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ABSTRACT

A method of solving a class of linear matrix equations over
various rings is proposed, using results from linear geometric con
trol theory. An algorithm, successfully implemented, is presented,
along with nontrivial numerical examples. Applications of the
method to the algebraic control system design methodology are
discussed.

1. INTRODUCTION

This paper discusses the solution of the equation

P(s)Q(s)=H(s) (1.1)

where P{s) e RS*m(s) and #(s)e R5*d(s) are given, and Q(s) is to be deter
mined. Here R0(s) and Rp(s) will respectively denote strictly proper and proper
rational functions of s, with real coefficients. In particular, we will be concerned

with solutions Q(s) having elements in Rp(s). Recently, necessary and sufficient
conditions for the existence of solutions on various rings have been derived.

Conditions for strictly proper solutions are obtained in [l], while [2] covers
stable, strictly proper solutions. (By stable, we mean the poles of Q(s) are in
some 'good* region of the complex plane.) In [3], conditions for nonproper solu
tions are given in terms of almost invariant subspaces. We extend the ideas of

[1] and [2], and derive conditions for proper solutions, both with and without the
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stability criteria. Along with each sufficient condition is an explicit state space

description of a solution Q(s).

Next, we present an algorithm which checks the solvability conditions, and
if solvable, generates the state space description of Q(s) mentioned above. This
algorithm relies on state of the art numerical software [4], and does not involve
polynomial or rational function manipulations. For the most part, it is based on
the results found in [5] and [6], and is simply a direct application of the
theorems presented here. Often times, when a solution exists, but is not stable,
the algorithm provides information that canbe exploited to modify H(s) sothat
a stable solution will exist. This nice feature is very useful in the application,

and is illustrated in an example.

The format is geometric (as in [7]), and consequently, the solvability condi
tions require that a certain subspace, say W(constructible from the data, Le.
P(s) and H(s)) be contained in another subspace, say V, (also constructible
from P and H). In light of the extreme sensitivity of the idea of exact subspace
containment, we introduce a measure of containment, m(W, V) which quantifies
(ina useful way) just how far away Wis from being contained in V. This notion is
applied to the Disturbance Decoupling Problem with Stability (chapter 5in [7]).
and in turnprovides a degree of approximate solvability of P(s) Q(s) =H(s) by a
stable Q(s) when no exact stable solution exists.

Finally, we discuss an aspect of the algebraic multivariable design
approach, [8] and [9], and indicate how our results may be incorporated in a
computer aided design of linear control systems. For various feedback
configurations, the algebraic methodology simultaneously yields a parametriza-
tion of all stabilizing compensators, and the corresponding achievable
input/output transfer functions. Choosing a compensator to obtain a desired
I/O map involves solving equations of the form (1.1) onthe ring of proper, stable
rational functions. Our techniques carry out this computation in the state
space, and generate a realization of the resulting compensator. The proposed
compensator would then be subjected to other design constraints, such as
robustness properties, to determine if it is indeed an acceptable controller. A
simple example is given to demonstrate this application.
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2. CONTROLLED INVARIANCE

Consider the linear system described by

x=Ax+Bu (2.1)

with x(t) e Rn=: X. the state, and u(t) e Rm=: U, the control input. The con

trollable subspace, JmB+A(ImB)+ •••+An~1(lmB), willbe denoted <A | Im B>. In
some instances we will append to this system an output y(t) € /?*=: Ygiven as

y-Cx (2.2)

and let, (Ker C) n A~l(Ker C) n •••n (^"-^(Ker C) .the unobservable sub-
space, be denoted by <KerC\A>.

Let Vc Xbe &subspace. Then the following statements are equivalent (see
appendix for proofs); furthermore, any subspace V satisfying one of these condi

tions, and hence all of them, will be called a controlled invariant subspace

(relative to the system described by (2.1)), and we will denote V as the set of all

controlled invariant subspaces of (2.1).

i) for all x0 e V, there exists a continuous control input u:[0.«) -» Rm
such that with x(0) = x0, this control renders x(t) e V for all r&0.

ii) AVcV+lmB

iii) there exists a linear map F'.X-*U such that (A+BF)VzV. For a given

V. we denote all the F's that do this by F(V) .and call any FzF(V) a

friend of V.

Ikese definitions can be found in [l] and [7], along with more detailed analysis

of additional properties. It is easily seen, however, that (i) or (ii) imply that if Vx
e V and V2 € if. then 73 := Vx+ V2 e X • This closure of jf under subspace addi

tion implies that for any subspace K, there exists a unique subspace V& satisfy
ing

a) Vk e7.

b) \$cK

c) if Kejf and VcK, then 7c }£.

For this reason, Vr is called the supremal controlled invariant subspace con

tained in K. A numerically efficient algorithm for computing Vk can be found in

[4]. This bringsus to a useful lemma concerning T&.

Lemma 1 Let K be any subspace, and define * as the set of all x0 e X, such that

there is a continuous control u :[£),») -» Rm so that, with *(0) = x„. the resulting
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state trajectory remains in K for all t S: 0. Then * = t£.
proof: By definition, Vk c *. For the reverse inclusion, note first that * is a sub-
space. Also, since the condition holds at t =0, we must have * c K. Now let x0 e
* and let u() be the control that keeps the trajectory in A". Let T& 0 andother
wise be arbitrary. Define x, :=x(T) and u(t) :=u(t+ f) for Tfe 0. Then il[0,») -
#m is continuous and with x(0)=xb. will render x(T)=x(T+r)G JT for all Tfe 0.
By definition then, xj, € *. With *, =x(r) and T arbitrary, we get x(t) actually
remains in *. for all f^0. Therefore * is controlled invariant, so that by the

supremal properties of Vr, *cT£.
This is the cleanest characterization of Tj. just all the initial conditions that

canbe held in K using a continuous control. Condition (iii) implies that the con
trol need not be openloop-for anyFeF(j£). state feedback Fx will also work.

