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A Design Methodology for VLSI Processors

Joan Marie Pendleton

ABSTRACT

A design methodology for VLSI processors has been developed. It is based
on five major design levels - microarchitecture, functional block, circuit, intercon-
nect, and process — and the interactions between them. In addition to top—down
synthesis, this method formally incorporates the feedback of information from the
lower design levels to the highef levels. A preliminary design phase that consid-
ers the effects of the lowest levels - circuit, interconnect, and process — on design
at the highest level — microarchitecture - is described. After preliminary design,
design alternates between synthesis and analysis steps as the designers proceed

from the highest level to the lower levels.

SOAR. (Smalltalk on a RISC), a 32 bit microprocessor designed for the
efficient execution of compiled Smalltalk provides a case study of this methodol-
ogy. The chip, implemented in 4 micron, single-level metal NMOS technologies,
has a cycle time of 400 ns. Pipelining allows an instruction to start each cycle
with the exception of loads and stores. The processor contains 35,700 transistors,
is 320x432 mils, dissipates 3 watts, and is assembled in an 84-lead pin grid array
package. The methodology that included a large CAD effort provided functioning
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Preface

The purpose of this thesis is to present a methodology for VLSI processor
design. However, a methodology is only useful if it proves to be well suited for
actual problems and leads to valuable decisions when applied to these problems.
The Smalltalk On A RISC - SOAR - project at Berkeley was both a guinea pig
and motivating factor behind this methodology. The intent of this methodology is
to provide guidelines and insights into VLSI processor design for future use, based
on experience from microarchitecture design through to layout. Although the test
vehicle for this methodology was an NMOS RISC processor, it is hoped that the
methodology is general emough to be used with other technologies and

architectures also.

The SOAR project developed from the Berkeley Smalltalk system. Due to its
basic nature, Smalltalk proves to be relatively slow on general purpose computers
[Unga85). Therefore, the idea of building a system with special purpose hardware
for Smalltalk was proposed. This led to architectural studies of Smalltalk during
the fall of 1982 and winter of 1983 [Patt83]. Among other things, the architecture

of a-special purpose Smalltalk processor was specified by these studies.

The microarchitecture design of the SOAR processor had its origins in
previously designed RISC processors [lingassl. However, it distinguished itself by
containing many added features (Figure P.1). Pete Foley provided a solid
microarchitectural design for the SOAR datapath. The author of this thesis
completed the microarchitectural design. This included among other things a
more sophisticated control section than those of previous RISCs, to handle the
new features. Key items of this control section were the trapping mechanism and
its variety of traps, and a way to handle 'multicycle instructions within the

framework of the RISC pipeline.
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Figure P.1- RISC I and SOAR

Circuit design and layout of an NMOS version of SOAR began with a group
of four in the CS292X class - spring 1983. The role of the author in this class was
to interface between the microarchitecture design and circuit design, contributing
to both. A ﬁrét cut at the datapath circuit design and layout was completed
during this class. The author then continued microarchitecture, circuit, and
layout design, along with Shing Kong. In this process the PLA tool — SPLAT -
was debugged, diagnostics were written, optimizations for speed and power
considerations were introduced, and a first version of an NMOS layout was

completed, extracted, and logically verified.



Timing verification led to the discovery of unacceptable, slow critical paths
due to the multicycle instructions, in the first version of SOAR. A second version
of the microarchitecture was then designed to eliminate this problem. Before
complete implementation, analysis according to the author’s methodology verified
that it would not have the same problem or other unexpected slow paths. Design
and layout of this version was completed by September 1984. Logic verification
ensued, foilowed by timing analysis of the extracted layout. This design was
fabricated in the winter and spring of 1985. Processor characterization and

system development was done in the summer of 1985.

The development of a special purpose Smalltalk system is an ambitious
project. It spans the disciplines of both electrical engineering and computer
science. The success of a project like this relies on the efforts of individuals with a
variety of talents (Figure P.2). Architectural studies culminating with CS292R,
provided an efficient Smalltalk architecture [Unga85]. An architectural simulator
was written in the early stages of the project [Samp85]. A CMOS version of
SOAR was also implemented [Mari85]. Board design occurred concurrently with
processor design [Blom83], [Dunlg4], [Brow85]. System software in the form of an
assembler and compiler was written [Bush85]. CAD tools proved invaluable in a
project of this magnitude [Scot85). And of course no project of this size could

succeed without the resources and support of the faculty.
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Chapter 1

Introduction

A method is an orderly way to arrive at a solution to a problem that has

been posed. From Webster’s dictionary:

method: An orderly procedure or process; regular way or manner of
doing anything; hence a set form or procedure as in investigation

or instruction.

Problems can range from very simple to extremely complex. For a simple prob-
lem, the solution may be readily apparent and no methodology is needed. As
problems become more complicated solutions are not obvious and a procedure of
some type is needed to arrive at a solution. Procedures can rangé from hapha-
‘zard to highly organized. The disadvantages of haphazard procedures are many.
A solution may never be reached. If one is reached, it may take a long time and
not be very optimal. Organized procedures or methodologies ensure that a solu-
tion is reached, or ;eveal why it can not be reached if the problem is impossible.
A good methodology provides a direct route to the solution and addresses all
aspects of the problem. In this way a solution may be arrived at more quickly

and its quality or optimality is higher than with a haphazard procedure.

1. VLSI Issues

In the past decade integrated circuit technology has evolved so that it is now
feasible to put on the order of one million transistors on a chip. As the number
of available transistors has increased, the amount of circuitry has likewise
increased. Complex systems that in the past were composed of many individual

chips, are now being built on a single or a small number of chips. Thus, a



complex system may now be spread over only one or a few chips. This leads to
greatly increased complexity within a single chip. The problem addressed by an
individual chip has become much more complicated. ‘Managing this complexity is

a key issue that any VLSI methodology must face.

A second issue in VLSI design involves the time needed to realize a compli-
cated chip such as a processor. The time necessary to take a VLSI design from
concept to reality increases prohibitively with the increase in circuitry if new
design methods are not developed. A good methodology identifies the most time

consuming parts of design and tries to ﬁhd faster ways of doing this work.

Once a solution to a problem is proposed, it must somehow be checked to
verify its correctness. Increased complexity means many more opportunities for
malfunction. First, all functions of the VLSI processor must be identified. This
alone can be a major task. Once identified, provisions must be made for verify-
ing the solutions at various stages in thev design. Unlike board design, one caﬁ
not cut a trace and rewire it if a bug exists in the prototype. Instead new masks
must be generated and the processor is then refabricated. This can take a few
months. Once the processor has been fabricated, problems that were unforeseen
during the design phase can arise. Locating these errors in a complex processor

can also be difficult and time consuming. Thus, debugging time is also an issue.

. A fourth issue that must be addressed is that of optimality. Complex prob-
lems, such as VLSI design, usually have more than one solution. Different solu-
tions address the many aspects of the problem with varying amounts of success.
No solution is necessarily perfect. Furthermore, many factors influence the ;;ual-
ity of the resulting characteristics. The way in which individual factors influence
the final results should be understood so that tradeoffs may be made during the
design process. These tradeoffs are made with the priorities of the final

processor’s characteristics in mind. In this way a solution that best answers all _
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1

aspects of the problem may be chosen. This may be considered an optimal (non-

theoretical) solution.

Thus, four key issues in VLSI processor design are:

1. Complexity
2. Time investment
3. Correctness

4. Optimality

This does not mean that there are no other issues. It simply means that
these are four important issues. A good VLSI design methodology addresses all

four of these issues.

2. Thesis Organization

Many VLSI design methodologies exist. They all address the four key issues
with varying degrees of emphasis. It is hard to categorize them because no hard
‘and fast lines seem to exist. New methodologies evolve from the old, resulting in
a spectrum of design styles. Chapter 2 discusses examples of present VLSI design
methodologies. Examples were chosen on the basis of their popularity and to
exemplify various possible design styles.

All VLSI design methodologies are structured around various design levels.
Design is done at all levels in the course of realizing a VLSI processor. Many
motivations exist behind the choices of design levels. Chapter 2 introduces some
present design level schemes as today’s methodologies are described. In Chapter
3 the design levels of the methodology proposed in this thesis are discussed.
Interrelationships between the levels are described and reveal another source of
the complexity in VLSi design. Implications for the methodology based on an

understanding of level interrelationships, are identified.



Chapter 4 discusses the methodology in great detail. The methodology is
based on the design levels of Chapter 3 and their interrelationships. Although
the nature of the problem is complex, the methodology breaks the large problem
into a series of smaller, more straightforward problems: The ordering of these
smaller problems is suggested by their natural order in the design process and

with the goal of efficient use of design time.

The value of any methodology lies in its suitability to practical problems. In
light of this, Chapiers 5 through 10 take the Smalltaﬂ: On A Risc - SOAR - pro-
cessor through the methodology. Portions of this methodology were used during
SOAR design and lead to significant improvements that were subsequently put
_into the processor. Completion and further application of the methodology to
SOAR revealed additional improvements after submittal for fabrication. The

complete methodology also reinforced many design decisions on the realized chip.
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Chapter 2
Present Methodologies

Presently, many differing design styles exist. These styles have developed
from previous styles with the designers’ backgrounds having a significant impact.
All VLSI design styles address the four key issues outlined in Chapter 1 with

varying degrees of emphasis.

Key VLSI Issues
1. Complexity
2. Time investment |
3. Correctness

4. Optimality

1. Design Levels

To realize a VLSI processor a description of the high level behavior or
architecture of the processor, is transformed into a collection of geometric shapes
made of various materials: silicon, silicon dioxide, aluminum, etc. When viewed
from the outside world, this collection of geometries and the high level behavioral
description function in the same way. Although their functions are equivalent,
the forms of these two systems are entirely different. Thus, equivalent systems
may be represented in more than one way. These different representations

distinguish the levels of a design.

As a processor goes from an architectural description and set of system
specifications to a small piece of silicon, it passes through many other
representations and their corresponding design levels. Design is the process of
transforming a problem from one representation to another until a final

representation provides a solution to the original problem. Each intermediate
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transformation is a solution to one or more aspects of the problem posed by the
previous representation level. The choice of levels reflects the designers’ concerns
and design strategy. Thus, the levels a design passes through can be determined
by the methodology. The design levels may also influence a methodology. For
example, more emphasis and consequently greater optimization, is usually placed

on explicitly defined levels than on levels that are only implied.

Design at any given level' can range from very coarse to extremely detailed.
For example, if a logic level is called for, the initial outline might only specify the
logic blocks. Detailed logic design might specify the processor in terms of
inverters, switches, NAND, and NOR functions. VLSI processor design begins
with a rough idea for a solution at a level just below the outsider’s behavioral
description and is completed when a detailed representation in a material, such as
silicon, is reached (Figure 2.1). Many different paths, corresponding to the many
different design methodologies, may be taken from the starting point to the end
point. Each path may graphically represent a methodology. Some of the possible
paths -would be very inefficient and therefore would not be used. Other efficient

paths are in widespread use.
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Figure 2.1- A Few of the Many Possible Design Paths

2. Hierﬁrchy '

Hierarchy is an important coﬁcept .in ‘all VLSI design methodologies.
Hierarchical structures are stratified. Levels are formed in an attempt to isolate
the activities of any given level, from the activities of other levels. Isolation is
desirable because it simplifies decisions, by eliminating considerations due to
outside levels, at any given level. However, total isolation is also impossible since

all levels contribute to the total structure.

Hierarchies have proven to be very useful iﬁ complex designs. The concept
of isolating the pieces of a problem through the use of levels allows the overall
complex problem to be broken into a set of simpler problems. Each of these
simpler problems- can be worked on separately and is further subdivided.
Subdivision continues until the lowest level of the hierarchy is reached. This is

known as top down design.
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Each level is composed of one or more entities. In a hierarchical structure
each entity is made up of subentities. Subentities are the entities of the next
lower strata of the hierarchy. For example, an ALU may be made up of 32 bit
slices. All entities are specified in two ways. First, the entity is viewed as a black
box with inputs and outputs. The behavior of these inputs and outputs is
specified by the entity that the given entity is a subentity of. This represents the
connection between levels. Then to realize the entity, the internal components -
subentities — and their interconnections are specified. This internal specification
must result in the required behavior as viewed from the inputs and outputs.
Except for the inputs and outputs, this design is done in isolation from the other
levels. Specification of the internal components of the entity leads to the

input/output specifications of the subentities.

In VLSI processor design the highest hierarchical level is the entire processor
chip (Figure 2.2). The first part of its behavior is the specification of the behavior
at the pins. The processor may then be divided into a datapath and control
section. The datapath can then be specified in terms of ALUs, registers, shifters,
and buses. An ALU may then contain bitslices. Each bitslice is made up of logic
gates and wires. The logic gates are composed of transistors which are formed by
geometries of the various fabrication materials. The majority, but not all, of the
design considerations at any one of these levels, are independent of the other

levels.
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Figure 2.2- Hierarchy Example in a VLSI Processor

3. Design Levels ahd Hierarchy

Both design levels and hierarchies are useful when solving a complex
problem. Therefore, the next question becomes: How do the design levels relate
to the levels of a hierarchy. Hierarchies can exist within a design level. In this
~ type of hierarchy all hierarchical levels have the same representation. The levels
of the hierarchy are distinguished by the amount of detail that they contain. This
is typically called a structural hierarchy [LaPo83]. The coarse outline of a
processor in a given representation corresponds to the high levels of the structural
hierarchy. The structural hierarchy is then traversed to the lowest levels as detail

in the same representation form, is added to the processor components.

A second possibility is that the design levels may correspond to one or more
levels of a different hierarchy. As this type of hierarchy is traversed the
representation form of a design changes. This is considered an abstraction
hierarchy. For example, if the abstraction hierarchy contains a logic level, logic
diagrams may form the basis of this logic level. Another possibility is that the
logic l;avel may correspond to a sublevel within a circuit design level. Depending

on the methodology, hierarchies exist within design levels and across the design
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levels.

Top down design leads to both types of hierarchical structures. Each level
explicitly specifies the characteristics of the next lower level. Using these
characteristics the next lower level is designed. A drawback of this is that there is
no obvious way to consider influences of lower levels when designing at higher
levels, or influences from other branches of the hierarchy. Tradeoffs may be
overlooked and optimality can suffer. For this reason most VLSI design
methodologies are not purely hierarchical. Most recognize the need for feedback
from the lower levels to the higher levels. Different methodologies place varying
amounts of emphasis on these non-hierarchical paths and implement them

differently, as will be seen in the next sections.

4. Mead-Conway Style

The Mead-Conway design style was one of the first formalized design styles
[Mead80], [Trim81], [Joha8l]. It is still in widespread use today as an
‘instructional tool. It also forms the basis of more sophisticated design
methodologies. The Mead-Conway style emphasizes a top down hierarchical
approach. Designs are composed of composition and leaf cells (Figure 2.3) Leaf
cells make up the lowest level of the structural hierarchy. They contain circuit
components and wires, but no instances of other cells. Composition cells occupy
all but the lowest hierarchical level. They are composed of lower level cells and

the interconnects between these lower cells.
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composition cells

leaf cells

Figure 2.3- Mead-Conway Structural Hierarchy

Figure 2.4 shows the design levels of this style. The formalized methodology
concentrates on proceeding through these levels in a top down manner as
indicated by the solid arrows. Design begins with a behavioral description. At
the architectural level, the éomposition cells at the top of the structural hierarchy,
that are needed to implement this behavior, are identified and assigned to areas of
the floorplan. Wiring is considered and the critical paths of the chip are
estimated. Subsequent levels fill in the details of all cells according to the
requirements passed down from the higher levels. At the cell estimation level
inputs and outputs of the blocks are specified and their areas wt;lmated. To do
this the large composition cells of the floorplan are decomposed into intermediate
composition cells and leaf cells. The cell detailing level calls for layout of the leaf
cells. During chip integration, cells afe connected together starting at the bottom
of the structural hierarchy and moving towards the top until all interconnections
have been made. The design is then ready for fabrication. Thus, this design style
emphasizes increased refinement of the design as the levels are traversed to the

cell detailing level.
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Figure 2.4- Mead-Conway Design Levels

The Mead-Conway style recognizes the need for feedback of information
from the lower levels to the higher design levels as indicated by the dashed lines
of Figure 2.4. It calls for iteration between the levels if pieces of the design are
not compatible. However, it has not developed formalized guidelines for this

process as it has done for the top down procedure.

6. CMU-DA System

Reseatch work at Carnegie Mellon University has developed a system that
automates processor design from the behavioral description to the layout- the
CMU-DA System [Hafe78], [Snow78], [Park78], [Dires1], [Thom83], [Kowa83],
[Hitc83], [Tsen83], [Walks3]. It differs from other systems by automating the
highest levels of design- the microarchitecture. Traditionally, microarchitecture
design has been left to humans. A methodology is needed as the basis of any
design automation system, if processor design is to be fully automated. The CMU
design methodology, as reflected in the design automation system, is reviewed

here.
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Figure 2.5 is a block diagram of the design automation system. Each block
accepts input in an a;;propriate form for that block, and generates output of a
form that can be used by the next piece of the system. Except for the optimizer,
the system blocks transform the design from one representation to another. They

therefore correspond to the design levels of the methodology.

ISP
Y

Value Trace

v
-- -br Optimizer

’I Data/Memory

Allocator
user
specified ¥
choices Module Binder H
Control Module
Allocator Database

v
Module Binder b_—_—q___

Figure 2.5- CMU-DA System

The architecture and system specifications of the processor are originally
specified in the ISP hardware description language. Due to the structure of this
language, the ISP description of the processor will imply certain structures in the
microarchitecture. For example, temporary registers can be speciﬁed in an ISP
description. This implies the same temporaries in the microarchitecture, although
there might be microarchitectures that do not need the specified temporaries.
The first block in the CMU-DA system converts the ISP description to a data

flow representation— the value trace. This translation removes artifacts of the ISP
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language such as temporaries, data dependencies, and implied' control sequences.
The value trace is a more general representation than the ISP description. The
value trace may then be optimized to improve the speed or cost of the processor

and eliminate inefficiency. The optimizer output is an optimized value trace.

The ‘allocators generate register transfer structures. The datapath structure
is generated by the data/memory allocator. The control allocator generates a
register transfer representation of the control section. These register transfer

structures specify the physical blocks — modules — and their interconnections.

The module database contains a library of circuits, their layouts and
characteristics such as speed, size, power, and cost. The module binders select
circuits from this database according to the requirements passed down by the
allocators.

The blocks of the CMU-DA system may be grouped into' design levels
according to their output representations (Tabie 2.1). The ISP description and

module database provide input data to the design system.
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Design Level CMU-DA Block Output

1 Value Trace Value Trace
Optimizer

2 Data/Memory Allocator  Register Transfer
Control Allocator Structure

3 Module Binder Layout

F — —— —
External Inputs ISP

Module Database

Table 2.1- CMU-DA Design Levels

This methodology provides for analysis and optimization within each level.
Inputs for optimization come from requirements of higher levels or from human
intervention. This does not rule out feedback from lower lgvels.. However, there
are no formal guidelines for it. Feedback from any of the lower levels can be’

carried out through human interaction with the system.

At the highest level, the value trace may be optimized for speed or cost
improvements and to avoid inefficiency. The optimizer works with the existing
value trace and optimizes according to the users specifications. The user may
look at the results and try another optimizing criteria if the results are not
satisfactory.

At the allocator level the user may choose the style for the datapath and

control sections. Control may be microcode or PLA based. Styles for the

datapath are distributed (highly parallel), bus oriented, and pipelined. Again
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tradeoffs are made by trying the options and choosing the best.

" Higher levels pass a register transfer description and desired module
characteristics to the module binder. Optimization occurs at the module binder
level as circuits are chosen from the module database on the basis of their

required speed, size, power, and cost as well as their function.

In Figure 2.5 the dashed lines indicate inputs for optimizations. These inputs
are all external — either user generated or from the module database. As just
described, the user can specify optimizing criteria to the optimizer and design
styles to the allocators. The module database provides information on the speed,
size, power, and cost of each module so that the module binder can choose the
best module. Optimization inputs for a given level do not formally come from
any lower design levels. Optimization occurs within a given level in response to

requirements from higher levels, external inputs, and choices by the user.

6. Bell Laboratories— Bellmac-32 Techniques

The design methods used by Bell Laboratories in their Bellmac-32 processor
project were distinguished in two significant ways [Murp81], [Kang82], [Murp83]:

1. Simultaneous design at all levels

2. Explicit feedback from lower design levels to higher levels during design

This project also explicitly defined the structural hierarchy of the processor
(Figure 2.6). The highest level of this hierarchy was the chip level, with
approximately 100,000 transistors. The chip was divided into macroblocks of
about 10,000 transistors each. The macroblocks were then subdivided into 1,000
transistor superblocks. At the lowest level of the structural hierarchy were the

blocks with about 100 transistors each.
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Figure 2.6- Bellmac-32 Structural Hierarchy

Design levels of this project were the system, architecture, logic, and layout
levels. Unlike the Mead—-Conway and CMU-DA design styles that emphasized
topdown approaches, all design levels were worked on simultaneously in the
Bellmac-32 project. The result of this was that information from the lower design
levels was available early in the design process. Decisions at the higher levels

were made with information available from the lower design levels.

Figure 2.7 illustrates the design process that included timing considerations.
Design at the architecture level defined the superblocks, their function, and
input/output specifications. It also generated a floorplan and the netlist for
suberblock interconnections. The logic levgl continued with the design of the '
superblocks. Meanwhile the inter-superblock routing was laid out on the
floorplan. Inter-superblock routing capacitances were calculated from this layout
and used in a first cut at the timing analysis of the processor. This provided
feedback to the system designers. Concurrently, logic, layout, and timiﬂg analysis

of the blocks was also carried out.
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Figure 2.7- Bellmac-32 Design Process with Timing Considerations

As can be seen in Figure 2.7, the arrows of the design process not only point
from the higher levéls to the lower levels. They also point from the lower levels
to the higher. The Bellrﬁac—32 design process sets explicit guidelines for feedback
of lower level information into design decisions at the higher levels. This feedback
from the lower design levels to the higher ones, can -also be done for other

characteristics such as area and power.

7. IBM- Philo VLSI Design System

IBM’s Philo design system is used in their master image designs [Donz82),
[Ahdo83]. Master image desighs emphasize both regularity and flexibility. Chip
size for these designs is fixed. The chip is organized into a regular array of cell
locations. Power buses and other routing are also fixed. Circuits are composed of
cells and macros. The cells occupy one or two adjacent cell locations. A macro is
any circuit that requires more thajn 2 cell locations. PLAs and RAMs are two

types of macros. Layout complexity is reduced by this regularity.
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The Philo design system provides for logic design and layout. System
behavior and architecture are outside the realm of this tool set. Layout is
accomplished in two steps — placement and routing. Figure 2.8 shows the design
levels and their interactions. Design proceeds in a top down manner with timing
simﬁlation at each level. This timing simulation uses information from the lowest

level - the wiring level.

logic F average
wire delay
placemenﬂ(T wire delay
estimate
based on
distance
between
¥ points
wiring |

Figure 2.8- Philo Design Process with Timing Considerations

Design starts at the logic level. Accurate estimates of the wire lengths and
loads are not available so an average delay is assumed. This average delay is
based on characterization of the master image process. Using this rough estimate

gross timing errors can be avoided.

After- the logic has been verified, the cells and macros are placed onto the
grid. After placement, the lengths of the wires may be estimated from the
distances between their terminations. A more accurate estimate of routing delays
than the logic level estimate, is--now available based on this wire length estimate.

Timing simulation at the placement level uses this refined wire delay estimate.
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Design then moves to the wiring level. All interconnects are now routed and
the actual length of each wire becomes known. Wire delays can now be
accurately estimated from the actual wire lengths. Tnmmg simulation is done
once again with even greater accuracy now. Thus, the Philo design system has
provided a formal method for feedback of delay information, from the lowest

design level — wiring — to the highest level of the design system - the logic level.

8. Summary

These are four design styles that 'portray many of the concepts and
approaches that are characteristic of VLSI design methodologies. The four key
issues of VLSI design are addressed by each of them. All of them rely heavily on
computer aided design — CAD - tools to address these issues. Many CAD tools
exist to aid in the synthesis, verification, and analysis of VLSI designs. Synthesis
tools include such things as layout editors, placement tools, and routers to name a
few. Logic verifiers, timing verifiers, and design rule checkers are just a few of the
verification - tools that are available. Examples of Analysis tools are timing
simulators and tools for power estimation. CAD tools can do much of the tedious,
time consuming work of processor dosign. Thus, the issue of the time investment
needed to realize a VLSI processor is directly answered by the development of

CAD tools.

