By)
except F'y, it can be proved (see Appendix 5) that

(1) m:D~J isa continuous function (6.8)

() m(J) isacompact (i.e., bounded and closed) subset of J (6.9)
It follows from (6.9) that?

A8 nom() (6.10)
TWe denote the nth iterate f Moy 7™ ;09 1%(J) 8 T .4 J) & (T )inXTJ) & a(n(TI)).

ete.



is m-invariant in the sense that

m(A) = A (6.11)
because
1(Amagm™(J)) = (T ol TInr(I)nn...)
cn(J)na( J)nn?(J)n - - - ' (6.12)

= Npat™ ()= T A (Mraam™ (T )= Npaom™(J)
and because m(A) D A is proved in Appendix 5.

If we define
A & Aumn _ (6.13a)
and
X & closure of {ut i {‘I'{ 1(A) v [—*Il,‘ 1(Al)]]} (6.13b)

where ¢* (f) is the flow associated with (1.1)-(1.3), then X can be interpreted as the closure! of

the ROssler screw-type attractors, or the double scroll, depending on the parameters. We will
henceforth call A an attractor of the double scroll system (1.1)-(1.3).

Since n*(J)C interior J for all n>2, it follows (see Appendix 5) that there exists
an open neighborhood N () of A which satisfies
K = niaoet [V (B) (6.14)

Hence K possesses the properties of an attractor defined by several researchers including
Hurley [ 22).

Observe that the region J in (8.7) is called a trapping region of A because J is a neigh-
borhood of A and every trajectory originating from J tends to A under the Poincaré map .
Although there exists some attractor K in the literature which contains no dense a‘rbits.t our
computer simulations strongly suggest that both the ROssler screw-type and the double scroll
attractors contain at least one dense orbit. ‘

The macroscaopic structure of A associated with (1.1)-(1.3) has been carefully analyzed by

computer simulations in [3]where we have discovered that each z = constant cross section of

A cunsists of 2 tightly-wound spirals—hence the name double scroll-for some parameter

1t is traditional to define an attractor es a closed sef. [f we do not taks the closure,

~
A would exclude the arigip and hence would not be closed. ~
tRm.:ghly speaking, A has a dense orbit means that every trajectory originating from A visits a neighborhood of

every point ot X This implies that numerical errors in computer simulation are sufficient to guarantee that the entire

~ .
attractor A will be observed by integrating from a single initial point.
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values. For example, the double-snake area Sz (S, defined in (6.5) and shown in Fig. 12 (see
also the upper snakes S, and S} in Fig. 14(b)) corresponds to the £ = 1 cross section.

The microscopic (local) structure of 7\'. however, is much more complicated. Indeed,
since A contains infinitely many horseshoes at least for some parameters (recall Theorem 5.2 ~
). we can expect that the local structure of K consists of a product between a manifold and a
Cantor set similar to that described in [23].

Observe, however, that if the magnitude of the real eigenvalue ¥; at P* (%,<0) is very
large compared to the real part of the other eigenvalues, then the set Ay must be tightly
squeezed near the c'u:ruet

— N
Ay & ABTVEA ) V(B CiAy,) (6.15)

The reason responsible for this important property is due to the strong rate of contraction of
the trajectory component along the real eigenvector E” (P) in Fig. 2(a) on the one hand, and
the fact that trajectories passing through points on A;represent the asymptotic behaviors,
i.e., long after the trajectory component along E” (P) has shrunk to an infinitesimal value,
thereby ensuring that the trajectories through A, are literally coasting on the surface of
E*(P) in Fig. 2(a). This mechanism explains why the double scroll in [3] must cross the U,
and U_, plane along a very thin contour.

The above analysis shows that in so far as computer simulation is concerned, all trajec-
tories originating from the attractor A can enter Dy from D; only through the
tnfinitesimally-thin gate centered at ¥;71(4,5, ) C L,. henceforth called the upper entrance
gate, or at ¥ ‘(.2117: ) € Ly, henceforth called the lower entrance gafe. Likewise, returning
trajectories exiting from Dg to D; can do so only through the infinitesimally-thin gate cen-
tered at ¥ 1(5,-81). bhenceforth called the upper ezit gate, and, (by symmetry of the
vectorfield §) returning trajectories exiting from Dy to D_; can only do so through the

infinitesimally thin gate - ¥71(C,A ; o )+ henceforth called the lower ezit gate.

. I e /N
We will often abuse our terminology by also calling 4,57, A4, . B,C;, and ClAuo as

the upper entrance gate, lower entrance gate, upper ezit gate, and lower erit gate, respec-
tively. Their union Ag will henceforth be called K-gates. These gates will play a crucial role in
our following bifurcation analysis.

'For the parameter assumed in Fig. 12, we can replace AlmbyA,u.



6.2. Birth of the double scroll

Our computer simulations in [8] consistently show that as & increases (for fixed 8,m,
and ™), the 2 Rossler screw-type attractors eventually collide with each other, and that the
double scroll suddenly emerges after any further infinitesimal increase in a. We will hen-
ceforth refer to this collision process as the birth of the double scroll. Our objective in this
section is to derive the bifurcation value a which herald this event.

A qualitative picture of the structure of a ROssler screw-type attractor corresponding to
the value of a at the collision point is shown in Fig. 13(a). Note that the attractor "funnels
through” the upper entrance gate AF where its extreme left point on U, coincides with 4 in
Fig. 13(a). Any further decrease in § would cause this attractor to expand with its extreme
left point on U, appearing to the left of A, thereby causing this trajectory to move downward
and eventually link up with its twin from the D_; region. '

Translating this picture into the V;-plane, we obtain the V)-portrait of Vp in Fig. 13(b),
where we have assumed! that E",—;l = m,(4,E7 ) intersects the line \1'1(L ) = {(z,y) Ix =1}
at A; as shown in Fig. 13(b). The snake area S, bounded by B,C, 1C1 1'-"1?1- and BIFI is
tangent to £1Q,4, = my(F,A; ) at @,. Since the ROssler screw-type attractor above the
eigenspace E* (0) is not connected to its twin below E* (0), only one snake S, is shown in Fig
13(b).}

The m; ! image of the upper snake S, gives rise to another snake-like region
S. & a7(5,) in Fig 13(b). Since S, = n7'n,(8A4,B,E,) = n(AA4,B,E,), the lower snake
S a is the image of the triangular region A4;B,F under the Poincare map 7. Consequently
S, must be tangent to E747 at @; = m7(Q,).

