

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A DESIGN METHODOLOGY FOR VLSI PROCESSORS

VOLUME I

by

Joan Marie Pendleton

Memorandum No. UCB/ERL M85/88

21 November 1985

A DESIGN METHODOLOGY FOR VLSI PROCESSORS

VOLUME I

by

Joan Marie Pendleton

Memorandum No. UCB/ERL M85/88

21 November 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Research sponsored, in part, by Defense Advance Research Projects
Agency (DoD) Contract No. N00039-83-C-0107 and, in part, by a
Fellowship from Eastman Kodak Corporation.

A DESIGN METHODOLOGY FOR VLSI PROCESSORS

VOLUME I

by

Joan Marie Pendleton

Memorandum No. UCB/ERL M85/88

21 November 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Research sponsored, in part, by Defense Advance Research Projects
Agency (DoD) Contract No. N00039-83-C-0107 and, in part, by a
Fellowship from Eastman Kodak Corporation.

A Design Methodology for VLSI Processors

Joan Marie Pendleton

ABSTRACT

A design methodology for VLSI processors has been developed. It is based

on five major design levels - microarchitecture, functional block, circuit, intercon

nect, and process - and the interactions between them. In addition to top-down

synthesb, this method formally incorporates the feedback of information from the
lower design levels to the higher levefa. A preliminary design phase that consid

ers the effects of the lowest levels - circuit, interconnect, and process - on design

at the highest level - microarchitecture - b described. After preliminary design,

design alternates between synthesis and analysb steps as the designers proceed

from the highest level to the lower leveb.

SOAR. (Smalltalk on a RISC), a 3fc bit microprocessor designed for the

efficient execution of compiled Smalltalk provides a case study of thb methodol

ogy. The chip, implemented in 4 micron, single-level metal NMOS technologies,

has a cycle time of 400 ns. Pipelining allows an instruction to start each cycle

with the exception of loads and stores. The processor contains 35,700 transistors,

b 320x432 mib, dbsipates 3 watts, and b assembled in an 84-lead pin grid array

package. The methodology that included a large CAD effort provided functioning

chips on first silicon.

Chairman

Table of Contents

Preface

Chapter 1- Introduction • •

1. VLSI Issues 6

2. Thesb Organization

6

_ 8

Chapter 2- Present Methodologies _____^_^_ . 1°

1. Design Leveb —— — *0

2. Hierarchy _ _ . 12

3. Design Leveb arid Hierarchy -. 14

4. Mead-Conway Style _ — *5

5. CMU-DA System _ . 17

6. Bell Laboratories-Bellmac-32 Techniques 21

7. IBM- Philo VLSI Design System 23

8. Summary „ 25

9. References , 27

Chapter 3- Design Leveb 29

1. Microarchitecture Level •—- 30

2. Functional Block Level __ • 34

3. Circuit Level _ . 37

4. Interconnect Level ' 40

5. Process Level — 42

6. Interrelationship Overview 43

6.1. External Inputs 45

6.2. Iteration • 50

6.3. Unidirectional Design 52

7. Methodology Implications . 53

8. Summary . 55

9. References _ 58

Chapter 4- Design Methodology . 59

1. Preliminary _____________^— 60

2. Synthesb _ 66

2.1. Microarchitecture Synthesb 71

2.2. Functional Block Synthesis _ 74

2.3. Circuit Synthesb — 75

2.4. Interconnect Synthesb ___-___———^— 76

3. Analysb . — — • 77

4. Optimization — 83

5. Methodology 85

Chapter 5- External Inputs- SOAR Case Study . 99

1. Architecture : °9

1.1. Data Types . "

1.2. Word Size 101

1.3. Addressing Modes — 102

1.4. Regbter Organization , 1°3

1.5. Instruction Set — 108

1.6. Internal Exceptions and Traps 115

2. System Specifications 119

2.1. Memory Requirements „ . 12°

2.2. Clocking . '• I20

2.3. External Interrupts and Wait 121

2.4. Fast Shuffle Control 121

2.5. Reset • 123

2.6. Loading Characteristics . - 123

2.7. Size and Power . - i24

3. Process 124

3.1. Devices and Device Parameters I25

3.2. Layers and Layer Parameters 128

3.3. Design Rules — i29

4. References . 130

Chapter 6- Preliminary Design- SOAR Case Study . — 132

1. Preliminary Circuit — • — 135

1.1. Desired Functions . 135

1.1.1. ALUs — 135

1.1.2. Storage __ I37

1.1.3. Random Logic 138

1.1.4. Drivers . i39

1.1.5. Summary . I40

1.2. Circuits Available 142

1.2.1. ALUs 142

1.2.2. Storage 150

1.2.3. Random Logic . 154

1.2.4. Drivers 1W

1.3. Initial Microarchitecture Design 166

1.4. Further Preliminary Microarchitecture Design 175

1.5. Pipeline 175

1.6. Resource Allocation 183

1.7. Pipeline Exceptions — 180

1.8. Preliminary Circuit Summary 108

2. Preliminary Interconnect 201

3. Preliminary Compare .— 204

4. References — •* 204

Chapter 7- Microarchitecture Design- SOAR Case Study 206

1. Microarchitecture Synthesb 207

1.1. Functional Blocks 209

1.2. Bus Structures . 219

1.3. Resource Usage 225

1.4. Complete Functional Block Input and Output Specification 226

1.5. Microarchitecture Verification 228

1.6. Microarchitecture Synthesb Summary . 234

2. Microarchitecture Analysb 234

2.1. Speed Analysb 235

2.2. Area and Power Analysb ___^__——— 240

3. References = — 241

Chapter 8- Functional Block Design- SOAR Case Study 242

1. Functional Block Synthesb 244

1.1. Merging

1.2. Splitting

1.3. Summary — 258

2. Functional Block Analysb , 265

2.1. Speed Analysb • 265

_ 244

_ 249

2.1.1. Method

2.1.2. SOAR Speed Analysb

2.2. Power Analysb

Chapter 9- Circuit and Interconnect Design- SOAR Case Study

1. Circuit and Interconnect Synthesb .

2. Circuit and Interconnect Analysb

2.1. ALU —

2.2. Inserter/Extractor —

2.3. SWP Comparator

2.4. Regbter File Decoders

2.5. Sign Extender

2.6. Summary

3. Functional Block Analysb

4. Microarchitecture vs. Functional Block Analysb

4.1. Phase 1 Analysb —

4.2. Phase 2 Analysb

4.3. Phase 3 Analysb '.

4.4. TRAP Analysb

4.5. Decode for Phase 3 Analysb

4.6. Microarchitecture Analysb

5. Optimized Pipeline Analysb

6. Split Datapath Analysb

7. References

Chapter 10- Results- SOAR Case Study

1. Methodology

266

273

282

_ 284

_ 285

_ 286

_ 288

_ 297

_ 297

_ 298

_ 300

301

302

307

307

309

—- 311

312

315

317

323

326

328

329

330

2. Processor Results . 333

2.1. Test Setup , 336

2.2. Functionality — 339

2.3. Speed . 341

2.3.1. Phase 1 342

2.3.2. Phase 2 '. — 343

2.3.3. Phase 3 — : 344

2.4. Process Effects _ 346

2.5. Summary 351

3. Architecture Results 352

3.1. Overview 353

3.2. Area and Geometry — . 354

3.3. Complexity 356

3.4. Speed ; 358

3.5. Summary : 359

4. References 361

Appendix A-4 Micron NMOS Design Rules _, 362

Appendix B- SOAR SLANG Description . 368

Appendix C- Circuit Block Logic Diagrams 471

Appendix D- SOAR Input/Output Timing Specifications 589

Acknowledgements

First and foremost I wbh to thank Professor David A. Hodges for joining

thb project and promptly providing whatever support was necessary. Due to hb
continuous interest the SOAR processor became a reality. I would abo like to

thank Professor Carlo Sequin for reading thb dbsertation and hb useful sugges

tions. Thanks abo go to Professor David A. Patterson for hb involvement with

the SOAR project. And of course thanks abo go to my -third reader, Professor

Alan Portb of the physics department.

I would abo like to acknowledge all the people who worked on the CAD

tools that were used in thb project. In particular Bob Mayo, Walter Scott, and

Professor John Ousterhout for the MAGIC layout editor and their prompt atten

tion to any problems with it. Abo Jim Larus and Grace Mah who made

automatic layout a reality and saved much time with their PLA generation toob.

Thanks abo go to the MOSIS crew for their special attention to this over

sized die, prompt replies to all our questions, and for providing working chips to

us. I abo wbh to thank the processing and packaging people at Xerox for fab-

bing SOAR for us. And special thanks to Kodak for providing my support while

I was at Berkeley.

And thanks go to all the people on the SOAR project that made it a fun

project to work on. To name just a few - Will Brown, Frank Dunlap, Shing

Kong, Chris Marino, and Dain Samples. And to the people who made Berkeley a

fun place to be - Mike Arnold, Ricki Blau, Gordon Hamachi, Paul Hansen, Bob

Mayo, Rick McGeer, Dave Wallace, and many others.

Thanks abo go to the many people who without realizing it, contributed in a

variety of ways. To the people at the boathouse and other rowers, among the

many Dede and Brian Birch, and Ron and Velma Owen. To Will Brown, Keith

Iosso, Frank Dunlap, and Tricia Fordham. And to Peter Eichenberger, Dan

Jablonski, Jim Moody, and Lynne PoUenz. And special thanks to my sbters and

brother - Patti, Ann, and Dave - my cousin - Dix Brown - and my parents -

Alta and Alvin Pendleton - for the wild and crazy times, proper (not too serious)

perspective on the world, some key suggestions, and many interesting dbcussions

about most anything.

Preface

The purpose of thb thesb b to present a methodology for VLSI processor

design. However, a methodology b only useful if it proves to be well suited for
actual problems and leads to valuable decbions when applied to these problems.

The Smalltalk On A RISC - SOAR - project at Berkeley was both a guinea pig

and motivating factor behind thb methodology. The intent of thb methodology b

to provide guidelines and insights into VLSI processor design for future use, based
on experience from microarchitecture design through to layout. Although the test

vehicle for thb methodology was an NMOS RISC processor, it b hoped that the

methodology b general enough to be used with other technologies and

architectures abo.

The SOAR project developed from the Berkeley Smalltalk system. Due to its

basic nature, Smalltalk proves to be relatively slow on general purpose computers

[Unga85]. Therefore, the idea of building a system with special purpose hardware
for Smalltalk was proposed. Thb led to architectural studies of Smalltalk during

the fall of 1982 and winter of 1983 [Patt83]. Among other things, the architecture

of a special purpose Smalltalk processor was specified by these studies.

The microarchitecture design of the SOAR processor had its origins in

previously designed RISC processors [Unga85]. However, it dbtingubhed itself by

containing many added features (Figure P.l). Pete Foley provided a solid

microarchitectural design for the SOAR datapath. The author of thb thesb

completed the microarchitectural design. Thb included among other things a

more sophbticated control section than those of previous RISCs, to handle the

new features. Key items of thb control section were the trapping mechanbm and

its variety of traps, and a way to handle multicycle instructions within the

framework of the RISC pipeline.

Risen

SOAR

Figure P.l- RISC II and SOAR

Circuit design and layout of an NMOS version of SOAR began with a group

of four in the CS292X class - spring 1983. The role of the author in thb class was

to interface between the microarchitecture design and circuit design, contributing

to both. A first cut at the datapath circuit design and layout was completed

during thb class. The author then continued microarchitecture, circuit, and

layout design, along with Shing Kong. In thb process the PLA tool - SPLAT -

was debugged, diagnostics were written, optimizations for speed and power

considerations were introduced, and a first version of an NMOS layout was

completed, extracted, and logically verified.

Timing verification led to the dbcovery of unacceptable, slow critical paths

due to the multicycle instructions, in the first version of SOAR. A second version

of the microarchitecture was then designed to eliminate thb problem. Before

complete implementation, analysis according to the author's methodology verified

that it would not have the same problem or other unexpected slow paths. Design

and layout of this version was completed by September 1984. Logic verification

ensued, followed by timing analysb of the extracted layout. Thb design was

fabricated in the winter and spring of 1985. Processor characterization and

system development was done in the summer of 1985.

The development of a special purpose Smalltalk system b an ambitious

project. It spans the dbciplines of both electrical engineering and computer

science. The success of a project like thb relies on the efforts of individuab with a

variety of talents (Figure P.2). Architectural studies culminating with CS292R,

provided an efficient Smalltalk architecture [Unga85]. An architectural simulator

was written in the early stages of the project [Samp85]. A CMOS version of

SOAR was abo implemented [Mari85]. Board design occurred concurrently with

processor design [Blom83], [Dunl84], [Brow85]. System software in the form of an

assembler and compiler was written [Bush85]. CAD toob proved invaluable in a

project of thb magnitude [Scot85]. And of course no project of thb size could

succeed without the resources and support of the faculty.

TWVplpy Smalltalk

Peter Lee
Dave Ungar

ArMiit.P/»tiira1 St.nHips

John Blakken
Ricki Blau
Wayne Citrin
Bruce D'Ambrosio
Pete Foley
Carl Ponder
Richard Probst
Harry Rubin
Stuart Securest
Dave Ungar
Dave Wallace

Snft.wft.rp

Ricki Blau
Bill Bush
Pete Foley
Paul Hilfinger
Dain Samples
Dave Ungar

NMOS SOAR

Artie Chang
Mike Klein
Shing Kong
Joan Pendleton
Mike Remillard

CMOS-SOAR

B. K. Bose
Mark Hofmann
Grace Mah
Chrb Marino
Peter.Moore
Dave Wallace
John Zapbek

RnarH Dpgign

Rich Blomseth
Will Brown
Frank Dunlap
Joan Pendleton

PAD Support.

Gordon Hamachi
Ken Keller
Jim Larus
Grace Mah
Bob Mayo
Peter Moore
John Ousterhout
Joan Pendleton
Dierdre Ryan
Dain Samples
Walter Scott
George Taylor

Faculty

Paul Hilfinger
Dave Hodges
Richard Newton
John Ousterhout
Dave Patterson

Figure P.2- SOAR Design Groups

1. References

Blom83] Blomseth, R.; Davb, H.; The Orion Project- A Home for SOAR,
Unpublished) Proceedings of CS292R- Smalltalk on a RISC Architectural
nvestigations, Computer Science Divbion, EECS Dept., University of California,

Berkeley, Ca., April 1983.

[Brow85] Brown, E. W.; 'A Virtual Memory CPU Board with a Large Cache1,
M.S. Thesb, Computer Science Divbion, EECS Dept., University of California,
Berkeley, Ca., Jan. 1985.

gtash85] Bush, W.; 'Smalltalk 80 to SOAR Code', (draft) Computer Science
ivbion, EECS Dept., University of California, Berkeley, Ca., 1985.

{Dunl84l Dunlap, F.; 'How To Make It Work1, M.S. Thesb, EECS Dept.,
University of California, Berkeley, Ca., 1984.

[Mari85] Marino, C; 'CMOS SOAR1, M.S. Thesb, EECS Dept., University of
California, Berkeley, Ca., 1985.

[Patt83] Patterson, D. (editor); 'Proceedings of CS292R- Smalltalk on a RISC
Architectural Investigations' (Unpublbhed), Computer Science Divbion, EECS

Dept., University of California, Berkeley, Ca., April 1983.

[Samp85] Samples, A. D.; 'Software for SOARing on a SUN' (draft), Computer
Science Divbion, EECS Dept., University of California, Berkeley, Ca., February,
1985.

[Scot85] Scott, W.; Hamachi, G.; Ousterhout, J.; Mayo, R.; '1985 VLSI Toob:
More Works by the Original Artbts', T.R. UCB/CSD/85/225, University of
California, Berkeley, Ca., February 1985.

[Unga85] Ungar, D.; 'The Design and Evaluation ofaHigh Performance Smalltalk
System', Ph.D. Thesb, University ofCalifornia, Berkeley, Ca., August 1985.

6

Chapter 1

Introduction

A method b an orderly way to arrive at a solution to a problem that has

been posed. From Webster's dictionary:

method: An orderly procedure or process; regular way or manner of

doing anything; hence a set form or procedure as in investigation

or instruction.

Problems can range from very simple to extremely complex. For a simple prob

lem, the solution may be readily apparent and no methodology is needed. As

problems become more complicated solutions are not obvious and a procedure of

some type b needed to arrive at a solution. Procedures can range from hapha

zard to highly organized. The dbadvantages of haphazard procedures are many.

A solution may never be reached. If one b reached, it may take a long time and

not be very optimal. Organized procedures or methodologies ensure that a solu

tion b reached, or reveal why it can not be reached if the problem b impossible.

A good methodology provides a direct route to the solution and addresses all

aspects of the problem. In thb way a solution may be arrived at more quickly

and its quality or optimality b higher than with a haphazard procedure.

1. VLSI Issues

In the past decade integrated circuit technology has evolved so that it b now

feasible to put on the order of one million transbtors on a chip. As the number

of available transbtors has increased, the amount of circuitry has likewise

increased. Complex systems that in the past were composed of many individual

chips, are now being built on a single or a small number of chips. Thus, a

complex system may now be spread over only one or a few chips. This leads to

greatly increased complexity within a single chip. The problem addressed by an

individual chip has become much more complicated. Managing thb complexity b

a key issue that any VLSI methodology must face.

A second bsue in VLSI design involves the time needed to realize a compli

cated chip such as a processor. The time necessary to take a VLSI design from

concept to reality increases prohibitively with the increase in circuitry if new

design methods are not developed. A good methodology identifies the most time

consuming parts of design and tries to find faster ways of doing thb work.

Once a solution to a problem b proposed, it must somehow be checked to

verify its correctness. Increased complexity means many more opportunities for

malfunction. First, all functions of the VLSI processor must be identified. Thb

alone can be a major task. Once identified, provbions must be made for verify

ing the solutions at various stages in the design. Unlike board design, one can

not cut a trace and rewire it if a bug exbts in the prototype. Instead new masks

must be generated and the processor b then refabricated. Thb can take a few

months. Once the processor has been fabricated, problems that were unforeseen

during the design phase can arise. Locating these errors in a complex processor

can abo be difficult and time consuming. Thus, debugging time b abo an issue.

A fourth bsue that must be addressed b that of optimality. Complex prob

lems, such as VLSI design, usually have more than one solution. Different solu

tions address the many aspects of the problem with varying amounts of success.

No solution b necessarily perfect. Furthermore, many factors influence the qual

ity of the resulting characterbtics. The way in which individual factors influence

the final results should be' understood so that tradeoffs may be made during the

design process. These tradeoffs are made with the priorities of the final

processor's characterbtics in mind. In thb way a solution that best answers all

8
<

aspects of the problem may be chosen. Thb may be considered an optima] (non-

theoretical) solution.

Thus, four key bsues in VLSI processor design are:

1. Complexity

2. Time investment

3. Correctness

4. Optimality

Thb does not mean that there are no other bsues. It simply means that

these are four important bsues. A good VLSI design methodology addresses all

four of these bsues.

2. Thesis Organization

Many VLSI design methodologies exbt. They all address the four key bsues

with varying degrees of emphasb. It b hard to categorize them because no hard

and fast lines seem to exbt. New methodologies evolve from the old, resulting in

a spectrum of design styles. Chapter 2 dbcusses examples of present VLSI design

methodologies. Examples were chosen on the basb of their popularity and to

exemplify various possible design styles.

All VLSI design methodologies are structured around various design leveb.

Design b done at all leveb in the course of realizing a VLSI processor. Many

motivations exbt behind the choices of design leveb. Chapter 2 introduces some

present design level schemes as today's methodologies are described. In Chapter

3 the design levels of the methodology proposed in thb thesb are dbcussed.

Interrelationships between the leveb are described and reveal another source of

the complexity in VLSI design. Implications for the methodology based on an

understanding of level interrelationships, are identified.

9

Chapter 4 dbcusses the methodology in great detail. The methodology b
based on the design leveb of Chapter 3 and their interrelationships. Although

the nature of the problem b complex, the methodology breaks the large problem

into a series of smaller, more straightforward problems. The ordering of these

smaller problems b suggested by their natural order in the design process and

with the goal of efficient use of design time.

The value of any methodology lies in its suitability to practical problems. In

light of thb, Chapters 5through 10 take the Smalltalk On A Rbc - SOAR - pro

cessor through the methodology. Portions of thb methodology were used during

SOAR design and lead to significant improvements that were subsequently put

into the processor. Completion and further application of the methodology to

SOAR revealed additional improvements after submittal for fabrication. The

complete methodology also reinforced many design decbions on the realized chip.

10

Chapter 2

Present Methodologies

Presently, many differing design styles exbt. These styles have developed

from previous styles with the designers' backgrounds having a significant impact.

All VLSI design styles address the four key bsues outlined in Chapter 1 with

varying degrees of emphasb.

Key VLSI Issues

1. Complexity

2. Time investment

3. Correctness

4. Optimality

1. Design Levels

To realize a VLSI processor a description of the high level behavior or

architecture of the processor, b transformed into a collection of geometric shapes

made of various materiab: silicon, silicon dioxide, aluminum, etc. When viewed

from the outside world, thb collection of geometries and the high level behavioral

description function in the same way. Although their functions are equivalent,
the forms of these two systems are entirely different. Thus, equivalent systems

may be represented in more than one way. These different representations

distinguish the leveb of a design.

As a processor goes from an architectural description and set of system

specifications to a small piece of silicon, it passes through many other
representations and their corresponding design leveb. Design b the process of
transforming a problem from one representation to another until a final
representation provides a solution to the original problem. Each intermediate

11

transformation b a solution to one or more aspects of the problem posed by the

previous representation level. The choice of leveb reflects the designers' concerns

and design strategy. Thus, the leveb a design passes through can be determined

by the methodology. The design leveb may abo influence a methodology. For

example, more emphasb and consequently greater optimization, b usually placed

on explicitly defined leveb than on leveb that are only implied.

Design at any given level can range from very coarse to extremely detailed.

For example, if a logic level b called for, the initial outline might only specify the

logic blocks. Detailed logic design might specify the processor in terms of

inverters, switches, NAND, and NOR functions. VLSI processor design begins

with a rough idea for a solution at a level just below the outsider's behavioral

description and b completed when a detailed representation in a material, such as

silicon, is reached (Figure 2.1). Many different paths, corresponding to the many

different design methodologies, may be taken from the starting point to the end

point. Each path may graphically represent a methodology. Some of the possible

pathswould be very inefficient and therefore would not be used. Other efficient

paths are in widespread use.

Design
TiftYPils

behavioral
description

material
(silicon)

rough
outline

fine
detail

Figure 2.1- A Few of the Many Possible Design Paths

12

2. Hierarchy

Hierarchy b an important concept in all VLSI design methodologies.

Hierarchical structures are stratified. Leveb are formed in an attempt to bolate

the activities of any given level, from the activities of other leveb. Isolation b

desirable because it simplifies decbions, by eliminating considerations due to

outside leveb, at any given level. However, total bolation b also impossible since

all levels contribute to the total structure.

Hierarchies have proven to be very useful in complex designs. The concept

of bolating the pieces of a problem through the use of levels allows the overall
complex problem to be broken into a set of simpler problems. Each of these
simpler problems can be worked on separately and is further subdivided.
Subdivbion continues until the lowest level of the hierarchy b reached. Thb b

known as top down design.

13

Each level b composed of one or more entities. In a hierarchical structure

each entity b made up of subentities. Subentities are the entities of the next

lower strata of the hierarchy. For example, an ALU may be made up of 32 bit

slices. All entities are specified in two ways. First, the entity b viewed as ablack

box with inputs and outputs. The behavjor of these inputs and outputs b

specified by the entity that the given entity b asubentity of. Thb represents the

connection between leveb. Then to realize the entity, the internal components -

subentities - and their interconnections are specified. This internal specification

must result in the required behavior as viewed from the inputs and outputs.

Except for the inputs and outputs, thb design b done in bolation from the other

levels. Specification of the internal components of the entity leads to the

input/output specifications of the subentities.

In VLSI processor design the highest hierarchical level b the entire processor

chip (Figure 2.2). The first part of its behavior b the specification of the behavior

at the pins. The processor may then be divided into a datapath and control

section. The datapath can then be specified in terms of ALUs, regbters, shifters,

and buses. An ALU may then contain bitslices. Each bitslice b made up of logic

gates and wires. The logic gates are composed of transbtors which are formed by

geometries of the various fabrication materiab. The majority, but not all, of the

design considerations at any one of these leveb, are independent of the other

leveb.

transbtors

geometries

processor

datapath control

U registers shifters buses . .
bit,slice / \ / \ / \ • •

gates wires ! '. ! ! . .
I . • • • • • .

Figure 2.2- Hierarchy Example in a VLSI Processor

14

3. Design Levels and Hierarchy

Both design leveb and hierarchies are useful when solving a complex

problem. Therefore, the next question becomes: How do the design leveb relate

to the leveb of a hierarchy. Hierarchies can exbt within a design level. In thb

type of hierarchy all hierarchical leveb have the same representation. The leveb

of the hierarchy are dbtingubhed by the amount of detail that they contain. Thb

b typically called a structural hierarchy [LaPo83]. The coarse outline of a

processor in a given representation corresponds to the high leveb of the structural

hierarchy. The structural hierarchy b then traversed to the lowest leveb as detail

in the same representation form, b added to the processor components.

A second possibility b that the design leveb may correspond to one or more

leveb of a different hierarchy. As thb type of hierarchy b traversed the

representation form of a design changes. Thb b considered an abstraction

hierarchy. For example, if the abstraction hierarchy contains a logic level, logic

diagrams may form the basb of thb logic level. Another possibility b that the

logic level may correspond to a sublevel within a circuit design level. Depending

on the methodology, hierarchies exbt within design leveb and across the design

15

leveb.

Top down design leads to both types of hierarchical structures. Each level

explicitly specifies the characterbtics of the next lower level. Using these

characterbtics the next lower level b designed. A drawback of thb b that there b

no obvious way to consider influences of lower leveb when designing at higher

leveb, or influences from other branches of the hierarchy. Tradeoffs may be

overlooked and optimality can suffer. For thb reason most VLSI design

methodologies are not purely hierarchical. Most recognize the need for feedback

from the lower leveb to the higher leveb. Different methodologies place varying

amounts of emphasb on these non-hierarchical paths and implement them

differently, as will be seen in the next sections.

4. Mead-Conway Style

The Mead-Conway design style was one of the first formalized design styles

[Mead80], [Trim81], [Joha81]. It b still in widespread use today as an

instructional tool. It abo forms the basb of more sophbticated design

methodologies. The Mead-Conway style emphasizes a top down hierarchical

approach. Designs are composed of composition and leaf celb (Figure 2.3) Leaf

celb make up the lowest level of the structural hierarchy. They contain circuit

components and wires, but no instances of other celb. Composition celb occupy

all but the lowest hierarchical level. They are composed of lower level celb and

the interconnects between these lower celb.

16

composition celb

leaf celb

Figure 2.3- Mead-Conway Structural Hierarchy

Figure 2.4 shows the design leveb of thb style. The formalized methodology

concentrates on proceeding through these leveb in a top down manner as

indicated by the solid arrows. Design begins with a behavioral description. At

the architectural level, the composition celb at the top of the structural hierarchy,

that are needed to implement thb behavior, are identified and assigned to areas of

the floorplan. Wiring b considered and the critical paths of the chip are

estimated. Subsequent leveb fill in the detaib of all celb according to the

requirements passed down from the higher leveb. At the cell estimation level

inputs and outputs of the blocks are specified and their areas estimated. To do

thb the large composition celb of the floorplan are decomposed into intermediate

composition celb and leaf celb. The cell detailing level calb for layout of the leaf

celb. During chip integration, celb are connected together starting at the bottom

of the structural hierarchy and moving towards the top until all interconnections

have been made. The design b then ready for fabrication. Thus, thb design style

emphasizes increased refinement of the design as the leveb are traversed to the

cell detailing level.

>

>

>

behavioral
description

A _.
architectural

imationcell estimation

1
cell detailing |

)> chip integration

> fabrication

17

Figure 2.4- Mead-Conway Design Leveb

The Mead-Conway style recognizes the need for feedback of information

from the lower leveb to the higher design leveb as indicated by the dashed lines

of Figure 2.4. It calb for iteration between the leveb if pieces of the design are

not compatible. However, it has not developed formalized guidelines for thb

process as it has done for the top down procedure.

5. CMU-DA System

Research work at Carnegie Mellon University has developed a system that

automates processor design from the behavioral description to the layout- the

CMU-DA System [Hafe78], [Snow78], [Park78], pire81], [Thom83], [Kowa83],

[Hitc83], [Tsen83], [Walk83]. It differs from other systems by automating the

highest leveb of design- the microarchitecture. Traditionally, microarchitecture

design has been left to humans. A methodology b needed as the basb of any

design automation system, if processor design b to be fully automated. The CMU

design methodology, as reflected in the design automation system, b reviewed

here.

18

Figure 2.5 b a block diagram of the design automation system. Each block

accepts input in an appropriate form for that block, and generates output of a

form that can be used by the next piece of the system. Except for the optimizer,

the system blocks transform the design from one representation to another. They

therefore correspond to the design leveb of the methodology.

user

specified
choices

- - *

-- *

--*

ISP

Value Trace

Optimizer

Data/Memory
Allocator

Module Binder

Module
Database

«

j,

Control
Allocator

J,

Module Binder
«---

Figure 2.5- CMU-DA System

The architecture and system specifications of the processor are originally

specified in the ISP hardware description language. Due to the structure of thb

language, the ISP description of the processor will imply certain structures in the

microarchitecture. For example, temporary regbters can be specified in an ISP

description. Thb implies the same temporaries in the microarchitecture, although

there might be microarchitectures that do not need the specified temporaries.

The first block in the CMU-DA system converts the ISP description to a data

flow representation- the value trace. Thb translation removes artifacts of the ISP

19

language such as temporaries, data dependencies, and implied control sequences.

The value trace b a more general representation than the ISP description. The

value trace may then be optimized to improve the speed or cost of the processor

and eliminate inefficiency. The optimizer output b an optimized value trace.

The allocators generate regbter transfer structures. The datapath structure

b generated by the data/memory allocator. The control allocator generates a

register transfer representation of the control section. These regbter transfer

structures specify the physical blocks - modules - and their interconnections.

The module database contains a library of circuits, their layouts and

characterbtics such as speed, size, power, and cost. The module binders select

circuits from thb database according to the requirements passed down by the

allocators.

The blocks of the CMU-DA system may be grouped into design leveb

according to their output representations (Table 2.1). The ISP description and

module database provide input data to the design system.

Design Level CMU-DA Block

1 Value Trace

Optimizer

Output

Value Trace

2 Data/Memory Allocator Regbter Transfer

Control Allocator Structure

Module Binder

External Inputs ISP

Module Database

Layout

Table 2.1- CMU-DA Design Leveb

20

Thb methodology provides for analysb and optimization within each level.

Inputs for optimization come from requirements of higher leveb or from human

intervention. Thb does not rule out feedback from lower leveb. However, there

are no formal guidelines for it. Feedback from any of the lower leveb can be

carried out through human interaction with the system.

At the highest level, the value trace may be optimized for speed or cost

improvements and to avoid inefficiency. The optimizer works with the existing
value trace and optimizes according to the users specifications. The user may

look at the results and try another optimizing criteria if the results are not

satisfactory.

At the allocator level the user may choose the style for the datapath and

control sections. Control may be microcode or PLA based. Styles for the

datapath are dbtributed (highly parallel), bus oriented, and pipelined. Again

21

tradeoffs are made by trying the options and choosing the best.

Higher leveb pass a regbter transfer description and desired module
characterbtics to the module binder. Optimization occurs at the module binder

level as circuits are chosen from the module database on the basb of their

required speed, size, power, and cost as well as their function.

In Figure 2.5 the dashed lines indicate inputs for optimizations. These inputs

are all external - either user generated or from the module database. As just

described, the user can specify optimizing criteria to the optimizer and design

styles to the allocators. The module database provides information on the speed,

size, power, and cost of each module so that the module binder can choose the

best module. Optimization inputs for a given level do not formally come from

any lower design leveb. Optimization occurs within a given level in response to

requirements from higher leveb, external inputs, and choices by the user.

6. Bell Laboratories- Bellmac-32 Techniques

The design methods used by Bell Laboratories in their Bellmac-32 processor

project were distinguished in two significant ways [Murp81], [Kang82], [Murp83]:

1. Simultaneous design at all leveb

2. Explicit feedback from lower design leveb to higher leveb during design

Thb project abo explicitly defined the structural hierarchy of the processor

(Figure 2.6). The highest level of thb hierarchy was the chip level, with

approximately 100,000 transbtors. The chip was divided into macroblocks of

about 10,000 transbtors each. The macroblocks were then subdivided into 1,000

transbtor superblocks. At the lowest level of the structural hierarchy were the

blocks with about 100 transbtors each.

22

fhijfrv "100K transbtors

LacroblockX ~10K transistors

1000 transbtors

100 transbtors

Figure 2.6- Bellmac-32 Structural Hierarchy

Design leveb of thb project were the system, architecture, logic, and layout

leveb. Unlike the Mead-Conway and CMU-DA design styles that emphasized

topdown approaches, all design leveb were worked on simultaneously in the

Bellmac-32 project. The result of thb was that information from the lower design

leveb was available early in the design process. Decbions at the higher leveb

were made with information available from the lower design leveb.

Figure 2.7 illustrates the design process that included timing considerations.

Design at the architecture level defined the superblocks, their function, and

input/output specifications. It abo generated a floorplan and the netlbt for

suberblock interconnections. The logic level continued with the design of the

superblocks. Meanwhile the inter-superblock routing was laid out on the

floorplan. Inter-superblock routing capacitances were calculated from thb layout

and used in a first cut at the timing analysb of the processor. Thb provided

feedback to the system designers. Concurrently, logic, layout, and timing analysis

of the blocks was abo carried out.

inter-
superblock

routing
capacitances

system

^ t_

M first cut at
system timing

architecture

superblocks superblock

logic

esign
tiing
ition

netlist
and

" block d
and tin
verifica

11

floorplan

lavout**»j

23

Figure 2.7- Bellmac-32 Design Process with Timing Considerations

As can be seen in Figure 2.7, the arrows of the design process not only point

from the higher leveb to the lower leveb. They abo point from the lower leveb

to the higher. The Bellmac-32 design process sets explicit guidelines for feedback

of lower level information into design decbions at the higher leveb. Thb feedback

from the lower design leveb to the higher ones, can abo be done for other

characterbtics such as area and power.

7. IBM- Philo VLSI Design System

IBM's Philo design system b used in their master image designs [Donz82],

[Ahdo83]. Master image designs emphasize both regularity and flexibility. Chip

size for these designs b fixed. The chip b organized into a regular array of cell

locations. Power buses and other routing are abo fixed. Circuits are composed of

cells and macros. The cells occupy one or two adjacent cell locations. A macro is

any circuit that requires more than 2 cell locations. PLAs and RAMs are two

types of macros. Layout complexity b reduced by this regularity.

24

The Philo design system provides for logic design and layout. System

behavior and architecture are outside the realm of this tool set. Layout b

accomplbhed in two steps - placement and routing. Figure 2.8 shows the design

leveb and their interactions. Design proceeds in a top down manner with timing

simulation at each level. Thb timing simulation uses information from the lowest

level - the wiring level.

i _;logic
average

i '

wire delay

placement «1 wire delay

i '

estimate
based on
dbtance
between
points

wiring

Figure 2.8- Philo Design Process with Timing Considerations

Design starts at the logic level. Accurate estimates of the wire lengths and
loads are not available so an average delay b assumed. Thb average delay b

based on characterization of the master image process. Using this rough estimate

gross timing errors can be avoided.

After the logic has been verified, the cells and macros are placed onto the

grid. After placement, the lengths of the wires may be estimated from the
dbtances between their terminations. A more accurate estimate of routing delays

than the logic level estimate, b now available based on thb wire length estimate.
Timing simulation at the placement level uses this refined wire delay estimate.

25

Design then moves to the wiring level. All interconnects are now routed and

the actual length of each wire becomes known. Wire delays can now be

accurately estimated from the actual wire lengths. Timing simulation b done

once again with even greater accuracy now. Thus, the Philo design system has

provided a formal method for feedback of delay information, from the lowest

design level - wiring - to the highest level of the design system - the logic level.

8. Summary

These are four design styles that portray many of the concepts and

approaches that are characterbtic of VLSI design methodologies. The four key

bsues of VLSI design are addressed by each of them. All of them rely heavily on

computer aided design - CAD - toob to address these issues. Many CAD toob

exbt to aid in the synthesb, verification, and analysb of VLSI designs. Synthesb

toob include such things as layout editors, placement toob, and routers to name a

few. Logic verifiers, timing verifiers, and design rule checkers are just a few of the

verification toob that are available. Examples of analysb toob are timing

simulators and toob for power estimation. CAD toob can do much of the tedious,

time consuming work of processor design. Thus, the bsue of the time investment

needed to realize a VLSI processor b directly answered by the development of

CAD tools.

The bsue of correctness can be answered in more than one way. Correctness

must be verified at all leveb and between the leveb. One approach b to develop

CAD toob that can check the correctness of these complex chips. For example,

design rule checkers check the layout level for design rule violations. The layout

may be checked against the logic by extracting the layout and then using a

transbtor level logic simulator on the extracted layout. A second approach b to

develop toob that synthesize a lower level from a higher level description. Rules

26

for correctness are built into the synthesizer. In thb way the lower level

representation b correct by definition (assuming a correct higher level description)

if it can be synthesized.

These four design styles all depend on hierarchies. As previously dbcussed,

hierarchy b very important in dealing with the complexity issue of VLSI design.

It provides an organized way of viewing the complex problem. The efficiency of

many CAD toob b abo based on hierarchical organization.

Perhaps the least understood of the key issues b optimality. The four

examples of design styles emphasize optimality to varying degrees. They ranged

from mentioning iteration as a way to optimize, to providing analysb toob that

could be used to calculate and improve optimality at specified places in the design

process. Analysb toob help evaluate the optimality of a design but an

understanding of relationships between the many aspects of a design b needed to

be able to optimize efficiently. The optimizer of the CMU-DA system b an

example of a CAD tool that has incorporated some understanding of these

relationships. Another approach to optimality b to cut design time, through the

use of CAD toob. With a shorter design cycle multiple alternatives can be tried

and evaluated. The best one b then chosen and fabricated.

The experience of participating in all leveb of the SOAR processor design

provided valuable insight into the many interrelationships between design leveb.

Thb thesb outlines the interrelationships between the various design leveb.

These interrelationships are numerous and have many causes. Thb b another

source of the complexity in VLSI design. The effects of tradeoffs may be predicted

from an understanding of these interrelationships. Many of these

interrelationships are influences of lower design leveb on the higher leveb. Thb

thesb presents guidelines for incorporating these bottom up influences into the

design process. Thb can lead to increased optimality in a shorter design time.

27

9. References

[Ahdo83] Ahdoot, K.; Alvarodiaz, R.; Crawley, L.; 'IBM FSD VLSI Chip Design
Methodology*, Proceedings of the 20th Design Automation Conference, Miami
Beach, Fla., June 1083.

Gire81] Director, S.; Parker, A.; Siewiorek, D.; Thomas, IX: 'A Design
ethodology and Computer Aids for Digital VLSI Systems*, IEEE Trans, on

Circuits and Systems, V.28, N.7, July 1081.

E>onz82] Donze, R.; Jenkins, M.; Sanders, J.; Sporzynski, G.; 'Philo- A VLSI
esign System', Proceedings of the 19th Design Automation Conference, Las

Vegas, June 1982.

[Hafe78] Hafer, L.; Parker, A.; 'Regbter-Transfer Level Digital Design
Automation: The Allocation Process*, Proceedings of the 15th Design Automation
Conference, 1978.

JHitc83l Hitchcock, C; Thomas, D.; *A Method of Automatic Datapath Synthesb',
Proceedings of the 20th Design Automation Conference, Miami Beach, Fla., June
1983.

[Joha81] Johannsen, D. L.; 'Silicon Compilation*, PhD. Thesb, Dept. ofComputer
Science, T.R. 4530, California Institute ofTechnology, Pasadena, Ca., 1981.

[Kang82] Kang, S.; Krambeck, R.; Law, H.; Lopez, A.; 'Gate Matrix Layout of
Random Control Logic in a 32bit CMOS CPU Chip Adaptable to Evolving Logic
Design*, Proceedings of the 19th Design Automation Conference, Las Vegas, June
1982.

JKowa83] Kowalski, T.; Thomas, D.; 'The VLSI Design Automation Assbtant:
Prototype System', Proceedings of the 20th Design Automation Conference,
Miami Beach, Fla., June 1983.

[LaPo83] LaPotin, D.; Nassif, S.; Rajan, J.; Bushnell, M.; Nestor, J.; 'DIF: A
Framework for VLSI Multi-Level Representation', T.R. CMUCAD-83-20,
Carnegie Mellon University, Pittsburgh, Pa., Nov. 1983.

[Mead80] Mead, C; Conway, L.; 'Introduction to VLSI Systems*, Addbon/-Wesley
Publbhing Co., Reading, Ma., 1980.

[Murp811 Murphy, B.; Thomas, L.; Molinelli, J.; Edwards, R.; 'A CMOS 32-bit
Single Cnip Microprocessor*, International Solid State Circuits Conference Digest,
V; Feb. 1981.

[Murp83] Murphy, B. T.; 'Microcomputers: Trends, Technologies, and Design
Strategies*, IEEE Journal of Solid State Circuits, V.18, N.3, June 1983.

§:>ark79] Parker, A.; Thomas, D.; Siewiorek, D.; 'The CMU Design Automation
ystem: An Example of Automated Data Path Design*, Proceedings of the 16th

Design Automation Conference, 1979.

[Snow78] Snow, E.; Siewiorek, D.; Thomas, D.; 'A Technology - Relative
Computer Aided Design System: Abstract Representations, Transformations, and

28

Design Tradeoffs*, Proceedings of the 15th Design Automation Conference, 1978.

Thom83] Thomas, D.; Nestor, J.; 'Defining and Implementing a Multilevel Design
Representation with Simulation Applications*, IEEE Trans, on Computer Aided

Design, V.2, N.3, July 1983.

JTrim81] Trimberger, S.; Rowson, J.; Lang, C; Gray, J.; 'A Structured Design
Methodology and Associated Software Toob', IEEE Trans, on Circuits and
Systems, V.28, N.7, July 1981.

[Tsen83] Tseng, C; Siewiorek, D.; 'Facet: A Procedure for the Automated
Synthesis of Digital Systems*, Proceedings of the 20th Design Automation
Conference, Miami Beach, Fla., June 1983.

[Walk83] Walker, R.; Thomas, D.; 'Behavioral Level Transformation in the
CMU-DA System*, Proceedings of the 20th Design Automation Conference,
Miami Beach, Fla., June 1983.

