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Abstract:

Conditioned invariant subspaces are introduced both in terms of output injection and in

terms of state estimation. Various properties of these subspaces are explored and the problem

of disturbance decoupling by output injection (OIP) is defined. It is then shown that OIP is

equivalent to the problem of disturbance decoupled estimation as introduced in [1] & [2]. Both
solvability conditions and a description of solutions for a class of rational matrix equations of

the form X(s)M(s) = Q(s) on several ways are given in state space form. Finally, the problem

of output stabilization with respect to a disturbance is briefly addressed.
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1. Introduction:

Undoubtedly, the most important concepts used in geometric control theory are condi
tioned invariant { or (A,B)-invariant } subspaces and controllability subspaces introduced by
G. Basile & G. Marro in [11] and W. M. Wonham &A. S. Morse in [12]. A further generaliza
tion of the controllability subspace is the stabilizability subspace introduced by M. L. J.
Hautus [5]. Several examples where these subspaces arise can be found in disturbance decou

pling by state feedback (DDP) [4], tracking & regulation, and non-interacting control, etc.
Chapter 4 & 5 of W. M. Wonham [4] has a complete treatment on this topic. In particular,
using these subspaces and the DDP schemes, one can solve a class of rational matrix equa

tions M(s) X(s) = Q(s) in state space form, where M(s) € R?l,(a)fllXB and
Q(9) € Rp,«(*) l 2- Here Rp(») and HPt9{s) denote respectively the ring of proper and
strictly proper rational function of s, with real coefficients. Depending on the structures of
M(s) and Q(s), one might obtain solutions X(s) belonging to one of the following rings: (1)
Rp(s) or RP,0{s), (2) R(o) or R0{o), the subring ofelements of R„(a) , or of RPf0(a) that
are analytic in <D+, and (3) R(u) or R,(u), the subring of elements of R(o); or R,(o) that
are analytic in a region u of C. In the algebraic approach to the design of multivariable con

trol systems, one frequently encounters solutions of rational matrix equations of this kind and
its dual form X(s) M(s) = Q(s) with unknown X(s). See for example [5] and [13].

The dual notion of controlled invariance, namely conditioned invariant subspaces had
suffered considerable neglect until the work of Schumacher [15], even though it was intro
duced at the same time as controlled invariance and has importance in its own right.
Recently, in [1] and [2], J. C. Willems and C. Commault introduced complementary detecta-
bility and complementary observability subspaces based on observer design and disturbance
decoupled estimation. Also, in the literature, DDEP ( the disturbance decoupled estimation
problem) was commonly suggested to be the dualof DDP.

But in this paper, we will propose a new scheme - disturbance decoupling by output
injection (OIP) - as the dual of DDP. Based on output injection, we will introduce the con
cepts of conditioned invariant, complementary detectability and complementary observability
subspaces. Although the new scheme is completely equivalent to DDEP, in some sense, the
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subspaces we define have a better physical interpretation under the output injection scheme.

In section 1, we will give complete characterizations of these subspaces and the results

of Lemma 4 and Proposition 8, 9, 11, & 12 are new. In section 5, we will propose a direct
method of solving rational matrix equation X(s) M(s) = Q(s) in state space form using OIP
and DDEP. Finally in section 6, we will generalize OEP to the problem of output stabilization

with respect to disturbance and a direct dualization of this section leads to section 4 of [5].

The following notations will be standard throughout the paper: given a triple of maps

(A, B, C), where A : X->X, B : U-+X and C : X-+Y, with X = RB, U = R"' and

Y= R\ <A I ImB> = ImB + AImB + A2 ImB + ... + A*'1 ImB, denote the controll
able subspace of the pair (A, B) and <KerC | A> = KerC n A"1 KerC D A'2 KerC n ... f)
A~n+1 KerC , denote the unobservable subspace of the pair (C,A).

Let V C X, call vectors z, y € X equivalent mod V if z - y 6 V, We define the quo

tient space Xf V (or X mod V ) as the set of equivalent classes:

x = {y:yeX, y-zeV) z eV (1-1)

Now let the map C be defined as before and suppose V C KerC. If P : X -+ Xj V is
the canonical projection, we claim there is a unique map C : XjV -*> Y such that

C = CP (1-2)

thus, C " factors through " Xf V. Also, assume V C X and V is said to be invariant under
the map A if

AV C V (1-3)

Write X = XjV, and P : X -+ X be the canonical projection. There exists an unique map

A: X-+X such that AP = PA. Here A ( or A mod V ) is called the map induced by A in
X/ V. Please see [4] for further geometrical preliminaries.

2. Conditioned Invariant Subspaces

Conditioned invariant subspaces have been introduced before [1], [2] & [3]. They play a
dual role to controlled invariant subspaces and can be introduced from this point of view.

However, it is more natural to view them either in the context of output injection or in the

context of observer design. In this section, we will use both output injection and observer

design schemes to develop the theory of conditioned invariant subspaces and consequently

show the relation between these two approaches. We consider a linear, finite dimensional,

deterministic system given by

z(t) = Az(t)

and encouragement in this research.



y(t)=Cz(t) (2-1)

Where x(t) 6 X~ RB is the state of the system, y(t) € Y = R * is measured outputs and C,

A are maps of appropriate dimensions.