It follows from the above analysis that the birth of the double scroll must occur at such a
parameter value that the upper snake S, is tangent to m;(E;4; ). A computer calculated
example of such a situation is shown in Fig. 13(c), which corresponds to the parameter values
(a,B.mom,) = (8.8, 14.3,-1/7,2/7).

6.3. Death of the Double Scroll

Using a "shooting method” [24)], we have discovered [3] an umstable (saddle-type)
periodic orbit actually co-ezists with the double scroll. As we increase @ while fixing 8,m¢
and m,, we observe the periodic orbit shrinks while the double scroll grows in size. At the
parameter @ (or just below to be precise) where they collide with each other, the double
scroll suddenly disappears while the unstable periodic orbit continues to exist. We refer to

tl"cr'nmeparan'let.ermlnes‘1|'l(z E ) may clear the Z = 1 line and spiral townrd F'; asine ilmFlg 6.
tRecdlZmakesSomdsb nrepreoentinF‘ig 12 and (8.5).



this collision event as the death of the double scroll and our goal is to derive the parameter
when this occurs.

Figure 14(a) shows the doulbe scroll at the verge of colliding with the periodic orbit r’
(shown dotted). Let I'* intersect U, at point H™ in its downward swing and at point H* in its
return upward swing. Note that H™ must lie to the right of the line L; because as I'" moves
down through H~ in Fig. 14(a), it will first hit U_; and turn around without hitting E°(P~),
and eventually hit U_, in its upward swing at a point A~ 8 —~H"to the left of A 1 (odd sym-
metric image of L;). Hence, H~™ € LABE.

Let Hy A V,(H™)and H{ A ¥,(H*). Since H{" and H{ are fixed points of 7, we have

HY =m(HT) = ny(HT) (6.16)
as shown in the V;-portrait of Vp in Fig. 14(b). Note that a double-snake area S 4 SeYUSy

now appears in Fig. 14(b) because the double scroll in Fig. 14(a) intersects U, on both sides of
the line L. The n;! image of S, and S, is shown in Fig. 14(b) by another double-snake area

~

S, 8 a7(S,)and 5, & n7A(Sy).

Now given the coordinates of H™ as obtained by the shooting method, we can identify the
corresponding local coordinates (%g,vg) of Hy , namely

Hy = fl(uo»'vo)- , (6.17)
From this we can define the local coordinates of A3, and E 1u, as follows:
Ay = uod; + (1=ug)By,  Eyyy = w1 +(1-ug)Fy (6.18)

Since F lu;z 1u, Passes through the point Hy, ‘rr,(E'm;mo) passes through the point H{ as
shown in Fig. 14(b). In Appendiz 6, we will show that E 141y, is an excellent approximation
of the stable manifold

We(Hy) =z € £A,B,E,|n"(z) » Hrasn -+ oo}, " (6.19)
that is W* (H7) ® B, Ay,

Now let KU. denote the intersection of the double scroll attractor with U; and define
A= ‘I',(X v,)- By definition, the death of the double scroll occurs when A, intersects the points

H{ (and H{). This condition is equivalent to the condition that A, touches the stable mani-
folds W°(H{) because z € W°(H 1) nA; implies Hf = lim7™(z) belongs to
. =00

W= (H{) NA C A;. Since the upper exit gate B,C, approximates a portion of A as stated in
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Section 6.1, the parameter value where B)C) touches By Ay = (A 1y Eru )R W (H)
gives an excellent approximation of the value at which the double scroll disappears.

The preceding analysis shows that the V,-portrait of ¥ corresponding to the death of the
double scroll must be as shown in Fig. 14(b). Observe that the upper snake S, must be
tangent to @, and, correspondingly, the lower sgake g a Mmust be tangent to Qi .

To show that the double scroll would disappear if the parameter is further tuned so that
Q) crosses the stable manifold #* (K1) ® Ey A1y, and moves below Eyu Ay we note that
in this case! the iterates of Qi under 7 would eventually leave the trapping region J and fail
to converge to an attractor within J. ‘

A computer calculated V;-portrait of Vj corresponding to the death of the double scroll
is shown in Fig. 14(c), where (a,8,m,m,) = (10.73, 14.3,-1/7,2/7).

8.4. HoleFiling and Heteroclinic Orbits

All the double scrolls given in [1-6], have a hole centered at P* and P~ because the
parameters were such that no trajectory in A passes through the point D in Fig. 2(a) where
the real eigenvector ET (P*) hits U 1- It is possible, however, to choose parameters such that
D lies on A. For example, when (a,8,mq,m¢) = (8.85, 14,3,-1/7,2/7), the corresponding V;-
portrait of V, is as shown in Fig. 15(a). Note that D; = ¥,(D) lies on the lower ezit gate
C{,:;:‘ = 17,(.71744_1: ). Now, assuming? that the set A has a dense orbit under the "discrete”

7N
Poincaré map m: J - J defined in (6.7), then since C 1A1m converges (under ) rapidly to a

point in A; & AU m5(A). it follows that we can make an infinitesimally-small perturbation on 8
so that D, lieson A; 8 Au m2(Ah Under this condition, there exists a trajectory originating from
Dy in Fig. 2(a) which exits U, at exactly the point D. Such a trajectory would then follow the
real eigenvector E” (P*) and converges rapidly toward P*. Since P* is an "unstable focus” when
restricted to the eigenspace E°(P*)}, il follows that the resulting double scroll will not have a hole
and is henceforth called a hole-filling orbit. The double scroll in Fig. 15(b) is a case in point.