29

Chapter 3

Design Levels

The concept of design leveb and hierarchy was reviewed in Chapter 2. Two

types of hierarchies were defined - the abstraction and structural hierarchies.
Both types of hierarchy are composed of leveb. Design leveb as defined in thb

thesis, correspond to the leveb of the abstraction hierarchy. The are

dbtingubhed by:

1. The type of problem addressed

2. Processor representation

3. The way that processor characterbtics are analyzed

Leveb of a structural hierarchy are defined by the. amount of detail that they

contain. Structural hierarchies exbt within the design leveb.

Leveb are defined so that the initial complex design problem b broken into

many smaller, simpler problems. Ideally, each smaller problem would be entirely

self contained. Solutions to other problems would not influence thb isolated

problem. In practice this b not possible. To complete the design, solutions to all

of the small problems are needed. These solutions affect each other and tradeoffs

must be made. Although the smaller problems can not be entirely self contained,

a judicious choice of leveb can minimize the influences of other levels on a given

level. Thb does not mean that tradeoffs are ignored. It simply means that the

leveb are organized so that the majority of considerations, decisions, and tradeoffs

occur within a level - not across levels.

Leveb of an abstraction hierarchy have different representations for the same

structure. For example, at the higher leveb a processor may be represented by a

behavioral description written in an algorithmic language. At lower leveb the

same processor might be represented by logic diagrams or transbtor schematics.

Each representation provides a unique view of the overall problem that leads to a

30

solution to some aspect of the original problem.

A consequence of these different representations b that processor

characterbtics are analyzed differently at the different leveb. For example, the

speed of a processor may be characterized by the number of instructions needed

to run a benchmark at the higher leveb. At a lower level it might be

characterized by the number ofgate delays in a given circuit block.

Thb thesb proposes five major design leveb that a VLSI processor design can

be partitioned into. Each level requires certain types of information as inputs to

it. Design strategies are then formulated and decbions are made based on these

inputs. Thb results in outputs from the given level. These outputs may be used
as inputs to other leveb. Level inputs may abo be predetermined by factors

outside the scope of the processor design. Design at any level satbfies the inputs

for that level and results in outputs that affect other leveb. The five design leveb

are:

Microarchitecture

Functional Block

Circuit

Interconnect

Process

1. Microarchitecture Level

The highest level of processor design b the microarchitecture level. One set

of external inputs to the microarchitecture b the architecture (Figure 3.1). This

includes data types, word size, addressing modes, the instruction set, register

organization, operations to be performed, and internally generated exceptions and
trapping conditions. The system that the processor b to be a part of also places

31

restrictions and requirements on the processor. Interfaces between the processor

and other parts of the system determine processor behavior. System requirements

include such things as timing specifications at the pins, bus protocob, coprocessor

protocob, memory and I/O configurations, external interrupts, package, power

budget, and test methods.

architecture
system specifications
available circuits
interconnect schemes
critical paths
power/block
area/block

micro

architecture

Figure 3.1- Microarchitecture Level

•desired functions
.desired interconnect

characteristics

•desired critical paths
•desired area/block
•desired power/block

Another set of inputs to the microarchitecture level are the circuits that are

available for use in the design. Various characterbtics, such as speed, area, and

power, of these circuits are important to the microarchitecture design. The

available circuits and their characterbtics are matched to the architecture and

system requirements through the proposed microarchitecture.

Possible interconnect schemes are another input to the design at the

microarchitecture level. Thb includes the number and configuration of data

busses, dbtribution of control lines, and communication between various

subsystems within the processor. Interconnect schemes are usually expressed in a

floorplan of the processor.

The critical paths that exist on a processor are abo important to the

microarchitecture. Once a microarchitecture b proposed, the critical paths can be

estimated from an analysb of design at the lower leveb: process, circuit,

interconnect, and functional, block leveb. The proposed microarchitecture can

32

then be analyzed, using the critical paths, to see if it will meet the system

specification inputs. Thb can result in further design of the microarchitecture or

aviable comprombe of the system specifications. Similarly, the power and area of

each functional block b abo an input to the microarchitecture level. These may

abo be determined by analysis at the lower leveb. They can then be totaled to

arrive at an estimate of the processor size and power. These estimates are then

compared with the system specifications to determine if further optimization b

needed.

Given these inputs, design alternatives for the microarchitecture are proposed

and analyzed. Design decbions concerning high level implementation bsues are
made. The choice of the microarchitecture should not be vbible to the

programmer or system designer. There are two major problems to be be solved
during microarchitecture design. First, the functions that the processor must
perform are identified. The instruction set and system specifications determine
the basic functions of the processor. Secondly, the coordination - timing - of the

blocks that perform these functions, must be specified. Good timing leads to
correct and efficient execution of instructions. Examples of design at the

microarchitecture level are parallelbm, pipeline design, the use of microcode,

resources needed and their allocation, and interrupt and trapping mechanbms.

Given a proposed microarchitecture, an important question b: How good b
it? Typical characterbtics that are analyzed to answer thb question, are speed,
power, and area. As previously dbcussed, the yardstick for measuring any
characteristic depends on the design level being analyzed. At the architecture and
system level, the number of instructions needed to complete ajob using agiven
instruction set, b a measure of the speed of the architecture. The number of
clock cycles needed for each instruction type b abo ameasure of the system and
architecture speed if system factors influence thb number. For example, if a

33

single instruction b to do eight loads, the memory speed will influence the number
of cycles needed to complete thb instruction. The number of clock
cycles/instruction can also be a measure of the speed of the microarchitecture.
For example, in amicrocoded machine each instruction b typically implemented
with a series of single cycle microinstructions. The number of microinstructions

needed for a given instruction determines the number of cycles required for that

instruction. Cycles are typically split into phases and processor activities are

assigned to each phase during microarchitecture design. Therefore, a second

measure of microarchitecture speed b the number of clock phases in each cycle.

The total cycle time b the sum of the individual phase lengths. Thb leads to a

third criteria for processor speed evaluation at the microarchitecture level: phase

lengths. At the microarchitecture level, the processor activities assigned to each

phase determine the phase length and are therefore the third measure ofspeed.

Power evaluation at the architecture and system level, b done by

determining the power consumption of each chip in the system. Microarchitecture

design divides a chip into functional blocks. The power budget of each functional

block b the criteria for power analysb at the microarchitecture level.

Similarly, the total processor area b used for the area measurement at the

system level. At the microarchitecture level, the area of each functional block b

important. Further design at the functional block level will divide thb area into

circuit and interconnect areas.

One set of outputs of the microarchitecture design are the desired functions

and their characterbtics. The proposed microarchitecture necessitates various

functions that must be provided for by the lower leveb. The characterbtics of

these functions are abo important to the microarchitecture. For example the

functions* speeds directly affect the timing.

34

Desired interconnect characterbtics are another set of outputs from the

microarchitecture level. Examples of thb are interconnect speed and the number

and types of leveb available. Interconnect speeds partially determine signal

speeds which are important to the processor timing. The number of interconnect

levels affects the interconnect scheme.

The desired critical paths are abo outputs of the microarchitecture design.

These evolve from the system specifications. The system specifications place

timing requirements on the processor. For a proposed microarchitecture, each
signal path will have to operate at a speed that will allow the system
specifications to be met. These speeds are the desired critical paths. When doing
design at lower leveb these critical paths must be taken into consideration.
Similarly, the microarchitecture design may specify the sizes and power budgets of
the individual blocks. Thb b done so that the total power and area of the

processor matches the system requirements.

2. Functional Block Level

Design at the functional block level involves mapping the functional blocks
specified during microarchitecture design, into the circuit blocks that will be used
in the processor layout. As thb b done the function of each circuit block and
their interconnections are determined. Examples of datapath blocks are ALUs,

counters, shifters, latches, various regbters, sign extenders, and comparators.

Typical control blocks are latches, counters, comparators, PLAs, ROMs, and

random logic blocks.

Microarchitecture design assigned processor activities to the clock phases.

Speed analysb at the functional block level determines the time needed to
complete each activity and identifies the major components of thb delay. The
delay of the output signab of an activity b a measure of the time needed for that

35

activity to complete. These signals - critical paths - typically propagate through

circuit blocks and across interconnects. For example, an instruction decode may

start with the propagation of the opcode to a decode PLA. The decode PLA then

determines control line values. These values then travel across other

interconnects to the places where they are used. Decode delay b the sum of these

two interconnect propagation delays and the PLA delay. Thus, the circuit block

and interconnect delays determine the speed of each activity.

The power consumption of each functional block b the sum of the power

dissipated in its circuit blocks and interconnects. Circuit blocks consume both

d.c. and a.c. power. The interconnects require a.c. power according to their

capacitive load and clock rate. Thus, power dissipation at the functional block

level, b the sum of the power consumed by the individual circuit blocks and

interconnects.

Functional block area b abo the sum of the areas of the circuit blocks and

interconnects. Therefore, circuit block and interconnect areas are of concern for

area analysb at the functional block level.

The first inputs to the functional block design level are the desired functions

of the processor (Figure 3.2). These desired functions are specified at the design

level above the functional block level - the microarchitecture level. Design at the

functional block level assigns these functions to the circuit blocks.

desired functions
desired critical paths,
internal block delay .
interblock delay
desired area/block _
circuit block area
interconnect area
desired power/block-
circuit block power.
interconnect loads

functional
block

Figure 3.2- Functional Block Level

36

_^netlist
^desired functions
^critical paths

_^area/block
_^power/block

Another set of inputs to the functional block level are the desired critical

paths of the processor. When doing timing analysb, these desired critical paths

are compared to the predicted critical paths of the proposed functional block

organization. The predicted critical paths are arrived at by considering the

internal delays of each block and the delays between blocks, the interblock delays.

Therefore, to dd thb type of analysb of the functional block design, the internal

block delays and interblock delays must be inputs to the functional block design

level.

Similarly, the desired areas and power budgets of the functional blocks are

inputs to the functional block level. These are compared to the predicted areas

and power budgets. To predict the area, the circuit block sizes and interconnect

areas are needed. These are therefore inputs to the functional block level. A

power estimate for the processor requires the power dissipation of the individual

circuit blocks and interconnect loads to be an input to the functional block level.

The circuit blocks consume both d.c. and a.c. power while the interconnects

require a.c. power according to their loads and the clock rate.

One output of the functional block design b anetlbt. Knowing the functions

that are in each block and how they relate to each other, leads to a complete

37

netlbt for the processor. Typically, the netlbt will contain some nets that may

limit processor speed. These critical nets are identified in the complete netlbt.

Another set of outputs are the desired functions of the circuits in each circuit

block. These desired functions and their characteristics are passed to the circuit

design level for realization.

Analysb of the functional block design results in estimated critical paths for

the proposed design. These critical path outputs are compared with the desired

critical path inputs. Based on these comparbons, optimization and redesign of the

functional block scheme b carried out. Analysb abo provides estimates of the

area and power consumption of the functional blocks. These estimates are

compared with the desired areas and power budgets. Redesign b then done if

necessary.

3. Circuit Level

Circuit level design results in a layout realization of the circuit blocks. Thb

includes the logic design of each block. The logic design b then transformed into

a gate level design. From the gate level description a transbtor level design b

specified. The transbtor level schematics are the basb for the actual layouts of

the functional blocks. The logic, gate, transbtor, and layout representations are

subleveb of the circuit level in thb methodology. It b not uncommon for these

subleveb to be dbtinct design leveb in other methodologies [Thom83].

Speed analysb at the circuit level determines the speed of each circuit block.

Thb may be done in a series of steps according to the subleveb. First, the circuit

block speed may be expressed in terms of a number of logic block delays. Each

logic block delay b the sum of the gate delays within that logic block. Gate

delays are determined by the speeds of the transbtors that make up the gate and

the loads that they must drive. Finally, layout parasitics can be included in the

38

gate delay analysb.

The concern of power analysb at the circuit level b the power consumption

of each circuit block. Thb may abo be analyzed according to the subleveb.

Power dbsipation of the logic blocks and gates can be determined. At the

transbtor sublevel, the transbtor sizes determine power consumption.

Similarly, area analysis at the circuit level determines the area of each circuit

block. Area may be evaluated at each of the subleveb abo. The circuit block

area can be estimated from the number of logic blocks that it contains. The size

of each logic block b determined by it gate count. Gate size is determined by the

number of transbtors in each gate. Transbtor sizes are found by consulting the

layout.

Inputs to the circuit level come from all other leveb (Figure 3.3). The

process level specifies the available devices, layers, and their parameters. These

will partially determine the types of circuits that are used and their speeds. The

process also specifies the design rules for the circuit design. These are used by the

layout sublevel and influence the area and geometry of the circuits.

available parameters,
layers, aW devices

design rules
desired function

desired area and
geometry

desired port placement

loads —

Figure 3.3- Circuit Level

^available circuits
.^internal block delays

.circuit block power

^area, geometry
_^port placement
_^loads

•desired parameters,
layers, ana devices

39

Another important set of inputs to the circuit level are the desired functions

of the circuits and their characterbtics. Custom circuit design proceeds according

to the desired circuit functions. Cell libraries can be built for popular functions.

Circuit design attempts to satbfy the desired function and its characteristics for

each circuit block. If thb can not be done comprombes are made at other levels.

Other inputs to the circuit design are the desired areas and geometries of

each circuit block. The interconnect scheme leaves empty areas that the circuit

blocks must fit into. The order of interconnect wires will abo affect the

placement of the terminals for each circuit block. Loading due to interconnects

and other circuit blocks at their terminations, b another input to circuit design.

Circuits must be designed to drive these loads at the speeds as specified by the

desired function input.

Outputs from the circuit level are used by all other leveb abo. Circuit

design will result in a lbt of circuits that are available for use in the processor and

their characterbtics. A knowledge of these b important to the higher design

leveb.
0

The internal delays of each circuit block b another output of circuit design.

These delays are used in critical path analysb at the functional block level. The

power consumption output is used to predict the total power required by the

processor.

The area and geometry of circuit blocks b another output of circuit design.

The circuit block areas are used by the functional block level to estimate the

processor size. Interconnects must be routed around the circuit blocks and

therefore use the area and geometry output of circuit design. The port placement

on each circuit block b another output of circuit design used by the interconnect

design.

40

Another set of outputs are the loads of the input ports of each circuit block.

Loads must be taken into consideration when designing other circuit blocks and

their interconnects.

A final output b a set of desired parameters, layers, and devices. To meet

certain aspects, such as speed or power, of the desired function input, various

process parameters, layers, and devices are important.

4. Interconnect Level

Communication between the circuit blocks of a processor b accomplbhed

through the interconnects of the processor. Interconnects connect the circuit
block inputs and outputs according to the scheme that was proposed by the

functional block design level. Design at the interconnect level results in a layout

realization of all required interconnects.

Speed analysb at the interconnect level b concerned with interconnect

delays. Power analysis estimates the a.c. power required to drive the interconnect

load at the given clock rate. Interconnect areas are abo determined by analysis at

the interconnect level.

The interconnect level also has inputs from all other levels (Figure 3.4). One

important characteristic of the interconnects b the area that they occupy. The
circuit blocks have certain sizes and geometries, and the interconnects must fit

around them. Thus, one set of inputs to interconnect design are the sizes and

geometries of the circuit blocks. The design rules are another input to the
interconnect level. The dimensions specified for interconnect levels by the design

rules, are a major factor in determining the area occupied by the interconnects.

The available layers for the interconnects are another set of inputs to thb level

that will affect their area.

desired area, geometry,

design rules
available parameters

and layers

loads __

netlbt

desired interconnect
characteristics

desired port placement

Figure 3.4- Interconnect Level

41

^desired parameters
and layers

^available interconnect
^ schemes

_^loads
.^interblock delay
_^area, geometry
_^port placement

Speed b another important characterbtic of the interconnections. Their

speed b affected by such things as the resbtance and capacitance of the

interconnect layers. Therefore, the process parameters must be an input to the

interconnect design. Another input that will affect the speed of the connection, b

the load at the termination of the connection. Thb load partially limits the

maximum speed of the interconnect.

The netlbt for the processor b another input to the interconnect level. The

netlbt specifies all terminab that are to be connected together. Another set of

inputs are the desired characterbtics of the interconnects. Design at the higher

leveb may benefit if various characterbtics are available. The placement of the

ports to the circuit blocks is another input to the interconnect design. Ideally, the

order of the ports should match the order of the interconnect lines.

Outputs of the interconnect level are used by all other levels. From a

knowledge of the higher design leveb, the interconnect level may generate an

output of desired process parameters and layers. The interconnect design level

also generates a set of available interconnect schemes for use by the higher leveb.

It does thb from inputs that were generated by lower teveb. Examples of things

that affect interconnect schemes are double level metal and silicides.

42

Another set of outputs are the loads of the interconnects. The circuit blocks

must have the capability to drive the interconnect loads at the desired speeds.

Interconnect loading abo contributes to the a.c. power consumption of the

processor.

The interblock delay b another output. It b used to analyze the speed of a

proposed functional block design.

The area and geometry are other outputs of the interconnect level.

Interconnects can occupy a significant area. Thb must be taken into

consideration when estimating the chip size. The interconnect area and geometry

output b abo used when doing layout of the circuit blocks in order to leave a

minimum of wasted space.

Port placement b another output. A comprombe between the optimum port

placement for the circuit design and the interconnect design must be arrived at.

5. Process Level

The fifth and lowest major level b the process level. Design at the process

level consbts of using the available processing techniques to produce devices,

parameters and layers that are desired by the higher leveb. The available
processing techniques are inputs to the process level (Figure 3.5). They are

determined by technology - not by any of the other design leveb. Other inputs

are the desired devices, parameters, and layers. These are requested by the

higher design leveb and the process level attempts to satbfy these requests.

processing techniques
desired parameters,.

layers, and devices

43

^available parameters,
^^ layers, atd devices

•design rules

Figure 3.5- Process Level

Process design determines the available devices and their parameters.

Devices of an MOS technology may include both NMOS and PMOS enhancement

and depletion transbtors. Examples of device parameters are the threshold
voltages and transconductances of all available transbtor types. Process design

abo specifies the available layers and their parameters. Another important output

b the design rule set for the process. Thb specifies the minimum feature sizes for

all layers.

At the process level, process parameters that affect speed are the focus of

speed analysb. Examples of these for an MOS process are transconductances,

oxide thickness, diffusion capacitances, and resbtivities. Process parameters abo

determine power dissipation. Threshold voltages, transconductances, and

capacitances are examples of parameters that influence power dbsipation for an
NMOS process. Area analysb concentrates on the design rules, at the process

level.

6. Interrelationship Overview

Many tradeoffs have to be considered during the design of a VLSI processor.

Thb can be seen from an examination of the inputs and outputs for each level. A

few inputs - processor architecture, system specifications, and processing

techniques are not usually dependent on design activities of the five leveb. The

definition and specification of these inputs is primarily independent of the

44

processor design. Compromises in these inputs, might arbe due to processor

design but they are basically determined outside of the scope of the processor

design.

The vast majority ofthe inputs to the various design leveb, can be outputs of

other leveb. Thb means that design at any given level depends on the design at

other leveb. Thb b the source of the many tradeoffs and complexities that exbt

in VLSI design. Figure 3.6 shows thb interdependence of leveb according to the

previously described inputs and outputs for each level. Some leveb - circuit and
interconnect leveb - have inputs from all other leveb and outputs that affect all

other leveb. Even the level with the fewest relationships to other leveb, the

process level, has inputs from two of the other four leveb, and outputs that affect
two other leveb. One definition of an ideal design, b a design that b optimized

based on all possible level interrelationships and tradeoffs.

available
circuits

desire^
paramete

devices,
layers

architecture,
system specifications

processing techniques

desired critical paths,
area/block, power/block

critical paths,
area/block, power/block

available
erconnect

desired Nschemes
character

btics

desired
rameters,

layers

Figure 3.6- Overall Flow Diagram

45

6.1. External Inputs

Design b easiest when outputs of a design level are based only on external

fixed inputs to that level. When thb b the case, design b done for the given set

of inputs or range of inputs. Values for these inputs which depend on the design

46

itself, do not need to be considered. Using an analogy to a function y=f(x), it b

much easier to determine y for one specific value or range of values for x, than for

x which depend, in some complicated way, on the given inputs and possibly y

itself (Figure 3.7). However, thb simple dependence of outputs on external inputs,

is not the situation for any of the outputs in a full custom design. The only leveb

where thb might be the case because they do have external inputs, are the

microarchitecture and process levels (Figure 3.8). However, these leveb abo have

inputs from other design leveb. All outputs from these two levels are functions of

both the external inputs and the inputs from other design leveb. Thus, the

situation for these leveb, b analogous to y=f(x,z), where x b the set of given

external inputs and z b the set of internal inputs that relate to x in some

complicated way through the other design leveb.

externa inputs
x

easier

external inputs

harder

Figure 3.7- y=f(x)

architecture,
system specifications

x-external inputs

S
micro

archi

tecture A-internal
inputs

outputs available circuits,
available interconnect
schemes, critical paths,
power/block, area/block

processing technology

x-external inputs

z-internal
inputs

47

outputs desired parameters,
layers and devices

Figure 3.8- y=f(x,z)

Thus, it can be seen that if more inputs to the various design leveb are

externally specified, instead of being dependent upon other design leveb, fewer

options and tradeoffs will exbt and design will be easier. However, performance

of the final design might suffer since there b less room for optimization. So thb b

not the final goal; only a way to understand how to make design easier.

The first set of inputs that may realbtically be reclassified as external, are

the outputs of the process level. In many design situations the process design b

totally independent of circuit design (Figure 3.9). The process level outputs -

design rules and available parameters, devices, and layers, that are inputs to the

circuit and interconnect leveb, are now externally defined inputs. Any outputs

from other leveb that were inputs to the process level are now irrelevant. These

were the desired parameters, devices, and layers. There are now fewer tradeoffs

and options to be considered in the processor design. The circuit and

interconnect leveb now have externally defined inputs. However, both the circuit

and interconnect leveb still have many internally generated inputs. The outputs

of these two leveb - available circuits, circuit block areas, interconnect area,

loads, circuit block power, circuit block delays, interblock delays, and available

48

interconnect schemes, do not depend solely on the external inputs. The internally

generated inputs influence all of these outputs to some extent. Thus, design b

still difficult because there are no outputs that depend solely on external inputs.

available
circuits

architecture,
system specifications

design rules, available
parameters, layers, and devices

desired critical paths,
area/block, power/block

critical paths,
area/block, power/block

available
erconnect

desired \schemes
character

btics

design rules,1 available
parameters and layers

Figure 3.9- Flow Diagram- Predetermined Process

The standard cell design approach b popular in many design situations.

Standard cell designs are based on a library of circuit celb that have been

previously designed and characterized. The amount of circuitry within each cell

depends upon the library under consideration. Typical celb are ALU bit slices,

regbter celb, latch celb, counter celb, and various types of drivers. Circuit blocks

are things such as ALUs, counters, shifters, regbters, latches, PLAs, and ROMs.

49

They are each typically made of several celb from a cell library. Thus, circuit
block design exbts in the standard cell approach but the available circuits are

now an external input (Figure 3.10). The possible ways in which to realize the

desired function blocks are limited by the variety of celb in the Ubrary. Quite

often there might be just one way that b clearly better than all other ways, to

realize a desired block. Previously, the size, geometries, and port placement for

the circuit blocks, were both inputs and outputs of the circuit design.

Compromise between the interconnect and circuit design determined these

characterbtics. With standard cells, the size, geometries, and port placement are

determined primarily by the circuits. They are fixed according to the standard

cells. Therefore, interconnect design b constrained. Size, geometry, and port

placement are no longer internal inputs to the circuit design level. Loads due to

other circuit blocks abo become external inputs, since they are determined by

input loads of the standard celb. Thus, in standard cell design, design at the

circuit level exbts but can be far less involved than in a fully custom design. The

circuit level design b left with two inputs - desired function and loads, which

depend on other leveb. All other inputs are now defined outside the scope of

processor design for the circuit level. The microarchitecture level has abo been

simplified. It only has one input, available interconnect schemes, that b an

output of another level. Limiting the number of inputs that depend on other

leveb of a design b analogous to reducing the number of inputs, z, which are

complicated functions of the given inputs, x, and possibly the output, y, in the

example y=f(x,z).

architecture,
system specifications

available
circuits

available circuits,
size, geometry, port

placement, loads

50

desired critical paths,
area/block, power/block

critical paths,
area/block, power/block

available
interconnect

desired Nschemes
character

istics

design rules, available
parameters and layers

Figure 3.10- Flow Diagram- Standard Cell Design

6.2. Iteration

Although with the standard cell approach, the internal inputs have been

limited, especially for the circuit and microarchitecture leveb, there are still
situations in which design at a given level depends in some way on design that has

already been done at that level. For example, design at the functional block level
depends on interblock delays which are an output of interconnect design. But
interconnect design depends on functional block design through the netlbt. Thb
b analogous to y=f(x,z) but x=g(y,w) (Figure 3.11). These situations can be

51

found by identifying closed loops in the design flow diagram. When closed loops

exbt in the design flow, iteration b necessary to arrive at an optimal design. By

eliminating process design from the processor design cycle, and using standard

cells, design options and therefore, performance has been limited. Even with

these limitations, iteration b still needed as shown by the remaining closed loops.

Custom design was characterized by fewer fixed inputs and more closed loops.

internal block delays
desired functions,
desired critical paths"
desired power/block
desired area/block

desired characterbtics
sizes, geometry, port
placement, loads,
design rules, available
parameters and layers

Figure 3.11- Iteration

interblock
delay

The indirect dependency of design decbions at a given level, on decbions at

that same level, makes optimal design difficult. These dependencies make

iteration necessary. Iteration takes time which b one symptom of the difficulty.

Any design method whose goal b an optimal design must have a way of dealing

with the closed loops in the design flow diagram.

52

6.3. Unidirectional Design

So far it has been shown that design b easiest when the outputs of the level

under consideration, are determined only by fixed external inputs. However, VLSI

processor design does not fit thb model. The design flow diagram for processor

design b characterized by closed loops that involve two or more leveb. Thb

problem b much harder to solve than the one in which all inputs are external. A
third possibility exbts in which leveb depend on each other but closed loops do
not exbt in the design flow diagram. Thb b analogous to y=f(x) and x=g(z) but

z has no dependence on y (Figure 3.12a). Zmight be an external input. If it b not

itself an external input, it can be traced back to one without revbiting any of the

previously used functions (Figure 3.12b). If no closed loops exist, design at any

given level will not need to be redone due to input changes that were the result of

previous design at that same level. Thus, no iteration b necessary. Design

proceeds in one direction and b always a function of inputs from leveb that are

closer to the external inputs. Thb unidirectional design b more difficult than

design with external inputs only, but easier than design that involves iteration.

53

external inputs

external inputs

external inputs

(a) (b)

Figure 3.12- Unidirectional Design

7. Methodology Implications

Typical design flow diagrams for VLSI processors (Figures 3.6, 3.9, 3.10) all
contain many closed loops that involve two or more leveb. Thb b a source of

complexity and makes optimal design difficult and time consuming. A good
design methodology simplifies the design process while still considering all the

relationships and tradeoffs between the design leveb.

54

The flow diagram may be simplified by breaking it up into many simpler flow

diagrams. Each simpler flow diagram must be considered at least once in order to
complete an optimal design. If all the simpler flow diagrams are superimposed,
the result must be the original complex diagram. If any connections between the

leveb are missing in the superimposed version, then the corresponding

relationships and tradeoffs between the leveb will not be considered in the design.

Depending on the importance of these ignored relationships, some degree of

optimality will be sacrificed.

Ideally, the flow diagram would be split into many diagrams, each having

only one design level and all inputs would be external. As previously dbcussed,

this b the easiest type of design. However, thb type of split will artificially bolate

the design leveb far too much. Some type of split must be found that does not

force the design process into a framework which b so artificial, that optimal

design b obscure. More difficult than design with external inputs only, but easier

than iterative design, b unidirectional design. Whenever possible the simpler flow

diagrams are restricted to have external inputs and unidirectional design only.

There will still be some situations where thb restraint b still too artificial. When

these situations arbe simple loops may be added to the flow diagram. Simple

loops are closed loops that involve the fewest leveb possible - ideally only two.

They abo are as bolated from other parts of the flow diagram as possible.

As the overall flow diagram b split into many diagrams, care must be taken

to ensure that the splits are in some way natural splits. One logical split b the

split between phases of a design. Typical phases are synthesis, analysis, and

optimization. During the synthesis phase, one or many solutions to the design

problem are proposed. Analysb consists of determining various characterbtics,

such as speed, power, and area, for the proposed solutions. Using the results of

analysis and possibly further analysb, fine tuning and elimination of bottlenecks b

55

accomplished. Thb b optimization. Each phase has its own flow diagram which

includes the important relationships and tradeoffs to be considered, for that phase.

The flow diagrams for thb type of split, represent the natural phases of design,

and are also simpler, as previously described, than the original diagram. Design

becomes more manageable due to the splitting of the original problem into many

simpler problems, and remains realbtic by choosing each simpler problem to

correspond to a natural design phase. Thus, time, in the form of design phases b

used to organize an originally complex problem into many simpler problems.

Once the flow diagram has been broken into many simpler diagrams and

each simpler diagram represents a design phase, the diagrams must be considered

in some logical sequence. Information that b needed for a given diagram must be

determined by a previous diagram. For example an analysb diagram must follow

a synthesb diagram. A solution must first be proposed or synthesized, before it

can be analyzed. Thus, the sequence in which the flow diagrams are considered b

determined by the natural order of the design phases.

8. Summary

VLSI processor design can be broken into five major leveb -

microarchitecture, functional block, circuit, interconnect, and process leveb.

These design leveb use various inputs, that may be either defined outside the

scope of processor design - external inputs, or generated by other leveb - internal

inputs. These leveb are dbtingubhed by the problems that they address and the

way that processor characteristics are analyzed (Tables 3.1 and 3.2). Processor

representations abo vary according to the level. Some leveb can have more than

one type of representation or way to analyze the characterbtics. Thb leads to the

definition of subleveb.

Design Level Problems Addressed

Microarchitecture Identify functional blocks

Timing

Functional block Map functional blocks to circuit blocks

Define interconnects

Circuit Circuit block layout

Interconnect Interconnect layout

Process Process development

Table 3.1- Problems Addressed by the Design Leveb

56

Design Level Speed Criteria

Microarchitecture Cycles/instruction

Phases/cycle

Activities/phase

Functional block Delay/activity

Circuit Delay/circuit block

Interconnect Delay/interconnect

Process Process parameters influencing speed

Table 3.2- Speed Analysb According to Design Level

57

Many relationships and tradeoffs exbt between the design leveb, as shown by
the numerous internal inputs. Thb b an important source of the complexity in

VLSI design. Consideration of these design leveb and their interrelationships can
be shown graphically in an overall flow diagram for processor design. Thb total
flow diagram has many complex loops between the leveb, which indicate that
iteration b necessary for optimal design. Simultaneous consideration of all
possible tradeoffs b difficult. Therefore, the total flow diagram b split into many
simpler flow diagrams, each representing adesign phase. The complex loops are
spread over the various flow diagrams by splitting the paths that they are
composed of, between the simpler diagrams. Thus, iteration b minimized within
any given phase. The total required iteration b now spread out in time, over the
different design phases. Iteration b accomplbhed as the designer progresses

through the phases, represented by the simpler flow diagrams. From a practical

58

viewpoint, design b considered to be optimal when no changes are made as the
designer moves through a specified number of phases. Thb design methodology b
a way to organize the inherent iteration due to complex relationships, in processor

design. The iteration and consideration of tradeoffs b organized into some logical
sequence so that an optimal design can be achieved. Overlooking and ignoring

possible tradeoffs b eliminated because all diagrams, when superimposed, must

result in the original complete flow diagram.

9. References

[Thom83l Thomas, D. E.; Nestor, J. A.; 'Defining and Implementing a Multilevel
Design Representation with Simulation Applications', IEEE Transactions on
Computer Aided Design, V.2, N.3, July 1983.

59

Chapter 4

Design Methodology

Design level interrelationships and tradeoffs for VLSI processor design, can be

shown graphically by an overall flow diagram. In order to make the design

problem more manageable, thb overall flow diagram b broken into simpler

diagrams. Each simpler diagram should be associated with a natural design phase

so that design remains realbtic. Three main design phases for VLSI processor

design can be identified as:

Preliminary

Synthesb

Analysb

Just as the design leveb have subleveb, the design phases can have subphases.

Optimization b possibly another phase. However, optimization can be shown to
be composed of sequential synthesb and analysb steps. For thb reason it b not

included in the list of primary phases.

The preliminary phase b the first phase of design. It assumes that the
architecture, system specifications, and processing techniques are known. The
goal of thb phase b to explore possible options for circuits and interconnect

schemes. These options are based on the requirements of the architecture and

system specifications. They are limited by processing technology.

The second major design phase b synthesb. The goal of synthesb b to arrive

at a detailed solution to the design problem. Synthesb steps all contribute to the

transformation of a high level problem into a detailed, low level solution.

Verification b one important subphase of synthesb. Aproposed solution b shown

to correctly answer a problem through verification.

Analysb b a third major phase. It consbts of examining various aspects of

the performance of proposed solutions. Based on performance predictions and any

60

bottlenecks that are observed during analysb, further synthesb might be done.

1. Preliminary

At the start of the preliminary phase, the only things known about the

processor design are the external inputs. These are the processing techniques,

system specifications, and architecture, for a fully custom design. In many design

situations the process b fixed. Therefore, in these situations the available devices,

layers, and process parameters are fixed external inputs. For standard cell design

the circuits available are also external inputs.

The flow diagram for the preliminary phase of a full custom design b shown

in Figure 4.1. It contains loops which means that iteration b possible. There are

two halves to the flow diagram- the microarchitecture, circuit, process side and

the microarchitecture, interconnect, process side. If all possible loops are

considered in thb diagram design things can get complicated. However, the two

sides may be treated independently (Figure 4.2). Solutions for all leveb involved,

can be arrived at for each side and then the two solutions can be compared, for

the process and microarchitecture leveb. If contradictions between the two sets of

solutions for these leveb exbt, compromises must be worked out.

available
circuits

desire^
paramete

devices,
layers

architecture,
system specifications

processing techniques

available
erconnect

chemes

desired
rameters,

layers

Figure 4.1- Preliminary Phase- Full Custom Design

61

architecture,
system specifications

available
circuits

desired
parameters,

devices,
layers

desired
functions

available
parameters,

devices,
layers

processing techniques

architecture,
system specifications

desired
charactei -

btics

available
parameters,

layers

available
interconnect

schemes

desired
parameters,

layers

processing techniques

Figure 4.2- Preliminary Phase Simplification

62

When the process b fixed the flow diagram becomes much simpler (Figure

4.3). There are still two sides, but each side b now only a simple loop involving

only two leveb. Standard cell design would further simplify the preliminary phase

by removing all circuit design from thb phase (Figure 4.4). The circuit loop b

replaced by the external input of the available circuits, and only the interconnect

loop remains.

available
circuits

available
parameters,

devices,
layers

architecture,
system specifications

available
erconnect

chemes

available
parameters,

layers

Figure 4.3- Preliminary Phase- Fixed Process

63

available
circuits

architecture,
system specifications

available
interconnect

desired \schemes
character

btics

available
parameters,

layers

Figure 4.4- Preliminary Phase- Standard Cell Design

64

During the preliminary phase, the architecture and system specifications are
examined to determine various functions that the circuits must provide. Thb b

done most efficiently if various microarchitectures can be considered to determine
how well they will satbfy the architecture and system requirements. A lbt of
circuit functions needed by the most prombing microarchitectures b developed.

Preliminary circuit design can then be carried out so that the necessary circuits
and their characterization are available to the microarchitecture design. Thb b

represented by the available circuits input to the microarchitecture level (Figure
4.1). Examination of the architecture alone reveab the operations that must be

65

performed by the ALUs. System specifications will place requirements on such
things as pad driver circuitry. High level microarchitecture considerations
influence circuit function also. For example pipeline design specifies which tasks

are to be done in parallel. The amount of parallelism dictates the hardware that
will be needed, such as the number and types of ALUs or register ports. Timing
of the various pipeline stages places speed restrictions on the circuits. If
microcode is to be used, ROMs must be designed. These are all examples of ways

in which the microarchitecture influences circuit design in the preliminary phase.

Graphically this is shown in Figures 4.1, 4.2, and 4.3 by the desired functions
arrow, between the microarchitecture and circuit levels.

If the process is open to modification, the circuit designer can request various
parameters and devices that will make his job easier, from the process designer.
This might include such things as substrate bipolar transistors, diodes, various
threshold voltages, or buried contacts, in an MOS process. With these requests in

mind, the process designer uses the processing techniques and equipment that are
available, and informs the circuit designer of the parameters and devices to be
used. Graphically this is shown by the loop between the process and circuit levels

(Figure 4.1).

Using the process parameters and devices that have been provided by the

process level, design at the circuit level tries to accommodate the desired function
input. This results in the output of the available circuits from the circuit level.
These available circuits and their characteristics, such as speed and power, are

used to form a more detailed microarchitecture design.

A similar set of loops exists for interconnect design in the preliminary phase

(Figure 4.1). The interrelationships between the microarchitecture and
interconnect levels are not as apparent as those between the circuit and

microarchitecture levels. They do exist though, and should therefore be

66

considered for a truly optimal design. An example of this relationship is the

amount of communication between various subsystems of a processor. The

desired speed of this communication is another example. These considerations

might cause the interconnect designer to request extra interconnect layers and/or

interconnect layers with low resistance and capacitance, from the process.

Just as the process accommodated the circuit designer requests whenever

possible, it tries to meet the interconnect level requests. Knowing the process

parameters and interconnect layers that are available, design at the interconnect

level produces possible interconnect schemes for use in microarchitecture design.

One result of the preliminary phase is that the process will no longer change

due to inputs from the design. However, it still might change if the external

input, processing techniques, changes. This makes the designer's job harder.

Assuming this does not happen though, inputs from the process level for all future

phases are now external inputs. Loops involving the process level have been

considered as appropriate, in this preliminary phase and eliminated from future

phases. Process design does not complicate synthesis and analysis. It merely

provides inputs which are used by the synthesis and analysis phases.

2. Synthesis

Synthesis is the process of transforming a high level description of the

behavior of a processor into a working VLSI circuit. The goal of synthesis is to

provide a circuit that functions correctly. Correct functionality can mean

different things at different stages in the design. In the early stages it may mean

performing the required operations with no concern for speed or power

dissipation. In other words, meeting the architectural requirements is the first

step in attaining correct functionality. Later stages are concerned with meeting

all system specifications also. Various types of analysis are done after synthesis

67

has generated the first proposed solutions. As aresult of this, further synthesis is

done to attain all unmet system requirements.

External inputs for synthesis differ somewhat from those of the preliminary

phase. Process design occurs during the preliminary phase if the process is open

to modification in response to the chip designers' needs. The process may still

change after this but it is out of the control of the chip designers. However, the

chip designers must still deal with any changes that may occur. Outputs of the
process level become external inputs from the chip designers' points of view, after

the preliminary phase. Therefore, the design rules, layers available, and devices

available are all external inputs to design during the synthesis phase. At the high

level, the behavioral description of the processor - architecture and system

specifications - are external inputs. The VLSI circuit must realize this

description. The circuits available and possible interconnect schemes from the

preliminary phase are also inputs to microarchitecture design. They are from the

preliminary phase and therefore, are considered as fixed inputs. They are needed

to complete the details of the microarchitecture. The flow diagram for synthesis

is shown in Figure 4.5. The area enclosed by the dashed lines represents the scope

of design during synthesis. Arrows crossing the dashed lines are external inputs

for the synthesis phase. Figure 4.6 shows the flow diagram for synthesis and

includes only the design levels of concern to the synthesis phase. The process

level has been removed from this diagram.

architecture,
system specifications

processing techniques

Figure 4.5- Design Levels During Synthesis

68

architecture,
system specifications

available
circuits

(from preliminary design)

design rules,
devices available,
layers available

available
interconnect

schemes
from preliminary design)

design rules,
layers available

Figure 4.6- Synthesis- Full Custom Design

69

Synthesis is basically unidirectional. Design proceeds from the external and

fixed inputs through various intermediate stages, to the circuit and interconnect

levels without revisiting any intermediate stage. However, in a fully custom

design the circuit and interconnect levels directly affect each other. A simple

closed loop is formed by these two levels and is shown in Figure 4.6 by the

bidirectional arrow between them. This makes design more complex than a

completely unidirectional design, but it is still much simpler than the original

problem.

70

Standard cell design would eliminate this bidirectional arrow (Figure 4.7).

Size, geometry, and port placement of the circuit blocks are determined by the

standard cells. The interconnect level has little effect on these characteristics.

Thus, for standard cell design, the synthesis phase is purely unidirectional.

architecture,
system specifications

available
circuits

(from preliminary design)

available circuits
size, geometry
port placement

micro- \ available
archi- W—interconnect

tecture J schemes
•{from preliminary design)

design rules,
layers available

Figure 4.7- Synthesis- Standard Cell Design

Synthesis is commonly described as top down design with technology

considerations. Design flows from the highest point - the architecture and system

specifications external inputs - through the levels, from highest to lowest.

Synthesis is completed when the lowest sublevel - layout - of the circuit and

71

interconnect levels have been finished. Technological considerations, in the form

of design rules and available devices and layers, enter the design at the circuit

and interconnect levels.

2.1* Microarchitecture Synthesis

Synthesis starts with a description of the architecture and system

specifications. Such things as the instruction set, trapping and interrupt
situations, word size, data types, register organization, addressing modes, I/O
protocols, bus protocols, coprocessor protocols, and timing specifications are
important to the synthesis phase. Using this information and the available
circuits and interconnect schemes from the preliminary phase, synthesis begins

with microarchitecture design. Microarchitecture design defines the functional

blocks of the processor and coordinates their operation. Functional blocks may or

may not be the final circuit blocks. The circuit blocks are the actual blocks that

are realized in the layout. Functional blocks are a different partitioning of these

circuit blocks. One functional block may turn into one or many circuit blocks, or

it may be optimal to combine several functional blocks into a single circuit block.

An example of this are PLAs. A given function may correspond to a single

functional block but be implemented with more than one PLA. Each PLA is a

circuit block and the group of PLAs is the functional block. Another example is

an ALU. An ALU combines several arithmetic and logical functions that may

each have been specified by an individual functional block.

The microarchitecture is composed of various types of functional blocks as

needed by the architecture and system specifications. From the instruction set

the operations that the processor must perform, can be identified. Operation

blocks corresponding to these operations must be included in the

microarchitecture. The register organization will define many storage blocks that

72

are necessary. Trapping situations, interrupt detection, various protocols, and

instructions that inspect conditions all must recognize specific situations.

Condition detection blocks are needed for this. Word size determines the size of

some blocks such as register blocks in the datapath. Control blocks are needed to

coordinate the processor's functioning. These functional blocks are also known as

the processor resources.