Next we address the stability issue, using the concept of stabilizability sub-
spaces, in much the same manner as [2]. First though, some notation: Cg will
denote a symmetric subset of the complex plane, containing at least one point
of the real axis, and Q, will denote its complement. When we use the terms star
bilizable, detectable, etc, we will mean relative to some predetermined Cg.
Rgi0(s). and Rgjt(s) will respectively denote stable, strictly proper rational func
tions, and stable, proper rational functions. Finally, a continuous function
z:[0,») -• Rl will be called Cg stable if I[z(t)] € Rgfi(s).

a STABIUZABnJTYSUBSPACES

Let VCX be a subspace. then the following are equivalent (see appendix);
also, any subspace V satisfying these conditions will be called a stabiliza.bility
subspace, and we write Ve JJ where JJ is the set of all stabilizability subspaces.

i) for all x0 G 7. there exists a Cg stable control u:[0,«)-»/?m. so that
with*(0) =x0. x(t) G7 for all teO and x() is Cg stable

ii) there exists a linear map F:X-U such that (A +BF)VcV, and
a(A+BF\v)cCg.

Note from (ii) that X is a stabilizability subspace if and only if the pair (A,B) is
stabilizable. Therefore, if (A,B) is stabilizable. we can apply (i) to initial condi
tions of the form \eltez enj where e4 is the i'th canonical basis vector of
Rn. Collecting up each resulting Cg stable «*(•). and iii(). we get X(s) e i?£2n(s),
and U(s) e R^(s) such that

X(s) =(si-Ay1 +(sI-A)~lBU(s).
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The dual translates as; if {C,A) is detectable, then there exists Z(s) e Rg^is)
and W{s) € Rf^s) satisfying

Z(s) =(s/-^)-1+ fr(s)C{sI-A)~l. (3.1)

Again (i) implies that Vg is closed under subspace addition, and hence for
any subspace K, there is a unique supremal stabilizability subspace contained in
Kt which we will denote by T£jr. Reliable computation of Vjjc is discussed in [4].
The analog of Lemma 1 is then;

Lemma £ Let A' be a subspace, and define 0 as the set of all xQ zX, such that

there exists a Cg stable control input it(-). so that with ar(0) = x0, this control
renders x(t) e K for all teO and x() is Cg stable. Then 0 = Vg*tK.

proof: Exactly like lemma 1, noting that u and x will still be Cg stable signals. •

The next lemma uses (3.1) to relax the condition in Lemma 2 of having to

verify that the state trajectory x() is Cg stable.

Lemma 3 Let VzX be a subspace and the pair {C.A) be detectable, and suppose

that for all x0 € 7, there is a Cg stable input that results in x(t) € Ker C for all

teO. Then 7 C ^J&rC-

proof: Let x0 e 7, and let it(-) be the Cg stable input that keeps x(t) in KerC
for all t. Then taking Laplace transforms gives

x{s) =(sI-A)-l(x0+BQ,(s)) (3.2)

while detectability gives

(sI-A)~l =Z(s) - W^CisI-A)-1 (3.3)

with Z(s) and W(s) stable, strictly proper rational matrices. Substituting (3.3)
into (3.2) gives

£(s) =Z(s)(x0+Bu(s))-W(s)C£(s) (3.4)

where the last term is zero since x(t) € KerC for all r. With Z(s) and u(s)
stable and strictly proper, we see that x() is a Cg stable signal, so by definition
of0 above, x0 e 0 = V^jfa c giving that 7 C Vg*tIStr c, as desired. •

Consequently, under the detectability assumption, Vg*jbrc is all the initial
conditions that can be held in Ker C, using a Cg stable control u( •).
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Before proving our main results, we need one simple result from linear alge

bra.

Lemma 4 Let X, U and D be finite dimensional vector spaces, and suppose 7 C

X is a subspace, and E:D-*X and B:U-*X are linear maps. Then, there exists a

linear map L:D-* U such that lm(BL+E)cVif and only iflmE c 7+ImB.

proof: -» is obvious; for «- , let \dlt dz d^ Jbe a basis for D. For each i € s.,

there exists a vt e 7 and a «t € L/ such that

Edi=vi+Bui.

Define L as the linear map with action on D as L±i =—14, for all i e .§.. Then

(BL+E)a\ =Vi € 7 for all i € s, •

4, SOLVABILITY CONDITIONS

Theorem 1 Consider the rational matrix equation

C(sI-A)-lBQ(s) = C(sI-A)'lE (4.1)

where C^Rritnt AeR"*", BeR"*™, EeR71** are given, and £(s) (of dimension
mxd ) is unknown. Then if M[/] denotes all matrices with elements in some

given ring J, we have

i) there exists a Q€.U[R] solving (4.1) if and only if ImE C<Ker C\A> +
ImB.

ii) there exists a £eM[tf0(s)] solving (4.1) if and only if ImE c V^ c.

iii) there exists a £eM[/^(s)] solving (4.1) if and only if
ImE c Vffyr c + Im£.

Furthermore, if (CtA) is detectable then

iv) there exists a £eM[i?g,0 (s)] solving (4.1) if and only if ImE c Ifj&r c.

v) there exists a Q&B[Rg,p(s)] solving (4.1) if and only if
ImE c Vg*jtoT c + ImB.

proof:

i) -> We must have C(sI-A)~l(BQ-E) = 0. which implies that there is a
Q:Rd •* Rm with lm(BQ-E) C <Ker C\A>. By Lemma 4, then

Im£" C <Ker C\A> + ImB. •

*• Construct, by Lemma 4, a QeRm*d so that lm(BQ-E) c <Ker C\A>.
Then this Q works. •
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ii) -» We have a strictly proper, rational Q(s) solving

C(s/-A)"15(-^(s)) + C(sI-A)~lE s 0

so that for all q ei?d we get

c\(sI-A)-1B('Q(s)q) +(sI-A^Eq ]s 0.
This implies that for any initial condition in ImE (here just Eq), there

is a continuous control, namely the laplace inverse of —Q(s)q, that

holds x(t) € Ker C for all te 0. By Lemma 1. ImE c t£er c. •

«- Choose any F£F( Vjstr c) and verify that

Q(s):= -F(*I-A-BF)-lE

is a solution, since C(sI-A-BF)-lE s 0 for all F €£(T^.c). •

iii) -» Since £(s) is a proper rational matrix, it can be written as

Q(s) =L+ U(s), where LeM[fl] and C/(s)eH[i?0(s)]. Then

C(s/-^)-15(-£/(s)) +Cts/^J-K-^+^J s 0.