Definition 1 : A subspace S C Xis said to be conditioned invariant, if for all x0 6 S, there

exists a constant output injection L : Y -* X in (2-1) that renders x(t) in £ for all t > 0, i.e.,

after incorporation of output injection map L, z(t) = Ax + Ly, and z(t) = e^A+LC^z0 € S
for all t.

Remark: Let 5 denote the class of conditioned invariant subspaces, then definition 1 implies

that S e S if there exists a map L : Y-+X such that ( A + LC ) 5 C S.

The following characterizations of conditioned invariant subspaces are equivalent.

First, we consider a state observer for the system (2-1) of the form:

w{t) » Kw(t) + Fy(t) (2-2)

Where w(t) € W« R» is the state of the observer; K € R"x" and F 6 R**"\ Then we
have

Lemma 2: A subspace S C X is conditioned invariant if and only if there exist maps K & F
in (2-2) such that w(0) = x(0)mod S implies that w(t) = x(t)mod S for all t > 0.

Remark: Let P: X -* X/5 be the canonical projection. By Lemma 2, 5 € 5 if and only if
there exist maps K & F such that Px(t) satisfies (2-2).

Second, we have

Lemma 3: A subspace 5 C Xis conditioned invariant if and only if A(S fl KerC) C 5.

Proof: We show that Definition 1 implies Lemma 2; Equation (2-2) implies Lemma 3
and that A( S D KerC) C 5 implies Definition 1. This completes the proof of Lemma 2 and
Lemma 3 together, (i). Suppose that S is conditioned invariant, then by definition there
exists a map L : Y->X such that ( A + LC ) 5 C S. Let K = ( A + LC ) mod 5, F = - L
mod S and in (2-1) we have:

Pz{t) = PAx(t) = P{A + LC-LC)z{t) = (A + LC)modS z{t) - PLy(t) = KPz(t) + Fy(t)

which shows necessity part of Lemma 2.

(ii). From the above arguments we know that if S is conditioned invariant, then there
exists an observer of the form ( 2-2 ) such that w(t) - Pz(t) = 0 for all t. Thus, for all x 6
S n KerC, it follows that Pi(t) = PAz{t) = KPz{t) + FCz(t) =. 0 and A x(t) 6 KerP =
S for all t. This establishes the necessity part of Lemma 3.

(iii). Lemma 3 implies Definition 1. Suppose that S C X satisfies A(5 n KerC) C 5.
Then, let {vlt • • • vr) be a basis for S DKerC and complete this basis for S by
{vlf - - - trr,yr+1,...y,}. Define L0: CS -» Xby



Avi =a -L0Cvit i = r+• 1, • • • q. (2-3)

and let L be any extension of L0 to Y. Then, (A + LC)t/, C 5, i = 1, ... q, and (A + LC)
S C S. This proves sufficiency part of Lemma 3. •

Thus, we have three alternative ways to characterize conditioned invariant subspaces,
namely a subspace S Clin (2-1) is conditioned invariant if and only if one of the following
conditions holds: (l) there exists L :Y-+X such that (A + LC)5 C S, (2) A(S n KerC) C S
and (3) there exists an observer of the form (2-2) such that Pz(t) satisfies the equation with P
: X-+X/S.

Characterization (2) is commonly referred to as the geometric characterization; charac
terization (1) the injection characterization, and (3) the observer characterization. By (2),
conditioned invariant subspace is also referred to as (C,A)-invariant subspaces and both ter
minologies will be used interchangeably in the sequel. The set of maps that satisfy (1) are
called the " friends of S n denoted as L(S).

Remark: A simpler version of Lemma 2 without using projections is:

Lemma 2': Given amap H:X-+Z with Z= R"e, if there exists an observer of the form (2-
2) and w(t) - Hz(t) = 0 for all t, then S =» KerH is conditioned invariant.

A further generalization of Lemma 2' leads to:

Lemma 4: Suppose H is the map defined as in Lemma 2', and S —KerH, which may or may
not be conditioned invariant. If there exist maps K, F & N such that:

w(l)=*Kw(t)+ Fy{t) (2-4)

and Nw(t) - H z(t) = 0, then 5 is conditioned invariant.

Proof: Without loss of generality, we may assume that the pair ( N, K ) is observable for oth
erwise we could factor out the unobservable kernel of (N, K). Now for all z 6 S f| KerC,
Nw{t) - Hz(t) —0 implies that Nw(t) = 0 for all t. Thus, w{t) and therefore w(t) 6 KerN
for all t. It then follows that Hz{t) » Nw(t) = 0 and by (2-1) we have Uz{t) =» UAz(t) «=
0. This shows that A i(!) 6 KerH = 5 and by Lemma 2, S is conditioned invariant. Actu

ally from (2-4), if z € S f) KerC, then w(t) € KerN implies that w(t) =» 0 for all t since (N,
K) is observable and y(t) = 0. •

We now wish to define when the output injection in (2-1) will be called stable. Towards
this goal, let us first fix some (symmetric) part of the complex plane that we wish to associate

the word " stable n with; write G9 for this part of C, and Gb for its complement in <D.
For an operator A acting on a linear space X, we write X9(A) for the subspace of X spanned
by the (generalized ) eigenvectors of A associated with eigenvalues in V} , and define Xb (A)
analogously. We recall that, if 5 is an A-invariant subspace of X, the operator A mod 5 ( or
A ), induced by A on Xj S is stable if and only if Xb (A) C S.



