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ABSTRACT

To take advantage of the remarkable computational efficiency

of the canonical piecewise-linear approach for dc nonlinear elec

tronic circuit analysis, the devices must be modeled by a canonical

piecewise-linear model. This paper presents a unified parameter

optimization algorithm for constructing such models. This algo

rithm is then applied to derive prototype canonical piecewise-linear

models of pn junction diodes, bipolar transistors, MOSFETs, and

GaAs FETs.

The canonical piecewise-linear model can be regarded as a

universal model since its form remains unchanged for all devices.

Only the coefficients differ from one device to another.

For large-scale circuits, the canonical piecewise-linear represen

tation has a decisive advantage over other representations in regard

to the number of memory locations needed to specify the equations.

t This work is supported by the Semiconductor Research Corporation under Grant SRC 82-11-008.

tf The authors are with the Department or Electrical Engineering and Computer Sciences and Electronics
Research Laboratory, University of California, Berkeley, CA 94720.



1. Introduction

Device modeling is presently the weak link in computer-aided design.

Without a good model for each electronic device in a circuit, no computer simula

tion would be meaningful. A good model always involves some compromise

between simplicity and reality.

Modern electronic devices, especially those with submicron dimensions or

operating at microwave frequencies, often exhibit strong nonlinearity and compli

cated dynamical phenomena. Consequently, circuit models for these devices are

either presently unavailable, or are computationally so inefficient as to preclude

their use in practical circuit simulation of large-scale circuits.

Several " black botf* approaches (e.g., table lookup[l], spline function approxi
mation^^]) have recently been used to derive simpler models so that they can be
implemented efficiently in a circuit simulator. The table lookup method suffers

the drawback of a huge memory space requirement for storing the device data.

The higher-order spline function, though more general and can be made arbi

trarily accurate, is made of higher-degree polynomials and is therefore still com

putationally inefficient especially for large-scale circuits. In this paper, we use

canonical piecewise-linear functions[4] to model the nonlinear dc characteristics of
practical electronic devices. The main advantage of this approach is that the

resulting circuit equations to be solved by a circuit simulator will always possess

the highly desirable canonical piecewise-linear form[9]. Such equations can be
solved very efficiently, often at a tiny fraction of time needed by the other

models. Since a piecewise-linear function may be considered as a first-order spline

function in some applications, our model can not compete in the accuracy attain

able with higher-degree spline functions. However, the remarkable saving in com

putation time often more than justifies the loss of some accuracy. Our experience

has shown that the accuracy attainable using the canonical piecewise-linear

models is satisfactory in most applications.

There is a significant difference between a conventional piecewise-linear

model[5-8] and a canonical piecewise-linear model. The conventional piecewise-
linear approximation consists of two major steps : (1) simplicial subdivision of the
domain space; (2) interpolation of a piecewise-linear function on the subdivided
domain. This approach suffers the drawback that the number of subdivided

regions for a typical device is fairly large in order to obtain acceptable accuracy.

Consequently, the total number of piecewise-linear regions in typical large-scale

circuits becomes too large in both memory space and computation time for prac

tical implementation. Our canonical piecewise-linear approach is entirely different
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Starting from the measurement of the terminal v-i characteristic of the dev

ice, we fit these measured data into a compact global piecewise-linear representa

tion called a canonical piecewise-linear function

f(x) =a+Bx + fjc, I(<*i >x>-ft I C1-1)
t=i

where a , x , ct-, and a,- are n-dimensional vectors, B is an n X n matrix, /?,• is a

scalar, and "/,V denotes the inner product of two vectors. Because no redun
dant data is stored, this approach greatly reduces the memory space required for

the storage of the device parameters. Moreover, the special structure of the asso

ciated canonical piecewise-linear equation allows us to develop highly efficient

algorithm for solving these equations[9-ll]. In fact, it is the remarkable computa
tional efficiency of the canonical piecewise-linear approach that motivates our

development of canonical piecewise-linear models in this paper.

Using the optimization procedures derived in the following sections, we

choose a set of optimal parameters a, B, ct-, <*,-, /?,• for a given a (i.e., the number
of boundaries in the domain space), such that the approximation error is minim

ized. In this way, the internal physical phenomena of the device is not required

as long as the terminal voltage and current can be accurately measured. In Sec

tion 2, we develop the parameter optimization algorithm for canonical piecewise-

linear models of 2-terminal devices. We then apply this algorithm to construct

several canonical piecewise-linear models with increasing accuracy for a typical

pn junction diode. This algorithm is extended to 8-terminal devices in Section 3

and applied to three important 3-terminal devices; namely, bipolar transistors,

MOSFETs (fixed bias for the substrate) and GaAs FETs. The canonical
piecewise-linear models for these devices are validated by comparing the DP and

TC characteristics of typical circuits with those derived from SPICE. In all cases,

acceptable accuracy is obtained at a small fraction of computation time. The

optimization algorithm developed in Sections 2 and 3 is extended in Section 4 to

include multi-terminal and multi-port devices (e.g., op amps and gates). We also
show that parallel processing can be applied to speeed up our parameter optimi

zation process. In the concluding Section 5, we compare the storage requirement

of various methods for representing a high-dimensional function and show that

among all known representations, the canonical piecewise-linear approach

possesses the most economic storage especially for large-scale circuits.
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2. Canonical Piecewise-Linear Modeling for 2-terminal Devices

Let x denote the terminal voltage (resp.; current) of a 2-terminal voltage-
controlled (resp.; current-controlled) device; and let y denote its associated termi
nal current (resp.; voltage). Assume the set of data points (x^ , y^), /=1,2,...,N
is obtained either by measuring the terminal v-i characteristic or by numerical

computations from the equations which describe the physical phenomena of the

device (e.g., 2-dimensional solution of the associated nonlinear partial differential
equations). We want to find an optimal canonical piecewise-linear representation

(2.1)

for the v-i characteristic of the 2-terminal device such that Eq.(2.1) fits the meas
ured data points as closely as possible. In other words, we want to find a set of

optimal parameters {a,b ,cltc2, . • >>c ofi\>fa • • • >&} suc^ thaX the approximation
error

a

y —~
a + bx +

t=l
l« -Pi 1

E(zltZ2) = E
/=1

wi'\a +6*<*>+ Ec» l*(0-ft I -y{l))'
t'=l

is minimized, where

i\— \a b c i c 2

z2 a [ft ft .. h\

(2.2)

(2.3)

(2.4)

and tffO for /=1,2,...,N, is the weighting factor for each data point.

