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ABSTRACT

A method of solving a class of linear matrix equations over
various rings is proposed, using results from linear geometric con-
trol theory. An algorithm, successfully implemented, is presented,
along with nontrivial numerical examples. Applications of the
method to the algebraic control system design methodology are
discussed.

1. INTRODUCTION

This paper discusses the solution of the equation
P(s)Q(s)=H(s) (1.1)

where P(s) € RI*™(s) and H(s)€ R;*¥s) are given, and @(s) is to be deter-
mined. Here R,(s) and Rp(s) will respectively denote strictly proper and proper
rational functions of s, with real coefficients. In particular, we will be concerned
with solutions §(s) having elements in Fp(s). Recently, necessary and sufficient
conditions for the existence of solutions on various rings have been derived.
Conditions for strictly proper solutions are obtained in [1], while [2] covers
stable, strictly proper solutions. (By stable, we mean the poles of @(s) are in
some ‘good’ region of the complex plane.) In [3], conditions for nonproper solu-
tions are given in terms of almost invariant subspaces. We extend the ideas of
[1] and [2], and derive conditions for proper solutions, both with and without the
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stability criteria. Along with each sufficient condition is an explicit state space
description of a solution &(s).

Next, we present an algorithm which checks the solvability ccnditions, and
if solvable, generates the state space description of @(s) menticned above. This
algorithm relies on state of the art numerical software [4], and does nat involve
polynomial or rational function manipulations. For the most part, it is based on
the results found in [5] and [8], and is simply a direct application of the
theorems presented here. Often times, when a solution exists, but is not stable,
the algorithm provides information that can be exploited to modify H(s) so that
a stable solution will exist. This nice feature is very useful in the application,
and is illustrated in an example.

The format is geometric (as in [7]), and consequently, the solvability condi-
tions require that a certain subspace, say ¥ (constructible from the data, ie.
P(s) and H(s)) be contained in another subspace, say V, (also constructible
from P and H). In light of the extreme sensitivity of the idea of exact subspace
containment, we introduce a measure of containment, m(W,V) which quantifies
(in a useful way) just how far away ¥ is from being contained in V. This notion is
applied to the Disturbance Decoupling Problem with Stability (chapter 5 in [7]).
and in turn provides a degree of appi‘oximate solvability of P(s) @(s)=H(s) bya
stable @(s) when no exact stable solution exists.

Finally, we discuss an aspect of the algebraic multivariable design
approach, [8] and [9], and indicate how our results may be incorporated in a
computer aided design of linear control systems. For various feedback
configurations, the algebraic methodology simultaneously yields a parametriza-
tion of all stabilizing compensators, and the corresponding achievable
input/output transfer functions. Choosing a compensator to obtain a desired
1/0 map involves solving equations of the form (1.1) on the ring of proper, stable
rational functions. Our techniques carry out this computation in the state
space, and generate a realization of the resulting compensator. The proposed
compensator would then be subjected to other design constraints, such as
robustness properties, to determine if it is indeed an acceptable controller. A
simple example is given to demonstrate this application.



2. CONTROLLED INVARIANCE
Consider the linear system described by

Z=Az+Bu (2.1)

with z(t) € R™ =: X, the state, and u(t) € R™ =: U, the control input. The con-
trollable subspace, ImnB+A(ImB)+ - +A®~}(ImB), will be denoted <4 |Im B>. In
some instances we will append to this system an output y(t) € R"=: Y given as

y=0Cz (2.2)

and let, (Ker C)n A~ (Ker C)n ---n (A""')"Y(Ker C) ,the unobservable sub-
space, be denoted by <Ker C|4>. .

Let V C X be a subspace. Then the following statements are equivalent (see
appendix for proofs); furthermore, any subspace V satisfying one of these condi-
tions, and hence all of them, will be called a controlled invariant subspace
(relative to the system described by (2.1)), and we will denote V as the set of all
controlled invariant subspaces of (2.1).

i) for all z, € V, there exists a continuous control input u:[0,=) - R™
such that with z(0) = z,, this control renders z(t) € V for all £=0.

ii) AVCV+ImB |

jiii) there exists a linear map F:X-U such that (A+BF)VcV. For a given

V. we denote all the F's that do this by F(V) ,and call any FERV) a
Jriend of V.
These definitions can be found in [1] and [7], along with more detailed analysis
of additional properties. It is easily seen, however, that (i) or (ii) imply that if V;
€Yand Vz € ¥, then V3:= V;+V, € V. This closure of ¥V under subspace addi-
tion implies that for any subspace K, there exists a unique subspace Vi satisfy-
ing
e) €Y,
b) cK
¢) fVeyV and VCK,thenVcC ¥k

[N N

For this reason, Vg is called the supremal controlled invariant subspace con-
tained in XK. A numerically efficient algorithm for computing Vi can be found in
[4]. This brings us to a useful lemma concerning Vx.

Lemma 1 Let K be any subspace, and define ¥ as the set of all Z, € X, such that
there is a continuous control ©:[0,») - B™ so that, with z(0) = z,, the resulting
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state trajectory remains in X for all t = 0. Then ¥ = V-

proof: By definition, Vg € ¥. For the reverse inclusion, note first that ¥ is a sub-
space. Also, since the condition holds at £=0, we must have ¥ € K. Nowlet 2, €
¥ and let «(-) be the control that keeps the trajectory in K. Let T20 and other-
wise be arbitrary. Define X, :=z(7T) and u(7) :=u(7+ T) for 72 0. Then w[0,») -»
R™ is continuous and with x{0)=x,, will render X(7)=z(7+T)€ K for all T2 0.
By definition then, X, € ¥. Vith X, =z(T) and T arbitrary, we get z(t) actually
remains in ¥, for all £=0. Therefore ¥ is controlled invariant, so that by the
supremal properties of Vg, ¥ CVx.