Just as in (ii), this means that all initial conditions in lm(-BL+E) can

be held in Ker C using a continuous input. Hence, there exists an

L:Rd-*Rm such that lm(-BL+E) c Vr* c* so that using Lemma 4 gives

ImE c Vggr c + Im£.

4- Construct LzRmX* so that Im(££+.ff) c t&r c and let .FeP(t&r c).

Then, verify that

Q(s):= -L - F(sI-A-BF)~l(BL+E)

is a proper solution. •

iv) «* Identically to (ii), using detectability and Lemma 3 instead of

Lemma 1. •

«- Choose Fe^V^jQtrc) so that a(A+BF\y. )cC,. Then

Q(s):= -F(sI-A-BF)~lE is a solution, and since ImE zV^j^c it is
also stable. Note that detectability is not used in this direction. •
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v) -♦ Similar to (iii), usingLemma 4 and (iv). •

«- Choose LzRm*d so that lm(BL+E) c Vgjfo c and let F£F{Vg*jGSr c)
with a(A+BF\v. ) ZCg. Then Q(s):= -L - F(sI-A-BF)-l(BL+E) is

a solution, and also is stable. Again, detectability is not used. •

5. MEASURE OF SUBSPACE CONTAINMENT

Let Wand 7 be two subspaces of Rn, and let 5 be the orthogonal comple
ment of 7. Also, let Ui be a real matrix (with n rows) whose orthonormal
columns span Wand let U2 be a real matrix whose orthonormal columns span 7.
Then tix=v+s with v€7 and s e5. we get that {I-U2Ul)x = s. Intuitively then,
we define the measure of containment of Wby 7as

m (W, V):=supremum \(I-U2 Ul)x\

which can be rewritten as

Here || is the Euclidean norm in R*, and J-| is the corresponding induced norm
on linear maps. Note that Q&m(W.V)^l for all subspaces Wand 7, and that
m(WtV)-0 if and only if Wz V. The above ideas are found in [10], where m is
referred to as a distance between subspaces (the word distance carries an impli

cation of symmetry, which this measure does not have, hence the name change).
The usefulness of the definition though, is apparent in the following lemma.

Lemma 5 Let E:Rd-*Rn be linear. (E will also stand for the matrix representa

tion relative to the canonical basis in Rd and R"), and let 7be a subspace of Rn,
withm(Im E,V) = 6. Then there exists two linear maps, Ex and E2 satisfying

a) Ei + E2 = E

b) lm£'1c7

c) \E2\*61E\.

In imprecise words, E canbe broken into two parts, one which remains in 7, and
one whose size is in some way related to 6 .

proof: Let V be a matrix whose orthonormal columns span 7 and define
Eii^WfE andE2:= (I-yVT)E, thus taking care of (a) and(b). Now

| E21:=supremum \(I-yyT)Ex\
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&supremum\(I-yVr)e |

=\E\m(ImE.V)

= 61E\*

For an application ofthis measure, consider the linear system

x=Ax+Bu+Eq

y-Cx

where g:[0,« ) - Rd is adisturbance. It is well known, [7], that using state feed
back, we can stabilize the system and decouple the disturbance from the output
if and only if (A,B) is stabilizable and ImE z V^jbr c-

Suppose that (A.B) is stabilizable, but

0<m (Im E.Vjjigr c) =: <*

so that the condition ImEz^j^c is not met. By using a stabilizing friend of
VjCtrC (a FzYiV^jbrc) such that not only is the restriction of A+BF to tjjfcrc
stable, but all ofA+BF is stable), can we expect a reasonable degree of distur
bance rejection? As one would hope, the answer is yes. provided 5 is small
enough. To see this, decompose Einto Ex and E2 as in the lemma, and note that
for F a stabilizing friend of T£j&r c. we get

| aU+JP)<£|s| Ce^+WEi +Ce^+WEzl

=|Ce&*+fln*E2l since ImEiZVg'jfo.cZter c

^\Ce^B^l\6\E\

&Ue-*6\E\

for some M.\*0. since Ce^+B™ is exponentially stable. If 6 is small (say 10"2
or 10-3). this can indeed be auseful amount of disturbance rejection. Actually,
atighter bound than 6\E\ will be \E2\, which is easily calculated. Choosing Fso
as to minimize some norm of CetA+BF»E is aharder problem; here we have sim
ply shown that with acertain F implemented, slight variations in E, which may
pop ImE* out of Vjjbr c. do not have drastic consequences.
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6. ALGORITHM

The procedure for carrying out the results ofTheorem 1 is straightforward,
and a rough outline is listed here.

i) PeR^is) and H€.RX*d(s) are placed side by side as

\p(s)\H(s)]=:TzR;*lm+dKs)

and T is realized as C(*I-A)"lG with CUT**.AeRnXn, and
G£.Rn*lm+d\ There is no restriction on the minimality of the realiza

tion, however if concern centers around the existence of a stable solu
tion, then we must have the pair (C,A) detectable. Since there are
straightforward methods for obtaining observable realizations, this
poses no problems.

ii) Ge/?nx{m+d) is partitioned as

[s:£]:=G

so that Pe/P*"1 and EzRn*d. Now P(s) =C(sI-A)~lB and
H(s) =C(sI-A)~lE, hence Theorem 1is applicable.