We first assume that the location of each breakpoint is fixed at z2=z2, then

the approximation error E(zx, z2) is a quadratic function of zj and the minimum
can be easily found by solving the linear equation

dE(zltz2)

where

A =

and

dzi
2 AWr = 0

1 1

,w *(*> •
UlW up) '
up) up):

uJN)
, r =

r(2)

up) up) ' «j"> r(*f)

(2.5)

(2.6)
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r<'>-« +6.0+ fje<|*(l,-A I ~y{l)
*=i

«,.(')= |»(0_A|

r = AT zx - y

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

y= [»« y<2>. ...»<"> ]'
Eq.(2.5) can be further reduced to

AW1/2W1/aAri1--AWy=0

where

W1/2 a <fta<?. (>/»W , vV2), . . . . , vV")) (2.13)

Since the matrix (AW^AW1/2)1" is symmetric, Eq.(2.12) can be solved by the
more efficient Cholsky algorithm[l2]. The solution z1==z1* gives the optimal
parameters for the fixed partition z2=z2. Clearly, different partitions would give

rise to different optimal parameters and our goal is to choose an optimal partition

boundaries z2 = z2*. Let z1=z1*(z2) be the optimal parameters for a particular
partition boundaries z2. Our problem is to find z2* such that

E{zx*{z2), z2*) =Min JE(zx*(z2), z2) | z2 6Rc j (2.14)
Define

where

dE (zi , zo)
g = \1' v = 2KGWr

dzct

Y= |i- = 2
oz2

K(-f^-)Wr +KGWGTKr
oz2

K= diag. (ch c2, . . . c c)

G =

pp) Pp)
Pp) pp)

pM pj*

(N)

(N)
Pi

P2'

(N)

(2.15)

(2.16)

(2.17)

(2.18)
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and

p^l) = -sgn(x^)-^) (2.19)

where sgn (x) = 1 (resp.; sgn (x) = -l) if x >0 (resp.; x <0). Note that each ele-

ment in the Hessian matrix --— is a first order generalized function which van-
3z2

ishes when no data point coincides with any of the breakpoints, i.e., when

*(') ^ ft for /=1,2,...,N, and i =1,2,...,<t. Hence

Y = 2 KGWGT Kr (2.20)

almost everywhere.

Since g = Vz^» -g specifies the steepest descent direction for E, i.e., the

greatest initial rate of decrease in E. In practice, we do not use -g as the direc

tion for our line search due to its slow convergence rate since no account is taken

of the second order derivative of E w.r.t. z2 which, in this case, can be easily

evaluated by using Eq.(2.20). Instead, we will perform a line search along the
direction of

• --Y^g (2.21)

which is guaranteed to be in the descent direction since Y is positive definite. Let

S(t) = sl1 =#> (2-22)

YC) = Y|I =i(l) (2.23)

s(t) = »l1=I<.> (2-24)

where

>(*) =
z2(*) (2.25)

We start from an initial partition z2=z2(*) for k=0, and solve Eq.(2.12) to obtain
zx* (zp)). We then perform a line search along the direction s^*^ to find a^k) such
that

E(z/ (z2<* W* W*)), z2(* W* W*))

=MnJ£(z/(z2(*)+e*s(*)), z^W**) |a>o| (2.26)
Let

zp+1) = zp) + a(k)slk) (2.27)

and increment k by one to continue the iteration for minimizing E.
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The above iteration procedures will reduce the approximation error E for
each iteration and hence must approach a local minimum of E. Unfortunately,

there generally exist more than one local minima as shown in the following
Example 1, and hence it is not guaranteed that the parameters obtained by our

iteration algorithm will lead to a global minimal approximation error. This local

convergence phenomenon is typical of all general purpose optimization tech

niques.

Example 1 :

Figure 1(a) shows 15 data points located in the interval [0,14] which are to
be approximated by a two-segment (one breakpoint) piecewise-linear function.
For each breakpoint location, we find the corresponding optimal canonical

piecewise-linear representation by solving Eq.(2.12) and estimating the approxi
mation error by Eq.(2.2) with a uniform weighting factor for each data point.
The minimal approximation error E as a function of the breakpoint location /? is

shown in Fig.l(b), which shows that |§=0 for /?=4.65, 6.75, 11.68, 0</?<l, and
13</?<14. However, the approximation error corresponding to the breakpoint in

these locations is only locally minimal. The global minimum is located at (3=8
dE

where -—- is discontinuous and is nonzero either from the left or the right limit
dp

of the point.

Example 1 shows that E has discontinuous derivative where the breakpoint

P in this case coincides with a data point. This observation suggests the possibil

ity that a local minimum may occur at the location of a data point x^1), if
ap on'

— | p= x(ty- < 0 and -—-1 . z(/>*. > 0. It follows from this observation that it is

impractical to search for a global minimum by searching for a critical point with

-—=0 since the derivative of E w.r.t. £ is only piecewise continuous and E gen-

erally has multiple critical points. Hence, with the current state of the art in

optimization techniques[13,14], searching for globally optimal canonical
piecewise-linear model is presently not feasible in general.

Our strategy for finding the optimal breakpoints z2 is to combine the itera

tion procedures with a grid search. We start from an initial set of breakpoints

and apply the above iteration procedure to minimize the approximation error. We

then repeat this procedure with a new set of breakpoints chosen with a different

spacing from the previous sets in order not to converge to the same local

minimum. Finally, we compare all the local minima and choose the optimal
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canonical piecewise-linear representation which has the smallest approximation

error. Our experience shows that this strategy gives good results even though it is

impossible to guarantee that we have indeed arrived at a global optimal solution.

Example 2 :

Assume there are 100 data points for a pn junction diode which are uni

formly spaced between the interval QA<x <0.7. For simplicity, let us obtain these

data points from the standard pn junction law

,• =i8{evlyr _i) (2.28)

where 78=10"14A and Vr=26mV. Following the above algorithm, we obtain the
following optimal 2-segment canonical piecewise-linear model

i = a + bv + c! | v - ft | (2.29)

where a = -2.351X10"2 , 6 = 3.662X10"2 ,c1 = 3.533X10-2, and ft = 0.648 for this
pn junction diode with an error i?=1.05xl0~6.

As shown in the dashed curve of Fig.2, the canonical piecewise-linear diode

model Eq.(2.29) obtained with a uniform weighting over the voltage range
[0.4,0.7] has a serious defect : the error grows monotonically in the reversed
biased region, which incidentally is outside of the range [0.4,0.7] of our data
points. One way to improve our model is of course to enlarge our domain and

take more data points. However, the computation time for optimization greatly

increases with the number of data points. For the pn junction diode, however,

the data points for v < 0.4 can be approximated by zero current in most applica

tions. Hence, in this case, we need only to add one extra breakpoint ft to the

model Eq.(2.29) such that the current is identically zero for all v < ft. This new
breakpoint can be physically interpreted as the cut-in voltage of the pn junction

diode. Since the model in Eq.(2.29) realistically describes the diode characteristic
in region 0.5 < v <0.7, we choose ft at the intersection of the v-axis and the

piecewise-linear function described by Eq.(2.29), namely, v =0.481. Hence, we
simply introduce a new horizontal segment ( t = 0) for v < 0.481. The resulting
canonical piecewise-linear model is given by :

,• = a +bv +c0| v -ft | -f- c! | v -ft | (2.30)

where

a =-2.320 X10"2, 6 = 3.595 X10"2 , c0 = 6.466 X10"4 , ft = 0.481 , cx = 3.533 X10"2,
and ft = 0.648, and is shown by the solid curve of Fig.2.
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For future applications, several canonical piecewise-linear models with
increasing accuracy (with more breakpoints) for the pn junction diode described
by Eq.(2.28) are listed in Appendix A.