Definition 5: A conditioned invariant subspace Sg is said to be a complementary detectability
subspace ( relative to <Dg ) if i) it is conditioned invariant, and ii) there exists L 6 L (Sg)
such that a (A + LC) mod Sg C C,.

Similarly, we have

Definition 6: A conditioned invariant subspace N is said to be a complementary observability

subspace if i) it is conditioned invariant and ii) for any given set A of p symmetric complex
numbers, with dim(JV) = n - p , there exists a map L € L(N) such that a (A + LC) mod N
= A.

Definitions 5 & 6 will become clearer as we get into the problem of disturbance decou

pling by output injection. Denote the family of complementary detectability ( complemen

tary observability ) subspaces by S^ ( N ). We have, as a consequence of Lemma 2:

Proposition 7: Sg 6 -2, ( or N € & ) if and only if there «xist maps K &F with a (K) C €g
( or a (K) can be arbitrarily assigned in C) such that Px(t) satisfies w(t) = Kw{t) + Fy(t).

Proof: Similar to the proof of Lemma 2, except with the extra requirement that a (A + LC)
mod Sg and a (K) belong to Cg ( or assignable in C).

Let Sg be any conditioned invariant subspace, and let maps L : Y-+X, G : Y-*-Z with

Z = Rn for some n, satisfy L € L(Sg) and KerGC = Sg + KerC. Such choice of G is possi
ble because KerC C KerGC for any G : Y-+Z and KerC C KerC + Sg. Denote the
nonempty set of such pairs of maps L & G by * (Sg).

Proposition 8: Assume Sg GX(otNGX)]32. conditioned invariant subspace and assume

(L,G) 6 * ( Sg) { or 4> ( TV)}, then Sg ( or N ) is a complementary detectability (or a comple
mentary observability) subspace if and only if (A + LC, GC) mod Sg ( or mod N ) is detect
able ( or observable ).

Proof: The if part is obvious because by detectability of (A + LC, GC) mod Sg there exists
a map Lsuch that a ( A + LC + LGC ) mod Sg = a ( A + ( L + IG)C )mod Sg belongs
to Qg. In order to prove the necessity part, we notice that if (A + L C) mod Sg C <Cg for
some L, we must have

(L- L)CSg CS,C5,+ KerC (2-5)

Hence, LC = LC + L0GC, for some L0. Define Ii = (L + L0G)i it follows a (A + L^)
mod 5, = a (A + LC) mod 5, C €g and A + LXC = A + LC + Z,0GC. •

Remark: Proposition 8 is a direct dualization of proposition 2.16 of Hautus [5].

Consequently, from Lemma 4 we have:

Proposition 9: Let Sg be any conditioned invariant subspace of X in system (2-1). Sg is a
complementary detectability subspace if and only if the observer (2-2) in Lemma 4 is stable,
i.e., a (K) C <Cg and P:X-*X/ Sg.
Proof: Analogous to the proof of Lemma 3.



If poles of K can be placed arbitrarily, then St is a complementary observability sub-
space.

Lemma 10: The class of (C, A)-invariant subspaces is closed under the operation of subspace
intersection, i.e., 5If S2 € S -*> 5: n S2 € S.

Proof: Si 6 §. implies A( 5, f| KerC ) C Sit for i = 1,2. But, Si n S2 C Si and
Sj n 52 C 5* Thus,

A(5! n S2 DKerC) CAf^n KerC) C 5j (2-6)

and A{SX D S2 fl KerC) C A(S2 n KerC) C S2 (2-7)

Combining (2-6) with (2-7) we have: A( Sx n 52 fl KerC) C Si n S2. •

Let * be a given subspace of X, which may or may not be conditioned invariant. By
Lemma 10, there exists an infimal (C,A)-invariant subspace that contains ¥, denoted by Sy,
such that:

{a). * c s;

{Hi). S € S and * C5 implies that S* C S.

5y is just the intersection of all conditioned invariant subspaces that contain ¥. The

following proposition gives an explicit expression for Sy

Proposition 11: S£ C X is the infimal (C,A)- invariant subspace containing ¥ if and only if

54 = * + <A | * n KerO (2-8)

Proof:We have to show that S^ satisfies the three requirement in its definition.