The issue of correctness can be answered in more than one way. Correctness
must be verified at all levels and between the levels. One approach is to develop
CAD tools that can check the correctness of these complex chips. For exarriple,
design rule checkers check the layout level for design rule violations. The layout
may be checked against the logic by extracting the layout and then using a
transistor level logic simulator on the extracted layout. A second approach is to

develop tools that synthesize a lower level from a higher level description. Rules
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for correctness are built into the synthesizer. In this way the lower level
representation is correct by definition (assuming a correct higher level description)

if it can be synthesized.

These four design styles all depend on hierarchies. As previously discussed,
hierarchy is very important in dealing with the complexity issue of VLSI design.
It provides an organized way of viewing the complex problem. The efficiency of

many CAD tools is also based on hierarchical organization.

Perhaps the least understood of the key issues is optimality. The four
examples of design styles emphasize oﬁtimality to varying degrees. They ranged
from mentioning iteration as a way to optimize, to providing analysis tools that
" could be used to calculate and improve optimality at specified places in the design
process. Analysis tools help evaluate the optimality of a design but an
understanding of relationships between the many aspects of a design is needed to
be able to optimize efficiently. Tile optimizer of the CMU-DA system is an
example of a CAD tool that has incorporated some understanding of these
relationships. Another approach to optimality is to cut design time, through the
use of CAD tools. With a shorter design cycle multiple alternatives can be tried

and evaluated. The best one is then chosen and fabricated.

The experience of participating in all levels of the SOAR processor design
provided valuable insight into the many interrelationships between design levels.
This thesis outlines the interrelationships between the various design levels.
These interrelationships are numerous and have many causes. This is another
source of the coinplexity in VLSI design. The effects of tradeofls may be predicted
from an understanding of these interrelationships. ~Many of these
interrelationships are influences of lower design levels on the higher levels. This
thesis presents guidelines for incorporating these bottom up influences into the

design process. This can lead to increased optimality in a shorter design time.
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Chapter 3

Design Levels

The concept of design levels and hierarchy was reviewed in Chapter 2. Two
types of hierarchies were defined - the abstraction and structural hierarchies.
Both types of hierarchy are composed of levels. Design levels as defined in this

thesis, correspond to the levels of the abstraétion hierarchy. The are

distinguished by:

1. The type of problem addressed
2. Processor representation

3. The way that processor characteristics are analyzed

Levels of a structural hierarchy are defined by the.amount of detail that they

contain. Structural hierarchies exist within the design levels.

Levels are defined so that the initial complex design problem is broken into
many smaller, simpler problems. Ideally, each smaller problem would be entirely
self contained. Solutions to other problems would not influence this isolated |
problem. In practice this is not possible. To complete the design, solutions to all

‘of the small problems are needed. These solutions affect each other and tradeoffs
must be made. Although the smaller problems can not be entirel}" self contained,
a judicious choice of levels can minimize the influences of other levels on a given
level. This does not mean that tradeoffs are ignored. It simply means that the
levels are organized so that the majority of considerations, decisions, and tradeoffs

occur within a level — not across levels.

Levels of an abstraction hierarchy have different representations for the same
structure. For example, at the higher levels a processor may be represented by a
behavioral description written in an algorithmic language. At lower levels the
same processor might be represented by logic diagrams or transistor schematics.

Each representation provides a unique view of the overall problem that leads to a



solution to some aspect of the original problem.

A consequence of these different repreeentations ‘is that processor
characteristics are analyzed differently at the different levels. For example, the
speed of a processor may be characterized by the nu:ﬁber of instructions needed
to run a benchmark at the higher levels. At a lower level it might be

characterized by the number of gate delaysin a gfven circuit block.

This thesis proposes five major design levels that a VLSI processor design can
be partitioned into. Each level requires certain types of information as inputs to
it. Design strategies are then formulated and decisions are made based on these
inputs. This results in outputs from the given level. These outputs may be used
as inputs to other levels. Level inputs may also be predetermined by factors
outside the scope of the processor design. Design at any level satisfies the inputs

for that level and results in outputs that affect other levels. The five design levels

are:

Microarchitecture
Functional Block
Circuit
Interconnect

Process

1. Microarchitecture Level

Tile highest level of .processor design is the microarchitecture level. One set
of external inputs to the microarchitecture is the architecture (Figure 3.1). This
includes data types, word size, addressing modes, the instruction set, register
organization, operations to be performed, and internally generated exceptions and

trapping conditions. The system that the processor is to be a part of also places
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restrictions and requirements on the processor. Interfaces between the processor
and other parts of the system determine processor behavior. System requirements
include such things as timing specifications at the pins, bus protocols, coprocessor
protocols, memory and I/O configurations, external interrupts, package, power

budget, and test methods.

|_ydesired functions

architecture
system specifications desired interconnect
available circuits —> c'ilarac eristics

micro-

interconnect schemes .
architecture

critical paths
power/block
area/block

__ydesired critical paths
_ydesired area/block
__ydesired power/block

Figure 3.1- Microarchitecture Level

Another set of inputs to the microarchitecture level are the circuits that are
available for use in the design. Various characteristics, such as speed, area, and
power, of these circuits are important to the microarchitecture design. The
available circuits and their characteristics are matched to the architecture and

system requirements through the proposed microarchitecture.

Possible interconnect schemes are another input te the design at the
microarchitecture level. This includes the number and configuration of data
busses, distribution of control lines, and communication between various
subsystems within the processor. Interconnect schemes are usually expressed in a

floorplan of the processor.

The critical paths that exist on a processor are also important to the
microarchitecture. Once a microarchitecture is proposed, the critical paths can be
estimated from an analysis of design at the lower levels: process, circuit,

interconnect, and functional block levels. The proposed microarchitecture can
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then be analyzed, using the critical paths, to see if it will meet the system
specification inputs. This can result in further design of the microarchitecture or
a viable compromise of the system specifications. Similarly, the power and area of
each functional block is also an input to the microarchitecture level. These may
also be determined by analysis at the lower levels. They can then be totaled to
arrive at an estimate of the processor-size and power. These estimates are then
compared with the system.specifications to determine if further optimization is

needed.

Given these inputs, design alternatives for the microarchitecture are proposed
and analyzed. Design decisions concerning high level implementation issues are
made. The choice of the microarchitecture should not be visible to the
programmer or system designer. There are two major problems to be be solved
during microarchitecture design. First, the functions that the processor must
perform are identified. The instruction set and system specifications determine
the basic functions of the processor. Secondly, the coordination — timing - of the
blocks that perform these functions, must be specified. Good timing leads to
correct and efficient execution of instructions. Examples of design at the
microarchitecture level are parallelism, pipeline design, the use of microcode,

resources needed and their allocation, and interrupt and trapping mechanisms.

Given a proposed microarchitecture, an important question is: How good is
it? Typical characteristics that aré analyzed to answer this question, are speed,
power, and area. As previously discussed, the yardstick for measuring any
characteristic depends on the design level being analyzed. At the architecture and
system level, the number of instructions needed to complete a job using a given
instruction set, is a measure of the speed of the architecture. The number of
clock cycles needed for each instruction type is also a measure of the system and

architecture speed if system factors influence this number. ' For example, if a
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single instruction is to do eight loads, the memory speed will influence the number
of cycles needed to ‘complete this instruction. The number of clock
cycles/instruction can also be a measure of the speed of the microarchitecture.
For example, in a microcoded machine each instruction is typically implemented
with a series of single cycle microinstructions. The number of microinstructions
needéd for a given instruction determines the number of cycles required for that
instruction. Cycles are typically split into phases and processor activities are
assigned to each phase during microarchitecture design. Therefore, a second
measure of microarchitecture speed is the number of clock phases in each cycle.
" The total cycle time is the sum of the individual phase lengths. This leads to a
third criteria for processor speed evaluation at the microarchitecture level: phase
lengths. At the microarchitecture level, the processor activities assigned to each

phase determine the phase length and are therefore the third measure of speed.

Power evaluation at the architecture and system level, is dome by
determining the power consumption of each chip in the system. Microarchitecture
design divides a chip into functional blocks. The power budget of each functional

block is the criteria for power analysis at the microarchitecture level.

Similarly, the total processor area is used for the area measurement at the
system level. At the microarchitecture level, the area of each functional block is
important. Further design at the functional block level will divide this area into

circuit and interconnect areas.

One set of outputs of the microarchitecture design aré the desired functions
and their characteristics. The proposed microarchitecture necessitates various
functions that must be provided for by the lower levels. The characteristics of
these functions are also important to the microarchitecture. For example the

functions’ speeds directly affect the timing.
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Desired interconnect characteristics are another set of outputs from the
microarchitecture level. Examples of this are interconnect speed and the number
and types of levels available. Interconnect speeds partially determine signal
speeds which are important to the processor timing. The number of interconnect

levels affects the interconnect scheme.

The desired critical paths are also outputs of the microarchitecture design.
These evolve from the system specifications. The system specifications place
timing requirements on the processor. For a proposed microarchitecture, each
signal path will have to operate at a speed that will allow the system
specifications to be met. These speeds are the -desired critical paths. When doing
design at lower levels these critical paths must be taken into consideration.
_ Similarly, the microarchitecture design may specify the sizes and power budgets of
the individual blocks. This is done so that the total power and area of the

processor matches the system requirements.

2. Functional Block Level

Design at the functional block level involves mapping the functional blocks
specified during microarchitecture design, into the circuit blocks that will be used
in the processor layout. As this is done the function of each circuit block and
their interconnections are determined. Examples of datapath blocks are ALUs,
counters, shifters, latches, various registers, sign extepders, and comparators.
Typical control blocks are latches, counters, comparators, PLAs, ROMs, and
random logic blocks.

Microarchitecture design assigned processor activities to the clock phases.
Speed analysis at the functional block level determines the time needed to
complete each activity and identifies t..he major components of this delay. The

delay of the output signals of an activity is a measure of the time needed for that
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activity to complete. These signals - critical paths - typically propagate through
circuit blocks and across interconnects. For example, an instruction decode may
start with the propagation of the opcode to a decode PLA. The decode PLA then
determines control line values. These values then travel across other
interconnects to the places where they are used. Decode delay is the sum of these
two interconnect propagation delays and the PLA delay. Thus, the circuit. block

and interconqect delays determine the speed of each activity.

The power consumption of each functional block is the sum of the power
dissipated in its circuit blocks and interconnects. Circuit blocks- consume both
d.c. and a.c. power. The interconnects require a.c. power according to their
capacitive load and clock rate. Thus, power dissipation at the functional block
level, is the sum of the power consumed by the individual circuit blocks and

interconnects.

Functional block area is also the sum of the areas of the circuit blocks and
interconnects. Therefore, circuit block and interconnect areas are of concern for

area analysis at the functional block level.

The first inputs to the functional block design level are the desired functions
of the processor (Figure 3.2). These desired functions are specified at the design
level above the functional block level — the microarchitecture level. Design at the

functional block level assigns these functions to the circuit blocks.
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desired critical paths
internal block delay
interblock delay
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Figure 3.2- Functional Block Level

Another set of inputs to the functional block level are the desired critical
paths of the processor. When doing timing analysis, these desired critical paths
are compared to the predicted critical paths of the proposed functional block
organization. The predicted critical paths are arrived at by considering the
internal delays of each block and the delays between blocks, the interblock delays.
Therefore,‘ to do this type of analysis of the functional block design, the internal
block delays and interblock delays must be inputs to the functional block design

level.

Similarly, the desired areas and power budgets of the functional blocks are
inputs to the functional block level. These are compared to the predicted areas
and power budgets. To predict the area, the circuit block sizes and interconnect
areas are needed. These are therefore input:,s to the functional block level. A
power estimate for the processor requires the power dissipation of the individual
circuit blocks and interconnect loads to be an input to the functional block level.
The circuit blocks consume both d.c. and a.c. power while the interconnects

require a.c. power according to their loads and the clock rate.

One output of the functional block design is a netlist. Knowing the functions

that are in each block and how they relate to each other, leads to a complete
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netlist for the processor. Typically, the netlist will contain some nets that may

limit processor speed. These critical nets are identified in the complete netlist.

Another set of outputs are the desired functions of the circuits in each circuit
block. These desired functions and their characteristics are passed to the circuit

design level for realization.

Analysis of the functional block design results in estimated critical paths for
the proposed design. These critical path outputs are compared with the .desired
critical path inputs. Based on these comparisons, optimization and redesign of the
functional block scheme is carried out. Analysis also provides estimates of the
area and power consumption of the functional blocks. Theée estimates are
compared with the desired areas and power budgets. Redesign is then done if

necessary.

3. Circuit Level

Circuit level design results in a layout realization of the circuit blocks. This
includes the logic design of each block. The logic design is then transformed into
a gate level design. From the gate level description a transistor level design is
specified. The transistor level schematics are the basis for the actual layouts of
the functional blocks. Tﬁe logic, gate, transistor, and layout representations are
sublevels of the circuit level in this methodology. It is not uncommon for these

sublevels to-be distinct design levels in other methodologies [Thom83].

Speed -analysis at the circuit level determines the speed of each circuit block.
This may be done in a series of steps according to the sublevels. First, the circuit
block speed may be expressed in terms of a number of logic block delays. Each
logic block delay is the sum of the gate delays within that logic block. Gate
delays are determined by the speeds of the transistors that make up the gate and

the loads that they must drive. Finally, layout parasitics can be included in the
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gate delay analysis.

The concern of power analysis at the circuit level is the power consumption
of each circuit block. This may also be analyzed according to the sublevels.
Power dissipation of the logic blocks and gates can be determined. At the

transistor sublevel, the transistor sizes determine power consumption.

Similarly, area analysis at the circuit level determines the area of each circuit
block. Area may be evaluated at each of the sublevels also. The circuit block
area can be estimated from the number of logic blocks that it contains'. The size
| of each logic block is determined by it gate count. Gate size is determined by the
number of transistors in each gate. Transistor sizes are found by consulting the

layout. |

Inputs to the circuit level come from all other levels (Figure 3.3). The
process level specifies the available devices, layers, and their parameters. These
will partially determine the types of circuits that are used and their speeds. The
process also specifies the design rules for the circuit design. These are used by the

layout sublevel and influence the area and geometry of the circuits.

_yavailable circuits
_yinternal block delays
_ycircuit block power

i t
ajailable Doramater:
design rules
desired function

ircuit r eomet
desired grea and aireut -»area, g i
geometry _yport placement
desired port placement _yloads
loads 5455 PAE

Figure 3.3- Circuit Level
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Another important set of inputs to the circuit level are the desired functions
of the circuits and their characteristics‘. Custom circuit design proceeds according
to the desired circuit functions. Cell libraries can be built for popular functions.
Circuit design attempts to satisfy the desired function and its characteristics for

each circuit block. If this can not be done compromises are made at other levels.

Other inputs to the cifcuit design are the desired areas and geometries of
each circuit block. The interconnect scheme leaves empty areas that the circuit
blocks must fit into. The order of interconnect wires will also affect the
placement of the terminals for each circuit block. Loading due to interconnects
and other circuit blocks at their terminations, is another input to circuit design.
Circuits must be designed to drive these loads at the speeds as specified by the

desired function input.

Outputs from the circuit level are used by all other levels also. Circuit
design will result in a list of circuits that are available for use in the processor and
their characteristics. A knowledge of these is important to the higher design

levels.

The internal delays of each circuit block is another output of circuit design.
These delays are used in critical path analysis at the functional block level. The
power consumption output is used to predict the total power required by the

processor.

The area and geometry of circuit blocks is another output of circuit design.
The circuit block areas are used by the functional block level to estimate the -
processor size. Interconnects must be routed around ‘the circuit blocks and
therefore use the area and geometry output of circuit design. The port placement
on each circuit block is another output of circuit design used by the interconnect

design.
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Another set of outputs are the loads of the input ports of each circuit block.
Loads must be taken into consideration when designing other circuit blocks and

their interconnects.

A final output is a set of desired parameters, layers, and devices. To meet
certain aspects, such as speed or power, of the desired function input, various

process parameters, layers, and devices are important.

4. Interconnect Level

Communication between the circuit blocks of a processor is accomplished
through the interconnects of the processor. Interconnects connect the circuit
block inputs and outputs according to the scheme that was proposed b){ the
functional block design level. Design at the interconnect level results in a layout

realization of all required interconnects. .

Speed analysis at the interconnect level is concerned with interconnect
delays. Power analysis estimates the a.c. power. required to drive the interconnect
load at the given clock rate. Interconnect areas are also determined by analysis at

the interconnect level.

The interconnect level also has inputs from all other levels (Figure 3.4). One
important characteristic of the interconnects is the area that they occupy. The
circuit blocks have certain sizes and geometries, and the interconnects must fit
around them. Thus, one set of inputs to interconnect design are the sizes and
geometries of the circuit blocks. The design rules are another input to the
interconnect level. The dimensions specified for interconnect levels by the design
rules, are a major factor in determining the area occupied by the interconnects.
The available layers for the interconnects are another set of inputs to this level

that will affect their area.
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Figure 3.4- Interconnect Level

Speed is anéther important characteristic of the interconnections. Their
speed is affected by such things as the resistance and capacitance of the
interconnect layers. Therefore, the process parameters must be an input to the
interconnect design. Another input that will affect the speed of the connection, is
the load at the termination of the connection. This load partially limits the

maximum speed of the interconnect.

The netlist for the processor is another input to the interconnect level. The
netlist specifies all terminals that are to be connected together. Another set of
inputs are the desired characteristics of the interconnects. Design at the higher
levels may benefit if various characteristics are available. The placement of the
ports to the circuit blocks is another input to the interconnect design. Ideally, the

order of the ports should match the order of the interconnect lines.

Outputs of the interconnect level are used by all other levels. From a
knowledge of the higher design levels, the interconnect level may generate an
output of desired process parameters and layers. The interconnect design level
also generates a set of available interconnect schemes for use by the higher levels. .
It does this from inputs that were generated by lower levels. Examples of things

that affect interconnect schemes are double level metal and silicides.
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Another set of outputs are the loads of the interconnects. The circuit blocks
must have the capability to drive the interconnect loads at the desired speeds.
Interconnect loading also contributes to the a.c. power consumption of the

processor.

The interblock delay is another output. It is used to analyze the speed of a

proposed functional block design.

The area and geometry are other outputs of the interconnect level.
Interconnects can occupy a significant area. This must be taken into
consideration when estimating the chip size. The interconnect area and geometry
output is also used when doing layout of the circuit blocks in order to leave a

minimum of wasted space.

Port placement is another output. A compromise between the optimum port

placement for the circuit design and the interconnect design must be arrived at.

5. Process Level

The fifth and lowest major level is the process level. Design at the process
level consists of using the available processing techniques to produce devices,
parameters and layers that are desired by the higher levels. The available -
processing techniques are inputs to the process level (Figure 3.5). They are
determined by technology — not by any of the other design levels. Other inputs
are the desired devices, parameters, and layers. These are requested by the

higher design levels and the process level attempts to satisfy these requests.
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Figure 3.5- Process Level

Process design determines the available devices and their parameters.
Devices of an MOS technology may include both NMOS and PMOS enhancement
and depletion transistors. Examples of device parameters are the threshold
voltages and transconductances of all available transistor types. Process design
" also specifies the available layers-and their parameters. Another important output
is the design rule set for the process. This specifies the minimum feature sizes for

all layers.

At the process level, process parameters that affect speed are the focus of
speéd analysis. Examples of these for an MOS process are transconductances,
oxide thickness, diffusion capacitances, and resistivities. Process para£neters also
determine power dissipation. Threshold voltages, transconductances, and
capacitances are examples of parameters that influence power dissipation for an
NMOS process. Area analysis concentrates on the design' rules, at the process

level.

8. Interrelationship Overview

Many tradeoffs have to be considered during the design of a VLSI processor.
This can be seen from an examination of the inputs and outputs for each level. A
few inputs - processor architecture, system specifications, and processing
techniques are not usually dependent on design activities of the five levels. The

definition and specification of these inputs is primarily independent of the
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processor design. Compromises in these inputs, might arise due to processor
design but they are basically determined outside of the scope of the processor
design.

The vast majority of the inputs to the various design levels, can be outputs of
other levels. This means that design at any given level depends on the design at
other levels. This is the source of the many tradeoffs and complexities that exist
in VLSI design. Figure 3.6 shows this interdependence of levels according to the
previously described inputs and outputs for each level. Some levels — circuit and
interconnect levels — have inputs from all ot;her levels and outputs that affect all
other levels. Even the level with the fewest relationships to other levels, the
process level, has inputs from two of the other four levels, and outputs that affect
two other levels. One definition of an ideal design, is a design that is optimized

based on all possible level interrelationships and tradeoffs.
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Figure 3.6- Overall Flow Diagram

6.1. External Inputs

Design is easiest when outputs of a design level are based only on external
fixed in'puts to that level. When this is the case, design is done for the given set
of inputs or range of inputs. Values for these inputs which depend on the design
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itself, do not need to be considered. Using an analogy to a function y=f(x), it is
much easier to determine y for one specific value or range of values for x, than for
x which depend, in some complicated way, on the given inputs and possibly y
Aitself (Figure 3.7). However, this simple dependence of outputs on external inputs,
is not the situation for any of the outputs in a full custom design. The only levels
where this might be the case because they do have external inputs, are the
microarchitecture and process levels (Figure 3.8). However, these levels also have
inputs from other design levels. All outputs from these two levels are functions of
both the external inputs and the inputs from other design levels. Thus, the
situation for these levels, is analogous to y=f(x,z), where x is the set of given
external inputs and z is the set of internal inputs that relate to x in some

complicated way through the other design levels.

external inputs

externa }i{nputs

easier harder

" Figure 3.7- y={(x)
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Thus, it can be seen that if more inputs to the various design levels are
externally specified, instead of being dependent upon other design levels, fewer
options and tradeoffs will exist and design will be easier. However, perfofma.nce
of the final design might suffer since there is less room for optimization. So this is

- not the final goal; only a way to understand how to make design easier.

The first set of inputs that may realistically be reclassified as external, are
the outputs of the process level. In many design situations the process design is
totally independent of circuit design (Figure 3.9). The process level outputs -
design rules and available parameters, devices, and layers, that are inputs to the
circuit and interconnect levels, are now externally defined inputs. Any outputs
from other levels that were inputs to the process level are now irrelevant. These
were the desired parameters, devices, and layers. There are now fewer tradeoffs
and options to be considered in the processor design. The circuit and
interconnect levels now have externally defined inputs. However, both the circuit
and interconnect levels still have many internally generated inputs. The outputs
of these two levels — available circuits, circuit block areas, interconnect area,

loads, circuit block power, circuit block delays, interblock delays, and available
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interconnect schemes, do not depend solely on the external inputs. The internally
generated inputs influence all of these outputs to some extent. Thus, design is

still difficult because there are no outputs that depend solely on external inputs.

desired critical paths,
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archi-
tecture
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circuits Nerconnect
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blget
block power, delay, area)
block area load

size, geometry, port placement
Toads

connect

design rules,' available
parameters and layers

design rules, available
‘parameters, layers, and devices

Figure 3.9- Flow Diagram- Predetermined Process

The standard cell design approach is popular in many design situations.
Standard cell designs are based on a library of circuit cells that have been
préviously designed and characterized. The amount of circuitry within each cell
depends upon the library under consideration. Typical cells are ALU bit slices,
register cells, latch cells, counter cells, and various types of drivers. Circuit blocks

are things such as ALUs, counters, shifters, registers, latches, PLAs, and ROMs.
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They are each typically made of several cells from a cell library. Thus, circuit
block design exists in the standard cell approach but the available circuits are
now an external input (Figure 3.10). The possible ways in which to realize the
desired function blocks are limited by the variety of cells in the library. Quite
often there might be just one way that is clearly better than all other ways, to
realize a desired block. Previously, the size, geometries, and port <placement for
the circuit blocks, were both inputs an.d outputs of the circuit design.
Compromise between the interconnect and circuit design determined these
characteristics. With standard cells, the size, geometries, and port placement are
determined primarily by the circuits. They are fixed according to the standard
cells. Therefore, interconnect design is constrained. Size, geometry, and port
placement are no longer internal inputs to the circuit design level. Loads due to
other circuit blocks also become external inputs, since they are determined by
input loads of the standard cells. Thus, in standard cell design, design at the
éircuit level exists but can be far less involved than in a fully custom design. The
circuit level design is left with two inputs — desired function and loads, which
depend on other levels. All other inputs are now defined outside the scope of
processor design for the circuit level. The microarchitecture level has also been
simplified. It only has one input, available interconnect schemes, that is an
output of another level. Limiting the number of inputs that depend on other
levels of a design is analogous to reducing the number of inputs, z, which are
complicated functions of the given inputs, X, and possibly the output, y, in the

example y=1(x,z).
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Figure 3.10- Flow Diagram- Standard Cell Design

6.2. Iteration

Although with the standard cell approach, the internal inputs have been
limited, especially for the circuit and microarchitecture levels, there are still
situations in which design at a given level depends in some way on design that has
already been done at that level. For example, design at the functional block level
depends on interblock delays which are an output of interconnect design. But
interconnect design depends on functional block design through the netlist. This
is analogous to y={(x,z) but x=g(y,w) (Figure 3.11). These situations can be
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found by identifying closed loops in the design flow diagram. When closed loops
exist in the design flow, iteration is necessary to arrive at an optimal design. By
eliminating 1.>rocess design from the processor design cycle, and using standard
cells, design options and therefore, performance has been limited.v Even with
these limitations, iteration is still needed as shown by the remaining closed loops.