Remark : The saturation current Ia and the thermal voltage VT in Eq.(2.28) may
vary with different processing parameters in the fabrication of the pn junction
diodes. Suppose that they differ from the nominal values I8 =10"14A and
VT =26mV by a factor p and q respectively; i.e., the v-i characteristic follows the

relation

,=p/,(e"/'Vr-l) (2.31)

then the corresponding optimal canonical piecewise-linear model can be easily

extended by scaling the corresponding coefficients. More specifically, if Eq.(2.1) is
the optimal canonical piecewise-linear model for the diode characterized by

Eq.(2.28), then the optimal canonical piecewise-linear model for the diode
described by Eq.(2.31) is simply given by

,• = pa + Uv + 2 ±Ci | v - qfr | (2.32)
? ,=i?

Summary : canonical piecewise-linear pn junction diode modeling algorithm :

A. Optimization

Step 0. Choose an initial set of breakpoints zp); k=0.

Step 1. Solve Eq.(2.12) for zY*(zp\
Step 2. Find the line search direction s<*) by Eqs.(2.15)-(2.2l).

Step 3. Perform the line search along s(*) to find oP) for the minimization prob
lem of Eq.(2.26).

Step 4. Increment k to k+1.

Step 5. If || z2(*) - z^*"1) || < e (a constant specified by the user) then stop; else
go to Step 1.

B. Refinement

Given Eq.(2.1) with parameters calculated from Steps 0-5, we can add one
horizontal segment to the left of v = ft as in the preceding example and derive

the following refined model :

i = a + b v + 2 ci | v - ft | (2.33)
i=0
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where

c0 =
* i=l

A> =

« + Ect-ft
i=l

T,Ci-b
*=i

6' = b - cQ

a = a + ftc o (2-34)

3. Canonical Piecewise-Linear Modeling for 3-terminal Devices

We now extend the algorithm developed in Section 2 for 3-terminal and 2-

port devices. Let the terminal behavior of the 3-terminal device be characterized

by

2/1= / l(*l, *2) (3-la)

3/2 = / 2^1 i ^2) (3.1b)

where a^ (resp.; ar2) is the voltage or current in port 1 (resp.; port 2), and yx is
the current or voltage associated with xx. Similar definition applies to y2.

Assume the data points (x{P), y,- O), i =1,2, and /=1,2,...,N are available
which are scattered over the xx-x2 domain space. The problem for modeling 3-

terminal (or 2-port) devices is equivalent to finding the 2-dimensional surfaces

yi = /i(*i> x%) (3-2a)

y2= /2(zi> *2) (3-2b)

which fit the data points as closely as possible. In this section, the functions / x
and / 2 are assumed to be canonical piecewise-linear functions; namely

a

y\ = /i(*ti ^2) = <*i+ bnx1+ &12s2 + £clt- I<*iixi + Qi2x2 + ft | (3.3a)

V2= f 2(^1 »^2) = a2+ b21xx + b22x2+ Y, c2i I <*« 1*1+ ai2*2 + A I (3.3b)
*=1

The straight lines

<*» 1* 1+ «i- 2X 2+ A — ° (3.4)

for »=1,2,...,<7 are partition boundaries in the xx-x2 plane. If a,-27^0, we can
eliminate one coefficient from Eq.(3.4) by rewriting it into the equivalent form
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mi x1~ x2+ U =0 (3"5)

i = l,2,...,<r. For large a-, this will save a considerable amount of iteration pro
cedures for finding the optimal partition boundaries. Although Eq.(3.5) excludes
vertical boundary lines (i.e., when ai2 = 0), such boundaries can be approximated
by the straight line equation (3.5) with a large m,- and t{. Hence, Eq.(3.3) can be
simplified to

Let

y\ = / \{xi >x2) = ai + &ii*i+ bi2x2+ S cu \mix1-x2 + ti |
*=i

a

J/2 = / 2^1 »^2) = a2 + ^21*1+ &22*2+ £c2* I mt * 1~ *2 + *» I
»'=1

• •

<*1 a2 ml
ill 6 21 m2

b12 622 .

^1

*2

*3

cll

c12
» «2 =

c21

c22
. *3 =

'i
<2

t * =

Cl„ c2<r in
*- J ^ ^

then the approximation error between Eq.(3.6) and the data points is

£'(z) = r1rW1r1 + r2rW2r2

where

irPl= [rp)rp)...r^N)f (3.9a)
r2= [r2(1)r2(2)...r2^)]r (3.9b)

r1(/) = a1 +6liar1(/) +612x2(/)+ f; clf \m^p) - xp) + tt | - yj') (3.10a)
t=i

<7

(3.6a)

(3.6b)

(3.7)

(3.8)

r2(0==:a2 + 62ia:1(/) + 622ar2(')4. J]C2j. | m,. xJO - *,(') + t{ | -yj^ (3.10b)
»=i

and

Wi = dta^. (wp), WlW , . . . , u>P<))

W2= diag. (wp), wp), . . . , w2W)

are weighting factors for our error criterion.

(3.11a)

(3.11b)
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Assume the location of each boundary line is fixed at z3 =z3, then the

approximation error E(zh z2l z3) is again a quadratic function of zx and z2, and

the minimum of E for the partition boundaries z3 can be found by solving

dE

dzx

dE

= 2 AWjPi = 0

dz<
= 2 AW2r2 = 0

where

A =

and

1 1

xp) xp)
(2)(1)

(1)

(1)

xi

l
u-d)

u

X2K

1(,,.<*>
(2)ui

«.« up)

«,«")
«,(*)
«!<">
«2<">

„;»>_

«,.(" txP-sP+t,m

Since

where

yi

ri = Arz1-y1

r2 = Ar z2 - y2

= [yPhP^.-yi^]
ylN)]Y2= [y;

Equation (3.12) can be further reduced to

AW1ATz1-AW1y1 = 0

AWjjA2, z2 - AW2y2 = 0

The optimal parameters for the fixed partition z3 = z3 can be obtained by solving

Eq.(3.17) and we denote them by z/(z3) and z2*(z3). Hence, the minimal error
for the fixed partition z3 becomes

E(zx* (z3), z2* (z3), z3) = Mini E(zx, z2 , z3) | z3 = z3 V (3.18)

and the optimal canonical piecewise-linear model is found by searching for the

p)yp)

(3.12a)

(3.12b)

(3.13)

(3.14)

(3.15a)

(3.15b)

(3.16a)

(3.16b)

(3.17a)

(3.17b)
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optimal partition z3* which will minimize the error in Eq.(3.8); namely

E(zx (z3*), z2* (z3*), z3*) = Min) E[zx, z2 , z3) \ (3.19)

We apply the same iteration procedure in Eqs.(2.15)-(2.27) for the 2-terminal
case to search for an optimal partition except that g and Y which specify the

direction

s = -Y"lg

for the line search are modified as follow :

dE (zx, z2 , z3)
g = dz3

= 2 KiGW^i + 2 K2GW2r2

Y =
dz%

(3.20)

(3.21)

dG dG=2K1GW1GrK/ +2K2GW2Gr K2T +2K1^W1r1+2K2-^W2r2(3.22)
dz? dz?

where

Kt = diag. (c n , c 12 , • • • , c 1<r , c n , c 12 ,

K2 = diag. (c 21 , c 22 , • • • , c 2<7, c 2l, c 22 ,

i clc)

>c2a)

G =

xp)pp) xp)pp)
*1(1W1} *lWPl(2)

<r (1)« (1)x f >p J '
(1)

r 'Pa

Pl(
(1)Pi

(1)

*i«P,W
Pi

Pi

(2)

(2)

(2)

xPOpp*)

xPOp.Wr 'Pa

Pi'
(N)

Pi

(N)

(3.23a)

(3.23b)

(3.24)

and

Pi (<) = sgn fa xp)-xp) + t{) (3.25)

Just as in the 2-terminal case, Y in Eq.(3.22) can be reduced to

Y = 2 K^GWiGTKx + 2 K2GW2G TK2 (3.26)

if no data point is located on a boundary line.