This is the cleanest characterization of V. just all the initial conditions that
can be held in K using a continuous control. Condition (iii) implies that the con-
trol need not be open loop —for any F € F(¥k), state feedback Fz will also work.

Next we address the stability issue, using the concept of stabilizability sub-
spaces, in much the same manner as [2]. First though, some notation: C, will
denote a symmetric subset of the complex plane, containing at least one point
of the real axis, and G, will denote its complement. When we use the terms sta-
bilizable, detectable, etc, we will mean relative to some predetermined (.
Ry ,(s)., and Ry p(s) will respectively denote stable, strictly proper rational func-
tions, and stable, proper rational functions. Finally, a continuous function
z[0,=) » R* will be called G, stable if L[2(t)] € R} o(s).

8. STABILIZABILITY SUBSPACES

Let V C X be a subspace, then the following are equivalent (see appendix);
also, any subspace V satisfying these conditions will be called a stabilizability
subspace, and we write V € ¥; where ¥; is the set of all stabilizability subspaces.

i) for all z, € V, there exists a G, stable control u:[0,=) > R™, so that

with z(0) = z,, z(t) € V for all =0 and z(*) is (; stable

ii) there exists a linear map F:X-+U such that (A+BF)VcV, and

o(A+BFly)cG,.
Note from (ii) that X is a stabilizability subspace if and only if the pair (A,B) is
stabilizable. Therefore, if (4,B) is stabilizable, we can apply (i) to initial condi-
tions of the form f{e;, ez, . ...en) where e; is the i'th canonical basis vector of
RE™. Collecting up each resulting G, stable z;(), and w (), we get X(s) € R}3™(s),
and U(s) € RJ™(s) such that

X(s) = (sI—A)"* + (sI-A)"' BU(s).
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The dual translates as; if (C.4) is detectable, then there exists Z(s) € RF3™(s)
and W(s) € Ky 57(s) satisfying

Z(s)=(sI-A)'+ W(s)C(sI-4)™. (3.1)
Again (i) implies that ¥} is closed under subspace addition, and hence for
any subspace K, there is a unique supremal stabilizability subspace contained in

K, which we will denote by ¥ k. Reliable computation of Vz k is discussed in [4].
The analog of Lemma 1 is then;

Lemma 2 Let K be a subspace, and define ) as the set of all z, €X, such that
there exists a C, stable control input 2 ('), so that with z(0) = z,, this control
renders z(t) € K for all £=0 and z(-) is G, stable. Then 0 = V7 x.

proof: Exactly like lemma 1, noting that u and x will still be (; stable signals. =

The next lemma uses (3.1) to relax the condition in Lemma 2 of baving to
verify that the state trajectory z(*) is G stable.

Lemma 3 Let VCX be a subspace and the pair (C,A) be detectable, and suppose
that for all z, € V, there is a C; stable input that resuilts in z(t) € Ker C for all
£¢=0. ThenV C Y Ker C-

proof: Let z, € V, and let u(-) be the §; stable input that keeps z(t) in KerC
for all £. Then taking Laplace transforms gives

- 8(s)=(sI-A)"Y(z, + Bi(s)) (3.2)
while detectability gives
(sI-A)1=2Z(s)-W(s)C(sI-A)™ (3.3)
with Z(s) and W(s) stable, strictly proper rational matrices. Substituting (3.3)
into (3.2) gives
2(s)=2(s)(z, + BL(s)) - W(s)CZ(s) (3.4)

where the last term is zero since z(¢) € Ker C for all £. With Z(s) and 4(s)
stable and strictly proper, we see that z(-) is a , stable signal, so by definition
of  above, %, € 0 = V; xr ¢ giving that V C ¥} gr ¢, as desired.

Consequently, under the detectability assumption, V,‘ Ker ¢ is all the initial
conditions that can be held in Ker C, using a G, stable control u(-).
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Before proving our main results, we need one simple result from linear alge-
bra.

Lemma 4 Let X, U and D be finite dimensional vector spaces, and suppose V C
X is a subspace, and E:D-+X and B:U-X are linear maps. Then, there exists a
linear map L:D~ U such that In{(BL+E)CV if and only if ImECV+ImB.

proof: - is obvious; for « , let {d,,dp, . . ., d5} be a basis for D. For eachi€s,
there exists a ¥y € V and ay; € U such that
Ed‘ =Y +Bug.

Define L as the linear map with action on D as Ld;=—u, for alli € s. Then
(BL+E)d;=v;€ Vforalli€s.

4. SOLVABILITY CONDITIONS
Theorem 1 Consider the rational matrix equation
C(sI-A)'BQ(s) = C(sI-A)"'E (4.1)

where CERT™™, AcR™™, BER™™, EcR™*® are given, and @(s) (of dimension
mxd ) is unknown. Then if M[J/] denotes all matrices with elements in some
given ring J, we have
i) there exists a @eM[R] solving (4.1) if and only if ImE < <Ker C|4> +
ImB.
ii) there exists a @€M[R, (s)] solving (4.1) if and only if ImE C Vir ¢
iii) there exists a Q€M[Rp(s)] solving (4.1) i and only if
ImE C Vier ¢ + ImB.
Furthermore, if (C.4) is detectable then
iv) there exists a QEM[R, ,(s)] solving (4.1) if and only if Im&' C V; kr c
v) there exists a QeM[R;,(s)] solving (4.1) if end only fif
ImE € V; ger ¢ + ImB.
proof:
i) - We must bave C(s/—A4)"!(BQ—FE) = 0, which implies that there is a
@:R% -+ R™ with Im(BQ-E)c <Ker C|A>. By Lemma 4, then
ImE < <Ker C|A> +ImB.»

« Construct, by Lemma 4, a QER™¢ so that Im(B@-F) < <Ker C|4>.
Then this & works. =
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iv)
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- Ve have a strictly proper, rational @(s) solving
C(sI-A)'B(-Q(s)) + C(sI-A)'E =0

so that for all g €R? we get
C[(sI-A)"B(-Q(s)q) + (sI-A)"'Eg ]E 0.

