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ABSTRACT

To take advantage of the remarkable computational efficiency

of the canonical piecewise-linear approach for dc nonlinear elec

tronic circuit analysis, the devices must be modeled by a canonical

piecewise-linear model. This paper presents a unified parameter

optimization algorithm for constructing such models. This algo

rithm is then applied to derive prototype canonical piecewise-linear
models of pn junction diodes, bipolar transistors, MOSFETs, and

GaAs FETs.

The canonical piecewise-linear model can be regarded as a

universal model since its form remains unchanged for all devices.

Only the coefficients differ from one device to another.

For large-scale circuits, the canonical piecewise-linear represen

tation has a decisive advantage over other representations in regard
to the number of memory locations needed to specify the equations.

t This work is supported by the Semiconductor Research Corporation under Grant SRC 82-11-008.

ft The authors are with the Department of Electrical Engineering and Computer Sciences and Electronics
Research Laboratory, University or California, Berkeley, CA 94720.



1. Introduction

Device modeling is presently the weak link in computer-aided design.
Without a good model for each electronic device in a circuit, no computer simula
tion would be meaningful. A good model always involves some compromise
between simplicity and reality.

Modern electronic devices, especially those with submicron dimensions or

operating at microwave frequencies, often exhibit strong nonlinearity and compli
cated dynamical phenomena. Consequently, circuit models for these devices are
either presently unavailable, or are computationally so inefficient as to preclude
their use in practical circuit simulation of large-scale circuits.

Several ^black boa^ approaches (e.g., table lookup[l], spline function approxi-
mation[2,3]) have recently been used to derive simpler models so that they can be
implemented efficiently in a circuit simulator. The table lookup method suffers

the drawback of a huge memory space requirement for storing the device data.

The higher-order spline function, though more general and can be made arbi

trarily accurate, is made of higher-degree polynomials and is therefore still com

putationally inefficient especially for large-scale circuits. In this paper, we use

canonical piecewise-linear functions[4] to model the nonlinear dc characteristics of
practical electronic devices. The main advantage of this approach is that the

resulting circuit equations to be solved by a circuit simulator will always possess

the highly desirable canonical piecewise-linear form[9]. Such equations can be
solved very efficiently, often at a tiny fraction of time needed by the other

models. Since a piecewise-linear function may be considered as a first-order spline

function in some applications, our model can not compete in the accuracy attain
able with higher-degree spline functions. However, the remarkable saving in com

putation time often more than jiistifies the loss of some accuracy. Our experience

has shown that the accuracy attainable using the canonical piecewise-linear

models is satisfactory in most applications.

There is a significant difference between a conventional piecewise-linear

model[5-8] and a canonical piecewise-linear model. The conventional piecewise-
linear approximation consists of two major steps : (1) simplicial subdivision of the
domain space; (2) interpolation of a piecewise-linear function on the subdivided
domain. This approach suffers the drawback that the number of subdivided

regions for a typical device is fairly large in order to obtain acceptable accuracy.

Consequently, the total number of piecewise-linear regions in typical large-scale

circuits becomes too large in both memory space and computation time for prac

tical implementation. Our canonical piecewise-linear approach is entirely different
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Starting from the measurement of the terminal v-i characteristic of the dev

ice, we fit these measured data into a compact global piecewise-linear representa

tion called a canonical piecewise-linear function

f(x) = a -f- Bx + S I(«i ,x) - Pi I (1-1)
i=l

where a , x , c,-, and a; are n-dimensional vectors, B is an n X n matrix, /?,- is a

scalar, and "{ >)" denotes the inner product of two vectors. Because no redun
dant data is stored, this approach greatly reduces the memory space required for

the storage of the device parameters. Moreover, the special structure of the asso

ciated canonical piecewise-linear equation allows us to develop highly efficient

algorithm for solving these equations[9-ll]. In fact, it is the remarkable computa
tional efficiency of the canonical piecewise-linear approach that motivates our

development of canonical piecewise-linear models in this paper.

Using the optimization procedures derived in the following sections, we

choose a set of optimal parameters a, B, c,-, of,-, /?,- for a given cr (i.e., the number
of boundaries in the domain space), such that the approximation error is minim
ized. In this way, the internal physical phenomena of the device is not required
as long as the terminal voltage and current can be accurately measured. In Sec
tion 2, we develop the parameter optimization algorithm for canonical piecewise-
linear models of 2-terminal devices. We then apply this algorithm to construct

several canonical piecewise-linear models with increasing accuracy for a typical
pn junction diode. This algorithm is extended to 3-terminal devices in Section 3
and applied to three important 3-terminal devices; namely, bipolar transistors,
MOSFETs (fixed bias for the substrate) and GaAs FETs. The canonical
piecewise-linear models for these devices are validated by comparing the DP and
TC characteristics of typical circuits with those derived from SPICE. In all cases,
acceptable accuracy is obtained at a small fraction of computation time. The
optimization algorithm developed in Sections 2 and 3 is extended in Section 4 to
include multi-terminal and multi-port devices (e.g., op amps and gates). We also
show that parallel processing can be applied to speeed up our parameter optimi
zation process. In the concluding Section 5, we compare the storage requirement

of various methods for representing a high-dimensional function and show that
among all known representations, the canonical piecewise-linear approach
possesses the most economic storage especially for large-scale circuits.
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2. Canonical Piecewise-Linear Modeling for 2-terminal Devices

Let X denote the terminal voltage (resp.; current) of a 2-terminal voltage-
controlled (resp.; current-controlled) device; and let y denote its associated termi
nal current (resp.; voltage). Assume the set ofdata points {x^^\ /=1,2,...,N
is obtained either by measuring the terminal v-i characteristic or by numerical
computations from the equations which describe the physical phenomena of the
device (e.g., 2-dimensional solution of the associated nonlinear partial differential
equations). We want to find an optimal canonical piecewise-linear representation

y — a bx 2 I - A
t=i

(2.1)

for the v-i characteristic of the 2-terminal device such that Eq.(2.l) fits the meas
ured data points as closely as possible. In other words, we want to find a set of

optimal parameters {a,6 ,ci,C2, . • • • • > such that the approximation
error

N

E (zi, zs) = E
/=i

+bx^'^+ Y,Ci I -y('))2
t=i

(2.2)

is minimized, where

where

A =

and

= j^a bCiC2...c^j^ (2.3)
Z2= (2.4)

and for I =1,2,...,N, is the weighting factor for each data point.