We now apply the above algorithm to construct the canonical piecewise-

linear models for three important 3-terminal devices; namely bipolar transistor,
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MOSFET, and GaAs FET.

3.1. Canonical Piecewise-Linear Bipolar Transistor Model

Assume the npn bipolar transistor is connected in the common base

configuration with v1=v^, v2=vbo *i=*e> and i2=tc as shown in Fig.3. We

take measurements from a set of uniformly-spaced grid points in a square region

defined by 0.4 <vx <0.7 and 0.4 <v2 <0.7, and assume the terminal behavior of

the transistor follows the Ebers-Moll equation [15]; namely

,-1 = A-(eVl/^-l)-/a(et'2/Vr-l)

i2=-L{e^VT-l)-I8(ev>/V'-l)

(3.27a)

(3.27b)

with I8 =10~14A , Vrr=26mV, af =0.99 and ar=0.5. Following the above optimi
zation procedure, we obtain the following canonical piecewise-linear model which

optimally fits the data points with a uniform weighting factor in the error cri

terion defined by Eq.(3.8).

«1

»2
=

al
a2

+
b ii b 12
0 2j "22

*>1

«2
+

*11

C 2\
| m1v1 - v2 + tx

+

where

c12

C22
m2vl-v2+t2\ +

<*1
a 2

=

c21
=

5.8722 X10"3
-3.2652 X10"2 »

6 21

II i—•1

3.1095 X10"6
-3.0784 XIO"5 >

c12

c22
=

3.2392X10"2
-3.2067 X10"2

-9.9342 X10"3
1.9868 X10~2

p .

wi l

m2 =

m3

1.002X104 *1
-1.4XKT4 >

i2
1.574X10"8 *s

c13

c23
I rnzvx- v2 -f tz | (3.28)

612
6 22

c13

c23

-6472
0.61714
0.66355

-4.0897 X10-2
8.1793X10-2

-3.0471 X10"2
6.0943 X10"2

This canonical piecewise-linear bipolar transistor model has the same defect

as our earlier pn junction diode model : they give excessively large leakage

currents. For example, when v1 = -l and t/2 = 0, Eq.(3.28) gives ix =-1.588mA
and i2= 1.346mA , both of which deviate from the small leakage current by a

large approximation error. Note that there is nothing wrong with our optimiza

tion procedure since Eq.(3.28) is optimized only over the range 0.4 < vx < 0.7 and
0.4 < v2 < 0.7.



- 14-

One simple way to overcome this problem is to follow the idea in Section 2

which modifies the unrealistic diode model in Eq.(2.29) to that of Eq.(2.30) by
adding one extra breakpoint. In the case of a 3-terminal device, this procedure

corresponds to adding an extra boundary line such that both the emitter current

and the collector current are forced to zero when the junction voltages are biased

below the cut-in voltage determined by the new boundary line. By Eq.(3.28), the
emitter current and the collector current are characterized respectively by

»!= 1.2348Xl0-3y1-4.918Xl0-4u2-3.5294Xl0-4 (3.29a)

i2 = -1.2214 XlO"3^ + 9.82X10^2 + 1.2466X10"4 (3.29b)

when both junctions are biased in the lower voltage region or are reverse biased

where only a very small leakage current flows in the device. Hence, we simply

choose the extra boundary line such that the current is zero in the lower voltage

region while it remains unchanged in the other regions. However, if we follow the

same procedure as in Section 2 which determines the extra breakpoint at the

intersection of the zero current axis (v -axis) with the linear segment in the lower
voltage region, we would obtain the following extra boundary lines for ix and »2,

respectively :

1.2348xl0"3t;1-4.918x10-^2-3.5294X10"4 = 0 (3.30a)

-l^MXlO-3^ + g^XlO-4^ + 1.2466X10-4 = 0 (3.30b)

Unfortunately, Fig.4(a) shows that the addition of these two extra lines will not
force the current to zero in the whole (shaded) lower voltage region. Since the
extra boundary lines defined by Eqs.(3.30a) and (3.30b) fail to eliminate the
excessive leakage current, a different pair of boundary lines must be chosen.

Let the emitter current and the collector current be characterized respec

tively by

»i = Pivi + ?iv2+ ri (3.31a)

i2 = p2v i + q2v 2+ r 2 (3.31b)

in the lower voltage region of Eq.(3.28) when both junction voltages vx and v2
are reverse-biased. Assume that the new boundary lines are located at vx=Ei

and v2=E2 as shown in Fig.4(b), where Ex and E2 are to be chosen such that the
currents in region I are still characterized by Eq.(3.31) but are zero in region IV.
Note that the equations which specify the currents in region II (resp.; region III)
is not a function of vx ( resp.; v2) because they are independent of the junction
voltages when reverse-biased or biased below the cut-in voltage. Moreover, since

our canonical piecewise-linear model is continuous , the linear equations
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governing neighboring regions must be identical at their common boundaries.

Consequently, the linear equation governing region II must have the form :

»i=?iv2 + Pi^i + ri (3.32a)

*2 = ?2U2 + P2^1"+ r2 (3.32b)

Note that i1 and i2 in Eq.(3.32) do not depend on vx and are identical to
Eq.(3.31) when vx = Ex. Similarly, the linear equations governing region III must

have the form :

*'l = Plvl+ ?1#2+ ri

*2 = P2V1 + ?2^2 + r2

Setting i x= i2 = 0 in Eq.(3.32) and solving for E2, we obtain

pxEx-\-rx p2Ex + r2
= = -£2

?1 ?2

Setting i x= i 2= 0 in Eq.(3.33) and solving for E x, we obtain

qxE2-\-rx qzE2 + r2
= = -£ x

Pi P2

The location of the new boundary lines can now be found by solving Eqs.(3.34)

and (3.35) :

q\*2- ?2ri
v, =E, =

Vo — Eo —

PlQ2-P2<ll

Plr2-P2rl

P2?l-Pl?2

Substituting the numerical values of the parameters from Eq.(3.29) into Eq.(3.36),
we obtain ^1=0.4662, 2?2=0.4529. The canonical piecewise-linear model in

Eq.(3.28) now assumes the form

where

M
1

ax
= i +

l2 <*2

+

+

6ii,
b 2i

en

c2x

c13

c23

b 12
b 22

Vl

V2
+

dii
d2x

|nt1v1-w2+*i| 4-

I mzvx- v2+ tz |

\vl-El\ +

| m 2vx- v 2+ 12c12

C22

dX2

d22

(3.33a)

(3.33b)

(3.34)

(3.35)

(3.36a)

(3.36b)

Vo- E>

(3.37)

<*i

a2

6.0482 X10"3
-3.271 X1CT2 b 21

3.1775 X10~2
-3.1456 X10~2

6 12

622
-4.065 X10'2
8.1302 X10"2



n

21

6.174X10"4
-6.107 XKT4

<*12
<*22
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-2.459 X10-4
4.910X10"4

Ex
E2 -\

0.4662 1
,0.4529 J

and other parameters (namely, m1,m2,wi3,i1,f2>^3»cii»c2i»ci2>c22>ci3
and c23) are the same as those in Eq.(3.28). As a check, note that ix = i2 = 0 in
Eq.(3.37) for all vx < Ex and v2 < E2, as they should.