This implies that for any initial condition in ImE (here just Eg), there
is a continuous control, namely the laplace inverse of —@(s)q, that
holds z(t) € Ker C for all = 0. .By Lemma 1, ImE C Vger ¢.

« Choose any FE€F{ Vg:r ¢) and verify that
Q(s):= —F(s/-A-BF)™E
is a solution, since C(s/—A-BF)™'E =0 for all FEF(Vierc). =

-+ Since @(s) is a proper rational matrix, it can be written as
Q(s) =L + U(s), where LeM[R] and U(s)eM[R,(s)]. Then

C(sI-A)'B(-U(s)) + C(sI-A)"(~BL+E) = 0.

Just as in (ii), this means that all initial ‘conditions ih Im(=BL+E) can
be held in Ker C using a continuous input. Hence, there exists an
L:R%-+R™ such that Im(=BL+E) C Vi ¢, so that using Lemma 4 gives
ImE C Vgor ¢ + ImB. '

« Construct LER™*? so that Im(BL+E) € Vgr ¢ and let FEF(Vir ¢)-
Then, verify that

Q(s):= =L — F(sI-A-BF) Y (BL+E)

is a proper solution. s

-+ Identically to (ii), using detectability and Lemma 3 instead of
Lemma 1.s

« Choose Fe€F(V jrc) so that a(A+BF|V;&' Q) €G- Then

Q(s):= =F(s/—-A-BF)™'E is a solution, and since ImE CV] g ¢, it is
also stable. Note that detectability is not used in this direction. »
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v) - Similar to (iii), using Lemma 4 and (iv). *

« Choose LER™® so that Im{(BL+E) C V; sur c. and let FEF(V] kr c)
with o(A-!-BFI%-.m ) €C. Then Q(s):= =L — F(sI-A=BF)"W(BL+E) is

a solution, and also is stable. Again, detectability is not used. =

5. MEASURE OF SUBSPACE CONTAINMENT

Let W and V be two subspaces of R®, and let S be the orthogonal comple-
ment of V. Also, let U; be a real matrix (with n rows) whose orthonormal
columns span ¥ and let U be a real matrix whose orthonormal columns span V.
Then if z=v +s with veV and s€S, we get that (/—U2Uf)z =s. Intuitively then,
we define the measure of containment of W by Vas

m (W, V):=supremum (I -UUD)z|

which can be rewritten as
m (W, V) =l(I-UUD) U\l

Here || is the Euclidean norm in R®, and || is the corresponding induced norm
on linear maps. Note that 0=m(W,V)<1 for all subspaces # and V, and that
m(W,V)=0 if and only if ¥ C V. The above ideas are found in [10], where m is
referred to as a distance between subspaces (the word distance carries an impli-
cation of symmetry, which this measure does not have, hence the name change).
The usefulness of the definition though, is apparent in the following lemma.
Lemma 5 Let E:R%-+R™ be linear, (£ will also stand for the matrix representa-
tion relative to the canonical basis in R% and F™), and let V be a subspace of R",
with m(]m.E. V) =46. Then there exists two linear maps, £, and E, satisfying

a) E,+E;=E

b) ImE,cV

c) JE:=S6iE]
In imprecise words, E can be broken into two parts, one which remains in V, and
one whose size is in some way related to 6 .

proof: Let V be a matrix whose orthonormal columns span V and define
E;:=VVTE and Eg:=(/-VWVT)E, thus taking care of (a) and (b). Now

|Eo):= supremum (I =VVT)Ez]



ssggremum (7-VVT)e|
=|El m (/m E.V)
=4 EE' .

For an application of this measure, consider the linear system
t=Az+Bu+Eq-
y=Cr

where g:[0,= ) - R? is a disturbance. It is well known, [7]. that using state feed-
back, we can stabilize the system and decouple the disturbance from the output
if and only if (4,B) is stabilizable and ImE'C YV, Kar C-

Suppose that (4,B) is stabilizable, but
0<m(1m. E,V;J@rc) =:6

so that the condition ImE C Vj gr ¢ is not met. By using a stabilizing friend of
Voxerc(aF € F(V; xer ¢) such that not only is the restriction of A+BF to Vi mwrc
stable, but all of A+BF is stable), can we expect a reasonable degree of distur-
bance rejection? As one would hope, the answer is yes, provided ¢ is small
enough. To see this, decompose £ into E, and E as in the lemma, and note that
for F a stabilizing friend of V; sr ¢, We get

‘Ce(A+BF)tEE=I C'e(Ad-BJ")tEl + &(Ai—BI"’)t Ezl

=| Ce(4+BFX B} since Im B, C Vy gur c CKer C

<] CeU+BFI ] 5 | E]

sMe™MS|E]
for some M,A=0, since Ce(*BF)} is exponentially stable. If 6 is small (say 1072
or 1073), this can indeed be a useful amount of disturbance rejection. Actually,
a tighter bound than §] E'{ will be } E,}, which is easily calculated. Choosing F so
as to minimize some norm of Cel4*BF¥ £ is a harder problem; here we have sim-

ply shown that with a certain F implemented, slight variations in £, which may
pop ImFE out of V,' %r ¢, do not have drastic consequences.
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8. ALGORITHM

The procedure for carrying out the results of Theorem 1 is straightforward,

and a rough outline is listed here.

i)

)

iii)

PeRI™(s) and HeR;*¥(s) are placed side by side as
[P@)ie)]=: Terpxmras)

end T is realized as C(s/—-4)"'G with CER™" A€eR™™, and
GeR™*(m+d) There is no restriction on the minimality of the realiza-
tion, however if concern centers around the existence of a stable solu-
tion, then we must have the pair (C,A) detectable. Since there are
straightforward methods for obtaining observable realizations, this

poses no problems.
GeRrn*m+d) jg partitioned as
[BE E ]:= G

so that BER™™ and EcR™4, Now P(s)=C(s/-A)7'B and
H(s)=C(sI-A)"'E, hence Theorem 1 is applicable.