Custom design was characterized by fewer fixed inputs and more closed loops.

internal block delays
desired functions,
desired critical paths,
desired power/block
desired area/block

Z,[functional

interblock

tlist
netlis delay

desired characteristics
sizes, geometry, port
placement, loads, .
design rules, available
. parameters and layers

inter-
connect

Figure 3.11- Iteration

The indirect dependency of design decisions at a given level, on decisions at
that same level, makes optimal design difficult. These dependencies make
iteration necessary. Iteration takes time which is one symptom of the difficulty.
Any design method whose goal is an optimal design must have a way of dealing
with the closed loops in the design flow ciiagram.
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6.3. Unidirectional Design

So far it has been shown that design is easiest when the outputs of the level
under coﬁsideration, are determined only by fixed external inputs. However, VLSI
processor design does not fit this model. The design flow diagrém for processor
design is characterized by closed loops that involve two or more levels. This
problem is much harder to solve than the one in which all inputs are external. A
third possibility exists in which levels depend on each other but closed loops do
not exist in the design flow diagram. This is analogous to y=f(x) and x=g(z) but
z has no dependence on y (Figure 3.12a). Z might be an external input. If it is not
itself an external input, it can be traced back to one without revisiting any of the
previously used functions (Figure 3.12b). If no closed loops exist, design at any
given level will not need to be redone due to input changes that were the result of
previous design at that same level. Thus, no iteratioh is necessary. Design
‘ proceeds in one direction and is always a function of inputs from levels that are
closer to the external inputs. This unidirectional design is more difficult than

design with external inputs only, but easier than design that involves iteration.
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7. Methodology Implications

Typical design flow diagrams for VLSI processors (Figures 3.6, 3.9, 3.10) all
contain many closed loops that involve two or more levels.‘ This is a source of
complexity and makes optimal design difficult and time consuming. A good
design methodology simplifies the design process while still 'considering all the

relationships and tradeoffs between the design levels.
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The flow diagram may be simplified by breaking it up into many simpler flow
diagrams. Each simpler flow diagram must be considered at least once in order to
complete an optimal design. If all the simpler flow diagrams are superimposed,
the result must be the ;)riginal complex diagram. If any connections between the
levels are missing in the superimposed version, then the corresponding
relationships and tradeoffs between the levels will not be considered in the design.
Depending on the importance of these ignored relationships, some degree of

optimality will be sacrificed.

Ideally, the flow diagrain would be split into many diagrams, each having
only one design level and all inputs would be external. As previously discussed,
this is the easiest type of design. However, thi; type of split will artificially isolate
the desigil levels far too much. Some type of split must be found that does not
force the design process into a framework which is so artificial, that optimal
design is obscure. More difficult than design with external inputs only, but easier
than iterative design, is unidirectional design. Whenever possible the simpler flow

diagrams are restricted to have external inputs and unidirectional design only.

" There will still be some situations where this restraint is still too artificial. When

these situations arise simple loops may be added to the flow diagram. Simple
loops are closed loops that involve the fewest levels possible — ideally oilly two.

They also are as isolated from other parts of the flow diagram as possible.

As the overall flow diagram is split into many diagrams, care must be taken
to ensure that the splits are in some way natural splits. One logical split is the
split between phases of a design. Typical phases are .synthesis, analysis, and
optimization. During the synthesis phase, one or many solutions to the design
problem are proposed. Analysis consists of determining various characteristics,
such as speed, power, and area, for the proposed solutions. Using the results of

analysis and possibly further analysis, fine tuning and elimination of bottlenecks is
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accomplished. This is optimization. Each phase has its own flow diagram which
includes the important relationships and tra&eoﬂ's to be considered, for that phase.
The flow diagrams for this type of split, represent the natural phases of design,
and are also simpler, as previously described, than the original diagram. Design
becomes more manageable due to the splitting of the original problem into many
simpler problems, and remains realistic by choosing each simpler problem to
correspond to a natural design phase. Thus, time, in the form of design phases is

used to organize an originally complex problem into many simpler problems.

Once the flow diagram has been broken into many simpler diagrams and
each simpler diagram represents a design phase, the diagrams must be considered
in some logical sequence. Information that is needed for a given diagram must be
determined by a previous diagram. For example an analysis diagram must follow
" a synthesis diagram. A solution must first be proposed or synthesized, before it
can be analyzed. Thus, the sequence in which.the flow diagrams are considered is

determined by the natural order of the design phases.

8. Summary

VLSI processor design can be broken into five major levels -
microarchitecture, functional bloc'k, circuit, interconnect, and process levels.
These design levels use various inputs, that may be either defined outside the
scope of processor design — external inputs, or generated by other levels — internal
inputs. These levels are distinguished by the problems that they addre_és and the
way that processor characteristics are analyzed (Tables 3.1 and 3.2). Processor
representations also vary according to the level. Some levels can have more than
one type of representation or way to analyze the characteristics. This leads to the

definition of sublevels.



Design Level . Problems Addressed

g
Microarchitecture  Identify functional blocks

Timing

Fﬁnctional block  Map functional blocks to circuit blocks

Define interconnects

Circuit Circuit block layout
Interconnect Interconnect layout
Process Process development

Table 3.1- Problems Addressed by the Design Levels

56
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Design Level - Speed Criteria

Microarchitecture  Cycles/instruction
| Phases/cycle
Activities/phase

Functional block  Delay/activity

Circuit Delay/circuit block
Interconnect Delay/interconnect
Process Process parameters influencing speed

Table 3.2- Speed Analysis According to Design Level -

Many relationships and tradeoffs exist between the design levels, as shown by
the numerous internal inputs. This is an important sourc-e of the complexity in
VLSI design. Consideration of these design levels and their interrelationships can
" be shown graphically in an overall flow diagram for processor design. This total
flow diagram has many complex loops between the levels, which indicate that
iteration is necessary for optimal design. Simultaneous consideration of all
possible tradeoffs is difficult. Therefore, the total flow diagram is split into many
simpler flow diagrams, each fepresenting a design .phase. The complex loops are
spread over the various flow diagrams by splitting the paths that they are
composed of, between the simpler diagrams. Thus, iteration is minimized within
any given phase. The total required iteration is now spread out in time, over the
different design phases. Iteration is accomplished as the .designer progresses

through the phases, represented by the simpler flow diagrams. From a practical
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viewpoint, design is considered to be optimal when no changes are made as the
designer moves through a specified number of phases. This design methodology is
a way to organize the inherent iteration due to complex relationships, in processor
design. The iteration and consideration of tradeoffs is organized into some logical
sequence so that an optimal design can be achieved. Overlooking and ignoring
possible tradeoffs is eliminated because all diagrams, when superimposed, must
result in the original complete flow diagram.

0. References

[')l‘hpm83 Thomas, D. E.; Nestor, J. A; ‘Defining and Implementing a Multilevel
esign Representation with Simulation Applications’, IEEE Transactions on
~ Computer Aided Design, V.2, N.3, July 1983. '




59

Chapter 4
Design Methodology

Design level interrelationships and tradeoffs for VLSI processor design, can be
shown graphically by an overall flow disgram. In order to make the design
problem more manageable, this overall flow diagram is broken into simpler
diagrams. Each simpler diagram should be associated with a natural design phase
so that design remains realistic. Three main design phases for VLSI processor
design can be identified as:

Preliminary
Synthesis
Analysis
Just as the design levels have sublevels, the design phases can have subphases.
| Optimization is possibly another phase. However, optimization can be shown to
be composed of sequential synthesis and analysis steps. For this reason it is not

- included in the list of primary phases.

The preliminary phase is the first phase of desién. It assumes that the
architecture, system specifications, and processing techniques are known. The
goal of this phase is to explore possible options for circuits and interconnect
schemes. These options are based on the requirements of the architecture and

system specifications. They are limited by processing technology.

The second major design phase is synthesis. The goal of synthesis is to arrive
at a detailed solution to the design problem. Synthesis steps all contribute to the
transformation of a high level problem into a detailed, low level solution.
Verification is one important subphase of synthesis. A proposed solution is shown

to correctly answer a problem through verification.

Analysis is a third major phase. It consists of examining various aspects of

the performance of proposed solutions. Based on performance predictions and any
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bottlenecks that are observed during analysis, further synthesis might be done.

1. Preliminary
At the start of the preliminary phase, the only things known about the

processor design are the external inputs. These are the processing techniques,
system specifications, and architecture, for a fully custom design. In many design
situations the process is fixed. Therefore, in these situations the available devices,
layers, and process parameters are fixed external inputs. For standard cell design

the circuits available are also external inputs.

The flow diagram for the preliminary phase of a full custom design ié shown
in Figure 4.1. It coﬁtains loops which means that iteration is possible. There are
two halves to the flow diagram— the microarchitecture, circuit, process side and
the microarchitecture, interconnect, process side. If all possible loops are
considered in this diagram design things can get complicated. However, the two
sides may be treated independently (Figure 4.2). Solutions for all levels involved,
can be arrived at for each side and then the two solutions can be compared, for
the process and microarchitecture levels. If contradictions between the two sets of

solutions for these levels exist, compromises must be worked out.
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Figure 4.1- Preliminary Phase- Full Custom Design

61



62

architecture, | architecture,
system specifications system specjfications

micro-
archi-
tecture

micro-
archi-
tecture

?

available available
circuits interconnect
: desired desired schemes
functions charactert
istics
.. inter-
circuit connect
available available
parameters, parlameter S)
desired devices, ayers
parameters, layers desired
devices, parameters,
layers layers
?
J— process
processing techniques processing techniques
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When the process is fixed the flow diagram becomes much simpler (Figure
4.3). There are still two sides, but each side is now only a simple loop involving
only two levels. Standard cell design would further simplify the preliminary phase
by removing all circuit design from this phase (Figure 4.4). The circuit loop is
replaced by the external input of the available circuits, and only the interconnect

loop remains.
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During the preliminary phase, the architecture and system specifications are
examined to determine various functions that the circuits must provide. This is
done most efficiently if various microarchitectures can be considered to determine
how well they will satisfy the architecture and system requirements. A list of
circuit functions needed by the most promising microarchitectures is developed.
Preliminary circuit design can then be carried out so that the necessary circuits
and their characterization are available to the microarchitecture design. This is
represented by the available circuits input to the microarchitecture level (Figure

4.1). Examination of the architecture alone reveals the operations that must be
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performed by the ALUs. System specifications will place requirements on such
things as pad driver circuitry. High level microarchitecture considerations
influence circuit function also. For example pipeline design specifies which tasks
are to be done in parallel. The amount of parallelism dictates the hardware that
will be needed, such as the number and types of ALUs or register ports. Timing
of - the various pipeline stages places speed restrictions on the circuits. If
microcode is to be used, ROMs must be designed. These are all examples of ways
in which the microarchitecture influences circuit design in the ﬁreliminary phase.
Graphically this is shown in Figures 4.1, 4.2, and 4.3 by the desired functions

arrow, between the microarchitecture and circuit levels.

If the process is open to modification, the circuit designer can request various
parameters and devices that will make his job easier, from the process designer.
This might include such things as substrate bipolar transistors, diodes, various
thresﬂold voltages, or buried contacts, in an MOS process. With these requests in
mind, the process designer uses the processing techniques and equipment that are
available, and informs the circuit designer of the parameters and devices to be
used. Graphically this is shown by the lo()p'between the process and circuit levels -
(Figure 4.1). . |

Using the process parameters and devices that have been provided by the
process level, design at the circuit level tries to accommodate the desired function
input. This results in the output of the available circuits from the circuit level.
These available circuits and their characteristics, such as speed and power, are

used to form a more detailed microarchitecture design.

A similar set of loops exists for interconnect design in the preliminary phase
(Figure 4.1). The interrelationships between the microarchitecture and
interconnect levels are not as apparent as those between the circuit and

‘microarchitecture levels. They do exist though, and should therefore be
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‘considered for a truly optimal design. An example of this relationship is the
amount of communication between various subsystems of a processor. The
desired speed of this communication is another example. These considerations
might cause the interconnect designer to request extra interconnect layers and/or

interconnect layers with low resistance and capacitance, from the process.

Just as the process accommodated the circuit designer requests whenever
possible, it tries to meet the interconnect level requests. Knowing the process
parameters and interconnect layers that are available, design at the interconnect

level produces possible interconnect schemes for use in microarchitecture design.

One result of the preliminary phase is that the process will no longer change
due to inputs from the design. However, it still might change if the external
input, processing techniques, changes. This makes the designer’s job harder.
Asspming this does not happen though, inputs from the process level for all future
phases are mow external inputs. Loops involving the process level have been
considered as appropriate, in this preliminary phase and eliminéted from future
phases. Process design does not complicate synthesis and analysis. It merely

- provides inputs which are used by the synthesis and analysis phases.

2. Synthesis

Synthesis is the process of transforming a high level description of the
behavior of a processor into a working VLSI circuit. The goal of synthesis is to
provide a circuit that functions correctly. Correct functionality can mean
different things at different stages in the design. In the early stages it may mean
performing the required operations with no concern for speed or power
dissipation. In other words, meeting the architectural requirements is the first
step in attaining correct functionality. Later stages are concerned with meeting

all system specifications also. Various types of analysis are done after synthesis
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has generated the first proposed solutions. As a result of this, further synthesis is

done to attain all unmet system requirements.

External inputs for synthesis differ somewhat from those of the preliminary
phase. Process design occurs during the preliminary phase if the process is open
to modification in response to the chip designers’ needs. The process may still
change after this but it is out of the control of the chip designers. However, the
chip designers must still deal with any changes that may occur. Outputs of the
process level become external inputs from the chip designers’ points of view, after
_the preliminary phase. Therefore, thg design rules, layers available, and devices
available are all external inputs to design during the synthesis phase. At the high
level, the behavioral description of the processor — architecture and system
specifications — are external inputs. The VLSI circuit must realize this
description. The circuits available and possible interconnect schemes from the
preliminary phase are also inputs to microarchitecture design. They are from the
preliminary phase and therefore, are considered as fixed inputs. They are needed
to complete the details of the microarchitecture. The flow diagram for synthesis
is shown in Figure 4.5. The area enclosed by the dashed lines represents the scope
of design during synthesis. Arrows crossing the dashed lines are external inputs
for the synthesis phase. Figure 4.6 shows the flow diagram for synthesis and
includes only the design levels of concern to the synthesis phase. The process

level has been removed from this diagram.
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Figure 4.6- Synthesis— Full Custom Design

Synthesis is basically unidirectional. Design proceeds from the external and
fixed inputs through various intermediate stages, to the circuit and interconnect
levels without revisiting any intermediate stage. However, in a fully custom
design the circuit and interconnect levels directly affect each other. A simple
closed loop is formed by these two levels and is shown in Figure 4.6 by the
bidirectional arrow between them. This makes design more complex than a
completely unidirectional design, but it is still much simpler than the original

problem.
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Standard cell design would eliminate this bidirectional arrow (Figure 4.7).
Size, geometry, and port placement of the circuit blocks are determined by the
standard cells. The interconnect level has little effect on these characteristics.

Thus, for standard cell design, the synthesis phase is purely unidirectional.
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functions

functional

inter-
connect
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available circuits design rules,
size, geometry layers available

port placement

Figure 4.7- Synthesis- Standard Cell Design

Synthesis is commonly described as top down design with technology
considerations. Design flows from the highest point — the architecture and system
specifications external inputs - through the levels, from highest to lowest.

Synthesis is completed when the lowest sublevel — layout — of the circuit and
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interconnect levels have been finished. Technological considerations, in the form
of design rules and ‘available devices and layers, enter the design at the circuit

and interconnect levels.

2.1. Microarchitecture Synthesis

Synthesis starts with a description of the architecture and system
specifications. Such things as the instruction set, trapping and intex:rupt
situations, word size, data types, register organization, addressing modes, I/0
protocols, bus protocols, coprocessor protocols, and timing specifications are
important to the éynthesis phase. Using this information and the available
circuits and interconnect schemes from the preliminary phase, synthesis begins
with microarchitecture design. Microarchitecture design defines the functional
blocks of the processor and cbordinates their operation. Functional blocks may or
may not be the final circuit blocks. The circuit blocks are the actual blocks that
afe realized in the layout. Functional blocks are a different partitioning of these
circuit blocks. One functional block may turn into one or many circuit blocks, or
it may be optimal to combine several functional blocks into a single circuit block.
An example of this are PLAs. A given funétion may correspond to a single
functional block but be implemented with more than one PLA. Each PLA is a
circuit block and the group of PLAs is the functional block. Another example is
an ALU. An ALU combines several arithmetic and logical functions that may

each have been specified by an individual functional block.

The microarchitectﬁre is composed of various types of functional blocks as
needed by the architecture and system specifications. From the instruction set
the operations that the .processor must perform, can be identified. Operation
blocks corresponding to these operations must be included in the

microarchitecture. The register organization will define many storage blocks that
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are necessary. Trapping situations, interrupt detection, various protocols, and
instructions that inspect conditions all must recognize specific situations.
Condition detection blocks are needed for this. Word size determines the size of
some blocks such as register blocks in the datapath. Control blocks are needed to
coordinate the processor’s functioning. These functional blocks are also known as

the processor resources.

The microarchitecture must also coordinate the processor’s operation.. This is
done by scheduling the usage of processor resources or functional blocks. This
includes defining the parallelism in the processor and pipeline operation. Bus
structures and temporary register blocks are also defined as needed, to ensure a
smoothly functioning processor. An inspection of the architecture - -the
instruction set in particular — identifies the operations to be done and the order
that they may be done in, for each instruction. For example a simple register. add
instruction first requires an instruction fetch. The operands are then read, added
" together, and the result is then written. Often there is more than one possible
sequence of events for an instruction. Various operations may be done
simultaneously. For example an instruction that does an add operation and a
condition check on the operands, may do the two operations simultaneously or
sequentially (Figure 4.8). Parallelism is given to a processor by identifying and
" deciding which functions are to be performed simultaneously. Increasing
parallelism decreases the latency for each instruction. However, it also

necessitates more hardware to provide the simultaneous processing capabilities.
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Figure 4.8- Parallelism vs. No Parallelism for an Operand Check

Often many instructions can use resources in the same order. When this is
possible it is not necessary to let one instruction complete before the next one
starts. It is on:ly necessary to let one instruction finish with a given resource
before the next instruction is allowed access to that resource (Figure 4.9). In this
way execution of instructions may be overlapped and resources are more fully
utilized. This is known as pipelining. Pipelining leads to a higher instruction rate
and consequently higher processor throughput. However, it also leads to more
complex bus structures and communications between the blocks in order to handle
‘the increased processing activity. Parallelism and pipelining are two major

concerns of microarchitecture design, for the coordination of resources.
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Figure 4.9- Pipelining

The detailed microarchitecture specifies the inputs, outputs, and timing of all
functional blocks. To do this, key circuits from preliminary circuit design must
be considered. Inputs, outputs, and clocking for some of these blocks will be
determined by the circuits that realize them. One purpose of preliminary design
was to have this information readily available. for detailed microarchitecture
design. Thus, the circuits available from the preliminary phase are fixed inputs to

microarchitecture design during synthesis.

In a similar manner microarchitecture design may be limited by the available
interconnect schemes. For example, the number of buses that can be routed
across a bit slice of the datapath will place a limit on the bus structure. These
schemes from the preliminary phase are another fixed input to microarchitecture

synthesis.

2.2. Functional Block Synthesis

Microarchitecture design specifies the functional blocks during synthesis and
the coordination between these blocks. The outputs of the microarchitecture level
during synthesis, are the desired functions of the blocks. This includes the

operations done within each block and the inputs and outputs of each block.
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Block inputs include the data to be operated on and signals to control the block’s
functioning. Outputs of the blocks are the results and any conditions that are
relevant to other blocks. The desired function outputs of the microarchitecture

level are used as inputs by the functional block design level.

Functional block design is done after the microarchitecture design level has
defined the functional blocks and their coordination. It maps the desired
functions onto circuit blocks. After this mapping is done the desired function is
known for each circuit block. Just as with the functional blocks, the desired
functions include the operations performed and terminals for each circuit block.
These desired functions are outputs of the functional block design level and are
passed onto the circuit design level. The other output of functional block design ’
for synthesis is the netlist. This specifies all connections between the circuit
blocks. It may also specify restrictions on critical nets. The netlist is used as ‘an

input by the interconnect level.

A floorplan for the processor is developed through the functional block .
desién. Once the actu'al circuit blocks and their terminals are known a tentative
_positioning of the blocks on the chip may be proposed. Space for the various
interconnects is also designated on this floorplan. Another useful document from
the functional block design is a block diagram of the chip. This diagram

illustrates the circuit blocks and all major connections.

2.3. Circuit Synthesis

Circuit design is carried out once the desired functions for each circuit block
are known. Typically, the circuit block is first broken into smaller blocks or cells.
Examples of cells are latch cells, register cells, ALU bit slices, drivers, and any
circuitry that is replicated in regular structures such as PLAs and ROMs. If

standard cell design is done, the. layouts for the required cells are then chosen
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from the cell library and assembled into the circuit block. In a fully custom
design the cells are then expressed in greater detail by describing them in terms of
the gates and transistors that compose them. Finally, the physical layout for the
circuit block is achieved by using the design rules, devices available, and layers
available - all inputs to circuit design from the process level. While doing the
circuit block layout, consideration must be given to various outputs of the
interconnect level. The interconnect scheme may desire certain i'anges of sizes
and shapes for the circuit blocks. This is to make routing simpler and have a
minimum of wasted space. An example of this is pitch matching of cells so that
circuit blocks may be placed adjacent to each other. Desired port placement is
another input from the interconnect level. Typically it is desirable for control
lines to enter the cells on a specified side of the cell. Ordering of the ports is also
important when circuit blocks are placed adjacent to each other. The ports of
one block should coﬁnect directly to the ports of the adjacent block with no extra

routing between the blocks.

2.4. Interconnect Synthesis

During synthesis interconnect design consists of connecting all terminals of
the circuit blocks to the appropriate places in the layout. A netlist from
functional block design specifies all connections that must be made. The sizes and
shapes of circuit blocks that must be routed around, are important when doing
routing so that they may be avoided. This may not be all circuit blocks,
especially when two levels of metal or polysilicon are available for routing. A
knowledge of the placement of ports on the circuit blocks is important so that the
proper connections are made. Interconnects are realized on the physical layout in
the interconnect layer§ made availabl;a by the process. The minimum widths and

spacings of the interconnects are determined by the design rules of the process.
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3. Analysis

The third major phase of design is analysis. During analysis iﬁportant
characteristics of the design are evaluated. Three characteristics commonly
evaluated are the speed, power, and area. The goal of the evaluation is twofold.
First, it is important to know where the design stands for any of these
characteristics. Typically, a value or range of values for these characteristics, is
predicted. The second part of the evaluation is more subjective. Attempts are
made to discover the reasons for any less than adequate characteristics and to
pinpoint any bottlenecks. With the results of analysis further synthesis may be

done to improve the design.

As just mentioned, many characteristics may be analyzed; Tradeoffs exist
between the characteristics. . For example, circuits that run faster usually consume

more power.

System specifications dictate the priorities of the various characteristics.
Usually it is harder to meet the requirements for some characteristics than for
others. A separate flow diagram exists for the analysis of each characteristic.
The structures of these flow diagrams are all similar but the quantities involved
differ. Each characteristic is analyzed according to its flow diagram. The results
of all analyses are compared and tradeoffs are made according to priorities and

unmet requirements.

A flow diagram for the analysis of speed is shown in Figure 4.10. All levels of
design are shown here. However, analysis is done only a;t the levels enclosed by
the dashed lines. All process design that was sensitive to the chip designers’
needs, was carried out during the preliminary phase. Figure 4.11 shows only the
levels at which analysis is done. Analysis uses the process parameters as external
inputs. Valugs for the characteristics of interest are derived from these

parameters and the process design.
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Analysis is basically unidirectional also. However, there are two separate
paths, both unidirectional (Figure 4.12). Values at the endpoints of the two paths
are compared to determine if the characteristic meets its requirements. The
exception to purely unidirectional ana;lysis is found between the circuit and
interconnect levels. A simple closed loop exists here, as indicated by the

bidirectional arrow, due to circuit and interconnect loading.
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Figure 4.12- Unidirectional Paths of Speed Analysis

One unidirectional path represents a top down analysis. "For speed, the
desired critical paths are based on the system specifications. They are arrived at
through an analysis of the microarchitecture. From synthesis, microarchitecture
design proposed functional blocks and coordination of the blocks. One aspect of
the coordination is a listing of all activities that must complete during each phase
of the system clock. Analysis of the microarchitecture reveals the activities of
each phase. A length of time is allotted to each phase by the system
specifications. All activities of each phase must complete within the allowed time
period. The critical paths are the activities that take the lopgest to complete. In
Figure 4.12 the desired critical paths outputs of the microarchitecture level are

these longest activities and the times available to them.
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The other unidirectional path is a bottom up analysis that predicts the times
for the critical paths fron; the processing parameters and an analysis of the lower
design levels — circuit, interconnect, and functional block. Internal block delays
are predicted for the circuit blocks using process paramefers. Loading due to the
interconnects affects this delay in a fully custom design. Output buffers of the
block are designed according to the size of the load that must be driven. These
buffers are part of the circuit blocks and the loading that they put on other parts
of the block contributes to the total block delay. The speed of the block may also
be affected by the transition times of input signals to the block. These transition
times are determined by the output buffer of another circuit block, the loading of

that buffer due to the interconnect, and the circuit being driven.