Remark : Since each boundary line in Eq.(3.37) is either identical to or close to a
vertical line or horizontal line, we can approximate Eq.(3.37) by the following

simplified canonical piecewise-linear model which possesses a lattice structure :

»1 al
= t 4-

l2 a2

11

21

°12

6 oo

"I

t>2
+

11

21
\vx-Ex\ + <*12

<*22
\v2-E2\

+
Cll

c21
l*i-Ail +

c12

c22
I "2-ftll +

c13

c23
t>2-£22| (3.38)

where cxx =rnxcXXlc2x —mxc2x,j3li

tx
j #21 = *2 »#22 = *3> and the

other parameters remain unchanged. The simplified Eq.(3.38) is said to possess a
lattice structure because each term within an absolute-value sign involves only

one variable. Geometrically, this structure is equivalent to the property that

boundaries are parallel to either vx or v2 axis. Such models are highly desirable

because the associated circuit equations can be solved with great computational

efficiency[10,11].

For future applications, two canonical piecewise-linear bipolar transistor

models optimized for different dynamic ranges are listed in Appendix B. Several

graphical comparisons of the predicted emitter and collector currents between the

Ebers-Moll model in Eq.(3.27) and the canonical piecewise-linear model in
Eq.(B.l) (low voltage version) are given in Figs.5(a)-(e). Note the agreement is
quite good in each case.

Example S:

The transistor circuit in Fig.6(a) is an odd-symmetric negative resistance
device[l6] which exhibits a negative slope in its driving-point characteristic as
shown by the dashed curve in Fig.6(b). This characteristic is obtained by the
recent algorithm described in [17] with each bipolar transistor characterized by
Eq.(3.27). Using the canonical piecewise-linear model in Eq.(B.2) (higher voltage
version) for each transistor, we efficiently trace the driving-point characteristic by
the Breakpoint Hopping Algorithm [10] as shown by the solid curve of Fig.6(b).
Observe from Fig.6(b) that both driving-point characteristics are virtually
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identical in the region | vin \ < 0.75. Yet the solid curve is obtained at only an

insignificant fraction of the time needed to trace the dotted curve. The

discrepancy beyond 0.75V is expected since our model is optimized only for vol

tages less than 0.75V. If we add more boundary lines in the higher voltage region,

then both curves in Fig.6(b) will be colse to each other even for higher input vol
tages.

3.2. Canonical Piecewise-Linear MOSFET Model

Assume the MOSFET is connected in the common source configuration with

vx=vGS, v2=vDSl ix =iG, and i2—iD 2lS shown in Fig.7, where both vx, v2 are

in Volt, and ix, i2 are in uA . The data points are uniformly spaced in a grid

within a rectangular region defined by 0<V!<5, and 0<v2<5. We assume the

data points follow the Shichman-Hodges model[18]; namely

«i = 0

*2 = k[(vx- Vt)v2-0.5v22}

if v i - Vt > v 2; or

i2 = Q.5k(vx- Vt)2{l + \(v2-vx+ Vt)\ (3.39)

if vx-Vt < v2, with k =50ftA/V2, Vt = lVolt ,X = 0.02Vr"1. Applying the
above optimization algorithm with uniform weighting factor for each data point,

we obtain the following canonical piecewise-linear model which optimally fits the

data points with N = 3 boundary lines :

t*2 = a2+ b2xvx + 622v2 + c21|m1v1-v2 + «1| +c22|m2v1-V2 + *2l

+ c2Z\mxvx-v2 + tz\ (3.40)

where

a 2 = -61.167 , 62i = 30.242 , 6 22 = 72.7925

c 21 = -49.718 , c 22 = -21.027 , c 23 = 2.0348

m! = 0.8175 , m 2 = 1.0171 , m 3 = -23.406

*i = -2.1052, *2 = -1.4652, *3 = 69

Just as in the preceding canonical piecewise-linear pn junction and bipolar

transistor models, Eq.(3.40) predicts an excessive leakage current below the thres
hold voltage Vt. We can eliminate the leakage current by adding one extra boun

dary as before such that the current i2 is forced to zero for vx < Vt but remains
unchanged elsewhere. By Eq.(3.40), the drain current in the lower voltage region
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(vx < Vt) is characterized by

i2 = 44.647vi + 0.0252v2 - 56.239 (3.41)

Setting i2 —0 in Eq.(3.4l) specifies the extra boundary line at

44.647v! + 0.0252v 2- 56.239 = 0 (3.42)

This new boundary line is very close to the vertical line V!=1.26 and defines the

threshold voltage Vt such that the drain current is identically zero in the region

vx< Vt. By augmenting this new boundary line, we obtain the following

improved canonical piecewise-linear MOSFET model :

t2=a2 +621 vx+b22 v2+ c20 I movi~ v2+ *o I + c2x\ mxvx-v2-h tx\

+ c22|m2v1-v2 + e2| +C23|m3v1-v24-i3| (3.43)

where

a2' =-33.048 , 621' =7.919, b22 =72.792

c20 = 0.0126, m0 = -1771.7, tQ = 2231.7

and the other parameters remain unchanged.

Two three-dimensional plots for the iD surface over the vGS-vDS plane are

shown in Fig.8. The surface in Fig.8(a) is calculated from Eq.(3.39). The surface
in Fig.8(b) is calculated from Eq.(3.43). The corresponding families of drain
current characteristic are superimposed in Fig.8(c) where the solid curves are
plotted from Eq.(3.43). Observe that the two models agree quite well except in
the region when both vDS and %D are very small. This discrepancy is not surpris

ing since Eq.(3.43) is obtained by optimizing the error with a uniform weighting
factor. This deviation of the canonical piecewise-linear MOSFET model from the

device characteristic in the small vDS region will shift the computed vDS voltage

by approximately ±0.2Volt, and is of little concern in most applications. In those

cases (e.g., dynamic memory circuits) where this deviation becomes objectionable,
a different weighting factor in the error criterion is required. For example, choos

ing u;(0 = 5 for all data points with vp)<2 and w^) = 1 for vp)>2, we
obtain the following canonical piecewise-linear MOSFET model

i2=a2-\-b2xvx + &22v2 + c2ilmivi-v2 + *il +c22|m2v1-v2-M2|

+ c23| m3Vi-v2 + *3| +c24|m4v1-v2 + i4| (3.44)

where

a 2 = -12.405 , 6 21 = 3.286 , 6 22 = 71.493

c 21 = 0.438 , c 22 = -54.407 , c 23 = -15.715 , c 24 = 1.809
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m x= 37.738 , m 2 = 0.6705 , m 3 = 1.043 , m 4 = -21.904

tx = 42.459 , *2 = -1-5385 , tz = -1.3058 , tA = 54.166

The resulting characteristics are shown in Figs.8(d) and 8(e). Observe the
significant improvement in the small vDS region.