(i). Construct a basis {vx, .. . ,p,} for ¥DKerC and extends this basis for ¥ to

{vx,... vr,vT+\> ' ' ' vk}' Complete the basis for S£ to {vx, . . . ,vr, vr+i, . . . ,t/k
>Vk+i* • ••/"?}• We define a map L0 such that

Av{ = -L„CVi, for i aas r+ l,...Jfc

and Lg Cv{ = 0, for i = Jt+ l,...,p (2-9)

Since <A | ¥ f) KerO is A-invariant, it follows from (2-9) and the construction of the basis
set that

{A+ L0C)i/i = Av{ e <A | * PI KerC> CS£, for i = l,...,r,Jfe+ l,...,p (2-10)

and therefore

{A+ L0 C)vi € S$f, for « = l,...,/> (2-11)

Let L be the completion of L9 we have



(A-rLC)Si C S| (2-12)

This shows that S*€ S.

(ii). ¥ C S* is obvious from (2-8).

(iii). Suppose that S£S is any conditioned invariant subspace that contains ¥,

then

S*, = ¥ + <A | ¥ n KerO

C ¥ + <A | S fl KerO (since ¥ C S)

C ¥+ S (S€i)

C S (2-13)

This completes our proof. Q

In an analogous fashion, we have the following proposition for Ny, the infimal comple
mentary observability subspace that contains ¥ .

Proposition 12: Ny is the infimal complementary observability subspace containing ¥ if and
only if

N* == < SI + KerC | A + LC > (2-14)

forL €£(S4)

Remark: Proposition 12 could also be obtained through a direct dualization of Theorem 5-5,
Wonham [4].

Proof: (i). The subspace <KerC | A> = <KerC | A + LO for L 6 L{S*) clearly belongs
to N$. This implies that Ni is complementary observable and therefore N$ € N.

(ii). Since in (2-14) L € A(S^), then {A + LC)->{Sl + KerC) D {A + LC)'1 S$ =
S*, for i = 1, ... n-1 and it follows that ¥ C N*.

(iii). Let N be any complementary observability subspace that contains ¥. Then, S* C
N and <KerC | A> C N, i.e., N contains the largest A-invariant factors of KerC. Let Vx
be the largest A-invariant factor in KerC and V2 be its direct summand, i.e., Vx+ V2 —
KerC. We claim that (S£ + KerC) n {A + LC)~\S% + KerC) C H%. To see this, if v2 { €
V2)6(A + LC)-1^ + KerC), then (A + LC)v2 = At/2 € S^ + KerC. Since Vx is the
largest A-invariant factor in KerC, Av2 € S*. Thus v2 6 S* C N. This completes our proof
of Nj, C N. U

Lemma 13: S/ is invariant in the sense that (A + LC)S/ C S/for every L: Y-+ X.
Proof: Since S/ is the infimal complementary detectability subspace, it follows that S/ C
<KerC | A> and thus S/ C Ker C. But A( S/ n KerC ) C S/ implies that AS/C S/ and
therefore, (A + LC) S/ = A5/C S/ for every map L:Y-*X. •



The following algorithms are conceptual algorithms for computing S£ and N$.
Please refer to Moore & Laub [9] for numerically stable algorithms.

Define two sequences by:

S° - 0, tf> = X

S"+1 = ¥ + ,4 (S* n KerC) N»+l = ¥ + [A'lN*) C\ KerC

Then, S^ = S°° = s"-i,w*+1, JV°° = iVn-rfim* and AT' = 5| + N00.

We first observe that the sequence S^'is nondecreasing, and SC9dim*+ * = S00 =

lim S*. If {S" + *= S* }, then {S" — S00}. SimUarUy, the jV* sequence is nonincreasing,
M-»00

#««.« * a Noo = lim ^ and i ^+ i = N> j injpuea ttat {^ = N00 }. A careful
/*-* oo

inspection reveals that the above sequences are just decompositions of (2-9) and (2-14) in Pro
position 11 and 12 respectively.

3. Disturbance Decoupling by Output Injection

We consider the following dynamical system:

i(<) = Ar(<)+ Eq(t)

y(t)=Cz(t) (3-1)

z(t)=*Hz(t)

Where q(t) €R 'is the disturbance, z(t) € R ' is the outputs to be controlled.

The problem of disturbance decoupling by output injection (OIP) is: find a constant

injection map L :Y-+X in (3-1) so that the transfer function from the disturbance term q(t)

to the controlled outputs z(t) is identically zero.

After incorporating output injection in (3-1) we have:

x(t) = (A-rLC)x(t) + Eq{t) (3-2)

and OIP requires that:

t

z(t) = HJe^+W^Eqtfdr» 0 (3-3)
o

(3-3) is satisfied if there exists a conditioned invariant subspace S that containing ImE is

contained in KerH. Namely, that there exists a map L :Y-*X such that

<A+LC | ImE> C KerH (3-4)



Theorem 14: OIP is solvable if and only i/S/^g C KerH.

Proof: {-*•) If L solves OIP, then the subspace

S = <A+ LC | ImE> (3-5)

belongs to KerH. It then follows that S^e CSC KerH.

(«- ) Choose L 6 L(S'mF.), we have from ImE C Si^p.