Interblock delays are also predicted during the bottom up an.alysis. These
are the delays of the interconnects. Process parameters such as resistance and
capacitance along With the interconnect dimensions, determine the maximum
possible speed for each interconnect a_nd load that the circuit block must drive.
The speed of the interconnect and therefore the interblock delay is determined by

the interconnect load and the circuit that drives it.

These internal block delays and interblock delays are used in an analysis of
speed at the functional block level. The delay for each critical path can be
predicted. at this level, by adding together the delays for all circuit blocks and
interconnects that compose the critical path. The predicted critical paths from
this bottom up analysis are then compared to the desired critical paths of the top
down analysis. Individual delays of the critical paths are examined to reveal the

bottlenecks if a faster processor than what has been predicted, is desired.

As previously mentioned, this same type of analysis is carried out for all
characteristics of interest. Figures 4.13 and 4.14 show flow diagrams for power

and area analysis, respectively. Compromises between all characteristics must be
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arrived at so that all system specifications are satisfied according to their

priorities.
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Figure 4.13- Analysis- Power
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4. Optimization

Optimization consists of taking a proposed solution to a design ‘problem and
improving one or more of its characteristics. In order to optimize a design, a
proposed solution must first exist. Some amount of synthesis must be compieted.
All or part of the proposed solution is then analyzed in terms of any
characteristics of interest. This analysis shows where the design stands for each of
the characteristics and reveals areas of improvement. With this information
further synthesis can be done to improve upon l’;he original design. Another round

of analysis is done after this synthesis. This may be followed by even more
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synthesis if the results were not satisfactory. This series of analysis and synthesis
phases is done until the design is considered satisfactory.

Each optimization step spans three phases (Figure 4.15). First an
improvement is suggested through analysis. This improvement is then realized
with a synthesis phase. The optimization is then completed with an analysis

phase to evaluate the change.

Analysis to
suggest
improvement

il

Synthesis
of
improvement

L

Analysis to
evaluate
improvement

Figure 4.15- Optimization

Each analysis phase serves two purposes. First, it checks the results of the
previous synthesis phase. This includes verification for proper functioning and
evaluation of the characteristics of interest. Secondly, it reveals bottlenecks to be
eliminated and improvements that may be done during the subsequent synthesis
phase. Consequently, each analysis may be part of two optimization steps and

optimization steps may overlap (Figure 4.16).
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Figure 4.16- Sequential Optimizations

5. Methodology

Many design methodologies that are based on various sets of premises and
priorities, exist for VLSI processors. Some treat the full design problem and
others are restricted to sections of it. They all have some goals in common

though. A correct design at a minimal expense are goals of all methodologies. In
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terms of the four key issues of VLSI design (Chapter 1), this goal addresses the
“issues of correctness and time investment. However, after this the goals and
premises of different methodologies diverge. The design methodology presented

here is based on the following four premises:

1. Include all three design phases — preliminary, synthesis, and analysis.
2. Complete low level analysis is most time consuming.
3. Redo as little as possible — catch major mistakes early.

4. Accuracy of analysis depends on the accuracy of input data.

The first premise is that all three design phases should be included in the
methodology. Each design phase considers some but not all of the
interrelationships between the design levels. As discussed in Chapter 3, the many
level interrelationships and tradeoffs of a VLSI design problem are distributed
among the three phases — preliminary, synthesis, and analysis — so that the
problem is more manageable. All three phases must be considered at least once
during design so that no level interrelationships are overlooked. The synthesis
and analysis phases are usually considered more th‘an once so that optimal

tradeoffs can be made. In this way the key issue of optimization is addressed.

The lower levels of a design contain more detail. The higher levels -
microarchitecture and functional block — can be represented by things such as
block diagrams. At the lower levels designs are represented by transistor level
schematics or the physical layout. More detail implies that there is more data to
be used in a complete analysis and therefore analysis will be more time
consuming. For example speed simulation of the critical paths of a processor *
takes much longer using a low level simulator such as SPICE, than it would take
using a simulator that assumes speeds for the functional blocks and then

calculates critical paths from a block diagram.
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VLSI processor design is inherently iterative. To get an optimal design,
portions of a design may have to be done more than once. Therefore, some
redesign time must be allotted. However, it is desirable to keep this to a
minimum without sacrificing design quality. Therefore, mistakes that affect large
- portions of the design should be caught before large amounts of low level design
are completed. Low level design, like low level analysis, involves much detail and
can therefore be time consuming. If mistakes are caught early less time ha.g been
invested in the poor design and less effort is wasted in correcting the problem,

than if they were caught late

The last premise is that the accuracy of predictions depends on the accuracy
of the input data. If input data for analysis at any level is inaccurate, it can
hardly be expected that the results will be reliable. This premise assumes that the
method of analysis is dependable. If the method has limitations also, the analysis
will be even less .reliable. The implication of this is that the designers should
recognize the accuracy of input data and analysis methods, and emphasize the
results accordingly. For example, if it is known that the data or method gives
results with a.random 20% error, it is probably not'advisable to make changes

that would improve a section of the design by 10%.

The premise that major mistakes should be .caught early along with the top
down nature of synthesis suggests that portions of the analysis phase should be
intermingled with portions of .the synthesis phase. Synthesis begins at the highest
level — microarchitecture. Analysis of proposed microarchitectures should be done
before much design at lower levels is completed. In this way detailed design of
poor solutions is avoided. However, without a complete low level design,
assumptions must be made concerning the inputs when doing analysis at high
levels. This means that the analysis will be less accurate and should be used

accordingly -when changing the design — premise 4. In this way it is possible to
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catch major mistakes early but difficult to foresee the minor problems. But this is
acceptable since the minor problems usually require less redesign than the major

€errors.

This top down order of synthesis and analysis means that higher design levels
will be analyzed more times than the lower levels. As design progresses towards
the lower levels, the inputs to higher level analysis can become increasingly
accurate. High level analysis should be redone as inputs become more reliable to
check that the high level design is still acceptable. Thus, high level analysis may
be redone many times and the more time consuming low level analysis will be

redone fewer times. This is desirable according to premise 2.

This also means that it may never be necessary to do a complete low level
analysis of the entire processor. If analysis at each level includes all inputs as
shown in the analysis flow diagrams, and yields all flow diagram outputs for that
level, the complete analysis phase can be broken into analysis at each level.
Figure 4.17 shows the individual steps that speed analysis may be broken‘ into.
The ordering of the steps is suggested by the unidireptional nature of analysis. As
previously ' discussed, analysis contains two unidﬁectional paths. Both may be
analyzed simultaneously and then the results are compared. The path involving
the circuit, interconnect, and functional blocl; levels is basically bottom up. This
determines the aﬁalysis order for these steps, with the lower levels being analyzed
first. The top down path: only involves one level - the microarchitecture. In this

way the complete low level analysis may possibly be avoided.
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A methodology based on these premises is shown pictorially in the flow chart
of Figure 4.18. Design is started with the preliminary phase as described earlier
in this chapter. During the preliminary phase circuit and interconnect options are
explored. Promising schemes for these two levels are identified so that

microarchitecture design may be based on these possibilities.
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Following the preliminary phase are alternating synthesis and analysis
phases. Synthesis proceeds in a top down manner. Following synthesis at any
given level is analysis and optimization of that level alone. When results at the
single level are acceptable analysis and optimization move upwards one level at a
time until all levels synthesized so far have been included. When the results of
this analysis are acceptable, synthesis moves down to the next level and the

process repeats itself.

Synthesis begins at the microarchitecture level. Microarchitecture analysis
for all characteristics of interest follows synthesis at this level. Optimization is

done until analysis of all characteristics is acceptable.

Synthesis then moves down to the next level - functional block. Again
analysis and optimization are done at the functional block level for all
characteristics of interest. When the results are satisfactory analysis is doné
including the microarchitecture level also. This consists of comparing the desired
value for a given characteristic from microarchitecture analysis with the predicted
value from functional block analysis. Design moves back to microarchitecture

synthésis if the results of this comparison are not acceptable.

When the microarchitecture and functional block design are acceptable,
synthesis moves to the circuit and interconnect levels. Again analysis and
optimization are done within these levels until an acceptable solution is reached
for all characteristics. Analysis then moves up a level to include the functional

block level and finally the comparison with the microarchitecture level.

Each step in the flowchart has a corresponding flow diagram (Figure 4.19).
Loops in the flow diagrams for each of the three phases are included in a single
step. Loops signify iteration. It was possible to split many loops in the overall
flow diagram between the natural phases. However, it is not obvious how to split

up the remaining loops, so each loop is always included within one step. All
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characteristics of interest are included within each analysis step. By considering
all characteristics simultaneously the tradeoffs for optimality and the system

priorities are emphasized.
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Chapter 5
External Inputs
SOAR Case Study

External inputs are factors determined outside the realm of processor design,
that must be considered when designing a VLSI processor. Chip design has little
influence on these inputs, yet must meet their requirements and restrictions. For
a fully custom VLSI processor, external inputs to the design are the processor
architecture, system specifications, and available processing technology. SOAR
was somewhat restricted from this. Fabrication was to be done by MOSIS. This
meant that SOAR had to use whatever processes were available to MOSIS.
Design of SOAR had no influence on the process. Thus, the outputs of the
process level — parameters, design rules, available devices, and layers - all
became external inputs. Processor architecture and system speci fications were

the other external inputs to be considered.

1. Architecture

As previously mentioned, the architecture of a processor includes such things
as data types, word size, addressing modes, register organization, the instruction
set, and internally generated exceptions and traps. SOAR'’s goal was the efficient
execution of Smalltalk, but without ignoring more general purpose languages such
as C [Unga84]. The architecture of SOAR is a' RISC architecture with internal

op.codes and special features for the efficient execution of Smalltalk. "

1.1. Data Types

Data can be either tagged or untagged (Figure 5.1) [Blau83b], [Samp85).
Tagged data is useful for a Smalltalk processor while untagged data is best for.a

C processor.
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Figure 5.1- SOAR Data Types

Smalltalk is an object oriented language. The two main tagged dé,ta types
are small integer objects and pointers to objects (Figure 5.1). Tag bits distinguish
these data types (Table 5.1).

objects tag
small integers 0
— —

object oriented pointers tag
assistant object ' 1000
associate object 1001
full object 1010
emeritus object 1011
context object 1111

Table 5.1- Tagged Data Types
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Small integers are one type of tagged data. They have one tag bit and may

31, 531,

range from -2°" to 2

The other types of tagged data are the pointers. Pointers are used to
reference objects. Smalltalk has objects of several types and ages. These types
and ages are reflected in the pointers to the objects. Pointer types are
distinguished by their tags (Table 5.1). Assistant, associate, full, and emeritus
objects are objects of various ages. These ages are significant to the storage
reclamation inherent in Smalltalk [Unga84]. The last type of pointer is the
pointer to a context object. Context objects are treated differently from other

dbjects and this is the reason for their distinct pointer type.

Untagged data can also be of two main types (Figure 5.2). The first type is
the integer. These can have values from -231 to 231-1. Addresses are the second
major type. Potentially a 32 bit address space could be supported by untagged
addresses. However, the system only calls for a 28 bit address space [Blau83a],
[Blom83], [Brow85]. Thus, the extra four bits are meaningless for untagged

addresses.

1.2. Word Size

All words on SOAR are 32 bits (Figure 5.2) [Samp85]. SOAR references 28
bits of virtual address space. Thus, only 28 bits of a 32 bit address word actually
address memory. The other four bits are meaningless for addresses of
instructions. - Tagged data addresses are pointers and the extra four bits hold the
tag that indicates the type of object being pointed to [Blaug3b). During untagged

operation the extra four data address bits are meaningless.
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) Address
bisl = Instruction Address
. Tag Address
bi ﬁDa a Address- tagged mode pointer
b L Address
it3 Data Address- untagged mode
10 Data :
bit3 Data- tagged mode, small integer ‘
Data
bi G

Data- untagged mode, integer

Figure 5.2- SOAR Words

Data words are all 32 bits also. Tagged data contains 31 bits of data and one
tag bit indicating it is a small integer object. All 32 bits are data bits when

. operating in untagged mode.

1.3. Addressing Modes

SOAR is a register based processor. All operations use either register or
immediate operands. Memory is accessed through loads and stores only. SOAR
supporté three types of addressing modes — absolute, relative, and indexed (Table
5.2). The address for absolute loads and stores is simply an immediate constant
supplied by the instruction. Relative addresses are the value of the program
counter offset by a constant. Indexed loads and stores use a value stored in a
register and an offset to calculate the address.- All offsets for stores originate in an

immediate constant. For loads the offset may come from an immediate constant
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or from a register.

Address mode Address calculation

Absolute 0 + offset
Relative program counter + offset

Indexed register + offset

Table 5.2- Addressing Modes

1.4. Register Organization

Any process running on SOAR has direct access to 32 registers, r0 through
r31 (Table 5.3) [Samp85]. These 32 registers are divided into four groups of eight
registers each, according to their function. These four groups are the globals,
special registers, highs, and lows. The globals and specials are common to all
subroutines. In other words, physically they are the same registers, independent
of the invoked subroutine. The highs and lows are local registers for designated
subroutines. Thus, the register that is r7 for one subroutine is not necessarily the

same register physically, as r7 of another subroutine.



Register Type Register Contents
_— o

r3l Scratch ’
r30 Scratch
r29 Scratch

Global r2s Scratch
r27 Scratch
r26 Scratch
r25 Scratch
r24 Scratch
r23 PSW
r22 CWP
r2l TB

Special r20 SWP
rl9 SHA
rl8 SHB
r17 PC
rl6 - RZERO
rl5 return address for this subroutine
rl4 return value
rl3 local

High rl2 local
rll local
rl0 local
r9 local
r8 local
r7 return address of traps, called subroutine
r6
¢
Low r4

r3
r2
rl
r0

Table 5.3- SOAR Registers

104



105

A key feature of the SOAR architecture is the register window scheme
(Figure 5.3) [Kate83]. Local memory is split into eight banks of registers, each
containing eight registers [Blak83]. At any time, the current process has access to
two of these banks. One bank is designated as the high bank and gets accessed
whenever 8 to r15 is referenced. The other bank is the low bank. Reference to
10 through r7 causes the low bank to be accessed. Together these two banks
make up the register window for the current subroutine. When 2 call is executed,
the current lows become the highs for the called subroutine and another bank
becomes the‘ pew lows. In this way a new window is formed for the called routine.
When doing a return the current highs become the future lows. The future highs
are the highs that belong with these future lows. Thus, a return causes a
previously defined window to become visible again. The sharing of highs and lows

between subroutines leads to the term overlapped register windows .
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Procedure A calls Procedure B
Procedure B calls Procedure C

T

B
rlo
>» b
i3
ri2
Lrll
» I
T C
I 7 T
o r
o T
1 J r
3 . il
2 . r
rl
—1
r
b
ro
r4
[3
5
rl
o

Figure 5.3- Register Window Scheme

A call occurring when all windows have been filled causes the saving of the-
oldest bank in memory. The area where it is saved is determined by two special
registers, the saved window pointer (SWP) and current window pointer (CWP) as
shown in Figure 5.4. Thus, every local register in every window has a
corresponding memory address. Local registers from previous subroutines that are
inaccessible by referencing r0 to r15, can be accessed by a load or store using their

memory address.
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window
pumber
CWP

ister
SWP<31:7> e ber

rl..]

0
bi 70643 2 U

Figure 5.4 Memory Address of a Saved Register

The global registers, r24 to r31, are used for data storage. Their contents
only affect the processor as operands. They can be used to hold such things as

temporary results and global data, common to all subroutines.

The special registers, r16 through r23, all have functions other than just
serﬁng as operands. They are not for data storage, but determine the processor’s
functioning as described by Table 5.4. Processor state can be externally

controlled by storing to these registers or examined by reading their contents.
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Register - Name Function

r23 PSW process status word, shadow copy of destination, opcode
r22 CwpP current window pointer- points to one of eight windows
r21 TB trap base register- used when forming trap vectors

r20 SWP saved window pointer- points to last window saved

rl9 SHA shadow copy of A input to ALU, byte inserter/extractor
rl8 SHB shadow copy of B input to ALU, byte inserter/extractor
rl7 PC program counter

rl6 RZERO always zero

Table 5.4- Special Registers

'1.5. Instruction Set

SOAR is based on a RISC architecture [Unga84]. It supports fewer types of
instructions than _would be found in a complex instruction set. Table 5.5
summarizes the instruction set [Samp85]. With a few exceptions an instruction
may be started every clock cycle. In this way each instruction is similar to a

microinstruction in a microcoded machine.
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the efficient execution of Smalltalk. The % in Table 5.5 indicates untagged
operation. [%) indicates both modes of operation are possible. Instructions only

operating in tagged mode are preceded by 0-

Jumps and calls are distinguished from other instructions by bit 30 of the
. instruction (Figure 5.5). Bit 28 then further distinguishes jumps from calls. The
remaining 28 bits of a jump or call instruction contain the absolute address of the
target. This address is incremented and loaded into the program counter. In
addition to this calls cause the register window to change, by decrementing the

CWP, and the return address to be saved in the future r15 (current r7).

tag
Tj mp /call

0|0 target address- 28 bits
bi dg Jumps and Calls
tag _
0|1] | opcode ! C S1 |I} S2 C
bi 0 4928 p 11 7

Stores
tzig

01 opcode! D S1 1_52_(|;
bit3 59 II 76

All Other Instructions

Figure 5.5- Instruction Formats

The remaining 29 bits of instructions other than jumps and calls, are split
into fields as shown in Table 5.6 and Figure 5.5. The locations of these fields are
the same for all types of instructions except stores (Figure 5.5). The operands are
specified by the S1, S2, and C fields. The S1 operand is always found in a

register. The second operand may be a register operand, S2, or a sign extended
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constant, C, as indicated by the immediate bit. Stores require all three operands-
S1, S2, and C. The D field specifies the destination register of the result. The
opcode field indicates what operation is to be performed on the operancis. When
sign extension is performed on the immediate constant the four most significant
bits become the tag of the constant and the fifth most significant bit is the sign bit
that is duplicated (Figure 5.6).

C<11:8> CLT> C<6:05
bi 2( {0

Figure 5.6- Sign Extension of the Inmediate Field

Field No. of bits Specifies
Opcode 6 operation
D 5 destination register
S1 5 first operand register
I 1 immediate or register for the sécond operand
S2 5 second operand register
C 12 second operand immediate constant

Table 5.6- Instruction Fields

There are eight types of returns as shown in Table 5.5. The eight types of
returns are formed by enabling any combination of three mechanisms- CWP
increment, interrupt enabling, and register nilling- upon a return. When a call is

performed the CWP is always decremented to attain a mew register window.
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Incrementing the CWP on a return will recover the old window, the window of
the calling routine. Hardware int.errupts may be optionally enabled upon a return
if they were previously disabled. Registers r0 through r5 of the new window may
be optionally set to the nil value, B0000000, upon a return- register nilling.
Registers r6 and r7 contain the return value and saved address, respectively, and
therefore can not be nilled. The return address is calculated by adding the two
operands and placing the result in the program counter for all types of returns.
Typically, the saved address- r7- is used for this calculation. The destination
field is irrelevant for returns (but must be zero due to idiosyncracies in the

microarchitecture).

Skip and trap instructions compare the two operands and then take a skip or
trap if the result of the comparison is true. Skips and traps have no destination
register so the destination field is used to specify the type of comparison to be
done (Table 5.7). The skip instruction causes the instruction immediately
following the skip to be skipped if the comparison is true. The trap instructions
cause execution to jump to an address specified by the trap vector if the condition
is true. There are seven trap instructions, each corresponding to a different trap
vector. Other than this difference all seven types of trap instructions have the

same function.
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Mnemonic D field (octal) | Condition
EQ, NE 04, 05 equal, not equal
LT, GE ' 02, 03 less than, greater than or equal
|LE, GT 06, 07 less than or equal, greater than
LTU, GEU 12,13 unsigned less than, greater than or equal
LEU, GTU 16, 17 unsigned less than or equal, greater than
NEVER, ALWAYS 00, 01 never, always
INo, OUTO | 12,13 - 0 < 1st operand < 2nd operand .
IN1, OUT1 22, 23 1 < 1st operand < 2nd operand

‘Table 5.7- Skip and Trap Instruction Condition Codes

All ALU operations, shift operations, and byte operations use the two
operands, perform the designated operation on them, and store the result in the
register specified by the destination field. Arithmetic operations are ADD and
SUBTRACT. Logical operations supported by SOAR are AND, OR, and XOR.
SOAR performs three types of onme bit shifts - left arithmetic shifts, right
arithmetic shifts, and right logical shifts. Byte operations performed by SOAR
are EXTRACT and INSERT (Figure 5.7). Extract puts a specified byte of the
first operand into the least significant byte of the result. All other bytes of the
result are zeroed. Insert takes the least significant byte of the first operand and
puts it into a specified byte of the result, zeroing all other bytes of the result. For
both insert and extract the specified byte is determined by the two least

significant bits of the second operand.
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Extract

second first
operand operand

-y
2
e

byte
3
byte
2 MUX

of -§ of §F

L |
D
[ ToTol<e]

byte
1

byte
0

2 LSB

|

Insert

first  second -

operand operand result
byte byte
3 3
byte byte
2 L decoder 2
byte byte
1 1
b L |2 LsB e

Figure 5.7- Byte Operations

The load and loade instructions add the two operands to form an address for
a mémory fetch. The word fetched from memory is stored in the register specified
by the destination field. Load multiple performs a series of up to eight loads.
Destination registers for these loads are r0 through rn where n is specified by the
destination field and must be less than eight. Addresses for these loads are evenly
spaced in memory. This spacing is specified by the second operand. Load

multiple can be described algorithmically:
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X ¢— 1st operand

y «—2nd operand

z «—destination field
Repeat

X €—X-y

rz] «—M[x]
z¢—2-1

until z<0

Stores use the first operand and immediate constant, C, to form an address.
The second operand is the data to be stored. Store multiple is the store

counterpart to load multiple. Algorithmically it can be described:

X «— 1st operand

y «—immediate constant
z «—2nd operand field
Repeat

X €—X-y

M[x] «—r[z]

z ¢—2-1

until z<0

1.8. Internal Exceptions and Traps

A variety of situations can arise in SOAR that must be handled immediately.
When such a trap situation arises, execution must switch to an appropriate
software routine, trap handler, in order to handle the problem [Blau83bj,
[Unga84], [Samp85).

As previously mentioned traps ca;l be caused by trap instructions. Illegal
opcodes are recognized and cause traps to the appropriate handlers. This
prevents hardware from trying to make sense of an illegal opcode and permits the
instruction set to be extended by having the appropriate code sequence for a nev;r

opcode, in a trap handler.
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Due to the register organization, registers must be written to memory if a call
occurs and all register windows are filled. This is accomplished by a  window
overflow 'trap. As returns occur, old register windows are recovered. The oldest
windows may have been written to memory and therefore must be fetched from

memory when a return tries to recover them. A window underflow trap does this.

Instructions executing in tagged mode examine the operénds’ tags and cause
traps if the tags are not correct. These traps were designed specifically for the
efficient execution of Smalltalk. Tag traps can occur for loads, stores, arithmetic,
loéical, and shift operations according to Tables 5.8 and 5.9. Immediate operands
are always assumed to be integers. Tagged ALU and shift instructions can only

operate on two integers (Table 5.8).

1st operand tag | 2nd operand tag | 2nd operand result
intéger integer immediate po trap
integer integer register no trap
integer pointer immediate no trap
integer pointer register TAG TRAP
pointer integer immediate | TAG TRAP
pointer integer register TAG TRAP
pointer pointer immediate | TAG TRAP
pointer pointer register TAG TRAP

Table 5.8- ALU and Byte Operation Tag Traps

-

Tagged loads and stores need one of the operands used in the address calculation,

to be a pointer and the other address calculation operand to be an integer (Table
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5.9).