Example 4 •

The circuit in Fig.9(a) is an NMOS depletion load inverter where the
enhancement type driving transistor is characterized by the canonical piecewise-
linear model in Eq.(3.43), and the depletion load transistor is characterized by the
same canonical piecewise-linear equation but with the threshold voltage shifted

by -3V; namely,

i2= a2 + b2xvx + b22v2 + c2i|m1v1-v2 + fi| + c22|m2Vi-v2 + *2|

+ C23|m3Vi-V2 + *3| +C24|rn4V1-V2+*4| (3.45)

where

a 2 = -9.291 , b2i = 7.919 , 6 03 = 72.792

c21= -49.718, c22 =-21.027, c 03 = 2.035 , c24 = 0.0126

mi = 0.8175, m2 = 1.0171 , m3 = -23.406 , m4 = -1771.7

tx = 0.3473 , t2 = 1.586 , tz = -1.217 , t4 = -3083.4

The vout -vs -vin transfer characteristic of this inverter circuit is easily calculated

by the Generalized Breakpoint Hopping Algorithm [11] as shown in Fig.9(b) (solid
curve). The superimposed dashed curve is obtained by SPICE where the driving
enhancement transistor is characterized by Eq.(3.39) and the depletion load
transistor is similarly characterized but with -ZVolt shift in the threshold voltage.

Observe that the two curves are very close to each other. Yet the solid curve is

obtained at only a tiny fraction of time needed to calculate the dashed curve.

Example 5:

The circuit in Fig.10(a) is a CMOS inverter circuit with the NMOS driving
transistor characterized by Eq.(3.43) and the PMOS transistor similarly charac
terized except the voltage polarities and the current direction are reversed. The

solid vout -vs -vin transfer characteristic shown in Fig.lO(b) (obtained by the Gen
eralized Breakpoint Hopping Algorithm) is very close to the dashed curve
obtained by SPICE (with the transistors modeled by Eq.(3.39)).
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3.3. Canonical Piecewise-Linear Model of GaAs FET

We now apply the same optimization algorithm to a third practical 3-

terminal device; namely, the GaAs FET, which has become increasingly impor

tant in the development of microwave circuits and high-speed digital IC's due to

its fast switching speed. In order to demonstrate the simplicity and accuracy of
our canonical piecewise-linear model, the input data set for our optimization pro

gram is chosen from the same experimental data measured from an ion-implanted

GaAs FET in a recent paper[19]. The computed optimal canonical piecewise-
linear model for <r=3 is

*2 — a2 + 62ivi + b22v2 + c2ilmivi-v2 + f2l + c22|m2v1-v2 + *2|

+ c23|m3vi-v2 + *3| (3.46)

where vx=vGS(Volt), v2=vDS(Volt), i2=iD(mA), and

a 2 = 6.3645 , 621 = 2.4961 , 622 = 32.339

c 21 = 0.6008 , c 22 = 0.9819 , c 23 = -29.507

m! = -19.594 , m 2 = -6.0736 , mz = 0.6473

tx = -44.551 , t2 = -8.9962 , tz = 1.3738

Observe that this model requires only only ,3 absolute-valued functions and 12

numerical coefficients. It is far simpler than the analytical model derived in [19]
which involves 45 physical parameters and more than 40 equations which are

necessary to account for the extremely complicated physical phenomena inside

the device. Our canonical piecewise-linear model in Eq.(3.46) is so simple that it
seems incredible that it could realistically mimic the terminal behavior of the

device. However, as shown in Fig.11, the drain, current calculated from Eq.(3.46)
(solid line) matches the measured data fairly .well, and in some regions of opera
tion, it is even better than the analytical model (dashed line). This comparison
clearly demonstrates the versatility of the canonical piecewise-linear modeling
approach.

Summary : canonical piecewise-linear 3-terminal device modeling algorithm :

A. Optimization

Step 0. Choose an initial set of boundary lin§S/as zp); k=0.

Step 1. Solve Eq.(3.12) or Eq.(3.17) for z/fz^) and z2*(z3^)).
Step 2. Find the line search direction s(A) byEqs.(3.20)-(3.26).
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Step 3. Perform the line search along a**) to find a^k) for the minimization prob
lem of

E(zx*(zP) + oPV* Wfc™ + a(*W* WA) + a<* W*>)

=Mm|j?(zi*(z3(*) +as(*)),z2*(z3(*) +o»<* W*> +as^) |a>o| (3.47)
Step 4. Increment k to k+1.

Step 5. If || z3(*)- z3(*_1) || < e (a constant specified by the user) then stop; else
go to Step 1.

B. Refinement

Given Eq.(3.6) with parameters calculated from Steps 0-5, we can improve the
model accuracy in the subthreshold region as follows :

(1) Bipolar Transistor

*1 = °1 +*U vl+&12 v2+ ^n I vx-Ex | +di2|v2-i?2|

a

+ E c i» \ MiVX- v2+ t{ | (3.48a)

where

»=i

i2=a2 +62i Vi+622 v2-hrf2i|v1 —J^il + rf 22 | v2—E >

a

+ E c2i I miv1- v2'+ ff | (3.48b)
»=i

„ ?l»"2-?2rl P Plr2"P2rl

PlQ2-P2<ll P2(ll-Pl^2

' A 1 J 1 J 1 A 1«11= 2*Pl » «12="2^1 » «21= jP2 » tt22=Y?2

&n = b ii - (iii , 612 = 612- d x2 , 6 21 = b2X- d2X , 6 22 = b22 - d^

°i = fli + rfn^i + ^12^2 » a2 = a2 + d2xEx + d22E2 (3.49)

and

Pi = *ii+ E cumfsgnfa) , qx = 612- 2 c^sgn fa )
i=i i=i

a a

p2 = 62i+ Ec2i»*i*0«(*i) i <l2 = b22- J}c2i$gn(ti)
»=i i=i

ri = «i+E«wKI i r2 = a2+ E*2i K I (3-50)
»=i »=i
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a +61 V1+ 62 v2+ E ci I mi v1" v2+ *i I
»=0

*n = -

a + E Ci I U I
t=i

a

b2~ Ec«5^(f»)
i=l

1 *
co = -t[62- Eci-*0n(*i)]*0*(*o)

* t=l

61 + E c» mi s9n {*i)
t=i

a

bo~ T,cis9n{ti)
»=i

m0 = —

a = a 4- eg I £0 I

61 =61 + comos0n(*o)

62 = 6o- c Qsgn (£g)

(3.51)

(3.52)