Via [5] and [8), matrices V; xer ¢ and Vi ¢, whose columns span Vg kerc
end Viurc. are obtained using the data A, B, and C from steps (i) and
(ii). In this proces’s. other important quantities are calculated, namely,
a list of the transmission zeros of the triple (4,B,C). and matrix
representations of FI‘S’ and F|,»(respectively denoted W and W),

which are the restrictions to ¥ mrc and Virc thet feedback friends

must satisfy.

Two new matrices are formed by appending the m columns of B to
both V sr ¢ and Vi ¢. This looks like

Y; orc:= [V;.xcrci B]
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L ' d ! .
Yxerc==[vxarc§B]

Hence span Y, xor = Vg er ¢ + ImB, and likewise for Yzr c-

Calculate the following containment measures, and verify if any are

zero.
al) m(ImE,spanVy grc)
a2) m(ImE,spanY; grc)
b1) m(ImE,spanVirc)
b2) m(ImE,spanYger c)

Assuming at least one of the above is zero, generate the necessary
matrices for the solution @(s).

. Friends of V;,I{src and Vgrc are computed using the data from
(iii), riamnely as a real mxn matrix, F must satisfy

depending on whether V7 xar ¢ (cases (al) and (a2)) or Vgerc (cases
(b1) and (b2)) is to be made closed loop invariant. The additional
freedom in choosing F can be used to adjust the spectrum of
A+BF "above" V*. See Prop. 4.1 on page 92 of [7] for details.

e Inthe case of (a2) or (b2), construct L so that Im(BL+E)CV  gerc
or Im(BL +E)C V;(nr c-

With F, and L if necessary, so determined, a solution is given by the
results in theorem 1.

Immediate model order reduction on the solution Q(s) is possible. For
example, consider case (b2), as all the other cases are handled simi-
larly.

Since Im(BL+E) C Vir ¢, and (4 +BF) Vier ¢ € Viar ¢, @ basis chosen for
Vier ¢, and augmented with a basis for some S such that Vierc®S =X
will result in the following matrices;

F=[F1Vo1"'is] A+BF=[‘261 ’};ﬂ BL+E=[%’]
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giving a solution @(s)= =L = Fl,»(s/ ~A4,;,)™} B,, which has order equal
to dim( Vker ¢)-

Furthermore, if the transmission zeros of (A.B,C) are distinct, and
the basis vectors for Virc (and columns of Vierc ) are just the closed
loop eigenvectors of Virc, then Fly» will just be W, (hence F need not
even be calculated) and 4,, will be diagonal (or contain 2 x 2 blocks for
complex roots) with the spectrum of A+BF IVx’n c appearing on the diag-

onal

Remark: Let H; denote the i'th column of A (s), and let J denote one of the
following rings,

Rp(s) . Ro(s) . Rgp(s) ' Rp.u(s)-
Then there exists a @(s)€J/™*?® solving P(s) @(s)=H(s) if and only if for
each i€d, there is a @(s) € J™*! solving P(s) &(s) =H;(s). Hence, if a
specific H(s) is desired, it is best to solve column by column, to more finely

determine the problem entries of H(s). This amounts to checking the con-

tainment measures of part (iv) separately for each colurnn of £.

7. APPROXIMATE SOLUTIONS

The results of section 5 can be used in conjunction with the algorithm in
section 6 so that under special circumstances, we can obtain a

Qa(s) €M[Ry o(s)] (or MR, p(s )] ) that makes
P(s) Ga(s)—H(s)
small, when none of the containment measx.n'es are zero.

Suppose that 0<m(ImE,V; xrc¢ )=:6, and (A.B) is stabilizable. In general
it will be hard to conclude any structural properties of the pair (A,B), since B is
merely a portion of the input matrix of a realization of [ P(s)! H(s) ]. If how-
ever, H(s) is stable, and the unstable poles of P(s) are realized minimally,
(A,B) will be stabilizable. This can be done easily if all of the unstable poles of
P(s) are simple poles, using a Gilbert realization. We note that if both P and A
are stable, then 6(4) C G, and (4,5) is trivially a stabilizable pair.

With this in mind, consider any stabilizing friend F' of V7 xrc. Then
@, (s):=—F(sI-A—BF)™E
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is an approximate solution in the following sense.
Certainly
H(s)=P(s)Q(s)= C(sI-A-BF)"'E.

Taking laplace inverses, noting that A+BF is stable, gives, for some M,A>0, (see
section 5)
[LYH-PQ)! = He™ 6| B
which leads to
. OMIE
supl(H-PQ)(Jo)l = ===

Unfortunately, since Im FE is not contained in V; Kr ¢+ the model reduction
as described in part (vii) of the algorithm does not apply. Consequently, Q. (s)
has order equal to », which can be quite high. °

For the proper case, let E; be the orthogonal projection of £ onto
V7 xer c* Im.B, and calculate L so that Im (BL+E,) C V; sar c and let F be any sta-
bilizing friend of V; grc. Similar reasoning then yields that

@(s):=-L-F(sI-A=BF)"Y(BL+E)

is an approximate solution.
1. ALGEBRAIC MULTIVARIABLE DESIGN METHODOLOGY FOR STABLE PLANTS

1.1. REVIEW OF THE KETHOD

In this section, we give a short review of the results for design with stable
plants. The details and proofs can be found in [8].

Consider the feedback systern.‘ called £,(P,C)

ug + Vi1*1L e o Y2
C = P -
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with the assumption that P(s)€ R;*™(s) and C(s) € Rg**"(s). These two assump-
tions imply that .h.lx}‘ P(s)C(s)=0, and that I +P(s)C(s)cM[Ry(s)]. Conse-

quently, dropping the s dependence for clarity, (/ + PC)7! is a well defined ele-
ment of M[R,(s)], and we define @(s):= C(I+PC)~'. Note that if C(s) is
(strictly) proper, then @(s) is (strictly) proper also. The following are useful
identities.