1st operand tag | 2nd operand tag | 2nd operand result
integer integer immediate | TAG TRAP
integer integer register TAG TRAP
integer pointer immediate | TAG TRAP
integer pointer register no trap
pointer : iﬁteger immediate no trap
pointer integer register no trap
pointer pointer immediate no trap
pointer pointer register TAG TRAP

Table 5.9- Load and Store Operation Tag Traps

Stores and returns can cause generation scavenging traps. Smalltalk uses
these to reclaim storage space. Tagged returns require the first operand to be a
pointer. Otherwise a trap occurs. Stores cause generation scavenging traps if the
data being stored is a pointer to a context object or is a pointer to a younger

object than the object where it is being stored.

The last type of trap designed specifically for Smalltalk is the software
interrupt trap. A bit in the process status word indicates whether or not software
interrupts may be taken. If a tagged call or jump occurs while software

interrupts are enabled then a software interrupt trap occurs.

External situations may also cause traps. Data page faults, instruction page
faults, and I/O interrupts are detected by SOAR and result in traps. All traps,

both internal and external are prioritized. When two or more trap situations arise
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simultaneously, the trap with the highest priority is handled first. If other traps
still exist upon the return from this highest priority handler, they are then
handled according to their priorities. Priorities for traps are shown in Table 5.10.

Traps with the lowest reason numbers have the highest priorities.

Trap Reason Number  Priority

Illegal opcode Highest
Tag trap |
Software interrupt
Window overflow
Window underflow
Data page fault
Trap instruction

Generation scavenging

Instruction page fault

© 00 NN OO M e W N = O

I/O request Lowest

Table 5.10- Trap Priorities

When a trap occurs SOAR automatically saves relevant state information.
The operands being operated on, when the trap situation arises, are saved in
shadow registers A and B, r19 and rl8 respectively. Tﬁe opcode being executed
and the intended destination register are saved in the process status word. The
value of the program counter is saved in r7. Hai'dware interrupts are

automatically disabled when a trap occurs.
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Program execution shifts to the beginning of a trap handler after a trap
situation arises. ‘The addreéss of the start of the appropriate trap handler is
formed by the concatenation of the trap base register (r21), the reason number,

and the executing opcbde (Figure 5.8).

trap base register reason| opcode
bit. 109 153 U

Figure 5.8- Trap Handler Address

2. System Specifications

One of the goals of the Smalltalk project was to realize a working Smalltalk
system without having to design a complete computer system. This is
accomplished by using a SUN workstation to house a processor board built
around the SOAR chip [Blom83], [Brow85]. ;Pwo separate processor boards were
built. One board, the cache board, includes an 8Kbyte virtual address cache. The
other board, the Orion 5oard, directly accesses SUN memory. The SUN hardware
is used to service all 1/O devices — the disk controller, graphics interface,
keyboard input, and mouse ‘tracking. Extra memory boards are added to the
SUN. The SUN’s MC68010 processor and SOAR interrupt and communicate with
each other via the custom designed SOAR processor boards. Thus, the hardware
on these processor boards and the memory that SOAR has direct access to

determined the system specifications for the SOAR processor design.
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2.1. Memory Requirements

Performaﬁce studies indicated that the SOAR instruction set would require a
virtual memory size of 20 to 40Mbytes [Blau83a]. A 64Mbyte virtual address
space was chosen,. requiring word addresses to be 24 bits wide. The architecture
allows for expansion from this by providing 28 address bits. Physical memory in
this system is 8Mbytes. On the Orion board a SOAR memory access requires
translation of the virtual address using a single level page map, and then physical
memory access through the Multibus [Blom83]. The cache board directly accesses
the on board cache with the virtual address [Brow85]. A hit rate of greater than
80% is expected. It was predicted that 400ns. would be needed for either of these
memory accesses. Thus, the system specification of a 400ns memory cycle was one

of the external inputs to processor design.

Signals needed by the memory circuitry of the boards, include the 28 bit
virtual address and a RD/WR* signal. RD/WR* indicates whether a read or
write is being done at the given address. It is used to determine the board’s state
and to generate a write signal for memory. It must be valid early in the memory
cycle and remain valid until the end of the cycle. Since much of the board design
was done during chip design, it was not known exactly how early in the cycle this
signal was needed. Thus, the external requirement for this signal was to have it

available as soon as possible and hold it throughout the cycle.

2.2. Clocking

For board design simplicity, SOAR clock cycles and memory cycles are
synchronous. One SOAR memory access can be done during each SOAR clock
cycle. Therefore, the desired SOAR clock cycle was 400ns.

The basic SOAR cycle is split into underlapping clock phases. Hardware on
both the processor and boards is clocked by these phases. A three phase clock
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cycle was chosen in contrast to the four phase clock of RISC II [Kate83]. This

was an attempt to avoid extra clocking overhead.

2.3. External Interrupts and Wait

Both boards signal interrupts to SOAR whenever a page fault or I/O request
occurs [Blom83), [Brow85]. SOAR handles these interrupts using the same
trapping mechanism as is used to handle internal trapping situations [Samp85].
SOAR distinguishes between data page faults and instruction page faults. These
three external interrupts are assigned priorities and cause jumps to trap handlers,
just as the internal traps do. Page faults and 1/0O requests are detected by the
boards and the appropriate signal is asserted by the end of clock phase 2.

A variety of situations may arise that force SOAR to be put into a WAIT
“ state. Cache misses, I/O requests, and direct accesses to main memory (the cache
board only) all need WAIT states. During this WAIT the internal state of SOAR
must not change. The boards supply a WAIT signal to S.OAR that indicates a
WAIT is necessary. The WAIT sigpal is asserted continuously during the WAIT.
- The boards detect a need for WAIT and the WAIT signal is asserted by the end
of phase 2.

The Orion board requires SOAR to acknowledge a WAIT by asserting a wait
acknowledge signal. Wait acknowledge is asserted when SOAR enters the wait

state and remains asserted for the duration of the wait.

2.4. Fast Shuffle Control

In order for calls and jumps to be executed with minimal delay, the full
absolute address of the target is one field of the call or jump instruction (Figure 5
[Samp85).5). Thus, the target address is immediately available to address memory

without any computation. In theory, the processor could immediately load the
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program counter with this address whenever a call or jump was detected. In
practice however, the delay due to loading the program counter and driving the
address pins would be too long. Therefore, a latch on the board- TARGET
ADDRESS LATCH- captures the field that would contain the target address, on
every incoming instruction— I/D asserted (Figure 5.9). Whenever a jump or call is
detected on the processor- FSHCNTL asserted- this address is used to access
memory, instead of the addresses coming from SOAR. This mechanism is known

as a Fast Shuffle mechanism.

I/ D ' load
TARGET
SOAR ADDRESS LATCH | MEMORY
FSHCNTL output enable
N L
address ‘) 4)

Figure 5.9- Fast Shuffle Mechanism

In order for this Fast Shuffle mechanism to work, SOAR must supply the
board with two signals. The first signal is the I/D signal. 1/D indicates whether
the data coming into SOAR is an instruction or data. It is used to enable loading
of the TARGET ADDRESS LATCH on the board. The TARGET ADDRESS
LATCH must only be loaded on incoming instructions. Loading of this latch
occurs in phase 3. Therefore, I/D must be valid by phase 3.
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The second signal needed is FSHCNTL. This signal indicates that the off
chip TARGET ADDRESS LATCH is to be used to access memory. The output
of the TARGET ADDRESS LATCH is enabled according to this signal. This
signal should be valid as early as possible in the SOAR cycle because a memory

access takes the entire cycle.

2.5. Reset

Both boards have the ability to reset SOAR by using the RESET input signal
"to SOAR [Blom83], [Brow85}, [Samp85]. In this way SOAR is initialized to a
known state. Resetting SOAR causes execution to begin at the designated reset
address, FFFFFFO, and interrupts to be disabled. SOAR executes NOPs during

reset.

2.6. Loading Characteristics

The two boards were designed using Schottky and standard TTL parts.
Therefore, all outputs of SOAR are required to be able to drive at least one
Schottky TTL load. This means that output drivers must be able to source 50pA
in the high state and sink 2mA in the low state. The output high and low levels
must also correspond to TTL levels — greater than 2.7volts and less than .5volts

respectively.

Output drivers are loaded down by package capacitances. They must drive
the pin on the SOAR package, one other TTL package, and any board routing
between the two packages at the required speed. This capacitance was assumed

to be 20pF for simulations.
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2.7. Size And Power

The size of the chip was restricted by processing equipment. The largest die
size that MOSIS can handle is 7.8mm by approximately 10.5mm. If this
restriction did not exist, the size would have been limited by the package cavity.

SOAR fits into an 84 pin grid array package.

Another important restriction is the maximum power dissipation allowed.
Excessive power dissipation can lead to device failure or can necessitate special
cooling systems. The package rating of the 84 pin grid array limited the power

dissipation to 2.5 watts.

3. Process

Process design provides the actual physical structures and their electrical
characteristics, from which the processor will be made. It is at this level that
much of the groundwork is laid for the final speed, area, and power of the
processor. From the start it was known that SOAR would be fabricated through
MOSIS, a DARPA sponsored fabrication service for universities. It solicits
companies that are interested in fabricating university chips and characterizes
their processes. This process data along with a schedhle of process starts is
available to universities. In order to have a chip fabricated, the project layout in
CIF format, is sent to MOSIS along with required information about it. MOSIS
then submits it to an appropriate company for fabrication. Therefore, in this
situation all the outputs of the process design level — devices and layers available,

parameters, and design rules - become external inputs for processor design.

MOSIS presently supports a variety of technologies - 4 micron NMOS, 3
micron NMOS, and 3 micron CMOS - with plans for smaller geometry CMOS
processes in the future. Several suppliers service MOSIS for any omne of these

technologies. All lines target their parameters for similar values. Available from
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MOSIS are target parameters for their technologies. MOSIS also supplies actual
parameters for completed runs. Process parameter information for the SOAR
design was taken from measurements of wafers from previous runs and target
parameters. The measured parameters were more conservative and therefore
were used for most simulations. Some simulations were done with the target
parameters and then compared with the simulations using the measured
parameters. A factor of slightly more than two was observed in the speed

simulations.

3.1. Devices and Device Parameters

SOAR was designed for MOSIS’ 4 micron NMOS process. Available active
. devices in this technology are NMOS enhancement and depletion transistors.
Measured threshold voltages for these devices were Bvolts and -2.5volts
respectively. Tal;les 5.11 and 5.12 summarizes the SPICE level 2 model

parameters for these devices.



Parameter

VTO
GAMMA
TOX

KP

vo

LD

CJ
CISW

UCRIT

W

|LAMBDA

Description

Thr%hold'voltage with zero body bias

Body effect

Gate oxide thickness

Transconductance- low field

Mobility- low field

Lateral diffusion

Junction area capacitance- zero bias

Junction sidewall capacitance- zero bias
Channel length modulation

Maximum electron velocity to degrade mobility

Fitting parameter for mobility degradation

Fitting parameter for mobility degradation

Table 5.11- Device Parameters

126
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Parameter Enhancement Depletion Units
Measured | Target | Measured | Target

VTO 6 8 -2.5 26 |V

GAMMA | .40 .65 51 56 NV

TOX 850 850 | A

KP 17.2 34 18 35 pA/V2

Uo 350 366 em?/Vs

LD 5 5 7]

cJ 1.3x10°8 1.6x10° F/cm?
"|cisw 3.5x10°10 3.5x10°10 F/m

LAMBDA | .01 015 \a

VMAX | 4x10* ax10% m/s

UEXP .23

UCRIT | 2.6x10° V/em

Table 5.12- 4micron NMOS parameters

The speed difference between simulations done with target and measured
parameters is due primarily to the discrepancies of the transconductance

parameters, KPs.

Available passive devices include resistors and capacitors. Except for one
type of capacitor, these devices are all parasitics and formed by a single mask
layer. These parasitics are considered in the next section since only one mask
layer is needed to form them. The exception to this is a capacitor formed by the
implant, active area, and polysilicon layers (Figure 5.10). The polysilicon layer is
the positive plate of the capacitor and the implanted area is the negative plate.

The implanted active area is the same structure as the channel of a depletion
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‘transistor. The polysilicon layer acts the same way as the gate of the depletion
transistor. Therefore, as long as the polysilicon layer is more positive than the
implant area, the implant area or negative plate will be conductive, just as a
depletion transistor’s channel is conductive when its gate is more positive than its
source. The capacitance of this device is determined by the gate oxide thickness

and is .41/,

v

+ -

A-+

Figure 5.10- NMOS Capacitor Device

3.2. Layers and Layer Pargmeters |

Mask layers of the MOSIS 4 micron N'MOS process are summarized in Table
5.13. Two contact layers are available. The standard contact layer connects
metal and diffusion or polysilicon. Buried contacts are also available to connect
polysilicon directly to diffusion. Three interconnect layefs are available — metal,

diffusion, and polysilicon.
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Layer Resistance Capacitance
Active/Diffusion 2000 ._l6fl’/;z2 area
| .35fT/p perimeter

Implant

Burie(i Contact

Polysilicon 50043 ' .415/;12 gate
068/p2 field

Contact A

Metal 030 .05[1'/;12

Overglass

Table 5.13- 4micron NMOS Layers

3.3. Design Rules

Design rules for the MOSIS 4 micron NMOS process are lambda based, Mead
Conway style design rules with lambda equal to two microns [Mead80]. For a
complete description of these design .rules see Appendix A. Principal single layer
rules are summarized in Table 5.14. Minimum transistor dimensions are 4

microns for both the length and width.
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Layer Minimum Width Minimum Spacing
Active/Diffusion 2 3\
quysilicon 2\ 2\

Metal 3\ 3\
Contact 2Xx2\

Table 5.14- Principal Single Layer Design Rules
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Chapter 6

Preliminary Design

SOAR Case Study
Processor .design is started with the preliminary phase after specifying the
problem and the external inputs. As previously described, possible circuit and
interconnect schemes are explored during this phase. Figure 6.1 shows the portion
of the methodology that corresponds to the preliminary phase. According to the
proposed methodology the two sides of the preliminary phase flow diagram are
first considered separately during this phase. The flow diagrams for this are
shown in Figures 4.19a and 4.19b for a full custom chip. SOAR was somewhat
restricted from this. As previously discussed, the process was not open to
modifications by the chip designers. Therefore, the process design level does not
exist on the SOAR flow diagrams. Outputs of the process level are external
inputs as outlined in the previous section of this case study. Figures 6.2a and 6.2b
show the flow diagrams for the first part of the preliminary phase of the SOAR
design. As previously discussed and indicated by the flowchart, the preliminary
circuit and preliminary interconnect methodology flow diagrams are considered
separately and therefore, may be considered simultaneously (Figure 6.1). Initial
design proposals for the microarchitecture, circuit, and interconnect levels were

developed for SOAR during the first part of the preliminary phase.
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start
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Figure 6.1- Preliminary Phase
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Figure 6.2a- Preliminary Circuit Step
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Figure 6.2b- Preliminary Interconnect Step

Design moves to the preliminary compare step after the preliminary circuil
and preliminary interconnect steps. Design levels common to both the
preliminary circuit and preliminary interconnect steps are compared during the
preliminary compare step (Figure 4.19¢). The preliminary compare step for
SOAR (Figure 6.3) is simpler than that of a full custom design (Figure 4.19c).
Once again, this is because the process was not open to modification by SOAR
designers. Only the microarchitecture level was compared in the preliminary
compare step for SOAR. If this comparison reveals no discrepancies between the
designs resulting from the preliminary circuit and preliminary interconnect
steps the preliminary phase is completed. If discrepancies do exist design must
return to the preliminary circuit and preliminary interconnect steps until the

discrepancies are resolved.
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Figure 6.3- Preliminary Compare Step

i. Preliminary Circuit

The preliminary circuit flow diagram is shown in Figure 6.2a. As previously
discussed, there are two as;;ects to microarchitecture design - specification of the
functions to be done by the processor and coordination of the units that perform
them. Therefore, early in this step as part of microarchitecture design, the
instruction set is examined to determine the operations that must be performed
and the order that they may be performed in. The operations that must be
performed become the desired functions output of the microarchitecture level.
The order that they may be performed in, provides a starting point for the

behavioral aspect of microarchitecture design.
1.1. Desired Functions

1.1.1. ALUs

The SOAR architecture was first examined to determine the necessary
arithmetic and logic units. The instruction set was most important in
determining the operations to be performed. This instruction set was discussed in
detail in the preceding section on external inputs [Samp85]. Table 5.5 summarizes

the instructions and the operations that they require. A list of operations can be
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extracted from this (Table 6.1).

Operation Instructions
Addition CALL,JMP,RET,ADD,SLL,LOAD(C),STORE
Subtraction SKIP, TRAPi,SUB,LOADM,STOREM
And AND
Or OR
Exclusive or XOR
-| Logical right shift- 1 bit SRL
Arithmetic right shift- 1 bit SRA
Insertion, zeroing INSERT
Extraction, zeroing EXTRACT
Decrement- 5 bit latch LOADM,STOREM
Increment- 3 bit latch RET
Decrement- 3 bit latch CALL

Table 6.1- Operations Required

In addition to the functions of Table 6.1, an inspection of the instruction
fields reveals the need for a sign extender. The second operand is either specified

by a register or a 12 bit constant that requires sign extension.

The register organization of SOAR was a second part of the architecture that
required arithmetic units. As previously described, the registers are organized
into windows. The accessible register window changes with a procedure call or
return. A call decrements the window number and a ;eturn optionally increments

the window number. There are eight windows and the current window is pointed
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to by a 3 bit latch - the current window pointer (CWP). Consequently, this 3 bit

latch must contain an incrementer/decrementer.

Registers may be specified by their register number if they are in the current
window or by the memory location that they map into. Register contents of
previous windows may be in the register file or may have been written to
memory. A special purpose comparator is used to determine the location of the
contents of registers from previous windows. This is the saved window pointer

comparator (SWP comparator).

The final arithmetic unit required by the architecture is an incrementer for
the program- counter. This is used to sequentially address memory for

instructions.

1.1.2. Storage

The SOAR architecture suggested two main types of storage circuits -
temporary registers and the static register file cells. The special registers are
temporary registers. These include the shadow registers,. program counter,
process status word, current window pointer, saved window pointer, and trap base
latch. Temporary registers are also used to latch instructions. Much of the state
of SOAR is contained in these latches. It was desirable to be able to single step
SOAR during testing. Therefore, it was decided that these latches would be

master/slave latches with a builtin refresh ability.

The other type of storage cell is the register file cell. The register file cell is.a
static RAM cell. It was desirable to avoid the refresh and clocking complexities of

dynamic memories and therefore static memory cells were chosen.
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1.1.3. Random Logic

An inspection of the architecture and system requirements showed that there
would be a significant amount of random logic in SOAR [Samp85]. Instructions
and register specifiers must be decoded. Many types of traps must be detected.
This necessitates tag examination, detection of illegal opcodes, and detection of
window underflow and overflow. Conditions must be checked on skip and trap
instructions. To save design time and minimize errors a regular structure was
desirable for implementing the random logic functions. CAD tools were available
for automatic PLA generation. Therefore, it was decided that as many bf these

functions as possible would be implemented with PLAs.

PLAs implement an AND function followed by an OR function (Figure 6.4).
The number of inputs to each AND and OR is variable but basically PLAs are
two level .AND/OR functions. Register file decoding is naturally a single level
AND function. Thus, PLAs are not ideally suited for use as register file decoders.
Due to the large register file and therefore large number of register file decoders,
it was decided that PLAs would not be used for the regisi‘.er file decoders. These

decoders would be custom designed.

2L s{j:}lfay B

Figure 6.4- PLA Function
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1.1.4. Drivers

The fourth major category of necessary circuits were drivers. Drivers were
needed for many large loads — datapath control lines, register file word lines, PLA

outputs, and as pad drivers.

The datapath width was 32 bits as required by the word size. Most control
and word line drivers were therefore required to drive a high fanout and the
accompanying routing across the datapath. Many of the control signals had to be
gated with clocks. Depending on the signal, control lines could be enabled with
either a high logic level or .low logic level. Control line drivers had to be designed

for all of these possibilities.

PLA outpﬁts typically had few gates to drive but large routing loads. This
necessitated drivers, but these drivers did not need to be as strong as the control

and word line drivers due to the reduced fanout.

The strongest drivers were needed to drive the output pads; These drivers
had to drive the package pins and meet Schottky TTL requirements. These
requirements were summarized in Chapter 5, Section 2.6. Data outputs had to be

tristated; other outputs did not need tristating.

Table 6.2 summarizes the main types of drivers and their approximate loads.
Power consumption was a major consideration in driver design since large

pumbers of drivers were needed.



Driver

= —

Fanout | Routing Load

Control line
Word line
PLA

Pad |

high high
high high
low high
low high

Pins

no
no
no

Yes

Table 6.2- Driver Requirements

1.1.5. Summary

Table 6.3 summarizes the desired functions input to the circuit design level
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during the preliminary circuit step. Circuit design began in response to these

inputs. These functions covered most of the total circuit design. Characteristics

of these circuits had a major impact on the microarchitecture. During this

preliminary phase the microarchitecture is still fairly flexible. By considering

these characteristics intelligent decisions in the microarchitecture may be made.

However, ds the total chip design was completed other unforeseen random logic

circuits appeared. This unforeseen random logic was minor, as it should be, and

had no noticeable affect on the microarchitecture.
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Desired Functions Circuit Type
Addition ALU
Subtraction ALU
And ALU
Or ALU
Exclusive or ALU
Logical right shift- 1 bit ALU
Arithmetic right shift- 1 bit ALU
Insertion, zeroing ALU
Extraction, zeroing ALU
Decrement- 5 bits ALU
Increment- 3 bits ALU
Decrement- 3 bits ALU
Sign extension ALU
SWP comparator ALU
Increment- 28 bits ALU
Temporary registers Storage
Register file cell Storage
PLAs Random Logic
Register file decoders Random Logic
Control line inverter Driver
Control line NOR Driver
Control line OR Driver
Word line inverter Driver
Pad Driver Driver
Pad tristate driver Driver
Other drivers Driver

Table 6.3- SOAR Desired Functions (Preliminary Phase)
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1.2. Circuits Available

1.2.1. ALUs
SOAR’s main ALU is a full 32 bit ALU that performs addition and

subtraction. Subtraction is performed with the same hardware as the addition by
using a ones complement algorithm. Many methods exist for performing addition
[Sher84a] [Whal84]. All have their advantages and disadvantages. Tradeoffs
between such things as speed, power, area, and layout regularity greatly affect
VLSI adder design. For SOAR, a fast but relatively simple adder was desired
[Bose83]. It was not desirable to spend large amounts of area and design time on
complex carry lookahead circuitry. With this in mind, a carry bypass scheme
used by Siemens Research Laboratories was chosen [Pomp82]. Carry lookahead is
done for each block of four bits. Figure 6.5 shows the original carry lookahead
circuitry for a four bit block. The Cin line is prechérged high for increased spéed

during evaluation.
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Cin<n+4>
precharge evaluate
1 Vdd
| vad Il — | Mo
and<n+3> {[M10 «— node Y
xor<n+3> ——-—“1'\415 "_l 11 8]|—xnor<n+3>
vad Il ' o
and<n+2> i
xor<n+2> ——{ [M14 H MT] | —xnor<n+2>
— -_— -
Vdd Il -
and<n+1> Jl .
xor<n+1> ——{[M13 H M6!|.__xnor<n+1>
vddil -
and<n> i
xor<n> ___|q,112 . M5] |—xnor<n>
‘ ~ r — !g =
Cin<n> -

Figure 6.5- Four Bit Carry Generation- Siemens Scheme

For a single bit, the carry is described by:

Cout<n>= Cin<n+1>= A<n>B<n> + A<n>Cin<n> + B<n>Cin<n>

A single gate to implement this function is shown in Figure 6.6. Node X

corresponds to the precharged Cin<n> signal. The single bit carry of Figure
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6.6, may be implemented with precharging of the E‘i—nZn_>. and m
signals as shown in Figure 6.7. The function A+B formed by transistors M1 and
M2 in Figure 6.6 must be replaced by AGB - M3 - when Cin<n> is precharged.
If it is not, CTn?;; will be determined by A<n> and B<n> for the case when
both A<n> and B<n> are high, which is incorrect.

These individual carry blocks are chained together to form Cin for each bit
of the adder. When chained together the M3 transistors of each bit form a series
of pass transistors that Cin must propagate through - transistors M12 through
M15 in Figure 6.5. Propagation through a large number of pass gates is
inherently slow. Therefore, hardware to bypass these pass gates is added to each
group of four bits — transistors M4 through M11 of Figure 6.5. When all four pass
gates are on,m will slowly propagate through transistors M12, M13, M14,
and M15 to become Cin<n+4>. Meanwhile, Cin<n> is rapidly inverted once
to becomé Cin<n> at node Y, and then again to form the m output.