Clearly, another hold-fllling orbit exists when D; lies on the wupper erit gate
LagupenyN
C,B, = m(4,B)).

1The unstable manifald W* (H ") in this case must be a subset of S'p, because W¥(H{ ) is an invariant set

and the only invariant set in Fig. 14(b) other MW’(H;) which contains A is S'p. A more detail discussion of
the stable and unstable manitalds of /1 and Hy is given in Appendiz 6.
$This assumption is consistent with all computer simulations of the double scroll observed so far. Note that the
~ ~
dense orbit here differs from that associated with A in (6.14): the dense orbit in A pertains to a "continuous flow,”

whereas the dense orbit in A refers to a "discrete map.”
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Suppose in addition to D; € (14, in Fig. 15(a) the point By 1 *(B,) lies on the
lower entrance gate A, A in Fig. 15(a).t This implies that B a n5(B;) lies on the lower

100

. o " N ]
erit gate C,Alw. Now assuming D, lies between B; and C; on C;AIQ, then the hole-filling

orbit starting from P* would, after entering Dy from above, continue to move downward and
eventually hit U_,; at D~ =<¥{"}(D,) where the lower eigenvector E” (P") intersects U_;. By
the odd symmetry of £, the return orbit would be a symmetric image and hence must exit U,
at D. Such a hole-filling orbit is called a heteroclinic orbit.

Since Shilnikov’s theorem also applies when the "homoclinic orbit"” in the hypotheses is
replaced by a "heteroclinic” orbit [15,25], any rigorous demonstration of the existence of a
heteroclinic orbit would also prove the existence of chaos in the double scroll system (1.1)-
(1.3) in the sense of Shilnikov. Such a demonstration has been given recently in [15] where a
computer calculated hole-fllling heteroclinic orbit is shown.

6.5. Homoclinic Orbits [28]

We have already proved the existence of at least one homoclinic orbit through the equili-
brium point O in Section 4. To complete our bifurcation analysis, Figure 16 shows the V;-
portrait on V, associated with such a homoclinic orbit, where (a,8,mqm;) = (4.1,4.7,-
1/7.2/7). Note that the point C, lies on E ,A; as required by hypothesis (i) of Theorem 5. 1.

Homoclinic orbits through the other two equilibrium points P* and P~ can also occur

under appropriate parameter values. In particular, they occur when one of the following two
conditions is satisfied:

1.(a) gi 4 m71(B,) lies on the upper entrence gate A;5,, as shown in Fig. 15(a).
(b) D, lies between 57 8 m5(5}) and B, on the upper ezit gate ETCI

2(a) B; & wY(B,) lies on the lower entrance gate )4 .
(b) D, lies on the upper ezit gate E,_a (between B, .and C,).

6.6. Bifurcation Diagram

Using the conditions derived in Sections 6.4 and 6.5 for the birth and death of the double
scroll, we carry out a detailed (double-precision) computer bifurcation analysis of the a~§
parameter plane (with Tng = -1/7 and m; = 2/7 ). First, we derive the set of all (a,8) for
which the eigenvalue at P* is pure imaginary, i.e., when 31 = 0. It turns out that by fixing m¢

™Note that B i corresponds to the point @p Fig. 8 except that for the parameter used in Fig. 8, @ lies on the
upper enirance gate.



= 1/7, this set can be derived explicitly; namely
B = (1-m)a(m a+1) (8.21)

Substituting m,; = 2/7 into (6.21), we obtain curve (D in Fig. 17. It follows from the Hopf
bifurcation theorem that any parameter (a,8) where P* and P~ are sinks (i.e., %; < 0 and
% < 0) lie above curve (D , henceforth called the Hopf bifurcation curve, and that for (a,8)

in a small band to the right of this Hopf bifurecation curve, we can expect nearly sinusoidal
oscillations.

The sets of (a,8) which give rise to the birth and the death of the double scroll are given
_by curve @ and curve @ , respectively. It is natural to call.curves ® and @ the birth
boundary and the death boundary, respectively.

It follows from our preceding analysis that those parameters (a,B8) associated with the
period-doubling and the ROssler screw-type attractor must all lié between the Hopf bifurca-
tion curve (D and the birth boundary curve @ . All parameters associated with the double
scroll must lie between this birth and the death boundary.



7. One-Dimensional-Poincaré Map.
Our analysis in Section 6 shows that the qualitative behavior of the double-scroll system

(1.1)-(1.3) is determined essentially by the 2-dimensional Poincaré map T of points on an

infinitesimally- ¢hin “ribbon" centered along the two entrance gates A,B, and lel o Which -

correspond to the semi-infinite line Ly C L, in Fig. 1 to the left of point B. Since this "ribbon”
is "numerically” indistinguishable from Ll when |7,| is relatively large compared to the
other eigenvalues, it is natural therefore to define a 1-dimensional approximation n° of the
Poincaré map 7 by restricting its domain to L,. and compare its qualitative behaviors with
those of . By brute-force computer integration of the system (>1.1)-(1.3). we have constructed
such a 1-D Poincaré map for many parameter values. Qur "numerical” results show that
inspite of the inevitable local truncation and round-off errors, this 1-D Poincaré map
predicted all of the qualitative behaviors that we have so far observed by computation simula-
tion (including period-doubling, periodic windows) and by rigorous analysis in the precedmg
sections (e.g., ROssler screw-type attractors and the double scroll).

This remarkable observation motivates a more rigorous analysis of this 1-D discrete map.
In order to do this, it is necessary to describe this 1-D map in analytic form. Our main objec-
tive in this final section is to derive this 1-D map n° and analyze its qualitative behaviors. It
turns out that a much simpler analytical ‘expression for 7’ is possible if we choose the domain
of the function 7° to be another semi-infinite line segment P*N and its extension beyond N
to N o 2t infinity as shown in Fig. 1. This line is constructed by connecting the point M & ‘I'Il (1,0,0)

and point P* by a straight line and extending it beyond N to co and deleting the portion P*H in
Fig. 1. In other words, we will define the 1-D Poincaré map

n°:P*N_ > P*N_ (7.1)

In order for 7° to be well defined, we must make the following two assumptions:
/"\
(1) the spiral C A (ie., ¥7! of the lower ezit gate C14',,,) on U of Fig. 1 does not inter-
sect the line Ly through points E, F', and B.

