

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TRIGGERS AND INFERENCE IN

DATA BASE SYSTEMS

by

M. Stonebraker

Memorandum No. UCB/ERL M85/46

28 May 1985

TRIGGERS AND INFERENCE IN

DATA BASE SYSTEMS

by

M. Stonebraker

Memorandum No. UCB/ERL M85/46

28 May 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

TRIGGERS AND INFERENCE IN DATA BASE SYSTEMS

Michael Stonebraker
University of California

BerkeleyyCa.

Abstract

There is a collection of data base applications (snch as
which may be best accomplished using collectioi^ of ^ften^l^or-
which an initial action recursively tnggers dependmt actions is often ^11^ ior
ward chaining. In addition, data base support for lai^e knowledge
at least a simple inferencing capability. When a ^^®y®
satisfied using only stored data, a data manager must deterjMe if a ^e to the
knowledge base can be used to reformulate the
from the desir^ data toward data base facts which must be ascertained using
backward chaining.

In this paper we show how forward chaining and backward c^ai^SC^bo^
be supported by simple extensions to a relational query lang^ge.
demonstrate extensions to a conventional lock manager which w^ ef^en^
implement the new constructs. Lastly, the extensions to support backtracking are
describedU

1. INTRODUCTION
In real time control appUcations such as power plant monitoring and ron^l

of sonar systems, acoUecUon of sensors periodically (or contououslyTpr^nt
to a data base system. When certain data patterns are sigh^, appropriate a^oM
must be taken. For example, if the flow of^lant past a^en sensor
acertain value, then an auxiliary pump ^01^ ^ or^ate^re
ment sudi applications is through a collection of trigger IESWA73J or aieircre
[BUNE79]. In business data processing
mprhaniism for propagating updates to (tependent (or rrolicatedj data elements.
(However, there are many who dispute this point of viewj.

In a trigger driven application an initial update to the ^ta
dependent updates, which may recursively cavse furtoer updates. This forward
rhaining process qulesces when there are no new dependent tnggers.

Conventional data base management systems (DB||̂) are usefto
storing large quantities of rigidly formatted data. However, h
applied to applications containing both large amounto of
they usually fail to provide facilities to manage the ^oyfl®^8e-ba^ poison.
Applications which have a knowledge base generally require the capabihty to store
rules of the form:

if (condition) then (result)

For example:
if a person is a manager
then he has a key to the executive lounge

This research was sponsoied by the U.S. to 83-0254
and the Naval Electronics Systems Command Contract N39-82-c-u^j3.

^ wlMtKms nto B the
knowledge base. For example, if a user asks.

Does John has a key to the executive lounge?

Is John a manager?

The process whereby a<^®sired retoev^tei^ve^cam ^
»d ihaty ether •rtliOl httemptiee (AI)

•"•X. ttthlttpB nties ™ th«. hechtrechht. Boftet. . tBeW
feature. Suppose there is an additional rule.

executive lounge

If John is not a teTw^^wn^ftacS^ slanguages,
is cUsabl^ fe-haining and backward chaining systems.and can be applied in both forwaia cnainm8.» language QUEL

In 1^ paper ,?^^f^iage of rules and both forward and back-
[STON761 are propos^ to the extensions to alock managerward chaining as control strategies. Motcoct, p section 2 treats for-
to effidentiy implemmt ^.^^^^tementatton, whUe Section 3discusses
ward chaining and in^cates how to extend both facilities to

SSt^rSS»S^g»t.ti«<«» h«,d ot. thetttr.
Lastly, Section 7contains some conclu g ^ sublanguage QUEL and

Even though toe be easily used in any relational DBMS
toe INGRES data example might be a more

musm^ constructs, in the interest of simpUcity and
brevity thestandard EMP relation:EMP (name, salary, age, dept, managerj

2. APROPOSAL FOR TRIGGERS

2.1o Langmge Constructs
A QUEL command such as:

range of E is EMP >
rep&ce EMP (salary - E^ary)
where EMPmame - "Mike
and Emame ••" Bill"

1 4. r.f "Rill The command can be rerun at any time
will set Mike's salary equal to that of BiU. me commanu

" «»»»«^»«»•««•«
indefinitely. "We propose toe following syntax.