The microarchitecture must also coordinate the processor's operation. This is

done by scheduling the usage of processor resources or functional blocks. This
includes defining the parallelism in the processor and pipeline operation. Bus

structures and temporary register blocks are ako defined as needed, to ensure a

smoothly functioning processor. An inspection of the architecture - the
instruction set in particular - identifies the operations to be done and the order

that they may be done in, for each instruction. For example asimple register add
instruction first requires an instruction fetch. The operands are then read, added

together, and the result is then written. Often there is more than one possible
sequence of events for an instruction. Various operations may be done
simultaneously. For example an instruction that does an add operation and a

condition check on the operands, may do the two operations simultaneously or

sequentially (Figure 4.8). Parallelism is given to a processor by identifying and
deciding which functions are to be performed simultaneously. Increasing
parallelism decreases the latency for each instruction. However, it also
necessitates more hardware to provide the simultaneous processing capabilities.

Time
Instruction fetch

Read
Add

Operand check
Write

Instruction fetch

Read

Add, Operand check
Write

No Parallelism

Parallelism

Figure 4.8- Parallelism vs. No Parallelism for an Operand Check

73

Often many instructions can use resources in the same order. When this is

possible it is not necessary to let one instruction complete before the next one

starts. It is only necessary to let one instruction finish with a given resource

before the next instruction is allowed access to that resource (Figure 4.9). In this

way execution of instructions may be overlapped and resources are more fully

utilized. This is known as pipelining. Pipelining leads to a higher instruction rate

and consequently higher processor throughput. However, it also leads to more

complex bus structures and communications between the blocks in order to handle

the increased processing activity. Parallelism and pipelining are two major

concerns of microarchitecture design, for the coordination of resources.

Time

Add Instruction

Instruction fetch

Read
Alu- Add

Write

74

Subtract Instruction

Instruction fetch

Read

Alu- Subtract

Write

Add followed by a Subtract

Figure 4.9- Pipelining

The detailed microarchitecture specifies the inputs, outputs, and timing of all

functional blocks. To do this, key circuits from preliminary circuit design must

be considered. Inputs, outputs, and clocking for some of these blocks will be

determined by the circuits that realize them. One purpose of preliminary design

was to have this information readily available for detailed microarchitecture

design. Thus, the circuits available from the preliminary phase are fixed inputs to

microarchitecture design during synthesis.

In a similar manner microarchitecture design may be limited by the available

interconnect schemes. For example, the number of buses that can be routed

across a bit slice of the datapath will place a limit on the bus structure. These

schemes from the preliminary phase are another fixed input to microarchitecture

synthesis.

2.2. Functional Block Synthesis

Microarchitecture design specifies the functional blocks during synthesis and

the coordination between these blocks. The outputs of the microarchitecture level

during synthesis, are the desired functions of the blocks. This includes the
operations done within each block and the inputs and outputs of each block.

75

Block inputs include the data to be operated on and signals to control the block's
functioning. Outputs of the blocks are the results and any conditions that are
relevant to other blocks. The desired function outputs of the microarchitecture

level are used as inputs by the functional block design level.

Functional block design is done after the microarchitecture design level has

defined the functional blocks and their coordination. It maps the desired
functions onto circuit blocks. After this mapping is done the desired function is
known for each circuit block. Just as with the functional blocks, the desired
functions include the operations performed and terminals for each circuit block.

These desired functions are outputs of the functional block design level and are

passed onto the circuit design level. The other output of functional block design
for synthesis is the netlist. This specifies all connections between the circuit
blocks. It may also specify restrictions on critical nets. The netlist is used as an

input by the interconnect level.

A floorplan for the processor is developed through the functional block
design. Once the actual circuit blocks and their terminals are known a tentative
positioning of the blocks on the chip may be proposed. Space for the various
interconnects is also designated on this floorplan. Another useful document from

the functional block design is a block diagram of the chip. This diagram

illustrates the circuit blocks and all major connections.

2.3. Circuit Synthesis

Circuit design is carried out once the desired functions for each circuit block

are known. Typically, the circuit block is first broken into smaller blocks or cells.

Examples of cells are latch cells, register cells, ALU bit slices, drivers, and any

circuitry that is replicated in regular structures such as PLAs and ROMs. If

standard cell design is done, the layouts for the required cells are then chosen

76

from the cell library and assembled into the circuit block. In a fully custom

design the cells are then expressed in greater detail by describing them in terms of

the gates and transistors that compose them. Finally, the physical layout for the

circuit block is achieved by using the design rules, devices available, and layers

available - all inputs to circuit design from the process level. While doing the

circuit block layout, consideration must be given to various outputs of the

interconnect level. The interconnect scheme may desire certain ranges of sizes

and shapes for the circuit blocks. This is to make routing simpler and have a

minimum of wasted space. An example of this is pitch matching of cells so that

circuit blocks may be placed adjacent to each other. Desired port placement is

another input from the interconnect level. Typically it is desirable for control

lines to enter the cells on a specified side of the cell. Ordering of the ports is also

important when circuit blocks are placed adjacent to each other. The ports of

one block should connect directly to the ports of the adjacent block with no extra

routing between the blocks.

2.4. Interconnect Synthesis

During synthesis interconnect design consists of connecting all terminals of

the circuit blocks to the appropriate places in the layout. A netlist from

functional block design specifies all connections that must be made. The sizes and

shapes of circuit blocks that must be routed around, are important when doing
routing so that they may be avoided. This may not be all circuit blocks,

especially when two levels of metal or polysilicon are available for routing. A
knowledge of the placement of ports on the circuit blocks is important so that the

proper connections are made. Interconnects are realized on the physical layout in

the interconnect layers made available by the process. The minimum widths and

spacings of the interconnects are determined by the design rules of the process.

77

3. Analysis

The third major phase of design is analysis. During analysis important

characteristics of the design are evaluated. Three characteristics commonly

evaluated are the speed, power, and area. The goal of the evaluation is twofold.

First, it is important to know where the design stands for any of these
characteristics. Typically, a value or range of values for these characteristics, is

predicted. The second part of the evaluation is more subjective. Attempts are
made to discover the reasons for any less than adequate characteristics and to

pinpoint any bottlenecks. With the results of analysis further synthesis may be

done to improve the design.

As just mentioned, many characteristics may be analyzed. Tradeoffs exist

between the characteristics. For example, circuits that run faster usually consume

more power.

System specifications dictate the priorities of the various characteristics.

Usually it is harder to meet the requirements for some characteristics than for

others. A separate flow diagram exists for the analysis of each characteristic.

The structures of these flow diagrams are all similar but the quantities involved

differ. Each characteristic is analyzed according to its flow diagram. The results

of all analyses are compared and tradeoffs are made according to priorities and

unmet requirements.

A flow diagram for the analysis of speed is shown in Figure 4.10. All levels of

design are shown here. However, analysis is done only at the levels enclosed by

the dashed lines. All process design that was sensitive to the chip designers'

needs, was carried out during the preliminary phase. Figure 4.11 shows only the

levels at which analysis is done. Analysis uses the process parameters as external

inputs. Values for the characteristics of interest are derived from these

parameters and the process design.

78

system specifications

processing techniques

Figure 4.10- Design Levels During Speed Analysis

parameters

system specifications

desired
critical paths

Figure 4.11- Analysis- Speed

79

parameters

Analysis is basically unidirectional also. However, there are two separate

paths, both unidirectional (Figure 4.12). Values at the endpoints of the two paths

are compared to determine if the characteristic meets its requirements. The

exception to purely unidirectional analysis is found between the circuit and

interconnect levels. A simple closed loop exists here, as indicated by the

bidirectional arrow, due to circuit and interconnect loading.

system specifications- speed
- clocking

desired
critical paths

internal
block delay

parameters

critical paths

parameters

Figure 4.12- Unidirectional Paths of Speed Analysis

80

One unidirectional path represents a top down analysis. For speed, the

desired critical paths are based on the system specifications. They are arrived at

through an analysis of the microarchitecture. From synthesis, microarchitecture

design proposed functional blocks and coordination of the blocks. One aspect of

the coordination is a listing of all activities that must complete during each phase

of the system clock. Analysis of the microarchitecture reveals the activities of

each phase. A length of time is allotted to each phase by the system

specifications. All activities of each phase must complete within the allowed time

period. The critical paths are the activities that take the longest to complete. In

Figure 4.12 the desired critical paths outputs of the microarchitecture level are

these longest activities and the times available to them.

81

The other unidirectional path is abottom up analysis that predicts the times

for the critical paths from the processing parameters and an analysis of the lower
design levels - circuit, interconnect, and functional block. Internal block delays
are predicted for the circuit blocks using process parameters. Loading due to the
interconnects affects this delay in a fully custom design. Output buffers of the

block are designed according to the size of the load that must be driven. These
buffers are part of the circuit blocks and the loading that they put on other parts
of the block contributes to the total block delay. The speed of the block may also

be affected by the transition times of input signals to the block. These transition
times are determined by the output buffer of another circuit block, the loading of

that buffer due to the interconnect, and the circuit being driven.

Interblock delays are also predicted during the bottom up analysis. These

are the delays of the interconnects. Process parameters such as resistance and

capacitance along with the interconnect dimensions, determine the maximum
possible speed for each interconnect and load that the circuit block must drive.
The speed of the interconnect and therefore the interblock delay is determined by

the interconnect load and the circuit that drives it.

These internal block delays and interblock delays are used in an analysis of

speed at the functional block level. The delay for each critical path can be
predicted at this level, by adding together the delays for all circuit blocks and
interconnects that compose the critical path. The predicted critical paths from

this bottom up analysis are then compared to the desired critical paths of the top

down analysis. Individual delays of the critical paths are examined to reveal the

bottlenecks if a faster processor than what has been predicted, is desired.

As previously mentioned, this same type of analysis is carried out for all
characteristics of interest. Figures 4.13 and 4.14 show flow diagrams for power

and area analysis, respectively. Compromises between all characteristics must be

82

arrived at so that all system specifications are satisfied according to their

priorities.

system specifications- power budget

o

desired power per I
functional block

circuit block
power- d.c,

a.c.

parameters

power per
functional block

interconnect
power- a.c.

parameters

Figure 4.13- Analysis- Power

system specifications- area
- dimensions

desired
functional block
and interconnect

areas

circuit block
area

design rules

functional block
and interconnect

areas

interconnect
area

design rules

Figure 4.14- Analysis- Area

83

4. Optimization

Optimization consists of taking a proposed solution to a design problem and

improving one or more of its characteristics. In order to optimize a design, a

proposed solution must first exist. Some amount of synthesis must be completed.
All or part of the proposed solution is then analyzed in terms of any

characteristics of interest. This analysis shows where the design stands for each of

the characteristics and reveals areas of improvement. With this information

further synthesis can be done to improve upon the original design. Another round

of analysis is done after this synthesis. This may be followed by even more

84

synthesis if the results were not satisfactory. This series of analysis and synthesis

phases is done until the design is considered satisfactory.

Each optimization step spans three phases (Figure 4.15). First an

improvement is suggested through analysis. This improvement is then realized

with a synthesis phase. The optimization is then completed with an analysis

phase to evaluate the change.

Analysis to
suggest

improvement

i
Synthesis

of
improvement

Analysis to
evaluate

improvement

Figure 4.15- Optimization

Each analysis phase serves two purposes. First, it checks the results of the

previous synthesis phase. This includes verification for proper functioning and
evaluation of the characteristics of interest. Secondly, it reveals bottlenecks to be

eliminated and improvements that may be done during the subsequent synthesis

phase. Consequently, each analysis may be part of two optimization steps and

optimization steps may overlap (Figure 4.16).

Analysis to
suggest 1st
improvement

Synthesis
of 1st

improvement

Analysis to
evaluate 1st
improvement,
suggest next
improvement

Synthesis
of next

improvement

Analysis to
evaluate next
improvement

first
optimization

next

optimization

Figure 4.16- Sequential Optimizations

85

5. Methodology

Many design methodologies that are based on various sets of premises and

priorities, exist for VLSI processors. Some treat the full design problem and

others are restricted to sections of it. They all have some goals in common

though. A correct design at a minimal expense are goals of all methodologies. In

86

terms of the four key issues of VLSI design (Chapter 1), this goal addresses the

issues of correctness and time investment. However, after this the goals and

premises of different methodologies diverge. The design methodology presented

here is based on the following four premises:

1. Include all three design phases - preliminary, synthesis, and analysis.

2. Complete low level analysis is most time consuming.

3. Redo as little as possible - catch major mistakes early.

4. Accuracy of analysis depends on the accuracy of input data.

The first premise is that all three design phases should be included in the

methodology. Each design phase considers some but not all of the

interrelationships between the design levels. As discussed in Chapter 3, the many

level interrelationships and tradeoffs of a VLSI design problem are distributed

among the three phases - preliminary, synthesis, and analysis - so that the

problem is more manageable. All three phases must be considered at least once

during design so that no level interrelationships are overlooked. The synthesis

and analysis phases are usually considered more than once so that optimal

tradeoffs can be made. In this way the key issue of optimization is addressed.

The lower levels of a design contain more detail. The higher levels -

microarchitecture and functional block - can be represented by things such as

block diagrams. At the lower levels designs are represented by transistor level

schematics or the physical layout. More detail implies that there is more data to

be used in a complete analysis and therefore analysis will be more time

consuming. For example speed simulation of the critical paths of a processor

takes much longer using a low level simulator such as SPICE, than it would take

using a simulator that assumes speeds for the functional blocks and then

calculates critical paths from a block diagram.

87

VLSI processor design is inherently iterative. To get an optimal design,
portions of a design may have to be done more than once. Therefore, some
redesign time must be allotted. However, it is desirable to keep this to a
minimum without sacrificing design quality. Therefore, mistakes that affect large

portions of the design should be caught before large amounts of low level design
are completed. Low level design, like low level analysis, involves much detail and
can therefore be time consuming. If mistakes are caught early less time has been

invested in the poor design and less effort is wasted in correcting the problem,

than if they were caught late

The last premise is that the accuracy of predictions depends on the accuracy

of the input data. If input data for analysis at any level is inaccurate, it can

hardly be expected that the results will be reliable. This premise assumes that the

method of analysis is dependable. If the method has limitations also, the analysis

will be even less reliable. The implication of this is that the designers should

recognize the accuracy of input data and analysis methods, and emphasize the

results accordingly. For example, if it is known that the data or method gives

results with a-random 20% error, it is probably not advisable to make changes

that would improve a section of the design by 10%.

The premise that major mistakes should be caught early along with the top

down nature of synthesis suggests that portions of the analysis phase should be

intermingled with portions of the synthesis phase. Synthesis begins at the highest

level - microarchitecture. Analysis of proposed microarchitectures should be done

before much design at lower levels is completed. In this way detailed design of

poor solutions is avoided. However, without a complete low level design,

assumptions must be made concerning the inputs when doing analysis at high

levels. This means that the analysis will be less accurate and should be used

accordingly when changing the design - premise 4. In this way it is possible to

88

catch major mistakes early but difficult to foresee the minor problems. But this is

acceptable since the minor problems usually require less redesign than the major

errors.

This top down order of synthesis and analysis means that higher design levels

will be analyzed more times than the lower levels. As design progresses towards

the lower levels, the inputs to higher level analysis can become increasingly

accurate. High level analysis should be redone as inputs become more reliable to

check that the high level design is still acceptable. Thus, high level analysis may

be redone many times and the more time consuming low level analysis will be

redone fewer times. This is desirable according to premise 2.

This also means that it may never be necessary to do a complete low level

analysis of the entire processor. If analysis at each level includes all inputs as
shown in the analysis flow diagrams, and yields all flow diagram outputs for that

level, the complete analysis phase can be broken into analysis at each level.
Figure 4.17 shows the individual steps that speed analysis may be broken into.
The ordering of the steps is suggested by the unidirectional nature of analysis. As
previously discussed, analysis contains two unidirectional paths. Both may be
analyzed simultaneously and then the results are compared. The path involving
the circuit, interconnect, and functional block levels is basically bottom up. This
determines the analysis order for these steps, with the lower levels being analyzed

first. The top down path only involves one level - the microarchitecture. In this

way the complete low level analysis may possibly be avoided.

parameters

criticaLpaths

parameters
internal

block delay
interblock

delay

Step 1 Step 2

system specifications- speed
- clocking

desired
critical paths

Step 1 or 2

desired
critical paths

Step 3

critical paths

Figure 4.17- Steps of Speed Analysis

80

A methodology based on these premises is shown pictorially in the flow chart

of Figure 4.18. Design is started with the preliminary phase as described earlier

in this chapter. During the preliminary phase circuit and interconnect options are

explored. Promising schemes for these two levels are identified so that

microarchitecture design may be based on these possibilities.

start

f
C Preliminary -\ r f reliminary\

Circuit) y Interconnect J

(Preliminary

Compare

•s
>

Synthesize
Microarchitecture

Analyze
Microarchitecture J not ok*

Synthesize
Functional Block

not ok

not ok

not ok

*—
Synthesize

Circuit

Synthesize
Interconnect

="1

not ok

not ok

not ok

Figure 4.18- Methodology Flow Chart

90

01

Following the preliminary phase are alternating synthesis and analysis

phases. Synthesis proceeds in a top down manner. Following synthesis at any
given level is analysis and optimization of that level alone. When results at the
single level are acceptable analysis and optimization move upwards one level at a
time until all levels synthesized so far have been included. When the results of

this analysis are acceptable, synthesis moves down to the next level and the

process repeats itself.

Synthesis begins at the microarchitecture level. Microarchitecture analysis

for all characteristics of interest follows synthesis at this level. Optimization is

done until analysis of all characteristics is acceptable.

Synthesis then moves down to the next level - functional block. Again

analysis and optimization are done at the functional block level for all

characteristics of interest. When the results are satisfactory analysis is done

including the microarchitecture level also. This consists of comparing the desired

value for a given characteristic from microarchitecture analysis with the predicted

value from functional block analysis. Design moves back to microarchitecture

synthesis if the results of this comparison are not acceptable.

When the microarchitecture and functional block design are acceptable,

synthesis moves to the circuit and interconnect levels. Again analysis and

optimization are done within these levels until an acceptable solution is reached

for all characteristics. Analysis then moves up a level to include the functional

block level and finally the comparison with the microarchitecture level.

Each step in the flowchart has a corresponding flow diagram (Figure 4.19).

Loops in the flow diagrams for each of the three phases are included in a single

step. Loops signify iteration. It was possible to split many loops in the overall

flow diagram between the natural phases. However, it is not obvious how to split

up the remaining loops, so each loop is always included within one step. All

92

characteristics of interest are included within each analysis step. By considering

all characteristics simultaneously the tradeoffs for optimality and the system

priorities are emphasized.

c
Preliminary \

Circuit J

architecture,
system specifications

available
circuits

desired
parameters,

devices,
layers

desired
unctions

available
parameters,

devices,
layers

processing techniques

Figure 4.19a- Preliminary Circuit Step

(Preliminary \
Interconnect J

architecture,
system specifications

micro

archi
tecture

desired
character

istics

available
interconnect

schemes

inter
connect

available
parameters,

layers

desired
parameters,

layers

process

processing techniques

Figure 4.19b- Preliminary Interconnect Step

93

c
Preliminary \

Compare J

FiguTe"4.19.c- Preliminary CompaTe Step

byntnesize
Microarchitecture

architecture,
system specifications

available
circuits

(from preliminary design)

micro- \ available
archi- W—interconnect

tecture J schemes
[from preliminary design)

desired
functions

Figure 4.19d- Synthesize Microarchitecture Step

94

system
specifications-speed

-clocking

desired
critical paths

Speed

Analyze
Microarchitecture

system
specifications-power

desired
power per

functional block

Power

95

system
specifications-area

.-dimension

desired
areas and

dimensions

Area

Figure 4.19e- Analyze Microarchitecture Step

Synthesize
Functional Block

desiren neflist
functions

desired
functions

Figure 4.19f- Synthesize Functional Block Step

Analyze
Functional Block

critical paths
power per

functional block

internal
block

• delay

interblock circuit interconnect
delay block power-a.c.

power
d.c, a.c.

Speed Power

interconnect
and block areas

96

circuit interconnect
block areas
areas

Area

Figure 4.19g- Analyze Functional Block Step

desired
critical

paths

critical
paths

Speed

lalyze
[icroarchitecture vs.

'unctional Block

desired
power

power

Power

desired
areas and

dimensions

interconnect
and block

areas

Area

Figure 4.19h- Analyze Microarchitecture vs. Functional Block

desired
functions

design rules,
devices available,
layers available

Syntnesize
Circuit

synthesize
Interconnect

netlist

\ size, geometry J mter".
circuit K p0rt placement *V connect

design rules,
layers available

Figure 4.19i- Synthesize Circuits and Interconnects

97

internal block delays interblock delays

Speed

Power

Area

parameters

circuit block
power-d^., a.c.

parameters

interconnect
power-a.c.

parameters parameters

circuit block areas interconnect areas

design rules design rules

Figure 4.19j- Analyze Circuits and Interconnects

98

99

Chapter 5

External Inputs

SOAR Case Study

External inputs are factors determined outside the realm of processor design,

that must be considered when designing a VLSI processor. Chip design has little

influence on these inputs, yet must meet their requirements and restrictions. For

a fully custom VLSI processor, external inputs to the design are the processor

architecture, system specifications, and available processing technology. SOAR

was somewhat restricted from this. Fabrication was to be done by MOSIS. This

meant that SOAR had to use whatever processes were available to MOSIS.

Design of SOAR had no influence on the process. Thus, the outputs of the

process level - parameters, design rules, available devices, and layers - all

became external inputs. Processor architecture and system specifications were

the other external inputs to be considered.

1. Architecture

As previously mentioned, the architecture of a processor includes such things

as data types, word size, addressing modes, register organization, the instruction

set, and internally generated exceptions and traps. SOAR's goal was the efficient

execution ofSmalltalk, but without ignoring more general purpose languages such

as C (Unga84]. The architecture of SOAR is a RISC architecture with internal

opcodes and special features for the efficient execution ofSmalltalk.

1.1. Data Types

Data can be either tagged or untagged (Figure 5.1) [Blau83b], [Samp85].

Tagged data is useful for a Smalltalk processor while untagged data is best for.a

C processor.

. small
integers

data

assistant associate full . emeriti
object object oDject oDjec

100

addresses

Figure 5.1- SOAR Data Types

Smalltalk is an object oriented language. The two main tagged data types

are small integer objects and pointers to objects (Figure 5.1). Tag bits distinguish

these data types (Table 5.1).

objects tag

small integers 0

object oriented pointers tag

assistant object 1000

associate object 1001

full object 1010

emeritus object 1011

context object 1111

Table 5.1- Tagged Data Types

101

Small integers are one type of tagged data. They have one tag bit and may

range from -2 to 2 -1.

The other types of tagged data are the pointers. Pointers are used to

reference objects. Smalltalk has objects of several types and ages. These types

and ages are reflected in the pointers to the objects. Pointer types are

distinguished by their tags (Table 5.1). Assistant, associate, full, and emeritus
objects are objects of various ages. These ages are significant to the storage

reclamation inherent in Smalltalk [Unga84]. The last type of pointer is the

pointer to a context object. Context objects are treated differently from other

objects and this is the reason for their distinct pointer type.

Untagged data can also be of two main types (Figure 5.2). The first type is

the integer. These can have values from -231 to 231-1. Addresses are the second
major type. Potentially a 32 bit address space could be supported by untagged

addresses. However, the system only calls for a 28 bit address space [Blau83a),

[Blom83], [Brow85]. Thus, the extra four bits are meaningless for untagged

addresses.

1.2. Word Size

All words on SOAR are 32 bits (Figure 5.2) [Samp85). SOAR references 28

bits of virtual address space. Thus, only 28 bits of a 32 bit address word actually

address memory. The other four bits are meaningless for addresses of

instructions. Tagged data addresses are pointers and the extra four bits hold the

tag that indicates the type of object being pointed to [Blau83b]. During untagged

operation the extra four data address bits are meaningless.

bit3T^§ 27

Address

Instruction Address

AddressTag

DataAddress- tagged mode pointer

bit3T^8
Address

27
Data Address- untagged mode

Data

bit3T W Data- tagged mode, small integer

Data

bit3t Data- untagged mode, integer

=3

=3

1

102

Figure 5.2- SOAR Words

Data words are all 32 bits also. Tagged data contains 31 bits of data and one

tag bit indicating it is a small integer object. All 32 bits are data bits when

operating in untagged mode.

1.3. Addressing Modes

SOAR is a register based processor. All operations use either register or

immediate operands. Memory is accessed through loads and stores only. SOAR

supports three types of addressing modes - absolute, relative, and indexed (Table

5.2). The address for absolute loads and stores is simply an immediate constant

supplied by the instruction. Relative addresses are the value of the program

counter offset by a constant. Indexed loads and stores use a value stored in a

register and an offset to calculate the address. All offsets for stores originate in an
immediate constant. For loads the offset may come from an immediate constant

or from a register.

Absolute 0 + offset

Relative program counter + offset

Indexed register + offset

Table 5.2- Addressing Modes

103

1.4. Register Organization

Any process running on SOAR has direct access to 32 registers, r0 through

r31 (Table 5.3) [Samp85]. These 32 registers are divided into four groups of eight

registers each, according to their function. These four groups are the globals,

special registers, highs, and lows. The globals and specials are common to all

subroutines. In other words, physically they are the same registers, independent

of the invoked subroutine. The highs and lows are local registers for designated

subroutines. Thus, the register that is r7 for one subroutine is not necessarily the

same register physically, as r7 of another subroutine.

Register Type Register Contents

r31 Scratch

r30 Scratch

r29 Scratch

Global r28 Scratch

r27 Scratch

r26 Scratch

r25 Scratch

r24 Scratch

r23 PSW

r22 CWP

r21 TB

Special r20 SWP

rl9 SHA

rl8 SHB

rl7 PC

rl6 RZERO

rl5 return address for this subroutine

rl4 return value

rl3 local

High rl2 local

rll local

rlO local

r9 local

r8 local

r7 return address of traps, called subroutine

r6

r5

Low r4

r3

r2

rl

rO

Table 5.3- SOAR Registers

104

105

A key feature of the SOAR architecture is the register window scheme

(Figure 5.3) [Kate83]. Local memory is split into eight banks of registers, each
containing eight registers [Blak83]. At any time, the current process has access to

two of these banks. One bank is designated as the high bank and gets accessed

whenever r8 to rl5 is referenced. The other bank is the low bank. Reference to

r0 through r7 causes the low bank to be accessed. Together these two banks
make up the register window for the current subroutine. When acall is executed,
the current lows become the highs for the called subroutine and another bank

becomes the new lows. In this way anew window is formed for the called routine.

When doing areturn the current highs become the future lows. The future highs

are the highs that belong with these future lows. Thus, a return causes a

previously defined window to become visible again. The sharing of highs and lows
between subroutines leads to the term overlapped register windows .

715
"FIT

FIT
TIT
TIT
1W

IT
Tff"

r4

IT
IT
rl

tQ

Procedure A calls Procedure B

Procedure B calls Procedure C

B
FIT
Tlf
FIT
tT2
TIT
710

rT

TT
7T"

7F

r<T

FIT
FIT
FIT

TIT
FIT
FIT

it
16

7T
r4

72"

7T

Figure 5.3- Register Window Scheme

106

A call occurring when all windows have been filled causes the saving of the

oldest bank in memory. The area where it is saved is determined by two special

registers, the saved window pointer (SWP) and current window pointer (CWP) as
shown in Figure 5.4. Thus, every local register in every window has a

corresponding memory address. Local registers from previous subroutines that are

inaccessible by referencing rO to rl5, can be accessed by aload or store using their

memory address.

SWP<31:7>

window
number

CWP
register
number

Figure 5.4- Memory Address of a Saved Register

107

The global registers, r24 to r31, are used for data storage. Their contents

only affect the processor as operands. They can be used to hold such things as

temporary results and global data, common to all subroutines.

The special registers, rl6 through r23, all have functions other than just

serving as operands. They are not for data storage, but determine the processor's

functioning as described by Table 5.4. Processor state can be externally

controlled by storing to these registers or examined by reading their contents.

Register Name

r23 PSW

r22 CWP

r21 TB

r20 SWP

rl9 SHA

rl8 SHB

rl7 PC

rl6 RZERO

108

Function

process status word, shadow copy of destination, opcode

current window pointer- points to one of eight windows

trap base register- used when forming trap vectors

saved window pointer- points to last window saved

shadow copy of A input to ALU, byte inserter/extractor

shadow copy of B input to ALU, byte inserter/extractor

program counter

always zero

Table 5.4- Special Registers

1.5. Instruction Set

SOAR is based on a RISC architecture [Unga84]. It supports fewer types of

instructions than would be found in a complex instruction set. Table 5.5

summarizes the instruction set [Samp85]. With a few exceptions an instruction

may be started every clock cycle. In this way each instruction is similar to a

microinstruction in a microcoded machine.

109

InstructionI<31:30>

00

Opcodes(octal)

00-37

Operationsrequired

[%]CALLaddition

decrementCWP

[%]JUMP0040-77addition

|%]RET0110-17addition

nilregisters(optional)
incrementCWP(optional)

enableinterrupts(optional)

[%]SKIP0120subtraction

[%]TRAPi0121-27subtraction

[%]XOR0144exclusiveor

[%]AND0146and

[%]OR0147or

[%]ADD0150addition

[%]SUB0152subtraction

[%]SRL0140logicalrightshift-1bit

[%]SRA0142arithmeticrightshift-1bit

[%]SLL0151addition

%INSERT0156insert,zeroing

%EXTRACT0154extract,zeroing

[%]LOAD0134addition

QLOADC0135addition

%LOADM0136subtraction

decrement

[%]STORE0130addition

%STOREM0132subtraction

decrement

Table5.5-SOAROperations

Mostinstructionshavetwomodesofoperation-untaggedandtagged.

Untaggedinstructionstreatoperandsasifthetagbitsarereallypartofthedata.

Taggedinstructionsexaminethetagbitsandcompleteaccordingtowhetheror

notthebitsarecorrectfortheoperation.Thisisoneofthefeaturesaddedfor

110

the efficient execution of Smalltalk. The % in Table 5.5 indicates untagged

operation. [%] indicates both modes of operation are possible. Instructions only

operating in tagged mode are preceded by [).

Jumps and calls are distinguished from other instructions by bit 30 of the

instruction (Figure 5.5). Bit 28 then further distinguishes jumps from calls. The

remaining 28 bits of a jump or call instruction contain the absolute address of the

target. This address is incremented and loaded into the program counter. In
addition to this calls cause the register window to change, by decrementing the

CWP, and the return address to be saved in the future rl5 (current r7).

bit3T

bit3T

0

bit3T

tag
Jjump/call

0

saps
19

W

target address- 28 bits

Jumps and Calls

S2opcode
"23

tag

C SI

TOTS 12 11 7 ^

*9

Stores

opcode D
•SJ

2S 2322 W
9

SI

TS-T3
£

T2TI—TT

All Other Instructions

Figure 5.5- Instruction Formats

The remaining 29 bits of instructions other than jumps and calls, are split

into fields as shown in Table 5.6 and Figure 5.5. The locations of these fields are

the same for all types of instructions except stores (Figure 5.5). The operands are

specified by the SI, S2, and C fields. The SI operand is always found in a
register. The second operand may be aregister operand, S2, or a sign extended

Ill

constant, C, as indicated by the immediate bit. Stores require all three operands-

Si, S2, and C. The Dfield specifies the destination register of the result. The

opcode field indicates what operation is to be performed on' the operands. When
sign extension is performed on the immediate constant the four most significant
bits become the tag of the constant and the fifth most significant bit is the sign bit

that is duplicated (Figure 5.6).

C<11:8>
bit3T 1&S2T

C<7> C<6:
^ n

Figure 5.6- Sign Extension of the Immediate Field

Field No. of bits Specifies

Opcode 6 operation

D 5 destination register

SI 5 first operand register

I 1 immediate or register for the second operand

S2 5 second operand register

C 12 second operand immediate constant

Table 5.6- Instruction Fields

There are eight types of returns as shown in Table 5.5. The eight types of

returns are formed by enabling any combination of three mechanisms- CWP

increment, interrupt enabling, and register nilling- upon a return. When a call is

performed the CWP is always decremented to attain a new register window.

112

Incrementing the CWP on a return will recover the old window, the window of

the calling routine. Hardware interrupts may be optionally enabled upon a return

if they were previously disabled. Registers rO through r5'of the new window may

be optionally set to the nil value, BOOOO00O, upon a return- register nilling.

Registers r6 and r7 contain the return value and saved address, respectively, and

therefore can not be nilled. The return address is calculated by adding the two

operands and placing the result in the program counter for all types of returns.

Typically, the saved address- r7- is used for this calculation. The destination

field is irrelevant for returns (but must be zero due to idiosyncracies in the

microarchitecture).

Skip and trap instructions compare the two operands and then take a skip or

trap if the result of the comparison is true. Skips and traps have no destination

register so the destination field is used to specify the type of comparison to be

done (Table 5.7). The skip instruction causes the instruction immediately

following the skip to be skipped if the comparison is true. The trap instructions

cause execution to jump to an address specified by the trap vector if the condition

is true. There are seven trap instructions, each corresponding to a different trap

vector. Other than this difference all seven types of trap instructions have the

same function.

Mnemonic D field (octal)

EQ, NE 04,05

LT, GE 02,03

LE, GT 06,07

LTU, GEU 12,13

LEU, GTU 16, 17

NEVER, ALWAYS 00,01

INO, OUTO 12, 13

INI, OUT1 22,23

113

Condition

equal, not equal

less than, greater than or equal

less than or equal, greater than

unsigned less than, greater than or equal

unsigned less than or equal, greater than

never, always

0 < 1st operand < 2nd operand

1 < 1st operand < 2nd operand

Table 5.7- Skip and Trap Instruction Condition Codes

All ALU operations, shift operations, and byte operations use the two

operands, perform the designated operation on them, and store the result in the
register specified by the destination field. Arithmetic operations are ADD and
SUBTRACT. Logical operations supported by SOAR are AND, OR, and XOR.

SOAR performs three types of one bit shifts - left arithmetic shifts, right

arithmetic shifts, and right logical shifts. Byte operations performed by SOAR

are EXTRACT and INSERT (Figure 5.7). Extract puts a specified byte of the

first operand into the least significant byte of the result. All other bytes of the

result are zeroed. Insert takes the least significant byte of the first operand and

puts it into aspecified byte of the result, zeroing all other bytes of the result. For
both insert and extract the specified byte is determined by the two least

significant bits of the second operand.

Extract

second first
operand operand result

0
byt«

8

byte
8

byte
2

byte
1

byte
0

2LSB

MUX.,

byte
2

byte
1

byte
0nfrvi

Insert

first second
operand operand result

byte
8

byte
2

byte
1

byte
0

decoder

2LSB

-p
-*>

-o

Figure 5.7- Byte Operations

byte
8

byte
2

byte
1

byte
0

114

The load and loadc instructions add the two operands to form an address for

amemory fetch. The word fetched from memory is stored in the register specified

by the destination field. Load multiple performs a series of up to eight loads.

Destination registers for these loads are rO through rn where n is specified by the

destination field and must be less than eight. Addresses for these loads are evenly

spaced in memory. This spacing is specified by the second operand. Load

multiple can be described algorithmically:

115

x«—1st operand
y«—2nd operand
z 4—destination field

Repeat

x<—x-y

r[z| 4-M[xl
z<—z-1

until z<0

Stores use the first operand and immediate constant, C, to form an address.

The second operand is the data to be stored. Store multiple is the store

counterpart to load multiple. Algorithmically it can be described:

X4—1st operand
y«—immediate constant
z 4—-2nd operand field
Repeat

x<—x-y

M[x] «-r[z]
z«—z-1

until z<0

1.6. Internal Exceptions and Traps

A variety of situations can arise in SOAR that must be handled immediately.

When such a trap situation arises, execution must switch to an appropriate

software routine, trap handler, in order to handle the problem [Blau83b],

[Unga84], [Samp85].

As previously mentioned traps can be caused by trap instructions. Illegal

opcodes are recognized and cause traps to the appropriate handlers. This

prevents hardware from trying to make sense of an illegal opcode and permits the

instruction set to be extended by having the appropriate code sequence for a new

opcode, in a trap handler.

116

Due to the register organization, registers must be written to memory if a call

occurs and all register windows are filled. This is accomplished by a window

overflow trap. As returns occur, old register windows are recovered. The oldest

windows may have been written to memory and therefore must be fetched from

memory when a return tries to recover them. A window underflow trap does this.

Instructions executing in tagged mode examine the operands' tags and cause

traps if the tags are not correct. These traps were designed specifically for the

efficient execution of Smalltalk. Tag traps can occur for loads, stores, arithmetic,

logical, and shift operations according to Tables 5.8 and 5.9. Immediate operands

are always assumed to be integers. Tagged ALU and shift instructions can only

operate on two integers (Table 5.8).

1st operand tag 2nd operand tag 2nd operand result

integer integer immediate no trap

integer integer register no trap

integer pointer immediate no trap

integer pointer register TAG TRAP

pointer integer immediate TAG TRAP

pointer integer register TAG TRAP

pointer pointer immediate TAG TRAP

pointer pointer register TAG TRAP

Table 5.8- ALU and Byte Operation Tag Traps

Tagged loads and stores need one of the operands used in the address calculation,

to be a pointer and the other address calculation operand to be an integer (Table

5.9).

1st operand tag 2nd operand tag 2nd operand result

integer integer immediate TAG TRAP

integer integer register TAG TRAP

integer pointer immediate TAG TRAP

integer pointer register no trap

pointer integer immediate no trap

pointer integer register no trap

pointer pointer immediate no trap

pointer pointer register TAG TRAP

Table 5.9- Load and Store Operation Tag Traps

117

Stores and returns can cause generation scavenging traps. Smalltalk uses

these to reclaim storage space. Tagged returns require the first operand to be a

pointer. Otherwise a trap occurs. Stores cause generation scavenging traps if the

data being stored is a pointer to a context object or is a pointer to a younger

object than the object where it is being stored.

The last type of trap designed specifically for Smalltalk is the software

interrupt trap. A bit in the process status word indicates whether or not software

interrupts may be taken. If a tagged call or jump occurs while software

interrupts are enabled then a software interrupt trap occurs.

External situations may also cause traps. Data page faults, instruction page

faults, and I/O interrupts are detected by SOAR and result in traps. All traps,

both internal and external are prioritized. When two or more trap situations arise

118

simultaneously, the trap with the highest priority is handled first. If other traps

still exist upon the return from this highest priority handler, they are then

handled according to their priorities. Priorities for traps are shown in Table 5.10.

Traps with the lowest reason numbers have the highest priorities.

Trap Reason Number Priority

Illegal opcode 0 Highest

Tag trap 1

Software interrupt 2

Window overflow 3

Window underflow 4

Data page fault 5

Trap instruction 6

Generation scavenging 7

Instruction page fault 8

I/O request 9 Lowest

Table 5.10- Trap Priorities

When a trap occurs SOAR automatically saves relevant state information.

The operands being operated on, when the trap situation arises, are saved in

shadow registers A and B, rl9 and rl8 respectively. The opcode being executed

and the intended destination register are saved in the process status word. The

value of the program counter is saved in r7. Hardware interrupts are

automatically disabled when a trap occurs.

119

Program execution shifts to the beginning of a trap handler after a trap

situation arises. The address of the start of the appropriate trap handler is

formed by the concatenation of the trap base register (r21), the reason number,

and the executing opcode (Figure 5.8).

trap base register | reason opcode |
—K - rra—rs obit31 roll 65

Figure 5.8- Trap Handler Address

2. System Specifications

One of the goals of the Smalltalk project was to realize a working Smalltalk

system without having to design a complete computer system. This is
accomplished by using a SUN workstation to house a processor board built

around the SOAR chip [Blom83], [Brow85]. Two separate processor boards were

built. One board, the cache board, includes an 8Kbyte virtual address cache. The

other board, the Orion board, directly accesses SUN memory. The SUN hardware

is used to service all I/O devices - the disk controller, graphics interface,

keyboard input, and mouse tracking. Extra memory boards are added to the
SUN. The SUN's MC68010 processor and SOAR interrupt and communicate with

each other via the custom designed SOAR processor boards. Thus, the hardware

on these processor boards and the memory that SOAR has direct access to

determined the system specifications for the SOAR processor design.

120

2.1. Memory Requirements

Performance studies indicated that the SOAR instruction set would require a

virtual memory size of 20 to 40Mbytes [Blau83a]. A 64Mbyte virtual address

space was chosen, requiring word addresses to be 24 bits wide. The architecture

allows for expansion from this by providing 28 address bits. Physical memory in

this system is 8Mbytes. On the Orion board a SOAR memory access requires

translation of the virtual address using a single level page map, and then physical

memory access through the Multibus [Blom83]. The cache board directly accesses

the on board cache with the virtual address [Brow85]. A hit rate of greater than

90% is expected. It was predicted that 400ns. would be needed for either of these

memory accesses. Thus, the system specification of a 400ns memory cycle was one

of the external inputs to processor design.

Signals needed by the memory circuitry of the boards, include the 28 bit

virtual address and a RD/WR* signal. RD/WR* indicates whether a read or

write is being done at the given address. It is used to determine the board's state

and to generate a write signal for memory. It must be valid early in the memory

cycle and remain valid until the end of the cycle. Since much of the board design

was done during chip design, it was not known exactly how early in the cycle this

signal was needed. Thus, the external requirement for this signal was to have it

available as soon as possible and hold it throughout the cycle.

2.2. Clocking

For board design simplicity, SOAR clock cycles and memory cycles are

synchronous. One SOAR memory access can be done during each SOAR clock

cycle. Therefore, the desired SOAR clock cycle was 400ns.

The basic SOAR cycle is split into underlapping clock phases. Hardware on

both the processor and boards is clocked by these phases. A three phase clock

121

cycle was chosen in contrast to the four phase clock of RISC II [Kate83]. This

was an attempt to avoid extra clocking overhead.

2.3. External Interrupts and Wait

Both boards signal interrupts to SOAR whenever a page fault or I/O request

occurs [Blom83], [Brow85]. SOAR handles these interrupts using the same

trapping mechanism as is used to handle internal trapping situations [Samp85].
SOAR distinguishes between data page faults and instruction page faults. These

three external interrupts are assigned priorities and cause jumps to trap handlers,

just as the internal traps do. Page faults and I/O requests are detected by the

boards and the appropriate signal is asserted by the end of clock phase 2.

A variety of situations may arise that force SOAR to be put into a WAIT

state. Cache misses, I/O requests, and direct accesses to main memory (the cache

board only) all need WAIT states. During this WATT the internal state of SOAR

must not change. The boards supply a WAIT signal to SOAR that indicates a

WAIT is necessary. The WAIT signal is asserted continuously during the WAIT.

The boards detect a need for WAIT and the WAIT signal is asserted by the end

of phase 2.

The Orion board requires SOAR to acknowledge a WAIT by asserting a wait

acknowledge signal. Wait acknowledge is asserted when SOAR enters the wait

state and remains asserted for the duration of the wait.

2.4. Fast Shuffle Control

In order for calls and jumps to be executed with minimal delay, the full

absolute address of the target is one field of the call or jump instruction (Figure 5

[Samp85].5). Thus, the target address is immediately available to address memory

without any computation. In theory, the processor could immediately load the

122

program counter with this address whenever a call or jump was detected. In

practice however, the delay due to loading the program counter and driving the

address pins would be too long. Therefore, a latch on the board- TARGET

ADDRESS LATCH- captures the field that would contain the target address, on

every incoming instruction- I/D asserted (Figure 5.9). Whenever a jump or call is

detected on the processor- FSHCNTL asserted- this address is used to access

memory, instead of the addresses coming from SOAR. This mechanism is known

as a Fast Shuffle mechanism.