<A+LC | ImE> C <A + LC \ S{a£> = SJ^ C KerH

Let us now formulate the stability requirement. Since the exponents appearing in the
dynamics of the controlled outputs are precisely the points in the spectrum of the operator

(A + LC) mod S induced by (A + LC) on the quotient space X/S, we get as our second sta
bility requirement:

o{A + LC)mod S C Cg (3_6)

Consequently, we have the problem of disturbance decoupling by output injection with
stability (OIPS) to be solvable if both requirements (3-4) & (3-6) are met. For OIP with pole
placement (OIPPP) one requires further, in addition to (3-4), that the poles of {A+LC)modS
be arbitrarily assignable in €.

Theorem 15: OIPS is solvable if and only if Sg',InE C KerH;
and OIPPP is solvable if and only if N^ C KerH.

Proof: Analogous to the proof of Theorem 14.

We now consider a slightly modified version of the output injection problem (OIP')
with the controlled outputs of the form:

z{t) = Hz(t)-Ny(t) (3.7)

(3-7) implies that we can subtract some linear combinations of the measured outputs from the
controlled outputs and then decouple the disturbance from the new outputs.

lemma 16: Let ¥ be a subspace of X, then ¥ n KerC C KerH if and only if there exists a
map N such that ¥ C Ker(H - NC).

Proof: Follows along the lines of the proof of Lemma 3.

It follows from Theorem 14, Theorem 15 and Lemma 16 that:

Theorem 17: (a) OIP' is solvable if and only if 5/rf fl KerC C KerH.
(b) OIPS' is solvable if and only if Sg'flmB n KerC C KerH.
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(c) OIPPP' is solvable if and only if N/^ n KerC C KerH.

Remark: Using Proposition 8, we can achieve two-step design in the solutions of OIPS and

OIPPP. (i) Choose any map L € L{S) so as to hold ImE in S and subsequently filter the

measured outputs by G. Thus (A + LC , GC) mod S is detectable (or observable), (ii) Apply
output injection Lx with the filtered outputs to stabilize the whole process, i.e., a (A + LC

+ Lj GC ) mod S belongs to Cg (or <D„).

4. Disturbance Decoupled Estimation Problem

The problem of disturbance decoupled estimation (DDEP) has been treated in the litera

ture, see for example Willems [1] and Schumacher [3]. Here in this section, we will use the
theory developed in section 2 for conditioned invariant subspaces to give a simpler proof of

the DDEP results and establish a relation between OIP and DDEP.

Consider again the dynamical system

z(0 = Ax(t)-r Eq(t)

y{t)=Cz{t), z(t) = Hx(t) (4-1)

Where z(t) are the outputs to be estimated ( instead of controlled outputs in OIP). The prob
lem of disturbance decoupled estimation (DDEP) is the problem of constructing an observer of
the form:

w(t)=*Kw(t)+ Fy(t) (4-2)

z(t)=Nw(t) (4-3)

such that the resulting estimation error

e(t)=z(t)-z(t) (4-4)

depends only on the initial conditions w{0),z{0) and not on the disturbance. The problem of
disturbance decoupled estimation with stability (DDEPS) further requires that a (K) C ®g
and DDEP with pole placement (DDEPPP) requires spectrum of the error dynamics be arbi
trarily assignable in €.

In comparison to OIP, where we desire to hold ImE in KerH through output injection,

we need here to estimate the states lying in the space X/KerH with the estimation error
independent of the disturbance.
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Theorem 18: (a). DDEP is solvable if and only if S^ C KerH.
(b). DDEPS is solvable if and only if Sg'fImE C KerH.
(c). DDEPPP is solvable if and only if N'^ C kerH.

Remark: The solvability conditions for DDEP, DDEPS and DDEPPP are then precisely the
same as that of OIP, OIPS and OIPPP respectively.

Before proving Theorem 18, we need the following important result:

lemma 19: Let S be a subspace of X in (4-1) that contains ImE. Then, there exists an injec
tion L :Y-*X such that <A+LC | ImE> C S if and only if there exist maps K, F & N
such that

w{t) = K»(t}+ Fy{t) (4-5)

and Nw{t) - Pz(t) = 0 (4-6)

where P: X-*X/S is the canonical projection.

Proof: { -> ) Let Si = <A + LC | ImE > C S, then Si 6 £, and ImE C Sv By Lemma 2,
there exist maps K & F such that

w{t) = Kw{t) + Fy{t) (4-7)

and w{t) - PiZ(t) =* 0 (4-8)

where P^.X-^X/Si. Let P: X-*X/S and Sj C S « KerP implies that there exists a unique
N : XISx — XjS such that P = NPV From (4-8), we have

Nw{t) - NPiz{t) =* Nw(t) - Pz(t) = 0

( «- )Using Lemma 4, S is then conditioned invariant and L 6 L(S) willdo the job. •

Stability and pole placement versions of Lemma 19 follow trivially from the fact that

a(K) C Cg and a (A + LC) mod S C C, or that both a (K) and or (A +LC) mod S must
be arbitrarily placed in C . For the sake of completeness, we state this as a lemma and leave

the verifications to the reader.