We first assume that the location of each breakpoint is fixed at Z2=Z2, then
the approximation error E(zi, Z2) is a quadratic function of zj and the minimum

can be easily found by solving the linear equation

a^(zi, Z2)

25l

dzi
= 2 AWr = 0

1—
•

11

iWxP)••
xW

«lp)
••«,(") :

„>): •

"r(i) "

» r =

r(2)

r(N)

(2.5)

(2.6)
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W = diag. , . . . ,

r(0=a +6a:t')+ f] c,- |a:(^)-/3i | -yO
»=i

«i(')= liC)-^. I

r = ssi - y

y= [l
Eq.(2.5) can be further reduced to

AWV2wi/2Ar zi - AWy = 0

where

yW y(2) y
(JV)

Define

where

g = = 2 KGWr
dz<

Y=-|S- = 2
5z2

K(4^)Wr +KGWG'' K''
OZ2

K = diag. {c i, c 2, • • . c

G =

p,W p.M
P2''' P2'̂ '

m

(N)
Pi

Pi

(W)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

WV2 = diag. (\/iD<'), \/tt(^') (2.13)

Since the matrix (AW'/")(AW'/^^ is symmetric, Eq.(2.12) can be solved by the
more efficient Choisky algorithm[l2l. The solution gives the optimal
parameters for the fixed partition Z2=Z2. Clearly, different partitions would give

rise to different optimal parameters and our goal is to choose an optimal partition
boundaries Z2 = ®2*- Let zj=zi*(z2) be the optimal parameters for a particular
partition boundaries Z2. Our problem is to find Z2 such that

E(zi*(Z2*), zj") =Min (zi*(Z2), Z2) | Z2 €1?' | (2.14)

(2.15)

(2.16)

(2.17)

(2.18)



- 5-

and

= (2.19)

where sgn (2) = 1 (resp.; sgn (2:) = -l) if x >0 (resp.; x <0). Note that each ele-

ment in the Hessian matrix --— is a first order generalized function which van-
5Z2

ishes when no data point coincides with any of the breakpoints, i.e., when
a;(') ^ Pi for / =1,2,...,N, and %=1,2,...,(t. Hence

Y = 2 KGWG^ (2.20)

almost everywhere.

Since g = Vz2-^ 1 -g specifies the steepest descent direction for E, i.e., the

greatest initial rate of decrease in ^. In practice, we do not use -g as the direc

tion for our line search due to its slow convergence rate since no account is taken

of the second order derivative of E w.r.t. Z2 which, in this case, can be easily

evaluated by using Eq.(2.20). Instead, we will perform a line search along the
direction of

8 = -Y^'g (2.21)

which is guaranteed to be in the descent direction since Y is positive definite. Let

= (2.22)

= (2.23)

= = (2.24)

where

.(*) =
zi(*)
Z2^*^ (2.25)

We start from an initial partition Z2=Z2^* ^for k=0, and solve Eq.(2.12) to obtain
zi*(z2^*^). We then perform a line search along the direction to find such
that

E (zi W* 1) , Z2^* W* ^)

=Min|E(zi*(z2^*^+Q«^*^), Z2^*^+qs^*^) Ia>o| (2.26)
Let

)-j- Qr^* ^ (2.27)

and increment k by one to continue the iteration for minimizing E.
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The above iteration procedures will reduce the approximation error E for

each iteration and hence must approach a local minimum of E, Unfortunately,

there generally exist more than one local minima as shown in the following

Example 1, and hence it is not guaranteed that the parameters obtained by our

iteration algorithm will lead to a global minimal approximation error. This local

convergence phenomenon is typical of all general purpose optimization tech

niques.

Example 1 :

Figure 1(a) shows 15 data points located in the interval [0,14] which are to
be approximated by a two-segment (one breakpoint) piecewise-linear function.
For each breakpoint location, we find the corresponding optimal canonical

piecewise-linear representation by solving Eq.(2.12) and estimating the approxi
mation error by Eq.(2.2) with a uniform weighting factor for each data point.
The minimal approximation error E as a function of the breakpoint location 13 is

shown in Fig.l(b), which shows that -|̂ =0 for /?=4.65, 6.75, 11.68, 0</3<l, and
13</?<14. However, the approximation error corresponding to the breakpoint in

these locations is only locally minimal. The global minimum is located at /?=8
3E

where -— is discontinuous and is nonzero either from the left or the right limit
df3

of the point.

Example 1 shows that E has discontinuous derivative where the breakpoint

0 in this case coincides with a data point. This observation suggests the possibil

ity that a local minimum may occur at the location of a data point if

I^^ j(/). < 0 and I jCH- > 0- It follows from this observation that it is

impractical to search for a global minimum by searching for a critical point with
op

._s=0 since the derivative of E w.r.t. is only piecewise continuous and E gen

erally has multiple critical points. Hence, with the current state of the art in

optimization techniques[l3,14], searching for globally optimal canonical
piecewise-linear model is presently not feasible in general.

Our strategy for finding the optimal breakpoints Z2 is to combine the itera

tion procedures with a grid search. We start from an initial set of breakpoints

and apply the above iteration procedure to minimize the approximation error. We

then repeat this procedure with a new set of breakpoints chosen with a different

spacing from the previous sets in order not to converge to the same local

minimum. Finally, we compare all the local minima and choose the optimal
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canonical piecewise-linear representation which has the smallest approximation
error. Our experience shows that this strategy gives good results even though it is
impossible to guarantee that we have indeed arrived at a global optimal solution.

Example 2 :

Assume there are 100 data points for a pn junction diode which are uni

formly spaced between the interval OA<x <0.7. For simplicity, let us obtain these
data points from the standard pn junction law

.• (2.28)

where Ig =10"^^A and Vj- =26mV. Following the above algorithm, we obtain the
following optimal 2-segment canonical piecewise-linear model

i = a bv + c 11 v - I (2.29)

where a —-2.351X10"^ , 6 = 3.662X10"^ > —3.533X10"^, and I3i —0.648 for this
pn junction diode with an error .F=1.05X10"®.

As shown in the dashed curve of Fig.2, the canonical piecewise-linear diode

model Eq.(2.29) obtained with a uniform weighting over the voltage range
[0.4,0.7] has a serious defect : the error grows monotonically in the reversed
biased region, which incidentally is outside of the range [0.4,0.7] of our data
points. One way to improve our model is of course to enlarge our domain and

take more data points. However, the computation time for optimization greatly

increases with the number of data points. For the pn jimction diode, however,

the data points for v < 0.4 can be approximated by zero current in most applica

tions. Hence, in this case, we need only to add one extra breakpoint /?o to the

model Eq.(2.29) such that the current is identically zero for all v < Pq. This new
breakpoint can be physically interpreted as the cut-in voltage of the pn jimction

diode. Since the model in Eq.(2.29) realistically describes the diode characteristic
in region 0.5 < v <0.7, we choose /3o at the intersection of the u-axis and the

piecewise-linear function described by Eq.(2.29), namely, v =0.481. Hence, we
simply introduce a new horizontal segment ( j = 0) for v <0.481. The resulting
canonical piecewise-linear model is given by ;

1 = a + bv + co|v-/9ol + ci|i;-/3i| (2.30)

where

a = -2.320X10-2 , 6 = 3.595X10-2 , Cq == 6.466X10-^ , /3q = 0.481 , c j = 3.533X10-2,
and J3i — 0.648, and is shown by the solid curve of Fig.2.
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For future applications, several canonical piecewise-linear models with

increasing accuracy (with more breakpoints) for the pn junction diode described
by Eq.(2.28) are listed in Appendix A.