^^ce^^W^^EMP (salary -Esalary)

where EMPJiame » "Mike"
and Ejiame «"Bill*

This command sets Mike's sal^ eqnal to
nPQ tn pvprnte inde^telv. Hence, whenever Bills salary is cn^gea,
value will immediately Prof®^^. feature, any Q
operation, postpended with ALWAYS, becomes a trigger.

2.2. Support For Triggers
Anv ALWAYS command can be processed with the assist^ce of a specim

kind of lock, raiipd a "trigger-me" lock (T lock). The compatibility between T^d n^^^ and IK^ks is specified in the following table:
R W T

R ok no ok

W no no ##

T ok no ok

An ALWAYS command is executed repeatedly by the user's INGRES proce^ wvc
it no longer has an effect. Then, INGRES reexecutes the comm^d, ^ete T1^
on all the data base objects read or written by ^ objects
satisfying the where clause). Then the command is placed ma relation.

DORMANT (t-id, quel-command,.user)
When a user U submits an INGRES command which attempts to write ^ obj^T Sikfeh^d (case ## above), U's DJGRp process obt^ :^e
reouested lock and continues processing. In parallel the lock manager r^ea^ +tT
locks held by the command in the DORMANT relation and

M control. The only reqmred DBMS facility is the
ability to submit a QUEL command from inside the lock manager.

All commands which hold a T lock on the object written by the user com-
•mand arp awakened In this way, the DBMS performs a (logically parallel)
breadth-first exploration of tree of depen^nt rommands. ^ present an
alternate exploration method using adepth-first search and backtrackmg.

Triocers ran be by running an INGRES delete command on the DOR
MANT relation. At this time, all Tlocls held by t^command mu^ removed.
Alternatively, one could extend QUEL with a CANCEL command as follows.

CANCEL trigger-id
In this case, the user must be informed of the trigger-id for later use in a CANCEL
command. ^ , i. j

Of course, T locks must be persistent, i.e. survive cr^hes of the b^dw^e or
DBMS. Moreover, very fine granul2ulty locks (on records or even on bel^ of
records) will be helpful in avoiding unnecessary "wake-u^ of triggers cau^ by
undatine some other object inside a lockable granule. In addition, lock escalation is
desirable to prevent triggers which read many data elements fr^
mous number of fine granularity locks. Tlie locking system mu^ al^ be c^efuHy
designed to deal correctly with "phantoms." For example, the
emoLvee with a name equal to ^Mike" must cause the example ALWAYS com
mand to be awakened. Section 5 presents two implementation alternatives which
satisfy these goals.

The above facilities will set Mike's salary equal to S^^s 'wh^evCT Bills
salary is changed, and in addition, if Mike's salary is inadvertantly chaiiged, it is
imm^iatelv reset to Bill's value. In some circumstances one might ^t want a
direct update to Mike's salary to be undone in this fasihom f^^^^^^YTa^d
accomplished by a different modifier on QUEL commands
trigger-me locks which are held on objects which are read but not written.

Unfortunateiy. the phantom problem appears difficult to solve with WEAKLY
ir'crj "eSSr K

lode manager simply IdentiteV^loc TO ^ g3(j^ple_ adata
ALWAYS commands s«P£»rt riation. This awakened

base update can trigger a amin^d forward s-hain'rig will stop wh^
commsmd can trigger at^a^ can find
no new triggers are awatened above mechanism is not able to

adesired g^ to aset of facts. The mechanism
this alternate construct.

3. BACKWAKD CHAINING

to QUHa commands. DEMAND. For example.