I-PQ=(I+PC)?
I-@P=(I+CP)™
Since @ is proper, (I - PQ)! €M[Ry(s)]. and we can solve for C(s) in terms of
@(s), namely
C=Q(I-PR)'=(I-QP)'Q
From here, we see that @(s) proper implies that C(s) is proper, and Q(s)
strictly proper implies that C(s) is strictly proper.
Writing loop equations yields
P[C(u,-yz2) +uzl+dy =¥z
C[=-P(y +u2)—ds] +u1=v1
—P(Cey+uz)=d, +u =€,
Cl[—(Pea+dy) +u)] +uz=ez

which after some algebra, are rewritten as

Y (] -QP -Q u

yz| = [PQ P(I-@QP) —(I-PQ) ] Z': or just y=Hpu
and .

e - - - A= u,
[e;]=[1 2R P(1=-8P) (1_50)]:? e=Hy,u

We will consider only closed loop systems with proper transfer functions between
exogenous inputs and the outputs and error signals. Using the earlier fact relat-
ing the properness of C(s) and @(s). it is apparent that all closed loop transfer
functions are proper if and only if C(s) is proper.

Now to discount infernal instabilities in C(s) and P(s), suppose that both C
and P have underlying state space descriptions that are both stabilizable and
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detectable. Then we define Z,(P,C) to be (, stable if the rational matrix

H, €M[R, p(s)].
The main design parametrization theorem for stable plants P is

Theorem 2 Suppose P(s)€M[R, ,(s)] and is connected with a C(s) €M[Ry(s)] in
the Z,(P,C) configuation. Then

i)  Q(s)CM[R,5(s)] i and only if C(s)cM[Ry(s)] and E(P.C) is G
stable.

i) Q(s)cM[R;,.(s)] if end only if C(s)e€M[R,(s)] and I,(P.C) is G
stable.

Our application is based on the next lemma.

lemma 8 Given P(s)€M[R;(5s)], let Hy,, denote the set of all achievable
input/output maps, Hy,,,(s) (between u, and yY2), with the restriction that the
resulting Z;(P,C) system be C; stable. Then

i) using strictly proper compensators C(s),
Hyu =1 PQ: Q(s) e MR, ,(s)]}.

il)  using proper compensators C(s),

Hygu,= {PQ:Q(s) € M[Ry.p(s )13

B.2. APPLICATION AND DESIGN OF COMPENSATOR

The boxed statement surnmarizes an cbvious application.
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It is possible to achieve a desired input/output response, F(s)= Hyy,(s) witha
overall stable closed loop system, if and only if there is a proper, stable Q(s)
satisfying PQ = H. The theory in sections 2 through 8 specifies exactly when this
bappens, and gives a constructive method of obtaining the solution Q(s). Given
a stable solution, it is only a matter of building C(s)=(/-QP)'@ to render an
1/0 response H; . (s) equal to H(s).

Next, we study a very easily obtained realization of the required compensa-
tor C(s), given realizations for the stable plant P(s). and the stable solution
Q(s), which satisfles P@ = H. We begin with a simple lemma concerning the sta-
bilizability and detectability of a specific interconnection of two linear systems.

Lemma 7 Let Rp:={Ar.Br.Cr} be a realization of T(s) e Rj%™(s) with o(4r) G,
and let Rg:={4c.Be.Co.De} be a stabilizable and detectable realization of
G(s)€ R}*(s). Then Re:={4c,Be.Ce.Dc . defined as,

Ac: BGCT ]

Bng ArFBrDc Cr

| Be
Bc:= lBTDc]

Cc: [Cc DGCT ]

De:= [.Dc ] :
is a stabilizable and detectable realization of

C(s):=GU-TG)'=(I -GT)™'G

proof: It is straightforward to show this is a realization of C(s) simply by con-
sidering the feedback configuration

+

36T
-
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and writing down the obvious state equations.

For stabilizability, let F be such that o(4g+BcF) Gy, (by hypothesis, such
an F exists), and then define

Fe= |F! ~¢r|
Then o(Ac+BcFe)= o(Ag+BcF)Vo(Ar) € G, so by definition, (Ac.Bc) is a stabil-
izable pair.

For detectability, let L be such that o(4g+LC¢) C Gy, and choose

o] )

Then o{Ac+LcCc) € Cy. so (Ce.Ac) is a detectable pair.=

Now back to our situation: Let Rg:= (4¢.Bq.Cq.Dg) be a realization of Q(s).
and Rp:= (4p.Bp.Cp) be a realization of P(s). In this application, both P(s) and
Q(s) are stable, so that we might as well take 0(4g) € C; and o(4p) € G;. Trivially
then, Rg is both stabilizable and detectable, hence applying lemma 7 gives that
R, defined by

= 4 BqCp
Ac:= LB}:»C'q Ap+BpDoCp
= | Be
Bc.- {BPDQ]
ch:= [CQ DQCP]
Dc:= [DQ]

is a stabilizable and detectable realization of C(s), which is exactly what we
need. Recall C(s) need not be stable, however, in addition to the properness
requirement, the other assumption on C is that it have no unstable hidden
modes. This particular realization has none, and hence can be used to build
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C(s). successfully completing the design.

8.3. LIMITATIONS

An important limitation on Hy,, is imposed by the C, Smith McMillan zeros
of the plant P(s).