I/D

SOAR

FSHCNTU

address

load

TARGET
ADDRESS LATCH

I:L

output enable

Figure 5.9- Fast Shuffle Mechanism

MEMORY

In order for this Fast Shuffle mechanism to work, SOAR must supply the

board with two signals. The first signal is the I/D signal. I/D indicates whether

the data coming into SOAR is an instruction or data. It is used to enable loading

of the TARGET ADDRESS LATCH on the board. The TARGET ADDRESS

LATCH must only be loaded on incoming instructions. Loading of this latch

occurs in. phase 3. Therefore, I/D must be valid by phase 3.

123

The second signal needed is FSHCNTL. This signal indicates that the off

chip TARGET ADDRESS LATCH is to be used to access memory. The output

of the TARGET ADDRESS LATCH is enabled according to this signal. This

signal should be valid as early as possible in the SOAR cycle because a memory

access takes the entire cycle.

2.5. Reset

Both boards have the ability to reset SOAR by using the RESET input signal

to SOAR [Blom83], [Brow85], [Samp85]. In this way SOAR is initialized to a

known state. Resetting SOAR causes execution to begin at the designated reset

address, FFFFFFO, and interrupts to be disabled. SOAR executes NOPs during

reset.

2.6. Loading Characteristics

The two boards were designed using Schottky and standard TTL parts.

Therefore, all outputs of SOAR are required to be able to drive at least one

Schottky TTL load. This means that output drivers must be able to source 50/iA

in the high state and sink 2mA in the low state. The output high and low levels

must also correspond to TTL levels - greater than 2.7volts and less than .5volts

respectively.

Output drivers are loaded down by package capacitances. They must drive

the pin on the SOAR package, one other TTL package, and any board routing

between the two packages at the required speed. This capacitance was assumed

to be 20pF for simulations.

124

2.7. Size And Power

The size of the chip was restricted by processing equipment. The largest die

size that MOSIS can handle is 7.8mm by approximately 10.5mm. If this

restriction did not exist, the size would have been limited by the package cavity.

SOAR fits into an 84 pin grid array package.

Another important restriction is the maximum power dissipation allowed.

Excessive power dissipation can lead to device failure or can necessitate special

cooling systems. The package rating of the 84 pin grid array limited the power

dissipation to 2.5 watts.

3. Process

Process design provides the actual physical structures and their electrical

characteristics, from which the processor will be made. It is at this level that

much of the groundwork is laid for the final speed, area, and power of the

processor. From the start it was known that SOAR would be fabricated through
MOSIS, a DARPA sponsored fabrication service for universities. It solicits

companies that are interested in fabricating university chips and characterizes
their processes. This process data along with a schedule of process starts is
available to universities. In order to have a chip fabricated, the project layout in

CIF format, is sent to MOSIS along with required information about it. MOSIS

then submits it to an appropriate company for fabrication. Therefore, in this

situation all the outputs of the process design level - devices and layers available,

parameters, and design rules - become external inputs for processor design.

MOSIS presently supports a variety of technologies - 4 micron NMOS, 3

micron NMOS, and 3 micron CMOS - with plans for smaller geometry CMOS

processes in the future. Several suppliers service MOSIS for any one of these
technologies. All lines target their parameters for similar values. Available from

125

MOSIS are target parameters for their technologies. MOSIS also supplies actual
parameters for completed runs. Process parameter information for the SOAR
design was taken from measurements of wafers from previous runs and target
parameters. The measured parameters were more conservative and therefore
were used for most simulations. Some simulations were done with the target

parameters and then compared with the simulations using the measured
parameters. A factor of slightly more than two was observed in the speed

simulations.

3.1. Devices and Device Parameters

SOAR was designed for MOSIS' 4 micron NMOS process. Available active

devices in this technology are NMOS enhancement and depletion transistors.

Measured threshold voltages for these devices were .Ovolts and -2.5volts

respectively. Tables 5.11 and 5.12 summarizes the SPICE level 2 model

parameters for these devices.

Parameter Description

VTO Threshold voltage with zero body bias

GAMMA Body effect

TOX Gate oxide thickness

KP Transconductance- low field

UO Mobility- low field

LD Lateral diffusion

CJ Junction area capacitance- zero bias

CJSW Junction sidewall capacitance- zero bias

LAMBDA Channel length modulation

VMAX Maximum electron velocity to degrade mobility

UEXP Fitting parameter for mobility degradation

UCRIT Fitting parameter for mobility degradation

Table 5.11- Device Parameters

126

Parameter Enhancement Depletion Units

Measured Target Measured Target

VTO .6 .8 -2.5 -2.6 V

GAMMA .40 .65 .51 .56 yr

TOX 850 850
0

A

KP 17.2 34 18 35 /iA/V2

UO 350 366 cm2/Vs

LD .5 .5 P

CJ 1.3xl0'8 1.6xl0"8 F/cm2

CJSW 3.5xl0"10 3.5xl0"10 F/m

LAMBDA .01 .015 V1

VMAX 4xl04 3xl04 m/s

UEXP .23

UCRIT 2.6xl05 V/cm

Table 5.12- 4micron NMOS parameters

127

The speed difference between simulations done with target and measured

parameters is due primarily to the discrepancies of the transconductance

parameters, KPs.

Available passive devices include resistors and capacitors. Except for one

type of capacitor, these devices are all parasitics and formed by a single mask

layer. These parasitics are considered in the next section since only one mask

layer is needed to form them. The exception to this is a capacitor formed by the

implant, active area, and polysilicon layers (Figure 5.10). The polysilicon layer is

the positive plate of the capacitor and the implanted area is the negative plate.

The implanted active area is the same structure as the channel of a depletion

128

transistor. The polysilicon layer acts the same way as the gate of the depletion

transistor. Therefore, as long as the polysilicon layer is more positive than the

implant area, the implant area or negative plate will be conductive, just as a

depletion transistor's channel is conductive when its gate is more positive than its

source. The capacitance of this device is determined by the gate oxide thickness
o

and is Alff/p .

+

V,
iiraliiJramim

v/»y
\ mum:::

s\^^^^^\\\\\\\\\\i

1

Al =
+ -

Figure 5.10- NMOS Capacitor Device

3.2. Layers and Layer Parameters

Mask layers of the MOSIS 4 micron NMOS process are summarized in Table

5.13. Two contact layers are available. The standard contact layer connects

metal and diffusion or polysilicon. Buried contacts are also available to connect

polysilicon directly to diffusion. Three interconnect layers are available - metal,

diffusion, and polysilicon.

Layer Resistance Capacitance

Active/Diffusion 20nyfcj .16ff/p area

.35ff//f perimeter

Implant

Buried Contact

Polysilicon 50% .41ff/|i2 gate
.06ff//i2 field

Contact

Metal •03% .05ff//i2

Overglass

Table 5.13- 4micron NMOS Layers

129

3.3. Design Rules

Design rules for the MOSIS 4 micron NMOS process are lambda based, Mead

Conway style design rules with lambda equal to two microns [Mead80]. For a

complete description of these design rules see Appendix A. Principal single layer

rules are summarized in Table 5.14. Minimum transistor dimensions are 4

microns for both the length and width.

Layer Minimum Width Minimum Spacing

Active/Diffusion 2X 3X

Polysilicon 2X 2X

Metal 3X 3X

Contact 2Xx2X

Table 5.14- Principal Single Layer Design Rules

130

4. References

Blau83a] Blau, R.; 'Paging on an Object-oriented Personal Computer', M.S.
Report, Computer Science Division, EECS Dept., University of California,
Berkeley, Ca., 1983.

plau83b] Blau, R.; 'Tags and Traps for the SOAR Architecture', (Unpublished)
Proceedings of 292R- Smalltalk on a RISC Architectural Investigations, Computer
Science Division, EECS Dept., University of California, Berkeley, Ca., April 1983.

[Blak83] Blakkan, J.; 'Register Windows for SOAR', (Unpublished) Proceedings of
292R- Smalltalk on a RISC Architectural Investigations, Computer Science
Division, EECS Dept., University of California, Berkeley, Ca., April 1983.

[Blom83] Blomseth, R.; Davis, H.; 'The Orion Project- A Home for SOAR',
Unpublished) Proceedings of 292R- Smalltalk on a RISC Architectural
nvestigations, Computer Science Division, EECS Dept., University of California,

Berkeley, Ca., April 1983.

grow85] Brown, E. W.; 'A Virtual Memory CPU Board with a Large Cache',
.S. Report, Computer Science Division, EECS Dept., University of California,

Berkeley, Ca., January 1985.

[Kate83] Katevenis, M. G. H.; 'Reduced Instruction Set Computer Architectures
for VLSI', Ph.D. Thesis, Computer Science Division, EECS Dept., University of
California, Berkeley, Ca., 1983.

|Mead80] Mead, C; Conway, L.; 'Introduction to VLSI Systems', Addison-Wesley
Publishing Co., Reading, Ma., 1980.

[Samp85] Samples, A. D.; Klein, M.; Foley, P.; 'SOAR Architecture', T.R.
UCB/CSD/85/226, University of California, Berkeley, Ca., March 1985.

[Unga84] Ungar, D.; Blau, R.; Foley, P.; Samples, A. D.; Patterson, D.;

131

'Architecture of SOAR: Smalltalk on a RISC' 11th Annual International
Symposium on Computer Architecture, Ann Arbor, Mi., June 1984.

132

Chapter 6

Preliminary Design

SOAR Case Study

Processor design is started with the preliminary phase after specifying the

problem and the external inputs. As previously described, possible circuit and
interconnect schemes are explored during this phase. Figure 6.1 shows the portion

of the methodology that corresponds to the preliminary phase. According to the

proposed methodology the two sides of the preliminary phase flow diagram are
first considered separately during this phase. The flow diagrams for this are

shown in Figures 4.19a and 4.19b for a full custom chip. SOAR was somewhat
restricted from this. As previously discussed, the process was not open to

modifications by the chip designers. Therefore, the process design level does not
exist on the SOAR flow diagrams. Outputs of the process level are external

inputs as outlined in the previous section of this case study. Figures 6.2a and 6.2b
show the flow diagrams for the first part of the preliminary phase of the SOAR
design. As previously discussed and indicated by the flowchart, the preliminary
circuit and preliminary interconnect methodology flow diagrams are considered
separately and therefore, may be considered simultaneously (Figure 6.1). Initial
design proposals for the microarchitecture, circuit, and interconnect levels were
developed for SOAR during the first part of the preliminary phase.

start

1
Preliminary

CircuitC
Preliminary
Interconnect

C
Preliminary

Compare

to circuit design

J

lot ok

Figure 6.1- Preliminary Phase

Preliminary
Circuit

architecture,
system specifications

available
functions

desired
functions

available
parameters and devices

Figure 6.2a- Preliminary Circuit Step

133

architecture,
system specifications

r>.„i;™;«o™ \ available / \ desiredPreliminary \ interconnect interconnectInterconnect) d^SSitoV /characteristics

available
parameters and layers

134

Figure 6.2b- Preliminary Interconnect Step

Design moves to the preliminary compare step after the preliminary circuit

and preliminary interconnect steps. Design levels common to both the

preliminary circuit and preliminary interconnect steps are compared during the
preliminary compare step (Figure 4.19c). The preliminary compare step for
SOAR (Figure 6.3) is simpler than that of a full custom design (Figure 4.19c).
Once again, this is because the process was not open to modification by SOAR

designers. Only the microarchitecture level was compared in the preliminary
compare step for SOAR. If this comparison reveals no discrepancies between the

designs resulting from the preliminary circuit and preliminary interconnect

steps the preliminary phase is completed. If discrepancies do exist design must

return to the preliminary circuit and preliminary interconnect steps until the

discrepancies are resolved.

Preliminary
Compare

from
preliminary
circuit step

from
preliminary

interconnect step

Figure 6.3- Preliminary Compare Step

135

i. Preliminary Circuit

The preliminary circuit flow diagram is shown in Figure 6.2a. As previously

discussed, there are two aspects to microarchitecture design - specification of the

functions to be done by the processor and coordination of the units that perform

them. Therefore, early in this step as part of microarchitecture design, the

instruction set is examined to determine the operations that must be performed

and the order that they may be performed in. The operations that must be

performed become the desired functions output of the microarchitecture level.
The order that they may be performed in, provides a starting point for the

behavioral aspect of microarchitecture design.

1.1. Desired Functions

1.1.1. ALUs

The SOAR architecture was first examined to determine the necessary

arithmetic and logic units. The instruction set was most important in

determining the operations to be performed. This instruction set was discussed in

detail in the preceding section on external inputs [Samp8$]. Table 5.5 summarizes

the instructions and the operations that they require. A list ofoperations can be

extracted from this (Table 6.1).

Operation

Addition

Subtraction

And

Or

Exclusive or

Logical right shift- 1 bit

Arithmetic right shift-1 bit

Insertion, zeroing

Extraction, zeroing

Decrement- 5 bit latch

Increment- 3 bit latch

Decrement- 3 bit latch

136

Instructions

CALL,JMP,RET,ADD,SLL,LOAD(C),STORE

SKIP, TRAPi,SUB,LOADM,STOREM

AND

OR

XOR

SRL

SRA

INSERT

EXTRACT

LOADM,STOREM

RET

CALL

Table 6.1- Operations Required

In addition to the functions of Table 6.1, an inspection of the instruction

fields reveals the need for a sign extender. The second operand is either specified

by a register or a 12 bit constant that requires sign extension.

The register organization of SOAR was asecond part of the architecture that

required arithmetic units. As previously described, the registers are organized
into windows. The accessible register window changes with a procedure call or

return. A call decrements the window number and a return optionally increments

the window number. There are eight windows and the current window is pointed

137

to by a3bit latch - the current window pointer (CWP). Consequently, this 3bit
latch must contain an incrementer/decrementer.

Registers may be specified by their register number if they are in the current
window or by the memory location that they map into. Register contents of

previous windows may be in the register file or may have been written to
memory. Aspecial purpose comparator is used to determine the location of the
contents of registers from previous windows. This is the saved window pointer

comparator (SWP comparator).

The final arithmetic unit required by the architecture is an incrementer for

the program counter. This is used to sequentially address memory for

instructions.

1.1.2. Storage

The SOAR architecture suggested two main types of storage circuits -

temporary registers and the static register file cells. The special registers are

temporary registers. These include the shadow registers, program counter,

process status word, current window pointer, saved window pointer, and trap base

latch. Temporary registers are also used to latch instructions. Much of the state

of SOAR is contained in these latches. It was desirable to be able to single step

SOAR during testing. Therefore, it was decided that these latches would be

master/slave latches with a builtin refresh ability.

The other type of storage cell is the register file cell. The register file cell is. a

static RAM cell. It was desirable to avoid the refresh and clocking complexities of

dynamic memories and therefore static memory cells were chosen.

138

1.1.3. Random Logic

An inspection of the architecture and system requirements showed that there

would be a significant amount of random logic in SOAR [Samp85]. Instructions

and register specifiers must be decoded. Many types of traps must be detected.

This necessitates tag examination, detection of illegal opcodes, and detection of

window underflow and overflow. Conditions must be checked on skip and trap

instructions. To save design time and minimize errors a regular structure was

desirable for implementing the random logic functions. CAD tools were available

for automatic PLA generation. Therefore, it was decided that as many of these

functions as possible would be implemented with PLAs.

PLAs implement an AND function followed by an OR function (Figure 6.4).

The number of inputs to each AND and OR is variable but basically PLAs are

two level AND/OR functions. Register file decoding is naturally a single level

AND function. Thus, PLAs are not ideally suited for use as register file decoders.

Due to the large register file and therefore large number of register file decoders,

it was decided that PLAs would not be used for the register file decoders. These

decoders would be custom designed.

PLA
inputs

minterms

Figure 6.4- PLA Function

139

1.1.4. Drivers

The fourth major category of necessary circuits were drivers. Drivers were

needed for many large loads - datapath control lines, register file word lines, PLA

outputs, and as pad drivers.

The datapath width was 32 bits as required by the word size. Most control

and word line drivers were therefore required to drive a high fanout and the

accompanying routing across the datapath. Many of the control signals had to be
gated with clocks. Depending on the signal, control lines could be enabled with
either a high logic level or low logic level. Control line drivers had to be designed

for all of these possibilities.

PLA outputs typically had few gates to drive but large routing loads. This

necessitated drivers, but these drivers did not need to be as strong as the control

and word line drivers due to the reduced fanout.

The strongest drivers were needed to drive the output pads. These drivers

had to drive the package pins and meet Schottky TTL requirements. These

requirements were summarized in Chapter 5, Section 2.6. Data outputs had to be

tristated; other outputs did not need tristating.

Table 6.2 summarizes the main types of drivers and their approximate loads.

Power consumption was a major consideration in driver design since large

numbers of drivers were needed.

Driver Fanout Routing Load Pins

Control line high high no

Word line high high no

PLA low high no

Pad low high yes

Table 6.2- Driver Requirements

140

1.1.5. Summary

Table 6.3 summarizes the desired functions input to the circuit design level

during the preliminary circuit step. Circuit design began in response to these

inputs. These functions covered most of the total circuit design. Characteristics

of these circuits had a major impact on the microarchitecture. During this

preliminary phase the microarchitecture is still fairly flexible. By considering

these characteristics intelligent decisions in the microarchitecture may be made.

However, as the total chip design was completed other unforeseen random logic

circuits appeared. This unforeseen random logic was minor, as it should be, and

had no noticeable affect on the microarchitecture.

Desired Functions Circuit Type

Addition ALU

Subtraction ALU

And ALU

Or ALU

Exclusive or ALU

Logical right shift- 1 bit ALU

Arithmetic right shift- 1 bit ALU

Insertion, zeroing ALU

Extraction, zeroing ALU

Decrement- 5 bits ALU

Increment- 3 bits ALU

Decrement- 3 bits ALU

Sign extension ALU

SWP comparator ALU

Increment- 28 bits ALU

Temporary registers Storage

Register file cell Storage

PLAs Random Logic

Register file decoders Random Logic

Control line inverter Driver

Control line NOR Driver

Control line OR Driver

Word line inverter Driver

Pad Driver Driver

Pad tristate driver Driver

Other drivers Driver

Table 6.3- SOAR Desired Functions (Preliminary Phase)

141

142

1.2. Circuits Available

1.2.1. ALUs

SOAR's main ALU is a full 32 bit ALU that performs addition and

subtraction. Subtraction is performed with the same hardware as the addition by

using a ones complement algorithm. Many methods exist for performing addition

[Sher84a] [Whal84]. All have their advantages and disadvantages. Tradeoffs

between such things as speed, power, area, and layout regularity greatly affect

VLSI adder design. For SOAR, a fast but relatively simple adder was desired

[Bose83]. It was not desirable to spend large amounts of area and design time on

complex carry lookahead circuitry. With this in mind, a carry bypass scheme

used by Siemens Research Laboratories was chosen [Pomp82]. Carry lookahead is

done for each block of four bits. Figure 6.5 shows the original carry lookahead

circuitry for a four bit block. The Cin line is precharged high for increased speed

during evaluation.

precharf

VddJll
and<n+3> —

xor<n+3> —

Cin<n+4>

VddJll

and<n+2>_

xor<n+2> —

VddJll

and<n+l>

xor<n+l>

Vdd_Tl

and<n>

xor<n>

evaluate

j(M15 ^

|[M14 ^

|[M13 _|

j[M12

Cin<n>

143

node Y

M8||__xnor<n+3>

|_xnor<n+2>"£i

M6]|| xnor<n+l>

nor<n>N15][_jc
|[M4_L-

Figure 6.5- Four Bit Carry Generation- Siemens Scheme

For a single bit, the carry is described by:

Cout<n>= Cin<n+1>= A<n>B<n> + A<n>Cin<n> + B<n>Cin<n>

A single gate to implement this function is shown in Figure 6.6. Node X

corresponds to the precharged Cin<n> signal. The single bit carry of Figure

144

6.6, may be implemented with precharging of the Cin<n> and Cin<n+1>

signals as shown in Figure 6.7. The function A+B formed by transistors Ml and

M2 in Figure 6.6 must be replaced by AffiB - M3 - when Cin<n> is precharged.

If it is not, Cin<n> will be determined by A<n> and B<n> for the case when

both A<n> and B<n> are high, which is incorrect.

These individual carry blocks are chained together to form Cin for each bit

of the adder. When chained together the M3 transistors of each bit form a series

of pass transistors that Cin must propagate through - transistors M12 through

M15 in Figure 6.5. Propagation through a large number of pass gates is

inherently slow. Therefore, hardware to bypass these pass gates is added to each

group of four bits - transistors M4 through Mil ofFigure 6.5. When all four pass

gates are on, Cin<n> will slowly propagate through transistors M12, M13, M14,

and M15 to become Cin<n+4>. Meanwhile, Cin<n> is rapidly inverted once

to become Cin<n> at node Y, and then again to form the Cin<n+4> output.

Vdd

sA Cin<n+1>

A<n>
™i urn

A<n>,
^[Ml M2lte<n> —IL

Cin<n>irJ NodeX B<H>

i
Figure 6.6- Single Bit Carry- No Precharge

145

Vdd

prechaiw ,,
Um<n+i>

trge_|r-|

A+B_,rJi3 A<i%|
B<n>r

<Jm<n> J
evaluate—Jr

Figure 6.7- Single Bit Carry- Precharge

This carry bypass scheme meets the requirements of minimum extra

complexity and area spent on lookahead circuitry. The bypass circuitry

incorporates eight extra transistors for every four bits and may be simply

duplicated for each group of four bits. The area occupied by the bypass circuitry

accounted for 10% of the SOAR ALU. Pomper, et. al. reported a 35ns, 32 bit

carry propagation time for their NMOS technology, using this scheme [Pomp82].

Allowing for technology differences, less than 100ns was expected for a 32 bit add

with this scheme on SOAR [Bose83].

Another common method of carry generation is the ripple carry technique.

This scheme uses no carry lookahead hardware. The carry output of any given

bit is simply used as the carry input for the next most significant bit. The

advantage of ripple carry adders is their simplicity. However, this type of adder

is inherently slower for a large number of bits. Therefore, on SOAR it was used

only when few bits were to be added - the 5 bit decrementers - and for large adds

when speed was not thought to be a factor - the 28 bit incrementer for the

program counter and the SWP comparator.

146

The SWP comparator compares the saved window pointer and an address of

a memory reference to determine if the contents of the memory location are

stored on chip or off chip. The saved window pointer points to the address of

register 0 of the last window written to memory. The comparison done by the

SWP comparator is:

[SWP<27:4> - address<27:4> -1]<27:7> = 0

A ripple carry adder is used to perform this 24 bit computation and then bits 7

through 27 of the answer are NORed together to check for 0 (Figure 6.8).

SWP/>

art/lrpgg y ^

Pointer to
21 ~ Register

*-' (Address
is on chip)

Figure 6.8- SWP Comparison

Another adder required by SOAR was a 3 bit incrementer/decrementer.

Since only three bits were involved it was decided that it would not be very

difficult to compute the output for all three bits in parallel. Circuits for this are

shown in Figure 6.9.

147

increment

<2>

<1>

A<0^ F<0>

A +/-1 = F

Figure 6.9- Three Bit Incrementer/Decrementer

Byte operations require an inserter and extractor, as previously described

(Ch.5, Sec.1.5). Figure 5.7 shows a block diagram for insertion and extraction.

Insertion and extraction are performed on the first operand. The byte to be

inserted or extracted is specified by the two least significant bits of the second

operand. Figure 6.10 shows the portion of the inserter/extractor that the first

148

operand flows through. Control lines are set according to Table 6.4. Control

lines ex3, ex2, exl, exO/in, in3, in2, inl, and inO/ex cause the appropriate input

byte to be routed to the correct output byte. Signals in3*/ex, in2*/ex, inl*/ex,

and inO* cause all other output bytes to be zeroed. The two least significant bits

of the second operand are decoded to set the appropriate control lines.

INAm<3l>Jcl
INAm<30^J 1
INAm<29^J=l
INAm<28^Jtl
INAm<27>J 1
LNAm<26>J =1
INAm<25^JC
INAm<24i_ri

INAm<23^

LNAm<22it

INAm<21>

LNAm<20^

INAm<19>

INAm<18^

INAm<17^
INAm<16^.

INAm<15^

INAm<14^

INAm<13^

INAm<12^

INAm<llX

INAm<10>

INAm<9>.

INAm<8>

INAm<7>

INAm<6>

INAm<5>

INAm<4>

INAm<3>

INAm<2>

INAm<l>.

INAm<0>

Figure 6.10- Inserter/Extractor

_Ain<31>

Ain<30>

_Ain<29>

Ain<28>

j\in<27>

Ain<26>

*_Ain<25>

JUn<24>

Ain<23>

Ain<22>

Ain<21>

Ain<20>

Ain<19>

Ain<18>

Ain<17>

Ain<16>

Ain<15>

Ain<14>

Ain<13>

Ain<12>

Ain<ll>

Ain<10>

Ain<9>

Ain<8>

Ain<7>

d£=l—Ain<6>
4i1—> Ain<TR->
£ 5=i—Ain<4>
i 5==>-Ain<3>

Ain<l>

Ain<0>

Operation 2 LSBs of

2nd Operand

Extract 0

Extract 1

Extract 2

Extract 3

Insert 0

Insert 1

Insert 2

Insert 3

Enabled Control Lines

exO/in, inO/ex, in3*/ex, in2*/ex, inl*/ex

exl, inO/ex, in3*/ex, in2*/ex, inl*/ex

ex2, inO/ex, in3*/ex, in2*/ex, inl*/ex

ex3, inO/ex, in3*/ex, in2*/ex, inl*/ex

exO/in, inO/ex, in3*/ex, in2*/ex, inl*/ex

exO/in, inl, inO*, in2*/ex, in3*/ex

exO/in, in2, inO*, inl*/ex, in3*/ex

exO/in, in3, inO*, inl*/ex, in2*/ex

Table 6.4 Insert/Extract Control Lines

149

Sign extension is also performed by an array of pass transistors (Figure 6:11).

As previously discussed (Ch.5, Sec.1.5), bit 7 of the immediate constant is the bit

to be sign extended. Bits 8 through 11 of the immediate constant become the tag

bits of the 32 bit sign extended immediate (Figures 5.5 and 5.6). The location of

bits 7 through 11 of the immediate depend on the instruction type - store or non-

store. Store instructions select bits 19 through 22 of the instruction as the tag

bits and bit 18 as the sign extension bit. For other instructions bits 8 through 11

become the tag bits and bit 7 becomes the sign extended bit.

store store

instruction < 11 >
instruction < 22 >
instruction< 10>
instruction< 21 >
instruction<9>
instruction < 20>
instruction<8>
instruction< 19>

instruction<7>
instruction< 18>

instruction<6>
instruction<5>
instruction<4>
instruction<3>
instruction<2>
instruction<1>
instruction<0>

Figure 6.11- Sign Extension

150

^sign extended
immediate

1.2.2. Storage

A basic master/slave latch with a built in refresh capability was designed for

the temporary registers (Figure 6.12). Multiple load transistors can be used to

selectively load data from one of many inputs. Data is loaded into the master

section by enabling one load transistor. The step transistor allows data to be

loaded into the slave section from the master section. Enabling the refresh

bus A
enable A

busB
enable B

Vdd

152

Figure 6.13- Static RAM Cell

Both types of storage cells read data onto precharged buses. The speed of

the read operation may be approximated using a simple resistor/capacitor model

for the bus (Figure 6.14). Figures 6.15 and 6.16 show the propagation delay of the

read operation as a function of Rbus and Cbus. According to SPICE simulations,

propagation delays of 24ns to 44ns could be expected for the latch cell and 14ns to

40ns for the register file cell, for loads up to 2.5pF and lOKfi.

drive from
the storage >.

cell

Rbus

AAAAr
Bus

Cbus
l
i

Figure 6.14- Simple RC Bus Model

151

transistor causes the master node to be updated from the slave section. Data

from the slave section is read onto a precharged bus by a low logic level at the

read enable input. Due to the master/slave arrangement reads and writes to the

same register may be done simultaneously. A read retrieves the old data from the

slave section while a write puts new data into the master section.

inputs
1 to n

read enable

precharged
bus output

t>-l[*>/4doA

slave
node

Figure 6.12- Master/Slave Latch

Static RAM cells were used for the register file. A previous Berkeley

microprocessor, the RISC H, also had alarge register file, similar to that of SOAR

[Sher84b]. The register cell design of RISC II was successful and therefore used
on SOAR (Figure 6.13). Writes are accomplished by putting the data that is to

be written on busA and its complement on busB. Both enableA and enableB are

enabled during a write. This is necessary to override the old data of the cell.

Reads are accomplished by selecting either enableA or enableB depending on

which bus is to be used for the read. Thus, reads from two of these registers may

be done simultaneously. Only one write can be done at a time. Unlike the

master/slave latch, reads and writes may not be done simultaneously.

Vbus-

delay (ns)

50

propagation delay
« »

us=10K

Rbus=lK
Rbus=10,100

Cbus (pF)
0 0.5 1.0 1.5 2.0 2.5

Figure 6.16- Static RAM Propagation Delay

154

1.2.3. Random Logic

PLAs are used for much of the random logic on SOAR. Using CAD tools

available at Berkeley, PLAs can be generated automatically [VanD82] [Laru83]

[Scot85]. PLAs are composed of two level AND/OR functions that are realized by
NOR/NOR configurations on SOAR (Figure 6.17). Input buffers to the PLAs are

two sequential inverters (Figure 6.18). Buffered true and complement forms of the

input signal are available from this input circuit. This input buffer was the only
one incorporated by Berkeley's PLA CAD tools at the time of the SOAR design.

Since then other input buffers have been made available to the CAD tools

[Ober85).

delay (ns)
a

50..

propagation delay
< •

r2ns

Rbus=10K

[Rbus=100, IK
Rbus=10

Cbus (pF)
0 0.5 1.0 1.5 2.0 2.5

Figure 6.15- M/S Propagation Delay

153

156

Table 6.5- PLA Speed Estimates

Preliminary circuit design of the register file decoders was greatly influenced

by the register window organization and the large number of registers - 72. Nine

windows of eight registers each exist in the register file. The first significant

implication of this is that 7 bits of register address must be decoded to access the

specified register. Address decoding is inherently an AND function. Thus,

decoding could have been implemented in one level with either 72 seven input

NAND gates or 72 seven input NOR gates (Figure 6.19). Single level decoding

with either NAND or NOR gates would have required a large area due to the

large number - 72 - of high fan in - 7 - gates. The single level NAND decode

also had the disadvantage of being slow due to high fan in. The NOR method

would have had high power dissipation since all gates except for the selected one

would have been on.

PLA)""^)zT>- PLA outPut
inputs) r\S~^

PLA
inputs

PLA output

Figure 6.17- PLA Function

Vdd Vdd

PLA input

FLA mput

Figure 6.18- PLA Input Buffer

155

Speed estimates for the PLAs were obtained with CRYSTAL simulations of

three sizes of test PLAs [Oust85]. Table 6.5 summarizes these speed estimates.

decoder
inputs

decoder
inputs

Figure 6.20- Two Level Decode

158

word line

word line

Figure 6.21 shows the basic SOAR decoding scheme used for the 64 local

registers. Two NOR gates are used for the first level of the decode. They are

enabled if the register number specifies a local register. These NOR gates decode

the three address bits of the current window pointer that specify the register

window. One NOR decoder selects a given window when that window

corresponds to the low registers - rO to r7. The other NOR decoder selects the

same, window when the CWP has been decremented and the same 8 registers

correspond to the high registers - r8 to rl5. The second level of the decode, the

NAND gate, decodes the register number within the window.

decoder

inputs

decoder

inputs

NAND

NOR

Figure 6.19- Single Level Decode

157

word line

word line

Two methods of two level decoding were considered (Figure 6.20). Both

methods involve two sequential 4 input gates. The second level gate enables the

word line driver of the register file. Therefore, one second level gate exists for

each register: 72 total second level gates are required. The first level gate has an

enable input and three address inputs. Thus, only eight first level gates are

required. The first method consists of a four input NAND gate followed by a four

input NOR gate. This again has the disadvantage of high power consumption

because all 72 second level NOR gates are on - low output - except the one for

the selected register. One first level gate is on, resulting in a total of 72 gates

consuming power. In the second two level method a four input NOR gate is

followed by a four input NAND gate. At any one time, one NAND gate and

seven NOR gates will be on resulting in a total of eight gates consuming power.

This scheme was chosen for SOAR due to its lower power consumption.

Vdd

IR/4 IP6/4

delay (ns)

R=20K

R=10K

R=1K
R=100

j j 1 j_^ load (pF)
0 0.5 1.0 1.5 2.0 2.5

Figure 6.22- Inverting Driver and Propagation Delay- Dl

160

local= bit 4
of specifier

bit 3 of specifier-
chooses highs or lows

decodes for lows

decodes for highs

bits0,l,2
of

specifier

Figure 6.21- SOAR Register File Decode

159

word line
driver

1.2.4. Drivers

Typical Mead-Conway drivers and their propagation delays for various loads
are shown in Figures 6.22, 6.23, and 6.24. Other important characteristics for the

evaluation of a driver is its power dissipation and output high level. Drivers Dl

and D2 dissipate static power in both the input and output stages. The output

stage must be large to drive the load and this results in high static power

dissipation in the output stage. Output high levels of Dl and D2 are Vdd. In
contrast to Dl and D2 is D3. D3 has no static power dissipation in the large

output stage, resulting in lower power dissipation than in Dl and D2. However,
its disadvantage is that the high output level is a threshold voltage below the

supply voltage.

Vdd

delay (ns)

^[4/16 ^6/4
|[j/4 itJe/4

R=20K

R=10K

R=1K
R=100

0 0.5 1.0 1.5 2.0 2.5
load (pF)

Figure 6.24- Inverting Driver and Propagation Delay- D3

162

As previously described, many large fast drivers were needed for control

lines, word lines, and the output pads. Therefore, it was desirable to design

drivers with low power dissipation and an output high level of Vdd. Bootstrap

drivers meet these requirements. A basic two stage bootstrap driver is shown in

Figure 6.25. The only static power dissipation in these bootstrap drivers is in the

small input stage. Thus, power dissipation is low as in driver D2. As the output

of this type of driver rises, the drain of transistor M2 rises above Vdd due to the

capacitive coupling between the drain and Vout through the bootstrap capacitor,

Cv. The source of M2 follows the drain above Vdd. Thus, the gate of Ml rises
D

161

Vdd

delay (ns)

R=20K

j j j j j_*load (pF)
0 0.5 1.0 1.5 2.0 2.5

Figure 6.23- Non-Inverting Driver and Propagation Delay- D2

164

Vdd

ffl/T
Xpi^4/4 | ^2/4||J4/16 =j= -58pF

P/fi IQ6/4

Figure 6.26a- Control Line Inverter

Vdd

IL|^2/4H|4/16 =j= -58pF

Figure 6.26b- Control Line NOR

Vdd

H/4
|Q2/4|[4/16^= .58pF

=£> Hrt/fi IQ6/4

Figure 6.26c- Control Line OR

163

above Vdd, allowing the output to rise toVdd. The drawback of these drivers is

that they require more area to accommodate the bootstrap capacitor. C^ must be

large enough to quickly supply charge to charge up the gate capacitance of Ml,

and the parasitic capacitances C - and C 2- The diffusion to substrate parasitic
capacitance, C «, is proportional to the size of Cb and adds to the load of this

driver. A variety of bootstrap drivers were designed to meet the desired driver

functions of Table 6.3 (Figure 6.26) [Kong85]. SPICE simulations of the

propagation delays as functions of loads for these drivers are shown in Figure

6.27.

Vdd

Vout

Vin

Figure 6.25- Two Stage Bootstrap Driver

R=20K

delay (ns)
A

50

40.

R==10K 30.

R=1K 20J.
R=100

10...

load (pF)

0 0.5 1.0 1.5 2.0 2.5

Control Line Drivers

0 0.5 1.0 1.5 2.0

Word Line Drivers

delay (ns)
A

50..

40..

30..

20..

10..

0+-

IR=200
|R=100
ft=50

delay (ns)
A

50.

166

jR=20K

R=10K

R=1K
R==100

load (pF)

2.5

=200

=50

j | j j lj»d(pF)
10 20 30 40 50*

lbad(pF)

10 20 30 40 50*
Word Line Drivers Tristate Pad Drivers

Figure 6.27- Propagation Delays for SOAR's Bootstrap Drivers

1.3. Initial Microarchitecture Design

Early in the preliminary circuit step the instruction set was analyzed to

discover the operations to be performed and the order that they could be

performed in. The required operations were used by the circuit design level, as

just described. Meanwhile, the coordination of these operations provides a

starting point for microarchitecture design. Figure 6.28 shows one possible

Vdd

/M [4/7~3=.35pF
/fi IQ6/4

Figure 6.26d- Word Line Inverter

Vdd

L|Q60/4
i_28/4 =^3.2pFI l[i/4 T

Pfi/t 104/4

Figure 6.26e- Pad Driver

Vdd

!40/4
Vdd

165

At30/4

7

|[262/4 __3.2pF

-rO^il

enalble

2/4)152/4

i &. • | 1[504/4
|D2j4|[B2/4

Figure 6.26f- Tri State Pad Driver

time.

ADD, SUB, AND, OR
XOR, SRL, SRA, SLL

INS, EX

Ifetch Detect

TPF

Decode Detect

11.1.

Read

Alu Detect

TT

Decode

Write

CALL JMP

Ifetch Detect

TPF

Decode Detect
TT.T.

Alu

Ifetch

Detect

^ WO
Decode SWI
«*£
rwp.

RETi

Detect

JEE.

Decode Detect

ILL

Read

Alu Detect

WU

Decode GS

ModifyPC, CWP+
Tnts, Nil

Ifetch

Decode

Decode

MndifyPf!

Detect

TPF

Detect

TT.T.

Detect

SWI

SKIP, TRAPi

Ifetch

Decode

Read

Alu

Decode

Detect
TPF

Detect

TT.T.

Detect

SKIP

TI

Figure 6.28- Ordering for the Basic Pipeline Functions

168

167

ordering for the basic required functions of each instruction type. Trap detection

can take place any time after the information that must be examined to

determine if a trap situation exists, is available. Another variation, is that

decoding could have been done only once for each instruction instead of twice.

Thus, many variations are possible. However, certain functions can have only one

possible order. For example, Ifetch, decode, read, alu, and write must be ordered:

1. Ifetch

2. Decode

3. Read

4. Alu

5. Write

Address <- TB (traps only)

Instruction latch <- Memory[PC] then

PC <- PC+1

Decode op <-* Instruction latch[opcode field]

51 <-* Instruction latch[1st operand field]

52 <-* Instruction latch[2nd operand field]

D <-* Instruction latch[destination field]

Read ALUinputl <- r[Sl]

ALUinput2 <- r[S2] or

ALUinput2 <- immediate

DataOut <- r[S2] (stores only)

Alu ALUoutput <- ALUinputl op ALUinput2

Write r[D] <- ALUoutput

r[D] <- Dataln (loads only)

r[15] <- PC (calls only)

r[7] <- PC (traps only)

Compare ConditionValid <-* ALUoutput

DetectTrap TRAP <-* op,r[Sl],r[S2],ALUoutput,PSW,CWP,SWP,

ConditionValid,PageFault,IO

DetectSkip SKIP <-* op, ConditionValid

170

169

LOAD, LOADC STORE

Ifetch Detect EPF Ifetch Detect IPF

Decode Detect ILL Decode Detect ILL

Read Read

Alu Detect
TT

Alu Detect

Dfetch Detect

DPF
Store Detect

DPF

Decode Decode

Write Write

LOADM STOREM

Ifetch Detect IPF Ifetch Detect IPF

Decode Detect ILL Decode Detect ILL

Read Read

Alu Alu

Dfetch, Alu J

Dfetch, Alu, Write

Dfetch, Alu, Write

Detect

DPF
Store, Alu D*«*

1 DPF

Store, Alu

Store, Alu

Dfetch, Alu, Write

Dfetch, Alu, Write

Store,.

Store,.

Store,.

Store,.

Store

Alu

Alu

Dfetch, Alu, Write Alu

Dfetch, Alu, Write

Dfetch, Write

Alu

Write

Figure 6.28- Ordering for the Basic Pipeline Functions (cont.)

Each of the pipeline functions of Figure 6.28 may be expressed algorithmically:

Ifetch Address <- PC

172

when more than one pipeline function occurs simultaneously. For example, trap

detection on SOAR can be done in parallel with instruction execution for most

instructions. In a pipelined processor several instructions are in various stages of

completion at any one time. Each instruction in the pipeline is using a portion of

the processor resources, to complete the basic pipeline function that it is

processing. When all instructions have finished the individual pipeline functions

that they are working on, they synchronously move on to the next pipeline

functions and a new instruction is started. Thus, processor resources are more

fully utilized and the instruction rate is higher than on a processor that requires

an instruction to complete before the next one starts. In order for a processor to

be cleanly pipelined, most instructions must be able to execute with the same

ordering of functions. In this way resource conflicts between instructions do not

exist and the pipeline can run smoothly and continuously. An inspection of the

order of functions for the SOAR instruction set (Figure 6.28) reveals the following

function sequence to be common for most instructions:

1. Ifetch

2. Decode- for read and alu

3. Read

4. Alu

5. Decode- for write, DetectTrap

6. Write

This ordering was chosen as the basis of the SOAR pipeline.

A second consideration in the pipeline design is the way in which the basic

functions of the instructions will overlap. An estimate of the relative speeds of

each basic function, in addition to the function order, is needed to propose the

overlapping. This is one way that the circuits available input influences

microarchitecture design. As each of these functions is realized by circuits, the

171

PC <- PC+1

Nil r[0to5] <- BOOOOOOO (nil value)

CWP+ CWP <- CWP+1

CWP- CWP <- CWP-1

Ints PSW<1> <- 1

modifyPC PC <- ALUoutput

Dfetch Address <- ALUoutput then

Dataln <- Memory[Address]

Store Address <- ALUoutput then

Memory[Address] <- DataOut

Precharge All buses <- FFFFFFFF

*Assigned through random logic

All trap detection has been assigned to the DetectTrap function. Each type of

trap examines the relevant inputs on the right side of the TRAP statement and

generates a TRAP through random logic.

Once an ordering of the functions for each instruction has been proposed, the

pipelining and parallelism of the processor may be proposed. Parallelism arises

(Figure 6.30).