iii) Via [5] and [6], matrices V/j&r cand V&r c whose columns span Vjjcr c
and V&r& are obtained using the data A.B. and C from steps (i) and
(ii). In this process, other important quantities are calculated, namely,
a list of the transmission zeros of the triple (AtB,C), and matrix
representations of F\y and ^.(respectively denoted Wy and W).
which are the restrictions to ^jsn-c and Vggrc that feedback friends

must satisfy.

iv) Two new matrices are formed by appending the m columns of B to
bothV/jfc,. c andV^ c. This looks like

Y/j&r c:= [V/jiSn- c: BJ
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YjferC:=[VJKBrC;£]

Hence span Y/j&r c=l£*r c+ImB. and likewise for Y^r c,

v) Calculate the foUowing containment measures, and verify if any are
zero.

al) m(ImE,spanV/tJ&rc)

a2) m(lmE ,spanYgj(0rc)

bl) m(ImE,spanVhn-c)

b2) m (ImE1, spanY^rc)

vi) Assuming at least one of the above is zero, generate the necessary
matrices for the solution Q(s).

. Friends of J£j&rc and V£,rC are computed using the data from
(iii), namely as areal mxn matrix, Fmust satisfy

depending on whether V^jbrc (cases (al) and (a2)) or V^rC (cases
(bl) and (b2)) is to be made closed loop invariant. The additional
freedom in choosing F can be used to adjust the spectrum of
A+BF "above" 7*. See Prop. 4.1 on page 92 of [7] for details.

In the case of (a2) or (b2), construct Lso that lm(BL +E) c J£j&r c
orlm(BL+E)zVZjtrC-

With F, and L if necessary, so determined, a solution is given by the
results in theorem 1.

vii) Immediate model order reduction on the solution Q(s) is possible. For
example, consider case (b2). as all the other cases are handled simi
larly.

Since ImCM+SjcJ&rC. and U+f?F)T&rccy£,rc. a basis chosen for
V&rc> and augmented with abasis for some S such that V&r c©S ~X
will result in the following matrices;

'=[flv^lff] A+BF =
An Mz
0 A22

BL+E = 0
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giving a solution Q(s)= -L-flyfrZ-Iii)"-1 Blt which has order equal

to dim(Tjflrc)-

Furthermore, if the transmission zeros of (A.B.C) are distinct, and
the basis vectors for \forc (and columns ofYk^c ) are just the closed
loop eigenvectors of V^c. then F\r will just be W. (hence F need not
even be calculated) and Anwill be diagonal (or contain 2x2 blocks for
complex roots) with the spectrum of A+BF\v^c appearing on the diag

onal.

Remark: Let Hi denote the i'th column of H(s), and let / denote one of the
following rings.

RP(s). R0(s). Rg*(s). RgAs).

Then there exists a Q(s)eJm*d solving P(s) Q(s) =H(s) if and only if for
each ied. there is a $(s) e /mX1 solving P(s) &(s) =#i(s). Hence, if a
specific H(s) is desired, it is best to solve column by column, to more finely
determine the problem entries of H(s). This amounts to checking the con
tainment measures of part (iv) separately for each column of E.

7. APPROXIMATE SOLUTIONS

The results of section 5 can be used in conjunction with the algorithm in
section 6 so that under special circumstances, we can obtain a

$a(s)eM[tf,.oOO] (or !![/%,(*)] ) that makes

P(s)Qa(s)"H(s)

small, when none of the containment measures are zero.

Suppose that 0<m(lmE,v;jQlTc )=••<$. and (A.B) is stabilizable. In general
it will be hard to conclude any structural properties ofthe pair (AtB), since B is
merely a portion of the input matrix of arealization of [P(s)\ H(s) ]. If how
ever, H(s) is stable, and the unstable poles of P(s) are realized minimally.
(A.B) wiU be stabiUzable. This can be done easUy if aU of the unstable poles of
P(s) are simple poles, using aGUbert realizatioa We note that if both P and H
are stable, then a(A) c Cg, and (A,B) is triviaUy a stabiUzable pair.

With this inmind, consider any stabUizing friend F of t^j&rC- Then

Qa(s): =-F(sI-A"BFy1E
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is an approximate solution in the following sense.

Certainly

H(s)-P(s)Qa(s) =C(sI-A-BF)''lE.

Taking laplace inverses, noting that A+BF is stable, gives, for some M.\>0. (see
section 5)

\L-\H-PQa)\ *Me-" 6\E\

which leads to

^l(H-PQM»)l*^!&El

Unfortunately, since Im E is not contained in V^jcbtC> the model reduction
as described in part (vii) of the algorithm does not apply. Consequently, Qa(s)
has order equal to n, which can be quite high. *

For the proper case, let E\ be the orthogonal projection of E onto
Vg*jc*r c+l™&. and calculate L so that Im (BL+Ei) z Vg*&rc and let Fbe any sta
bilizing friend of l£j&r c- Similarreasoning then yields that

Qa(s) := -L-F(sI-A-Br)-l(BL +E)

is an approximate solution.

1. AUHSBRAICWJLTNABIABIEV^WIS^

1.1. REVIEW OF THE METHOP

In this section, we give a short review of the results for design with stable

plants. The details and proofs can be found in [8].

Consider the feedback system, called Di(P.C)
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with the assumption that P(s)zR5*m(s) and C(s)zRp7i*r(s). These two assump
tions imply that Urn P(s)C(s) =0, and that I+P(s) C(s)z}S[Rp(s)]. Conse

quently, dropping the s dependence for clarity. (/ +PC)'1 is a well defined ele
ment of H[/ep(s)]. and we define Q(s):= C(I+PC)~l. Note that if C(s) is
(strictly) proper, then Q(s) is (strictly) proper also. The following are useful
identities.

I-PQ = (I + PC)-1

I-QP = (I+CPyl.

Since Q is proper, (/-^eH^ts)], and we can solve for C(s) in terms of
Q(s), namely

C=Q(I-PQyl =(I-QP)-lQ.

From here, we see that Q(s) proper impUes that C(s) is proper, and Q(s)
strictly proper impUes that C(s) is strictly proper.