Remark : The saturation current /, and the thermal voltage Vj> in Eq.(2.28) may

vary with different processing parameters in the fabrication of the pn junction

diodes. Suppose that they differ from the nominal values /, =10~ '̂̂ A and
Vj' =26mV by a factor p and q respectively; i.e., the v-i characteristic follows the

relation

i (2.31)

then the corresponding optimal canonical piecewise-linear model can be easily
extended by scaling the corresponding coefficients. More specifically, if Eq.(2.1) is
the optimal canonical piecewise-linear model for the diode characterized by
Eq.(2.28), then the optimal canonical piecewise-linear model for the diode
described by Eq.(2.31) is simply given by

,• = pa + Liv + 2 P-c- I i; - 9A- I (2.32)
? 1=1?

Summary : canonical piecewise-linear pn junction diode modeling algorithm :

A. Optimization

Step 0. Choose an initial set of breakpoints k=0.

Step 1. Solve Eq.(2.12) for

Step 2. Find the line search direction by Eqs.(2.15)-(2.21).

Step 3. Perform the line search along to find for the minimization prob
lem of Eq.(2.26).

Step 4. Increment k to k-1-1.

Step 5. If II II < e (a constant specified by the user) then stop; else
go to Step 1.

B. Refinement

Given Eq.(2.l) with parameters calculated from Steps 0-5, we can add one
horizontal segment to the left of v = in the preceding example and derive

the following refined model :

i = a' -h 6' v + 2 c,- I V-I (2.33)
»=o
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where

^0 —2 X) ^»)
1=1

a

0 + E "i A-
Po

E'^i -»
1=1

b = b - cq

a = d + ^qC 0 (2.34)

3. Canonical Piecewise-Linear Modeling for 3-terminal Devices

We now extend the algorithm developed in Section 2 for 3-terminal and 2-

port devices. Let the terminal behavior of the 3-terminal device be characterized

by

yi = f li^i, X2) (3.1a)

^2=/2(^11^2) (3.1b)

where Xi (resp.; xo) is the voltage or current in port 1 (resp.; port 2), and t/j is
the current or voltage associated with Xi. Similar definition applies to t/2*

Assume the data points (a:,-^, y,- '̂̂ ), i=l,2, and /=1,2,...,N are available
which are scattered over the 2:1-2:2 domain space. The problem for modeling 3-

terminal (or 2-port) devices is equivalent to finding the 2-dimensional surfaces

yi = / 1(2^11 ^2) (3.2a)

y2 = / 2(2^1» ^2) (3.2b)

which fit the data points as closely as possible. In this section, the functions / 1
and / 2 are assumed to be canonical piecewise-linear functions; namely

a

yi = /i(a^i-.a^2) = ai+^>iia?i+6i2^2+ E^ii \ <^ii^ 1+ oti2^2 + Pi I (3.3a)
i=l

<T

y2 = I 2(2^1» 2:2) = a2 + 6212:1 + 6223^2 + E C2» IQfil2:i + Qfi2«2 + A I (3.3b)
»=1

The straight lines

a,- la: 1-H a,- 2^? 2+ Pi = 0 (3.4)

for j=l,2,...,<r are partition boundaries in the 2:1-2:2 plane. If a,-2 7^0, we can
eliminate one coefficient from Eq.(3.4) by rewriting it into the equivalent form
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rriiXi - X2 + ti =0 (3.5)

i = 1,2,...,<7. For large cr, this will save a considerable amount of iteration pro

cedures for finding the optimal partition boundaries. Although Eq.(3.5) excludes
vertical boundary lines (i.e., when a,-2 = 0)> such boundaries can be approximated
by the straight line equation (3.5) with a large m,- and ti. Hence, Eq.(3.3) can be
simplified to

Let

y1= / i(^1, a: 2) = a1+ 6iio: 1+ 6lox 2+ Yj ^U | '"i 1- a: 2+
.»=i

(T

1/2 = /2(2^1 »a;2) = ^2 + ^2ia^i + ^22a^2 + Y^2i \miXi-X2+ti
i=l

Zi =

ai a 2 m 1

^11 6 21 m2
b 12 b 22 r 1

c 11 C21
Zl

c 12
, ^2 —

C22
, H =

«i
, 2 = 22

• ^2 23

Cl<T c 2a ^a

then the approximation error between Eq.(3.6) and the data points is

E(z) = Ti^WiTi + r2^W2r2

where

r,= [nWr,
r,= [r,Wr,M...r,W]'"

(3.6a)

(3.6b)

(3.7)

(3.8)

(3.9a)

(3.9b)

r jC) = a, + 61111'''+ I +'i I - y,'''(3.10a)
i=l

a

r2 '̂̂ = ^2 + ^2iaJi^^^ + 622a^2^^^ + tl^2i \ - X2^^^ + u I - t/2 '̂U3'10b)
»=1

and

Wj = diag. , • • • ,

W2 = diag. {w2^^^, , • • • , ^^2^^^)

are weighting factors for our error criterion.

(3.11a)

(3.11b)
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Assume the location of each boundary line is fixed at Z3 =£3, then the

approximation error E(zi, £3) is again a quadratic function of zj and Z2, and

the minimum of E for the partition boundaries £3 can be found by solving

dE

where

and

Since

where

dzi

dE

dzo

= 2 AW^ri = 0

= 2 AWgrg = 0

A =

1 1 1

z,(') z.P) . IJC)
Z2W Z2(^)

«,p)
«2''' : „2""

1'»{ Z2 '̂ ^+ ii

ri = ATZj -Vl

rg = A^ Z2 - y2

72= [y2'''ff2'̂ ' ^
Equation (3.12) can be further reduced to

AWjA'̂ - AWiXi = 0

AWjA'^ i2 ~ •A.W2y2 = 0

yi
,(.,T

{N)
yi

(3.12a)

(3.12b)

(3.13)

(3.14)

(3.15a)

(3.15b)

(3.16a)

(3.16b)

(3.17a)

(3.17b)

The optimal parameters for the fixed partition zj = Z3 can be obtained by solving

Eq.(3.17) and we denote them by ^/(is) and Z2*(z3). Hence, the minimal error
for the fixed partition Z3 becomes

^ (23) ,^2* (h) >h) =Minj^E (zi, Z2 ,Z3) IZ3 =£3! (3.18)
and the optimal canonical piecewise-linear model is found by searching for the
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optimal partition Z3* which will minimize the error in Eq.(3.8); namely

£'(zi*(z3') ,Z2*(Z3*), Z3*) =M«n|̂ (zi ,Zg ,Z3)| (3.19)
We apply the same iteration procedure in Eqs.(2.15)-(2.27) for the 2-terminal

case to search for an optimal partition except that g and Y which specify the

direction

s = -Y-ig

for the line search are modified as follow :

dE (zj, Z2 , Z3)

dzj
= 2 KiGWiri + 2 K2GW2r2

Y =
dz'.

(3.20)

(3.21)

dG dG=2KiGWiG^ K/ -}-2K2GW2G^ K2^ +2Ki-^Wiri+2K2^W2r2(3.22)
dz5 dz?

where

Ki — dtag. (c u , c , " " * » i<r > 11 > 12 »

K2 = diag. (c 21, c 22 > *** t ^ 2tr >^21 >^ 22 >

G =

ari^pid) a:/2)p^(2)

Pi

P2

(1)

(1)

(1)

Pi

Pl^

(2)

,(2)

(2)

Pi

P2'

(W)

{N)

[N)

>^ Iff)

I C2<r)

(3.23a)

(3.23b)

(3.24)

and

Pi 1= $gn {rrii a; -̂ a: 2^^ ^+ U) (3.25)

Just as in the 2-terminal case, Y in Eq.(3.22) can be reduced to

Y = 2KiGWjG^ Ki -h 2 K2GW2G^K2 (3.26)

if no data point is located on a boundary line.