Lemma 8 Suppose P(s) is stable, and C(s) is chosen so that I;(P,C) is stable.
Let H(s) denote the input/output transfer function relating yz to u; and
assume H(s) is nonsingular. Note that by lemma 8, we must have
P(s)@(s)=H(s) for some stable @(s). Then

Z[P(s)InC, cZ[H(s)]

where Z[ - ] stands for the Smith McMillan zeros of the argument.

proof: Since H(s) is square and nonsingular, we know that z € Z[H(s)] if and
only if 2 is a pole of H!(s). Now let (D.Ny;) be a left coprime factorization of
P(s) (over the ring of polynomials, E[s]), and let (Dp,Ng) be a right coprime
factorization of &(s). Then

and since H(s) is nonsingular, we get
(NuNg)™ = DFE D3,

Suppose A is a 'bad’ (A € G, ) Smith McMillan zero of P(s). Then with (D,,,Ny) left
coprime, Np[s] must lose rank at s =A, so that (NyNg)™? hes a pole at s =A.
Now D! and D! have no poles at s =A since @ and P are stable. Therefore A~
must have a pole at A, otherwise equality in (7.1) will not hold. »

8.4. MODIFYING H(s)

Suppose H(s) is square, nonsingular, and diagonal, reflecting a desire to
decouple the 1/0 response so that the i'th entry of », affects only the i'th entry
of ¥2. In this case, the Smith-McMillan zeros of H are easily known; they are just
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the zeros of each scalar entry kg of H(s).

Hence, using the column by column procedure mentioned in section 8, one
can systematically add combinations of the unstable transmission zeros to the
numerator of hy; until a stable solution is reached. This procedure will be

displayed in the design example calculation found in section 11.3.

9. CONCLUDING REMARKS

In this paper we have discussed the application of simple ideas from linear
geometric control theory to solve equations of the form

P(s)@(s)=H(s) (8.1)

for @(s) belonging to various rings, most notably, the ring of prbper. stable
rational functions. The complete dual to this problem is worked out in [11],
using (C.4) (or conditioned) invariant subspaces. Also of interest is the solution
Q(s) of the equation

P(s) Q(s) T(s) = H(s) | (0.2)

given strictly proper P,T, and H. Various aspects of this problem are discussed
in [3], [12] and [13]. Presently, we are working on conditions for stable solutions
@(s), and the appropriate software for the computation.

We have applied our techniques to the algebraic approach to control system
design for stable plants. Extensions to unstable plants using the solution to (9.2)
and the approach of [9] are being worked out.

We also addressed the numerical sensitivity of our solution technique for
solving (9.1), and when an exact solution was not possible, we gave an “approxi-
mate" solution and the degree of the approximation. The question of approxima-
tion is an interesting one, and has connections with matrix interpolation prob-
lems [14].
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11. APPENDIX
11.1 PROOFS
The appendix is devoted to proving the equivalences of (i), (ii), and (iii) in

section 2, and (i) and (ii) in section 3. For the most part, these proofs follow
along the lines of [2], and [7].

Before proceeding with the equivalences for controlled invariance, we need
this next lemma.

lemma 2 Let X be a normed, finite dimensional, real linear space, and let VcX
be a subspace. Suppose z:[0,)-+X is differentiable (one sided at 0), and
z(t)e Vfor all £ €[0,). Then z(t) € V for all ¢ €[0,).

proof: Let P be any linear map on X » R with V=KerP. Then f (¢ ):=P(z(t))=0
for all £. By chain rule, noting that P is linear, we get P£(¢)=0 for all ¢ s[o o),
sothat z(t)cKerP=Vforallt.=

Onto the equivalences:

(i) - (ii) Let z, €V and let v (-) be the control that holds z in V. With u
continuous, z is certainly differentiable on [0,=). At zero, then,
% = Az, + Bu(0), so that Az, € V+ImB. With z, arbitrary in V, (ii) follows. »

(ii) - (iii) Let VO W =X and let {v,,vz, ..., v} be a basis for V. Then for
eachi€l, thereis as; in Vand a u; in U such that
Ay =s; + Bu;.

Define F as the linear map with action on V given by
Py =—uy

and action on ¥ can be specified arbitrarily. Then (4+BF)v; =s; €V for all
1€l as desired. s

(iii) » (i) Let u:= Fz, for some F €F(V), then
z(t)=eW+BRiz (11.1)

and if z, €V, we get z(t) € V for all ¢, since (A+BF)VCV.»
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The equivalences in section 3 are a bit harder to verify as one would expect. In
fact, to make our job easier, we will slip in between (i) and (ii), 2 new equivalence
(i"") which reads as,

(i") a) F(V) is a nonempty set.

b) There exists a linear map G:U -+ U such that Im(BG)=ImB NV and
Bv €V will imply that v €Im G.

¢) Furthermore, if F, €F(V), then A+BF, and BG, with G chosen as
above, appear as (with a basis in ¥ and some S, such that VoS =X)

A+BF, = [_5‘ %;:] BG=[(Bg)‘]

and the pair (4,,, (BG),) is stabilizable.

We will show the equivalences by proving (i) » (i) = (ii) » (i), but we need a
linear algebra result, namely Lemma 10.

Lemma 10 Consider finite dimensional linear spaces X and U, a linear map
B: U =X, and a subspace VCX. Then there exists a linear map G:U-U such
that Im (BG)=ImB NV and if v € U such that Bz €V, then v €ImG.

proof: Choose TcCX, and WcX so that (ImBnV)&T=V and
(ImBnV)®W=ImB. Then it will be possible to choose U, and U; such that

U,©@U;©Ker B=U, and appropriate base vectors in X and U, so that B appears
as

o

]
[SY=Y=-1
o~00o
cocoo

Then check that

0
i
oo~
~Oo
coo

does the job. s
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Now, back to the equivalences:

(1) - (i)
e)

b)

This is obvious. since (i) certainly implies that V is controlled
invariant, and hence has at least one friend.

Simply apply Lemma 10: also note that Lemma 10 really is
independent of our problem.