(2) the point D (wherc the real eigenvector hits U,) on U, in Fig. 1 is located on the left of
f,\
ca_
To prove that #° in (7.1) is well-defined under the above assumptions, it is more con-

venient to translate our analysis into the Dj-unil in Fig. 2(b) via the coordinate transforma-

tion ¥,, which we redraw in Fig. 18(a). Consider the rectangular region



W, & {(z.y.2) e R®| z=0,y=0} (7.2)

passing through the line segments ON, and OD;. Since 0 = ¥;(P*), D, = ¥,(D). and
Ny = ¥,(N), it follows that W, corresponds to the plane ¥ in Fig. 1 passing through the two
line segments P¥D and ND.

Now, in terms of the local coordinates (u,v), points along the line 317'1: are uniquely
identified by a single coordinate % since ¥=1 on this line. In particular, any point :f(u) on
this line is described by

:E(u.) . :El(u,l), 0su <1 if :f(u) € B4, (7.3)

1<u<oo if f('u.) € A,Zw

Since BIA!” lies on the eigenspace ¥;(E°(P*)), all trajectories originating from B,Zm
(in backward time),
must remain on the =Yy plane in Fig. 18(a) while spiraling inwards /and must eventually hit

ON, (on the negative z-axis) at some point a distancel X(u) from O after a time interval
7—5, where ¥ & —arg f(u) = —tan~![z, (u)/ z;(u)]. Here, z;(u) and z, (u) denote the

Z and ¥ component of f(‘u.). respectively. Clearly,
X(u) = |z(u)|exp[-o,(m +arg z(u)] = 0 ' (7.4)

I3 P3 - op - ’
Now, assumption ! is equivalent to the condition the lower exit gate C14 100 does not touch or

intersect the line through B, F,,E, in Fig. 18(a). It follows from our analysis of Figs. 4 and 5
that both #nverse-return functions u*(1,t) in (4.14) and »~(1,£) in (4.22) are strictly mono-
tone functions and hence havea unique inverse. Hence, any point X(u) = 0 on N, X(0)
maps uniquely into a point 5(14) on m via the flow ¢f, where X(0) is the limiting point

which maps (under p{) into B;. Note that any point d between X (0) and 0 in Fig. 18(a) must
map (under ¢f) into a point dj, where

dy = 2™ . d, (7.5)
because the expanding logarithmic spiral from d; can not touch FlA;w'

~— T
The upper ezit gate B,C; = m(B14,) and the lower ezit gate C1A', = ma(4,4 ) are
shown in Fig. 18(a). Note that each point :I~:(‘U.) on B A ;o MaP under 7 uniquely into a point

tWetlc:!tm:X(tl.) as the distance from 0 since we want the domain of 1’ tobe part of the positive real axis.
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g(‘u) with coordinates (¥ (%), yy (©), ¥z(u)). Now assumption 2is equivalent to the condi-

tion that the point D, in Fig. 18(a) is located below (relative to V;plang the lower exit gate
c 1A'1m. It follows from this condition that the fiow ¢f from g(‘u.) must intersect the W, rec-

tangle at r(u) This translates into Fig. 1 to mean that trajectories starting from the exit

gates BC and CA’_ will always intersect the plane W = ¥7!(¥;). Hence, the exit gates B;C;
'} >, . - - . .

and C;A 10 in Fig. 18(a) must map into another double spiral on W, as shown in Fig. 18(a),

where each point y(u) maps into
Y'= (=|y(u)| exp[oy(m—arg y(u))], 0, y; (u) exp[y:(m — arg y(u))]) (7.6)

Now, if |;1| is relatively large, which is the case in the double scroll, then the double
spiral on W, in reality is squeezed into a thin line sitting infinitesimally close to N le. Con-

sequently, for all computation purposes, we can approximate Y'(u) as the point Y(u) on
N . 0. Note that Y(u) is a positive real number given by

Y(u)

ly(w)| explo;(n—arg y(u)], 0su=co (7.7)

Sincew = u*(1,t) for 0 = u <= 1 is given explicitly by (4.14) and since u = u™(1,¢)
for 1 < u < oo is given explicitly by (4.22), we can specify the graph of the Poincaré map m’
for X(u) > X(0) by the following explicit parametric equations:

*1,8),Y(u*(1,t))], 0 < £ <oo for O <1
Prewy.vw) = bt Y1) 0 % 8 <o tor 0 < (7.8)
[X(u'(l,t)),}’(u'(l,t))] , 0< t<oo for 1<u <oo

Equation (7.8) defines the 1-D Poincaré map n° for all X(u) between X(0) and N 1o FOT
points X (u) between X (0) and 0, where u < 0,1 we simply make use of (7. 5), namely,
Y(u) = e X(u) , u<0 (7.9)
We will henceforth call (7.1), (7.8), and (7.9) the 1-D double scroll Poincaré map.
A typical graph of 7° corresponding to the parameters (0g, 70, 01, 71. k) = (-0.42, 0.50,

tFor convef' nce, we extend our local coordinate % 2 0 to include negative U in order to parametrize the
points between ‘(0 and 0.



0.15, -1.5, 0.20) is shown in Fig. 18(b). Note that since 0, is a constant, the graph from X = 0
to X' = X(0) is always a straight line with a slope equal to e2™1, Note also that to emphﬁsize
that the one-dimensional Poincaré map 7° as defined by (7.1), (7.8), and (7.9) is valid not only
for system (1.1)-(1.3), but also for the entire double-scroll family of vector fields ¢ € & o, we
use the normalized eigenvalue parameters instead of the usual (a, 8, mq, ™m,) in Fig. 18(b).