We now apply the above algorithm to construct the canonical piecewise-
linear models for three important 3-terminal devices; namely bipolar transistor,
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MOSFET, and GaAs FET.

3.1. Canonical Piecewise-Linear Bipolar Transistor Model

Assume the npn bipolar transistor is connected in the common base
configuration with v1=175^, v2=^vbci » *2—^c shown in Fig.3. We
take measurements from a set of uniformly-spaced grid points in a square region

defined by 0.4 <vi <0.7 and 0.4 <V2 <0.7, and assume the terminal behavior of
the transistor follows the Ebers-Moll equation [15]; namely

<1 = A-(e - 1) - (e - 1)

,j= A.{e -1)-1)

(3.27a)

(3.27b)

with /j=10" '̂*A , Fr=26mF, af =0.99 and a,.=0.5. Following the above optimi
zation procedure, we obtain the following canonical piecewise-linear model which
optimally fits the data points with a uniform weighting factor in the error cri

terion defined by Eq.(3.8).

where

«2

^ 11

C21

i 1 ai
+

*2 0.2

11

21

c 12

C22

b 12
622

+
^ 11

^2 C21
I ruiVi - V2-¥ t\ I

+ ^2^'1-^2+^21 +
13

^23
msVi - V2 + <3 I (3.28)

3.2392X10-25.8722X10-2
-3.2652X10-2 ) 621

.

3.1095X10"® c 12

-3.0784X10"® 1

C22

mi 1.002X10^
= -1.4X10"^

ma 1.574X10"

b 12 -4.0897X10-2
622 8.1793X10-2

C 13 -3.0471X10-2
<^23 6.0943 Xl0r2

-6472
0.61714

-9.9342 XlOr^
1.9868x10-2

1

>-*
•

r

1 <2 =

r—

t

0.66355

This canonical piecewise-linear bipolar transistor model has the same defect

as our earlier pn junction diode model : they give excessively large leakage

currents. For example, when vi=-l and V2 = 0, Eq.(3.28) gives Ji=-1.588mA
and i2 = 1.3467nA, both of which deviate from the small leakage current by a

large approximation error. Note that there is nothing wrong with our optimiza

tion procedure since Eq.(3.28) is optimized only over the range 0.4 < v1 < 0.7 and

0.4 < V2 < 0.7.
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One simple way to overcome this problem is to follow the idea in Section 2

which modifies the unrealistic diode model in Eq.(2.29) to that of Eq.(2.30) by
adding one extra breakpoint. In the case of a 3-terminal device, this procedure
corresponds to adding an extra boundary line such that both the emitter current

and the collector current are forced to zero when the junction voltages are biased

below the cut-in voltage determined by the new boundary line. By Eq.(3.28), the
emitter current and the collector current are characterized respectively by

ti = 1.2348Xl0-^t;i-4.918X10-^V2-3.5294X10"'' (3.29a)

«2 = -1.2214XlO"^Vi + 9.82XlO"^t;2 + 1.2466X10"^ (3.29b)

when both junctions are biased in the lower voltage region or are reverse biased

where only a very small leakage current flows in the device. Hence, we simply

choose the extra boundary line such that the current is zero in the lower voltage

region while it remains unchanged in the other regions. However, if we follow the

same procedure as in Section 2 which determines the extra breakpoint at the

intersection of the zero current axis (v-axis) with the linear segment in the lower
voltage region, we would obtain the following extra boundary lines for I'l and

respectively :

1.2348 X10"®V1 - 4.918 XlO-^i; 2- 3.5294 XlO"* = 0 (3.30a)

-1.2214 X10"®vi + 9.82X10-''v2 + 1.2466X10"' = 0 (3.30b)

Unfortunately, Fig.4(a) shows that the addition of these two extra lines will not
force the current to zero in the whole (shaded) lower voltage region. Since the
extra boundary lines defined by Eqs.(3.30a) and (3.30b) fail to eliminate the
excessive leakage current, a different pair of boundary lines must be chosen.

Let the emitter current and the collector current be characterized respec

tively by

= + (3.31a)

*2~P2^i4" ^2^2 ^2 (3.31b)

in the lower voltage region of Eq.(3.28) when both junction voltages Vj and V2
are reverse-biased. Assume that the new boundary lines are located at vi=Ei

and V2=^2 ^ shown in Fig.4(b), where Ei and E2 are to be chosen such that the
currents in region I are still characterized by Eq.(3.3l) but are zero in region IV.
Note that the equations which specify the currents in region EE (resp.; region HI)
is not a function of uj ( resp.; V2) because they are independent of the junction

voltages when reverse-biased or biased below the cut-in voltage. Moreover, since

our canonical piecewise-linear model is continuous , the linear equations
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governing neighboring regions niust be identica.1 nt their common boundaries.
Consequently, the linear equation governing region 11 must have the form :

= qiV2-\'P\E\-\-r I (3.32a)

<2 = ?2^2 P2^1 + ^2 (3.32b)

Note that and in Eq.(3.32) do not depend on vj and are identical to
Eq.(3.31) when vi = Ei, Similarly, the linear equations governing region III must
have the form :

a1= PiVi + ^1^2 + r 1 (3.33a)

12 = ^2^1^" ?2-^2~l' *"2 (3.33b)

Setting t'l = 12 = 0 in Eq.(3.32) and solving for ^2j 'we obtain

p lEIr I P2'^i + ^2

Pi P2

= -^2
(7i <l2

Setting = ig = 0 in Eq.(3.33) and solving for Ei, we obtain

?1^2 + ^I ?2^2 + r2 = -E,

(3.34)

(3.35)

The location of the new boundary lines can now be found by solving Eqs.(3.34)
and (3.35) :

Pi92-P29i

i;j = Sj== (3.36b)
P2?l-Pl«2

Substituting the numerical values of the parameters from Eq.(3.29) into Eq.(3.36),
we obtain £"1=0.4662, E 2=^^52^. The canonical piecewise-linear model in

Eq.(3.28) now assumes the form

611
621'

^ 11

C21

^13
C 23

«1
1 '

«1
-1-1

*2

0
10

.

412
622

Vl

V2
+

''ll
<^21

4-

+

I wiiUi - t;2 -1- «i I +

I mgvi - V2 + <3 I

where

/

«1 6.0482X10^ 'l>n '
.^2 . -3.271x10-2 621

3.1775X10"^
-3.1456X10-^

Vi - £1 1 +
di2
^22 I V2-E2

c 12

C22
m 2V1 - u 2 + ' 2

(3.37)

'6,2' " -4.065X10-2
622 8.1302x10-2
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'rfll' 6.174X10"^ d\2 -2.459X10"^ 'Ex
^21 -6.107X10"^ }

^22 4.910X10"^ ; E2
_ [0.46621
•" [0.4529 ]

and other parameters (namely, mj, , ti, to , ^3, cu , c 01, c 12 i <^22 f <^13
and C23) are the same as those in Eq.(3.28). As a check, note that «j = ig = 0 in
Eq.(3.37) for all Vi < Ej and V2< E2, QS they should.