For clarity, let {:=dim(V), then identify V=R, and S=R"", so
SO®V=X=R". If z€X, then there exist unique veVcX and

s €S CX such that 2z =v +s, and we write this equality as z = {g]

Let v, € B* be arbitrary, and define
v

Under the action of a control u(:), with z(0) = z,, we can decom-
pose the state trajectory z(t) as

== [2 )]

Now, for a contradiction, suppose the pair (A4,1.(BG),) is not stabil-
jzable. Then there exists a A€(,, and ¢€ R, ¢+#0 such that

fT{U-Zu (30)1} =0
so that
ETA=¢TA4, . €7(BG)=0. (11.2)

Since z, is in fact an element of V, by hypothesis of (i), we can find
a continuous control u(-) that makes z(') a C, stable signal, and
keeps z(t) €V for all £20. In terms of v(t) and s(t), we need s =0
end v (-) must be C, stable. In X, the trajectory satisfies

£ =Ar + Bu
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or for any F of appropriate dimension
& =(A+BF)z + B(u —Fxz). (11.3)

Pick F = F, € F{(V), then adapted to our basis, (11.3) looks like

ol [ ]l ote-nle) @19

Rearranging (11.4) yields

sfe-nfs) = [ 2] (119

Using (b), there is a Z(-) such that
Blu(t)-F, ”g)]] = [(Bg)‘.]ﬁ(t), (11.8)

for all £=0. Combining (11.6) and (11.4) means that v(¢) satisfies
v=4,v+(BGHTZ , v(0)=v,. (11.7)

Premultiply this by £7, the constant vector from (11.2), to obtain
Q5T Y= (T
r7alid) =A(¢"v).

This then integrates to
£Tu(t) =eM ¢Tv,. (11.8)
Since ¢ # 0, we can choose our v, € ¥, so that the right hand side of

(11.8) is not identically zero. However, this will result in a con-
tradiction, because we know that v(t) is made up of exponentials
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from C,;, and the right hand side is an exponential in (. There-
fore, (41.(BG),) is a stabilizable pair. s

(i") » (ii) Since (4,,,(BG);) is a stabilizable pair, there exists a
L: V- U such that

U(Zu +(BG)1L) C Cg.
It is easy to verify that

F::F.+G[L§o]

is a friend of V and that o(A+BF|y) C (; as desired.

(ii) » (i) Let the control u be u(t):=Fz(t), where F satisfies the
hypothesis of (ii), then the trajectory will satisfy

z(t)=eU+BFz

Like (11.1), for all z, € V, we get that z{t) € V for all ¢, and here, since
A+BF is C; stable on V, z(t) is Gy stable. s

Remark: The notation (i'"*) for the added equivalence is not without reason.
Note that in going from (i) = (i""). u() being G, stable is not used. Hence,
we do not need it. Therefore we are led to formulate (i), fitting between (i)
and (i"'), as
(i’) For all z, in V, there exists a continuous control u(-), such that
with z(0)=z,, z(t) € V for all t =0 and z(-) is Gy stable.

Certainly then, (i) = (i') = (i"") = (ii) » (i), so that this is indeed equivalent.

11.2 COMPUTATIONAL CONSIDERATIONS

It is apparent that our ability to solve these rational matrix equations
hinges precariously on our ability to compute the subspace Vierc- In [5], the
procedures for calculating Vier ¢ are discussed, as are the numerical difficulties
that plague the computation. These problems of course play a role in our com-

putations too.
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For instance, computing Vi ¢ basically involves solving a certain general-
ized eigenvalue problem

Lv =2

where in this case, M is singular. In this application, the set of generalized
eigenvectors is used to calculate basis vectors for Viurc. The corresponding
generalized eigenvalues are the subset of 6(4+BF) that is fixed for all friends F
of Vir c. and in fact are the transmission zeros of the triple (4,8,C).

Suppose A is a repeated generalized eigenvalue, say multiplicity m, with
only 1 generalized eigenvector (could generalize this to some I <m, but the
point being made will be the same). In order to completely determine a basis
for Vire, Wwe must calculate the generalized principle vectors, namely vectors
Y2... U that satisfy the recursive condition

(L -XM)v; =NMy;—,  i=2,,m v;:=v.
This computation is difficult and is a source of error. More importantly, this

situation means that (s/—(4+BF),-)™! will have a nonsimple pole at s=A for

every friend F of V°. This interesting fact implies that many rational matrix
equations will probably lead to this situation, namely those that necessitate a
nonsimple pole in the solution @(s).

For example, consider

= +1 - 1
PO = vy O

which is solvable by inspection. A typical realization will be

A = diag(-1, -2, =3)
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It is trivial to show that -1 is a repeated transmission zero of the triple (A.B.C).
but has only one generalized eigenvector. The generalized principal vector must
be determined to obtain a basis for Vgrc and consequently complete the solu-
tion.

On the other hand, the computation in Lemma 4 is straightforward, and is
easily done using the subroutine MINFIT found in [4].

DATA:

« [Ee€R™d K BecR'*™; matrix representations of the maps £ and B,
relative to basis sets chosen in X, U, and D.

. V€R™; a matrix whose columns span V.

PROCEDURE:
«  using MINFTT, solve for ¥ € RW*m)? that satisfies
: [VB]W=E
« by result of the lemma, this will have an exact solution W. Partition
this solution as .
| N ]
W= [ =L

where L € R™*¢, and this is the matrix represeﬁtation of the desired

map L.