Instruction 1 Instruction 2 Instruction 3 Instruction 4

400

800

Ifetch

Decode

Read

Alu

Decode

Dpfftrt. trap

1200

1600

time
(ns)

Write

Phil

Phi2_

Phi3"L

Ifetch

Decode

Read

Alu

Decode

IW.Pfrt. trap

Write

Ifetch

Decode

Read

Alu

Figure 6.29- Pipeline- Realized SOAR

-» X X XX
20ns 100ns 20ns 100ns 20ns 100ns

Figure 6.30- Proposed Clocking- Realized SOAR

Ifetch

r

174

173

speeds of these functions can be more accurately determined through speed

analysis of the circuits. For SOAR, the overlap of the functions was proposed

before the circuits available input existed. Rough estimates of the function speed

were used to develop the pipeline overlaps (Table 6.6). Fetches were estimated to

require four times as much time as any other operation and therefore became the

pipeline bottleneck. Each instruction required a fetch since there was only one

memory port and no on chip instruction storage. Therefore, instructions could

not be started more frequently than once every 400ns.

Function Speed Estimate Reason

Ifetch 400ns system specifications

Precharge 100ns ?

Decode ? Ignored

Read 100ns Risen

ALU 100ns Siemens paper

Write 100ns RISC n

DetectTrap ?
•

Ignored

Table 6.6- Original Speed Estimates

Figure 6.29 shows the assignment of functions to time slots and the

overlapping of functions for sequential instructions. Each instruction fetch takes a

memory cycle as described in the system specifications (Ch.5, Sec.2.1). Each cycle

is then divided into three phases of approximately 100ns each, for decode, read,

and the alu operation during cycle 2 of an instruction, and for decode and write

during cycle 3. Underlaps of 20ns between phases were proposed for the clocks

176

schemes during the first cut, as done in SOAR, as long as the designers do not

forget that this first cut at timing is only as good as their estimates of circuit

speeds and clock requirements.

The second pass at microarchitecture design during the preliminary circuit

step has a more accurate idea of circuit speed and clocking due to the circuits

that are available and their timing characteristics. For the following discussion of

the second pass at microarchitecture design speed estimates from the circuits

available input are used. Table 6.7 summarizes the speed estimates of the circuits

described in this chapter, Section 1.2 that contribute to the basic pipeline

functions - Ifetch, decode, read, alu, and write.

Circuit Speed Estimate (ns)

PLA 100-200

Register file cell 20-25

Latch cell 30-45

ALU 100

Dl, D2 50-70

Word line driver 20-40

Control line driver 20-40

Table 6.7- Circuit Speed Estimate Summary

Table 6.8 summarizes the times for each of these basic pipeline functions based on

speed estimates of the circuits. The Ifetch primarily involves circuits outside the

processor. Decode assigns values to control and word lines from the instruction

fields, through the PLAs. These values must be driven to the places where they

175

1.4. Further Preliminary Microarchitecture Design

With a knowledge of the available circuits and their characteristics from

initial circuit design the microarchitecture design may be further refined

intelligently. This microarchitecture design in response to initial circuit design

closes the loop in the flow diagram for the preliminary circuit step (Figure 6.2a).

As indicated by the loop's existence, it is possible to go through a series of

iterations in the microarchitecture and circuit design if the original conceptions of

design at these two levels are very incompatible. At the other extreme, if the

original proposals are totally compatible, the microarchitecture would not need to

be refined at all in response to the circuits available input from the circuit level.

Realistically, most design will require at least one microarchitecture refinement

after the available circuits and their characteristics are known. Unfortunately, in

the SOAR project this was largely overlooked and would have made a difference

in a few key places. Consequences of this were that some optimality was lost and

some major redesign was done after most low level design was complete. The

time consuming low level redesign time could have been saved and a more optimal

processor achieved if the microarchitecture had been refined in response to the

circuit design at this stage. Although this was not done, a discussion of how it

might have been done for SOAR and future similar processors will be carried out

here for the purpose of a complete case study.

1.5. Pipeline

The first cut at the microarchitecture design defined the functions that the

circuits must perform and an ordering of these functions. The second part of

microarchitecture design involves the coordination of these functions. A

knowledge of the speed and clocking of the circuits is needed to smoothly

coordinate the functioning of the circuits. It is acceptable to propose timing

Function Circuits Circuit Total

-
Speeds Speed

Ifetch system 400ns 400ns

Decode PLAs 100-200ns 150-270ns

D1,D2 *50-70ns

Read word line drivers 20-40ns 50-85ns

register file cell 20-25ns

or

control line drivers 20-40ns

latch cell 30-45ns

Alu ALU 100ns 100ns

Write control line drivers 20-40ns 50-85ns

latch cell 30-45ns

DetectTrap PLAs 100-200ns 100-200ns

Table 6.8- Pipeline Function Speed Estimates

178

Using these speed estimates and the proposed assignment of phases into

cycles it can be seen that the cycle time was to be limited by cycle 2 - decode,

read, and alu (Table 6.9a). The cycle time can be estimated to be from 360 to

515ns because of cycle 2. Table 6.10 shows speed estimates for the basic pipeline

functions during the first and second passes of microarchitecture design. Decode

time was overlooked during the first pass. Knowledge of PLA speeds shows that

the decode time would be a significant contributor to cycle time.

177

are used by drivers such as Dl and D2. For the read function two operand

sources are considered - register file cells for the global and local registers, and

latch cells for the special registers. A read occurs when either word or control

lines enable the operand registers and the registers subsequently drive the buses to

the ALU inputs. The alu function involves the execution of the specified

operation. Writes are performed when control line drivers enable the output of
the ALU output latch onto buses, to be stored in the destination register. The

most complex trap detection is done primarily by the random logic of PLAs.

Cycle Functions Function Times Cycle Time

1 Ifetch 400ns 400ns

2 Decode 150-270ns 360-515ns

Read 50-85ns

Alu 100ns

Underlaps 60ns

3 DetectTrap or 100-200ns

Decode and 150-270ns 260-415ns

Write 50-85ns

Underlaps 60ns

Table 6.9a- Required Cycle Times- Realized SOAR

180

179

With the goal of a shorter cycle time in mind, other cycle and phase

assignments can be proposed. In an attempt to have all worst case cycle times no

worse than the time for Ifetch - 400ns - the alu function may be moved to cycle 3

(Figure 6.31). The second decode and the alu followed by trap detection functions

are done in parallel during the first part of cycle 3. The write function that

previously occupied the later part of cycle 3 is moved to the first part of cycle 4

so that it will not conflict with the read at the register file. Each cycle is now

composed of two phases (Figure 6.32). Phase 1 is limited by the alu function

followed by the trap detection function to be 200 to 300ns and phase 2 by the

read that takes 50 to 85ns. The total processor cycle time is now estimated at

290 to 425ns, which is closer to the limiting 400ns memory cycle time (Table

6.9b).

Function 1st Pass 2nd Pass

Speed Estimate Speed Estimate

Alu 100ns

Write 100ns

DetectTrap ignored

400ns

60ns

150-270ns

50-85ns

100ns

50-85ns

100-200ns

Table 6.10- Pipeline Function Speeds

182

Cycle Functions Function Times Cycle Time

1 Ifetch 400ns 400ns

2 Decode 150270ns 240-395ns

Read 50-85ns

Underlaps 40ns

3 Alu and 100ns 240-340ns

DetectTrap 100-200ns

or Decode 150-270ns

Underlaps 40ns

4 Write 50-85ns 90-135ns

Underlaps 40ns

Table 6.9b- Required Cycle Times- Optimized SOAR

181

184

registers, and interconnect resources such as buses, word lines, and memory ports.

Table 6.11 shows the basic pipeline functions, the circuit and interconnects that

they use, and their clock phase assignments. This analysis is carried out for the
realized and optimized versions of SOAR. Tables 6.12a and b pictorially show the

allocation of these resources for both versions of SOAR.

Basic Pipeline Resources Clock Phase Clock Phase

Function Real SOAR Optimized SOAR

Ifetch Address Memory Ports 1 1

Data Memory Ports 3 2

Decode PLAs 1 1

Read Register File 2 2

Word Lines- read 2 2

Bit Lines- read 2 2

Alu ALU 3

Write Register File 3

Word Lines- write 3

Bit Lines- write 3

DetectTrap PLAs 1

Table 6.11- Basic Pipeline Resources

Instruction 1 Instruction 2 Instruction 3 Instruction 4

400

800

1200

1600

Ifetch

.Decode.

Read

Decode

Alu
Detect trap

.Write.

time
(ns)

Ifetch

.Decode.

Read

Decode

...Alu.
Detect trap

Ifetch

.Decode.

Read

Figure 6.31- Proposed Pipeline- Optimized SOAR

Phil [
Phi2~L_i

20ns 200 to 300ns

j
20ns 50 to

85ns

Figure 6.32- Proposed Clocking- Optimized SOAR

Ifetch

r

183

1.6. Resource Allocation

Once the overlapping of the basic pipeline functions has been determined and

a clocking scheme proposed, resources can be allocated to specific time slots or
clock phases. Resources to be allocated include circuits such as the ALU and

186

register file resources have less idle time than other resources. It must be
remembered that all speed and clocking estimates are very rough at this point in

the design. If future detailed analysis of the register file timing reveals aneed for

more time, less free time is available and it may be difficult to accommodate the

register file. Therefore, a more detailed analysis of the register file resources

should be done at this stage in the design. A detailed timing analysis of the

register file resources requires aknowledge of the register file circuit (Figure 6.33).

Table 6.13 shows the order of events for the register file and the operation of the

word and bit lines. A read requires that the bitlines be precharged initially. This

is because the small depletion mode pullup transistors of the register file cell are

too weak to quickly pull the bit lines high. The larger, pulldowns can quickly pull

the bit line low during a read. During precharge the word lines must be disabled

to prevent the stored data from being destroyed. When reading from the register

file the appropriate word line is driven high and bit lines are selectively

discharged according to the data} in the register being read. Word lines must then

be disabled before writing to prevent a false write to the register that has just

been read. When writing to the register file word lines are enabled and large

drivers are used to overpower the inverters of the cells being written to.

Resource Phase 1 Phase 2 Phase 3

Address Ports X

Data Ports X

PLAs X

Register File X X

Word Lines X X

Bit Lines X X

ALU X

Table 6.12a- Resource Allocation- Real SOAR

Resource Phase 1 Phase 2

Address Ports X

Data Ports X

PLAs X

Register File X X

Word Lines X X

Bit Lines X X

ALU X

Table 6.12b- Resource Allocation- Optimized SOAR

185

From these tables it can easily be seen that all major resources, except the register

file resources, are used only once each cycle. The register file resources, including

word and bit lines are the most heavily utilized resources - twice each cycle. The

188

are compatible with the proposed clocking schemes. The realized scheme has

phase 1 available for precharge while the optimized version must use the 1/2
underlap for both word line disabling and precharging. However, the optimized

version has less resource idle time. The optimized design will have a faster cycle

time due to a more complete utilization of the resources. In particular 100%

utilization is planned for the most heavily used resource - the register file.

Step Real SOAR Optimized SOAR

Clock Phase Clock Phase

Precharge

Read

Disable

Write

Disable

1

2

2-3 underlap

3

3-1 underlap

1-2 underlap

2

2-1 underlap

1

1-2 underlap

Table 6.14- Register File Clock Phase Assignments

A final detailed analysis of the register file timing compares the times

required by the register file steps with proposed clock phase lengths for the

optimized SOAR (Table 6.15). The read and first disable are compatible with

their clock phase lengths. However, phase 1 is much longer than necessary for the

write, and the following underlap is too short for the disable and precharge.

Further optimization requires the balancing of these discrepancies. Phase 1 can

be split into philw and philp for the write and precharge operations respectively

(Figure 6.34). Other operations assigned to phase 1 can span philw and philp

(Figure 6.35). The total time required by philw and philp for the register

wordline 1

bitline 1 bitline 2

Figure 6.33- Register File Memory Cell

Event Word Lines Bit Lines

Precharge disabled- low drive high

Read enable- drive high selectively discharge

Disable disable- drive low idle

Write enable- drive high drive with data

Disable disable- drive low idle

Table 6.13- Register File Operation

187

A complete read/write cycle is inherently a five step process with this register

file cell. These steps must be assigned to the processor clock phases and register

file circuit design must compatibly provide the required functioning. Clock phase

assignments for these steps are shown in Table 6.14 for both the real and

optimized SOAR. Disabling is done during the underlap time between the clock

phases. Referring back to Tables 6.12a and b, it can be seen that both versions

100

0
Instruction 1 Instruction 2 Instruction 3 Instruction 4

400

Ifetch

Decode
Ifetch

Read

Alu
Decode

Detect trap
Decode

Ifetch

'

Read

Write
Alu

Decode
Detect trap

Decode

Precharge Ifetch

1

Read

800

1200

1600

time
(ns)

Figure 6.35- Pipeline- Optimized SOAR

1.7. Pipeline Exceptions

When designing the pipeline, a sequence of basic functions was chosen that

would accommodate most instructions. On SOAR all arithmetic, logical, shift,

and byte instructions could be handled by the proposed sequence easily (Figure
6.28). Returns, call, and jumps fit the proposed sequence with minor
modifications (Figure 6.36). For these three types of instructions, the alu function

is used to compute the target instruction's address. The time slot after the ALU

computation and before the write is used to modify the program counter using the
result of the target address computation. Nilling is a simultaneous write

operation to multiple registers and therefore is assigned to the write time slot.
Changing the CWP can be assigned to the read or alu time slot for both calls and

189

operations is 130 to 165ns. Thus, decode will still limit the total phil time with

its requirement of 150 to 270ns. Adding this extra clock phase allows the register

file disable and precharge steps to be moved into the register file idle time

following a write, that is required by the slower decode function.

Step Required Time Proposed Phase

Read 50-85ns 2 (50-85ns)

Disable 20ns 2-1 underlap (20ns)

Write 50-85ns 1 (150-270ns)

Disable 20ns 1-2 underlap (20ns)

Precharge 60ns 1-2 underlap (20ns)

Original
Phil

Philw

Philp

Table 6.15- Register Operations and Timing

_r

nPhi2

-» *•>* *&•**•
20ns write 2Pns! precharge J20ns read

50 to 85ns 60ns 50 to
85ns

Alu detect trap
100ns 100 to 200ns i

Figure 6.34- Clocking- Optimized SOAR

J

J

Load, bade, and store require

LOAD, LOADC

Ifetch
Decode
Read
Alu, Decode

I metcn U-
write

LOADM

Ifetch
Decode
Read
Alu, Decode
DTetcnT
Dfetch,
Dfetch,
Dfetch,
Dfetch,
Dfetch,
Dfetch,
Dfetch,
write

•am
Alu, Write
Alu, Write
Alu, Write
Alu, Write
Alu, Write
Alu, Write
Write

SKIP (valid)

Ketch
Decode
Read
Alu, Decode
uompare
Skip

extra

.extra

extra

STORE

Ifetch
Decode
Read
Alu, Decode

^ Store
write

STOREM

Ifetch
Decode
Read
Alu, Decode
Store, Alu
Store, Alu
Store, Alu
Store, Alu
Store, Alu
Store, Alu
Store, Alu
Store

TRAPi (valid)

Ifetch
Decode
Read
Alu, Decode
L/ompare

Trap

Figure 6.37- Instructions Requiring Extra Time Slots

102

one extra memory access cycle for their pipeline functions - Dfetch and store.

Load multiple and store multiple perform up to eight loads or stores and therefore

need up to eight extra memory access cycles. The memory is 100% utilized so

each extra memory cycle adds a cycle to the time needed to complete the

instruction. All skip and trap instructions require a compare operation. When

191

returns. Thus calls, returns, and jumps can easily fit into the proposed pipeline

and need no extra cycles for their completion.

time

Proposed
Sequence

Ifetch

Decode

Read

Alu

Decode

Returns

Ifetch

Decode

Read

Alu, CWP+

Decode, Detect

Jumps

Ifetch

Decode

Alu

Decode, Detect

Calls

Ifetch

Decode

Alu, CWP-

Decode, Detect

TWArt. twip *™r MnHifyPr trap, MndifyPC trap, ModifyPC

Write

Ifetch

Decode

Read

XIu
Detect trap

Write

Nil, Ints

Realized SOAR

Ifetch

Decode

Read,CWP+

Alu, Ints
Detect trj-

Nil

Ifetch

Decode

Detect trap
ModifyPC, Alu

Optimized SOAR

Write

Ifetch

Decode

CWP-

Detect trap
ModifyPC, Alu

Write

Figure 6.36- Returns, Calls, and Jumps in the Proposed Pipelines

In contrast to thb are skips, trap instructions, loads, and stores. They

require extra pipeline functions and therefore need extra time slots (Figure 6.37).

time
SKIP (valid)

Ifetch

WnHp

lead
Alu
rv»mn*TP Ifetch of instr.

ci^ip after skipped

STORE

Ifetch

IWiwip.

Read.
Am.

Store
Dprnrit

TWoHp

Write

194

TRAPi (valid) LOAD, LOADC

Ifetch

££OdfL
ead
JlL

ipaie.

TRAP

Ifetch

I
Am.

ead

Dfetch
Dprnrit

Ifetch of instr.
at trap vector

TWndp

Write

LOADM

Ifetch

rWnrip

Bead.
Alu.

Dfetch
TWnHp

Dfetch

ALL
TWnrfp

AIn, Write

Dfetch
TWnHp

A In Write

Dfetch
rwnHp

Dfetch

lite.MuWi
IWndP

Al" Write

Dfetch
Alii Write"
TWnHp

Dfetch
A'v Wi
IWaHp

rite

Dfetch

TWnHp

Write

Write

STOREM

Ifetch

ESodfi-
Read.
Alu.

Store.
HprnH

AllL

Store.
IWnHp

AllL

Store
Opcode

Alu

Store
TWoHp

AllL

Store
TWndp

AllL

Store.
rwnHp

AJu

StnrP

IWnHp

AllL

Stnrp

TWnHp

Figure 6.38- Multicycle and Conditional Instructions

At this point in the microarchitecture design, schemes are proposed to handle

the instructions that require extra cycles [Pend84]. It is desirable to handle these

more complex situations with the same pipeline and decoding mechanisms that

will be used for the simpler instructions. In this way extra hardware and

complexity are kept at a minimum. To do this, these multicycle instructions are

broken into a series of single cycle opcodes. Each single cycle opcode can be

193

the results of this compare are true extra cycles are needed to complete the skip

or trap. A skip requires one extra cycle - the cycle of the instruction to be

skipped. Traps require two extra cycles due to the compare, insertion of the trap

vector into the memory address latch, and fetching of the instruction at the

vector address. Cycle and clock phase assignments for these instructions are

shown in Figure 6.38 for the realized SOAR. Analogous assignments may be

made for the optimized SOAR.

store storeO

Ifetch

TWrtrfp

Read
111

Insert
storeO

&pfnHp TWnrtp

Store
TWaHp

Writp

storem • store7 i store6 = store5 • store4 store3

Ifetch

Decode.
Read.

6llL
£Code

Store

Insert
store7
TWoHp

llL6prnde
Store

Insert
store6

rwnHp

DpffnHie
Store

Insert
store5

All! •
Dficode

Store

Insert
store4

DprnHp

6£code
Store

Insert
6tore3

Dpforie

e

Store

store2

Insert
store2

IWoHp

Dprnrie

Store

store1

Insert
store1

TWnHp

AE
Dececnde

Store

Figure 6.39- Internal Opcodes for Multicycle Instructions (cont.)

196

storeO

Insert
storeO

TWhHp

IWnHp

Load and loadc cause the insertion of the loadO opcode into the pipeline.

This insertion is analogous to an instruction fetch except that loadO is generated

on the processor. LoadO sets control lines through the standard decoding

mechanisms, for the later parts of the load instruction. Both load and loadO

require the same number of cycles as the standard instructions. Any nonstandard

pipeline functions that they require, such as Dfetch, are compatible with the

195

accommodated by the basic pipeline functions. Thus, pipeline flow is
uninterrupted in these situations. Resource allocation for multicycle instructions
will fit into the same scheme as for the simpler one cycle instructions (Figure

6.39).

loadm ; load6

Ifetch

TWnri*

Head.
Int £CoZe" .

Dfetch

Insert
load6

TWnHp

111— 1

.Dfetch:
Write |

load6

Insert
load6
TWnHp

Write

time

opcode sequence

load,
loadc loadO

Ifetch

§2SF Insert
TWnHp Qprnde

Dfetch

Wnh

load5 iload4 \ load3 ;load2

Insert
loadS
rWnriP

la- 1
DprnHe .

Dfetch
Write

Insert
load4

IWnri*

Dfetcti
Write

Insert
Ioad3
TWaHp

Dfetch
Wjcite.

Insert
load2
DppoHi

AllL

Dfetch;
Write

loadl

Insert
loadl
pp<»nriP

PprnHie
Dfeicb

Wjite_

Figure 6.39- Internal Opcodes for Multicycle Instructions

loadO

Insert
loadO
TWnri<

Pprndt

197

pipelining of the standard functions. Stores are handled in a similar manner to
loads by the store, storeO instruction sequence. The fetched store instruction
causes the internally generated storeO opcode to be inserted into the pipeline.

The SOAR architecture also called for more complex multicycle instructions

- load multiple and store multiple. These instructions provide for the loading or
storing of up to eight regularly spaced memory locations. One extra cycle is
required for each load or store. Therefore, a loadm or storem generates an
internal opcode for each load or store. Each of these opcodes is accommodated by
the standard pipeline and causes the insertion of the next internal opcode or an

instruction fetch when the last load or store has been completed.

In addition to multicycle instructions, traps and skips that arise should fit

into the standard pipeline (Figure 6.40). The compare function uses the ALU

result to determine if a trap or skip should be taken. If it is to be taken an

internal opcode is inserted into the pipeline - SKIP, TRAP, and NOP. The
inserted opcode is decoded and control lines are set so that the skip or trap is

taken.

skip SKIP

Ifetch

Dprndp T# . .
Read Ifetch

jJW/wtp nnmpftrP HflRprt. SKIP
~—*——r—— pprn(fc

rwnH»

trapi TRAP NOP

Ifetch

Pprndp „ . .
Read Ifetch

fwr>Ho rirttnparp —Wnwprt TRAP
P^rnriP Insert NOP

P»™Hp Pprndp -—

Write fiprndf

Figure 6.40- Internal Opcodes for Conditional Instructions

198

lo8. Preliminary Circuit Summary

The preliminary circuit step for SOAR starts with an examination of the
instruction set. The operations needed to perform each instruction are listed.
These operations become the desired functions input for circuit design. The goal
of preliminary design at the circuit level is to satisfy the desired functions and
characterize the circuits' timing so that the behavior aspect of microarchitecture
design has an estimate of the speeds and clocking requirements of the component

circuits.

A second aspect of the mstruction set examination is to. describe each
instruction algorithmically. Each algorithmic statement corresponds to apipeline
function. Some of these pipeline functions for a given instruction may occur
simultaneously, others must fall into a sequence for correct completion of the

199

instruction. Thus, several possible orderings for the pipeline functions of a given

instruction may exist.

Once the pipeline functions and potential sequences have been identified for
each instruction, the parallelism and pipelining of the processor is proposed.
Pipelining evolves from the recognition of sequences of pipeline functions that are
common to most instruction. Parallelism emerges from the groups of pipeline

functions that may be done simultaneously for any single instruction and from the

overlapping of sequential instructions.

The pipeline is composed of a sequence of pipeline functions that is common

to most instructions. Once such a sequence has been proposed the overlapping of

these basic pipeline functions for sequential instructions must be determined. To
do this, an estimate of the time required by each basic pipeline function is needed.
This time estimate is obtained by knowing the circuits that are needed for each

function and their speeds. This is where the available circuits and their

characteristics make a significant contribution to the microarchitecture design.

The basic pipeline functions of an instruction are organized into sequential groups

that all require about the same amount of time to complete. This time is the

processor cycle time. It is desirable to keep the cycle time short so that ahigh
instruction rate may be attained. This implies that the pipeline function groups

should be small. Therefore, the minimum cycle time is limited by the longest

basic pipeline function. If one basic pipeline function is much longer than any of
the others and appears to significantly extend the cycle time it may be desirable

to try to pipeline that function.

The organization of the basic pipeline functions into groups allows each

pipeline function to be assigned to a time slot - a designated cycle and clock
phase within that cycle. Knowing the circuits that are used by each function,.the
circuits and interconnects are also assigned time slots for their use. This is known

200

as resource allocation. Some resources, such as the register file on SOAR, may be

used by more than one function. Thus, the resources are examined and it is noted

when each one is busy. In this way conflicts may be discovered and avoided when

more than one function uses the same resource. This analysis also exposes

another basic limit to the cycle time - fully utilized resources. During any given

machine cycle all basic pipeline functions are performed - not for a single

instruction, but for all instructions that are in various stages of completion.

Therefore, all functions that use a resource must fit their use of that resource into

asingle cycle and the total time that aresource is busy due to the requirements of

all functions becomes a limit on the minimum cycle time. Thus, when a resource

is fully utilized - busy 100% of the time - a minimum cycle time has been

achieved. If it is desirable to reduce the cycle time from this, the fully utilized

resource must be duplicated in some way to accommodate the requirements of all

the pipeline functions.

Once the resources with the heaviest use have been identified, their speeds

and clocking requirements are examined in detail to ensure that they are

compatible with the proposed clocking. To attain a minimum cycle time the
resource with the heaviest utilization must be used 100% of the time.

Modifications can be made at this point if they are possible, to bring this

utilization closer to 100%. However, the accuracy of speed estimates should be

taken into consideration so that speed requirements are not made unrealistically

tight at this point.

Lastly, instructions and situations that do not automatically fit into the basic

pipeline must be provided for. It is desirable to accommodate these situations

without any unnecessary hardware complexity or cycle time increases. The

concept of internal opcodes allows multicycle instructions and special conditions

to be handled within the basic pipeline and resource allocation framework. In this

201

way the pipeline operates continuously and smoothly.

2. Preliminary Interconnect

SOAR was to be implemented in a technology that had one level of metal.

Therefore, other interconnect layers were needed. Both polysilicon and dififusion

were considered. Polysilicon was chosen due to its lower capacitance and RC

time constant, allowing for faster signal propagation than in dififusion. Table 6.16

shows resistance and capacitance contributions of a minimum size square of

interconnect made from each layer. Polysilicon has significantly less capacitance

and a lower overall time constant than diffusion. Thus, polysilicon is faster when

the interconnect speed is limited by the capacitive loading or the time constant.

Layer R Area C Perimeter C Total C RC

Polysilicon 50 .96fF 0 .96fF 48fs

Diffusion 20 2.56fF 5.60fF 8.16fF 163fs

Table 6.16- Minimum Square (4/ix4ji) Resistances and Capacitances

Interconnects in the datapath consisted of control and word lines crossed at

right angles by the data buses. Metal was chosen for the data buses and

polysilicon for the control and word lines. Polysilicon control and word lines cross

the 32 bit datapath. The length of these lines contributes a high resistance and

capacitance to their time constants. The propagation delays due to the time

constants are significant. Consultation with the circuit design reveals the

dimensions of these lines for one bit - 88/ix4ji. Both resistance and capacitance

are proportional to the total length. Thus, the limiting RC time constant is

202

proportional to the square of the length. At this point it was proposed to split the
datapath into two 16 bit halves, reducing the RC time constant by a factor of
four (Table 6.17). Load capacitances for the control and word lines are due to
one minimum size, 4j*x 4/i, gate per bit and 12jix 4jigate per bit respectively. A

register file read was modeled and SPICE simulations for the word line and bit
line speeds were carried out (Figure 6.41, Table 6.18).

R Cparasitic Cload Ctotal RC

32 bits 35.2K .68pF

16 bits 17.6K .34pF

.63pF 1.31pF 46.1ns

.32pF .66pF 11.5ns

Table 6.17a- Word Line Time Constants

R Cparasitic Cload Ctotal RC

32 bits 35.2K .68pF

16 bits 17.6K .34pF

.21pF .89pF 31.3ns

.llpF .44pF 7.8ns

Table 6.17b- Control Line Time Constants

*v. Rword

- Z>° VWV 1
word line Cword_L Vdd

driver —|— I
L

Word Line

± d5
4/18 i-

iCt
Bit Line

Vdd 8/4

T.
[Cbit

Figure 6.41- Circuit Model for Register File Read

203

Rword Cword Cbit Word Line Bit Line

Propagation Delay Propagation Delay

32 bits 35.2K 1.31pF 1.5pF

16bits 17.6K .66pF 1.5pF

38ns

13ns

Table 6.18- Read Propagation Delays

56ns

30ns

The propagation delay for the word lines of the split datapath was one third of

the propagation delay of the full 32 bit datapath. Consequently, bit line delays

for reads were estimated to be twice as fast with the split datapath according to

simulations.

Splitting the datapath means that a few signals that are critical to the

processor cycle time, such as the ALU carry line, have to connect between the two

halves of the datapath. These signals, were identified, and are routed solely in

metal.

Finally, a preliminary piriout was proposed. System specifications called for

separate data and address pads. Therefore, it was proposed that data pads would

204

be on one side of the chip and address pads on the opposite side. This seemed to

lead to a simpler routing problem.

As a result of the preliminary interconnect step the SOAR datapath was

split into two 16 bit halves. Drivers and decoders are duplicated for each half.

Control hardware is placed between the two datapath halves.

3. Preliminary Compare

The preliminary compare step for SOAR involved comparing the

microarchitecture design from the preliminary circuit step with the simulated

speeds from the preliminary interconnect step. Interconnect design estimated the

speed of a read with the split datapath. A30ns propagation delay from the word

line driver input to bit line discharge was estimated. This falls within the 50-85ns

read speed range that was used for microarchitecture design in the preliminary

circuit step.

Interconnect design also analyzed the time needed to enable control lines. A

12ns propagation delay was predicted for this. This is compatible with the 20-

40ns control line driver speed estimate that was used for microarchitecture design

in the preliminary circuit step.

No contradictions in the microarchitecture design were discovered during the

preliminary compare step. This concludes the preliminary design phase for

SOAR. Processor design now moves to the alternating synthesis and analysis

steps.

4. References

[Bose83] Bose, B. K.; Mattausth, H.; Schallenberger, B.; 'VLSI Design
Consideration for SOAR', (Unpublished) Proceedings of 292R- Smalltalk on a
RISC Architectural Investigations, Computer Science Division, EECS Dept.,
University of California, Berkeley, Ca., April 1983.

205

[Kone85] Kong, S. I., 'Some Design Techniques for High Performance MOS
Circuits', M.S. Report, EECS Dept., University of California, Berkeley, Ca.,
January, 1985.

[Laru83] Larus, J. R.; 'SPLAT: A Tool for Automatically Extracting PLAs', Final
Report CS292X, Computer Science Division, EECS Dept., University of
California, Berkeley, Ca., May 1983.

[Ober85] Obermeier, F.; Katz, R.; 'PLA Driver Selection: An Analytic Approach',
Proceedings of the 22nd Design Automation Conference, Las Vegas, June 1985.

[Pomp82] Pomper, M.; Beifuss, K.; Horninger, K.; Kaschte, W.;'A 32 bit
Execution Unit in Advanced NMOS Technology', IEEE J. Sqhd State Circuits,
V.17, N.3, June 1982.

[Samp85] Samples, A. D.; Klein, M.; Foley, P.; 'SOAR Architecture', T.R.
UCB/CSD/85/226, Computer Science Division, EECS Dept., University of
California, Berkeley, Ca., March 1985.

Scot85] Scott, W.; Hamachi, G.; Ousterh^ut, Jj^Mayo, R.; ed. ^1985 VLSITools:
Wore Works by the Original Arti "~ ' "*" '~~' ~
Division, EECS Dept., University
'Wore Works by the Original Artists', T.R. UCB/CSD/85/225, Computer Science

" sity of California, Berkeley, Ca., Feb. 1985.

[Sher84a] Sherburne, R. W.; 'Processor Design Tradeoffs in VLSI', Ph.D. Thesis,
Computer Science Division, EECS Dept., University of California, Berkeley, Ca.,
April 1984.

Sher84b] Sherburne, R.; Katevenis, M.; Patterson, D.; Sequin, C.; *A 32bit NMOS
Microprocessor with a Large Register File', Digest of Technical Papers, IEEE
nternational Solid State Circuits Conference, San Francisco, Feb. 1984.

[VanD82] VanDyke, K. S.; 'SLANG a Logic Simulation Language', M.S. Report,
Computer Science Division, EECS Dept., University of California, Berkeley, Ca.,
June 1982.

Whal84] Whalen, S. P.; 'CMOS Adder Designs for High Performance
Microprocessors', M.S. Report, Computer Science Division, EECS Dept.,
University of California, Berkeley, Ca., August 1984.

206

Chapter 7

Microarchitecture Design

SOAR Case Study

Microarchitecture synthesis and analysis begin after the preliminary steps

have been completed, as discussed in Chapter 4, Section 5 (Figure 4.18). Figure

7.1 shows the portion of the methodology flowchart that corresponds to these

steps, and the associated pieces of the flow diagrams.

prelimmary ok
ISynthesize I

Microarchitecture _J

system
specifications-speed

-clocking

desired
critical paths

Speed

architecture,
system specifications

available
circuits

system
specifications-power

desired
power per

functional block

Power

available
interconnect

schemes

desired
functions

system
specificatiops-area

>dimension

desired
areas and

dimensions

Area

Figure 7.1- Microarchitecture Synthesis and Analysis

207

1. Microarchitecture Synthesis

The goal of microarchitecture synthesis is to completely specify the desired
functions from the architecture description and system specifications. To do this
two aspects of microarchitecture are considered - the necessary functional blocks

and the coordination of these blocks. Typically, some of this is done during the

preliminary phase, as discussed in the previous chapter. The preliminary phase
identified most of the types of functional blocks, defined the basic pipeline, and

scheduled the major resources used by this pipeline.

On the SOAR project their was little distinction between microarchitecture

and functional block synthesis. The flow diagrams for these two steps were

merged into one (Figure 7.2). All inputs were considered and therefore important

information was not overlooked. However, with no methodical way of

concentrating on the microarchitecture design, it is difficult to streamline the

microarchitecture. To illustrate the complete design methodology, the

microarchitecture design will be carried out here. In. subsequent sections

functional block synthesis will be carried out according to this methodology. The

pipeline of the realized SOAR from the preliminary phase will be used for this

microarchitecture and functional block synthesis. Thus, the inputs to

microarchitecture and functional block synthesis for this study will be the same as

they were on the SOAR project. In this way a valid comparison can be made

between the functional block level designs of the realized SOAR processor and

this methodology after functional block synthesis.

architecture,
system specifications

available
circuits

available
interconnect

schemes

esired
functions

Synthesize Microarchitecture

desired
functions

architecture,
system specifications

208

available
circuits

available
interconnect

schemes

desired
functions

netlist

Synthesize Functional Block

desired
functions

netlist

SOAR Project

Figure 7.2- Microarchitecture and Functional Block Synthesis

One goal of microarchitecture synthesis is to define the specific functional
blocks, their types, sizes, inputs, and outputs. This is done by examining each
aspect of the architecture and system specifications, and determining their
requirements. As each functional block is identified, its type is determined.
Functional block types are chosen from the circuits available designed during the

preliminary phase. Often a block's size may also be discovered in the
architecture. For example, word size determines the size of most datapath blocks.

The sizes of the instruction fields indicate the sizes of various control latches.

Once this is done, the data inputs and outputs are listed for each block. Control

line requirements are determined from the circuit that implements the block type,

209

the inputs, and outputs of the block. Using the basic pipeline functions and their
clock phase assignments, the timing of input loading and output enabling is also
listed. The conditions under which inputs are loaded and outputs are enabled is

also determined. Together these conditions and timing define the control line

inputs to the block. These conditions must be generated somewhere and therefore

define outputs of other blocks.

A second goal of synthesis is to coordinate all functional blocks. This

includes completely scheduling all resources according to the pipelining and

parallelism. Major resources have already been scheduled during the preliminary
phase. Now all remaining resources must be scheduled. Bus structures are

planned so that enough lines of communication exist for all transactions that

occur. Temporary registers, as required by the pipeline, are also identified and

added to the list of functional blocks. Timing of all control lines is finally

determined according to the control lines' purposes and the pipeline. For

example, if a given control line loads an operand and operands are read and

available for loading in phase 2, then the control line is enabled on phase 2.

1.1. Functional Blocks

Many of the specific functional blocks for SOAR were already identified

during the preliminary phase (Ch.6, Sec.1.1). Table 6.3 lists the desired functions

of preliminary design. Many of these correspond directly to functional blocks.

An inspection of the instruction set reveals the need for the operations of Table

6.1. Each of these corresponds to a functional block (Table 7.1). Arithmetic,

logical, and shift operations must accommodate both 31 and 32 bit data. Two 5

bit decrementers are needed - one for load multiple and one for store multiple. A

condition comparator that checks for the conditions of Table 5.7 is needed for

skip and trap instructions. The instruction latch becomes an operand for jumps

210

and calls. A sign extender is needed when the instruction contains a 12 bit

immediate field. A hardwired constant - BOOOOOOO - is needed for nilling on

returns.

Block Type Size (bits)

Add addition 31,32

Subtract subtraction 31,32

And and 31,32

Or or 31,32

Xor xor 31,32

Sri logical right shift 31,32

Sra arithmetic right shift 31,32

Inserter insertion 32

Extractor extraction 32

CWP+ incrementer 3

CWP- decrementer 3

D- decrementer 5

S2- decrementer 5

Condition comparator PLA

Instruction latch m/s latch 32

SignExt sign extension 32

Nil constant 32

Table 7.1- Functional Blocks from the Instruction Set

211

SOAR's register organization reveals many functional blocks also (Table 7.2).
Each register corresponds to a functional block. The 8 global and 64 local
registers are realized with static RAM register cells. These are 32 bits wide as
determined by the data word size. The special registers are based on the
master/slave latches. Various aspects of the architecture call for the eight special
registers. Trapping necessitates the PSW, TB, and the shadow registers - SHB,
SHA, shOPC, and shDST. The window organization of the local registers calls for
the SWP, CWP, and SWP comparator. Rzero is a register that always contains

zero. Sizes of the special registers are determined by their functions. Decoders

are needed to address the registers specified by the SI, S2, and D fields of the

instruction. The decoding scheme described in the preliminary phase is used for

the globals and locals (Ch.6, Sec.1.2.3). PLAs are used to select the special

registers.

Block Type Size (bits)

Global registers static RAM 8x32

Local registers static RAM 64x32

Rzero constant 32

PC m/s latch 28

SHB flow through latch 32

SHA flow through latch 32

SWP m/s latch 32

TB m/s latch 18

CWP m/s latch 3

PSW- PSW m/s latch 2

shOPC m/s latch 8

shDST m/s latch 5

Decoders- Rfile decoders

Decoders- specials PLAs

SWP comparator special adder 24

Table 7.2- Functional Blocks from the Register Organization

212

Trapping and exception mechanisms require another set of functional blocks
(Table 7.3). Trap detection can be thought of as needing one block to detect each
type of trap and a final block to generate the trap signal (Figure 7.3). Once a
trap has been detected, its priority must be encoded as part of the trap address.
The trap base latch and shadow opcode complete the trap vector address.

Block

Illegal Opcode Detection

Tag Trap Detection

GS Trap Detection

SWI Detection

Window Overflow Detection

Window Underflow Detection

Trap Instruction Detection

Data Page Fault Detection

Instruction Page Fault Detection

I/O Interrupt Detection

Trap

Priority Encoder

Type

random logic

random logic

random logic

random logic

random logic

random logic

random logic

random logic

random logic

random logic

random logic

random logic

Size (bits)

Table 7.3- Functional Blocks from the Trap Mechanism

213

Illegal
Opcode

Tag Trap

GStrap

SWI

Window |_
Overflow

Window
Underflow

Trap
Instruction

Data
Page Fault

Instruction
Page Fault

I/O
Interrupt

TRAP TgAP

Trap
Base

Latch

Priority
Encoder

Shadow
Opcode

Figure 7.3- Trap Functional Block Diagram

214

Trap
>Vector
Address

System requirements generate another set of functional blocks (Table 7.4).
Data and address outputs must be able to drive TTL loads and therefore require

32 bit driver blocks. Random logic blocks must generate the internal WAIT and

RESET signals from the corresponding external signals. The output signals I/D,
RD/WR, FSHCNTL, and WAITACK are also generated from random logic. A
program counter incrementer is needed to correctly address memory.

Block Type Size (bits)

Data drivers tristate pad driver 32

Address drivers pad driver 32

WATT random logic

RESET random logic

I/D random logic, pad driver

RD/WR random logic, pad driver

FSHCNTL random logic, pad driver

WAITACK random logic, pad driver

PC+ incrementer 28

Table 7.4- Functional Blocks from the System Requirements

215

A final set of functional blocks is needed due to the processor's pipelining.

Whenever data is available from one resource on a specified clock phase but used

by another resource during a later phase, the possibility exists that the originating

resource will have already been re-used by the time the requesting resource needs

the data. Thus, the requested data will have been lost unless some temporary

storage is provided for it. The need for temporary registers can readily be seen in

diagrams such as Figure 7.4. In Figure 7.4 the pipelining for all instructions that

use the write pipeline function are shown along with the pipelining of instructions

that overlap the write. For the instruction being analyzed, the origination of

information used in the write is circled and an arrow drawn to the clock phase of

the write that uses it. If the originator is used between the time it generates the

information and the completion of the pipeline function that uses the information,

a temporary latch will be needed. Reuse is indicated by the dotted circles in

216

Figure 7.4. To detect any reuse of the originator, all pipeline functions of
overlapping instructions are checked. For example, during arithmetic, logical,
and shift operations the ALU generates data in cycle 2, phase 3. This information

is then written in cycle 3, phase 3. However, the Mowing instruction uses the

ALU in its cycle 2, phase 3, before the write has completed. Therefore, a

temporary register is needed to store the ALU result before the write, so that
another alu operation may start. Similarly, an instruction fetch retrieves the
destination of the write that is then decoded during the 2nd decode - cycle 3,

phase 1. Meanwhile, another instruction fetch has been completed. Upon
completion the destination field will change. Thus, atemporary register is needed
for the destination field of the original instruction. Similar diagrams are shown in

Figure 7.4 for all instructions using the write pipeline function. Temporary
latches are needed for fetched data, register data to be stored, and the program

counter. This same analysis is done for all pipeline functions to identify the

temporary storage blocks needed (Table 7.5).

time

LOAD, LOADC

ADD, SUB, OR, AND
XOR, SLL, SRL, SRA
EX, INS

QHPOIRE

Ifetdi

olUJ

Decode

Insert
storeO Ifetch<s»

All

Dfet(i

Decode

\
\ Decode Decode

Ifetch\ (Read)

'write Alu

Figure 7.4- Temporary Storage Identification

217

- Ifetch

PC

-CALLi

Decode

Ifetch

Alu

Decode
ModifyPC

Detode

IfetchItead

Write i ' Alu

Ifetch

PC

— TRAPi

Decode

Ifetch

A
Read

Alu v

UBertTHA]
Decodd

Insert

NOP

\
Decode /

Ifetch

®
/

WritT

218

Ifetch

-LOADM

Decode

Insert
loadl

IfetchRead

Alu

^etc^
Decode

Insert
toadORead

Alu

Decode

(Dfetcjj

Decode

\Wttoi 1

\ Decode Decode

('ifetch }
V

Read

Write Alu

Figure 7.4- Temporary Storage Identification (cont.)