Writing loop equations yields

F[C(ui-v8) +ug]+d; =V2

C[-P(yi +u2)-d0]+ul=yl

-P(Cfel +u2)-di, +ul-el

C[-(Pe2+do) +u{\ +u2=e2

which after some algebra, are rewritten as

and

«2

\ Q -QP ~Q 1
= [PQ P(I-QP) -(I-PQ) J

Ui

u2

do

_ \l-PQ -P(I-QP) -(I-PQ)
" I Q I-QP -Q

or just y=HyuU-

ux

u2

do
,e= H,ttu

We wiU consider only closed loop systemswith proper transfer functions between
exogenous inputs and the outputs and error signals. Using the earlier fact relat
ing the properness of C(s) and Q(s), it is apparent that all closed loop transfer
functions are proper if and only if C(s) is proper.

Now to discount internal instabiUties in C(s) andP(s), suppose that both C
and P have underlying state space descriptions that are both stabUizabie and
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detectable. Then we define Hi(P,C) to be Cg stable if the rational matrix

H^eMftf^s)].

The main design parametrization theorem for stable plants P is

Theorem 2 Suppose P(s) €M[/?y#0(s)] and is connectedwith a C(s)eH[^,(s)] in
the Sj(jP,C) configuation. Then

i) Q(s)^lg[RgJ,(s)] if and only if C(s)zlX[Rp(s)] and Zi(P.C) is Cg
stable.

u) G(s)eM[J?,.0(s)] if and only if C(s)eM[i?0(s)] and Ei(P.C) is Cg
stable.

Our application is based on the next lemma.

Lemma 6 Given F(s)€M[i?g.e(s)], let Myzul denote the set of all achievable

input/output maps, HyzUl(s) (between ul and y2), with the restriction that the

resulting Ei(«P, C) system be Cg stable. Then

i) using strictly proper compensators C(s),

ii) using proper compensators C(s),

My^lPQ'.Qk) €M[*„>p(s)]j.

&2. APPUCATION AND DESIGN OF COMPENSATOR

The boxed statement summarizes an obvious appUcation.
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It is possible to achieve adesired input/output response, H(s) = HVzUl(s), with a
overall stable closed loop system, if and only if there is a proper, stable Q(s)
satisfying PQ =H. The theory in sections 2through 6 specifies exactly when this
happens, and gives aconstructive method of obtaining the solution Q(s). Given
a stable solution, it is only a matter of building C(s) =(I-QPylQ to render an
I/O response HVtM,(s) equal to H(s). .

Next, we study a very easUy obtained realization of the required compensa
tor C(s), given realizations for the stable plant P(s). and the stable solution
Q(s)t which satisfies PQ =E. We begin with a simple lemma concerning the sta-
bilizabuity and detectabiUty of a specific interconnection oftwo linear systems.

Lemma? Let Rr:= \AT,BT.CT\ be arealization of T(s) ei?jr(s) with a(AT) c Cg,
and let ^:=Mc.*e.Ce.A?} be a stabiUzable and detectable realization of
G(s) ei^^s). Then Hc:'\^c.Bc^c,Bc). defined as,

Ac:=

BC:=

Aq BcCf
BTCG AT+BTDCCT

Be
BtDq

Q?:=[0? DgCT\

is a stabUizable and detectable realization of

C(s):= G(I-TG)-1 a (I-GT)-lG

proof: It is straightforward to show this is arealization of C(s) simply by con
sidering the feedback configuration

+
"*

Gm<

+1
?

'
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and writing down the obvious state equations.

For stabiUzability. let F be such that a(AG+BGF) zCg, (by hypothesis, such
an F exists), and then define

Fc:=\f\-Ct\
Then a(Ac+BcFc)= a(Ac+BGF)Oa(AT) zCg,so by definition, (Ac,Bc) is a stabil
izable pair.

For detectabiUty, let L be such that a(AG+LCG) ZCg, and choose

LC:=
L

—Bf

Then o(Ac+LcCc)zCg,so (Cc,Ac) is a detectable pair. •

Now back to our situation: Let Rc:= (AQ,BQ.CQ,DQ) be a realization of Q(s),
and RP:= (Ap,BP,CP) be arealization of P(s). In this appUcation, both P(s) and
Q(s) are stable, so that we might as weU take a(AQ) z Cg and a(AP) z Cg. TriviaUy
then. Re is both stabUizable and detectable, hence applying lemma 7 gives that
Re, defined by

Ac:=

BC'=

Aq BqCP
BpCQ Ap+BpDoCp

Bo
BpDq

CC'.-\cq DqCP\

Dc-\dq\
is a stabUizable and detectable realization of C(s), which is exactly what we
need. Recall C(s) need not be stable, however, in addition to the properness
requirement, the other assumption on C is that it have no unstable hidden
modes. This particular realization has none, and hence can be used to buUd
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C(s), successfuUy completing the design.

B.3. LIMITATIONS

An important limitation on Hyzul is imposed by the C0 Smith McMUlan zeros

of the plant P(s).

Lemma B Suppose P(s) is stable, and C(s) is chosen so that Hi(P,C) is stable.

Let H(s) denote the input/output transfer function relating y2 to ui% and

assume H(s) is nonsingular. Note that by lemma 6, we must have

P(s) Q(s) = H(s) for some stable Q(s). Then

Z[P(s)]c\C0zZ[H(s)]

where Z[ •] stands for the Smith McMUlan zeros of the argument.

proof: Since H(s) is square and nonsingular, we know that z zZ[H(s)] if and

only if z is a pole of B~l(s). Now let (Bpi.Npi) be a left coprime factorization of
P(s) (over the ring of polynomials. R[s]), and let (2?gr.JV) De a right coprime
factorization of Q(s ). Then

E(s) =DpTlNplNqrDj

and since H(s) is nonsingular, we get

(N^Nory^DaT^DjK

Suppose Xis a 'bad' (Xe Cb) Smith McMiUan zero of P(s). Then with (Dpi.Npi) left
coprime, Npl[s] must lose rank at s =X, so that (JV^A^)"1 has a pole at s =X.
Now Dj? and Djp have no poles at s =Xsince Qand P are stable. Therefore H~l
must have a pole at X, otherwise equality in (7.1) wiU not hold. •

&4. MODIFYINGH(s)

Suppose H(s) is square, nonsingular, and diaaonaZ, reflecting a desire to

decouple the I/O response so that the i'th entry of ul affects only the i'th entry

of y2. In this case, the Smith-McMillan zeros of H are easUy known; they are just
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the zeros of each scalar entry h^ of H(s).