DEM^® ENff Chair - EJiair)
where E.naine - "BiU* ^
and EMP.naxne » Mike

Tho nonmd mmmal mMs eomannd 1. S S
Bill's. However, DEMA^ reanests the hair color of Mike, he ^
"lazy evaluation" is ^ilf^n&MAND^nimand in a way to be desoibed.
made aware of the . a^d require a sUght modification toDEMAND commands are called lazyxnggeis. <mu. =h
the relational model. ^ with acollecUon of stored fields. In

Anormal relation.consists of toplM.^ wtoac ^^ addition, lazy
the EMP relation are^e. al^^ h^ coIot
triggers can provide ^ta ^ties w ™ relation has a collection of stored
in toe EMP relation). Hen«. to^m a ^ triggers. Lazy triggers

^rS^rvffitm for
with nlw fields which have values only for a

subset of the tuples.

is Stored in a DORMANT-2 relation
noRMANT-2 (c-id, command, user-id)uuKJYLttiN 1 -6 V - , , r\A i/vVc'i arp set on the collection of objects

wo&ai?S<^^ The compatibiUty matrix for Mlocks is
the following:

R W M

R ok no II

W no no no

M no no ok

When a read lock Is set on an objert whKA
Mmnflirt algorithm is run. Mlocks are held ind^tely and are oniy wixnara
when thecorresponding DEMAND command is deleted.

niTFT tirocessinfi is slightly different if DEMAND ffelds are present. The reg-ular acomm^d which reqi^ data whl^^ |
stored field in a relation. This rejection must be delay^, bera^
lazv trigger to provide the desired data. An execution plan is dien
a^rie^ command is decomposed into a collection of smgle relation subcom-
mands, S, of the form:

range of R is relation
retrieve (R.tl,...»R.tj)
where 0(R)

Hpre OfRl is a Qualification involving only the tuple variable R, and the^teiS aOTllSlt °?tj of fiel^ of R. The DBMS will acquire locks during
the processing of each S.

If S reoTiests a read lock on an object which has a M lock set, theR-M coimrt
algorithm below most be executed. In this algorithm the DEMAND command D,
holding the M lock is of the form:

replace DEMAND X(dl =» f1,..., dn =fn)
where

Hence, Dupdates data items dl with values computed^g
fl, ..., fn when^er the qualification QUAL, is true. Al^, X is the tuple varia
which specifies the relation to update.

R-M Conflict Algorithm

1) Make a copy of the query S and delete from ^1^®
all clauses which have already been evaluated to tnie for me
current record. Substitute into the query any items whicA
are stored in the current record, and call S. u
will contain only references to non-stored data items. 11 u aoes
not provide values for any data items, then ^e^in^e^ alg^
rithm, and continue query processing for S on the nejrt DEMA^
command D' which has an M lock on the current record, or on the
next appropriate tuple.

2} In D replace each occurence of the tuple variable X by R. Add
all range statements of D to those of S.
every reference to R.dj in S' by fj and addmg the qualification
QUAL from D.

3) Execute the modified query 5*' normally and return any quali
fying tuples produced as part of the result for S. Continue query
processing for S on the next DEMAND command with an Mlock
on the current record, or on the next appropriate tuple.

For example, suppose the user requests the hair color ofMike:
retrieve (EMPJiair) whereEMP.name »"Mike"

Moreover, suppose the following two lazy triggers are in effect:
range of E is EMP
range of F is EMP „ . >

Dl: replace DEMAND E (hair = F.hairJ
where E.name =" Mike"
and F.name = "Bill"

range of G IS EMP . _ „
D2: replace DEMAND G(hair - greea)

where Gjiame - BUI j •_ m a+ this
the ren^kinder of

time the clause "EMPmame
the query, S', is simply-

The use D1 to produce the following command:
range of F is EI^
retrieve (E^)
where EMP-name • Mike
and F.name —"Bill"

guaranteed to he true at this point.; .. ^ ..niiiA. with the M
lockT^I '̂M.'̂ 'S^on'SScSrs. theW will be executing the
subquery:

retrieve CF.hair)
where Fmame — Bill . .

j wt: a "•Rill"** to true. Hence, "the algorithm "Will beand Will have evaluated "Fmame - Bill to true, nen ,
run again to produce;

retrieve Chair - ")
where F»name Bill .