Block Needed by Type Size (bits)

TempALUoutputl write, Dfetch, store m/s latch 32

TempDataln write m/s latch 32

TempPC write m/s latch 32

TempStoreOperand write, store m/s latch 32

TempInstrLatch 2nd decode m/s latch 13

TempALUinputl ALU m/s latch 32

TempALUinput2 ALU m/s latch 32

TempALUoutput2 compare latch 2

TempOpcode DetectTrap m/s latch 9

TempTags DetectTrap latch 8

TempPSW DetectTrap latch 1

TempCWP DetectTrap latch 3

TempSWP DetectTrap latch 3

210

Table 7.5- Functional Blocks for Temporary Storage

Tables 7.1 through 7.5 summarize all functional blocks that are identified by

an inspection of the architecture, system specifications, and processor pipelining.

These functional blocks will be organized into circuit blocks during the functional

block synthesis step.

1.2. Bus Structures

The bus structures of a processor must provide for all the communication

required by the pipeline functions. Processor instructions were broken into

pipeline functions (Ch.6, Sec.1.3). Therefore, by satisfying the communication

220

needs of the pipeline functions, the needs of the instructions are also satisfied.

Information transfer is indicated by the arrows in the algorithmic description of

each pipeline function. Therefore, each arrow must be assigned a time slot on a

bus structure. The inputs to the bus structure are indicated by the functional

blocks of the right side of the statement. The destinations of the bus structure

are the functional blocks of the left side of the statement. For example, the write

pipeline function was algorithmically expressed by:

r[D] <- ALUoutput

The right side - ALUoutput - indicates that an ALUoutput block is the origin of
the data. Consultation with the lists of functional blocks reveals that

TempALUoutputl was intended to hold the ALU data for subsequent writes. The
destination block is a register - r[D]. This could be in one of the 72 global or

local register blocks or any of the special registers. Thus, a bus structure must

exist between TempALUoutputl and these registers (Figure 7.5). All portions of

this bus structure are reserved for writes in clock phase 3 - the write phase.

CWP

PSW

Figure 7.5- Bus Structure for r[D] <- ALUoutput

221

To design the processor bus structure all pipeline functions are analyzed in

this way. A table is compiled that lists all necessary lines of communication with

their origins, destinations, and time slot usage (Table 7.6). Assignments through

random logic- the decode function for example - are not included in this table.

These assignments are not simple interconnects but signify PLAs and other logic

circuits.

Pipeline Function

Write- phase 3

Ifetch- phase 1
phase 3
phase 3

Read- phase 2

DetectTrap- phase 3
DetectSkip- phase 3
Nil- phase 3
CWP+- phase 3
CWP- phase 3
modifyPC- phase 3
Dfetch- phases 1,2,3

phase 3
Store- phases 1,2,3

phases 1,2,3
phase 3

ALU- phase 2

phase 2

phase 3

Originating Block

TempALUoutputl

TempDataln
PC, TempPC

PC

data drivers

PC+

globals, locals, PC, SHB,
SHA, TB, SWP, CWP, PSW
TempALUoutputl
globals, locals
instruction latch

SignExt
TempALUoutputl
globals, locals
TB

PC+

Nil

CWP+

CWP-

Add

TempALUoutputl
data drivers

TempALUoutputl
TempStoreOperand
TempStoreOperand
TempALUinputl

TempALUinput2

add, subtract, and, or,
xor, srl, sra, inserter,
extractor

222

Destination Block

globals, locals, PC, SHB
SHA, TB, SWP, PSW,
CWP

globals, locals
locals

address drivers

instruction latch

PC

TempALUinputl

TempALUinputl
TempALUinput2
TempALUinput2
TempALUinput2
TempALUinput2
TempStoreOperand
PC

PC

locals

CWP

CWP

PC

address drivers

TempDataln
address drivers

data drivers

locals

add, subtract, and, or
xor, srl, sra, inserter
extractor

add, subtract, and, or
xor, srl, sra, inserter,
extractor

TempALUoutputl,2

Table 7.6- Lines of Communication

223

Bus structures are now proposed that account for every entry in Table 7.6.

The possible solutions are limited by restrictions to microarchitecture design from

the preliminary phase - characteristics of available circuits and interconnect

schemes. For SOAR, important limitations were:

1. Two read ports from the register file using the two bit lines.

2. One write port to the register file using the same two bit lines.

3. Space for only one bus to cross the ALU blocks- Add, Subtract, Xor,

Or, And, Srl, Sra, Inserter, Extractor.

4. Data pads on one side of the chip and address pads on the opposite.

Bus structures may be represented in functional block diagrams that show the

functional blocks and buses that connect them. For SOAR, the functional block

diagram of Figure 7.6 is proposed. This is an extension of Figure 7.5 that includes

all the buses required by Table 7.6.

B

data drivers
"*—

Sigi Ex;

instruct! on latch

TempDa aln

<-» TempStoreOperand

«-*
globals
locals

SHB

SHA

TempALUinputl

TempALUinp it2
~5E

«•—*

«—>

«—>

TempAI Uoutputl

PC «—>

TempF]-»
P3+

TB «—>

SAfP «—>

x. x.

address drivers

PSW

•

CWP CWP

Nil

D

CWP

IF

224

Figure 7.6- Proposed SOAR Bus Structure and Functional Block Diagram

225

1.3. Resource Usage

Bus usage for SOAR is shown in Table 7.7. When more than one pipeline

function uses the same bus time slot, the pipeline functions must be mutually

exclusive. If they are not, a conflict would exist. For example, both write and nil

use busD during phase 3. However, nil uses it during cycle 3 of a return while

write uses it during cycle 3 of an alu, call, trap, load, or store instruction. Any

two of these instructions can not be in cycle 3 simultaneously and therefore there

is no conflict for busD by the nil and write functions.

Bus Phil Phi2 Phi3

BusA Precharge Read Write, Nil, Store

BusB Precharge Read Write, Nil, Store

BusD Precharge Read Write, Nil

BusL Precharge Read unused

BusS Precharge Read unused

Dataln unused Store Ifetch, Dfetch, Store

Table 7.7- Bus Structure Usage

At this time resource usage for all resources should be examined to ensure

that no conflicts exist. Major resource usage was analyzed in the preliminary

phase (Ch.6, Sec.1.6). Similar analysis is now done for all remaining resources,

revealing no conflicts.

226

1.4. Complete Functional Block Input and Output Specification

To complete the details of microarchitecture synthesis all inputs and outputs

of each functional block must be specified. At the start of microarchitecture

synthesis the circuit type of each block was identified. This circuit type may need

modification to provide the exact function called for by the functional block.

Modifications may include variations on the number of input and output ports or

internal clocking. Data inputs, control line inputs, and data outputs of the

customized block are identified. The conditions that determine the control line

inputs are also identified. These conditions must be generated somewhere and

therefore identify condition outputs of other blocks.

The TempALUinput2 provides a good example of this procedure. It was

identified as a 32 bit master/slave latch. Figure 7.7a shows one bit of a

master/slave latch from preliminary circuit design. Consultation with the
functional block diagram (Figure 7.6) and algorithmic statements of the pipeline

functions (Ch.6, Sec.1.3) shows that this latch needs two inputs - one from busL
and one from busB. Loading occurs due to a read which is in phase 2. Thus,

both load control lines are enabled during phase 2. The output of this latch is the

only connection to the second ALU input. Therefore, no enable circuitry is
needed on the output. The ALU operation involves precharged logic and occurs

in phase 3. Therefore, the ALU inputs must be set up in phase 2. Consequently,

the output of this latch must be ready in phase 2. This means that the step

transistor is eliminated since the inputs are loaded and must flow through to the

output in phase 2. Refreshing always occurs in phase 1 or phase 3. Conditions

for loading busB are during the read function of non-immediate ALU, byte, skip,

trap, return, and load instructions. BusL is loaded during the read phase of a call,

jump, or store instructions, and immediate ALU, byte, skip, trap, return, and load

instructions. Table 7.8 summarizes the inputs and outputs of the

227

TempALUinput2 block.

data in

load step refresh

J.

output enable

3>—<

precharged
output bus

(a) Generic M/S Latch

busBtoINB

busLtoINB

busB n

busL

i>

phase 3

_L

>__ 2nd ALU input
TMRINB

(b) Customized Latch

Figure 7.7- M/S Latch Customization to form TempALUinput2

228

Inputs Outputs Control Lines Enable Conditions From

BusB INB busBtoINB phi2 and imm and (opl= decode PLA

BusL add,sub,or,and,xor,srl,

sra,insert, extract,skip,

•
trapi,reti,load,loadc,

loadm)

busLtoINB phi2 and [(imm and (opl=

add,sub,or,and,xor,srl,

sra,insert,extract,skip,

trapi,reti,load,loadc,

loadm))or(opl=call,jmp,

store,storem)]

decode PLA

Table 7.8- Inputs and Outputs- TempALUinput2

To completely specify the microarchitecture this is done for all functional

blocks. All conditions must be generated somewhere. Therefore, if functional

blocks that generate conditions have not been specified they must be specified

now. For SOAR this means adding decode PLA blocks to the list of functional

blocks.

1.5. Microarchitecture Verification

After the microarchitecture has been specified it must be checked to make

sure that it executes instructions and responds to system inputs as it should. This

verification process is crucial to finding and eliminating errors in the

microarchitecture. Verification is usually done with the aid of CAD took. Three

229

things are needed for verification:

1. A microarchitectural or functional simulator

2. A complete microarchitecture description, compatible with the simulator

3. A set of test programs or diagnostics

A functional simulator has the capability of generating new node values from

previous and present node values. Changes to the input nodes - clocks, data
inputs, etc. - cause changes in many internal nodes. The functional simulator

generates these new node values. Typically, input nodes including clocks are

changed simultaneously on the clock's edge. The simulator then evaluates all

nodes affected by the input nodes and the nodes that they in turn affect, until all

nodes have settled. The simulator is then ready to accept another set of inputs.

Thus, atest program is stepped through by clock phases. The SOAR project used

the SLANG functional simulator [VanD82].

The functional simulator excepts a microarchitecture description containing

information like that of Table 7.8 and Figure 7.7b, for all functional blocks. The

SLANG description of the TempALUoutput2 latch is given:

(defnode INB
(depends phi2 busL busB phi3 busLtoINB busBtoINB)
(update

(If3way phi3
INB

(If3way busLtoINB
busL

(If3way busBtoINB
busB

INB

UNK)
UNK)

UNK)))

230

The output node is given in the defnode statement. Input nodes are listed in the

depends clause. The update statements are a description of the circuit in Figure

7.7b. Pass transistors are described by the If3way statements. Higher level

abstractions of functional blocks will speed up the simulation but care must be

taken so that accuracy is not sacrificed. For example, the register file for SOAR

was simply described by an array. Individual gates were not simulated.

Appendix B contains the SLANG description ofSOAR.

To completely test the microarchitecture a set of diagnostic programs that

exercise all possible situations and features of the architecture, is needed. For

SOAR a list of items to test was compiled and diagnostics were written to cover

these situations.

Table 7.9 lists the diagnostics used to test the instruction set. Common

instructions - add, subtract, jump, and call - and common situations - sign

extension of an immediate - happened throughout the diagnostic set and therefore

did not need separate diagnostics dedicated to them. The largest effort here was

put into completely testing all conditions (Table 5.7). The multitude of return
instructions and forwarding situations were the next largest efforts for the

instruction set diagnostics.

Table 7.10 shows the diagnostics used to test the register organization.

Window management was the most complex register feature tested. This was

followed by the memory mapping of on chip registers - pointer to register.

Diagnostics to test the trap mechanisms are shown in Table 7.11. The most

complicated trapping diagnostics were due to the variety of tag and generation

scavenging traps, and the window management diagnostics.

Diagnostics for the external interrupts are shown in Table 7.12. Most
difficult to test was the WAIT signal. It could arise under many circumstances

and had to be tested for all these possibilities.

Feature SOAR Cycles % of Diagnostics

conditions 888 17.1

return 292 5.6

forwarding 195 3.7

skip 104 2:0

trap instructions 78 1.5

store 46 .9

loadm, storem 44 .9

or, xor, and 40 .8

insert, extract 38 .7

srl, sra, sll 30 .6

Table 7.9- Instruction Set Diagnostics

Feature

windows

pointer to register

special registers

SOAR Cycles % of Diagnostics

728

347

108

14.0

6.7

2.1

Table 7.10- Register Organization Diagnostics

231

Feature SOAR Gycles % of Diagnostics

window overflow, underflow 728 14.0

tag traps 623 12.0

-alu, shifts 255 4.9

-loads 180 3.5

-overflow 130 2.5

-skips 58 1.1

generation scavenging 294 5.7

-store 265 5.1

-return 29 .6

illegal opcodes 209 4.0

priority mechanism 149 2.9

software interrupt 97 1.9

trap instructions 78 1.5

I/O interrupt 61 1.2

page faults 55 1.1

Table 7.11- Trap Mechanism Diagnostics

232

Feature SOAR cycles % of Diagnostics

wait

I/O interrupts

page faults

645

61

55

12.4

1.2

1.1

233

Table 7.12- External Signal Diagnostics

Table 7.13 summarizes these diagnostic categories. The major portion of the

diagnostic effort was spent testing the trapping mechanisms - 44.3%. Following

this was the instruction set which was dominated by the condition testing. A

total of 5177 SOAR cycles made up the diagnostic set. A few diagnostics - such

as the window management tests - fell into more than one category. This is why

the total is less than the sum of the individual categories.

Diagnostic Category SOAR Cycles % of Diagnostics

Trap mechanism 2294 44.3

Instruction set 1755 33.8

Register organization 1183 22.8

External signals 761 14.7

Table 7.13- Diagnostic Categories

234

1.6. Microarchitecture Synthesis Summary

Detailed microarchitecture design was completed in the microarchitecture

synthesis step. This detailed design considered the external inputs - architecture

and system specifications - and internal fixed inputs from the preliminary phase

- available circuits and interconnect schemes.

Using these inputs and the pipeline design from the preliminary phase, all

functional blocks were identified. Their function was expressed first in terms of

the available circuits and then by customization of these circuits. Bus structures

were designed to accommodate all data transfers implied by the algorithmic

descriptions of the pipeline functions.

The complete microarchitecture description included listings of the data and

control line inputs to each functional block, along with the data and condition line

outputs of the blocks. This and the blocks' operations completed the detailed

microarchitecture description.

Finally, the detailed description was verified for correctness. This was done

by running diagnostic programs on a simulator that functioned according to the
detailed microarchitecture description. Many bugs were discovered and corrected

due to this verification process. The verification process including diagnostic

development, simulation, and debugging took 7 to 8 months.

2. Microarchitecture Analysis

Analysis can be done for any characteristic of the processor (Ch.4, Sec.3).

Typically, analysis includes, but is not limited to, the speed, power, and area

characteristics. For SOAR the primary concern was processor speed. Area and

power limits were looser and had lower priorities.

235

2.1. Speed Analysis

Speed analysis, at the microarchitecture level, consists of examining all

processor activities to determine the clock phases that are allotted to each

activity. The circuit blocks and interconnects that realize a given activity must

be fast enough to complete the activity in the allotted time. The flow diagram for

thb is shown in Figure 7.8. The T indicates a comparison between the time

allotted to each activity, according to its clock phases, and the predicted times,

according to the speed of the components of the activity. The circuit block and

interconnect composition of each activity is not yet known, so analysis at thb

point consbts of identifying the clock phases allotted to each activity - the section

ofFigure 7.8 enclosed by the dashed lines. Thb information b recorded and used

in later comparbons when the composition of each activity b known.

system specifications- speed
- clocking

desired
critical paths critical paths

internal
block delay

(functional]

nal interbinterblock
delay

Figure 7.8- Speed Analysb After Microarchitecture Synthesb

236

During microarchitecture synthesb, inputs and outputs of all functional

blocks have been identified and recorded in tables such as Table 7.8. The

processor's activities lead to the setting of these signal lines. To consider all

activities it b sufficient to consider either all inputs for all functional blocks or all

outputs. Thb b because the inputs of a given block are generated from one or

more outputs of other blocks. When considering the timing of an input to ablock

it b necessary to trace it back to its origins - outputs ofother blocks. Therefore,

outputs will automatically be considered, as necessary, as the designer proceeds

through the lbt of inputs. Similar arguments can be made for the consideration

of all outputs. In thb methodology the inputs are used because of the data

organization. Tables such as Table 7.8 show the outputs of other blocks that
constitute an input, but do not hold information on inputs to other blocks that

use the given block's outputs. Therefore, information b available to trace back

from the inputs but not forward from the outputs.

The inputs in Table 7.8 contain two types of information. First, they contain

timing information. Thb appears either as explicitly mentioned clock phases or

implicitly through the functional description of the block - Figure 7.7b or the
SLANG description. Secondly, they contain signab that are outputs of other

blocks. These outputs ofother blocks are generated by the functions of the other

blocks. They are therefore the result of some processor activity. The timing

information of each input indicates when these results will be used as an input.

Therefore, the timing information signifies the time when the activity that

generates the result, must be completed. The timing of the start of an activity b
found by tracing the result portion of the input signal back to its origins.

Typically, the activity starts on a clock edge indicated by the functional

description of an originating block.

237

To illustrate this microarchitectural speed analysis the TempALUinput2

functional block is used as an example. Table 7.8 shows four inputs to thb block

- busB, busL, busBtoINB, and busLtoINB. Explicit timing information b shown
for the two control lines. Both busBtoINB and busLtoINB are gated with phi2.

Other information forming these control lines are conditions generated by the

decode PLA. An inspection of Figure 7.7b shows that the clock phase phi2 b used

to load new data if the conditions are correct. Therefore, the conditions must be

determined by the start of phi2 to make sure that data b not erroneously loaded.

Thus, the rising edge of phi2 signifies the end of the time allotted to the decoding

for these two control lines (Figure 7.9). The falling edge of phi2 signifies the

completion of the load. Therefore, the data on busB or busL must be valid by

thb time. Thus, the end of the read activity b the falling edge of phi2.

Input Signal

busBtoINB

busLtoINB

busB

busL

phil phi2

>

>

< >

< >

phi3 Activity

Decode

Decode

Read

Read

Figure 7.9- Settling Time Slots for Inputs to TempALUinput2

The starts of these decode and read activities are found by tracing the result

portions of the input signab back to their origins. The control lines contain
conditions that are formed combinatorially from data in the instruction latch by

the decode PLA. The functional representation of the instruction latch (Figure

7.10) shows that thb data b available at the start of clock phase phil. Thus,

decode begins at the rbing edge of phil. BusB can be generated in a few ways. It

can be generated by a regbter file read, forwarding from the TempALUoutputl or

238

TempDataln latches (Figure 7.11). All of these activities are initiated by the

rising edge of phi2. Similarly, busL b used to transfer data from either the sign

extender or instruction latch (Figure 7.12). Both of these data transfers also begin

with the rbing edge of phi2 abo. Therefore, the rising edge of phi2 b the start of

the read activity.

CPIPElload
(phj3)

RESET

Data In t-^-o-o
s^

CPIPElstep WA112
(phi3) (phil)

phi2 phi2

L—nJ^-ri_[>X t̂o decode
PLA

Figure 7.10- Instruction Latch Functional Representation

from
decoder

readRFaccessB _r-^ i f
pbi2 q_J rea.dU IL

Vjdd

b

Y

^O-1
DSTtobusD busDtobusB

(phi2) (phi2)

M^slH^TempALUoutpu

busB

busB

LOADLtobusB
(phi2)

TempDataln

phi2)

busB

Figure 7.11- BusB Sources for a Read

Sign
Extender >

Instruction
Latch >•

SXTtobusL
(phi2)

3>—1

passSXT
(phi2)

r

!=D—it
Figure 7.12- BusL Sources for a Read

busL

busL

239

240

Figure 7.9 indicates the activities that correspond to the settling of each

input along with the clock phases allotted to the activities. Thb type of analysb
b carried out for all blocks. As synthesb progresses estimates of the times needed

for these signab to settle will become available. These estimates are compared

with the allotted clock phases and their lengths. These comparbons can reveal

signab that are not fast enough according to their time allotments and places

where the time allotments are longer than necessary.

This method of analysb reveab the timing of all signals. For the processor to

function correctly all signab must function properly. Speed problems with any

signal, no matter how minor the signal b, can limit the speed of the entire
processor. Therefore, amethod b needed to analyze all signals early in the design
process, not just major signab. In thb way unobvious speed problems in the
microarchitecture will not be overlooked. Steps may be taken to correct any

problems before large amounts of work would have to be redone for the
corrections. Thb microarchitectural analysb of the clock phase allotments for the

settling of all functional block input signab becomes the desired critical paths
output of the microarchitecture level in the speed analysis flow diagram (Figure
7.8). Later in the design thb output b compared with the increasingly accurate

estimates of the critical paths.

2.2. Area and Power Analysis

SOAR abo had area and power specifications. Normally, area and power

analysis consbts of allotting area, dimensions, and a power budget to each
functional block (Figure 4.19e). The assumption for SOAR was that these
specifications were loose and that as long as the total area and power met the
specifications, it did not matter how these characterbtics were divided up. Thus,
the original system specifications for power and area were passed through the

241

microarchitecture level with no analysb (Figure 7.13).

system specifications- area
- dimensions

system specifications- power

total area,
dimensions

total power

Figure 7.13- Power and Area Analysis After Microarchitecture Synthesb

3. References

[VanD82] Van Dyke, K. S.; 'SLANG a Logic Simulation Language', M.S. Thesb,
Computer Science Divbion, EECS Dept., University of California, Berkeley, Ca.,
June 1982.

242

Chapter 8

Functional Block Design

SOAR Case Study

After synthesb and analysb b completed at the microarchitecture level,

design moves to the functional block level (Figure 4.18). The flow diagram for the
functional block steps are shown in Figure 8.1. Functional block synthesis

consbts of mapping the functional blocks into the actual circuit blocks. As thb b
done, the processor interconnects between the circuit blocks are defined. Analysb
at thb level first considers the circuit blocks and interconnects alone. Then the

individual characterbtics are combined to arrive at the global characterbtics.

These global characterbtics are compared to their desired values that were

arrived at through microarchitecture analysb.

Synthesize
Functional Block

internal
block
delay

1Speed
desired
critical
pa,ths

?

interblock
delay

critical
paths

243

desired
functions

not ok

power per
functional block

circuit interconnect
block power-a.c.
power

d.c, a.c.

Power

desired
power

power

desired netlist
functions

interconnect
and block areas

circuit interconnect
block areas
areas

Area

desired
areas and

dimensions
?

interconnect

and block
areas

Figure 8.1- Functional Block Synthesb and Analysb

244

1. Functional Block Synthesis

As previously dbcussed, there was no real distinction between

microarchitecture and functional block synthesb on the SOAR project. In this

section the results of microarchitecture synthesb as it might have been done will

be used (Ch.7, Seel). Thb includes the lbt of functional blocks along with the

detailed descriptions of their inputs, outputs, and function. Using these inputs to

functional block design, synthesb will be dbcussed to illustrate the methodology

on the SOAR processor.

When assigning functional blocks to circuit blocks, there b not always a one

to one correspondence between functional blocks and circuit blocks. Sometimes

many functional blocks can be incorporated into one circuit block - merging of

functional blocks - or one functional block may be mapped into more than one

circuit block - splitting of functional blocks.

1.1. Merging

It b desirable to merge functional blocks, since it can lead to less circuitry

and fewer and shorter interconnects. The most obvious candidates for merging

are functional blocks that use all or part of the same circuitry and have the same

inputs and outputs. In thb way unnecessary duplication of circuitry b avoided.

Table 8.1 shows the functional blocks that were merged on SOAR for thb reason.

In the adder, AND, OR, and XOR are formed and used to compute sums.

Subtract b done using the ones complement of the second operand and

performing an add. Therefore, these five functions exbt in the adder. In the

shifter, both shift functions are the same except for the most significant bits that

are shifted in. Therefore, the functional blocks srl and sra were combined to form

the shifter circuit block. Both insert and extract use similar hardware (Figure

6.10). The TempDataln and TempStoreOperand blocks are both temporary

245

latches that hold external memory data. One b used during loads and the other

during stores. Since they have the same function and are never both used at the
same time they may be merged. Either the nil constant or the TempALUoutputl

latch data b written into the regbter file, so the nil constant was merged with the

TempALUoutputl latch.

Functional Block Circuit Block

Add

Subtract

And

Or

Xor

Srl

Sra

Insert

Extract

Adder

Shifter

EX/INS

TempDataln LOADL

TempStoreOperand

Mil Destlatch

TempALUoutputl

Table 8.1- Common Circuitry Merging

246

Functional blocks that share the same inputs and outputs but have different

internal circuitry may abo be merged into one circuit block. The internal

circuitry of the circuit block b the collection of circuitry from each functional

block. Thus, total circuitry b not reduced. However, the functional blocks have

the same inputs and outputs and can therefore share interconnects, reducing

routing. Table 8.2 shows blocks that were merged due to shared inputs and

outputs.

Functional Block

Adder

Shifter

Global regbters

Local registers

Tag Trap Detection

Trap Instruction Detection

GS Trap Detection

Window Overflow Detection

Window Underflow Detection

Circuit Block

ALU

Regbter file

TiTtGsDetection

Window logic

Data Page Fault Detection Page fault detection

Instruction Page Fault Detection

Table 8.2- Shared Inputs and Outputs Merging

247

Functional blocks may also be merged when most or all inputs and outputs of

one block are connected to only one other block. Thb first block provides an

auxiliary function for the second block. Routing b minimized by combining such

blocks. A good example of this on SOAR, are the CWP, CWP+, and CWP-

blocks (Table 8.3). CWP+ and CWP- increment and decrement the CWP,

respectively. Their inputs are the current CWP value and their outputs become

the updated CWP value when the conditions are right. D- and S2- are

decrementers for the D and S2 fields of the instruction latch, respectively. PC+

increments the program counter - PC. WAIT and WAITACK are both derived

from the WAIT input of the processor.

Functional Block

CWP

CWP+

CWP-

Circuit Block

CWP

D- DST1

Instruction Latch (D field)

S2- SRC2

Instruction Latch (S2 field)

PC

PC+

WAIT

WAITACK

firstPC, PCIncr

WAIT logic

Table 8.3- Auxiliary Block Merging

248

A final reason to merge blocks b when a subset of the inputs or outputs of

one block are used solely by another block. Thb b perhaps the weakest reason

for merging. When considering these types of merges, many possibilities exbt.

Tradeoffs have to be made between the routing that b eliminated and any extra

routing that b generated by the merge and the resulting larger block size that

may be harder to place and route than two smaller blocks. Merges of this type on

SOAR are shown in Table 8.4. These consbt mainly of latches for various pieces

of combinatorial logic.

Functional Block Circuit Block

Condition Comparator Condpla

TempALUoutput2

TiTtGsDetection

TempTags

TempOpcode

TempCWP

TempSWP

Window logic

TTrap Detection

WTrap Detection

249

Table 8.4- Some Outputs=Inputs Merging

Tables 8.1 through 8.4 summarize the functional block merges of SOAR.

There were four types of merges, lbted in decreasing order of importance:

1. Common circuitry

2. Shared inputs and outputs

3. Auxiliary blocks

4. Some outputs = inputs

The purpose of merges b to eliminate redundant circuitry and minimize routing.

Thb leads to a more compact, faster, and lower power processor.

1.2. Splitting

Merging b complemented by functional block splitting. The goab of splitting
are the same as for merging - less circuitry, increased speed, fewer interconnects,

250

and flexibility in placement. However, a split will typically improve one or two

factors and make the others worse. Thus, the tradeoffs have to be analyzed

carefully.

The first type of split involves duplication of circuitry. Thb b done when the

extra circuitry leads to faster circuits and less routing. The instruction latch was

the only functional block duplicated on SOAR. One copy was placed in the

datapath to generate immediate operands. The other copy was part of the

control section. Its various fields are decoded to set control and word lines.

A second way to split blocks b to leave the circuitry unchanged but put parts

of the block in different places. Thb b done if the various parts do not affect one

another and interface to dbjoint blocks. By placing each piece close to where it b

needed, routing b reduced and speed b increased. Table 8.5 summarizes the

blocks of SOAR that were split for thb reason. The PSW, instruction latch and

TempInstrLatch were split into separate latches for each of the fields that they

included. The decoding functional block was split into blocks for control line

gating and the control line drivers and blocks for the combinatorial logic - the

decode PLAs.

Functional Block Circuit Block

PSW

PSW shDST

shOPC

SRC1

Instruction latch SRC2

DST1

CPIPE1

TempInstrLatch DST2

CPIPE2

Decoding Decode PLAs

Control line gating and drivers

Table 8.5- Block Splitting, Same Circuitry

251

Another reason to split blocks b to reduce circuitry. Thb leads to smaller

and/or faster functional blocks. The prime candidates for thb were the PLAs.

Instruction decoding, condition checking, and trap detection on SOAR are done

primarily with PLAs. Originally signab were assigned as outputs of the PLAs

according to the functions that generated them. Six PLAs were identified with

these functions (Table 8.6). As the size of a PLA increases its speed decreases.

Sizes and speed estimates of the original PLAs are shown in Table 8.7.

252

Original PLA Functional Blocks

Cplal 1st decode except register access

Cpla2 2nd decode except register access

Condpla Condition comparator,TempALUoutput2

Illpla Illegal opcode detection

Apia decode- regbter access

Tpla Tag trap detection, trap instruction detection, TempTags,

GS trap detection, TempOpcode, priority encoder

Table 8.6- Original PLA Functional Blocks

Original PLA Inputs Minterms Outputs Delay

Cplal 10 80 39 210ns

Cpla2 7 19 10 67ns

Condpla 11 34 2 103ns

Illpla 8 8 1 46ns

Apia 18 34 24 110ns

Tpla 35 ? 9 ?

Table 8.7- Original PLA Sizes and Speeds

Tpla detects some of the trapping conditions and encodes the trap priority. These

functions were naturally much greater than a single 2 level AND/OR function

and were not able to be generated due to memory limits on our machines. The

large first decode PLA - cplal - would have limited clock phase 1. In the interest

253

of being able to generate all PLAs and speed up the processor, the PLAs were

reorganized into smaller, faster PLAs.

The most obvious PLAs to split are those whose outputs can be grouped so

that each set of outputs b formed from inputs that do not contribute to another

output set (Figure 8.2). Thus, each set of outputs will abo have its own set of

minterms that are derived from its inputs. When thb b the case, the original

PLA b split into multiple PLAs, each corresponding to one set of outputs. Each

input will be an input to only one of the new PLAs.

inputs outputs inputs outputs

Figure 8.2- No Common Inputs PLA Split

Sometimes it b the case that the outputs can be grouped so that each set of

outputs has its own dbtinct set of minterms, but sets of inputs are not dbtinct

(Figure 8.3). A given input may contribute to more than one minterm group.

When thb b the situation, a new PLA b formed for each set of minterms. Inputs

are then used by one or more of the new PLAs.

254

inputs outputs

O

inputs outputs

Figure 8.3- No Common Minterms PLA Split

The third type of PLA split leads to the formation of sequential PLAs. PLAs

implement a 2 level AND/OR function. Logic functions that naturally are more

than two leveb may be reduced to thb format but often at the cost of many more

minterms. The PLA size may balloon and multiple sequential PLAs will be faster.

Thb was the case with the tpla. Its most complex outputs were three 2 level

AND/OR functions and an intermediate inversion. The attempt to fit it into a

single 2 level AND/OR function generated enough terms to exceed machine

memory limits.

X= 8^+... axbn+... %h+- a^n

mn minterms

minterms minterms

al - %n bl A (*!+••• %J

X= (!|+:..aaI3lb1+... bj

Figure 8.4- Factoring to Split PLAs

255

The six SOAR PLAs were split as shown in Figure 8.5 and summarized in

Table 8.7. Cplal was split into two approximately equal PLAs by identifying two

groups of minterms. They are dbtinct except for one minterm. Seven of the nine

inputs are shared by both PLAs. Tpla was split by first identifying a distinct set

of inputs and outputs that became tplal. The remaining outputs are formed by

factoring the original seven level functions into three sequential PLAs and a small

amount of logic between tpla and tpla2. Apla2 was first split off from apla. It

shares one input and no minterms with the other parts of apla. The remaining

outputs are formed from the same inputs but may be split into two dbtinct sets of

minterms. Thb resulted in apla and aplal.

Original PLAs

10

35

80
cplal

f
tpla

Final PLAs

7

3^w One Common Minterm

No Common Inputs 10.

n^i 23 m

43
i xcplal

38
cplal

4
tplal

H

i*

Factoring 8
tagcompla

23
tpla

9
tpla2

18

11

34
apla

19
cpla2

8
illpla

34
condpla

2*y No Common Minterms
1 Common Input

10. unchanged

unchanged

unchanged

7.

1 > 7
apla

11

(

-*

->

10
aplal

1
1 ' J

5 >
7

apla2

11

cpla2

8
illpla

34
condpla

19 ^

Figure 8.5- PLA Splits of SOAR

256

257

Original PLA Final PLA Inputs Minterms Outputs Delay

Cplal Cplal 9 38 16 102ns

Xcplal 9 43 23 85ns

Cpla2 Cpla2 7 19 10 67ns

Condpla Condpla 11 34 2 103ns

Illpla Illpla 8 8 1 46ns

Apia Apia 12 17 10 42ns

Aplal 12 10 7 50ns

Apla2 6 7 7 32ns

Tpla Tpla 15 23 5 54ns

Tplal 10 4 2 45ns

Tpla2 10 9 4 54ns

Tagcompla 8 8 1 42ns

Table 8.7- PLA Splitting

The slowest PLA in the decode path b cplal. The delay through cplal b

102ns, making decode 107ns faster than before the split. The other important

result of the split b that the trap mechanbm logic can be realized with

sequentially organized PLAs.

258

1.3. Summary

Table 8.8 summarizes the original functional blocks and their circuit block

assignments. It also categorizes the blocks according to their types: datapath,

control, or control line driver.

259

Functional Block Circuit Block Type

Data drivers DataOut datapath

SignExt SXT/DIL datapath

Instruction latch DEL datapath

Instruction latch CPIPE1 control

Instruction latch SRC1 control

Instruction latch, S2- SRC2 control

Instruction latch, D- DST1 control

TempDataln, TempStoreOperand LOADL datapath

globals, locab Regbter file datapath

SHA SHA datapath

SHB SHB datapath

TempALUinputl INAm datapath

TempALUinput2 INBm datapath

Inserter, Extractor EX/INS datapath

Add, Subtract, And, Or, ALU datapath

Xor, Srl, Sra
Rzero Precharge datapath

TempALUoutputl, Nil Destlatch datapath

PC, PC+ firstPC, PCincr datapath

TempPC lastPC datapath

TB TB datapath

SWP SWP datapath

SWPcomparator SWPcompare datapath

Address drivers AddressOut datapath

Decoders Decoders datapath

PSW PSW, shDST, shOPC control

CWP, CWP-, CWP+ CWP datapath

TempInstrLatch DST2, CPIPE2 control

Decoding, I/D, RD/WR Driverl-8 driver

Forwarding comparators, control

apla, aplal, apla2, cplal, control

xcplal, cpla2

WAIT, WAITACK WAIT logic control

Condition comparator, Condpla control-trap

TempALUoutput2
Illegal Opcode Detection Illpla control-trap

Table 8.8- Circuit Block Summary

260

Functional Block Circuit Block Type

Tag Trap Detection, TempOpcode Tagcompla, tpla, TTrapLogic cont.-trap

Trap Instruction Detection,
GS Trap Detection, TempTags

Window Overflow Detection, Window logic cont.-trap

Window Underflow Detection,

TempCWP, TempSWP
SWI Detection SWI Detection cont.-trap

Data Page Fault Detection Page Fault Detection cont.-trap

Instruction Page Fault Detection
I/O interrupt Detection I/O interrupt detection cont.-trap

Trap Trap cont.-trap

Priority Encoder tpla2 cont.-trap

Reset Reset control

FSHCNTL FSHCNTL control

Table 8.8- Circuit Block Summary (cont.)

The desired function of each circuit block b an output of functional block

design and b used in design by the circuit level. The function of each circuit
block b derived from the functional block description that the circuit block

originated from. Appendix Ccontains functional descriptions in the form of logic

diagrams for all circuit blocks.

A netlbt b another output of functional block design. It b used by the

interconnect design level. It can be derived from tables such as Table 7.8 for each

circuit block or from the logic diagrams.

Circuit block diagrams and a floorplan of the processor were then developed.

Figure 8.6 shows the circuit block diagram of the realized SOAR datapath and its

bus structure. The control line driver interface between the control and datapath

sections b shown in Figure 8.7. The trap and skip mechanbms of the control

section are shown in Figure 8.8. Figure 8.9 shows the remaining parts of the

control section. Thb includes the PSW, instruction latch and some regbter access

decoding.

>-!> DaiaQui I >

SXT/DIL
c bin

DIL

i—>•!>• LOADL

Y InputDr Y

B

Register
File

Precharge

SHA

O

e

t

A DestDr A J |

INAm t—
L-tf^" INBm

EX/INS

Pi echargeD

ALU

H
StoA

^ ALUDr

Destlatch

BrstPC n
E/ PC ncr

lastPC

TB

X* * *

MAL

u SWP

S) yPcompare

Figure 8.6- Datapath- Data Transfer (Realized SOAR)

261

DataOut *

SXT/DIL

DIL

LOADL

InputDr

Register

Precharge

SHA

SHB

DestDr

INAm

INBm

~7G=

Drive r3

* >'

Drive :4

StoA

arrows with only one marked

terminal come from or go to

control

* /1Z
firstPC

PCIncr

Dri rer7 *1+
lastPC

+P-
TB

EX/INS * Drive r5 *fZ MAL
Driver8 *i*-

PrechargeD

ALU

ALUDr
rz=

Destlatch

DrlverC

SWP

1*
SWPcompare 3

tr>1fir

*-•

T^

Figure 8.7- Datapath- Control Lines (Realized SOAR)

262

CPIPEL

busA<28:31>8

busB<28:31*

illpla

tagcompla tpla

pad

pad

r
#-i condpla

/-> SWI
PSW<0X_^ detection

S

cplal

cpla2

PSW<1^

window

logic

page fault

detection

I/O interrupt
detection

V

TTrap

Logic

263

tpla2 \r

I
% Trap

T

Figure 8.8- Control- Trap Section (Realized SOAR)

264

Figure 8.9- Control- Other (Realized SOAR)

The realized SOAR datapath contains a memory address latch - MAL. The

MAL is not on the list of functional blocks that were developed through this

methodology. The PC and TempALUoutputl latch duplicate the function of the

MAL. Thus, the MAL could have been omitted. This was the only difference

between the circuit block diagrams of the realized SOAR processor and a SOAR

processor developed through this methodology, using the realized SOAR pipeline.

265

2. Functional Block Analysis

Functional block analysis leads to a comparison of desired values for the

quantities being evaluated, with predicted values for the same quantities. Desired

values were arrived at through microarchitecture analysis. After functional block

synthesis the circuit block and interconnect structure can be determined for all

signals. An estimated value for each characteristic being analyzed is determined

for each circuit block and interconnect. When analyzing speed, power, and area,

estimates of the delay, power dissipation, and area of each circuit block or

interconnect is needed. These estimates are totaled up to arrive at an estimate of

the speed of each signal, total power, and total area.

2.1. Speed Analysis

On the SOAR project complete functional block analysis of speed was not

done at this stage in the design. Functional block synthesis was followed by

synthesis at the circuit and interconnect levels with no intervening speed analysis.

Detailed speed analysis was then done and revealed several unacceptably long

delays. At this time functional block analysis was done to discover the reasons for

these delays. For the purpose of illustrating this methodology, functional block

speed analysis, as it should be done, will first be discussed. This will be followed

by the results of functional block speed analysis as it was done. It was done

correctly but if it had been done at the proper time - before detailed circuit and

interconnect synthesis - it would have saved many hours of detailed redesign at

the circuit and interconnect levels.

266

2.1.1. Method

As previously discussed, each input signal to a block is identified with a

processor activity. Microarchitecture analysis identified the start and finish of
each of these activities. This defines the allowed settling time of the input signal

corresponding to an activity. During speed analysis at the functional block level,
the circuit blocks and interconnects that the signal passes through when settling

are first identified. This is done with the help of the netlist and leads to diagrams

'such as Figure 8.10, for each signal. In Figure 8.10 the signal being analyzed

passes through three blocks and the interconnects between them as it settles. To
predict the settling time, the individual block and interconnect delays for this
block structure are totaled. A second part of functional block analysis examines

these block structures to uncover unnecessary components and excessively long

paths. All this is done in the analyze functional block step (Figure 8.1).

block 1 block 2 block 3

clock edge
causing signal

to change

Figure 8.10- Block Structure of a Signal

The design process then moves to the analyze functional block vs.

microarchitecture step. The total delays from the previous step are compared to

the desired delays. The desired delays were found from previous

microarchitecture analysis. They were expressed in terms ofallotted clock phases

for the settling of input signals (Figure 7.9).

input signal
"~*being analyzed

267

This speed analysis can best be illustrated with an example. The

TempALUinput2 functional block became the INBm circuit block. It has four
inputs - busBtoINB, busLtoINB, busB, and busL - as previously discussed. Using
the netlist it can be seen that the ungated version of busBtoINB comes from

xcplal. The function of xcplal is examined and shows that inputs from CPIPEl
form the busBtoINB output (Figure 8.11). The rising phase 1 clock edge at

CPIPEl signals the start of this decode activity (Figure 7.10). Similar analysis
using the netlist and circuit block functions results in the block structures for the
remaining input signals to INBm - busLtoINB, busL, and busB. Two decoded
signals are combined to form busLtoINB. BusL is driven with information from
either the sign extender - SXT/DIL - or the instruction latch - DIL. Either

SXT/DIL or DIL is enabled by acontrol line from the Driverl circuit block. Data
from one of the registers, Destlatch, or LOADL is put onto busB during the read

activity. These blocks are also enabled by control lines from driver blocks.

CPIPEl * xcplal

phil rises

busBtoINB
(ungated)

CPIPEl J xcplal ^..pv^BusLtoIN
» 1 T-——n^LJ^tungated)

phil rises

CPIPE2

Driverl

~T"
phi2 rises

cpla2 —'

SXT/DIL

busL

4
Driverl —> DIL

Driver2 —> decoders -*
register

file

T.
phi2 rises

x

Driver6 Destlatch
DestDr

phi2 rises
£

Driverl
InputDr

busB

Figure 8.11- Functional Block Structure of Inputs to TempALUinput2

268

Estimates of the delays through these circuit blocks and interconnects

between them are needed to compute the settling time of each signal (Table 8.9).