Hence, using the column by column procedure mentioned in section 6, one

can systematically add combinations of the unstable transmission zeros to the

numerator of h^ until a stable solution is reached. This procedure wUl be

displayed in the design example calculation found in section 11.3.

9. CONCLUDING REMARKS

In this paper we have discussed the appUcation of simple ideas from linear

geometric control theory to solve equations of the form

P(s)Q(s)=H(s) (9.1)

for Q(s) belonging to various rings, most notably, the ring of proper, stable

rational functions. The complete dual to this problem is worked out in [11].

using (C,A) (or conditioned) invariant subspaces. Also of interest is the solution

Q(s) of the equation

P(s)Q(s)T(s) = H(s) (9.2)

given strictly proper P,T, and H. Various aspects of this problem are discussed

in [3], [12] and [13]. Presently, we are working on conditions for stable solutions

Q(s), and the appropriate software for the computation.

We have appUed our techniques to the algebraic approach to control system

design for stable plants. Extensions to unstable plants using the solution to (9.2)

and the approach of [9] are being worked out.

We also addressed the numerical sensitivity of our solution technique for

solving (9.1), and when an exact solution was not possible, we gave an "approxi

mate" solution and the degree of the approximation. The question of approxima

tion is an interesting one, and has connections with matrix interpolation prob

lems [14].
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11. APPENDIX

11.1 PROOFS

The appendix is devoted to proving the equivalences of (i). (ii), and (Ui) in

section 2, and (i) and (ii) in section 3. For the most part, these proofs follow

along the lines of [2], and [7].

Before proceeding with the equivalences for controlled invariance, we need

this next lemma.

Lemma 9 Let X be a normed, finite dimensional, real Unear space, and let VzX

be a subspace. Suppose x:[0,»)-O( is differentiable (one sided at 0), and

z(t) Z 7 for aU t e[0.«). Then x(t) z Vfor aU t e[0,«).

proof: Let Pbe any Unear map on^-»i? with V=KerP. Then /(*):=P(*(f ))=0
for all t. By chain rule, noting that P is Unear, we get Pr(f) =0 for ail i €[0,«),
so that x(t) eKerP =Vfor ail t. -

Onto the equivalences:

(i) -» (ii) Let xQ € V and let u( •) be the control that holds x in V. With u
continuous, x is certainly differentiable on [0,«). At zero, then,

x =Ax0 +Bu(0), so that Ax0zV+lmB. With x0 arbitrary in V, (u) foUows. •

(U) -> (Ui) Let V&W =X and let {i/lfv2 v,j be a basis for V. Then for
each ie_L there is a st in V and a v* in U such that

AaJi=Si+Bui.

Define F as the Unear map with action on V given by

Fvi--Ui

and action on W can be specified arbitrarUy. Then (A+BFfa =st € 7 for aU

i Zl_ as desired. •

(Ui) -• (i) Let u:~Fx, for some FzY(V), then

x(t) = elA+BF»Xo (11-1)

and if x0 z V, we get x(t) € Vfor aU t, since (A+BF)Vz V. •
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The equivalences in section 3are abit harder to verify as one would expect. In
fact, to make our job easier, we wiU slip inbetween (i) and (ii). a new equivalence
(i") which reads as,

(i") a) ¥(V) is a nonempty set.

b) There exists aUnear map G:U-U such that Im(BG) =Im5nKand
Bv z V wiU imply that v elm G.

c) Furthermore, if F0 eF(V). then A+BF0 and BG, with G chosen as
above, appear as (with abasis in Vand some 5. such that V®S =X)

'♦"■.-ft1 t BG =
(BG)X

0

and the pair (An, (BG)^ is stabUizable.

We wiU show the equivalences by proving (i) -• (i") -» (U) -> (i). but we need a
linear algebra result, namely Lemma 10.

Lemma Ifl Consider finite dimensional Unear spaces X and U, a linear map

B.U-*Xt and a subspace VzX. Then there exists a Unear map G'.U-*U such
that Im (BG) = ImB n V and if u z U such that Bu z V, then u elm G.

proof: Choose TzX, and WzX so that (lmBr\V)®T=V and
(ImB r\V)@W =lmB. Then it wiU be possible to choose Ul and Uz such that
tfj©Uz® KerB =U, and appropriate base vectors inX and U, so that F appears

as

Then check that

does the job. •

B =

G:=

7 0 0
0 0 0
0/0

10 0 0

7 0 0
0 0 0
0/0
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Now, back to the equivalences:

(i) - 0")

a) This is obvious, since (i) certainly impUes that V is controUed
invariant, and hence has at least one friend.

b) Simply apply Lemma 10: also note that Lemma 10 reaUy is
independent of our problem.

c) For clarity, let i:=dim(V). then identify V=Rl, and S^R"-'. so
S®V=X=Rn. If xzX, then there exist unique veVcX and

szSzX such that x=v+s, and we write this equality as x=^].