Vdd

—1[1 | Cin<n+1>

"A<Ln>

A3pe MIbszes I

Cin<n> B<n>
__I Node X ._IS—

Figure 6.6- Single Bit Carry— No Precharge



145

Vdd
rechar
d 7 ge_":'L Cin<n+I1>

A+B—M3 AT
B
. nevaluate-jEl_

Figure 6.7- Single Bit Carry- Precharge

This carry bypass scheme meets the requirements of minimum extra
complexity and area spent on lookahead circuitry. The bypass‘ circuitry
incorporates eight extra transistors for every four bits and may be simply
duplicated for each group of four bits. The area occupied by the bypass circuitry
accounted for 10% of the SOAR ALU. Pomper‘, et. al. reported a 35ns, 32 bit
carry propagation time for their NMOS technology, using this scheme [Pomp82].
Allowing for technology differences, less than 100ns was expected for a 32 bit add
with this scheme on SOAR [Bose83].

| Another common method of carry generation is the ripple carry technique.
This scheme uses no carry lookahead hardware. The carry output of any given
bit is simply used as the carry input for the next most significant bit. The
advantage of ripple carry adders is their simplicity. However, this type of adder
is inherently slower for a large number of bits. Therefore, on SOAR it was used
only when few bits were to be added - the 5 bit decrementers — and for large adds
when speed was not thought to be a factor — the 28 bit incrementer for the

program counter and the SWP comparator.
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The SWP comparator compares the saved window pointer and an address of
a memory reference to determine if the contents of the memory location are
stored on chip or off chip. The saved window pointer points to the address of
register 0 of the last window written to memory. The comparison done by the

SWP comparator is:
[SWP<27:4> - address<27:4> -1]<27:7> =0

A ripple carry adder is used to perform this 24 bit computation and then bits 7
through 27 of the answer are NORed together to check for 0 (Figure 6.8).

S 24
Pointer to
21 Register
E (Address
94 . is on chip)
addr
Figure 6.8- SWP Comparison

Another adder required by SOAR was a 3 bit incrementer/decrementer.
Since only three bits were involved it was decided that it would not be very
difficult t6 compute the output for all three bits in parallel. Circuits for this are

shown in Figure 6.9.
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Figure 6.9- Three Bit Incrementer/Decrementer

Byte operations require an inserter and extractor, as previously described
(Ch.5, Sec.1.5). Figure 5.7 shows a block diagram for insertion and extraction.
Insertion and extraction are performed on the first operand. The byte to be
inserted or extracted is specified by the two least significant bits of the second

operand. Figure 6.10 shows the portion of the inserter/extractor that the first
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operand flows through. Control lines are set according to Table 6.4. Control
lines ex3, ex2, exl, ex0/in, in3, in2, inl, and in0/ex cause the appropriate input
byte to be routed to the correct output byte. Signals in3*/ex, in2*/ex, inl*/ex,
and in0* cause all other output bytes to be zeroed. The two least significant bits

of the second operand are decoded to set the appropriate control lines.

|P2, 3* [ex
ex3 inl
ex2 in2*/e
ex1 . ip0/ex,
ex0/in qnli n/)e}
INAm<31 = Ain<31>
INAm<30 = _Ain<30>
INAMm<29 = Ain<29>
INAm <28 = Ain<28>
INAMm<27 = _Ain<27>
INAm <26 = _Ain<26>
INAMm<25 -1 ~Ain<25>
INAm<24>2_ 11 Ain<24>
INAMm<23 > =3 Ain<23>
. INAMm<22> ' -1 ~Ain<22>
INAm<212 . = ——Ain<21>
. INAM<20> = Ain<20>
INAM<K19>__ =3 Ain<19>
INAm<18> - Ain<18>
INAm<L17> = __Ain<17>
INAmM<16> M m ] —Ain<16>
INAM<L15> 3 Ain<L15>
INAm<14> - Ain<14>
INAMm<13> . AiIn<13>
INAm<12> R} Ain<12>
INAm<11>__ b Ain<11>
INAm<10>. A Ain<10>
INAMm<9>: 3 Ain<9>
INAM<8> i M __Ain<8>
INAMm<T > in<7>
INAM<6> in<6>
INAm<L5>: in<5>
INAm<4> in<4>
INAMm<3> in<3>
INAM<L 2> in<2>
INAmM<1> in<1>
INAM <O 1 m in<0>

Figure 6.10- Inserter /Extractor
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Operation 2 LSBs of Enabled Control Lines
2nd Operand

Extract 0 ex0/in, in0/ex, in3*/ex, in2*/ex, in1*/ex
Extract 1 ex1, in0/ex, in3*/ex, in2*/ex, inl*/ex
Extract 2 ex2, in0/ex, in3*/ex, in2*/ex, in1*/ex
Extract 3 ex3, in0/ex, in3*/ex, in2*/ex, in1*/ex
Insert 0 ex0/in, in0/ex, in3*/ex, in2*/ex, in1*/ex
Insert 1 ex0/in, inl, in0*, in2*/ex, in3* /ex
Insert 2 ex0/in, in2, in0*, in1*/ex, in3*/ex

Insert 3 ex0/in, in3, in0*, in1*/ex, in2* /ex

Table 6.4 Insert/Extract Control Lines

. Sign extension is also performed by an array of pass transistors (Figure 6.11).
As previously discussed (Ch.S, Sec.1.5), bit 7 of the immediate constant is the bit
to be sign extended. Bits 8 through 11 of the immediate constant become the tag
bits of the 32 bit sign extended immediate (Figures 5.5 and 5.6). The location of
bits 7 through 11 of the immediate depend on the instruction type - store or non-
store. Store instructions select bits 19 through 22 of the instruction as the tag
bits and bit 18 as the sign extension bit. For other instructions bits 8 through 11

become the tag bits and bit 7 becomes the sign extended bit.
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instruction<11>
instruction<22>
instruction<10>
instruction<21>
instruction<9>

instruction <20>
instruction<8>

instruction<19>

instruction<7> sign extended

instruction<<18> <15> immediate

<14>
<13>
<12>
<11>
<10>
<9>
<$>
instruction<6> 26;
instruction<5> <5>
instruction<4> <4>
instruction<3> —<L3>
instruction<2> <2>
instruction( 1> <1>
instruction<0> <0>

Figure 6.11- Sign Extension

1.2.2. Storage

A basic master/slave latch with a built in refresh capability was designed for
the temporary registers (Figure 6.12). Multiple load transistors can be used to
selectively load data from one of many inputs. Data is loaded into the master
section by enabling one load transistor. The step transistor allows data to be -

loaded into the slave section from the master section. Enabling the refresh
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bus A : bps B
enable A enable B
Vdd Vdd
4/ 18] [4/ 18
| S N | M

Figure 6.13- Static RAM Cell

Both types of storage cells read data onto precharged buses. The speed of
the read operation may be approximated using a simple resistor/capacitor model
for the bus (Figure 6.14). Figures 6.15 and 6.16 show the propagation delay of the
read operation as a function of Rbus and Cbus. According to SPICE simulations,
propagation delays of 24ns to 44ns could be expected for the latch cell and 14ns to
40ns for the register file cell, for loads up to 2.5pF and 10K().

dﬁive from Rbus Bus

the storage .

o —MWW~
Cbus— —

Figure 6.14- Simple RC Bus Model
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transistor causes the master node to be updated from the slave section. Data
from the slave section is read onto a precharged bus by a low logic level at the
read enable input. Due to the master/slave arrangement reads and writes to the
~ same register may be done simultaneously. A read retrieves the old data from the

slave section while a write puts new data into the master section.

read enable

precharged
bus output
[30/4
inputs . | —
lton d master slave -
loai node node
—1 U

* Figure 6.12- Master/Slave Latch

Static RAM cells were used for the register file. A previous Berkeley
microprocessor, the RISC 1I, also had a large register file, similar to that of SOAR
[Sher84b]. The register cell design of RISC Il was successful and therefore used
on SOAR (Figure 6.13). Writes are accomplished by putting the data that is to
be written on busA and its complement on busB. Both enableA and enableB are
enabled during a write. This is necessary to override the old data of the cell.
Reads are accomplished by selecting either énableA or enableB depending on
which bus is to be used for the read. Thus, reads from two of these registers may
be done simultaneously. Only one write can be done at a time. Unlike the

master/slave latch, reads and writes may not be done simultaneously.
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Figure 6.16- Static RAM Propagation Delay

1.2.3. Random Logic

PLAs are used for much of the random logic on SOAR. Using CAD tools
available at Berkeley, PLAs can be generated automatically [VanD82] [Laru83]
[Scot85]. PLAs are composed of two level AND/OR functions that are realized by
NOR/NOR configurations on SOAR (Figure 6.17). Input buffers to the PLAs are
two sequential inverters (Figure 6.18). Buffered true and complement forms of the
input signal are available from this input circuit. This input buffer was the only
one incorporated by Berkeley’s PLA CAD tools at the time of the SOAR design.
Since then other input buffers have been made available to the CAD tools
[Obers5). |
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No. of Minterms  Speed

—_— e ————

15 “40ns
45 “100ns
100 ~200ns

Table 6.5- PLA Speed Estimates

Preliminary circuit design of the register file decoders was greatly influenced
by the register window organization and the large number of registers — 72. Nine
windows of eight registers each exist in the register file. The ﬁrsf significant
implication of this is that 7 bits of register address must be decoded to access the
specified register. Address decoding is inherently an AND function. Thus,
decoding could have been implemented in one level with either 72 seven input
NAND gates or 72 seven input NOR gates (Figure 6.19). Single level decoding
with either NAND or NOR gates would have required a large area due to the
large number — 72 - of high fan in — 7 - gates. The single level NAND decode
also had the disadvantage of being slow due to high fan in. The NOR method
would have had high po;ver dissipation since all gates except for the selected one

would have been on.
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PLA PLA output
inputs
PLA PLA output
inputs
Figure 6.17- PLA Function
vdd Vdd

4/4 [+
d. ____ PLA input
PLA PLA mput
S S

Figure 6.18- PLA Input Buffer

Speed estimates for the PLAs were obtained with CRYSTAL simulations of

three sizes of test PLAs [Oust85). Table 6.5 summarizes these speed estimates.
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decoder
inputs

word line

I

first second
level level
gate gate

decoder ]
inputs word line

Figure 6.20- Two Level Decode

Figure 6.21 shows the basic SOAR decoding scheme used for the 64 local
. registers. Two NOR gates are used for the first level of the decode. They are
enabled if the register number speciﬁés a local register. These NOR gates decode
the three address bits of the current window pointer that specify the register
window. One NOR decoder selects a given window when that window
corresponds to the low registers — r0 to 7. The other NOR decoder selects the
same. window when the CWP has been decremented and the same 8 registers
correspond to the high registers — r8 to rls. The second level of the decode, the
NAND gate, decodes the register number within the window.
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decoder ) — word line
inputs ) ——
NAND
decoder word line
inputs
NOR

Figure 6.19- Single Level Decode

Two methods of two level decoding were considered (Figure 6.20). Both
methods involve two sequential 4 input gates. The second level gate enables the
word line driver of the register file. Therefore, one second level gate exists for
each register: 72 total second level gates are required. The first level gate has an
enable input and three address inputs. Thus, only eight first level gates are
required. The first method consists of a four input NAND gate followed by a four
input NOR gate. This again has the disadvantage of high power consumption
because all 72 second level NOR gates are on — low output — except the one for
the selected register. One first level gate is on, resulting in a total of 72 gates
consumiﬁg power. In the second two level method a four input NOR. gate is
followed by a four input NAND gate. At any one time, one NAND gate and
seven NOR gates will be on resulting in a total of eight gates consuming power.

This scheme was chosen for SOAR due to its lower power consumption.
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160



159

local= bit 4
of specifier

bit 3 of specifier-
chooses highs or lows

B I word line

bits0,1,2 {—___)crdriver
of

decodes for lows specifier

decodes for highs

Figure 6.21- SOAR Register File Decode

1.2.4. Drivers

Typical Mead-Conway drivers and their propagation delays for various loads
are shown in Figures 6.22, 6.23, and 6.24. Other important characteristics for the
evaluation of a driver is its power dissipation and output high level. Drivers D1
and D2 dissipate static power in both the input and output stages. The output
stage must be large to drive the load and this results in high static power
dissipation in the 6utput stage. Output high levels of D1 and D2 are Vdd. In
contrast to D1 and D2 is D3. D3 has no static power dissipation in the large
output stage, resulting in lower power dissipation than in D1 and D2. Howe\(er,

its disadvantage is that the high output level is a threshold voltage below the

supply voltage.
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Figure 6.24- Inverting Driver and Propagation Delay- D3

As previously described, many large fast drivers were needed for control
lines, word lines, and the output pads. Therefore, it was desirable to design
drivers with low power dissipation and an output high level of Vdd. Bootstrap
drivers meet these requirements. A basic two stage bootstrap driver is shown in
Figure 6.25. The only static power dissipation in these bootstrap drivers is in the
small input stage. Thus, power dissipation is low as in driver D2. As the output
of this type of driver rises, the drain of transistor M2 rises above Vdd due to the
capacitive coupling between the drain and Vout through the bootstrap capacitor,

Cb‘ The source of M2 follows the drain above Vdd. Thus, the gate of Ml rises
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Figure 6.23- Non-Inverting Driver and Propagation Delay- D2
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above Vdd, allowing the output to rise to Vdd. The drawback of these drivers is
that they require more area to accommodate the bootstrap capacitor. Cb. must be-
large enough to quickly supply charge to charge up the gate capacitance of M1,
and the parasitic capacitances Cpl and Cp2. The diffusion to substrate parasitic
capacitance, Cp3’ is proportional to the size of Cb and adds to the load of this
driver. A variety of bootstrap drivers were designed to meet the desired driver
functions of Table 6.3 (Figure 6.26) [Kong85). SPICE simulations of the
propagation delays as functions of loads for these drivers are shown in Figure

6.27.

"'i_Cp2
I—I M2 = M1 o=
I ou
X, s e
Vin | Cpl - p3
“] — ' :

Figure 6.25- Two Stage Bootstrap Driver
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Figure 6.27- Propagation Delays for SOAR's Bootstrap Drivers

1.3. Initial Microarchitecture Design

Early in the preliminary circuit step the instruction set was analyzed to
discover the operations to be performed and the order that they could be
performed in. The required operations were used by the circuit design level, as
just described. Meanwhile,. the coordination of these operations provides a

starting point for microarchitecture design. Figure 6.28 shows one possible
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Figure 6.26f- Tri State Pad Driver
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Figure 6.28- Ordering for the Basic Pipeline Functions
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ordering for the basic required functions of each instruction type. Trap detection
can take place any time after the information that must be examined to
determine if a trap situation exists, is available. Another variatioﬁ, is that
decoding could have been done only once for each instruction instead of twice.
Thus, many variations are possible. However, certain functions can have only one

possible order. For example, Ifetch, decode, read, alu, and write must be ordered:

1. Ifetch
2. Decode
3. Read
4. Al
5. Write



Address <- TB (traps only)
Instruction latch <- Memory[PC] then
PC <-PC+1

Decode op .<-—* Instruction latch[opcode field]
S1 <-* Instruction latch[lst operand field]
S2 <—* Instruction latch[2nd operand field]
D <-* Instruction latch[destination field]

Read  ALUinputl <- r[Sl]
ALUinput2 <- r[S2] or
ALUinput2 <- immediate
DataOut <- r[S2] (stores only)

Alu ALUoutput <- ALUinputl op ALUinput?2
Write  r[D] <- ALUoutput

r[D] <- Dataln (loads only)

r[15] <-PC (calls only)

r[7] <- PC (traps only)

Compare ConditionValid <-* ALUoutput

DetectTrap TRAP <-* op,r[S1],r[S2],ALUoutput,PSW,CWP,SWP,
ConditionValid,PageFault, IO

DetectSkip SKIP <-* op, ConditionValid
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Dfetch, Alu, Write

Dfetch, Alu, Write
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Store, Alu

Store, Alu

Store

Detect
DPF

Figure 6.28- Ordering for the Basic Pipeline Functions (cont.)

Each of the pipeline functions of Figure 6.28 may be expressed algorithmically:

Ifetch

Address <-PC
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when more than one pipeline function occurs simultaneously. For example, trap
detection on SOAR can be done in parallel with instruction execution for most
instructions. In a pipelined processor several instructions are in various stages of
completion at any one time. Each instruction in the pipeline is using a portion of
the processor resources, to complete the basic pipeline function that it is
processing. When all instructions have finished the individual pipeline functions
that they are working on, they synchronously move on to the next pipeline
functions and a new instruction is started. Thus, processor resources are more
fully utilized and the instruction rate is higher than on a processor that requires
an instruction to complete before the next one starts. In order for a processor to
be cleanly pipelined, most instructions must be able to execute with the same
ordering of functions. In this way resource conflicts between instructions do not
exist and the pipeline can run smoothly and continuouslsr. An inspection of the
" order of functions for the SOAR instruction set (Figure 6.28) reveals the following

function sequence to be common for most instructions:

Ifetch

Decode- for read and alu
Read

Alu

Decode- for write, DetectTrap

S o ok ® D

Write

This ordering was chosen as the basis of the SOAR pipeline.

A second consideration in the pipeline design is the way in which the basic
functions of the instructions will overlap. An estimate of the relative speeds of
each basic function, in addition to the function order, is needed to propose the
overlapping. This is one way that the circuits available input influences

microarchitecture design. As each of these functions is realized by circuits, the



PC <-PC+1
Nil r[0to5) <- BOOdOOOO (nil value)
CWP+ CW P <- CWP+1
CWP- CWP <- CWP-1
Ints PSW<1I> <-1
modifyPC PC <- ALUoutput

Dfetch  Address <- ALUoutput then
Dataln <- Memory[Address]

Store  Address <- ALUoutput then
Memory[Address] <- DataOut

Precharge All buses <- FFFFFFFF

*Assigned through random logic
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All trap detection has been assigned to the DetectTrap function. Each type of

trap examines the relevant inputs on the right side of the TRAP statement and

generates a TRAP through random logic.

Once an ordering of the functions for each instruction has been proposed, the

pipelining and parallelism of the processor may be proposed. Parallelism arises
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(Figure 6.30).
0Instruction 1 Instruction 2 Instruction 3 Instruction 4
Ifetch
400
Decode
Read Hetch
800 Alu
Decode Decode
| Detect trap
. Read Ifetch
120 Write Alu _
Decode Decode
—Detect trap
Read Ifetch
1600 Write Alu
time
(ns)
Figure 6.29- Pipeline- Realized SOAR
Phil___| [
Phi2
Phisj i ; S
20ns 100ns 20ns 100ns 20ns 100ns

Figure 6.30- Proposed Clocking- Realized SOAR
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speeds of these functions can be more accu;ately determined through speed
analysis of the circuits. For SOAR, the overlap of the functions was proposed
before the circuits available input existed. Rough estimates of the function speed
were used to develop the pipeline overlaps (Table 6.6). Fetches were estimated to
require four times as much time as any other operation and therefore became the
pipeline bottleneck. Each instruction required a fetch since there was only one
memory port and no on chip instruction storage. Therefore, instructions could

not be started more frequently than once every 400ns.

Function Speed Estimate ' Reasgn
Ifetch 400ns system specifications
Precharge 100ns ?
'Decode ? Ignored
Read 100ms RISC I
ALU 100ns Siemens paper
Write 100ns RISC I
DetectTrap ? Ignored

Table 6.6- Original Speed Estimates

Figure 6.29 shows the assignment of functions to time slots and the
overlapping of functions for sequential instructions. Each insfruction fetch takes a
memory cycle as described in the system specifications (Ch.5, Sec.2.1). Each cycle
* is then divided into three phases of approximately iOOns each, for decode, read,
and the alu operation during cycle 2 of an instruction, and for decode and write

during cycle 3. Underlaps of 20ns between phases were proposed for the clocks
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schemes during the first cut, as done in SOAR, as long as the designers do not
forget that this first cut- at timing is only as good as their estimates of circuit

speeds and clock requirements.

The second pAass at microarchitecture design during the preliminary circuit
step has a more accurate idea of circuit speed and clocking due to the circuits
that are available and their timing characteristics. For the following discussion of
the second pass at microarchitecture design speed estimates from the circuits
available input are used. Table 6.7 summarizes the speed estimates of the circuits
described in this chapter, Section 1.2 that contribute to the basic pipeline

functions — Ifetch, decode, read, alu, and write.

Circuit Speed Estimate (ns)

PLA : 100-200

Register file cell 20-25

Latch cell 30-45

ALU 100

D1,D2 50-70

Word line driver 20-40

Control line driver  20-40

Table 6.7- Circuit Speed Estimate Summary

Table 6.8 summarizes the times for each of these basic pipeline functions based on
speed estimates of the circuits. The Ifetch primarily involves circuits outside the
processor. Decode assigns values to control and word lines from the instruction

fields, through the PLAs. These values must be driven to the places where they
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1.4. Further Preliminary Microarchitecture Design

With a knovaledge of the available circuits and their characteristics from
initial circuit design the microarchitecture design may be further refined
intelligently. This microarchitecture design in response to initial circuit design
closes the loop in the flow diagram for the preliminary circuit step (Figure 6.2a).
As indicated bf the loop's existence, it is possible to go through a series of
iterations in the microarchitecture and circuit design if the original conceptions of
design at these two levels are very incompatible. At the other extreme, if the
original proposals are totally compatible, the microarchitecture would not need to
‘be refined at all in response to the circuits avatlable input from the circuit level.
Realistically, most design will require at least one microarchitecture refinement
after the available circuits and their characteristics are known. Unfortunately, in
" the SOAR project this was largely overlooked and would have made a difference
in a few key places; Consequences of this wefe that some optimality was lost and
some major redesign was done aftet. most low level design was complete. The
time consuming low level redesign time could have been saved and a more optimal
processor achieved if the microarchitecture had been refined in response to the
circuit design at this stage. Although this was not done, a discussion of how it
might have been done for SOAR and future similar processors will be carried out

here for the purpose of a complete case study.

1.6. Pipeline

The first cut at the microarchitecture design defined the functions that the
circuits must perform and an ordering of these functions. The second part of
microarchitecture design involves the coordination of these functions. A
knowledge of the speed and clocking of the circuits is needed to smoothly

coordinate the functioning of the circuits. It is acceptable to propose timing



Function Circuits Circuit Total
Speeds Speed
Ifetch system 400ns 400ns
Decode PLAs 100-200ns 150-270ns
D1, D2 '50-70ns
Read word line drivers 20-40ns 50-85ns
register file cell 20-25ns
or
control line drivers  20-40ns
lateh cell 30-45ns
Alu ALU 100ns 100ns
Write ‘ control line drivers 20-40ns 50-85ns
latch cell - 30-45ns

DetectTrap PLAs |

100-200ns  100-200ns

Table 6.8- Pipeline Function Speed Estimates

178

Using these speed estimates and the proposed assignment of phases into

cycles it can be seen that the cycle time was to be limited by cycle 2 — decode,

read, and alu (Table 6.9a). The cycle time can be estimated to be from 360 to

'~ 515ns becaise of cycle 2. Table 6.10 shows speed estimates for the basic pipeline

functions during the first and second passes of microarchitecture design. Decode

time was overlooked during the first pass. Knowledge of PLA speeds shows that

the decode time would be a significant contributor to cycle time.
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‘are used by drivers such as D1 and D2. For the read function two operand
sources are considered — register file cells for the global and local registers, and
lateh cells for the special registers. A read occurs when either word or control
lines enable the operand registers and the registers subsequently drive the buses to
the ALU inputs. The alu function involves the execution of the specified
operation. Writes are performed when control line drivers enable the output of
the ALU output latch onto buses, to be stored in the aestinatidn register. The

most complex trap detection is done primarily by the random logic of PLAs.



Cycle Functions Function Times Cycle Time
1 Ifetch 400ns 400ns
2 Decode 150-270ns 360-515ns
Read 50-85ns
Alu 100ns
Underlaps 60ns
13 DetectTrap or  100-200ns
Decode and 150-270ns 260-415ns
Write 50-85ns
Underlaps 60ns

Table 6.9a- Required Cycle Times- Realized SOAR
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With the goal of a shorter cycle time in mind, other cycle and phase
assignments can be proposed. In an attempt to have all worst case cycle times no
worse than the time for Ifetch — 400ns — the alu function may be moved to cycle 3
(Figure 6.31). The second decode and the alu followed by trap detection functions
are done in parallel during the first part of cycle 3. The write function that
previously occupied the later part of cycle 3 is moved to the first part of cycle 4
so that it will not conflict with the read at the register file. Each cycle is now
composed of two phases (Figure 6.32). Phase 1 is limited by the alu function
followed by the trap detection function to be 200 to 300ns and phase 2 by the
read that takes 50 to 85ns. The total processor cycle time is now estimated at
290 to 425ns, which is closer to the limiting 400ns memory cycle time (Table
6.9b).
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Function 1st Pa;s 2nd Pass
Speed Estimate  Speed Estimate
IS
Ifetch 400ns ‘ 400ns
Precharge 100ns 60ns
‘| Decode ignored 150-270ns
Read 100ns 50-85ns
Alu 100ns 100ns
Write 100ns | 50-85ns
DetectTrap | ignored 100-200ns

Table 6.10- Pipeline Function Speeds



Cycle Functions Function Times Cycle Time
ﬁ
1 Ifetch 400ns 400ns
2 Decode 150-270ns 240-395ns
Read 50-85ns
Underlaps 40ns
3 Alu and 100ns 240-340ns
DetectTrap 100-206113
or Decode 150-270ns
Underlaps 40ns
4 Write 50-85ns 90-135ns
Underlaps 40ns

. Table 6.9b- Required Cycle Times- Optimized SOAR
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registers, and interconnect resources such as buses, word lines, and memory ports.
Table 6.11 shows the basic pipeline functions, the circuit and interconnects that
they use, and their clock phase assignments. This analysis is carried out for the
realized and optimized versions of SOAR. Tables 6.12a and b pictorially show the

allocation of these resources for both versions of SOAR.