Remark : Since each boundary line in Eq.(3.37) is either identical to or close to a
vertical line or horizontal line, we can approximate Eq.(3.37) by the following
simplified canonical piecewise-linear model which possesses a lattice structure :

/ •

+
"611' 612 • Vl

+
"^11"

'2
t

a 2 .621' 622' V2 ^21
Vi-Ej 1 +

d 12

^22 I ^2 - -^2 I

+
<^11

I

c 21
I 1~ ^11 I +

C 12

C22
^ 2~ ^21 I +

C 13

C23
1V2- ^22 I (3.38)

where cn' = wt ic n , c21 = m iC 21 , ^11 — , ^21 — ^2 >/^22 — ^3j 3-^*^ I'll®
m 1

other parameters remain unchanged. The simplified Eq.(3.38) is said to possess a
lattice structure because each term within an absolute-value sign involves only

one variable. Geometrically, this structure is equivalent to the property that

boundaries are parallel to either Vi or t;2 axis. Such models are highly desirable

because the associated circuit equations can be solved with great computational

efiiciency[10,lll.

For future applications, two canonical piecewise-linear bipolar transistor

models optimized for different dynamic ranges are listed in Appendix B. Several

graphical comparisons of the predicted emitter and collector currents between the

Ebers-Moll model in Eq.(3.27) and the canonical piecewise-linear model in
Eq.(B.l) (low voltage version) are given in Figs.5(a)-(e). Note the agreement is
quite good in each case.

Example 3:

The transistor circuit in Fig.6(a) is an odd-symmetric negative resistance
device[16] which exhibits a negative slope in its driving-point characteristic as
shown by the dashed curve in Fig.6(b). This characteristic is obtained by the
recent algorithm described in [17] with each bipolar transistor characterized by
Eq.(3.27). Using the canonical piecewise-linear model in Eq.(B.2) (higher voltage
version) for each transistor, we efficiently trace the driving-point characteristic by
the Breakpoint Hopping Algorithm [10] as shown by the solid curve of Fig.6(b).
Observe from Fig.6(b) that both driving-point characteristics are virtually
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identical in the region | v,-„ | < 0.75. Yet the solid curve is obtained at only an
insignificant fraction of the time needed to trace the dotted curve. The
discrepancy beyond 0.75V is expected since our model is optimized only for vol
tages less than 0.75V. If we add more boundary lines in the higher voltage region,
then both curves in Fig.6(b) will be colse to each other even for higher input vol
tages.

3.2. Canonical Piecewise-Linear MOSFET Model

Assume the MOSFET is connected in the common source configuration with

vj=V(;5, V2=vdsi »i , and ^ shown in Fig.7, where both Vi, v2 are
in Volt, and »1, t2 s-re in {lA . The data points are uniformly spaced in a grid
within a rectangular region defined by 0<Vi<5, and 0<t;2<5. We assume the

data points follow the Shichman-Hodges model[18); namely

1*2 = k [(vi - Vt )v2-0.bV2]

if v1- V) > V2; or

i2 = 0.5k (u1- Vf )^[1 + X(v2 - V1 + F,)] (3.39)

if vi - Vf < V2j with k = SOfiA /V-, Vj = iVolt , X= 0.02Applying the

above optimization algorithm with uniform weighting factor for each data point,

we obtain the following canonical piecewise-linear model which optimally fits the

data points with N — Z boundary lines :

12 = 2 "b 21^ 1 "b 622^ 2"bC2i| rriiVi - V2-{' ^il + C22I W'2Vi-V24"^2|

+ C23 I wiiVi - 1/2 + ^3 I (3.40)

where

a 2 = -61.167 , 621 = 30.242 , 622 = 72.7925

c 21 —49.718 , c 22 — —21.027 , c 23 2.0348

m 1 = 0.8175 , 1712 — 1.0171 , m 3 = -23.406

<1 = -2.1052, i2 = - 1.4652, <3 = 69

Just as in the preceding canonical piecewise-linear pn junction and bipolar

transistor models, Eq.(3.40) predicts an excessive leakage current below the thres
hold voltage Vf. We can eliminate the leakage current by adding one extra boun

dary as before such that the current 1*2 is forced to zero for vj < V) but remains

unchanged elsewhere. By Eq.(3.40), the drain current in the lower voltage region
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(v1 < Vi) is characterized by

»2 = 44.647V 1+ 0.0252V2 - 56.239 (3.41)

Setting 12 = 0 in. Eq.(3.4l) specifies the extra boundary line at

44.647V 1+ 0.0252V 2- 56.239 = 0 (3.42)

This new boundary line is very close to the vertical line vi=1.26 and defines the

threshold voltage Vj such that the drain current is identically zero in the region

V1 < Vf. By augmenting this new boundary line, we obtain the following
improved canonical piecewise-linear MOSFET model :

»2~®2 ^1"1"522 V2+C2o|wio^l~*'2"b^ol + C2ll''*l^l~^2"l~til

+ C22l"*2Vl~^2+^2l + C23lm3Vi-V2+i3| (3.43)

where

a2 =-33.048,621' =7.919,622' = 72.792

c20 = 0.0126, mo = -1771.7, <0 = 2231.7

and the other parameters remain unchanged.

Two three-dimensional plots for the ip surface over the vqs-^ds pls-i^e are

shown in Fig.8. The surface in Fig.8(a) is calculated from Eq.(3.39). The surface
in Fig.8(b) is calculated from Eq.(3.43). The corresponding families of drain
current characteristic are superimposed in Fig.8(c) where the solid curves are
plotted from Eq.(3.43). Observe that the two models agree quite well except in
the region when both vp5 and ip are very small. This discrepancy is not surpris
ing since Eq.(3.43) is obtained by optimizing the error with a uniform weighting
factor. This deviation of the canonical piecewise-linear MOSFET model from the
device characteristic in the small vj)s region will shift the computed V])s voltage
by approximately ±0.2 Volt, and is of little concern in most applications. In those
cases (e.g., dynamic memory circuits) where this deviation becomes objectionable,
a different weighting factor in the error criterion is required. For example, choos
ing t£; '̂̂ = 5 for all data points with V2 '̂̂ < 2 and u;^^^ = l for V2^^^ > 2, we
obtain the following canonical piecewise-linear MOSFET model

t2= fl 2"b ^21^ 1"b 622^ 2"b <^2ll ^ 1~ 2 ^ll ~b ^22! ^2^1~^2"b^2l

+ C23 1maVi - V2 + <3 I + C24 I WI4V1 - V2 + <4 I (3'44)

where

02 = -12.405 , 621 = 3.286 , 622 = 71.493

c 21 — 0.438 , c 22 —54.407 , c 23 — —15.715 , c 24 — 1.809
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mi = 37.738 , ma = 0,6705 , mg = 1.043 , = -21.904

= 42.459 , «2 = -1-5385 , = -1.3058 , = 54.166

The resulting characteristics are shown in Figs.8((i) and 8(e). Observe the
significant improvement in the small v^s region.