IS -p™.- pf
ot tia. MvajssSta sfb. ^

granularity locki^ ^^^I^llffects the request. Hence, the schOTe ^juWte
for aspecial indexing structure for DEMAND

commands to identify relevant chaining because a retrieve com-
This medianism will hnplem^ ^ ^

mand will activate those lazy tngg^ facts from the dataStTactivate other lazy trlKers. by PROLOG: how-
base. This backward db^n^s^mlsffever, it Mt rappOTtl^^M^ ^ ^ section extends the pre-
'vigr=ss:Sr»istsj.d«.
4. PRIORITIES AND BACKTRACKING
4*1* Introductioii Avr-ork-tinn*? is desired. For example, all

».pSlg?4

1;D2:
D3:

D4: rq)laceDEMAND EMP(desk-"wood") whereEMP.name ="Mlkcr
range of E is EMP %

D5: replace DEMAND EMP (desk =E.desk)
where EMP.naine =» ** Sam"
and E.name = "Bill"

Two problems must be solved. Fi^, apriority system m^ be de^ to
evaluatine the last three DEMAND commands in preftrence to the flrrt md

only if a higher priority DEMAND command shoirid a
rnminanri be executed. For example, to determine the kind of desk that Sam has,
e*g*t

retrieve (EMP.desk) where EMP.name « "Sam"
command D5 and then D3 should be utilized, resulting in the answer "st(Ml." How^
ever if Bill is not an employee, these commands will return ^' ehnniH "hj^rVtrack" and trv a lower priority command CDl or D2 depend
Sfon K^^mUd Xipplicable DEMAND commands be used,Sfc2 riSTm &uSe -wood, %eV if Bill is an employee and Sam is
under 40. . ,

A•rimiiar situation exists with triggers. If two or more^ngg^ apply,^
wnn-t to avpnite the one with highest priority. If that trigger fails to pro

duce a desired answer, the DBMS should backtrack and trya lower priority trigger.
For f»xamole suoDOse new employees are inserted into the. EMP relation with

no They are then assigned to adepartment using the follow-
ingtriggers: „ u

Tl: replace ALWAYS EMP (dept - "shoe)
where EMP.dept =» null
and EMP.age > 40

T2: replace ALWAYS EMP (dept«"admin")
where EMP.dept« null
and EMP.manager = "Smith

range of E is EMP ™ .m .
T3: replace ALWAYS E(dept » EMP.dept)

where EMP.name =• "Bill"
and E.name =» "Mike"
and E.dept =» null

T4: replace ALWAYS EMP (dept - "trainee")
where EMP.dept«» null

Th<» desired effect is to place new employees managed by Smith in the adii^
d^4rtS new employeS^^^ 40 not managed by Smith in the shoe depart-mOTL^Mike in the same department as Bill, and everyone else in the trainee depart-

To achieve the desired effect, the triggering process
goal (in this case assigning a department to a
all four trizeers apply to a new employee over 40 named Mike who wor^ lor
Smith^h^e fpriori^^ system is required to activate the triggeis mthe order T3.
T2 Tl T4. Lastly there may be situations where a collection of tnggers
hpen execut^ no new ones have been activated, and the goal has not been reached.

tSe ^mern should backtrack (i.e. undo the effect of one or more
triggers) and try a lower priority alternate collection of tnggers.

Consider the situation of hiring a new
be moved to the toy department to make room for Sam. Moreover, George musi

transferred from the toy ^ wOTk^
Fred If one of these changes fails Lior exa^ trainee department and FredexpresseS^the foUowlng
collection of triggers:

range of E is EMP . .+„^1
Tl: replace ALWAYS ENffCdept- toy)

where E-name • Sam
and E.d«)t -
and HvIP.name - Fred

range of E is EMP
T2: otW always EMP (dept - admin ;

where Euiept
and E«name * Fred
andEMP.dept-"toy" ^
and Ef^Jiame« George

range of E is EMP , «"i
T3: replace ALWAYS E(dept - shoe)where Edept •nnll

and E.name — Sam ^
and H»dP.name - George
and EMP^pt - "admin

T4: replace ALWAYS ^ ^
where EMP«name• Sam
and EMPdept -• null

In this ^ mgS''re^or 13^^ tt^^erts^Smild le backed out, and
effect. However, if tngger or lo iolw,

DEMAND »d ALWAYS «•
different, and we considCT them separately.