Lemma 20: Let Sg ( or N ) be a given subspace of X that contains ImE. Then there exists an
injection map L : Y-+X as defined in Lemma 19 and a (A + LC) mod Sg C Cg { or cr (A
+ LC) mod N is assignable in € ) if and only if there exist maps K, F & N as defined in

(4-5), (4-6) , of course with P iX-+X/Sg { or P: X -* X/N ) , and that a (K) C <C, ( or
assignable in € ).
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Proof ( of Theorem 18-a): Suppose that S^ C KerH. Write S = KerH, and let L 6

US/Ins). Then, <A + LC | ImE > C <A + LC | S^ > C KerH = S. SolvabiUty of
DDEP then follows from Lemma 19. Conversely, if there exist maps K, F & N that solve

DDEP, then it is necessary that ImE C KerH = S. Using Lemma 19 again our conclusion fol

lows. •

The proofs of (Theorem 18-b) and of (Theorem 18-c) proceed analogously to the above
argument.

Remark : By Theorem 18, holding disturbance for the system (4-1) in KerH is as good as
estimating z mod KerH with estimation error independent of the disturbance.

Now, let us consider the modified version of DDEP (DDEP '), namelywith the estimator
of the form

z{t) = Nw{t) + My{t) (4.9)

Then, it may be be easily verified that

Corollary 21: (a) DDEP* is solvable if and only if S^ n KerC C KerH.

(b) DDEPS' is solvable if and only if S/,^ n KerC C KerH.
(c) DDEPPP' is solvable if and only if N^ n KerC C KerH.

5. Solutions of X(b)M(s) = Q(a)

In the design of multivariate control systems, one frequently encounters the problem of
solving rational matrix equations on various rings. In particular, solutions of Mi{s) X(s) =
Ms{s), X(s) M2 (s) = M3(a) and A/^s) X(s) M2 (s) = Mt (s) are extremely important in the
algebraic design methodology (see [10]). Using developments in geometric control theory, one
is able to solve Mx{s)X{s) = Mz{s) in state space form using the concept of (A, B) - invari
ance along with the scheme of disturbance decoupling by state feedback. In [13] a complete
description to the solutions of Mi{s)X{s) = M&{s) in state space form was given. In parallel
to the work of [13], we will give in this section complete solutions to the matrix equation
X(s)M2{8) —Ms{s). In a later paper, we will treat the third problem, namely solutions of
Mi{s)X{s)M2{s) = Mz{s) in state space form. In this section and the section that follows, we
will fix <C, to be the open left half plane ( C_). So when we say C„ we really means €_.

Given the equation:

X{s)M{s)~Q{s) (5.!)

where M(s) 6R^,*"'(*)>£(*) €R* *"'•(») and X(s) unknown, we want to solve for X(s) over
one of the following rings: (1) RPi,(s), (ii) RPt,(o), (iii) RPJu) and (iv) any of the above
rings with no restriction that the solution be strictly proper, only that it be proper.
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The solution of (5-1) proceeds in two steps: First, we check certain solvability conditions
to be derived in this section; Second, if they are satisfied we give descriptions of the solution
in state space form.

To verify solvability of (5-1), we concatenate M(s) with Q(s) to form a new transfer
function G(s) and realize G(s) as in (5-2). Partition the H matrix as shown in (5-2).

G{8) " ftf) ]=H(8l-ArlE - [Ch\sI-AY1E (5-2)
Thus, M(s) = C{sI-A)~1E, Q(s) = H(sI-AylE and (5-1) is equivalent to

X(s)C(sI-AYlE = H(sI-AYlE (5-3)

Recall now that the OIP is solvable if and only if the transfer function from q(s) to z\s)
is zero, i.e.

z (s) = H{sI-A-LC)~1Eq{s) = 0 (5-4)

Using the identity (/ + PQ)~l = / - P(I + QPYlQ in (5-4) we have:

z {s) = H(8l-A)-l[I-LC(sI-A)-l\-lEq(s)

= H(sI-A)-l\I + LC{I-{sI-A)-1LC)-1{sI-AY1]Eq{s)

= [H{sI-A)'lE + H(sI-A-LC)'lLC{sI-AylE\q(s)

= 0 (5-5)

(5-5) holds for all q 6 R 'if and only if

H{sI-A)-xE + H{sI-A-LCY1LC{sI-A)-1E = 0 (5-6)

With X(s) = - H {sI-A-LC)~lL in (5-6), we see that there exists a correspondence between
the solution of (5-1) and the solution of OIP (or DDEP). The following theorems in fact estab

lish their exact equivalences.

Theorem 22: (a). (5-1) is solvable over Rp%*:"'(s) ifand only if S^ C KerH.
«.x»(b). (5-1) is solvable over R/ '(s)if and only if S/^ fl KerC C KerH.
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Proof (of Theorem 22-a): ( -♦ ) if there exists X(s) 6 B.p% "'(s) that solves (5-1), then by (5-
3)

lX{s)C{sI-A)-1E - ^sI-AY^lqXs) = 0 for all q\s) (5-7)

In the DDEP, y(s) = C(sI-AYlE q (a), z(s) = H(sl-A)~1E q(s) and (5-7) implies that the
DDEP is solvable with the observer defined by

w{t) = Kw(t) + Fy(t) (5-8)

*(0 = Nw{t)

where N{sl'-K)-lF = X{$). It then follows from Theorem 18 that S^ C KerH.