Translating the V;-portrait of Vj in Fig. 18(a) back into Fig. 1, we can identify the above
1-D double scroll Poincaré map as '

% :P'N_ - P*N_ (7.10)
The point B' on PN is identified with the point X (0). For each point £ € P¥F, 7' is a

tinear map from P*B onto P*% (B). For points = € BN_, %' is a continuous nonlinear

map from B'N_ into PN,

We close this paper by exhibiting several different graphs of the 1-D double scroll Poin-
caré map 7° which illustrates the various qualitative behaviors analyzed in Section 6.
7.1. 1-D Poincaré Map 7° for Birth of Double Scroll

The graph of 7° for the parameter (a, 8, mg, m;) = (8.8, 14.3, -1/7, 2/7) is shown in
Fig. 19(a). Note that the maximum value of Y on the interval [0, X(1)] is equal to X(1); i.e.,

the point Y(ug) = o max Y(u) coincides with the point X(1). Hence 7°(X(ug)) = X(1)

maps precisely through point A; where w=1. All other trajectories have Y(u) < X(1) and
hence can only enter Dy through the upper gate B;14;. Hence, by definition, the graph in Fig.
19(a) heralds the birth of the double scroll.

7.2. 1-D Poincaré map 7° for Death of the Double Scroll

The graph of ° for the parameter (a, 8, mg, m;) = (10.73, 14.3, -1/7, 2/7) is shown in
Fig. 19(b). Note that Xy is an unstable fized point of m° and the maximum value max Y (u)
on the interval [0, X(1)] is equal to Xy. Since X > X (1), Xy corresponds to w>1 this situa-
tion corresponds to the case where the unstable (saddle-type) periodic orbit through Xz col-
lides with the double scroll. It follows that the graph in Fig. 19(b) heralds the death of the dou-
ble scroll.
7.3. 1-D Poincaré map 7" for a HoleFilling Orbit

The graph of 7° for the parameter (a, 8, mo, m;) = (9.85, 14.3, -1/7, 2/7) is shown in
Fig. 19(c). Note that on the interval [X(1), oo], the minimum value of Y(w) is zero, namely,

min Y(u) = 0. Since max Y(u) > X(1), the attractor A is a-double scroll. Now min



Y(u) = O implies that the spiral through Y'(u) associated with this point is tangent to the
£~

z-axis. This situation corresponds to the case where CA'Q in Fig. 1 passes through D. Hence,

the graph in Fig. 19(c) is associated with a hole-filling orbit.

7.4. 1-D Poincaré Map 7" for a Homoclinic Orbit

The graph of w° for the parameter (a, B, Mo, m;) = (4.1, 4.7, -1/7, 2/7) is shown in Fig.
19(d). Note that X (1) is a fixed point and henceY(1) = m°(X(1)) = X(1). Since u=1 at
point 4,, this implies that the trajectory originating from X (1) would enter Dy through 4, on
the stable eigenspace through 0 and™®"©converges to 0. This trajectory continues along the
unstable eigenvector through O until it hits U, at C, which is identified with C; in Fig. 18(a).
Since Y(1) = X(1), the trajectory continuing from C; must intersect ¥; at a point Y*(1)
whose projection Y(1) is precisely equal to X(1). Hence this trajectory is a homoclinic orbit
of the origin and the graph in Fig. 19(d) therefore predicts the existence of the homoclinic
orbit proved earlier in Section 5. '

7.5. Periodic points of the 1D Poincaré map 7°

In this section, we will describe the correspondence between the periodic points of the 1D
Poincaré map m° and the periodic orbits in the double scroll system. The 1D Poincaré map ’
gives an excellent approximation under the condition that |y,| is relatively large compared
to the other eigenvalues, and that A is infinitesimally thin. This condition implies that each
periodic orbit of the double scroll system has at least one stable direction (i.e. the magnitude
of at least one characteristic exponent is less than one). In particular, a stable pericdic point
of m° corresponds to a stable periodic orbit and an unstable periodic point of n’ corresponds
to a saddle-type periodic orbit of the double scroll. Since Yy & maxXgsy 1Y (%)
corresponds to the outermost orbit of K. if the periodn points
(X = (e )™(X), 7°(X), ..., (7°)*7}(X)] satisty

(P)X) = Ypoe » 0= i = n-1 (7.11)

the periodic orbit of the double scroll system corresponding to X is located in the attractor
A. Define

a & x(1). : (7.12)

As shown later, the type of periodic orbit of the double scroll system is determined by the
position of the point @ relative to the periodic points of n’.

(1) FixedpointX, = 7n'(X,)

Case (i) 0<X;<a



Figure 20(a) shows a fixed point X; of m° with X; = X(u) for some 0 <u < 1. The
corresponding period-1 orbit in the double scroll system is depicted in Figure 20(b). The tra-
jectory originating from X; would enter Dy through a point on the upper entrance gate 45,
return to D, and hit X,;. By symmetry, we have a pair of periodic orbits as shown in Figure
20(b). The essential features of this situation are summarized in the "abstract sketch” shown
in Figure 20(c), where N~ = =N, a' = =X(1) and X'; = -X,.

Case (ii): 2 < X; < o0,

Figure 21(a) shows a fixed point X; with X; = X(w) for some u > 1. The trajectory ori-
ginating from X, would enter Dy through a point on the lower entrance gate 44 oo Continue its

downward motion until it hits X’; = —X,. Therefore we have a period-1 orbit as shown in the
abstract sketch in Figure 21(b).

(2) Period2point {X; = 7°(X)), X; = m"(Xz)}

Case(i): 0<X;<Xp<ea

Two period-2 points X; and X satisfying (i) are shown in Figure 22(a). The trajectory ori-
ginating from X, would enter Dy through the upper entrance gate, return to D; and hit Xj.
The trajectory continuing from Xz would enter Dy again through the upper entrance gate, and
eventually return to X;. Therefore we have a pair of period-2 orbits as depicted in Figure
22(b). .