Let v0 e Rl be arbitrary, and define

vr
x0:=

Under the action of a control u(), with *(0) =x0. we can decom
pose the state trajectory x(t) as

Now, for acontradiction, suppose the pair (An.(BG)i) is not stabU
izable. Then there exists a\ ZC0. and £eRl. t +0 such that

fr[*/-*ii (i?G)i] =0
so that

Since *0 is in fact an element of 7. by hypothesis of (i). we can find
a continuous control u() that makes *(•) a Cg stable signal, and
keeps x(t)zVtor all rfeO. In terms of v(t) ands(t), we needs b0
and v(•) must be C„ stable. In X, the trajectory satisfies

x=Ax+Bu
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or for any F of appropriate dimension

x = (A+BF)x+B(u-Fx). (U.3)

Pick F =F0 eF(V), then adapted to our basis. (11.3) looks like

An Mz
0 Azz Si ♦*(«-'• fell

Rearranging (11.4) yields

*(«-*feD-
v —AnV

0

Using (b), there is au() such that

4*(o-Mtfi?>l]-
(BG)i

0 '
u(t)

(U.4)

(U.5)

(U.6)

for aU teO. Combining (11.6) and (11.4) means that v(t) satisfies

v=Anv+(BG)iU , v(Q)=v0. (11.7)

Premultipiy this by £r, the constant vector from (11.2), to obtain

jr<tTv) =\(tTv).

This then integrates to

pv(t) = e*STVo. (U.B)

Since £* 0, we can choose our v0 z V, so that the right hand side of
(11.8) is not identicaUy zero. However, this wUl result in a con
tradiction, because we know that v(t) is made up of exponentials
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from Cg, and the right hand side is an exponential in C0. There

fore, (An,(BG)i) is a stabUizable pair. •

(i") -» (U) Since (An,(BG)i) is a stabilizable pair, there exists a

L: 7-» U such that

u(Au + (BG)iL)zCg.

It is easy to verify that

F:=Fa +G \,o]

is a friend of V and that o(A+BF\v) z Cg as desired. •

(U) -* (i) Let the control u be u(t):=Fx(t), where F satisfies the

hypothesis of (U), then the trajectory wiU satisfy

x(t) = elA+BF*tx0.

like (11.1). for all x0 z V, we get that x(t) e V for all *. and here, since

A+BF is Cg stable on V, x(t) is Cg stable. •

Remark: The notation (i") for the added equivalence is not without reason.

Note that in going from (i) -» (i"). **(') being Cg stable is not used. Hence.
we do not need it. Therefore we are led to formulate (i*). fitting between (i)

and (iM). as

(i*) For aU x0 in 7, there exists a continuous control u(), such that
withar(0)=x0, x(t) ZVtor aU t^O and*(-) is Cg stable.

Certainlythen, (i) -* (i') -* (i") -* (U) -» (i). so that this is indeed equivalent.

11.2 COMPUTATIONAL CONSIDERATIONS

It is apparent that our abUity to solve these rational matrix equations
hinges precariously on our abiUty to compute the subspace V&rc- In [5], the
procedures for calculating V&r c are discussed, as are the numerical difficulties
that plague the computation. These problems of course play a role in our com

putations too.
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For instance, computing t&rc basicaUy involves solving a certain general

ized eigenvalue problem

Lv -\Mv

where in this case, M is singular. In this application, the set of generaUzed

eigenvectors is used to calculate basis vectors for V&rc- The corresponding
generalized eigenvalues are the subset of o(A+BF) that is fixed for all friends F
of V&rc* and in fact are the transmission zeros of the triple (A,B,C).

Suppose X is a repeated generalized eigenvalue, say multiplicity m, with

only 1 generalized eigenvector (could generalize this to some Km, but the

point being made will be the same). In order to completely determine a basis

for t&rc. we must calculate the generaUzed principle vectors, namely vectors

v2... vm that satisfy the recursive condition

(Z-X#)vi=Mfi/i-i i=2.„m Vi'.-v.

This computation is difficult and is a source of error. More importantly, this

situation means that (si-(A+BF)^.)'1 wiU have a nonsimple pole at s=X for

every friend F of 7*. This interesting fact impUes that many rational matrix

equations wiU probably lead to this situation, namely those that necessitate a

nonsimple pole in the solution Q(s).

For example, consider

*<•> - fr+SiU1 H{s) =t&t
which is solvable by inspection. A typical realization wiU be

A= cfta0(-l,-2,-3)

0
B = -1

. 2

C=[l 1 1]

1
E = 0

0.
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It is trivial to show that -1 is a repeated transmission zero of the triple (A,B,C),
but has only one generaUzed eigenvector. The generaUzed principal vector must
be determined to obtain a basis for V&rC and consequently complete the solu

tion.

On the other hand, the computation in Lemma 4 is straightforward, and is

easUy done using the subroutine MINFIT found in [4].
DATA:

• Ee RnXd , B z i?**771; matrix representations of the maps E and B,
relative to basis sets chosen in X, U, and D.

• VzRnXV; a matrix whose columns span 7.

PROCEDURE:

using MINFIT. solve for We/?'v+m'xrf that satisfies

• [/*]* =£•.
. by result of the lemma, this wiU have an exact solution W. Partition

this solution as

*-l3l
where LzRm*d. and this is the matrix representation of the desired

map L.

The measure of containment. m(W,V), as defined in section 5. is readUy cal
culated using 3singular value decompositions, one each to determine Ux and Uz
and one more for the evaluation of the norm Using single precision, with the
number of rows in Ux and U» varying between 4 and 30. exact containment is
characterized by a measure of roughly 10 .
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11.2 NUMERICAL EXAMPLES

The following examples Ulustrate nearly aU the facets of the paper. First,
define P(s) as

r , ± -i_ 0
(s+2)(s+4) s+5

3(s-2)
(s + l)(s+5) s+6

5(s-3) -1 10

(s+3)(s+5) s+1 (s+2)(s+7)

and let

H(s) = dixxg 20 18

(s+4)(s+5) ' (s+3)(s+6) ' (s+2)(s+3.5)