( «- ) If Si^ C KerH, then both the OIP and the DDEP are solvable. X(s) « - H
(sI-A-LC)-1 L with L € L{Sin&), or X(s) = N {sI-K^1?, the observer transfer function, is
a solution of (5-1). •

The proof of (Theorem 22-b) follows from OIP' and DDEP'.

Theorem 23. // (A,E) is stabilizable, then (5-1) is solvable over Rpe*n°{o) if and only if
Sg,imE C KerH.

Theorem 23 is the stable version of Theorem 22. The importance of this theorem lies in
the fact that usually only stable solutions to (5-1) are needed in real control system design. By
the theorem, existence of a strictly proper and stable X(s) that solves (5-1) is completely
equivalent to the solvability of DDEPS or of OIPS. The proof of Theorem 23 proceeds in two
steps. First we prove the following lemma:

lemma 24: If the proper rational function X(s) is stable and the pair (A, E) is stabilizable,
then

X(s)C(sI-A)-lE - H(sI-A)-lE = 0 (5-9)

implies that

v(s) = X{s)C{sI-A)-lz{0) - H{sI-A)-lz{0) (5-10)

is stable for all initial conditions x(0).

The proof of Lemma 24 is somewhat lengthy but is straight forward.
Proof: Since X(s) is stable, we can only consider the case where z(0) 6 Xb{A). Again, Xb{A)
denotes the subspace of X spanned by the (generalized) eigenvectors of A corresponding to
eigenvalues in <Db. For if z(0) € Xg{A), then stability of (5-10) is automatically guaranteed.
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First, let's assume that v € Xb{A) is an generalized eigenvector of A of degree k
corresponding to eigenvalue X € Cj. Then, (A - X I )'v ^ 0 for 1 < i < k -1 and
{A - \I)k v = 0. Denote this generalized eigenvector chain by {j/,}/^*, where vk = v and
Vi = {A-\I)k-1 v for i =1,...,*-1. Stabilizability of (A, E) implies that for each vx there
exists an input qt 6 R ' such that

t

vx = JeA^-^Eqi{T)dT, (or0<t<oO (5-11)
o

Taking the Laplace transform of the above expression we have

^ = (sI-A)-lE 1(b) (5-12)
9

Thus, ^ = (8l-A)~\(s), where ?,(*)= *ii{*)' Multiply equation (5-9) by ^,(s) to give

X(s)C{sI-A)-1E ?,(*) - H(sI-A)-lE %(s) = {X{s)C - H} vx « 0 (5-13)

Now, consider the expression (si - A)"lz(0). Without loss of generality, we may assume that
x(0) is a linear combination of the generalized eigenvector chain {*>,},• ™* alone, i.e.,

2(0) = 2 <*\V\ for some constant a, 's. Thus
i =i

(,l-A)-*x(0) =(t +4 +4 + •••WO)

=(7 +4 +4r +'' •J'S*""' (s-14)
In turn using the definition of generalized eigenvectors, we have

(t/-A)-**(0) - £ «.K M". (5-15)
I nl

for some 0,(0, X), which is generally a function of both s and X.

Using (5-15) we can rewrite (5-10) as

v(s) - {X(*)C - tf } £ q(», X)v, (5-16)
t =»i

On the other hand, (5-13) implies that

{X(s)C - /*}£**,(* AK - 0 (5-17)
i«*l

Which shows that (5-10) is identically zero for all initial conditions z(0) 6 Xb{A) and there

fore completes our proof. •

We are now in the position to prove Theorem 23.

Proof (of Theorem 23):( -> ) By the OIP, X(s) = ^(sI-A-LC)'1!. with L € L(Sg',ME) is a
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stable solution of (5-1).

( «- ) Using a minimal realization of X(s) of the form N(sI-K)~lF, we may construct an
observer using ( N, K & F). By minimality of the realization, a (K) = P{X(s)} C €g] with
P{X(s)} denoting the Smith-McMillan poles of X(s). Now, consider the Laplace transform of
the error term e(t) = z (t) - z(t) in the solution of DDEPS:

e(s) = N(sI-KYxw(0) + N(sI-K)-lFC(sI-A)-1z(0) - H(sI-A)-lz(0)

+ N(sI-K)-lFC(sI-AY1Eq(s)-H{sI^A)-lEq(s) (5-I8)

By (5-3), the last two terms in the right hand side of (5-18) drop out. Also, a (K) C €g
implies that the first term in (5-18) is stable. It follows from Lemma 24 that the remaining
two terms and therefore the whole expression in (5-18) is stable for all initial conditions x(0).
This shows that DDEPS is solvable and by Theorem (18-b) S/,^ C KerH. •

Theorem 23 gives necessary and sufficient condition for existence of a strictly proper
stable X(s) that solves (5-1). For an proper and stable X(s) that also solves (5-1), we have the
following result:

Corollary 25: If (A,E) is stabilizable, then there exists X(s) € HpeXn°(o) that solves (5-1) if
and only if Sg'tlBlE fl KerC C KerH.