4. Canonical Piecewise-Linear Modeling for Multi-Terminal and Multi-

Port Devices

The algorithm developed in Sections 2 and 3 can be easily extended for

modeling (n +l)-terminal and n-port devices. Assume the terminal behavior of
the device is described by a set of data points (z,0, y^')), t=l,2,...,n, and
/=1,2,...,N, whcih are obtained either by measurement or by numerical solution

of the physical equations governing the device, where x^ and y^1) denote the
voltage and current of the i-th port in the / -th data point

x<')= [Il(0X2(0...aB(0]r (4.1a)
y(0 = [yp)yp)...yn«)y (4.1b)

The points x^), /=1,2,...N are scattered over the x-space and do not necessarily
have a uniform distribution. In general, more data points must be measured in

regions with sharp changing characteristic. These data points are used to fit the

n -dimensional canonical piecewise-linear equation

(4.2)
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such that the approximation error

e = E |y(/)-f(x(/)) X^l) [y(/)-f(x(/)) 1 (4-3)
/=iL J L J

is minimized where

y^1) = diag. (wp), wp) ,...,»„ (/)) (4.4)

is the weighting factor for the /-th data point. Eq.(4.3) can be recast into

f=EE»/" Ui"'" /; (x"') T= E*/ ' w;r; (4-5)
/=iy=i L J y=i

where

ry = [ry«ry <»>.... r/">]T (4.6)
Wy = *7l0. (t*y <*> , ttfy <2> , . . . , U/y W) (4.7)

ri(0=/.(x(0)_y.(0

= a. + !,/%<'> + Ecyf |<«, ,x<'>)_A | _Vy«) (4.8)
«=i

where a;-, and cJt- are the j -th components of the vectors a and ct-, respectively,
and b;- T is the j -th row of the matrix B. Let

z; = [°/ b; r c/i ci2 •• Cjv J (4-9)
for j =1,2,...,n and let

«n +1 = [«1T «2T •••Of/ ft ft ..A]T (4.10)
then the approximation error is a function of these parameters; namely,

E = E(zx, z2 , . . . , zn , z„+i) (4.11)

and the optimal parameters zx, z2 , . . , zn for the fixed partition zn +1 = zn +x can

be found by solving the equations

-^- =2AWyr;=0 (4.12)

for *=l,2,...,n, where
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1 1

»j»>
»lw xjv ; *2<">

*/<">
«!«*>

• .<»> «2'2» • «2<")

Since

Ty =ArZy -yy

where

yy- [»y«»y«...»y<W)]r (4.16)
Equation (4.12) can be further reduced to

AWyAr»y -AWyyy =0 (4.17)

for .;'=l,2,...,n, and the optimal parameters zy * for each j can be found
efficiently via parallel processing by solving Eq.(4.17) for each j. In the special
case where Wy =W for every j, it becomes even more efficient since only a single
Gaussian elimination is required for solving the n equations in Eq.(4.17).

We denote the solutions of Eq.(4.17) by z;- *(zn+1) for j=l,2,...,n, which are
the optimal parameters in the canonical piecewise-linear equation (4.2) for the
fixed partition zn +1. The next problem is to find the optimal partition boundaries

zn+1* such that

#(zl (zn+l ) , z2 (zn+l ),••'., zn (zn +1*)» ,zn +1 )

=mJ£(z1*(z„+1), z2*(zn+i), ..,zn *(zn+1), z„+1) | zn+1 6Rna+(T\ (4.18)

The procedures for searching the optimal partition zn+x* are similar to those
developed in Sections 2 and 3 for 2-terminal and 3-terminal devices. Let

dE (zx, z2 , . . . ,z„+i)
S =

dzn +1

= 2 SKyGWyFy
y=i

(4.13)

(4.14)

(4.15)

(4.19)
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where

Ky = diag. (cjxIn , cy2In , . . . , cjffIn , -c;1, -cj2 , . . . , -cjc) (4.20)

and In is the n -dimensional identity matrix;

G

XP2

xp„

x =

xp) xP)
xp) xp)

(1) v (2)

pp) pp)
pp) pp)

Pi"

Pi
(N)

rn Fn Pn
(N)

xp<)
x2W

(N)

Pi«) = sgn((ai ,x(0)-/?.)

= -^- = 2 E(Ky-^-Wyry+KyGWyGrKyY =
3z n +1 ;=ll dzn+l

The first term inside the summation of Eq.(4.25) can be eliminated since

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

dG

dzn+l
=0 almost everywhere except when the data points are coincident with the boun
daries.

We then perform a line search along the direction

s = -Y^g (4.26)

as before until a local minimum is found. Since the current state of the art on

global optimization[l3,14] can not guarantee a global optimum, we simply repeat
the same procedure with various partition boundaries until the error is within the

acceptable tolerance. Otherwise, we must increase the number of partition boun
daries.

5. Concluding Remarks

The canonical piecewise-linear model can be considered as a universal model

in the sense that the form of the equations describing the model is the same for
all device characteristics. Only the coefficients are different for different devices. It

is this universal character which allows us to develop a highly efficient computa
tional algorithm for solving dc nonlinear circuits.
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Since our algorithm for determining the coefficients depends only on data
extracted from the device's terminals, either by measurement or numerical

methods, no knowledge of the internal device physics is required. This "black
box" approach is particularly powerful in modeling dc characteristics of submi-

cron and microwave devices where the internal device physics is not yet well

understood.

Another advantage of the canonical piecewise-linear model is its small

memory storage requirements. This advantage becomes decisive in large-scale cir

cuits. To see this, let us compare the number of coefficients needed to specify an

n-dimensional vector function f: R" -*-R", using the following three global

representations :

1. Canonical piecewise-linear representation : Assuming that there are nk"

(n - l)-dimensional boundary hyperplanes in each dimension, then Eq.(l.l)
requires a total of n2-f n + nk (2n + 1) = 0 (n 2) coefficients.

2. Conventional piecewise-linear representation : Assume the domain space is

partitioned into M regions, each described by an affine equation. Each

region therefore requires n2 -\- n coefficients. Since M is generally a very
large number especially when n is large, the storage requirement grows

exponentially with n. To show this, consider the special case where the

boundaries possess a lattice structure, and hence there are (k + l)n regions

in the domain space where " k " is as defined above. Hence the total number

of coefficients is on the order of 0 (n\k + l)n).

3. n-variable polynomials of order m : An m -th order polynomial in n variables

requires n(C(n , 0) + C(n , 1) + • • • + C(n , m)) coefficients where
n!

Cin . i) = -. rr.—7T- For n » m , this is on the order of 0(nm).
v ' (n-«)!Xi!

The above 3 estimates of memory requirements are plotted in Fig.12 for ease

of comparison. Observe that the memory requirements for both the conventional

piecewise-linear and the n-variable polynomial representations become excessive

for large n. For example, when n = 100, O (1080) and 0 (1010) coefficients are
required in the 2nd and 3rd representation for k = 5 and m = 5, respectively.