Example 4 '

The circuit in Fig.9(a) is an NMOS depletion load inverter where the
enhancement type driving transistor is characterized by the canonical piecewise-
linear model in Eq.(3.43), and the depletion load transistor is characterized by the
same canonical piecewise-linear equation but with the threshold voltage shifted
by -3V; namely,

12 = 2 "b ^ 21 1 "b ^ 22*^ 2"l"<'2ll \ "t" ^22! m 2V \ —V2 ^2\

+ C23 I - ^^2 + ^3 I + C24 1"^4^1 - V2 + ^4 I (3.45)

where

a 2 =-9.291 , 6 21 == 7.919 , 6 22 = 72.792

c 21 — —49.718 f c 22 —21.027 , c 23 = 2.035 , c 24 = 0.0126

m 1 = 0.8175 , ma == 1.0171 , mg = -23.406 , m^ = -1771.7

?1 = 0.3473 , «2 = 1-586 , ^g = -1.217 = -3083.4

The -V5-Ufn transfer characteristic of this inverter circuit is easily calculated

by the Generalized Breakpoint Hopping Algorithm [11] as shown in Fig.9(b) (solid
curve). The superimposed dashed curve is obtained by SPICE where the driving
enhancement transistor is characterized by Eq.(3.39) and the depletion load
transistor is similarly characterized but with -ZVolt shift in the threshold voltage.

Observe that the two curves are very close to each other. Yet the solid curve is

obtained at only a tiny fraction of time needed to calculate the dashed curve.

Example 5:

The circuit in Fig.lO(a) is a CMOS inverter circuit with the NMOS driving
transistor characterized by Eq.(3.43) and the PMOS transistor similarly charac
terized except the voltage polarities and the current direction are reversed. The

solid -vs -Vi„ transfer characteristic shown in Fig.lO(b) (obtained by the Gen
eralized Breakpoint Hopping Algorithm) is very close to the dashed curve
obtained by SPICE (with the transistors modeled by Eq.(3.39)).
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3.3. Canonical Piecewise-Linear Model of GaAs FET

We now apply the same optimization algorithm to a third practical 3-

terminal device; namely, the GaAs FET, which has become increasingly impor
tant in the development of microwave circuits and high-speed digital IC's due to

its fast switching speed. In order to demonstrate the simplicity and ajccuracy of
our canonical piecewise-linear model, the input data set for our optimization pro

gram is chosen from the same experimental data measured from an ion-implanted

GaAs FET in a recent paper[19]. The computed optimal canonical piecewise-
linear model for <7=3 is

i 2 == fl 2 ~h 621^ 1 "1" ^22^ 2 d" ^ 21 1^ 1^l~^2~b^2l "^"^22!^ 2^ 1~ ^ 2 "b ^2 I

+ C23I'"3V 1-^2 + ^3 1 (3.46)

where Vi=V(75(Vb/i), V2=VDs(Volt), t2=«£>(mA ), and

(12 = 6.3645 , 621 = 2.4961 , 602 = 32.339

c 21 0.6008 , c 22 0.9819 , c 23 —29.o07

m 1 = -19.594 , m 2 = -6.0736 , m3 = 0.6473

t j = -44.551 , e2 = -8.9962 , i 3 = 1.3738

Observe that this model requires only only 3 absolute-valued functions and 12

numerical coefficients. It is far simpler than the analytical model derived in [19]
which involves 45 physical parameters and more than 40 equations which are
necessary to account for the extremely complicated physical phenomena inside

the device. Our canonical piecewise-linear model in Eq.(3.46) is so simple that it
seems incredible that it could realistically mimic the terminal behavior of the

device. However, as shown in Fig.11, the drain current calculated from Eq.(3.46)
(solid line) matches the measured data fairly well, and in some regions of opera
tion, it is even better than the analytical model (dashed line). This comparison
clearly demonstrates the versatility of the canonical piecewise-linear modeling
approach.

Summary : canonical piecewise-linear 3-terminal device modeling algorithm :

A. Optimization

Step 0. Choose an initial set of boundary linqs/.as k=0.

Step 1. Solve Eq.(3.12) or Eq.(3.17) for zi*(z3j*^) and Z2*(z3^*^).
Step 2. Find the line search direction by Eqs.(3.20)-(3.26).
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Step 3. Perform the line search along to find for the minimization prob
lem of

^(Z/(Z3(*) + a(*)s(*)),Z2'(z3(*) + a(*)s(*)),Z3(*) +

=MtiIe" (zi'(z3(*^ + ^),Z2* +̂as^*'̂ ),Z3(*l 4- ors^*^) |Qr>o| (3.47)
Step 4. Increment k to k+1.

Step 5. If II Z3^*^- Z3(*"^^ II < e (a constant specified by the user) then stop; else
go to Step 1.

B. Refinement

Given Eq.(3.6) with parameters calculated from Steps Q-5, we can improve the
model accuracy in the subthreshold region as follows :

(l) Bipolar Transistor

ii — ^1-1-612 V2+rfii|t;i-^i| d12 \ V2 —E2\

where

a

+ E ^ i« I m,- u1- 17 2+ I (3.48a)
»=i

12 — ^2 4~^21 ^l~i~^22 ^2~^'^2ll^l~'^li ~i''^22l^2~'^2l

<j

+ S ^2f \ rriiVi - V2 + ti I (3.48b)
1=1

?ir2-?2^1 „ Pir2-P2'-1
HjI , ^2 —

PiQ2~P2Qi P2Q1~Pi^2

' J _ 1 J 1 ^ 1 J 1®11 —yPl > "12— -^^l » "21— yP2 > "22 =•5:92

^11 = ^ 11 ~ ^ 11 » 612 = ^12 ~ 12 > ^21 = ^ 21 ~ ^ 21 I ^22 = ^ 22 " ^ 22

"l — a 1+ d11^1 + d12-^2 ) ®2 = ®24" ^21^1 "i" ^^22^2 (3.49)

and

<T <T

Pi = 6ii+ E Cii w»f«pn(^) , ?i = 6i2- E CH«pn(i,)
i =1 I =1

a a

P2=621+ T,C2imiSgn(ti) , ^2 = 622- E 2» (^i)
i =1 I =1

*•1 = "1 + E Mi I ' ''2 = "2+ E C2i Mi I (3.50)
i=l i=l
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(2) MOSFET

where

j2 = a' + 61' v1+ 62 V2 + S I m,- v1- V2 + i,- | (3.51)
1=0

® H" Xj I I
t •
'0 — ^

^2" E CiSgn[ti)
i=l

a
1

Co = -zl^2- T,<^i^9n{ti)]sgn{to)
^ »=i

<7

61 + X! sgn (ti)
t=l

^"0 =

62- E
»=i

a=a+Co|io|

61' = 6i + Como«fifn(<o)

62' = 60-co^fifn (fo) (3.52)