4,2. Support for DEMAND
Coi^^r an extra modifier for DEMAND comm^ds^-g-

replace DEMAND PRIORITY EMP (desk - wood)
Where EMPjaame - "Mike

To use priorities and backtrac^g, PRIORIIT command

usrful. When a PRIORI^ DEMAND commands conflict with me
can easUy ascertain which o^ PRTORI^ information is at^mlable^^®^e^and on what obje^, ^ ~^^°bfSimrS^to specify for each sum
oCt'me priorlW^^ commands. This could beSoSfb^mffi^rUons into arelation:

PRIORITY-M (Id-of-hlgher, id-of-lower. object)
Th. of PRIOHIY-M for U« teE «t "» P"™"

PRIORITY-M id-of-hlgher Id-of-lower object

8

5 2 Sam
3 2 BiU
4 1 Mike

ilciTio this orioritv information, the lock manager can form an order^
each object. In the R-M conflict algorithm, the highest

priority conflicting command must be used first.
The user must specify backtracking with the keyword PRIORITY on a retrieve

command, for example: ^
retrieve PRIORITY (EMP.desk) where EMP.name « Sam

With this modifier, the R-M conflict algorithm must be altered slightly:
Whenever the algorithm says:

continue on the next command C which holds
an M lock on the current record

substitute:

continue on the next command ONLY IFTHECLJRRENT
COMMAND PRODUCED AN EMPTY ANSWER

The modified R-M algorithm, the use of aRETRIEVE co^^d.
inserUon of DEMAND PRIORITY lazy triggers will provide the desired priority-
backtracking scheme.

4.3* Support for ALWAYS
To use priorities and backtracking, an ALWAYS command must specify the

keyword PRK)RITY, e.g.:
replace ALWAYS PRIORITY EMP (dept - "shoe")
where EMP.dept =» null
and EMP.age > 40

When a user inserts such a trigger, the lock manager
triggers and the collection of conflicting objecte.
inserting information into a PRIORI i Y-T relation similar to the PMORJ^^l Y-M rela^SS^v^ffiock manager uses the PRIORITY-T relation to oMer ^ conflicting
T locks. On a W-T conflict, the highest priority trigger isawakened first.

The user must indicate that he desires a priority backtractog
At the time he makes an update that wUl activate tnggers. he must specify the
keyword PRIORITY, for example:

append PRIORITY to EMP (name - "Mikd-. age - 25. salary =20001
Additioneilly. he must specify what goal should stop the priority/backtr«^ng
alBorithm A simole solution would be to have a built-in goal which is Mtisfi^ if
atriee»^ct^ted no new dependent triggers but modified the data base. To obtatogrffi^eSt^ we proposTthat ausl^will will state both to
ind his goal in a transaction. The goal is a retrieve command vdt^e
PRIORITY which is reached when the command has a non-empty answer. The iol
lowing transaction has a goal of placing Mike ina department.

begin transaction ^
a^end PRIORITY to EMP (name - "Mike," ... J

retrieve PRIORITY (EMP.dept)
where EMP.name =" Mike"

end transaction

IS'tS^)ofaPRIORrrYupdate.
2) Only the highest priority is observed and there are
3) If an empty a°!^^-®^^^n^the last transaction savepoint. and have
no triggersstmorder.
the lock manager activate the nean tf transactions with a

The use of and modest changes to
PRICRrTY update followed by PRIOIOTY scheme. The highest
proc^g ^ implement ag^ ^ forwardly chained^^ty trigger ^ AS4l^acktrack (by t^ing
actions. If the go^ (s not ^^^..^twthe next lower priority trigger. untU a
back to a savejmint) an afwiUcable triggers me exhausted,
solution is found or until all appucaoie «

5. implementation ofTand M Tand Mlocks in the same
Astraight-forward appro^ mm oAust cope with alock table

lock table holding Ras^ W recoverable. Moreover, phantoms must'Ay varying 5?e i^cie the sco^ of

QbiXtSd ot
M locks into the log as part of ^ . mtLst be checkpointed along withalways comm^ <ide can now restore Tand Mlocks after a
ordinary data. Data b^e roo ^^^jj^gjj^tation difficulties,
crash. This presents only modest p ^ issues. Systems which perform