Basic Pipeline Resources Clock Phase Clock Phase
Function Real SOAR  Optimized SOAR

Ifetch Address Memory Ports 1 1

Data Memory Ports 3 2
Decode PLAs 1 S |
Read Register File 2 2

Word Lines- read 2 2

Bit Lines- read 2 2
Alu ALU 3 1
Write Register File 3 1

Word Lines- write 3 1

Bit Lines- write 3 1
DetectTrap PLAs 1 1

Table 6.11- Basic Pipeline Resources
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0Instruction 1 Instruction 2 Instruction 3 Instruction 4
Ifetch
400 :
......... Decode.......
Ifetch
800 Read
Decode
Aln Decade........
Detect trap ' Hfetch
120 Read
. Decode
.......... Write. Al - Decade........
Detect trap Ifetch
160 Read
time
(ns)

Figure 6.31- Proposed Pipeline- Optimized SOAR

Phil___|
Phi2 | ;
20ns 200 to 300ns 20ns 50 to

85ns

Figure 6.32- Proposed Clocking- Optimized SOAR

1.6. Resource Allocation
Once the overlapping of the basic pipeline functions has been determined and
a clocking scheme proposed, resources can be allocated to specific time slots or

clock phases. Resources to be allocated include circuits such as the ALU and
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register file resources have less idle time than other resources. It must be
remembered that all speed and clocking estimates are very rough at this point in
the design.. If future detailed analysis of the register file timing reveals a need for
more time, less free time is available and it may be difficult to accommodate the
register file. Therefore, a more detailed analysis of the register file resources
should be done at this stage in the design. A detailed timing analysis of the
register file resources requires a knowledge of the register file circuit (Figure 6.33).
Table 6.13 shows the order of events for the register file and the operation of the
word and bit lines. A read requires that the bitlines be precharged initially. This
is because the small depletion mode pullup transistors of the register file cell are
too weak to quickly pull the bit lines high. The larger. pulldowns can quickly pull
the bit line low during a read. During precharge the word lines must be disabled
to prevent the stored data from being 'destroyed. When reading from the register
file the appropriate word line is driven high and bit lines are selectively
discharged according to the dat.arg: in the register being read. Word lines must then
be disabled before writing to ﬁrevent a false write to the register that has just
been read. When writing to the register file word lines are enabled and large

drivers are used to overpower the inverters of the cells being written to.
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Resource Phase 1 | Phase 2 | Phase 3
e

Address Ports X

Data Ports X
PLAs X

Register File X X
Word Lines X X
Bit Lines X X
ALU X

Table 6.12a- Resource Allocation- Real SOAR

Resource Phase 1 | Phase 2

S
A&dress Ports X
Data Ports X

| PLAS X
Register File X X
Word Lines X X
Bit Lines X X
ALU X

Table 6.12b- Resource Allocation- Optimized SOAR

From these tables it can easily be seen that all major resources, except the register
file resources, are used only once each cycle. The register file resources, including

word and bit lines are the most heavily utilized resources — twice each cycle. The
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are compatible with the proposed clocking schemes. The realized scheme has
phase 1 available for precharge while the optimized version must use the 1/2
underlap for both word line disabling and precharging. However, the optimized
version has less resource idle time. The optimized design will have a faster cycle
time due to a more complete utilization of the resources. In particular 100%

utilization is planned for the most heavily used resource - the register file.

Step Real SOAR  Optimized SOAR
Clock Phase Clock Phase

Precharge 1 1-2 underlap
Read ' 2 2
Disable 2-3 underlap 2-1 underlap
Write 3 1
Disable 3-1 underlap 1-2 underlap

Table 6.14- Register File Clock Phase Assignments

A final detailed analysis of the register file timing compares the times
required by the register file steps with proposed clock phase lengths for the
optimized SOAR (Table 6.15). The read and first disable are compatible with
their clock phase lengths. However, phase 1 is much longer than necessary for the
write, and the following underlap is too short for the disable and precharge.
Further optimization requires the balancing of these discrepancies. Phase 1 can
be split into philw and philp for the write and precharge operations respectively
(Figure 6.34). Other operations assigned to phase 1 can span philw and philp
(Figure 6.35). The total time required by philw and philp for the register
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* wordline 1 wordline 2

—{ >

bitlinel __J L} L_TI1__ bitline 2

-

Vdd
4/18

'D’:_._|s/4

Figure 6.33- Register File Memory Cell

Event Word Lines Bit Lines
S |
Precharge  disabled- low drive high
Read enable- drive high  selectively discharge
Disable disable- drive low  idle
Write enable- drive high  drive with data
Disable disable- drive low  idle

Table 6.13- Register File Operation

A complete read/write cycle is inherently a five step process with this register
file cell. These steps must be assigned to the processor clock phases and register
file circuit design must compatibly provide the required functioning. Clock phase
assignments for these steps are shown in Table 6.14 for both the real and
optimized SOAR. Disabling is done during the underlap time between the clock

phases. Referring back to Tables 6.12a and b, it can be seen that both versions
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0Instx'uction 1 Instruction 2 Instruction 3 Instruction 4
Ifetch
400 }
......... Decode........
Ifetch
800 Read -
Alu
....... Decode........ ...Decode...
Detect trap Ietch
120 _ R:;d
Write Decade......... ... Decade........
Precharge Detect trap Ifetch
16 ' Read
time
(ms)

Figure 6.35- Pipeline- Optimized SOAR

1.7. Pipeline Exceptions

When designing the pipeline, a sequence of basic functions was chosen that
would accommodate most instructions. On SOAR all arithmetic, logical, shift,
and byte instructions could be handled by the proposed sequence easily (Figure
6.28). Returns, call, and jumps fit the proposed sequence with minor
modifications (Figure 6.36). For these three types of instructions, the alu function
is used to compute the target instruction’s address. The time slot after the ALU
computation and before the write is used to modify the program counter using the
result of the target address computation. Nilling is a simultaneous write
ope'ration to multiple registers and therefore is assigned to the write time slot.

Changing the CWP can be assigned to the read or alu time slot for both calls and
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operations is 130 to 165ns. Thus, decode will still limit the total phil time with
its requirement of 150 to 270ns. Adding this extra clock phase allows the register
file disable and precharge steps to be moved into the register file idle time

following a write, that is required by the slower decode function.

Step Required Time Proposed Phase
I
Read 50-85ns 2 (50-85ns)
Disable 20ns 2-1 underlap (20ns)
Write 50-85ns 1 (150-270ns)
Disable 20ns 1-2 underlap (20ns)
Precharge 60ns 1-2 underlap (20ns)

Table 6.15- Register Operations and Timing

Original
"Phil—| [
Philw I
Philp
Phi2_! - : L
20ns  write 20ng precharge 20ns read
50 to 85ns i 60ns 50 to
Alu detect trap 85ns

100ns 100 to 200ns

Figure 6.34- Clocking- Optimized SOAR
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Load, loade, and store require

LOAD, LOADC STORE
Ifetch Ifetch
Decode Decode
Read Read
Alu, Decode Alu, Decode
[Dleich___Je— extra
Vrite Write
, LOADM STOREM
Ifetch Ifetch
Decode _ Decode
Read : Read
Alu, Decode Alu, Decode
Dletch, Alu Store, Alu
Dfetch, Alu, Write Store, Alu
Dfetch, Alu, Write Store, Alu
Dfetch, Alu, Write extra Store, Alu
Dfetch, Alu, Write Store, Alu
Dfetch, Alu, Write Store, Alu
Dfetch, Alu, Write Store, Alu
Dfetch, Write Store
YVrite
SKIP (valid) TRAPi (valid)
Ifetch Ifetch
Decode Decode .
Read - Read
Alu, Decode Aly, Decode

I Compare mpare
Skip Je— extra ] 20

Figure 6.37- Instructions Requiring Extra Time Slots

one extra memory access cycle for their pipeline functions —~ Dfetch and store.
Load multiple and store multiple perform up to eight loads or stores and therefore
need up to eight extra memory access cycles. The memory is 100% utilized so
each extra memory cycle adds a cycle to the time needed to complete the

instruction. All skip and trap instructions require a compare operation. When
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returns. Thus calls, returns, and jumps can easily fit into the proposed pipeline

and need no extra cycles for their completion.

Proposed Returns Jumps Calls
. Sequence
tim

Hetch Ifetch Hetch Ifetch

Decode Decode Decode Decode
Read Read
Alu Alny, CWP+ ~ Al Alu, CWP-

Decode Decode, Detect Decode, Detect Decode, Det.ect

Write " Nil, Ints Write
Realized SOAR
Ifetch Ifetch Ifetch Ifetch
Decode Decode Decode . Decode
Read Read, CWP+ . CWP-
Alu Alu, In ‘Detect trap Detect trap
Detect trap ngem{; ’E& ....... ModifyPC, Alu ModifyPC, Alu
Write Nil Write
Optimized SOAR

Figure 6.36- Returns, Calls, and Jumps in the Proposed Pipelines

In contrast to this are skips, trap instructions, loads, and stores. They

require extra pipeline functions and therefore need extra time slots (Figure 6.37).
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Figure 6.38- Multicycle and Conditional Instructions

At this point in the microarchitecture design, schemes are proposed to handle
the instructions that require extra cycles [Pend84]. It is desirable to handle these
more complex situations with the same pipeline and decoding mechanisms that
will be used for the simpler instructions. In this way extra hardware and
complexity are kept at a minimum. To do this, these multicycle instructions are

‘broken into a series of single cycle opcodes. Each single cycle opcode can be
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the results of this compare are true extra cycles are needed to complete the skip
or trap. A skip requires one extra cycle — the cycle of the instruction to be
skipped. Traps require two extra cycles due to the compare, insertion of the trap
vector into the memory address latch, and fetching of the instruction at the
vector address. Cycle and clock phase assignments for these instructions are
shown in Figure 6.38 for the realized SOAR. Analogous assignments may be
made for the optimized SOAR.
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Figure 6.39- Internal Opcodes for Multicycle Instructions (cont.)

Load and loadc cause the insertion of the load0 opcode into the pipeline.

This insertion is analogous to an instruction fetch except that load0 is generated

on the processor.

Load0 sets control lines through the standard decoding

mechanisms, for the later parts of the load instruction. Both load and load0

require the same number of cycles as the standard instructions. Any nonstandard

pipeline functions that they require, such as Dfetch, are compatible with the
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Thus, pipeline flow is

uninterrupted in these situations. Resource allocation for multicycle instructions

will fit into the same scheme as for the simpler one cycle instructions (Figure

6.39).

opcode sequepce
load,
loade load0

time,
Ifetch
Bosa™® [nsert
Al Pecode
Dfetch
Decode
Write
loadm ; load8 loadé : load5 : loadd ; load3 ; load2 : loadl : loadO
Ifetch
Decode
I t
Bead 025
ﬁj&nhﬂrgccu Decode — Insert
ﬁhe b Decode {1, cart
. load5
Dﬁﬁﬂdﬂ—d
——Diael [osert
Write — 2
e :Decode y cont :
k :
e load3 _
Decade :
g7 70—
e :Decode
i s
Al
D.Igt R Decade _: 1ncert
E&Jhe ol load0
e :Decode
fetels
 Decode

Figure 6.39- Internal Opcodes for Multicycle Instructions
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pipelining of the standard functions. Stores are handled in a similar manner to
loads by the store, store0 instruction sequence. The fetched store instruction

causes the internally generated store0 opcode to be inserted into the pipeline.

The SOAR architecture also called for more complex multicycle instructions
- load multiple and store multiple. These instructions provide for the loading or
storing of up to eight regularly spaced memory locations. One extra cycle is
required for each load or store. Therefore, a loadm or storem generates an
internal opcode for each load or store. Each of these opcodes is accommodated by
the standard pipeline and causes the insertion of the next internal opcode or an

instruction fetch when the last load or store has been completed.

In addition to multicycle instructions, traps ;md skips that arise should fit
into the standard pipeline (Figure 6.40). The compare function uses the ALU
result to determine if a trap or skip should be taken. If it is to be téken an
internal opcode is inserted into the pipeline - SKIP, TRAP, and NOP. The
inserted opcode is decoded and control lines are set so that the skip or trap is

taken.
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skip SKIP

Ifetch

trapi TRAP NOP

Ifetch

Read_______— Ifetch

Retade Compare —>[gzart THAP-

Insert NOP

D.ecnd.e___.r-]).ennd?____
Write Decode

Figure 6.40- Internal Opcodes for Conditional Instructions

1.8. Preliminary Circuit Summary

The prelimz’nary. circuit step for SOAR starts with an examination of the
instruction set. The operations needed to perform each instruction are listed.
These operations become the desired functions input for circuit design. The goal
of preliminary design at the circuit level is to satisfy the desired functions and
characterize the circuits’ timiﬁg so that the behavior aspect of microarchitecture
design has an estimate of the speeds and clocking requirements of the component

circuits.

A second aspect of the instruction set examination is to describe each
instruction algorithmically. Each algorithmic statement corresponds to a pipeline
function. Some of these pipeline functions for a given instruction may occur

simultaneously, others must fall into a sequence for correct completion of the
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instruction. Thus, several possible orderings for the pipeline functions of a given
instruction may exist.

‘Once the pipeline functions and potential sequences have been identified for
each instruction, the parallelism and pipelining of the processor is proposed.
Pipelining evolves from the recognition of sequences of pipeline functions that are
common to most instruction. Parallelism emerges from the groups of pipeline
functions that may be done simultaneously for any single instruction and from the'

overlapping of sequential instructions.

The pipeline is composed of a sequence of pipeline functions that is common
to most instructions. Once such a sequence has been proposed the overlapping of
these basic pipeline functions for sequential instructions must be determined. To
do this, an estimate of the time required by each basic pipeline function is needed.
This time estimate is obtained by knowing the circuits that are needed for each
function and their speeds. This is where the available circuits and their
characteristics make a significant contribution to the microarchitecture design.
The basic pipeline functions of an instruction are organized into sequential groups
that all require about the same amount of time to complete. This time is the
processor cycle time. It is desirable to keep the cycle time short so that a high
instruction rate may be attained. This implies that the pipeline function groups
should be small. Therefore, the minimum cycle time is limited by the longest
basic pipeline function. If one basic pipeline function is much longer than any of
the others and appears to significantly extend the cycle time it may be desirable

to try to pipeline that function.

The organization of the basic pipeline functions into groups allows each
pipeline function to be assigned to a time slot — a designated cycle and clock
phase within that cycle. Knowing the circuits that are used by each function,.the

circuits and interconnects are also assigned time slots for their use. This is known
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as resource gllocation. Some resources, such as the register file on SOAR, may be
used by more than one function. Thus, the resources are examined and it is noted
when each one is busy. In this way conflicts may be discovered and avoided when
more than one function uses the same resource. This analysis also exposes
another basic limit to the cycle time — fully utilized resources. During any given
machine cycle all basic pipeline functions are performed - not for a single
instruction, but for all instructions that are in various stages of completion.
Therefore, all functions that use a resource must fit their use of that resource into
a single cycle and the total time that a resource is busy due to the requirements of
all functions becomes a limit on the minimum cycle time. Thus, when a resource
is fully utilized - busy 100% of the time - a minimum cycle time has been
achieved. If it is desirable to reduce the cycle time from this, the fully utilized
resource must be duplicated in some way to accommodate the requirements of al]

the pipeline functions.

" Once the resources with the heaviest use have been identified, their speeds
and clocking requirements are examined in detail to ensure that they are
compatible with the proposed clocking. To attain a minimum cycle time the
resource with the heaviest utilization musi be used 100% of the time.
Modifications can be made at this point if they are possible, to bring this
utilization closer to 100%. However, the accuracy of speed estimates should be
taken into consideration so that speed requirements are not made unrealistically
tight at this point.

Lastly, instructions and situations that do not automatically fit into the basic
pipeline must be provided for. It is desirable to accommodate these situations
without any unnecessary. hardware complexity or cycle time increases. The
concept of internal opcodes allows multicycle instructions and special conditions

to be handled within the basic pipeline and resource allocation framework. In this -
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way the pipeline operates continuously and smoothly.

2. Preliminary Interconnect

SOAR was to be implemented in a technology that had one level of metal.
Therefore, other interconnect layers were needed. Both polysilicon and diffusion
were considered. Polysilicon was chosen due to its lower capacitance and RC
time constant, allowing for faster signal propagation than in diffusion. Table 6.16
shows resistance and capacitance contributions of a minimum size square of
interconnect made from each layer. Polysilicon has significantly less capacitance
and a lower overall time constant than diffusion. Thus, polysilicon is faster when

the interconnect speed is limited by the capacitive loading or the time constant.

Layer : R AreaC Perimeter C Total C RC

W

Polysilicon 50 .96fF 0 - .96fF 48fs
Diffusion 20 2.56fF 5.60fF 8.16fF 163fs

Table 6.16- Minimum Square (4px4p) Resistances and Capacitances

Interconnects in the datapath consisted of control and word lines crossed at
right angles by the data buses. Metal ‘was chosen for the data buses and
polysilicon for the control and word lines. Polysilicon control and word lines cross
the 32 bit datapath. The length of these lines contributes a high resistance and
capacitance to their time constants. The propagation delays due to the time
constants are signiﬁc'ant. Consultation with the circuit design reveals the
dimensions of these lines for one bit — 88ux4p. Both resistance and capacitance

are proportional to the total length. Thus, the limiting RC time constant is
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proportional to the square of the length. At this point it was proposed to split the
datapath into two 16 bit halves, reducing the RC time constant by a factor of
four (Table 6.17). Load capacitances for the control and word lines are due to
one minimum size, 4pux 4p, gate per bit and 12px 4pgate per bit respectively. A
register file read was modeled and SPICE simulations for the word line and bit

line speeds were carried out (Figure 6.41, Table 6.18).

R Cparasitic  Cload  Ctotal RC
W_—_—_———

32 bits 35.2K  .68pF .63pF 1.31pF  46.1ns
16 bits 17.6K  .34pF 32pF  .66pF 11.5ns

Table 6.17a- Word Line Time Constants

R Cparasitic Cload  Ctotal RC .
=——'_'_——______———————_____7 —

32 bits 35.2K  .68pF 21pF 89pF  31.3ms

16 bits 17.6K  .34pF d1pF  .44pF 7.8ns

Table 6.17b- Control Line Time Constants
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Rword Word Line

word line Cword—— Vdd
driver -

=i r‘ 4/18 —_ Bit Line
12/4
| Cbit

Vdd_|ris/4 p—

Figure 6.41- Circuit Model for Register File Read

Rword Cword Cbit - Word Line Bit Line
Propagation Delay = Propagation Delay

—— ——

32 bits 35.2K  1.31pF  1.5pF 38ns 56ns

16bits  17.6K .66pF  1.5pF 13ns 30ns

Table 6.18- Read Propagation Delays

The propagation delay for the word lines of the split datapath was one third of
the propagation delay of the full 32 bit datapath. Consequently, bit line delays
for reads were estimated to be twice as fast with the split datapath according to
simulations.

Splitting the &atapath means that a few signals that are critical to the
processor cycle time, such as the ALU carry line, have to connect between the two
halves of the datapath. These signals, were identified, and are routed solely in
metal.

Finally, a preliminary pinout was proposed. System specifications called for

separate data and address pads. Therefore, it was proposed that data pads would
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be on one side of the chip and address pads on the opposite side. This seemed to

lead to a simpler routing problem.

As a result of the preliminary interconnect step the SOAR datapéth was
split into two 16 bit halves. Drivers and decoders are duplicated for each half.

Control hardware is placed between the two datapath halves.

3. Preliminary Compare

The preliminary compare step for SOAR involved comparing the
microarchitecture design from the preliminary circuit step with the simulated
speeds from the preliminary interconnect step. Interconnect design estimated the
speed of a read with the split datapath. A 30ns propagation delay from the word
line driver input to bit line discharge was estimated. This falls within the 50-85ns
read speed range that was used for microarchitecture design in the preliminary
circuil step.

Interconnect design also analyzed the time needed to enable cqntrol lines. A
12ns ﬁropagation delay Was predicted for this. ' This is compatible with the 20-
40ns control line driver speed estimate that was used for microarchitecture design
in the preliminary circuit step.

No contradictions in the microarchitecture design were discovered during the
preliminary compare step. This concludes the preliminary design phase for
SOAR. Processor design mow moves to the alternating synthesis and analysis

steps.
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Chapter 7
Microarchitecture Design
SOAR Case Study
Microarchitecture synthesis and analysis begin after the preliminary steps
have been completed, as discussed in Chapter 4, Section 5 (Figure 4.18). Figure
7.1 shows the portion of the methodology flowchart that corresponds to these

steps, and the associated pieces of the flow diagrams.

. K architecture,
prehm;ary o system specifications
Mi ynthesize
icroarchitecture . micro- ;
T available archi. _ available
circuits tecture nterconnect
schemes
Analyze ,
Microarchitecture not ok desired
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ok \T-
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micro-
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tecture

micro-
archi-
tecture

micro-
archi-
tecture
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critical paths power per areas and
functional block dimensions
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Figure 7.1- Microarchitecture Synthesis and Analysis



207

1. Microarchitecture Synthesis

The go;l of microarchitecture synthesis is to completely specify the desired
functions from the architecture description and system specifications. To do this
two aspects of microarchitecture are considered — the necessary functional blocks
and the coordination of these blocks. Typically, some of this is done during the
preliminarj phase, as discussed in the previous chapter. The preliminary phase
identified most of the types of functional blocks, defined the basic pipeline, and

scheduled the major resources used by this pipeline.

On the SOAR project their was little distinction between microarchitecture
and functional block synthesis. The flow diagrams fbr these two steps were
merged into one (Figure 7.2). All inputs were considered and therefore important
information was not overlooked. However, with no methodical way of
concentrating on the microarchitecture design, it is difficult to streamline the
microarchitecture. To illustrate the complete design methodology, the
microarchitecture design will be carried out here. In subsequent sections
functional block synthesis will be carried out according to this methodology. The
pipeline of the realized SOAR from the preliminary phase will be used for this
microarchitecture and functional block synthesis. Thus, the inputs to
microarchitecture and functic;nal block synthesis for this study will be the same as
they were on the SOAR project. In this way a valid comparison can be made
between the functional block level designs of the realized SOAR processor and

this methodology after functional block synthesis.
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Figure 7.2- Microarchitecture and Functional Block Synthesis

One goal of microarchitecture synthesis is to define the specific functional
blocks, their types, sizes, inputs, and outputs. This is done by examining. each
aspect of the architecture and system specifications, and determining their
requirements. As each functional block is identified, its type is determined.
Functional block types are chosen from the circuits avatlable _'designed during the
preliminary phase. Often a block’s size may also be discovered in the
architecture. For example, word size determines the size of most datapath blocks.
The sizes of the instruction fields indicate the sizes of various control latches.
Once this is done, the daté inputs and outputs are listed for each block. Control

line requirements are determined from the circuit that implements the block type,
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the inputs, and outputs of the block. Using the basic pipeline functions and their
clock phase assignments, the timing of input loading and output enabling is also
listed. The conditions under which inputs are loaded and outputs are enabled is
also determined. Together these conditions and timing define the control line
inputs to the block. These conditions must be generated somewhere and therefore

define outputs of other blocks.

A second goal of synthesis is to coordinate all fuﬁctional blocks. This
includes completely scheduling all resources according to the pipelining and
parallelism. Major resources have already been scheduled during the preliminary
phase. Now all remaining resources must be scheduled. Bus structures are
planned so that enough lines of communication exist for all transactions that
occur. Temporary registers, as required by the pipeline, are also identified and
added to the list of functional blocks. Timing of all control lines is finally
determined according to the control lines’ purposes and the pipeline. For
example, if a given control line loads an operand and operands are read and

available for loading in phase 2, then the control line is enabled on pha.sé 2. .