Suppose that a stable (here Cg wUl be the open left half plane), proper solution
Q(s) is needed, at the possible expense of modifying H(s) as outlined in section
8.5. Proceeding with step (i) and (U) of the algorithm, we use a simple GUbert

realization to obtain

A = (Sag (-2.0, -2.0, -4.0, -5.0, -5.0, -5.0, -1.0, -6.0, -3.0, -3.0, -7.0, -3.5)

tf =

0 0 0.B88
-1.41 0 0
0.446 0 0

0 1.395 0
-4.47 0 0

0 -2.13 0
0 1.569 0
0 0 -1.79

-3.87 0 0
0 0 0
0 0 1.414
0 0 0

-1.41 0 -4.48 4.56 0 0.171 0 0 0 0 0 0
C = I 0 0 0 0.350 0 -2.23 -1.43 -2.79 0 ^45 0 0

0 -1.41 0 0 -4.47 0 -0.64 0 3.87 0 -1.41 -2.16 J



E =

0 0 2.07
0 0 0

-4.46 0 0
-4.36 0 0

0 0 0
-0.68 0 0

0 0 . 0
0 2.15 0
0 0 0
0 -2.45 0
0 0 0
0 0 2.16

-IX-

so that P(s) =C(sI-A)~lB and H(s) =C(sI-A)-1E.

In the process of calculating the basis vectors for V^jcotC and T&rc. the
transmission zeros of the triple (AtB,C) are found to be

2 57
-1.07+J0.839
-1.07-i0.839

-2.53
-3.00
-3.50
-4.04
-5.00
-6.99

The containment measures for a stable solution are

m(/m£,t£jferc) =0.445
m(ImE,Vg*&T c+I™&) =0-083

whUe dropping the stabUity restriction yields

m(ImE. V&T c)=1.67 x HT8
m(ImE,Vtorc+I™£) =2.00xlO"6'

This leads to two conclusions: first, a stable solution does not exist, and

second, a strictly proper one does. Adding the unstable transmission zero to
some or all of the diagonal entries of H(s) should take care of the stabUity
requirement, however if no poles are added to H(s), then the relative degree of
each nonzero entry of H(s) wUl decrease by one. Intuitively, strictly proper

solutions wiU no longer exist, but proper solutions wiU.

Indeed, the column by column procedure reveals that the unstable zero at

s=2.57 must be added to each, hence we modify H(s) to be

H(s) = diag
8(s-2.57) 7(s-2.57) 3(s-2.57)

(s+4)(s +5) ' (s+3)(s+6) " (s+2)(s+3.5)
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Consequently, the matrices B,C, and E change and the new containment meas

ures are

m (ImEt V^jcgr c)=0.528
m (ImEt Vg*je„ c+**"£) =5-48 x 10"8.
m(/m£\ !&,.<?) =0.192

The intuition and subsequent modifications were correct, and whUe now there

are no strictly proper solutions, a stable..proper solution is available. The solu

tion Q(s) is 8th order, and a realization is

A* «cfcaff([ Zq%& fifo73 ]•-A.987, -2.529, -4.039, -5.000. -aX0. -3.500 )

BQ

0.854 -0.0319 0.163
0.497 -0.572 0.579

-0.556 0.975 -0.003050
-0.598 0.739 -0.344
4.195 -0.0626 0.0766
-4.815 0 0

0 1.620 0
0 0 0.724

[-0.755 2.304 -1.086 -0.586 0.245 0 0 0.339
Co» -0.798 -1.508 -0.0968 -1.240 -1.979 0 0 0.452

1-3.058 3.719 0.0432 3.097 4.815 2.201 -4.815 -0.995

0.2667 0 0.600
Z>o= 1.333 0 0

v '-0.800 1.400 0

"With state space realizations available for P(s),H(s), and Q(s), it is trivial to ob

tain a reaUzation for PQ-H and verify that the impulse response is identically

zero as we expect.

The second example is simUar, but we carry out the compensator design.

Let the stable plant P(s) be

and the desired 1/0 map

H(s) = diag

2

s + 1

1

s+2

10

2

s+4

4

s+3

12

(s+2)(s+5) ' (s+3)(s+4)
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Right away, we notice that every element of H(s) has higher relative degree

than every element of P(s), so that a strictly proper solution seems feasible.

Again, matrices A,B,C, and E are obtained, and the transmission zeros of

(A,B,C) are

-2.00
-2.13
-4.00
-4.54
-5.00

There are no unstable transmission zeros, hence Vg*j^T c ~ Yfor c- AU of the con
tainment measures are found to be zero, and the foUowing is a stable, strictly

proper, 5th order solution.

Aq= dxag (-4.535,-2.131.-4.0,-2.0,-5.0)

Bc

-2.139 -5.279
2.945 0.1909

0 4.546
-2.528 0

1 3.769 0

CQ =[ 5.279 -0.6941 5.279 0 5.279 1
^0.7993 -1.146 0 -1.320 -0.6788 J

A simple 4th order reaUzation of P(s), coupled with the results of section 8.3

yields the foUowing 9th order, strictly proper compensator.

Ac'

Bc =

-4.535 0 0 0 0 3.024 3.024 5.279 10.56
0 -2.131 0 0 0 -4.165 -4.165 -0.1909 -0.3818
0 0 -4.00 0 0 0 0 -4.546 -9.093
0 0 0 -2.00 0 3.572 3.572 0 0
0 0 0 0 -5.00 -5.358 -5.358 0 0

-7.466 0.9818 -7.446 0 -7.466 -1.00 0 0 0
1.130 1.621 0 1.866 1.244 0 -4.00 0 0

-5.279 0.6941 -5.279 0 -5.279 0 0 -2.00 0
, 1.598 2.292 0 2.639 1.760 0 0 0 -3.00

-2.139 -5.279
£945 0.1909

0 4.546
-2.526 0
3.789 0

0 0
0 0
0 0
0 0

cc =\ 5.279 -0.6941 5.279 0 5.279
-0.7993 -1.146 0 -1.320 -0.8788

0 0 0 0 1
0 0 0 0 J



-XII-

Used in the Ei(F.C) configuration, this compensator wUl render the overaU
closed loop system stable, and the I/O map betweenux and yzwill be H(s).
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