The have few difficulties supporting cOTert
page level locking (e.g. Howe^. finer granul^ty
semantics in ^ M locks. Sy^ems which perform
reauired for efficient T and M loc^ !^r . ^ q£ intervals m the leaicS allow detection of qq dam records [ASTR761. Hemce, atransac-
nodes of secondary indexes ^ well ^ o wjj- on the tuple and on ^e
tion which modifies a tuple will fteld for which a secondary indexap^^^ index interv^ ^dd ?^w aLd
exists. An insert of faE in a locked index interval. Of cot^. a
SSl^S'SuSfB-tt«

data and index tuples. Then, a "logically adjacent in Tuple Identifi^
tuple which is lotted. indexes* adjacency means "in the same hash
orS^ for B-tiee data records and moexes, aujateu ,bucket" for hashed records and mde^. ^ Mlocks. Tlocks must be

The same adja^cy ta^c be awakened if awrite lock is s«t
held on data and index rerords. ^d ato^er ^DEMAND command will
on the adjacent index tecori or^ write iMk is set on an adjacait

recordCs).

10

The only problem with theadjacency approach is that a
cause all trigg^ holding locks on the page to be awakened and all DEMAND com
mand holding write locks to be reregistered.

The phantom problem and the logging problem appear e^jer to solve If an
alternate strategy Is employed. Consider storing the M and T locks in data ^d
index records themselves. Systems which support variable lengto
ply add as many T and M locks to eadi record as necessary
automatically recoverable by current conventional tech^qi^.
lem requires the above adjacency algorithm; however, structure modification (e.g.
B-tree page splits) do not cause extra overhesol. Moreover, smce the extra iTCte ^
rtorS Im^ly from Rand Wlocks, extendable hashing is not a pr^uislte for
the lock table Lastlv lock escalation can be handled by storing an extra record at
tte & of OT ^n indicating that all enclosed objects are
This record is automatically recoverable, ^d the run-time
guarantee that it looks for this special record before accessing any enclosed object.

The only drawback of this second alternative is that a second implementation
of a lock manager must be coded forT and Mlocks.

6. COMPARISON WITH A VIEW-ORIENTED SCHEME
We illustrate the view based scheme by performing the h^r

from Section 3 using views. Consider the following collection of view definitions.
range of E is EMP -
define view EMP (E.all, hair - green)
where E.name = "Bill"

range of E is EMP
range of El is END* t. ^
define view EMP CEl.all, hair =« E.hairj
where E.name " Bill"
and El.name « "Mike"

The interpretation is that EMP can be both a ®
view ripfinitinns. Moreover, the actual value of EMP is the union of the storea
relation and the view definitions.

If the following query is specified
retrieve (EMPJiair) where EMP.name » "Mike"

It wlU be run on the stored relation to produce^ mpty answer. In a^tlom^
wlU ^ on both view definitions for EMP using the standard query
modification procedure In [STON75]. This produces two queries.

retrieve (E.hair) where
E.name =» "Mike"
and E.name » " Bill"

and

retrieve (E.hair)
where E.name =» "Bill"
and El.name = "Mike"

Aslmole theorem prover can ascertain that the first query is false; alternately, the
ouerv can be run to produce an empty answer. The second qwry produces ^
emotv answer when run on the stored relation. However, when passed again
through the view mechanism, it will be modified to produce the query which will
yield the desired answer.

The problem with this approach isapp^a^t. The ^
for indaving the collection of EMP views which are logically umoned.