Whereas only 0 (104) coefficients are needed in the first representation. This com
parison shows that the canonical piecewise-linear representation is currently the

only practical global representation for high-dimensional vector-valued functions.
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Appendix :

A. Canonical Piecewise-Linear Model for pn Junction Diode Character

ized by Eq.(2.28)

S-segment model: Eq.(2.30)

4-segment model:

i = a + bv + cx | v -ft | + c2\v -ft | + cz\ v - ft | (A.l)

where

a =-3.27X10~2, 6 = 4.986 X10"2

cx = 2.955X10"4, c2 = 1.198XlO-2, cz = 3.758X 10~2

ft = 0.4612 , ft = 0.6216 , J3Z = 0.6684

5-segment model:

i = a + 6v + c i | v - ft | + c2\ v - f32\ + c 3 | v - ft |

+ c4|v-ft| (A.2)

where

a =-3.9304X10"2, 6 = 5.9581 XKT2 , cx = 1.605XlO"4

c2 = 5.555 X10"3, c3= 1.748X10"2, c4 = 3.624X10"2

ft = 0.454 , ft = 0.6019 , ft = 0.6485 , ft = 0.6775

6-segment model :

i = a + 6v + c x | v - ft | + c 2 | v - ft | + c 3 | v - ft |

+ c4|v -ft| +c5| v -ft | (A.3)

where

a =-3.929 X10"2, 6 = 5.941 XlO-2 , cx = 8.915 X10"5 , c2 = 2.893 X10"3

c3 = 8.838X10-3 , c4 = 1.589X10-2 , c5 = 3.170X10"2 , ft = 0.448

ft = 0.584 , ft = 0.632 , ft = 0.658 , ft = 0.679

7-segment model :

,-=a+6v+c1|v-ft|+c2|v-ft|+c3|v-ft|

+ c4| v -ft | +c5| v -ft | +c6| v -ft | (A.4)
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where

a =-4.660X10"2, 6 = 6.997 X10~2 , cx = 7.563X10"5 , c2= 2.335 X10"3

c3 = 7.032X10-3, c4 = 1.293X10-2, c5 = 2.107XlO-2 , c6 = 2.653XlO"2

ft = 0.4468 , ft = 0.579 , ft = 0.626 , ft = 0.652

ft = 0.672 , ft = 0.687

B. Canonical Piecewise-Linear Bipolar Transistor Model

1. Optimized for Low Operating Voltages (less than 0.7Vfor each junction)

«1

«2
=

«1

a2
+

6 n bx2
b2X b22

«1

V2

Cl4

C24

+
Cll

c21
K-ft| +

c x2

c22
|t>i"ft|

where

Cll

c21

c24

+

+

p "i

c13

c23

•

Cl6

c26

|t>i-ft| +

11

21

-2.4604 XKT4
-2.6340 X10"2

2.461X10"
-2.407X10"

-2.405 X10"4
4.810 X10"4

c12

c22

Cl5

c25

v2-ft| + Cl5

c25
l"2-ft|

4.083X10"2
-4.04167 X10-2

9.824 X10"3
-9.726 XKT3

-9.726 X10"3
1.945 X10"2

>

6 12
622

=

)

c13

c23
=

Cl6
?

c26

(B.l)

-4.04465 X10-

8.0891 X10"2

3.076 X10-2
-2-3.045X10

-3.048 X10"2
6.096 X10"2

ft = 0.4413 , ft = 0.6165 , ft = 0.6632

ft = 0.4392 , ft = 0.6165 , ft = 0.6633

2. Optimized for High Operating Voltages (up to 0.75Vfor each junction)

*1

*2
=

"1

a2
+

6 ii 6 12
6 2i b22

+
c13

c23

j_
c16

c26

"i-ftl +

|v2-ft| +

«1

[t>2 +
Cll

c21
hl-ft| +

c12

c22

Cl4

c24
1^1-ftl +

^15

c25
|t;2-ftl

c17

c27
|t>2-ft| +

c18

c28
1V2"ft|

K-Ail

(B.2)
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"1
a2

=

-1.840X10"3
-1.839 XIO-1 » b 21

f 0.2654 1
~ L-0.2628 J '

b 12
bo^ -l

"u 1.115X10"3 c12 1.8786XIO"2
c21 -1.104X10"3 >

c22 -1.860 XIO"2

^13 6.885 XIO"2 ^14 1.7668 XIO-1
c23 -6.817 XIO-2 i C 24 -1.7493 XIO-1

*15 -1.104X10"3 ^16 -1.860X10-2
c25 2.208 XIO"3 >

c26 3.721 XIO-2

c17 -6.817 XIO-2 c18 -1.749 XIO-1
c27 1.3634 XIO"1 > Cog 3.499 XIO-1

ft = 0.5297 , ft = 0.6362 , ft = 0.6817 , ft = 0.7144

ft = 0.5297 , ft = 0.6362 , ft = 0.6817 , ft = 0.7144
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Figure Captions

Fig.l (a) Distribution of data points in Example 1; (b) approximation error vs
the location of the breakpoint in Example 1.

Fig.2 v-i characteristics predicted by two canonical piecewise-linear models for
the pn junction diode : the 2-segment dashed curve is defined by
Eq.(2.29); the 3-segment solid curve is defined by Eq.(2.30).

Fig.3 2-port configuration of the bipolar transistor.

Fig.4 (a) Boundary lines in Eq.(3.30) do not cover the whole "shaded" lower
voltage region; (b) boundary lines vx = Ex and v2 = E2 cover the whole
"shaded" lower voltage region.

Fig.5 (a) Three-dimensional plots for the emitter current in the Ebers-Moll
model given by Eq.(3.27); (b) three-dimensional plot for the emitter
current in the canonical piecewise-linear model given by Eq.(B.l) (low
voltage version); (c) three-dimensional plot for the collector current in
the Ebers-Moll model given by Eq.(3.27); (d) three-dimensional plot for
the collector current in the canonical piecewise-linear model given by
Eq.(B.l) (low voltage version); (e) comparison between the family of col
lector currents in the Ebers-Moll model (dashed line) and the canonical
piecewise-linear model (solid line).

Fig.6 (a) Odd-symmetric negative resistance circuit; (b) driving-point charac
teristic of the circuit in Fig.6(a).

Fig.7 2-port configuration of the MOSFET.

Fig.8 (a) Three-dimensional plot of drain current from the Shichman-Hodges
model; (b) three-dimensional plot of the drain current from the canoni
cal piecewise-linear model with a uniform weighting; (c) family of drain
currents modeled by Eq.(3.39) (dashed line) and Eq.(3.43) (solid line); (d)
three-dimensional plot of drain current in the canonical piecewise-linear
model from Eq.(3.44) with a heavier weighting in the small vDS region;
(e) family of drain currents modeled by Eq.(3.39) (dashed line) and
Eq.(3.44) (solid line).

Fig.9 (a) NMOS inverter with depletion load; (b) Vout-vs-Vin transfer charac
teristic of NMOS depletion load inverter.

Fig.10 (a) CMOS inverter; (b) V0Ut-v8-Vin transfer characteristic of CMOS
inverter.

Fig.ll Comparison of the canonical piecewise-linear model described by
Eq.(3.46) (solid line) and the analytical model[l9] (dashed line) for the
ion-implanted GaAs FET.

Fig.12 Comparison of memory storage requirement for a canonical piecewise-
linear function (1), a conventional piecewise-linear function (2), and an
n-variable polynomial (3) with order m.
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