Some of this information is available from the characteristics of circuits that were

designed during the preliminary phase. PLA delay estimates are readily available

due to automatic layout generation of the PLAs from logic, descriptions, and

269

timing verification of the layout using CRYSTAL. Other delays are unknown and

very rough guesses must be used. Enabling of the control latches - CPIPE1 and

CPIPE2 - should be relatively fast. Interconnect speeds depend on the capacitive

loads and composition of the interconnects. This can vary greatly depending on

the final layout and is therefore left unknown, as indicated by the '?'. Delays for

circuits that drive buses, control, and word lines were calculated using the

approximate loads, during preliminary circuit design. Thus, circuit block and

interconnect delays are lumped together for these situations.

Block or Interconnect Delay (ns) Origin

CPIPE1 "0 guess

Xcplal 100 CRYSTAL

CPIPE2 "0 guess

Cpla2 70 CRYSTAL

Driverl + control line 20-40 preliminary phase

SXT/DIL + bus 30-45 preliminary phase

DIL + bus 30-45 preliminary phase

Driver2 + control line 20-40 preliminary phase

DriverO + control line 20-40 preliminary phase

Decoder + word line 20-40 preliminary phase

Register file + bus 20-25 preliminary phase

Destlatch + bus 30-45 preliminary phase

DestDr + bus 20-45 preliminary phase

InputDr + bus 20-45 preliminary phase

Interconnect- CPIPE1 to xcplal ?

Interconnect- xcplal to INBm ?

Interconnect- CPIPE2 to cpla2 ?

Interconnect- cpla2 to INBm ?

Table 8.9- Circuit Block and Interconnect Speed Estimates

270

Two types of analysis are done with this block structure and delay

information. The most obvious analysis is to sum up the delays for each signal.

This leads to an estimation of the settling times (Table 8.10).

BusBtoINB

BusLtoINB (xcplal)

(cpla2)

BusL

BusB (register file)

(Destlatch)

(LOADL)

100ns + 2 interconnects

100ns + 2 interconnects or

70ns + 2 interconnects

50-85ns

60-105ns or

70-130ns or

40-85ns

Table 8.10- Input Signal Delays (INBm)

271

The second type of analysis is more subjective. The block structures for each

signal are examined to identify unnecessarily long paths for signal settling (Figure
8.11). In thb example the control lines - busBtoINB and busLtoINB - involve a
minimum number of blocks. A latch holds the opcode. This opcode goes through

one decode PLA and then to its destination. The number of blocks needed to

drive busL is also minimal - a driver block that enables the block holding the

data to be read onto busL. Two of the three paths to drive busB are also minimal

- the register file and InputDr paths. In the third path the Destlatch first drives

busD then the DestDr block transfers the data from busD to busB. This last step

is unnecessary if the microarchitecture can be rearranged so that INBm can be

loaded from busD. Referring to the first part of functional block analysis (Table

8.10), it can be seen that the delay of thb third path b estimated to be the longest

settling time for busB. Thus, both types of functional block analysb indicate that

the processor speed can probafcly be improved by rearranging the

microarchitecture so that busD can load INBm if thb b found to be a limiting

272

critical path when microarchitecture versus functional block analysb b done.

These two types of delay analysb should be done for the input signal of all

circuit blocks.

Results of thb analysb are then compared with the desired critical paths

from microarchitecture speed analysb (Ch.7, Sec.2.1) and redesign b done as

necessary (Table 8.11). All signab except busB, for the INBm circuit block

compare favorably with the previous microarchitecture analysb. BusB b

estimated to take longer than the allotted phi2 phase - 50-85ns. The unminimal

busB path from the Destlatch requires 70-130ns. Even the minimal bus B path

from the regbter file needs 60-105ns. Thus, even with the proposed

microarchitecture rearrangement the specification will not be met. At thb point

all critical paths for phi2 should be inspected. If phi2 must be extended even

further due to some other signal it may not be worthwhile to speed up the reads

onto busB. If these reads prove to be the limiting path for phi2 then either phi2

must be extended to accommodate them or faster circuits must be designed so

that the specification can be met or some comprombe between these two solutions

must be agreed upon.

Signal Allotted Clock Phases Estimated Delay Compare

BusBtoINB phil + underlap: 170-290ns 100ns + 2 interconnects ok

BusLtoINB phil + underlap: 170-290ns 100ns + 2 interconnects ok

BusB phi2: 50-85ns 70-130ns not ok

BusL phi2: 50-85ns 50-85ns ok

Table 8.11- Microarchitecture vs. Functional Block Analysis

273

2.1.2. SOAR Speed Analysis

Functional block speed analysb of the PLAs was done after functional block

synthesis on the SOAR project. As previously described, the PLA functions were
originally grouped into six PLAs. Three of these PLAs were then split into
smaller PLAs. As described in section 1.2 of thb chapter, the motivations for two

of these splits - cplal and apla - were the long delays through the original PLAs.
Tpla was split because it was unable to be generated. It would have been
extremely long if it was generated and consequently, unacceptably slow, thus, the

PLAs followed the design steps of Figure 8.1:

1. Synthesize functional blocks

2. Analyze functional blocks- not ok

3. Synthesize functional blocks

4. Analyze functional blocks- ok

To analyze the PLA blocks, the layout was used since it was easily available due

to CAD toob.

Other functional block speed analysb was done after detailed circuit and

interconnect design. It revealed unacceptable bottlenecks on the chip and

resulted in microarchitecture redesign. If done at the right time, it would have

identified the problems earlier, before the time consuming circuit and interconnect

design and layout had been completed. As previously dbcussed (Ch.6, Sec.1.7),
multicycle instructions on SOAR were implemented by an internally generated
series of single cycle opcodes. Thb was the result of the microarchitecture

redesign after functional block speed analysb. Before the analysb an interlock

mechanbm was used to hold the opcode of the multicycle instruction in the

instruction latch for the required number of cycles (Figure 8.12).

Interlock

Internal
Opcodes

loadm cycle 1 loadm

loadm cycle 2 load6

loadm cycle 3 load6

loadm cycle 4 load5

loadm cycle 5 load4

loadm cycle 6 load3

loadm cycle 7 load2

loadm cycle 8 loadl

loadm cycle 9 loadO

274

Figure 8.12- Instruction Latch Opcodes for aMulticycle Instruction- Loadm

Figure 8.13 shows the original interlock mechanbm. CPIPEl b the

instruction latch holding the multicycle opcode, loadm. Thb opcode b decoded

by adecode PLA and asignal indicating amulticycle opcode b being processed, b

generated for the interlock logic. DSTl holds the regbter specifier. During loadm

regbters are written, with the loaded data, in descending sequential order. So the

new value of DSTl comes from the decrementer during loadm interlocks. The

interlock logic generates the signal that selects the decrementer for DSTl when a

multicycle opcode b being processed. When DSTl b zero, the multicycle

instruction has been completed and various normal processor activities -

increment the PC, load CPIPEl, load the MAL from the PC, etc. - are resumed.

The control lines for these activities are set by a decode PLA.

Instruction

fielf
CPIPEl

opcode- loadm

xcplal decode

indicates instruction
b multicycle

Interlock

Instruction
field

MUX sel

DSTl

address regbter file

zero detect

logic

I
Interlock

I
cplal

=rcontrol
signals

ends lock if
zero detect

b true

decode

Figure 8.13- Interlock Mechanbm Block Structure

275

There were several control lines that were set by thb interlock mechanbm.

Thb path is composed of seven circuit blocks and the routing between them. As

these signab settle, they must go through the largest decode PLAs - cplal, xcplal

- twice, the interlock logic twice, and assorted other pieces of logic. It was not

possible to put all seven blocks in close proximity. Therefore, interconnect

loading and delays are significant. When thb path b compared to the minimal

decoding paths of busBtoINB and busLtoINB (Figure 8.11), it b apparent that it

b extremely long.

276

The internal opcode mechanbm for interlocks b shown in Figure 8.14. The

instruction latch, CPIPEl, holds the opcode. However, unlike the interlock

situation, thb opcode changes during the multicycle instruction (Figure 8.12). All

control lines are set according to the opcode. The opcode for each cycle b unique

and therefore the end of the multicycle instruction b indicated by the last opcode

- loadO. Control lines that increment the PC and load CPIPEl from the

instruction field are enabled when thb last opcode b decoded by cplal, and

disabled during the other opcodes of the multicycle instruction. The decrementer

b used to address the regbter file, just as with the interlock method. The

decrementer abo supplies the unique piece of the internal opcode for every cycle

of the multicycle instruction. The internal opcode b loaded into CPIPEl at the

start of the each cycle. In thb way a unique internal opcode b generated for each

cycle of the multicycle instruction.

Internal Instruction
Opcode field

MUX sel

CPIPEl |
Topcode

xcplal

l-H^
bntrolI

Instruction
field
1

MUX sel*

DSTl

I
address register file

Signals

Figure 8.14- Internal Opcode Mechanbm Block Structure

277

Using the internal opcode mechanbm, control lines that were previously set

with the interlock mechanbm, now settle through a path composed of CPIPEl

and one large decode PLA - indicated by the dashed lines of Figure 8.14. Thb b

the minimal block structure needed to form control lines from an opcode.

A second non-minimal block structure for instruction decoding occurs when

control lines must go through two sequential PLAs, as they are being set (Figure

8.15). Thb b the situation for control lines that are involved in routing the ALU
output (Destlatch) or data input latch (LOADL) directly to the ALU input -

forwarding - and when writing to the special regbters. Forwarding occurs when a

source register for an instruction in the read phase, b the same as the destination

register of the previous instruction. The source of the forwarded data b either
the Destlatch or LOADL latch, depending on whether the previous instruction

was a regbter to register instruction or a load. Cpla2 determines thb, according

278

to the previous opcode that b in CPIPE2. The signal from cpla2 b combined in

aplal with the signab from the forwarding comparators to generate the
forwarding control lines. These lines are used during the read phase - phase 2-

and must therefore have settled by the start of phase 2 (Table 8.12). When

compared with the minimal decode that has the same time allotment, the
forwarding lines have aslightly longer PLA delay and an extra interconnect delay.

Thb indicates a potential bottleneck to decoding. Therefore, it was decided that

the two PLAs - cpla2 and aplal - should be placed close together. Thb

requirement becomes an input to interconnect design.

CPIPE2 cpla2

or*&fe2-*
phil rises

DST2

1 t

CPIPE2 -» cpla2 1

Forwarding
Comparator

apla2

aplal

forwarding
•control
lines

special register
^decode for write

Figure 8.15- Another Non-minimal Block Structure for Instruction Decode

279

Signal Allotted Clock Phases Estimated Delay Compare

Forwarding phil+underlap=170-290ns. 120ns+3interconnects ok

Write specials phil+phi2+2 underlaps=240-395ns 102ns+3interconnects ok

Pointer to reg.

Original phil+phi2+2 underlaps=240-395ns 350ns+2 interconnects not ok

Revised phil+phi2+2 underlaps=240-395ns 250ns+l interconnect ok

Trap

Thru cplal phi3+phil+phi2+2underlaps=340-495ns 300ns+6 interconnects not ok

Thru cplal phi3+phil+l underlap=270-390ns 300ns+6 interconnects not ok

Not thru cplal phi3+phil+l underlap=270-390ns 200ns+4 interconnects ok

Table 8.12- Functional Block Analysb of Key Paths

Writing to the special regbters abo requires two sequential PLAs (Figure

8.15). Cpla2 decodes the opcode and indicates awrite b to be done. Apla2 b the
decoder for the special regbters. Thb write b done in phase 3. Thus, both phil

and phi2 are allotted to the decode (Table 8.12). Thb decode requires 100ns of
PLA delays and three interconnect delays. It should easily fit into its 240 to

395ns time slot.

A third non-minimal block structure and therefore potential problem for

instruction decoding, exbted with control lines that depended on the pointer to

regbter signal (Figure 8.16). Pointer to regbter b asserted whenever a memory

access refers to an on chip regbter. The SWP comparator b a 24 bit ripple adder

that includes zero detection on the output. Thb comparator was estimated to

have a 250ns delay. The control lines that depend upon pointer to regbter must

settle by the start of phase 3 (Table 8.12). The original microarchitecture

280

proposal had these control lines settling through the SWP comparator and cplal

sequentially. Thb was estimated to have a delay of 350ns plus two interconnect

delays. The allotted time for settling was 240-395ns. Thb indicated a problem

and the microarchitecture was rearranged so that signab would go through the

comparator and cplal simultaneously (Figure 8.16b). The two resulting signab

are combined at the control line drivers to form the control signab. With thb

modification the overall delay was reduced by 100ns and an interconnect delay

(Table 8.12).

SWP

lT
phil rises

MAL

SWP
comparator

CPIPEl

phil rises

(a)- Before Microarchitecture Rearrangement

phil rises

T
phil rises

(b)- After Microarchitecture Rearrangement

Pointer
to

Regbter
* cplal

Pointer
to

Regbter

Control
Lines

Control
Lines

Figure 8.16- A Third Non-minimal Block Structure for Instruction Decode

281

The block diagram of the trapping mechanism shows seven possible paths

that may all result in a trap (Figure 8.8). The path that causes the longest delay

b the path through the condition PLA. The block structure for thb b shown in

Figure 8.17. Signab on thb path start to change at the beginning of phase 3 as

the ALU compares the two operands. The condition PLA evaluates the ALU

result according to the type of comparison being done, and generates a signal

indicating whether a trap should occur or not. When a trap occurs an internal

opcode b placed into the opcode latch (CPIPEl) and then decoded to set control
lines. All but two of these control lines are used in phase 3. The allotted time for

these control lines b 340 to 495ns (Table 8.12). The estimated delays of the PLA

outputs are 300ns plus the delays of six interconnects. Thb b close to the limit,

making it important to minimize the interconnect delays. Two control lines must

be generated by phase 2. Thb would not be possible if they were PLA outputs.

Therefore, they are generated directly from the trap signal.

ALU -JjcondplaU jBWP > Trap f

phi3 rises

DSTl

phil rises

CPIPEl cplal

control
lines for
next phi3

2 control lines
"^needed by phi2

Figure 8.17- Longest Block Structure of theTrap Mechanbm

Functional block speed analysb provided insights into the bottlenecks of

SOAR when speed analysb of the completed layout was carried out. Thb led to

revbions in the microarchitecture and further functional block analysb. When

thb analysb met the requirements of the microarchitecture, the circuit and

282

interconnect design and layout was redone. Thb redesign proceeded according to

the methodology.

2.2. Power Analysb

Power analysb of SOAR was done at the functional block level after

functional block synthesb. DC power dissipation leveb of the circuits developed

during the preliminary phase, were used as inputs to functional block analysb.

AC power dbsipation for bus and interconnect loads of approximately IpF, were

calculated based on a 500ns cycle time and proved to be negligible. Table 8.13

summarizes the estimated power dbsipation for SOAR from functional block

analysb. The large register file and assortment of PLAs contributed most to

power consumption - 25% and 21% respectively. At thb point the total power

estimate for SOAR Was 600mW.

Block Type Power (mW) %

Datapath latches 60 10

Bus drivers 22 4

Register file 150 25

Word line drivers 86 14

Control line drivers 38 6

Decoders- regbter file 14 2

EX/INS 4 1

ALU 11 2

Control latches 11 2

Pad drivers 77 13

PLAs 129 21

Total 602 100

Table 8.13- Power Estimate from Functional Block Analysb

283

284

Chapter 9

Circuit and Interconnect Design

SOAR Case Study

Once a functional block design that b expected to meet the microarchitecture

requirements has been proposed, design moves to the circuit and interconnect

leveb. Figure 9.1 shows the section of the methodology that corresponds to

circuit and interconnect design. Circuit and interconnect design are done

simultaneously due to the close ties between the two leveb. Both leveb contribute

to the final layout of the processor. During synthesb the sizes and geometries of

the two individual leveb must fit together and meet the area specification of the

chip. Port placement on the circuit blocks influences interconnect layout. During

analysb, interconnect loading affects the speed of the circuit block outputs.

Circuit block inputs at the terminations of interconnects affect the maximum

possible speed of the interconnect.

synthesize
microarchitecture

functional block
1

byntnesize

synthesize
functional

block

byntnesize
Interconnect

1

not ok

not ok

not ok

Figure 9.1- Circuit and Interconnect Design

285

1. Circuit and Interconnect Synthesis

The first design step at the circuit and interconnect level b the synthesb of

the circuit blocks and the routing between them (Figure 9.1). Figure 9.2 shows

the flow diagram for thb step. The desired functions inputs to circuit design b

the set of logic diagrams that describe the circuit blocks. The netlbt input to

interconnect design b derived from the circuit block descriptions. Interconnect

characterbtics take the form of speed requirements for key interconnects. These

are interconnects on signal paths for which it b questionable as to whether they

will meet their timing requirements. Special attention to interconnects on these

paths can make the difference. Requirements were:

1. Minimize routing between cpla2 and aplal.

2. Minimize routing on the trap instruction detection path.

3. Carry lines made entirely of between the two datapath sections.

desired netlbt,
functions characteristics

#A . size, geometry J mter*
circuit r port placement \ connect

286

design'rules, . design rules
devices available, lavers available
layers available

Figure 9.2- Circuit and Interconnect Synthesb

Circuit design consbted of customizing the circuits designed during the

preliminary phase so that the logic diagrams for all circuit blocks were realized.

Datapath celb were pitch matched, and their inputs and outputs were placed so

that adjacent blocks could be butted up against each other. The entire chip was

routed according to the netlbt and the routing requirements from previous design

steps. Thb completed the first cut at circuit and interconnect synthesb.

2. Circuit and Interconnect Analysis

After thb design moved to the step that analyzed the circuit blocks

individually. Theoretically interconnects should have been analyzed individually

abo, but their was no clear way to do thb for speed analysb. Figure 9.3 shows

the complete flow diagram for thb step. As previously dbcussed, speed was the

287

primary characteristic of interest. Area and power specifications for SOAR were

much looser. Thus, analysb concentrated on speed analysb of the circuit blocks,

as shown by the dashed lines in Figure 9.3.

internal block delays interblock delays

Speed

Power

Area

parameters

circuit block
power-djC., a.c.

parameters

interconnect
power-a.c.

parameters parameters

circuit block areas interconnect areas

design rules design rules

Figure 9.3- Circuit and Interconnect Analysb

Circuit blocks were typically 32 bit blocks and therefore were too complex

for practical SPICE analysb. The timing verifier - CRYSTAL - was used to

predict circuit block speeds [Oust85]. The goal of circuit analysb during thb step,

was to analyze the speed from the extracted circuit layout, for all circuit blocks

288

on the signal paths outlined during functional block analysb. The layout adds

many parasitic elements, both capacitances and resbtances, to the circuits. These

unfortunately, do not always have a negligible affect on performance. Since

layout does not necessarily exbt during the preliminary phase, they were not

accurately modeled in early speed estimates. Now that complete layouts exbt for

circuit blocks, more accurate speed estimates can be made. PLAs were generated

automatically during previous steps and therefore their speeds have already been

estimated from, the layout (Table 8.7). Speeds according to CRYSTAL, of key

circuits are summarized in Table 9.1.

Block Estimated Delay Allotted Delay

ALU 247ns 100ns

Inserter/extractor 157ns 100ns

SWP comparator 601ns 240-395ns

Decoders 438ns 170-290ns

Sign extender 305ns 170-290ns

PC incrementer 350ns 395-515ns

Table9.1- Speed Estimates of Key Circuits (CRYSTAL)

2.1. ALU

The first major problem was the ALU. The original ALU layout had a

simulated delay of 400ns. Thb was primarily due to some large diffusion areas in

the carry circuitry, and their associated parasitic capacitances - node Y in Figure

6.5 [Kong84]. Figure 9.4 shows the modified carry circuitry. The parasitic

289

capacitance of node Y was greatly reduced in the layout of thb circuit. The

output node of the ALU also had a large capacitance associated with it due to the

layout. Therefore, a buffer was added to drive the ALU output (Figure 9.6).

With these changes and other minor modifications, the ALU delay was reduced to

247ns. Thb b still more than the desired 100ns, but was accepted for thb design.

precha
uro<n+4>

W*xnor<n+
and<n+3>

xor<n+3>

y^jini
xnor<n+2>
and<n+2>

xor<n+2>

v^m
xnor<n+
and<n+l>

xor<n+l>

VddTl
xnor<n>.
and<n>

xor<n>

<Jm<n>

Figure 9.4- SOAR ALU

node Y

Table 9.2 lbts the circuit components used during addition, with thb type of

ALU. As previously dbcussed, the ALU b organized into eight four bit blocks -

nibbles. Each nibble has a carry bypass line used to rapidly propagate the

290

incoming carry across it, when conditions are correct - path a in Figure 9.5.

Carry propagation across a nibble was reduced from 43ns to 14ns by including

thb bypass scheme. Each ALU output bit requires an input carry to compute its

result value. Within a carry block, the slowest input carry to be generated, b the

one that requires propagation across three bits - path c in Figure 9.5. The delay

of thb path b 32 ns. After the input carry for a given bit has settled, another

47ns b needed to compute the result for that bit - path a in Figure 9.6. Thb

result b then driven onto the ALU output node 17ns later - path b in Figure 9.6.

Table 9.3 gives a breakdown of the circuit components for the worst case

situation of the slowest bit - the second most significant bit.

Circuit Component Delay Figure

Nibble with carry bypass 14ns 9.5, path a

Nibble without carry bypass 43ns 9.5, path b

Slowest carry generation within a nibble 32ns 9.5, path c

Compute result from carry 47ns 9.6, path a

Drive ALU output load 17ns 9.6, path b

Drive split datapath line 35ns

Table 9.2- Speed Estimates of ALU Circuit Components (CRYSTAL)

Operation Component Delay % Total Delay

Generate slowest carry inside first nibble 32ns 13.0

Propagate across 4 nibbles 42ns 17.0

Drive split datapath 35ns 14.1

Propagate across 3 nibbles 42ns 17.0

Generate slowest carry inside last nibble 32ns 13.0

Compute result from carry 47ns 19.0

Drive ALU output load 17ns 6.9

Total 247ns 100

Table 9.3- Speed Estimates ofALU Operation Components (CRYSTAL)

291

©
precharge 4J4

<Jin<n+4;>

^ yddrn
xnor<n+3>
and<n+3>

xor<n+3>

^ .yddTfl
xnor<n+2>
and<n+2>

xor<n+2>

xnor<n+l>
and<n+l>

xor<n+l>

VddTl
xnor<n>
and<n>

xor<n>

<Jin<n>

Figure 9.5- SOAR ALU- Carry Paths

292

selaluAND
sela uXOR

selaluSUM

xnor<nX

and<n!
xor<n>-

ALU<n^

Figure 9.6- SOAR ALU- Sum Generation

293

ALU<n>

Cin*<n>

When the original 100ns estimate was made, there was no layout and

therefore the parasitic capacitances were not known. The original estimate abo

only accounted for carry propagation across eight nibbles. Carry propagation

across eight nibbles including parasitic capacitances, b 112 ns. As can be seen

from the difference between total ALU delay and delay for eight nibbles, overhead

delays contribute significantly to the total delay - 54%. Overhead delays are due

to the carry line that crosses the split datapath, generation of the slowest carry in

the first and last nibbles, computation of the result from thb carry, and the load

of the output bus.

If 247ns for ALU operation had been considered unacceptable, design would

have returned to the circuit synthesb step. The ALU could have been redesigned

to increase its speed. One way to do thb using existing circuitry, b to add a carry

select scheme to the carry computation. To implement a carry select scheme, an

ALU b divided into carry select blocks. The size of these blocks does not have to

be the same as the block size for the carry bypass or carry lookahead. The carry

output of each carry select block b computed for two situations. It b computed

assuming the carry input to the select block, b 'one1 and abo 'zero1 (Figure 9.7).

294

Thb b done for all carry select blocks simultaneously. Then the correct carry

output of a given select block b chosen by the carry output of the next lower

order block.

\—<^i 5

1_ _i

T
Cin=0

T
Cin=l

^Cou^

Cou^j

carry
select
block

carry bypass or
lookahead blocks

Figure 9.7- Carry Select Scheme

295

Maximum speed for carry computation with carry select depends on:

1. n= Total number of bits

2. m= Number of bits per carry bypass or lookahead block

3. p= Number of carry select blocks

4. a= Delay across a carry bypass or lookahead block

5. i= Maximum delay inside a carry bypass or lookahead block

6. s= Carry select delay as one select block selects another

Using these parameters:

n/mp = number of bypass or lookahead blocks per select block

The worst case computation time for one carry select block b due to the worst

case computation for the lowest order bypass or lookahead block, followed by

carry propagation across the remaining bypass or lookahead blocks.

i + (n/mp - l)a = carry computation time for one select block.

All select blocks perform thb computation for the cases of carrym = 1 and

carry. = 0, simultaneously at the start of the carry calculation. To complete

the calculation, each lower order select block, starting from the lowest, chooses

the carry output of the next higher order select block, ending with the highest

order block. Thus, the total delay b:

i + (n/mp - l)a + (p - l)s = total computation time

296

For SOAR:

n = 32

m = 4

i = 32ns

a = 14ns

s = unknown, assume 10ns

p = to be determined so that the overall delay b minimum

With four bits per carry bypass block and 32 total bits, possible values for p, the

number of carry select blocks, are 2, 4, and 8. Using the expression for total carry

computation time, the delay for each of these possibilities b calculated (Table

9.4). The optimum scheme for SOAR would have been to have had four carry

select blocks, each with two nibbles or 8 bits each. Thb would have reduced the

ALU delay by 72ns, to 175ns - a 29% improvement.

Carry Scheme Carry Computation Time

p=2, carry select 84ns

p=4, carry select 76ns

p=8, carry select 102ns

no carry select 130ns

Table 9.4- Carry Delay for Carry Select Schemes

297

2.2. Inserter/Extractor

The inserter/extractor b assigned to the same time slot as the ALU. With a

simulated speed of 157ns, it b slower than the desired speed. However, the

desired speed was based on the predicted ALU speed. The inserter/extractor, at

157ns, b faster than the newly estimated ALU speed - 247ns. Therefore, it did

not need modifications.

2.3. SWP Comparator

The second major problem was the SWP comparator. Stronger gates were

substituted wherever possible in the layout. The comparator b loaded from the

MAL and SWP in 24ns. It includes a 24 bit ripple carry adder. Each pair of bits

has a delay of 36ns (Table 9.5). After the sum has been calculated, 106ns are

needed for the output signal to settle, bringing the total delay to 601ns. Any

further improvement would have required a carry scheme other than the ripple

carry.

Circuit Component Delay % of Total Delay

Load comparator 24ns 4.0

12 x delay/2 bits 12x36ns= 432ns 71.8

Drive split datapath 39ns 6.5

Compare signal 106ns 17.7

Total 601ns 100

Table 9.5- Speed Estimates of SWP Comparator Components (CRYSTAL)

298

2.4. Register File Decoders

The slowest path through the decoders was 438ns. Thb was after circuit

modification. Buffers and larger gates were added as necessary to drive large

loads. One contribution to the decoder delay comes from the ability to access a

regbter using its memory mapped address from the Destlatch (Figure 9.8). The

basic decoders are shown in Figure 6.21 and within the dashed lines of Figure 9.8,

and dbcussed in Chapter 6, Section 1.2.3. A mux selects either the regbter

specifier field or the computed memory address as the decoder input. Thb

muxing involves a significant amount of chip area devoted to routing. The

capacitive loads of thb routing contribute to the delays. The delay through thb

mux and its routing are 108ns (Figure 9.9). Four of the mux outputs must go

through the NOR section of the decoders, another mux, and associated routing.

The NOR section, including buffers, contributes 72ns; the second mux and

associated routing contributes another 204ns. The output of the NOR section

then goes through the NAND decoders that have a delay of 54ns. As can be seen

from the breakdown of the decoder delay, mux and routing delays contribute

significantly to the overall speed. 71% of the delay was due to the muxes and

routing (Table 9.6).

CWP

specifier field

s.—u&

=f>
1

n.

use

•regbter field

word line
driver

use

•memory address

299

Figure 9.8- Regbter File Decoders

MUX
Nor

Decode

108ns / 72ns

MUX

204ns

438ns

word line
Nand

Decode
river4."

\ \

\ \

\ \

\ \

\ 54ns \

=i

Figure 9.9- Register File Decode Block Structure

Circuit Component Delay % of Total Delay

Memory mapping mux and routing 108ns 24.7

NOR decode 72ns 16.4

Window mux and routing 204ns 46.6

NAND decode 54ns 12.3

Total 438ns 100

Table 9.6- Speed Estimates ofDecoder Components (CRYSTAL)

300

2.5. Sign Extender

The sign extender was estimated to have a 305ns delay after larger buffers

were added to drive large routing loads. Instruction decode and sign extension

both occur in phase 1. The bits to be sign extended depend on whether or not the

instruction b a store instruction (Figure 6.11). A mux selects these bits. The

instruction b first decoded to determine the mux select line. Table 9.7 gives the

breakdown for the sign extension delay.

301

Circuit Component Delay % of Total Delay

Interconnect from instr. latch to decode PLA 115ns 37.7

Decode PLA 63ns 20.7

Interconnect to datapath 92ns 30.2

Control line driver 10ns 3.3.

Sign extend 25ns 8.2

Total 305ns 100

Table 9.7- Speed Estimates for Sign Extension Components

Only 25ns (8.2%) of the delay b due to actual sign extension. The rest of the

delay b due to the two types of sign extension and decode that they require. 68%

of the total time b due to routing delays.

2.6. Summary

Thb analysb step revealed three major contributors to speed estimates that

were difficult to estimate in previous steps:

1. Parasitics within circuits

2. Interconnect parasitics

3. Overhead circuitry

Parasitics exbt within circuits due to large diffusion areas and high resbtance

signal lines. Large diffusion areas contribute significantly to the loads ofany gates

whose outputs must drive the large diffusion. High resbtance signal lines were

usually less significant on SOAR. They are usually in series with a transbtor of

the gate driving the signal line and therefore the total resbtance b the sum of the

parasitic and the W resbtance of the transbtor. Thus, the parasitic must be

302

compared with the transistor resistance to determine its significance. Routing

loads within circuit blocks can be significant whenever a circuit block covers a

large area. Thb was the case for the decoders. Routing capacitances are due to

interconnect areas and the resulting capacitances to the substrate. Interconnect

resbtances are the result of polysilicon crossovers. Parasitic resbtances of

interconnects were frequently significant on SOAR - the crossover resbtance value

was comparable to the 'on* resbtance of transbtors in the interconnect driver.

Until a layout exists, it is difficult to know the values of parasitics. Necessary

overhead circuitry b known before the circuit and interconnect steps. However, it

proved to be easily overlooked in circuit blocks that were composed of a repeated
series of one cell type - the adders. Overhead circuitry contributed significantly

to delays in these circuits.

3. Functional Block Analysis

After the final circuit and interconnect analysis step, design moves to the

functional block analysis step (Figure 9.1). Theoretically, functional block

analysb should be able to be done by considering the block structure of each

signal just as it was done before circuit and interconnect synthesb (Figure 9.10).
Now that circuit and interconnect synthesb has been done, accurate estimates of

the internal block delays and interblock delays should be available from the

circuit and interconnect analysb step. However, on the SOAR project individual

interconnect delays were not computed. Therefore, functional block analysb

incorporated circuit and interconnect analysb abo (Figure 9.11). The timing

verifier, CRYSTAL, was used to estimate the critical paths from the layout.

critical paths

internal interblock
block delay
delay

Figure 9.10- Functional Block Analysb Only (Speed)

4

critical paths

[functional]
\ block)

internal
block delay y

/ interblock
\ delay

circuit L.
nr

/ inter-
rxz H connect

parameters parameters

303

Figure 9.11- Functional Block Analysb with Circuit and Interconnect Leveb

Delay analysb was done for all signab that were analyzed during the

previous functional block analysb step (Ch.8, Sec.2.1). First, signab that were

allotted a single phase and the following underlap, were analyzed. Signab that

were the bottlenecks of the individual phase lengths were identified. Following

the methodology, design returned to the functional block synthesb step (Figure

304

9.1). Thb option to redesign the circuit block structure was considered but no

obvious improvements were found. Thus, design proceeded to the circuit and

interconnect step once again. Stronger buffers were substituted at the PLA

outputs for the limiting signab that included PLAs in their paths (Figure 9.12).

Larger drivers and gates were put into datapath blocks that had to drive buses on

limiting signal paths in the datapath. Thb included the block that drove the

ALU output bus and blocks in the signal path that transferred data from busD

onto either busA or busB. The transfer of data from busD to busA and busB was

first identified as a potential bottleneck during functional block design (Ch.8,

Sec.2.1.1). Analysis of the extracted layout confirmed this bottleneck.

Vdd Vdd

Original
PLA Output Buffer

Vdd Vdd

[12/4
dS!L d5

08/4[16/4 \ |R8/

Largest
PLA Output Buffer

Figure 9.12- PLA Output Buffer Optimization

The first instruction latch drove routing, five PLA inputs, and two latch

inputs. Thb was a considerable load and these signab were consequently slow.

To correct thb, the outputs of thb instruction latch were split into two branches,

each with its own buffer (Figure 9.13). One branch drove one PLA and the two

latches. The other branch drove the remaining four PLAs. Table 9.8a gives the

delay breakdown for the slowest signal paths with thb scheme. These include the

first instruction latch and the slowest PLA - cplal. If the PLAs had not been

305

split during functional block synthesb, the instruction latch load would have been

less and the delay of the interconnect between the instruction latch and decode

PLA would have been smaller. The breakdown for thb option b shown in Table

9.8b. The smallest possible load - short routing to one PLA - provides the lower

bound here. Thb data is from the second instruction latch which b in close

proximity to the one PLA it drives. In reality, the first instruction latch would

have driven three PLAs and two latches, if the PLAs had not been split. Thus,

the interconnect speed would have fallen somewhere between thb lower bound

and the present speed. With the split PLA scheme, the interconnect speed b

slower but the PLA speed more than makes up for the difference. The net result

b that without the split PLA scheme instruction decode would have been 18-30%

slower.

shOPC

Sec<>nd
Instruct! :>n Latch

cplal

First
Instruction Latch A

i

xcplal *. tpla

tplal illpla

Figure 9.13- Instruction Latch Output Buffering

Component Delay

Load instruction, latch 36ns

Drive buffer from the instruction latch 98ns

Drive PLA input from the buffer 12ns

Cplal (split) 102ns

Total 248ns

Table 9.8a- Speed Estimate for Decode with Split PLAs (CRYSTAL)

306

Component Delay

Load instruction latch 36ns

Drive PLA input from the instruction latch 56-110ns

Cplal (unsplit) 210ns

Total 302-356ns

307

Table 9.8b- Speed Estimate for Decode with Unsplit PLAs (CRYSTAL)

Thb scheme of buffering each branch of signal lines that split as they go to

their various destinations, b used on other slow signab abo. Nilling signab, CWP

updating signab, and the critical signab between cpla2 and aplal are other places

where these repeaters are incorporated.

4. Microarchitecture vs. Functional Block Analysis

The previous section discussed functional block analysb that led to revbions

in the circuit and interconnect designs. These revbions were followed by a second

functional block analysis step. Design then moved to the microarchitecture vs.

functional block analysis step (Figure 9.1). In thb step the results of functional

block analysb are compared to the microarchitecture requirements.

4.1. Phase 1 Analysis

Signab that were allotted phase 1 and the following underlap to settle were

the sign extended immediate and control lines for:

308

1. Shadowing

2. Forwarding

3. Special register decode

4. ALU input latch loading

5. Reads to buses A, B, and L

Figure 9.14 b a hbtogram of the final settling times for these signab. These are

the settling times after stronger buffers were substituted to drive large

interconnect loads. The ranges of settling times for the various categories of

signab are shown below the hbtogram. The paths for phase 1 are well balanced

except for the forwarding signab and the one shadow signal. Transbtor ratios of

the gates at the destinations of these slower signab were designed so that the gate

outputs switch at lower voltages. The effect of thb b that the destination gates

will switch on even though the input signal b farther from its final value than for

gates with standard transbtor ratios.

number

7._

6„

5._

4..

3..

2.. „

l._

0
2fe0

n
2 50 300

special
tefcbter
decoding

latch load

read

jm
t3 SO 340 3)0

forwarding

ns

t .
shadowing

309

Figure 9.14- Phase 1 Signal Settling Times

Except for sign extension, all signab settling in phase 1 are the result of
decoding using PLAs. Significant fractions of these settling times were due to

routing delays; an average of 51%, with a standard deviation of 6%, of the delay
times were due to routing. The range for routing delays was 34% to 61%.

Knowing the settling times for signab allotted to phase 1 and the following

underlap, a more accurate estimate of the length of phase 1may be made. Phase

1 plus the subsequent underlap require 320ns.

4.2. Phase 2 Analysis

During phase 2 operands are read onto buses A, B, D, L, and S, and latched

at the ALU input. Bus values are latched at the end of phase 2 and therefore

only the phase 2high time b allotted to the settling of these buses (Ch.7, Sec.2.1).
Phase 2 b limited by signab that are first read onto one bus and then transferred

to either busA or busB. BusD must be transferred onto busA when the TB, SWP,

310

or PC is used as an operand. Forwarding requires the ALU output latch

(Destlatch) data to first be read onto busD and then transferred to either busA or

busB. This takes 202ns (Table 9.9). 182ns is required for busA to settle when

data from busS is transferred to busA. If these buses could be directly loaded into

the ALU input latches, the longest settling time for any bus loading the input

latches, would be 163ns. Thb occurs when busA or busB b driven by the data

input latch (LOADL). Regbter file data b driven onto the buses in 154ns. With

the present scheme, 202ns b required for phase 2.

BusA,B busD

BusA busS (CWP, PSW)

BusA,B data latch- LOADL

BusA,B regbter file

BusA SHA, SHB

BusD ALU output latch, TB, SWP, PC < 124ns

BusL sign extender, instruction latch < 124ns

202ns

182ns

163ns

154ns

141ns

Table 9.9- Speed Estimates for Read (CRYSTAL)

Before phase 3 begins, logic in the ALU must settle. Thb logic b used by the

carry chain. The carry chain b precharged before phase 3 and then evaluated

during phase 3. Any unsettled carry chain inputs at the start of phase 3 can

cause fabe dbcharging of the carry chain. There b no way to recover from thb

which leads to incorrect results. In Table 9.10 these are the XNOR, XOR, and

AND signab.

Signal Delay

XNOR 335ns

XOR 329ns

AND 288ns

tbusA<28:31> 318ns

tbusB<28:31> 318ns

tagcompare 325ns

311

Table 9.10- Speed Estimates for Phase 2 + Underlap (CRYSTAL)

Operand tags - tbusA and tbusB - are also latched at the startof phase 3 for

trap detection. Tagcompare b formed by the tagcompla from the operand tags.

These signab - tbusA, tbusB, and tagcompare - depend on the operands and

therefore start to settle at the beginning of phase 2. They must finbh settling by

the start of phase 3. Thus, phase 2 and the following underlap must total to

335ns.

During the underlap between phase 2 and phase 3 the regbter file word lines

must be dbabled. Thb was estimated to take 125ns.

4.3. Phase 3 Analysb

During phase 3, buses A, B, and D are driven with data that b being written.

Delays for thb are similar to bus delays for the read operation - 200ns (Table

9.11). Addition b abo performed in the ALU during phase 3. The ALU result

must then be driven onto the EAbus, to be loaded into the PC or MAL, before the

end of phase 3. Thb requires 255ns, of which 247ns b the ALU delay. Thus,

phase 3 must be 255ns long.

Signal Delay Pipeline Function

BusA,B 200ns

BusD 124ns

EAbus 255ns

Write

Write

Alu

312

Table 9.11- Speed Estimates for Phase 3

Again the word lines must be dbabled between phase 3 and phase 1. Thb

requires a 125ns underlap between these two phases.

4.4. TRAP Analysis

The previous three sections have dbcussed single phase length and underlap

requirements. However, thb does not cover all signab. Several signab that span

more than one phase exbt. Trap mechanbm signab fall into thb category.

SOAR had ten different types of traps (Ch.5, Sec.1.6). Trap detection occurs

through a variety of paths as shown in Figure 8.8. Once the trap b detected,

tpla2 encodes its priority and the Trap circuit block generates a signal that loads

the internal TRAP opcode into the first instruction latch (CPIPEl). Figure 9.15

shows a more detailed circuit block structure for each type of trap detection.

Outputs of these block structures are used by tpla2 and the Trap circuit block.

The clock phase that initiates trap detection varies according to the type of trap.

Illegal opcode traps, window traps, and software interrupt traps are initiated

when the first instruction latch changes - at the beginning of phase 1. The start

of phase 2 triggers page fault interrupts, 10 interrupts, tag traps, and generation

scavenging traps. Trap instructions and overflow tag traps use the ALU results

and therefore are initiated on phase 3. Settling times for the various trap

313

detection signals also vary. Consequently, the completion time of trap detection

depends on the type of trap.

ILL

DPF
IPF
10

WO
WU

SWI

TAG
GS

TI
TAG

CPIPEl I—H illpla

phil rbes

logic

phi2 rbes

CPIPEl illpla

phil rises

CPIPEl pS logic
*

phil rises
4

psw -J

plji;i3
illegalopc

P^l3 datapageflNT
rn »instrpagefINT

IOINT

I ; 1 I—I winoverflow
-* window —» '—^underflow
r% compare

CWPJ V—-—'CWFHf

swpH
phil rises

ph|i!i2
SWI

operand
source

-» tagcompla —» tpl»
r

GStrap
operand tag trap

phi2 rbes

ALU

phi3 rises

condpla
trap Instruction

"^overflow tag trap

Figure 9.15- Trap Block Structures

The Trap circuit block samples the trap detection signab on phase 1 and

subsequently causes the TRAP internal opcode to be loaded into the first

instruction latch when a trap b detected. Thb opcode b then decoded to set

control lines. Therefore, the TRAP internal opcode should be loaded as early in

314

phase 1 as possible. Figure 9.16 shows the timing of the various types of traps.

Clock phase lengths are those that were determined by single cycle analysb. Most

types of traps are detected by early in phase 3 and therefore are not limiting

factors. The exceptions to this are trap instructions and overflow tag traps.

These both depend on the ALU output which must then be interpreted by the

condition PLA (condpla). Consequently, the signal (CPIPEtrap) from the Trap

circuit block that loads the first instruction latch settles 154ns after the start of

phase 1. This is 125 ns after the instruction latch would have been loaded if there

had not been a trap. Thus, control lines settle 125ns later when a trap b

detected. Thb presents no problem for control lines that are used in phase 2

because these control lines determine what b to be read and operated on, and do

not change the state of SOAR. However, phase 3 control lines are used for

writing and loading of state regbters. Therefore, thb 125ns delay must be

considered when analyzing control lines used during phase 3.

clock

underlap
12.5ns

phil
300ns

DPF
IPF WO

ILL 10 WU
TAG TAG

SWI GS TI

112ns

Tijap -k/Y
110ns 112ns
tpla2 Trap

Figure 9.16- Trap Timing

315

4.5. Decode for Phase 3 Analysis

Phase 3 b the phase during which ALU operations are completed, results are

written, and latches are loaded with future values. Control lines for phase 3

direct:

316

1. ALU operation

2. Writes

3. Addressing latch loads

4. Internal opcode loads

5. Other state latch loading

Figure 9.17 b a hbtogram of the delays for these signab. Settling times

range from 226ns to 432ns when a trap has not occurred during the previous

cycle, and 351ns to 557ns when a trap has occurred. These signab are allotted

phase 1, the phasel/2 underlap, phase 2, the phase2/3 underlap for settling.