The measure of containment, m(#,V), as defined in section 5, is readily cal-
culated using 3 singular value decompositions, one each to determine U, and Uz
and one more for the evaluation of the norm. Using single precision, with the
pumber of rows in U, and Uz varying between 4 and 30, exact containment is

characterized by a measure of roughly 1078,
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11.2 NUMERICAL EXAMPLES

The following examples illustrate nearly all the facets of the paper. First,
define P(s) as

4 8 0
(s +2)(s +4) s+5
0 3(s -2) S

(s+1)(s+5) s+8

5(s —3) -1 10
(s+3)(s+5) s+1 (s+2)(s+7)

and let

20 18 7

H(s) = diag (s+4)(s+5) ' (s+3)(s+B) ' (s+R)(s+3.5)

Suppose that a stable (here Gy will be the open left half plane), proper solution
Q(s) is needed, at the possible expense of modifying H(s) as outlined in section
8.5. Proceeding with step (i) and (ii) of the algorithm, we use a simple Gilbert
realization to obtain

A = diag (-2.0,-2.0, ~4.0,-5.0,-5.0,-5.0, -1.0,-6.0, -3.0, -3.0, -7.0, -3.5)

0 0 0.888
-1.41 0 0
0.448 0 0

0 1.395 0
-4.47 0 0

B= 0 -2.13 0

0 1.569 0

0 0 -1.78
-3.87 0 0

0 0 0

0 0 1414

0 (o] 0

-141 0 -448 0 0 0 0
0 0

, 0 =245 0 0
0 387 0 -141-216

n
Opn
oNe
o
o
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0 0 207
0 0 0
-448 0 0
-43 0 0
0 0 0
F=|-06 0 0
0 0 .0
0 215 0
0 o0
0 -245 0
0 0 0

0 0 216

so that P(s)=C(sI—A)"'B and H(s) = C(s[-A)'E.
In the process of calculating the basis vectors for ¥y xerc and Virc, the
transmission zeros of the triple (4,5,C) are found to be

2.57
-1.07+;0.839
-1.07- g0.839

-2.53
-3.00
-3.80

-4.04
-=5.00
—6.89

The containment measures for a stable solution are

m(ImE.V; xer c) = 0.445
m(ImE,V; gor ¢+ ImB) =0.083

while dropping the stability restriction yields

m(ImE,Vier ) = 1.67%x 1078
m(ImE, Vi ¢ + ImB) =2.00x 107¥

This leads to two conclusions: first, a stable solution does not exist, and
second, a strictly proper one does. Adding the unstable transmission zero to
some or all of the diagonal entries of H(s) should take care of the stability
requirement, however if no poles are added to H({s), then the relative degree of
each nonzero entry of H(s) will decrease by one. Intuitively, strictly proper

solutions will no longer exist, but proper solutibns will.

Indeed, the column by column procedure reveals that the unstable zero at
s=2.57 must be added to each, hence we modify H(s) to be

- 8(s —2.57) 7(s ~2.57) 3(s —2.57)
H(s) = diag (sf4)(s+s) ' (S:S)(s+6) - (s+§)(s+3.s)
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Consequently, the matrices B,C, and E change and the new containment meas-
ures are

m(ImE, V; yer c) =0.528

M (IME,V; jor o+ IMmB) =5.48x 1078,

m (ImE, Vger ) =0.192

The intuition and subsequent modifications were correct, and while now there
are no strictly proper solutions, a stable, proper solution is available. The solu-
tion @(s) is Bth order, and a realization is

Ao= @.,[[ L3 o8, ]-6987 -2.520, ~4.039, ~5.000, ~3.000, ~3.500 |

0854 =-0.0319 0.163
0487 -0.572 0.570
-0.558 0675 =0.003050
Bo=|-0588 0730  —0344
@*| 4185 -0.0628 0.0768

-48i5 0 0

0 1.820 0

o o 0.724

-0.755 2.304 -1.088 -0.588 0.245 0 0 0.339
Co =|—0.788 ~1,508 —0.0868 —1.240 -1.670 0 0 0.452
=3.058 3.7189 0.0432 38.007 4.815 2.201 -4.815 -0.885

02887 0 0. 800
Dg=}]1333 0
-0.800 1.400 0
Vith state space realizations available for P(s), H(s), and @(s), it is trivial to ob-
tain a realization for P@ —H and verify that the impulse response is identically

Zero as we expect.

The second example is similar, but we carry out the compensator design.
Let the stable plant P(s) be

2 2
s+1 s+4
1 4
s+2 s+3
and the desired 1/0 map
10 12

H(s) = diag (s+2)(s+5) ' (s+3)(s+4)
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Right away, we notice that every element of H(s) has higher relative degree
than every element of P(s), so that a strictly proper solution seems feasible.
Again, matrices 4,B,C, and £ are obtained, and the transmission zeros of
(4,B,C) are ‘

-2.00
-2.13
-4.00

—4.54
=5.00
There are no unstable transmission zeros, hence V; grc = Vkorc. All of the con-

tainment measures are found to be zero, and the following is a stable, strictly
proper, S5th order solution.

Ag = diag (~4.535,2.131,-4.0,-2.0,-5.0)

-2.138 -5.279
2.945 0.1808
0 4.546
2528 0
3.789 o]

c, =] 52 060415279 0 6279 ]
©~]|-07893 -1.148 0 -1.320 -0.6788 ]

A simple 4th order realization of P(s), coupled with the results of section 8.3
yields the following Sth order, strictly proper compensator.

—4535 0 0 0 0 8024 3.024 5279 1058
0 -2131 0 0 0 —4.1685 —4.165 —0.1900 -0.3818
0 0 -400 O 0 0 0 4548 -0.083
0 0 0 -200 0 3572 3572 0 0
Ac=] 0 0 0 0 -—500 -5.358 -5358 O 0
~7.466 0.9818 -7.448 0 -7.466 -100 O 0 0
1130 1.821 O 1886 1244 O —400 O 0
-5.279 06841 -65279 0 ~=5279 0 0 -200 O
1.508 2.292 2639 1760 O 0 0  -3.00
-2,139 -5.279
2645 0.1809
0 4546
2528 0
Be=| 379 0
0 0
0
0 0
0 0

c.=| 5278 -06841 5279 0 5219 0°0 0 0]
c=]|-07993 -1.146 0 -1.320 -0.8788 0 0 0 O]
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Used in the Z,(P.C) configuration, this compensator will render the overall
closed loop system stable, and the 1/0 map between u; and yz will be # (s).
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