Case (ii): a < X; < X,.

Two period-2 points satisfying (ii) are shown in Figure 23(a). The trajectory originating
from X; would enter D, through the lower entrance gate, continue its downward motion
through Do and hit X = —Xa. Note that X; and X; (resp, Xz and X2) of the double scroll
system are “identified” as one point X, (resp. X3) in the graph of 7°. The trajectory continu-
ing from X'; would enter and continue its upward motion through D before returning to X;.
Therefore we have a pair of period-1 orbits as depicted in Figure 23(b), even though 7’ in Fig-
ure 23(a) seems to suggest that we have a period-2 orbit. It follows from this analysis that the
period-doubling of a fixed point X of 7° with @ < X < oo (as in Fig. 21(a)) in Figure 23(a)
corresponds to the splitting of the single "odd-symmetric" period-1 orbit into two period-1
orbits in Figure 23(b). Note that each of the orbits in Figure 23(b) is not odd symmetric, but
the two orbits are odd-symmetric image of each other in view of the symmetry of the vector
field. The orbit in Figure 21(b) exists by itself because it already exhibits odd symmetry.

Case (iii): X, <2 < X,.

Two period-2 points satisfying (iii) are shown in Figure 24(a). The trajectory originating

from X, would enter Dj through the upper entrance gate, return to D; and hit X,. The

31-



trajectory continuing from X, would then enter Dg through the lower entrance gate, pass Do
and hit X’; = —X,. The portion of the trajectory from X' to X; must be "symmetric” to the
portion of the trajectory from X; to X', with respect to the origin. Therefore this situation
corresponds a period-3 orbit in the double scroll system as depicted in Figure 24(b).

(8) Periodn point {X = (7°)*(X), n°(X), ..., (x")*"Y(X)i.

Let the above period-n point be ordered as follows:
0<X;<Xa<...<X, <o (7.13)

where we assume X = X without loss of generality. Then the type of period-n orbit of n’is
uniquely characterized by a permutation of the }ndkﬁ? 3, ..., n} following the index 1. For
example, the permutation (1, 4, 2, 3, 5) corresponds to the following periodic points:

~ ;
0<X;<Xp<X3<X,<X5<00 (7.14)
The type of periodic orbit of the double scroll system is therefore determined by the position
of the symbol @ among the symbols {0, X;, Xp, . . . , X,, o0} along the half-line P¥N, where
P* may be 0 and N may be co. Hence, the total number Np of distinct types of periodic
orbits of the double scroll system is equal to )
Npr = (n-1)'x(n+1) = (n+1)/n (7.15)

For example, in the case of n =3, we have 8 different types of periodic orbits in the double
scroll system. Figures 25(b) and 26(b) show two periodic orbits corresponding to the following
two "dynamic routes':

/‘\
(%) 0<X;<Xa<a<X3< oo, (7.18)
() 0<X;<a<Xz<Xz<oo, (7.17)



APPENDIX

Appendix 4. '"'1(1= IE 1’ is tangent to B 1E1 at Fl
i T . .
Proof. By Theorem 4.3, the spiral F; WDy = m(F1B,) is defined explicitly by

[cost sin¢

z(t) = et —sin ¢t cos t] (v(t){?l-l-(l—'v(t))f'l) (A4.1)

where v (t) A v(0,t),0 = t < oo (u =0, see Fig. 6)

B =(1,0)", (A4.2)
and

F. = (n(r1=20,)/ @, 1l = ox(oy=7))/ @)". - (ha.3
Since

rcos t sint
—-stn t cost

[—sin t cost

Z(t) & gt-f(t) = ¢~ [_01 $|ooe b —sim t]] (v (8)B +(1—v (£))F)

[ . (A4.4)
yemt| S5 i] v(E)B-F) -
Substituting £ = 0 and v(0) = 0 in (A4.4), and making use of (A4.2)-(A4.3), we obtain
Z(0) = (7 + v(O))(B ~F). (A4.5)

Since 7; + v'(0) is a scalar, 5(0) is a vector in the direction of §1 ~-F e along the line
segment B F;. Since 5(0) = F, it follows that f(t) is tangent to B1F at F; when ¢ =0.

Appendix 5: Properties of Trapping Region
(1) In Fig. 8, if  tends to F'; from the inside of the "curvilinear wedge" region bounded by

771-1?'1 and Fie;, ‘rrl'l(f) tends to F';, and so lim 11'1'1(2) =Fy # f, = n7}(F,). However, if z
tends to F'; from the outside of this "curvilinear wedge" region, my ‘(f) tends to f ;. and so lim
ﬂi"(:f) = f, = n7}(F};). Since the double-snake area S A Se U S, in Fig. 12 lies outside of
this "curvilinear wedge" region near F'y, it follows that v
s, 81+ My, By Eyy (A5.1)

is a homeomorphism from the compact domain S into A4y, B Eyy. Since 2|44,y By By
:44,, B, F,, » S, is continuous, we have



w|J: J= My B1Eww+J (45.2)
is continuous. Since the image of a compact set under a continuous map is compact, 7( Jis
a compact subset of J. This proved (8.8) and (6.9).

(2) Equation (6.9) implies m(A) € A. Hence, to prove (6.11), we only need to prove m(A) > A
Take z € A 4 Np 20T (7). Sincez € 7™*}(7), and since 7™ (J) is compact, the set

Y, = n7i(z) n1™(7) (A5.3)
is non-empty and compact. Since

Yosr = 174@) N 1*Y(3) € %, = 7X(z) n (), (45.4)

wehave Y = Ny 20 ¥, © Np 207 (7J) is non-empty and n(Y) = 2. Therefore,

z = () € 7 2™ (J)) = 7(A) (45.5)

that is, A € m(A).
(3) In Fig. 12, we can observe that n{! maps S;\ {8} into the interior of A4, B; Ey,.
However, the point B, maps into the point @z on B 41, in Fig. 6. From this we have

m(7) c faz} v interior J (A5.8)

Since ay # B;, we have

m(az) = n;! mp(e,) € interior 7. (45.7)

Therefore, it follows that

73()) ¢ m(az) u n(interior J) (A5.8)
c interior J (A5.9)

because n(interior J) c interior J. It follows from n(J) € J that
7™ (J) c interior 7J. (A5.10)

To prove existence of an open neighborhood N (K) which satisfies (6.14), take a small open ball
B(C,) at C, such that

n71(B(C,)) ¢ interior O. (A5.11)
Then the set ‘



N, 8 B(C,) v interior S, vinterior J (A5.12)
is an open neighborhood of A, in the V;-plane which satisfies
A = Nz o™ (N).