According to the restrictions.on single cycle lengths, thb allotted time b 655ns.

Therefore, the requirements of thb decode are not a limiting factor for phase

lengths. The slowest of these signab will still be ready 100ns before it b needed.

number

4_

3_

1-LLJ
0 n

no trap: 0+ ••
trap: 125+ •>

240 2

a

*internal
opcodes

0 300

n on n3^0 340 3b 380 4^0 ' 450 ns
"XEU

write

other

PC, MAL
•

Figure 9.17- Decode Settling Times for Phase 3

As seen in the hbtogram the delay ranges for the different types of phase 3

control lines overlap significantly. The longest delays are for signab that control

the loading of the addressing latches - PC, MAL. The fastest signab are those

317

that load internal opcodes into the first instruction latch.

4.6. Microarchitecture Analysis

Functional block analysb provided speed estimates of all signal paths. These

estimates led to minimum lengths for individual clock phases and groups of clock

phases (Table 9.12a,b). The requirements of the signab that spanned multiple
phases were consbtent with the individual phase requirements for all signab
except regbter file decoding for reads and the SWP comparbon (Table 9.12b).

Previous circuit analysb of the regbter file decoders showed that they needed

440ns to complete a decode (Sec.2.4). With the regbter specifier available at the

start of phase 1 and a read occurring during phase 2, only phase 1 and the

following underlap are available for decoding of the operand specifiers.

Instruction decode requires this period to be 320ns. Thus, regbter decode for

reads would have extended phase 1 by 120ns, to 440ns.

The SWP comparator was abo simulated during circuit analysb. Its speed

was estimated to be 600ns (Sec.2.3). An extra 150ns b needed to route its result

across the chip to where it b used. Thb brings the total time for the comparbon

to 750ns, which b 95ns longer than the time available according to the single

phase requirements. Extending phase 1 by 120ns for the. regbter decode would
have given SWP comparbon 775ns to complete, which would have satbfied its

requirements.

Phases Required Length Reason

01+ull 320ns instruction decode (reads)

02 200ns read

02+ul2 335ns ALU setup

ul2 125ns dbable word lines

03 255ns ALU

03 200ns write

ul3 125ns dbable word lines

Cycle 1035ns Total

Phases

Table 9.12a- Individual Phase Length Requirements

Required Length from Single

Length Phase Requirements

Reason

318

01+ull+02+ul2 555ns

01+ull 440ns

01+ull+02+ul2 440ns

01+ull+02+ul2 750ns

655ns

320ns

655ns

655ns

instruction decode

regbter decode (reads)

regbter decode (writes)

SWP comparbon

Table 9.12b- Multiple Phase Length Requirements

Phases Required Length from Single

Length Phase Requirements

03+ul3+01+ull 585ns 700ns

03+ul3+01+ull+02+ul2 990ns 1035ns

319

Reason

reg. dec.-read

SWP compare

Table 9.12c- Modifications to Multiple Phase Requirements

To satisfy these two signab the cycle time would have been extended by

12%, from 1035ns to 1155ns. However, the microarchitecture analysb step

provides the option of returning to microarchitecture design if the analysb results

are unsatisfactory. Thb option was explored and with a few minor

microarchitecture modifications it was possible to fit these two signab into the

single phase requirements.

Originally regbter decode started on phase 1. However, the regbter specifiers

become available during the previous phase 3. So the start of the regbter

decoding for reads was moved to phase 3 (Table 9.12c). An extra 145ns b now

needed for read decoding to allow address calculation to settle for the case of

memory mapped regbter reads. However, even with thb longer decode, the read

decode now finishes 115ns before it b needed.

Similarly, the SWP comparbon abo began at the start of phase 1. The data

used for thb comparbon was loaded into the slave sections of the MAL and SWP

at the start of phase 1. However, it b loaded into the master sections during the

previous phase 3. The comparator was modified to compare the data from the

master sections. In thb way the comparbon abo starts one phase earlier, in phase

3 (Table 9.12c). Address calculation occurs during thb phase 3 and provides the

MAL data that b used in the comparbon. Thb causes the start of the comparbon

320

to be delayed by 240ns to allow portions of the address calculation to complete.

Thb brings the total comparison delay to 990ns which b less than the 1035ns

provided by the single phase requirements.

Another possible microarchitecture modification b to eliminate the transfer of

data from busD and busS, onto the ALU input buses during the read operation.

As previously dbcussed, thb would reduce phase 2 by 20% from 200 to 160ns.

The overall impact on the 1035ns cycle time would have been a 4% improvement.

Thb change would have been more complicated and the benefit did not seem

great enough for it to be worth implementing.

Another microarchitecture modification concerns the loading of the shadow

latches - SHA, SHB, shDST, and shOPC. The shadow latches capture the

operands, opcode, and destination field of an instruction that causes a trap. They

are always loaded during the read phase - phase 2 - except for the cycles after a

trap has occurred (Figures 9.18 and 9.19). In thb way the information from the

instruction causing the trap, b saved. Thb presents two problems. The control

line that loads these latches must be ready by phase 2. Simulation showed that

this was one of the slowest signab - 360ns. On SOAR transbtor ratios were

adjusted so that thb would not be a limit, but a much cleaner solution exbts.

The second problem arbes because these regbters may be used as operands.

When used as operands, they will be read as they are being loaded on phase 2.

They are read onto precharged buses. A race condition exbts between the load

enable line and the read enable line. Thus, when shadowing b enabled

(PSW<1>), reading them leads to unknown operands. Thb may not affect much

of the software but does add inconsbtency to the architecture.

TRSE
PSW<LX
phi2

xcplal

n phil SHAtobusA

rrLH>H>n^<\
busA<n>l

PSW<L>
phi3 .

Present Shadow Latch -=-

xcplal

decoded TRAP opcode

phil SHAtobusA

rJ_LH>-{>r_k>-ic["

321

J>usA<n>

busA<aX busA<n>

Improved Shadow Latch -=*

Figure 9.18- Shadow Latches

Execution opcode

Bus Operand
Load shadows

Load ALU input

Phase

Execution opcode
Bus Operand
Load shadows

Load ALU input

Phase

Not TRAP Not TRAP TRAP

+ t
?TS'

>n i i

i

'Sv 0*0 :X:
12 3 12 3

Present Timing

Not TRAP Not TRAP TRAP

i i^V^ i X i i

sfer \y<? :^i
12 3 12 3

Improved Timing

Figure 9.19- Shadow Latch Timing

322

A better solution b to load them on phase 3 from the ALU input latches or

instruction latch (Figures 9.18 and 9.19). By postponing the load to phase 3, the

slow control signal has ample time to settle. The race condition between loading

and reading the shadows b abo eliminated, since loads and reads no longer occur

simultaneously.

Once these microarchitecture changes were decided upon, the functional

block and circuit block descriptions were modified. The modifications were

verified using SLANG. Design and layout at the circuit and interconnect leveb

was then updated and verified. After these modifications, the limits on the SOAR

cycle time are due to read, ALU setup, ALU operation, instruction decoding, and

word line dbabling (Tables 9.12a,b,c). Extra time b available for regbter

decoding, the SWP comparbon and writes. Table 9.13 lbts the final clocking

according to CRYSTAL speed estimates.

Phase Length

Phase 1 300ns

Phasel/2 underlap 20ns

Phase 2 200ns

Phase2/3 underlap 135ns

Phase 3 255ns

Phase3/1 underlap 125ns

Total 1035ns

Table 9.13- Phase Lengths, Realized SOAR

323

5. Optimized Pipeline Analysis

SOAR was designed and sent to fab before thb methodology was solidified.

Further design of SOAR using thb methodology revealed an optimized SOAR

pipeline (Ch.6, Sec.1.5). Using the more detailed speed estimates that became

available after circuit and interconnect design, the optimized SOAR speed may be

estimated. Table 9.14 shows the requirements for the lengths of the individual

phases and combinations of phases. Using these requirements the lengths of the

individual phases may be determined (Table 9.15).

324

Phases Required Single Phase Reason

Length Requirements

01w+ullw+01p+ullp 320ns 440ns instruction decode

02 200ns 200ns read

02+ul2 335ns 335ns ALU setup

ul2 125ns 135ns dbable word lines

01w 200ns 200ns write

ullw 125ns 125ns dbable word lines

01w+ullw+01p 255ns 415ns ALU

01p 90ns 90ns precharge

ullp 20ns 25ns skew

01p+ullp+02+ul2 440ns 450ns regbter decode-write

01w+ullw+01p+ullp 440ns 440ns regbter decode-read

full cycle 750ns 775ns SWP compare

Table 9:14- Phase Length Requirements, Optimized Pipeline

Phase Length

01w 200ns

01w/01p underlap 125ns

01p 90ns

01p/02 underlap 25ns

02 200ns

02/0lw underlap 135ns

Total 775ns

Table 9.15- Phase Lengths, Optimized Pipeline

325

The optimized SOAR is limited by the regbter file operation, register file

decode, and ALU setup. As previously dbcussed, the regbter file has no idle time.

The time needed to cycle through the regbter file operations - precharge, read,

word line dbable, write, word line dbable - becomes the processor cycle time.

Time requirements and clock phase assignments for regbter file decode, ALU

setup, and the SWP comparbon are compatible with the regbter file clocking,

with little wasted time. Thus, the limiting paths of the chip would have been well

balanced. Instruction decode and ALU operation do not limit the cycle time as

they do in the realized SOAR. The total cycle time b estimated to be 775ns,

which b 260ns faster than the realized SOAR. Thb would have been a 25%

improvement over the realized SOAR.

326

6. Split Datapath Analysis

The SOAR datapath was split into two 16 bit halves to reduce the time

needed to drive the word and control lines. SPICE simulations were done using

circuit models from the extracted layout for the 16 bit and 32 bit datapath

widths. Operations affected by thb split are shown in Table 9.16. The unsplit

datapath would have required an extra 25ns for the enabling of control and word

lines, and dbabling of word lines. However, the ALU would not have had a carry

line to drive across the chip and therefore would have been 35ns faster. With the

realized SOAR pipeline, the phase2/3 underlap would have been limited by the

longer word line dbcharge, not the ALU setup time as it b with the split datapath

(Table 9.17a). Writes, not ALU operation, would have limited phase 3 on a

SOAR with an unsplit datapath and the same pipeline. The cycle time would

have been 1070ns - 3.4% longer.

Function Split Datapath Unsplit Datapath

Read 200ns 225ns

Dbable word lines 125ns 150ns

Write 200ns 225ns

ALU 255ns 220ns

Table 9.16- Function Times

The affect of the split datapath on a processor with the optimized SOAR

pipeline is greater (Table 9.17b). Thb b because the register file limits all phase

lengths. The regbter file benefits most from the split datapath. The ALU, which

b hurt by the split datapath, does not limit any phase lengths. SOAR, with the

327

optimized pipeline, but unsplit datapath would be 115ns or 14.8% slower than it
would be with the split datapath. The unsplit datapath cycle time would be

890ns as opposed to 775ns for the version with the split datapath.

Phase Limit Unsplit vs. Split Datapath Time

01+ull decode same

02 read +25ns

ul2 dbable word lines +15ns

03 write -30ns

ul3 dbable word lines +25ns

Cycle +35ns = +3.4%

Table 9.17a- Unsplit Datapath Phase Limits, Realized SOAR Pipeline

Phase Limit Unsplit vs. Split Datapath Time

01w write +25ns

ullw dbable word lines +25ns

01p precharge +25ns

ullp skew same

02 read +25ns

ul2 dbable word lines +15ns

Cycle
-

+115ns = +14.8%

Table 9.17b- Unsplit Datapath Phase Limits, Optimized SOAR Pipeline

328

7. References

[Kong84] Kong, S. I.; Private Communication, August 1984.

Oust85] Ousterhout, J.; 'Using CRYSTAL for Timing Analysb', 1985 VLSI Toob:
\lore Works by the Original Artbts, T.R. UCB/CSD/85/225, Computer Science
Mvbion, EECS Dept., University of California, Berkeley, Ca., Feb. 1985.

329

Chapter 10

Results

SOAR Case Study

Thb chapter dbcusses results of the SOAR processor in three separate areas:

1. Methodology

2. Processor

3. Architecture

The first section summarizes optimizations for SOAR that were revealed by thb

methodology. Speed and functionality were the primary concerns during the

design of SOAR; power and area had looser restrictions. Thus, the optimizations

dbcussed in thb section are for speed improvements. Simulations were used for

detailed delay analysb. Therefore, all delays in thb section are simulated delays.

The second section dbcusses results from testing of the fabricated SOAR.

The testing strategy and initial test setup are first described, followed by a report

on the basic functionality. Again, the speed was the primary concern (after

functionality) during testing. The speed restrictions for each phase are analyzed.

Delays reported in thb section are the measured delays of the fabricated

processor. Differences between the measured and simulated delays are dbcussed

in the section on process effects - Section 2.4.

The architecture of SOAR was designed for a high performance Smalltalk

system. SOAR included several features to facilitate thb. The impact of these

architectural features on the implementation b dbcussed in the last section of thb

chapter. These features are individually analyzed for their contributions to the

area, circuitry, complexity, and cycle time of SOAR.

330

1. Methodology Results

The SOAR design involves many optimizations for speed improvement.

Some of these optimizations were implemented; others were not discovered until

this methodology was developed. Unfortunately, that was after fabrication was

underway. Table 10.1 lbts the major optimizations. These optimizations and

their impact on processor speed have already been dbcussed individually. Table

10.2 summarizes the effects of these speed improvements. All delay times in thb

section are the result of CRYSTAL simulations.

Optimization Implemented Dbcussion

Internal opcodes yes Ch.6 Sec.1.7, Ch.8 Sec.2.1.2

Pipeline no Ch.6 Sec.1.5, Ch.9 Sec.5

Balanced critical paths yes Ch.8 Sec.2.1.2, Ch.9

Split PLAs yes Ch.8 Sec.1.2, Ch.9 Sec.3

ALU- carry select no Ch.9 Sec.2.1

No bus to bus transfer no Ch.8 Sec.2.1.1

Split datapath yes Ch.6 Sec.2, Ch.9 Sec.6

Table 10.1- SOAR Optimizations

331

Optimization Cycle Time Reduction % Reduction

Internal opcodes "1500ns 145

Pipeline 260ns 25

Balanced critical paths 120ns 12- realized

Split PLAs 54-108ns- realized 5-10

0ns- optimized 0

ALU- carry select 54ns- realized 5

0ns- optimized 0

No bus to bus transfers 40ns 4- realized, 5- optimized

Split datapath 35ns- realized 3.4

115ns- optimized 14.8

Table 10.2- Simulated Cycle Time Reduction Due to Optimization

The most significant improvement was due to the use of internal opcodes.

Thb cut the decode time from about 1800ns to 300ns - a factor of six

improvement for the length of phase 1. SOAR would have had a cycle time of

about 2.5jisec if internal opcodes had not been used - 145% slower.

The next major improvement comes from the optimized pipeline - 25%.

Unfortunately, thb was dbcovered after submittal for fabrication. If SOAR had

been implemented with the optimized pipeline a faster ALU and the split PLAs

would not have made a difference in the cycle time. Thb b because instruction

decode and ALU computation do not limit any phase lengths in the optimized

version (Ch. 9, Sec. 5).

The third greatest reduction in cycle time b due to the balancing of critical

paths that are significantly affected by the interconnect delays. Table 10.3 lbts

332

critical path optimizations that are not part of other optimizations and the

techniques used to eliminate the problems. These optimizations involve minor

revbions at most design leveb - microarchitecture, functional block, circuit, and

interconnect - and are dbcussed in detail in Chapter 9. They are good examples

of the 'not ok1 methodology paths in Figure 4.18. Together these solutions

resulted in a 120ns reduction in the cycle time of the realized SOAR - 12%.

Critical Path Problem

SWP comparbon

Regbter file decode

Solutions

Microarchitecture revbion

Faster circuits

Separate source and destination decoders

Microarchitecture revbion

. Faster circuits

Decode- delay to PLAs Extra buffering

- forwarding signab Transbtor sizes at interconnect terminations

Table 10.3- Critical Path Optimizations

PLA splitting on SOAR reduced the cycle time by 5 to 10%. Thb was due

to a shorter instruction decode time - phase 1.

Other optimizations to the realized SOAR include a carry select scheme in

the ALU, elimination of bus to bus transfers on reads, and the split datapath.

Each ofthese optimizations reduces the cycle time of the realized SOAR by 5% or

less. According to simulations, SOAR with the realized pipeline, would have a

cycle time of 941ns - 9.1% faster - if these other optimizations were all included.

333

With the optimized pipeline the split datapath has a greater impact on the

cycle time - 14.8%. If the optimized pipeline had been implemented and bus to
bus transfers on reads avoided, a cycle time of 735ns could have been achieved.

Thb would be 29% faster - 300ns - than the simulated cycle time of the realized

SOAR.

Analysb of SOAR according to thb methodology shows that in many places

sound design decbions were made:

1. Use of internal opcodes

2. Split datapath

3. Choice of circuit blocks- except for the MAL

4. Split PLAs

5. Separate source and destination decoders

6. Balanced critical paths

However, the methodology also reveab significant improvements that were

overlooked on the realized SOAR:

1. More efficient pipeline

2. Carry select scheme on the ALU

3. No bus to bus transfers on reads

2. Processor Results

SOAR was initially fabricated during the winter and spring of 1985 by both

MOSIS and Xerox. Both facilities used X=2 microns, leading to minimum line

widths of 4 microns, on the original runs. The die size including scribe lines, b

432mib by 320mib. Dies passing vbual inspection were packaged at the

fabrication facility and then sent to Berkeley. These chips are packaged in an 84

pin grid array with a large cavity, made by Kyocera.

334

The debugging and testing strategy for SOAR relied heavily on CAD toob

and a complete diagnostic set. As previously described (Ch. 7, Sec. 1.5),
diagnostics were written to test all SOAR operations and features. Thb

diagnostic set was used to verify the design at all leveb through the use of CAD
tool simulators. These diagnostics were run on the design representations

associated with each design level (Table 10.4). Results from the different leveb

were compared and verification was complete when all results were consbtent.

Level Simulator

Architecture Daedalus

Microarchitecture SLANG

Functional Block SLANG

Circuit- extracted layout ESIM

Interconnect- extracted layout ESIM

Table 10.4- Verification Simulators

Inconsbtent comparbons resulted from bugs in several places:

1. Simulator

2. Diagnostic

3. Design

Computer simulation of complete designs of large chips requires large amounts of
memory and CPU time. Therefore, writers of simulators must make

generalizations and assumptions where they judge that it b safe, so that
simulators are practical. However, thb can lead to subtle bugs in the simulators

and result in inconsistent comparbons. Diagnostic bugs arose from

335

misunderstandings of fine points in the architecture. Many of these were due to

the processor pipelining. Ideally, the pipelining should be invbible at the

architecture level but in practice thb b not always true. Finally, there were

many bugs in the design itself. Consbtent comparbons do not guarantee that

there are no bugs but it b unlikely that all simulators can mbs the same bug.

Bugs may abo still exbt due to oversights in the diagnostic set.

In addition to simulation a test die that included risky circuits, was designed,

fabricated, and tested. Thb test die included all bootstrap drivers [Kong85]. It

verified their functions and speeds.

Because of the large simulation effort and test die characterization [Kong85],

SOAR was submitted for fabrication with confidence that the basic functions

would work. These included reading the regbter file and all state regbters

(special regbters) and input/output functions. With thb functionality the chip can

be debugged. Instructions can be loaded, executed, and results outputted. When

bugs arbe SOAR can be run in small loops that bolate the bug and read out the

contents of all regbters for analysb. Extra hardware for testing, such as scan

in/scan out hardware, was not included on SOAR. The testability of SOAR relies

on:

1. Accessibility of all state regbters

2. Thorough CAD simulations to ensure basic functionality

3. Test dies to prove high rbk circuits

The testing strategy followed was to first test SOAR for basic functionality

and characterize its speed and I/O timing on a simple board. After basic

functionality and pad timing was verified, SOAR was incorporated into the SUN

workstation on the Orion board. The complete diagnostic set (Ch. 7, Sec. 1.5)

was then downloaded into Orion's memory and used to complete the functional

verification. After this, the final step was to bring the Smalltalk software up on

336

the complete system. The remainder of thb section describes the initial tests and

results.

2.1. Test Setup

To initially characterize the processor a simple test board was built and

driven by a digital analyzer - Tektronix DAS-9100. Figure 10.1 b a schematic of

thb board. The DAS supplies the clock cycle, wait, reset, page fault, and I/O

interrupt signab. All clock phases and the underlap between phase 2 and phase 3

are generated by monostable multivibrators - 26S02s. The input clock cycle

triggers a string of four of these multivibrators for these signab. The underlap

between phase 3 and phase 1 b determined by adjusting the cycle time after all

phase lengths and other underlaps have been set. The underlap between phase 1

and phase 2 b too short to be generated by a multivibrator and b therefore

determined by inverter delays and the loading on the inverters. The phase

lengths have an adjustment range of 24-460ns (Table 10.5). The underlap

between phase 1 and phase 2 may be set between 10ns and 25ns. The phase

2/phase 3 underlap b adjustable between 30ns and 235ns. Thb test board abo

buffers the WAIT, RESET, PAGE, and I/O inputs with inverters.

V.dd Vdd V.dd

IKcycle

-to *fto«
s±

WAIL

IK

"dd

RESEX.

PAGEL

I0_

1>

—>

—{>

Figure 10.1- Test Board Schematic

Phase 1 24-460ns

Phasel/2 underlap 10-25ns

Phase 2 24-460ns

Phase2/3 underlap 30-235ns

Phase 3 24- 460ns

337

Vdd

phir

.WAIT*

JRESET*

_PAGE*

10*

Table 10.5- Test Board Clock Phase Adjustment Ranges

338

The complete test setup is shown in Figure 10.2. In addition to driving the

test board, the DAS directly drove the data inputs of SOAR - D00-D31.

Instruction sequences were programmed into the DAS and supplied to the chip

through these pins. Separate power supplies were used for board circuitry, the

processor supply voltage, and substrate bias. In thb way clock leveb and SOAR

supply voltages could be independently adjusted if necessary. All signab could be

monitored on the oscillbcope. Results of processor operations were read off chip

through the address outputs using the call, jump, and return instructions. The

data aqubition channels of the DAS collected and dbplayed thb information.

i*

Board

Circuitry

aqubition channeb

DAS

synthesb channeb

-fmr

SOAR

•/3fr

Power
Supply

Power
Supply

Figure 10.2- Test Setup

339

2.2. Functionality

Using thb setup the functionality of a significant portion of SOAR was

verified. Simple programs that initialize SOAR after resetting and jump to test

code showed the following features to be functional:

Jumps and calls- address formation

- saving of the return address on calb

- CWP change on calb

Returns- address calculation

- interrupt enable

- CWP change

Loads- address formation

- data capture

Shifts

Adds

Inserts

Extracts

Ors

Reads- register file

- special registers

- sign extension of immediates

Writes- regbter file

- special regbters

Forwarding- load forwarding

- ALU forwarding

Trap mechanbm- vector formation

- priority encoding

- saving of the return address

- shadow regbter operation

Trap types- illegal opcode

- I/O interrupt

- page faults

340

341

External signals- WAIT

-RESET

- FSHCNTL

-I/D

- WAITACK

The only feature tested that did not work was the nilling option of the return

instruction. Investigation of thb problem showed that the drivers that write to

the regbter file were not designed to be strong enough to write to six registers

simultaneously. Functions that were not tested initially were stores, load

multiple, pointer to regbter, skips, and some types of traps. It was judged that

enough worked to incorporate SOAR into the Orion board and complete the

testing there.

2.3. Speed

The minimum cycle time was determined, by writing test programs that

exercbed the critical paths and reducing the phase lengths until failure occurred.

This was done with SOAR at its stable operating temperature, a supply voltage of

5 volts, no substrate bias, and clock high leveb of 4.5 volts. Phase lengths were

measured from the midpoints of the transitions on the oscillbcope trace and were

repeatable to within 5ns. The minimum cycle time b 400ns for the MOSIS chips

and 330ns for the Xerox chips by thb method. Table 10.6 summarizes the

minimum phase lengths. The following sections analyze the individual phase

lengths in detail for the MOSIS chips. Pad timing b shown in appendix D.

Phase MOSIS Xerox

Phase 1 90ns 55ns

Phasel/2 underlap <10ns 0ns

Phase 2 90ns 90ns

Phase2/3 underlap <25ns <25ns

Phase 3 145ns 125ns

Phase3/1 underlap 40ns 35ns

Total <400ns <330ns

Table 10.6- Measured Cycle and Phase Lengths

342

2.3.1. Phase 1

The length of phase 1 b determined by instruction decode and sign extension

(Ch. 9, Sec. 4.1). The slowest signab that must settle in phase 1 are the

forwarding and shadow control lines (Figure 9.14). As previously described, the

gates at the terminations of these signals were designed so that these signab

would not limit phase 1. A program that exercbed forwarding and the same

program with NOPs inserted to avoid forwarding require the same phase 1 length

(within the accuracy of the measurements) - 85-90ns (Table 10.7). Shadowing

abo proved to not be a limiting factor to the phase 1 length. The many other

control lines of phase 1 have settling times within the same ranges according to

simulations (Figure 9.14).

Feature

Forwarding

No forwarding

Shadowing

Minimum Phase 1 Length

85ns

90ns

<85ns

Table 10.7- Measured Minimum Phase 1 Length

343

2.3.2. Phase 2

Operand reads are assigned to phase 2 (Ch. 9, Sec. 4.2). There are several

operand sources and simulated access times vary accordingly (Table 9.9). Test

programs were written to exercbe these operand reads (Table 10.8).

Signal Origin Measured Phase 2

BusA ALU forwarding to busD 70ns

BusA SWP to busD 75ns

BusB ALU forwarding to busD 80ns

BusA CWP to busS 70ns

BusA Load forward 65ns

BusB Load forward 60ns

BusA,B Regbter file 90ns

Table 10.8- Measured Minimum Phase 2 Length

344

The slowest reads are on regbter file accesses - 90ns. According to

simulations the regbter file cell b faster than the master slave latch cell (Ch. 6,

Sec. 1.2.2). Therefore, thb extra delay b due to the extra time needed to enable

the word line drivers before they can drive the word lines. At the regbter file,

phase 2 gates a driver that enables the word line drivers. In contrast to thb,

phase 2 directly gates the control line drivers for latch accesses, resulting in a

faster access.

The reads that involve the transfer of data from one bus to another bus all

require 70-80ns. Thb b the situation during ALU forwarding and when using the

CWP, PSW, SWP, TB, or PC as operands.

The fastest operand accesses occur when data b driven directly onto the bus

to the ALU input - 60-65ns. Thb occurs during load forwarding, shadow regbter

operands, immediate operands, and the zero operand.

2.3.3. Phase 3

The slowest path of phase 3 involves the ALU. It occurs when carry must

propagate across seven nibbles and the three least significant bits of the most
significant nibble (Ch. 9, Sec. 2.1). Thb requires 145ns (Table 10.9). Phase 3
measurements were taken for carry propagation across 3 to 7 nibbles. Using thb

data, the delay of the carry bypass b calculated to be 8.8ns with a standard

deviation of 4.8ns.

Event

ALU to Destlatch- 7FFFFFFF+1

ALU to Destlatch- 07FFFFFF+1

ALU to MAL- 07FFFFFF+1

ALU to MAL- 007FFFFF+1

ALU to MAL- 0007FFFF+1

ALU to MAL- 00007FFF+1

Carry bypass speed

Measured Phase 3

145ns

140ns

120ns

105ns

100ns

<90ns

8.8ns

Table 10.9- Measured ALU Limits to Phase 3

345

The other major function of phase 3 b the write of the result from the

previous instruction. Table 10.10 shows the required phase 3 lengths for different

types of writes. The slowest write b to the regbter file - 110ns. Data b first put

onto bus D and then transferred to buses A and B to get to the regbter file.

Special regbters that are written to directly from busD - such as the SWP -

require 100ns. 90ns b needed to write to the CWP which b located in the control

section.

Write Destination

Register file- busD to busA,B

SWP- busD

CWP- control

Measured Phase 3

110ns

100ns

90ns

Table 10.10- Measured Write Limits to Phase 3

346

2.4. Process Effects

The process design level was a fixed input during SOAR design. The

importance of thb design level to the characterbtics of the processor can be seen

by comparing the measured characterbtics to simulation results. Simulations

were based on a more conservative set of parameters than those of the fabricated

processor.

Transbtor parameters used in the simulations and measured on wafers

containing the fabricated SOAR are shown in Tables 10.11a and 10.11b. These

transbtor

Parameter Simulation Fabricated Fabricated

MOSIS Xerox

VTO(V) .6 .93 .65

GAMMA (/V) .40 .41

KP (/iA/V2) 17.2 32.3 49.5

UO (cm2/Vs) 350 654

LAMBDA (V"1)
—

.01 .021

Table 10.11a- Enhancement Transbtor Parameters

Parameter Simulation Fabricated Fabricated

MOSIS Xerox

VTO(V) -2.5 -3.3 -4.2

GAMMA (/V) .51 .43

KP (M/v2) 18 31.4 44.8

UO (cm2/Vs) 366 900

LAMBDA (V-1) .015 0

Table 10.11b- Depletion Transbtor Parameters

347

parameters determine the current that b available to charge and dbcharge

capacitive loads. In the saturated region a first order approximation for transbtor

current b:

Isat =KP/2(W/L)(VGS-VT)2[1+LAMBDA(VDS)]
Tables 10.12a and 10.12b show the saturation currents for low V^g and no

348

substrate bias (VT = VTO) using the simulation and measured parameters. The
enhancement and depletion MOSIS transistors conduct 1.6 and 3.1 times as much

current in the saturation region as the transistors used in simulations. Xerox

transistors were abo much stronger than the transistors of the simulations - 2.8

and 7.0 times as strong for the enhancement and depletion devices, respectively.

In the linear region transbtors can be described by their 'on' resistance:

Ron = 1/gm = 1/[KP(W/L)(VGS-VT)]

The 'on' resbtances of the fabricated transbtors are much less than those of the

transistors used in simulations - 24% to 58% of the simulation resbtances. Thus,

the fabricated transbtors conduct more current than the simulation transistors in

all situations of interest.

Isat/W/L Normalized Isat Ron/LyW Normalized Ron

Simulation .166ma 1.0 13.2K 1.0

MOSIS (fab) .268ma 1.6 7.6K .58

Xerox (fab) .468ma 2.8 4.6K .35

Table 10.12a- Enhancement Transbtors - VQg=5.0volts

Simulation

MOSIS (fab)

Xerox (fab)

bat/W/L

.056ma

.174ma

.393ma

Normalized Isat Ron/L/W

1.0

3.1

7.0

22.2K

9.6K

5.3K

Table 10.12b- Depletion Current Sources

349

Normalized Ron

1.0

.43

.24

The rbe and fall times of many nodes are limited by the capacitive loads of

the nodes and the currents available to drive these loads. Capacitance depends on

area and process dependent capacitance parameters. Capacitance parameters

used in simulations and for the fabricated devices are shown in Table 10.13.

Depending on the size, shape, and type of capacitor, fabricated node capacitances

may range from .7 to 1.4 times those of the simulations. Nodes dominated by

gate capacitance have higher capacitances in the fabricated devices - 1.22 to 1.37

times as much for the MOSIS and Xerox devices, respectively. Thb b the

situation for the output nodes of high fanout gates. Another common situation b

an interconnect node that b predominately a field capacitor. The fabricated field

capacitors have similiar values to those of the simulations - .83 to 1.17 as much

capacitance.

350

Capacitor Simulation MOSIS Xerox

value normalized value normalized

Gate AlfF/p2 .56fF//*2 1.37 .50fF/j£2 1.22

Field .06fF//*2 .07fF/j*2 1.17 .05fF/ji2 .83

Diffusion side .35fF/p .50fF//i 1.43

Diffusion area .16fF/j£2 .llfF/ji2 .69

Table 10.13- Capacitance Parameters

When charging a node, current b supplied by a depletion transistor used as a

current source. In this situation the current available to drive the load b 3.1 to

7.0 times higher for the fabricated devices than for the simulated devices (Table

10.12b). Thb more than offsets the higher capacitances of the fabricated devices,

resulting in shorter rbe times. For example, gate dominated capacitances will be

charged approximately 2.3 times faster on MOSIS devices than in the simulations.

Nodes are discharged through enhancement pulldown devices. Fabricated

pulldown devices are stronger than those of the simulations - 1.6 to 2.8 times

stronger (Table 10.12a). Thb abo more than offsets the higher capacitances of

the fabricated devices but not as dramatically as for the depletion devices. Thus,

fall times on the fabricated devices are slightly faster than those of the

simulations.

Interconnect resistances are abo process dependent. Resbtivities for the

fabricated devices and simulations are shown in Table 10.14. Signal lines that

could not be routed in metal are routed in polysilicon. Polysilicon for both the

MOSIS and Xerox processes, has a much lower resbtivity than anticipated - 40%

to 48% of the simulation value. Signal lines that have delays limited by their RC

351

time constants are consequently faster on the fabricated devices than in the

simulations. Thb b the situation for control lines, word lines, and interconnects

with long polysilicon crossovers.

Resistor Simulations MOSIS Xerox

Diffusion 20nyfc] 26f)/a lOHyfcj

Polysilicon 50fiytl 20nyb 24nyfcj

Table 10.14- Polysilicon and Diffusion Resbtivities

The shorter cycle times of the fabricated devices - 400ns and 330ns for the

MOSIS and Xerox devices respectively - than of the simulated device - 1035ns -

can be traced to the differences in process parameters. The stronger depletion

and enhancement transbtors of the fabricated processors result in shorter rbe and

fall times than in the simulations. Lower polysilicon resbtivities also contribute to

the shorter cycle times of the fabricated processors.

2.5. Summary

The SOAR processor chip was started in the spring of 1983 with the primary

goab of an instruction set targeted to compiled Smalltalk and a cycle time of
360ns (Table 10.15). These goab are critical for overall system performance.

Allowing for fabrication variations, a cycle time of 330ns to 400ns was achieved
with 4micfon NMOS technologies. Functionality according to the target

instruction set was verified except for the register nilling option on returns. Thus,

the SOAR processor is close to being fully successful in meeting the two primary

goals. Other goals are not crucial for system performance but are a matter of

352

practicality - power, size, packaging, and design time. The die size was limited

by the process technology in the shorter direction to 320mib. Allowing for some

slack space between the chip and cavity wall, the 440x440mil package cavity

limited the chip length to 435mib. Originally design time was predicted to be

twice that of RISCII due to the increased complexity of SOAR. These goab were

all met except for power consumption.

Characterbtic

Instruction set

Cycle time

Power

Die size

Transbtors

Process

Package

Design time

Goal

see Chapter 5

360ns

2.5W

320x435mib

50,000

4micron NMOS

84 PGA

Realized

all but register nilling

330-400ns

2.75-3.00W

320x432mils

35,700

4micron NMOS

84 PGA

67.2 person months 38.5 person months

Table 10.15- SOAR Processor Characterbtics

3. Architecture Results

Although thb methodology b primarily concerned with tradeoffs between the

five design leveb - microarchitecture, functional block, circuit, interconnect, and

process leveb - tradeoffs with the architecture and system level are abo

important. The impact of the architecture and system requirements on the

implementation b important in design decbions concerning the architecture and

353

system.

SOAR included many features to increase Smalltalk execution speed

[Unga85]. Some of these prove to greatly reduce the number of cycles needed to
execute programs and others are less significant. To further understand the worth

of these features, their effects on the speed, power, area, and complexity of the

chip should be considered.

3.1. Overview

SOAR b based on a RISC style of architecture [Kate83]. RISCs traditionally

have a relatively small control section - 10% of RISCII for example. The benefits

of thb are a fast and relatively simple processor. SOAR b a more complex

processor than previous RISCs, partiaUy due to the features that enhance

Smalltalk execution. The control section b therefore larger - 29% - but still less

than half of the processor (Table 10.16).

Section MX2 % Area

Datapath 11.05 51.2

Control- circuits 4.45 20.6

- routing 1.82 8.4

Periphery 4.28 19.8

Total 21.60 100.0

Table 10.16- Major SOAR Sections

354

3.2. Area and Geometry

Table 10.17 lbts the SOAR features that enhance Smalltalk execution and

potentially require special purpose circuitry. Transbtor counts and the areas

occupied by these features are lbted. The features requiring the most extra area

are the shadow regbters, regbter windows, byte instructions, and the pointer to

register capability. The loadc and sll instructions use no extra circuitry.

Together, all Smalltalk features use 12.4% of the chip area (excluding the

periphery) and 13.9% of the transbtors.

355

Feature Number of % Transistors Area % Area

Transbtors (MX2) (internal)

Regbter windows 969 2.71 .430 2.48

Inline cache 24 .07 .029 .17

Byte instructions 308 .86 .345 1.99

Tagged integers 211 .59 .076 .44

Forwarding 136 .38 .045 .26

Fast Shuffle 18 .05 .014 .08

Tagged immediates 79 .22 .034 .20

Nilling 254 .71 .038 .22

Trap instructions 123 .35 .048 .28

Loadm/storem 269 .75 .105 .61

Pointer to regbter 705 1.98 .230 1.33

Vectored traps 453 1.27 .171 .99

Generation tags 165 .46 .065 .38

Loadc 0 0 0 0

Shadow regbters 1159 3.25 .478 2.76

Sll 0 0 0 0

Extracodes 99 .28 .034 .20

Total 4972 13.94 2.142 12.36

Table 10.17- Transbtor Count and Area of Smalltalk Features

356

3.3. Complexity

Table 10.18 outlines the complexity of these added features. Complexity can

be measured in several ways. One measure b the number of circuit blocks that

the feature b dbtributed among. All blocks must be correctly connected and this

leads to routing complexity. Routing delays contribute to settling times and

therefore a large number of circuit blocks indicates a potentially long critical

path. These paths require extra attention so that they do not limit processor

speed. Register windows, shadow regbters, and nilling require the most circuit

blocks - ten or more.

Feature

357

Number of Number of Hand % Diagnostics

Circuit Blocks Drawn Transbtors

Regbter windows 20 149 14.9

Inline Cache 4 8 2.2

Byte instructions 6 128 .7

Tagged integers 8 25 12.0

Forwarding 5 106 3.7

Fast Shuffle 4 4 0

Tagged immediates 4 . 12 0

Nilling 10 10 2.8

Trap instructions 6 14 1.8

Loadm/storem 6 16 .9

Pointer to register 7 78 6.7

Vectored traps 4 0 3.2

Generation tags 5 8 6.0

Loadc 0 0 0

Shadow regbters 11 50 .9

Sll 0 0 .2

Extracodes 3 1 4.3

Total 60.3

Table 10.18- Complexity of Smalltalk Features

A second measure of complexity b the number of transbtors that must be

drawn by hand. These require extra design time and are more prone to bugs due

to human error. Thus, they also increase debugging time. The features that are

358

most complex by this measure are regbter windows, byte instructions, forwarding,
pointer to regbter, and the shadow regbters. Many features required ten or less
hand drawn transbtors - inline caching, fast shuffle, nilling, vectored traps,

generation tags, loadc, sll, and extracodes.

A third indication of complexity b the number of diagnostics needed to test

the feature. Thb b perhaps more a measure of architectural complexity than

implementation complexity. The diagnostic effort for a given feature b a

reflection of the variations and subtleties of that feature. The tagged integers and

register windows require the most diagnostics - 12.0% and 14.9% respectively.

Also requiring a large number of diagnostics are the pointer to register, generation

tags, and extracodes features - 6.7%, 6.0%, and 4.3% respectively. All other

features need fewer diagnostics.

3.4. Speed

As previously dbcussed, the cycle time b limited by instruction decoding,

regbter file reads, and ALU operation. None of these critical paths involve the

Smalltalk features. Therefore, although these features have added area and

complexity, they do not appear to affect the cycle time. Thb b due to the effort

put forth to identify and balance the critical paths (Chapter 9). Two critical

paths that would have caused a significant speed reduction - 12% - are the

register file decode and SWP comparbon. These can be traced to the regbter

windows and pointer to regbter feature, respectively.

Although the Smalltalk features do not explicitly appear in any of the critical

paths, they may add to signal delays because of the increase in chip size due to

the area that they occupy. Thb effect b difficult to measure. Some of the extra

circuitry fits into areas that would otherwbe have been left empty and therefore

did not increase the processor size; other additional circuitry probably increased

360

Feature % Slowdown

if omitted

% Transbtors % Area Complexity

Index

Regbter windows 46 2.71 2.48 10.0

Inline cache 33 .07 .17 1.3

Byte instructions 33 .86 1.99 4.0

Tagged integers 26 .59 .44 4.6

Forwarding 15 .38 .26 4.0

Fast shuffle 11 .05 .08 .8

Tagged immediates 9.6 .22 .20 .9

Nilling 4.3 .71 .22 2.5

Trap instructions 3.9 .35 .28 1.7

Loadm/storem 3.4 .75 .61 1.6

Pointer to regbter 3.1 1.98 1.33 4.4

Vectored traps 2.9 1.27 .99 1.4

Generation tags 1.3 .46 .38 2.3

Loadc .46 0 0 0

Shadow regbters .04 3.25 2.76 3.2

Sll 0 0 0 0

Extracodes 0 .28 .20 1.5

Table 10.19- Effects of Smalltalk Features

From these processor considerations, the greatest benefits for the lowest costs

are due to the inline caching and fast shuffle features. Regbter windows, tagged

integers, and byte instructions have large benefits but abo have relatively high

costs.

361

In the 3 to 5% range for speed increase all costs are relatively low except

those of the pointer to register feature. Pointer to regbter b costly by all

measures and reduces the cycle count by only 3.1%. Vectored traps are abo

fairly costly in terms of circuitry and area and only contribute a 2.9% speedup.

The features that contribute less than 1% to the speed increase cost very

little except for the shadow regbters. The shadow regbters involve a large

amount of circuitry and area, and are moderately complex. These shadow

regbters stand out as the first feature to eliminate in any redesign.

4. References

[Kate83] Katevenis, M. G. H.; 'Reduced Instruction Set Computer Architectures
for VLSI', Ph.D. Thesis, Computer Science Divbion, EECS Dept., University of
California, Berkeley, Ca., 1983.

[Kong85] Kong, S. I.; 'Some Design Techniques for High Performance MOS
Circuits', M.S. Report, EECS Dept., University of California, Berkeley, Ca.,
January 1985.

SJnga85] Ungar, D. M., 'The Design and Evaluation of a High Performance
malltalk System', Ph.D. Thesb, Computer Science Divbion, EECS Dept.,

University of California, Berkeley, Ca., 1985.

	Copyright noticE 1985
	ERL-85-88 (1 of 4)
	ERL-85-88 (2 of 4)
	ERL-85-88 (3 of 4)
	ERL-85-88 (4 of 4)