4. Canonical Piecewise-Linear Modeling for Multi-Terminal and Multi-
Port Devices

The algorithm developed in Sections 2 and 3 can be easily extended for
modeling (n-|-l)-terminal and n-port devices. Assume the terminal behavior of
the device is described by a set of data points (ar,-, y,-^^^), t=l,2,...,n, and
/=1,2,...,N, whcih are obtained either by measurement or by numerical solution
of the physical equations governing the device, where and denote the
voltage and current of the i-th port in the I-th data point

x(')= [xjO a: (')]'' (4.1a)
y(0= [y/O 5,3(0... (')]'• (4.1b)

The points x '̂̂ , /=1,2,...N are scattered over the x-space and do not necessarily
have a uniform distribution. In general, more data points must be measured in
regions with sharp changing characteristic. These data points are used to fit the
n -dimensional canonical piecewise-linear equation

(4.2)y = f(x) = a + Bx + S I("i .*) - ft
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such that the approximation error

iy(n-f(xf)) r
/=i '-

is minimized where

W '̂) = diag.{ww, Wf^ (4.4)

is the weighting factor for the / -th data point. Eq.(4.3) can be recast into

= E E«'/'''fy,'''-/;(*"')r= Ery '̂W^r,- (4.5)
/=1;=1 L J j=l

where

ry = ry(2) . . . . ry(^) (4.6)

Wy = diag. , wy^^^, . . . , (4.7)

ry(n=/y(x(0)-yy(0

= ay +by^x('^+ Ss l(^i I " Vj ^ (4.8)
»=1

where ay, and cji are the j -th components of the vectors a and c,-, respectively,
and by ^ is the j -th row of the matrix B. Let

= [";• «;•! «;2 •••«;>] (4.9)
for j =1,2,...,n and let

^n+i = [a/ af2^ ••• ^1^2- •aY (4.10)
then the approximation error is a function of these parameters; namely,

E = E(zi, Z2 , • • • , ss„ , z„+i) (4.11)

and the optimal parameters Zi, Z2 »• • » ^or the fixed partition z„ = z„+i can
be found by solving the equations

dE

^ = 2 -̂f{x '̂j j (4.3)

dz.
= 2AWyry=0 (4.12)

for i=l,2,...,n, where
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where
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1 1 1

XiW
xjW ; ;

: :
•

•

«2'') •

«.(0= I (^ai - Pi I

Tj- = A^Zy -yy

= [vr-Vi.(1) „.(2)

Equation (4.12) can be further reduced to

AWy A^ Zy - AWy yy = 0

for j =1,2,...,n, and the optimal parameters zy * for each j can be found
efficiently via parallel processing by solving Eq.(4.17) for each j. In the special
case where Wy =W for every j, it becomes even more efficient since only a single
Gaussian elimination is required for solving the n equations in Eq.(4.17).

We denote the solutions of Eq.(4.17) by zy *(z„+i) for j=l,2,...,n, which are
the optimal parameters in the canonical piecewise-linear equation (4.2) for the
fixed partition z„4.1. The next problem is to find the optimal partition boundaries
z„4.i* such that

^(®l (®n+l ) »^2 (®«+l ) J • • •> (®n+l )> +1 )

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

=Mm|£(zi*(z„+i), Z2*K+i). ••.»» '(»»+i). «»+i) I»n+i 6 (4.18)

The procedures for searching the optimal partition z^+i' are similar to those
developed in Sections 2 and 3 for 2-terminal and 3-terminal devices. Let

a£'(zi , Z2 , . . . ,z„+i)
g =

dzn +1

= 2 SKyOWyry
J=1

(4.19)
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where

Ky = didg. (cyjl^ , Cj^fi , . . . , Cj^fi , ~Cy 1, ~^y 2>• • •>~^ja) (4.20)

and I„ is the n -dimensional identity matrix;

G =

XPi"
XPj

• . X =

XP,
p

OTiW 2:1(2)
X2(^) X2(2)

a; (1) r (2)*n •*'»

Pi = diag. (pi (^^, Pi (^^ . . . , Pi (^^)

(iV)« (1) « (2)p r ' p r '
« (1) « (2)
p 2 P 2 P2

(iV)

p ==

Pn
{N)

Pi = sgn ((oTi ,x('̂ )- /3i)

2:.(^)
(JV)

2 2

{N)

_ _ K ry + KyGWyGKyY =
dxn+l

= 2 s
j=1 dzn+l

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

The first term inside the summation of Eq.(4.25) can be eliminated since
d^n+i

=0 almost everywhere except when the data points are coincident with the boun
daries.

We then perform a line search along the direction

s = -Y~^g (4.26)

as before until a local minimum is found. Since the current state of the art on

global optimization[l3,14] can not guarantee a global optimum, we simply repeat
the same procedure with various partition boundaries until the error is within the

acceptable tolerance. Otherwise, we must increase the number of partition boun
daries.

5. Concluding Remarks

The canonical piecewise-linear model can be considered as a universal model

in the sense that the form of the equations describing the model is the same for
all device characteristics. Only the coefficients are different for different devices. It
is this imiversal character which allows us to develop a highly efficient computa
tional algorithm for solving dc nonlinear circuits.
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Since our algorithm for determining the coefficients depends only on data

extracted from the device's terminals, either by measurement or numerical

methods, no knowledge of the internal device physics is required. This "black

box" approach is particularly powerful in modeling dc characteristics of submi-

cron and microwave devices where the internal device physics is not yet well

understood.

Another advantage of the canonical piecewise-linear model is its small

memory storage requirements. This advantage becomes decisive in large-scale cir

cuits. To see this, let us compare the number of coefficients needed to specify an

n-dimensional vector function f: R" ->R", using the following three global

representations :

1. Canonical piecewise-linear representation : Assuming that there are "A;"
(n - l)-dimensional boundary hyperplanes in each dimension, then Eq.(l.l)
requires a total of + n + nk (2n -H 1) = 0 (n^ coefficients.

2. Conventional piecewise-linear representation : Assume the domain space is

partitioned into M regions, each described by an affine equation. Each
region therefore requires n coefficients. Since M is generally a very
large number especially when n is large, the storage requirement grows

exponentially with n. To show this, consider the special case where the
boundaries possess a lattice structure, and hence there are (k 4-1)" regions
in the domain space where "A;" is as defined above. Hence the total number
of coefficients is on the order of 0 [n\k 4-1)").

3. n-variable polynomials of order m : An m-th order polynomial in n variables
requires n (C(n , 0) + C7(n , 1) + • • • + C(n , m )) coefficients where

n I
C(n , O = ^ . For n » m , this is on the order of 0(n ).