Choose a small neighborhood N (K) of K in the double scroll system such that any trajectory
originating in N (X) intersects U, U U_; only at points belonging to the set
¥7I(N,) U (=¥7Y(N,)). where N, is defined in (A5.12). Then N (R) satisfies (8.14).

Athe more general situation, the double-snake area S; may intersect the spiral
F\W,Dy = 7,(F,B,). Figure 27(a) shows the V;-portrait of V; with such a double-snak/e_a&ea
Sy, where (a, 8, mg, m;) = (4, 4.85, -1/7, 2/7) and u = 2. Note that the spiral F1 WD,
int/_e_\rsects the spiral m 1= T2 (A4, ) at tmints e and b, and the spiral
E"1,Cy = ma(EE},) at two points d and c. Since Fy WD) is the set of discontinuous points
of ;! (see (B) in Example 4.3), it follows that the set mi1(S) = m(Adyy B1E 1y ) must be as
depicted in Figure 27(b) where C; = n71(Cy), (A1) = 774w, T(E1) = 17HE 1),
n(F,) = n7Y(F,) = f, and n(B,) = n7}(B,) = a; (see Fig. 8), where C,, A"y, E"y, are
indicated in Fig. 12(a). In this case, we expect that J = Adjy B; Eq to be a trapping
region and that A = N, o™ (J) is a T-invariant compact subset of ZJ. The proof of this
statement, however, is complicated because we must consider the discontinuity of the map
il
Appendix 6. E, A),, approximates #*(Hy)

Suppose that the magnitude of the real eigenvalue ;1 at P*(y, < 0) is very large com-
pared to the real part of the other eigenvalue. This is equivalent to considering the limit as
";1 -+ —oo, Hence, upon substituting 7, = ;1/ ¥, and 0, = ¥,/ &, into the coordinates for F;

and £, and then taking the limit as ?1 - —oo, we obtain

Fy = (71(11=20))/ [(71-0,)%+1], 7al1=04(0,=71))/ [(71—01)%+1])

= (=207 (182488, 71[B1=-01 @1 =701/ [(71-8:)2+3F))

+(1,0)) = By , as 7, » — (48.1)
and
E, = (71(71=01=p,)/ [(71—01)%+1], 71[1-p1(01=71)])/ [(71=01)2+1])

= 61(;1‘31-1’151)/[(31‘31)2""5?]»;1['5’1'?1(51—;1)]/[(;1‘31)2*"23?])

?The symbol O ( ) in Fig. 27(b) denotes a curvillinear region with boundary

points listed inside the parentheses.
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- (l,Pl) = Al , @as ';1 - —oa, ) (A6.2)
1t follows from (A8.1) and (A8.2) that
Eruy = uoE)y + (1—ug)Fy » uod) + (1-ug)B; = Ap, (A8.3)

Under this condition the arc Em shrinks to one point E'y,, = Hy = Ajy, under
771, and therefore also under 7. Therefore the arc £ lqu;uo may be considered as the stable

~ N
manifold W*(H{) as7; » =00, i.e. Eyy Ay, ® WS (H{). This implies that

T N
lugilyy = "l-i(Elqul‘uo)“"l-](WS(Hi..)) = WS(H]—) (A6'4)
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Fig.

Fig.

Fig.

Fig.

Figure Captions
Eigenspaces of the equilibria and related sets.

Geometrical structure and typical trajectories of the original piecewise-linear sys-
tem and their images in the Dg—unit and D;—unit of the transformed system (real
Jordan form). (a) Original system and typical trajectories. (b) Do—,D;—units and
half-return maps.

Geometrical interpretations of the local 4 —v coordinate system for representing
the half-return map 7. (a) Details of the Dg-unit: thick arrows denote the direction
of the vector field at various points along Lz, = ¥o(Lz2) where all vectors lie on the
Vo-plane. (b) Graph of a possible inverse return-time function v = uw*(v,t). Here,
I*(v) denotes the set of first-return times which is not connected whenever u*(v,t)

is not a monotone function.

flp associated with a monotone inverse return-time functions. (a) Vp-plane.
(%0, 70, 01, 71. k) = (-0.3, 1.5, 0.2, -2.0, 0.75). (b) Graph of the inverse return-time
functionsu = u~(1,t) andu = u*(1,£). (c) Magnification of (b) over the region
080 <u <1.10.

o associated with a non-monotone inverse return-time functions. (a) Vg-plane. (oo,
Yo 01, 71, k) = (0.2, 0.75, 0.2, -1.0, 0.75) The positions of points a, b, z (%,,1) and

fo (uz_l) are not exact but are exaggerated to give more space. (b) Graph of the

inverse return-time functions © = uw~(1,£) and © = u*(1,¢). (c) Magnification of
(b) over the region 0.80 < u < 1.10.
r A -
h-plane. (00, Yo, U],')’l,k) = (‘0.4. 0.3, 0.2, -1.0, 0.3). F1W1D1 = Tl'](FlB] ).
— N — ey Y

E\F\W,D; & m(ea). é2B; & m(ez82). E\A, 8 my(E ) and
[ a n7!(F,). The position of f, is exaggerated in this figure for clarity. The
actual position of f; is "infinitesimally” close to @;.