11

PrevioTB work [RC^S82l c^Sitons which
tuples in aview and not on STaU view dSni^ to find the sub-
be evaluated. Therefore, the aueries will be executed leading toset which yield^ ®°®^^t^™^v^nie sort of atheorem prover must be bum
considerable iiteffiamcy^Alterr^ number of specifications which must be

not noted for their execution efflaency. ^ definitions associated
In the case tot thOT a" has obvious advantages. For

with a given relation, then a^-to^ relation.example.®^tf there is cmly^ ^ew d^tto ai^^ Moreover, if views
then at most two qu^es aleoritto [STON75] can be run itera-
are cascaded, then the quey of aueries to optimize and execute,lively producing at sn^ u^b^qu^
Plan <>Ptisai2ation is -lanning to be done every time a new
hand, the approadi io S«rtion 3 iM^q «^P performed over a larger
S5»Jf »'=-^'" •

irrelevant rules in the case ttot ^ tjerforms this function much less

1S.S' 'ssg' Si S2i^ss"S =r?piss -a wh«.
mechanism will work better.

This paper Ijas

est addition^ toy are easy to understand, easy
The proposed Mor»ver no additional data struc-

_iv_ili o e>/^iiitinn «iich as thc foUowmg.kution such Is the following:
replace (...) where
parallel
retrieve (...) where

The replace command would tort ac^^on^^tov^ to-'̂ g chain-
mi data required by the backward chainmg infer-

acc% pato the ^tog Also, redundant
^'ofto^^^u^g the R-M conflict algorithm, leadmg to aloss of

efficiency in processing DEMAND commands.

12

[ASTR761

[BUNE79]

[BROD84]

[CHAN84]

[CHEN84]

tCL0C8ll

[ESWA75]

[FORG8II

[GRAY78]

tJARK84]

[MISS84]

[RTI841

[ROSS82]

[SCI084]

[STON731

[STON76]

[WARR8I]

REFERENCES

Astrahan. M. et. al., "Sy^em R: A Relational Approach to
Data," ACM-TODS, June 1976.
Buneman. P. and demons. E.. "Effidentiy Monitoring Rela
tional Databases," ACM-TODS, Jnne 1979.
Brodie, M., and Jarke, M., "On Integrating
and Data Bases," Prot 1st Intenmti^ Coherence on
Expert Data Base Systems, Kiowah, S.C., Oct 1984.

c and Wallffir A. "PROSQL: A PrologProgramming
toterface'with SQL/DS," Conference
on Expert Data Bases, Kiowah, S.C., Oct 1984.
rhono I ot al "IBM Database 2 Performance: Design, Imple-Stion ^d -&1." IBM Systems Jonmal, February
1984. „ , ,
Clocksin, W. and Mellish, C, "Programming in Prolog,
Springer-Verlag, Berlin, Germany, 1981.
Eswaren, K., "A General ^rpo^ ^BS^'^^MR^r^
Inclusion in a Relational Date Base System, IBM Researcn,
San Jose, Ca., RJ 1833, July 1976.
Forgy, C, "The 0PS5 User's Manual," Cameigie MeUon Univ.,
Technical Report, 1981. ^
Gray, J., "Notes on OP®f
Research, San Jose, Ca., RJ 2254, August 19 .
Tarke M et. al., "An OptimiTing Prolog Fronted to a Rela-wSie^ sl^eS?" pV 19l4ACM^IGMOD Conference
on Management of Date, Boston, Mass., June 1984.
MissicofF M. and Wiederhold, G., "Toward a Unifiw
Approach for Expert and Date B^ s^^eM
International Conference on Expert Date Base Systems,
Kiowah, S.C., Oct. 1984. ^ ^
p.iatinnal Technology, Inc., "INGRES Version 3.0 Reference
Manual, December 1984. , ^ t. «
Roussopoulis, N., "View INdexing in Relational Databases,
ACM-TODS, July 1982.
Sciore E. and Warren, D.S., "Toward anDatabase-Prolog System," Conference
on Expert Data Bases, Kiowah, S.C., Oct 1984.
Stonebraker, M., "I®plementetion of^Int^ty Cwis^te
and Views by Query Modification, P^ 1975 ACM
SIGMOD Conference, San Jose, Ca., May 1975.
stonebraker, M., et. al., "The D^gJ» Implementation of
INGRES," ACM-TODS, Sept. 1976.
Warren DH. "Efficient Processing of Interactive Date BaseoS'^r^ in Logic,"^ Proc 7th Very Large Date Base
Conference, Cannes, France, June 1981.

13

	Copyright noticE 1985
	ERL-85-46