For the solution of X(s) in (5-1) with pole placement we have:

Theorem 26: a). If (A,E) is reachable, then there ezists X(s) £ R^'fu) that solves (5-1) if
and only if Nf^ C KerH.

b). With the reachability assumption of (A, E) hold, there exists X(s) € RpeX*'(u)
that solves (5-1) if and only if N/^ n KerC C KerH.

Remark 1: To prove Theorem 26 is really no more than to duplicate the proof ofTheorem 23.

Remark 2 :The result ofTheorem 23 is no longer valid if the stabilizability condition is omit
ted. Consider the example n, = ne = 1, n= 2, <Dg = { s| Res < 0}, H= [0, 1], C= [1
0]

*-[8tf*-[S]
Then, S = ImE » { (zlP 0)'|j,CR }is (C,A)-invariant (even A-invariant). We have (A
+ LC) S C S for L' = [ lu l2\ if and only if l2 = 0. But then

(A+LC)= 'i0
0 1

and a (A + LC) mod S = {1} <£ Cg. Thus, S/lIlnE « R2 which obviously does not belong
to KerH. But, ^(sI-AY'E = 0, and C(sI-A)-lE = 1/s, (5-1) has a strictly proper stable
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solution X(s) = 0.

6. Output Stabilization with Respect to Disturbances

Disturbance decoupling by output injection as described in section 3 cannot proceed
without the satisfaction of the necessary condition HE = 0. In this section, we shall be con

tent with a more modest objective, namely, attempt to find an injection L: Y-*-X, such that
the noise to output map of the closed loop system is stable.

OSDP: Given the system (3-1), determine L: Y-+X such that H(sI-A-LC)-lE is stable.

Theorem 27: OSDP is solvable if and only if S/^ D S/ C KerH, where Sg denote the
infimal complementary detectability subspace.

Proof: We choose G0 , as in Proposition 8, such that KerG0C = S/ + KerC = KerC and
L0€ L (SJbe) , then S/, and therefore S/ D SLv. is ( A+ L0C) -invariant ( seeLemma 13).
We choose a basis (qi,q2, ' ' • qn) o( X such that (?i,...ft) is a basis of S^ D Sg, (?i,...ft) is
a basis of S'my. ( where 1 > k), (tfi,...ft,?/+i, *•"?*) a basis of Sg. Accordingly, we can split
matrices and vectors as:

A+LQC =

An ^12^4x3-^14 Ei
0 ^22 0 M<

, E =
E2

0 0 As* Au 0

0 0 o Au 0

G0C = [0 C2 0 C4 ] H = [0H2Hz tfj

Since S/ is a complementary detectability subspace and (Lq, G0) 6 $ ( S/) it follows that

[C^Cj

is detectable. Hence, (A22t C2) is detectable. Therefore, there exists L2 such that
^22+ L2C2) C <Cg. Ifwe define V « [0, G0'L2\ 0, 0], we see that H [sI-A-(L0+ L)CYl E
= ^{sI-Azz-L^^Ez is stable if S/ fl S^ C KerH. •

Corollary 28: a).There exists X(s) € R^*"'!*) such that X(s)M(s) - Q(s) is stable if and only
if S/nSj^E C KerH.

b). there exists an X(s) € R^ *"'(*) such that X(s)M(s) - Q(s) is stable if and
only if S/ n Sg'>laiE C KerH.

Remark: Let e(s) = H(sl - A - LC)~XE in the solution of OSDP and by (5-5), e(s) =
H(sl -AYXE + H(sl -A -LC)-lLC(sI -A)~lE. Thus, the error term, i.e., X(s) M(s) -
Q(s) is given by H^sl - A&- L^C^E* with A^ C& H2, and L2 defined in the proof of
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Theorem 27.

7. Conclusions

We have introduced conditioned invariant, complementary detectability and comple

mentary observability subspaces both in terms of output injection and in terms of observer

design schemes. We have given detailed characterizations of the infimal (C,A)-invariant sub-

space that contains a subspace ¥. Section 2 is a complete dualization of Chapters 4 and 5 of

Wonham [4]. In sections 3 & 4, we have proposed the disturbance decoupling by output injec
tion scheme • a natural dualization of the disturbance decoupling by state feedback (DDP)
scheme and have given solutions to stability and pole placement versions of OIP. We have

established a direct relation between OIP and DDEP.

We have solved X(s) M(s) = Q(s) in section 5 using OIP and DDEP: necessary and
sufficient conditions for solvability of the equation with or without stability or pole place
ment are given and proven; and we have shown when strictly proper and when proper solu
tions exist to the above equation. We mention here that the techniques of [13] may be used to
solve the transposed equation (5-1). Our techniques are however of independent interest.
Finally, we have briefly addressed the problem of output stabilization with respect to the dis
turbance in the OIP scheme and have subsequently given necessary and sufficient conditions

for existence of an X(s) such that the error term X(s) M(s) - Q(s) is stable.
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