The above 3 estimates of memory requirements are plotted in Fig.l2 for ease

of comparison. Observe that the memory requirements for both the conventional
piecewise-linear and the n-variable polynomial representations become excessive
for large n. For example, when n = 100, 0 (10®°) and 0 (10^°) coefficients are
required in the 2nd and 3rd representation for k = 5 and m = 5, respectively.
Whereas only O (10"*) coefficients are needed in the first representation. This com
parison shows that the canonical piecewise-linear representation is currently the
only practical global representation for high-dimensional vector-valued functions.
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Appendix :

A. Canonical Piecewise-Linear Model for pn Junction Diode Character
ized by Eq.(2.28)

S'Segment model: Eq.(2.30)

4'Segment model:

i = a hv c i \ V —̂ i \ 4-C2IV —̂ 2!

where

a =-3.27X10-2,6 = 4.986X10-2

ci = 2.955X10"^, C2= 1.198X10-2, c3 = 3.758X 10-2

= 0.4612 , ft = 0.6216 , ft = 0.6684

5-segment model:

i = a bv + c i \ V - 0i \ + C2|v-ft| + C3|y - ft|

+ c4 I u - ft I (A.2)

where

a = -3.9304X10-2 , 6 = 5.9581X10-2 , c1= 1.605X10-^

C2 = 5.555X10-^ , C3= 1.748X10-2 , C4 = 3.624X10-2

ft = 0.454 , ft = 0.6019 , ft = 0.6485 , ft = 0.6775

6-segment model:

i = a -{• bv + Ci|t;-ft| 4-C2lv-ftl + C3|v-ft|

+ C4 I v -ft I -h C5 I v -ft I (A.3)

where

a =-3.929X10-2,6 = 5.941X10-2 , Cj = 8.915X10-® , C2 = 2.893X10-®

c3= 8.838 X10"® , c4= 1.589 X10-2 , c5= 3 ^ ^q-2 ^ ^ q

ft = 0.584 , ft = 0.632 , ft = 0.658 , ft = 0.679

7'Segment model:

,-=a-j-6t;+Ci|v-ft|-}-C2|v-ft|+C3|i;-ft|

•f C4 I V-ft I 4- C5 I V-ft I + Cg I V-ft I (A.4)
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where

a =-4.660X10-2,6 = 6.997X10-2 , ci = 7.563X10"® , cg = 2.335X10"®

C3 = 7.032X10"® , C4 = 1.293X10-2, cg = 2.107XlO"® , Cg = 2.653x10-2

= 0.4468 , f32 = 0.579 , = 0.626 , = 0.652

= 0.672 , /?6 = 0.687

B. Canonical Piecewise-Linear Bipolar Transistor Model

1. Optimizedfor Low Operating Voltages (less than 0.7Vfor each junction)

bn
621

«1 ai

»2
=

a 2

+
C 13 1

1^1
C23

+

CO

w<

1^2
i- 26

6 12

622 V2

C 14

C24

+
^ 11

C21
I vi-/9i I +

c 12

c 22 I ^1-^2!

^ 1- /^3 I + I ^2-^4 I +

where

Cl5

C 25
^2 ~ /^5

(B-l)

ai -2.4604X10"^ '11 4.083X10-2
a 2 -2.6340x10-2 ) 621 -4.04167X10-2

b 12
;

1

CO

•

j

C23
L

^ 16
]

1

CD

0
•

-4.04465X10"
8.0891 X10"2

1

0
•

^2
1

L

1 1
C24

2.461X10"

-2.405X10"^
4.810X10-^

c 12

C22
L

C 15
7

<^25

9.824X10"®
-9.726X10"®

-9.726X10"®
1.945 X10"2

>-2

^-2
3.076X10

-3.048X10-2
6.096X10-2

Pi = 0.4413 , P2 = 0-6165 , ^3 = 0.6632

= 0.4392 , Pz = 0.6165 , Pq = 0.6633

Optimizedfor High Operating Voltages (up to 0.75Vfor each junction)

«i

»2
=

fll
a 2

+

+
13

C23
1vi

+
c la

C26
1V2

6 11 6 12
6 21 ^22

^1- ^z\ +

V2-/?6 I +

«1

V2

^ 14

C24

C 17

C 27

+
^ 11

C21
I V1 - A I +

c 12

C22
I Vl-^2l

I Vl-^4 I +

1^2-/^1 +

C 15

<^25

^ 18
C 28

I V2-/35 I

I ^^2-^8l (B.2)
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_ r0.2654 1 ^12 _ [-0.2628 1
— L-0.2628J' 622 "" [0.5256 J

-1.840 X10-®
-1.839X10"^

6 11
6 21

c 11 1.115X10"® c 12 1.8786X10"®
C21 -1.104X10"® C 22 -1.860X10"®

1
CO

1—4
v>

«

6.885 X10-® Cu 1.7668X10"^
C 23 -6.817X10"® } C 24 -1.7493X10"^

C 15 -1.104X10"® ^ 16 -1.860X10"®
25 2.208X10"® J C 26 3.721X10"®

C 17 -6.817X10"®

00

•

-1.749X10"^
C27 1.3634X10"^ 7

C28 3.499X10"^

A = 0.5297 , 02 = 0.6362 , 0z = 0.6817 , 0^ = 0.7144

0s = 0.5297 , 0s = 0.6362 , 0j = 0.6817 , 0s = 0.7144
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Figure Captions

Fig.l (a) Distribution of data points in Example 1; (b) approximation error vs
the location of the breakpoint in Example 1.

Fig.2 v-i characteristics predicted by two canonical piecewise-linear models for
the pn junction diode : the 2-segment dashed curve is defined by
Eq.(2.29); the 3-segment solid curve is defined by Eq.(2.30).

Fig.3 2-port configuration of the bipolar transistor.

Fig.4 (a) Boundary lines in Eq.(3.30) do not cover the whole "shaded" lower
voltage region; (b) boundary lines Vi = Ei and V2 = cover the whole
"shaded" lower voltage region.

Fig.5 (a) Three-dimensional plots for the emitter current in the Ebers-Moll
model given by Eq.(3.27); (b) three-dimensional plot for the emitter
current in the canonical piecewise-linear model given by Eq.(B.l) (low
voltage version); (c) three-dimensional plot for the collector current in
the Ebers-Moll model given by Eq.(3.27); (d) three-dimensional plot for
the collector current in the canonical piecewise-linear model given by
Eq.(B.l) (low voltage version); (e) comparison between the family of col
lector currents in the Ebers-Moll model (dashed line) and the canonical
piecewise-linear model (solid line).

Fig.6 (a) Odd-symmetric negative resistance circuit; (b) driving-point charac
teristic of the circuit in Fig.6(a).

Fig.7 2-port configuration of the MOSFET.
Fig.8 (a) Three-dimensional plot of drain current from the Shichman-Hodges

model; (b) three-dimensional plot of the drain current from the canoni
cal piecewise-linear model with a uniform weighting; (c) family of drain
currents modeled by Eq.(3.39) (dashed line) and Eq.(3.43) (solid line); (d)
three-dimensional plot of drain current in the canonical piecewise-linear
model from Eq.(3.44) with a heavier weighting in the small vqs region;
(e) family of drain currents modeled by Eq.(3.39) (dashed line) and
Eq.(3.44) (solid line).

Fig.9 (a) NMOS inverter with depletion load; (b) Vf,^-vs - Vi^ transfer charac
teristic of NMOS depletion load inverter.

Fig.10 (a) CMOS inverter; (b) transfer characteristic of CMOS
inverter.

Fig.11 Comparison of the canonical piecewise-linear model described by
Eq.(3.46) (solid line) and the analytical model[l9] (dashed line) for the
ion-implanted GaAs FET.

Fig.l2 Comparison of memory storage requirement for a canonical piecewise-
linear fimction (1), a conventional piecewise-linear function (2), and an
n-variable polynomial (3) with order m.
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