Graphs of the inverse return-time functionsv = v (uw ,t). The parameter values are
the same as those of Fig. 6. (a) v = v(0,). (b) Magnification of (a) over the region
0.995 < v < 1.005. (c) v = v(u,, t) where u; = 0.570. (d) Magnification of (c) over
the region 0.995 < v < 1.005. (e) v = v(ugp, t) where up = 0.786. (f) Magnification
of (e) over the region 0.995 < v < 1.005. (g) v =v(1,2). (h) Magnification of (g)
over the region 0.995 < v < 1.005.

Vy-portrait of Vj for (0g, 7. 07, 73, &) = (-0.4, 0.5, 0.05, -2.0, 0.25).
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£ &

Fig.
. 13.

Fig.

Fig.
. 18

Fig.

. 10.
. 11,

12,

. 14,

15.

. 16.

17.

19.

Homoclinic orbits. (a) Vj-portrait of V. (b) Two odd-symmetric homoclinic orbits
through the origin. ‘

The two circles bounding Sg and Sp on the V)-plane and related arcs.

Vj-portrait of Vg and the two bounding circles S; and S; (which appear as ellipses
due to unequal horizontal and vertical scales). The parameters (a, 8, mq, ™) are:
(a) (10.5, 7, -1/7, 2/7); (b) (8.8, 7, -1/7, 2/7); (c) (8.5, 7. -1/7, 2/7).

V)-portrait of Vg with trapping region J 4 Adyy B; Eyx-

Geometrical structure at the birth of the double scroll. (a) Macroscopic picture of
the original system. (b) Enlargement of the V;-portrait of Vj Bl’?, 4 (B, 4,) is
tangent to E’E 8 m(ZED at @,. 5, & n7Y(S,) is an "infinitesimally” thin set
(infinitely many layers compressed into a sheet) whose actual location is very close
to 4,B;. (c) Vj-portrait of Vp for (a, 8, mg, m,) = (8.8, 14.3, -1/7, 2/7).
B\C; & my(BiA) is tangent to £,4 & m(T D at @,

Geometrical structure at the death of the double scroll. (a) Macroscopic picture of
the original system. (b) Enlargement of the Vj-portrait of Vo. H{ and Hy denote
the position of the saddle-type periodic orbit. 3’1?1 4 mo(B,4;) is tangent to
Elqu’lu‘o A T (E1ugliu, ) at @ ga v S~b is an “infinitesimally” thin set
(infinitely many layers compressed into a sheet) whose actual location is very close
to 4y, . B;. (c) V;-portrait of ¥ for (a,8,mqm;) = (10.73, 14.3, -1/7, 2/7).

A hole-filling double scroll appears when (a, 8, mq, m,;) = (9.85, 14.3, -1/7, 2/7).
(a) V;-portrait of V. (b) The double scroll with hole-fllling orbits.

The V;-portrait of V; which give rise to two odd-symmetric homoclinic orbits
through the origin when (a,8,mqm,) = (4.1, 4.7, -1/7, 2/7).

The bifurcation diagram on the a—§ plane (drawn with (mq,m,) = (-1/7, 2/7)).
Geometrical interpretation of the definition of the 1-D Poincaré map m°. (a) ¥,
plane in the Dj-unit. (b) Graph of ©° for (0,70.01.71.k) = (-0.42, 0.5, 0.15, -1.5,
0.2).

1-D Poincaré maps corresponding to (a) the birth of the double scroll when
(a,B,mom;) = (8.8, 14.3, -1/7, 2/7); (b) the death of the double scroll when
(a,8.mgm,) = (10.73, 14.3, -1/7, 2/7); (c) a hole-filling double scroll when
(a,B.mqgm;) = (9.85 14.3, -1/7, 2/7); (d) the existence of two odd-symmetric
homoclinic orbits when (a,8,mq,m;) = (4.1, 4.7,-1/7, 2/7).
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Fig.

Fig.

Fig.

20. Fixed point X; of 7° with 0<X;<a. (a) Graph of 1-D Poincaré map w . (b)

.21,

. 22.

23.

24.

25.

26.

. 27.

Corresponding periodic orbits in the original double-scroll system. {c) Abstraction of
the main features of (b). '

One Period-1 fixed point X; of 7° with 2 <X,;<oco. (a) Graph of 1-D Poincaré map n°.
(b) Abstraction of the corresponding periodic orbits in the original double-scroll sys-
tem.

Two Period-2 points X; and X, with 0<X,<X»<a. (a) Graph of 1-D Poincaré map 7".
(b) Abstraction of the corresponding periodic orbits in the original double-scroll sys-

tem.

Two Period-2 points X; and X, with @ <X;<X,<o0. (a) Graph of 1-D Poincaré map
', (b) Abstraction of corresponding periodic orbits in the original double-scroll

system.

Two Period-2 points X and X, with X;<a <Xj. (a) Graph of 1-D Poincaré map 7°. (b)
Abstraction of the corresponding periodic orbit in the original double-scroll system.
Three Period-3 points X;, X, and X3 with 0<X;<X3<a <S35 (a) Graph of 1-D
Poincaré map m°. (b) Abstraction of the corresponding periodic orbit in the original
double-scroll system.

Three Period-3 points X, Xz and X3 with 0<X;<a <Xp<X3. (a) Graph of 1-D Poin-
caré map . (b) Abstraction of the corresponding periodic orbits in the origi-
nal double-scroll system.

A general trapping region corresponding to (a,8,m9,m;) = (4, 4.85, -1/7, 2/7) and
u i (a) V,-portrait of Vo The snake A;,C;E;, intersects the spiral
FiW,D, 8 m,(F1B; ). which coincides with the set of discontinuous points of 77>
(b) Ilustration of 7(A A;, By E1,). The snake-like area m(A 4,, B, E,,) is actu-

ally an “infinitesimal” thin set located very near B4,
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Fig. 1

Lo=Ec(0)NU1
Li=Ec(P*)NU,
L2={XeU1:£(X) /U1}

A=LoNL,
B=L:NL2
C=E"(0)NU:
D=E"(P*)NU:
E=LoNL2

F={XeL2:£(x)/L2}
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