1.1. Functional Blocks |

Many of the specific functional blocks for SOAR were already identified
during the preliminary phase (Ch.6, Sec.1.1). Table 6.3 lists the desired functions
of preliminary design. Many of these correspond directly to functional blocks.
An inspection of the instruction set reveals the need for the operations of Table
6.1. Each of these corresponds to a functional block (Table 7.1). Arithmetic,
logical, and shift operations must accommodate both 31 and 32 bit data. Two 5
bit decl:ementers are needed - one for load multiple and one for store m_ultiple. A
condition comparator that checks for the conditions of Table 5.7 is needed for

skip and trap instructions. The instruction latch becomes an operand for jumps
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and calls. A sign extender is needed when the instruction contains a 12 bit

immediate field. A hardwired .constant — B0000000 - is needed for nilling on

returns.

Block Type
L —
Add addition
Subtract subtraction
And and
Or _or
Xor xor
Srl logical right shift
Sra arithmetic right shift
Inserter insertion
Extractor extraction
CWP+ incrementer |
CWP- decrementer
D- decrementer
S2- decrementer

Condition comparator PLA

Instruction latch

SignExt
Nil

m/s latch
sign extension

constant

Size (bits)

31, 32
31,32
31,32
31,32
31,32
31,32
31,32
32
32

3
3
5
5
32

32
32

Table 7.1- Functional Blocks from the Instruction Set
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SOAR's register organization reveals many functional blocks also (Table 7.2).
Each register corresponds to a functional block. The 8 global and 64 local
registers are realized with static RAM register cells. These are 32 bits wide as
determined by the data word size. The special registers are based on the
master/slave latches. Various aspects of the architecture call for the eight special
registers. Trapping necessitates the PSW, TB, and the shadow registers - SHB,
SHA, shOPC, and shDST. The window organization of the local registers calls for
the SWP, CWP, and SWP comparator. Rzero is a register that always contains
zero. Sizes of the special registers are determined by their functions. Decoders
are needed to address the registers specified by the S1, S2, and D fields of the
instruction. The decoding scheme described in the preliminary phase is used for
the globals and locals (Ch.6, Sec.1.2.3). PLAs are used to select the special

registers.
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Block Type Size (bits)
Global registers static RAM 8x32
Local registers static RAM 64x32
Rzero constant 32
PC m/s latch 28
SHB flow through latch 32
SHA flow through latch 32
SWP m/s latch .32
'TB m/s latch 18
CWP m/s latch 3
PSW- PSW m/s latch 2

shOPC m/s latch 8
shDST m/s latch 5
Decoders— Rfile decoders
Decoders- specials PLAs
SWP comparator  special adder 24

Table 7.2- Functional Blocks from the Register Organization

Trapping and exception mechanisms require another set of functional blocks
(Table 7.3). Trap detection can be thought of as needing one block to detect each
type of trap and a final block to generate the trap signal (Figure 7.3). Once a
trap has been detected, its priority must be encoded as part of the trap address.

The trap base latch and shadow opcode complete the trap vector address.



Block

Type

Illegal Opcode Detection

Tag Trap Detection

GS Trap Detection

.SWI Detection

Window Overflow Detection
Window Underflow Detection
Trap Instruction Detection |
Data Page Faulf Detection
Instruction Page Fault Détection
I/0 Interrupt Detection
Trap.

Priority Encoder

random logic
random logic
random logic
random logic
random logic
random logic
random logic
random logic
random logic
random logic
random logic

random logic

Size (bits)

=9

Table 7.3- Functional Blocks from the Trap Mechanism
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Instruction
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Figure 7.3- Trap Functional Block Diagram

System requirements generate another set of functional blocks (Table 7.4).
Data and address outputs must be able to drive TTL loads and therefore require
32 bit driver blocks. Random logic blocks must generate the internal WAIT and
RESET signals from the corresponding external signals. The output signals I/D,
RD/WR, FSHCNTL, and WAITACK are also generated from random logic. A

program counter incrementer is needed to correctly address memory.
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Block Type . Size (bits)
Data drivers tristate pad driver 32
Address drivers  pad driver - 32
WAIT random logic
RESET random logic
|1/D random logic, pad driver
RD/WR random logic, pad driver
FSHCNTL random logic, pad driver
WAITACK random logic, pad driver
PC+ incrementer 28

- Table 7.4- Functional Blocks from the System Requirements

A final set of functional blocks is needed due to the processor’s pipelining.
Whenever data is available from one resource on a specified clock phase but used
by another resource during a later phase, the possibility exists that the originating
resource will have already been re-used by the time the requesting resource needs
the data. Thus, the requested data will have been lost unless some temporary
storage is provided for it. The need for temporary registers can readily be seen in
diagrams such as Figure 7.4. In Figure 7.4 the pipelining for all instructions that
use the write pipeline function are shown along with the pipelining of instructions
that overlap the write. For the instruction being analyzed, the origination of
information used in the write is circled and an arrow drawn to the clock phase of
the write that uses it. If the originator is used between the time it generates the
information and the completion of the pipeline function that uses the information,

a temporary latch will be needed. Reuse is indicated by the dotted circles in
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Figure 7.4. To detect any reuse of the originator, all pipeline functions of
overlapping instructions are checked. For example, during arithmetic, logical,
and shift operations the ALU generates data in cycle 2, phase 3. This information
is then written in cycle 3, phase 3. However, the following instruction uses the
ALU in its cycle 2, phase 3, before the write has completed. Therefore, a
temporary register is needed to store the ALU result before the write, so that
another alu operation may start. Similarly, an instruction fetch retrieves the
destination of the write that is then decoded during the 2nd decode - cycle 3,
phase 1. Meanwhile, another instruction fetch has been completed. Upon
completion the destination field will change. Thus, a temporary register is needed
for the destination field of the original instruction. Similar dfagrams are shown in
Figure 7.4 for all instructions using the write pipeline function. Temporary
latches are needed for fetched data, register data to be stored, and the program
counter. This same analysis is done for all pipeline functions to identify the

temporary storage blocks needed (Table 7.5).
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Figure 7.4- Temporary Storage Identification (cont.)
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Block Needed by Type Size (bits)
= - """
TempALUoutputl write, Dfetch, store  m/s latch 32
TempDataln write m/s latch 32
TempPC write m/s latch 32
TempStoreOperand  write, store m/s latch 32
TemplnstrLatch 2nd decode m/s latch 13
TempALUinputl ALU m/s latch 32
TempALUinput2 ALU m/s latch 32
TempALUoutput2 compare latch 2
TempOpcode DetectTrap m/s latch 9
TempTags ‘ DetectTrap latch 8
TempPSW DetectTrap latch 1
TempCWP DetectTrap latch 3
TempSWP DetectTrap latch 3

Table 7.5- Functional Blocks for Temporary Storage

Tables 7.1 through 7.5 summarize all functional blocks that are identified by
an inspection of the architecture, system specifications, and processor pipelining.
These functional blocks will be organized into circuit blocks during the functional

block synthesis step.

1.2. Bus Structures

The bus structures of a processor must provide for all the communication
required by the pipeline functions. Processor instructions were broken into

pipeline functions (Ch.6, Sec.1.3). Therefore, by satisfying the communication
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needs of the pipeline functions, the needs of the instructions are also satisfied.
Information transfer is indicated by the arrows in the algorithmic description of
each pipeline function. Therefore, each arrow must be assigned a time slot on a
bus structure. The inputs to the bus structure are indicated by the functional
blocks of the right side of the statement. The destinations of the bus structure
are the functional blocks of the left side of the statement. For example, the write
pipeline function was algorithmically expressed by:

r[D] <- ALUoutput
The right side - ALUoutput - indicates that an ALUoutput block is the origin of
the data. Consultation with the lists of functional blocks reveals that
TempALUoutputl was intended to hold the ALU data for subsequent writes. The
destination block is a register - r[D]. This could be in one of the 72 global or
local register blocks or any of the special registers. Thus, a bus structure must
exist between TempALUoutputl and these registers (Figure 7.5). All portions of

this bus structure are reserved for writes in clock pha.Se 3 - the write phase.

7}

PSW

Globals Tem
and g__SHA,‘_SHBL ALl _J_m__,l_ec__,.swr-

Locals outputlf

Figure 7.5- Bus Structure for r[D] <- ALUoutput
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To design the processor bus structure all pipeline functions are analyzed in
this way. A table is compiled that lists all necessary lines of communication with
their origins, destinations, and time slot usage (Table 7.6). Assignments through
random logic— the decode function for example - are not included in this table.
These assignments are not simple interconnects but signify PLAs and other logic

circuits.
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Pipeline Function

Ifetch- phase 1
phase 3
phase 3

Read- phase 2

DetectTrap— phase 3

DetectSkip- phase 3

Nil- phase 3

CWP+- phase 3

CWP-- phase 3

modifyPC- phase 3

Dfetch- phases 1,2,3
phase 3

Store- phases 1,2,3
phases 1,2,3
phase 3

ALU- phase 2

phase 2

phase 3

Originating Block

TempDataln

PC, TempPC

PC

data drivers

PC+

globals, locals, PC, SHB,
SHA, TB, SWP, CWP, PSW
TempALUoutputl
globals, locals
instruction latch
SignExt
TempALUoutputl
globals, locals

TB

PC+

Nil

CWP+

CWP-

Add
TempALUoutputl
data drivers
TempALUoutputl
TempStoreOperand
TempStoreOperand
TempALUinputl

TempALUinput2

add, subtract, and, or,
xor, srl, sra, inserter,
extractor

Destination Block

Write- phase 3 TempALUoutputl globals, locals, PC, SHB

SHA, TB, SWP, PSW,
CWP

globals, locals

locals

address drivers
instruction latch

PC

TempALUinputl

TempALUinputl
TempALUinput2
TempALUinput2
TempALUinput2
TempALUinput2
TempStoreOperand
PC

PC

locals

CWP

CwP

PC

address drivers
TempDataln
address ‘drivers

data drivers

locals

add, subtract, and, or
xor, srl, sra, inserter
extractor

add, subtract, and, or
xor, srl, sra, inserter,
extractor
TempALUoutputl,2

Table 7.6- Lines of Communication
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Bus structures are now proposed that account for every entry in Table 7.6.
The possible solutions are limited by restrictions to microarchitecture design from
the preliminary phase — characteristics of available circuits and interconnect

schemes. For SOAR, important limitations were:

1. Two read ports from the register file using the two bit lines.

2. One write port to the register file using the same two bit lines.

3. Space for only one bus to cross the ALU blocks- Add, Subtract, Xor,
Or, And, Srl, Sra, Inserter, Extractor.

4. Data pads on one side of the chip and address pads on the opposite.

Bus structures may be represented in functional block diagrams that show the
functional blocks and buses that connect them. For SOAR, the functional block
diagram of Figure 7.6 is proposed. This is an extension of Figure 7.5 that includes
all the buses required by Table 7.6.
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Figure 7.6- Proposed SOAR Bus Structure and Functional Block Diagram
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1.3. Resource Usage

Bus usage for SOAR is shown in Table 7.7. When more than one pipeline
function uses the same bus time slot, the pipeline functions must be mutually
exclusive. If they are not, a conflict would exist. For example, both write and nil
use busD during phase 3. However, nil uses it during cycle 3 of a return while
write uses it during cyéle 3 of an alu, call, trap, load, or store instruction. Any
two of these instructions can not be in cycle 3 simultaneously and therefore there

is no conflict for busD by the nil and write functions.

Bus Phil Phi2 Phi3

BusA Precharge | Read Writ;a, Nil, Store
BusB Precharge | Read | Write, Nil, Store
BusD Precharge | Read | Write, Nil

BusL Precharge | Read | unused

BusS Precharge | Read | unused

Dataln | unused Store | Ifetch, Dfetch, Store

Table 7.7- Bus Structure Usage

At this time resource usage for all resources should be examined to ensure
that no conflicts exist. Major resource usage was analyzed in the preliminary
phase (Ch.8, Sec.1.6). Similar analysis is now done for all remaining resources,

revealing no conflicts.
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1.4. Complete Functional Block Input and Output Specification

To complete the details of microarchitecture synthesis all inputs and outputs
of each functional block must be specified. At the start of microarchitecture
synthesis the circuit type of each block was identified. This circuit type may need
modification to provide the exact function called for by the functional block.
Modifications may include variations on the number of input and output ports or
internal clocking. Data inputs, control line inputs, and data outputs of the
customized block are identified. The conditions that determine the control line
inputs are also identified. These conditions must be generated somewhere and

therefore identify condition outputs of other blocks.

The TempALUinput2 provides a good example of this procedure. It was
identified as a 32 bit master/slave latch. Figure 7.7a shows one bit of a
‘master/slave latch from preliminary circuit design. Consultation with the
functional block diagram (Figure 7.6) and algorithmic statements of the pipeline
functions (Ch.6, Sec.1.3) shows that this latch needs two inputs — one from busL
and one from busB. Loading occurs due to a read which is in phase 2. Thus,
both load control lines are enabled Auring phase 2. The output of this latch is the
only connection to the second ALU input. Therefore, no enable circuitry is
needed on the output. The AiJU o{peration involves precharged logic and occurs
in phase 3. Therefore, the ALU inputs must be set up in phase 2. Consequently,
the output- of this latch must be ready in phase 2. This means that the step
transistor is eliminated since the inputs are loaded and must flow through to the
output in phase 2. Refreshing always occurs in phase 1 or phase 3. Conditions
for loading busB are during the read function of non-immediate ALU, byte, skip,
trap, return, and load instructions. BusL is loaded during the read phase of a call,
jump, or store ipstructions, and immediate ALU, byte, skip, trap, return, and load

instructions. Table 7.8 summarizes the inputs and outputs of the



TempALUinput2 block.

load step

refresh

1

M

|

data in —J—L—'D"_'—\_“D"

output enable

precharged
output bus

>

(a) Generic M/S Latch
busBtoINB
busLtoINB phase 3
Im
M No
busB__11 [ ]I ~So—
busL L

(b) Customized Latch

| 2nd ALU input
INB

Figure 7.7- M/S Latch Customization to form TempALUinput2
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Inputs

BusB
BusL

Outputs

INB

busBtoINB

busLtoINB

Control Lines

Enable Conditions

From

phi2 and imm and (opl=
add,sub,or,and,xor,srl,
sra,insert,extract,skip,
trapi,reti,Joad,loade,

loadm)

phi2 and [(imm and (opl=

add,sub,or,and,xor,srl,
sra,insert,extract,skip,
trapi,reti,load,loade,
loadm))or(opl=call,jmp,

store,storem)]

decode PLA

decode PLA

Table 7.8- Inputs and Outpits- TempALUinput2

To completely specify the microarchitecture this is done for all functional

blocks. All conditions must be generated somewhere. Therefore, if functional

blocks that generate conditions have not been specified they must be specified

now. For SOAR this means adding decode PLA blocks to the list of functional

blocks.

1.5. Microarchitecture Verification

After the microarchitecture has been specified it must be checked to make

sure that it executes instructions and responds to system inputs as it should. This

verification process is crucial to finding and eliminating errors in the

microarchitecture. Verification is usually done with the aid of CAD tools. Three
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things are needed for verification:

1. A microarchitectural or functional simulator
2. A complete microarchitecture description, compatible with the simulator

3. A set of test programs or diagnostics

A functional simulator has the capability of generating new node valués from
previous and present node values. Changes to the input nodes - clocks, data
inputs, etc. — cause changes in many internal nodes. The functional simulator
generates these new node values. Typically, input nodes including clocks are
changed simultaneously on the clock’s edge. The simulator then evaluates all
nodes affected by the input nodes and the nodes that they in turn affect, until all
nodes have settled. The simulator is then ready to accept another set of inputs.
Thus, a test program is stepped through by clock phases. The SOAR project used
the SLANG functional simulator [VanD82].

The functional simulator excepts a microarchitecture description containing
information like that of Table 7.8 and Figure 7.7b, for all functional blocks. The
SLANG description of the TempALUoutput2 latch is given:

(defnode INB
(depends phi2 busL busB phi3 busLtoINB busBtoINB)
(update '
(If3way phi3
INB
(If3way busLtoINB
busL
(If3way busBtoINB
busB
INB
UNK)
UNK)
UNK)))
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The output node is given in the defnode statement. Input nodes are listed in the
depends clause. The update statements are a description of the circuit in Figure
77b. Pass transistors are described by the If3way statements. Higher level
abstractions of functional blocks will speed up the simulation but care must be
taken so that accuracy is not sacrificed. For example, the register file for SOAR
was simply described by an array. Individual gates were not s.imulated.

Appendix B contains the SLANG description of SOAR.

To completely test the microarchitecture a set of diagnostic programs that
exercise all possible situations and features of the architecture, is needed. For
SOAR a list of items to test was compiled and diagnostics were written to cover

these situations.

Table 7.9 lists the diagnostics used to test the instruction set. Common
instructions — add, subtract, jump, and call - and common situations - sign
extension of an immediate — happened throughout the diagnostic set and therefore
did not need separate diagnostics dedicated to them. The largest effort here was
put into completely testing all conditions (Table 5.7). The multitude of return
instructions and forwarding situations were the next largest efforts for the

instruction set diagnostics.

Table 7.10 shows the diagnostics used to test the register organization.
Window management was the most complex register feature tested. This was

followed by the memory mapping of on chip registers — pointer to register.

Diagnostics to test the trap mechanisms are shown in Table 7.11. The most
complicated trapping diagnostics were due to the variety of tag and generation
scavenging traps, and the window management diagnostics.

Diagnostics for the external interrupts are shown in Table 7.12. Most
difficult to test was the WAIT signal. It could arise under many circumstances

and had to be tested for all these possibilities.
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Feature SOAR Cycles % of Diagnostics
conditions 888 17.1
return 202 5.6
forwarding 195 3.7
skip 104 2.0
trap instructions 78 1.5
store 46 9
loadm, storem 44 9
or, xor, and 40 .8
insert, extract 38 v
srl, sra, sl 30 .6

Table 7.9- Instruction Set Diagnostics

~Feature SOAR Cycles % of Diagnostics
windows 728 14.0
pointer to register 347 6.7
special registers 108 2.1

Table 7.10- Register Organization Diagnostics
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Feature SOAR Cycles % of Diagnostics

window overflow, underflow 728 14.0
tag tréps 623 12.0
-alu, shifts 255 4.9
-loads 180 ' 3.5
-overflow 130 2.5
-skips | 58 1.1
generation scavenging 294 5.7
-store 265 5.1
-return 29 .6
illegal opcodes : 209 4.0
priority mechanism 149 29
software interrupt 97 _ 1.9
trap instructions | 78 1.5
1/0 interrupt - 61 | 1.2
page faults 55 1.1

Table 7.11- Trap Mechanism Diagnostics
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Feature SOAR cycles % of Diagnostics
ﬁ‘

wait 645 124
I/O interrupts - 61 1.2
page faults - 55 1.1

Table 7.12- External Signal Diagnostics

Table 7.13 summarizes these diagnostic categories. The major portion of the
_ diagnostic effort was spent testing the trapping mechanisms - 44.3%. Following
this was the instruction set which was dominated by the condition testing. A
total of 5177 SOAR cycles made up the diagnostic set. A few diagnostics - such
as the window management tests — fell into more than one category. This is why

the total is less than the sum of the individual categories.

Diagnostic Category  SOAR Cycles % of Diagnostics

Trap mechanism 2294 44.3
Instruction set 1755 33.8
Register organization 1183 22.8
External signals - 761 14.7

Table 7.13- Diagnostic Categories
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1.8. Microarchitecture Synthesis Summary

Detailed microarchitecture design was completed in the microarchitecture
synthesis step. This detailed design considered the external inputs — architecture
and system specifications — and internal fixed inputs from the preliminary phase

— available circuits and interconnect schemes.

Using these inputs and the pipeline design from the preliminary phase, all
functional blocks were identified. Their functidn was expressed first in terms of
the available circuits and then by customization of these circuits. Bus structures
were designed to accommodate all data transfers implied by the algorithmic

descriptions of the pipeline functions.

The complete microarchitecture description included listings of the data and
control line inputs to each functional block, along with the data and condition line
outputs of the blocks. This and the blocks’ operations completed the detailed
mjcroarchit.iecture description.

Finally, the detailed description was verified for correctness. This was done
by running diagnostic programs on a simulator that functioned according to the
detailed microarchitecture description. Many bugs were discovered and corrected
due to this verification process. The verification process including diagnostic

development, simulation, and debugging took 7 to 8 months.

2. Microarchitecture Analysis

Analysis can be done for any characteristic of the processor (Ch.4, Sec.3).
Typically, analysis includes, but is not limited to, the speed, power, and area
characteristics. For SOAR the primary concern was processor speed. Area and

power limits were looser and had lower priorities.
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2.1. Speed Analysis

'Speed analysis, at the microarchitecture level, consists of examining all
processor activities to determine the clock phases that are allotte;l to each
activity. The circuit blocks and interconnects that realize a given activity must
be fast enough to complete the activity in the allotted time. The flow diagram for
this is shown in Figure 7.8. The ‘? indicates a comparison between the time
allotted to each activity, according to its clock phases, and the predicted times,
according to the speed of the components of the activity. The circuit block and
interconnect composition of each activity is not yet known, so analysis at this
point consists of identifying the clock phases allotted to each activity — the section
of Figure 7.8 enclosed by the dashed lines. This information is recorded and used

in later comparisons when the composition of each activity is known.

: system specifications- speed
~ - clocking

micro-
archi-
tecture

desired
critical paths

internal interblock
block delay delay

Figure 7.8- Speed Analysis After Microarchitecture Synthesis
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During microarchitecture synthesis, inputs and outputs of all functional
blocks have been identified and recorded in tables such as Table 7.8. The
processor’s activities lead to the setting of these signal lines. To consider all
activities it is sufficient to consider either all inputs for all functional blocks or all
outputs. This is because the inputs of a given block are generated from one or
more outputs of other blpcks. When considering the timing of an input to a block
it is necessary to trace it back to its origins — outputs of other blocks. Therefore,
outputs will automatically be considered, as necessary, as the designer proceeds
through the list of inputs. Similar arguments can' be made for the consideration
of all outputs. In this methodology the inputs are used because of the data
organization. Tables such as Table 7.8 show the outputs of other blocks that
constitute an input, but do not hold information on inputs to other blocks that
use the given block’s outputs. Therefore, information is available to trace back

from the inputs but not forward from the outputs.

The inpui:s in Table 7.8 contain two types of information. First, they contain
‘timing information. This appears either ‘as explicitly mentioned clock phases or
implicitly through the functional description of the block - Figure 7.7b or the
SLANG description. Secondly, they contain signals that are outputs of other
blocks. These outputs of other blocks are generated by the functions of the other
blocks. They are therefore the result of some processor activity. The timing
information of each input indicates when these results will be used as an input.
Therefore, the timing information signifies the time when the activity that
generates the result, must be completed. The timing of the start of an activity is
found by tracing the result portion of the input signal back to its origins.
Typically, the -activity starts on a clock edge indicated by the functional

description of an originating block.
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To illustrate this microarchitectural speed analysis the TempALUinput2
functional block is used as an example. Table 7.8 shows four inputs to this block
— busB, busL, busBtoINB, and busLtoINB. Explicit timing information is shown
for the two control lines. Both busBtoINB and busLtoINB are gated with phi2.
Other information forming these control lines are conditions generated by the
decode PLA. An inspection of Figure 7.7b shows that the clock phase phi2 is used
to léad new data if the conditions are correct. Therefore, the conditions must be
determined by the start of phi2 to make sure that data is not erroneously loaded.
Thus, the rising edge of phi2 signifies the end of the time allotted to the decoding
for these two control lines (Figure 7.9). The falling edge of phi2 signifies the
completion of the load. Therefore, the data on busB or busL must be valid by
this time. Thus, the end of the read activity is the falling edge of phi2. |

Input Signal |phil | | phi2 | | phi3 Activity

busBtoINB Decode
busLtoINB F: Decode
busB Read
busL Read

Figure 7.9- Settling Time Slots for Inputs to TempALUinput2

The starts of these decode and read activities are found by tracing the result
portions of the input signals back to their origins. The control lines contain
conditions that are formed combinatorially from data in the instruction latch by
the decode PLA. The functional representation of the instruction latch (Figure
7.10) shows that this data is available at the start of clock phase phil. Thus,
decode begins at the rising edge of phil. BusB can be generated in a few ways. It

can be generated by a register file read, forwarding from the TempALUoutputl or
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TempDataln latches (Figure 7.11). All of these activities are initiated by the
rising edge of phi2. Similarly, busL is used to transfer data from either the sign
extender or instruction latch (Figure 7.12). Both of these data transfers also begin
with the rising edge of phi2 also. Therefore, the rising edge of phi2 is the start of

the read activity.

CP(’IPEl)load CP(IPEls;tep Fm'{?
phi3 phi3 phil '
RﬁSET phi2 T phi2

.Data In ‘m ‘D’—D"LI—\'LD—J’:L_D'E' to decode
- PLA

g

Figure 7.10- Instruction Latch Functional Representation
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Figure 7.9 indicates the activities that correspond to the settling of each
input along with the clock phases allotted to the activities. This type of analysis |
is carried out for all blocks. As synthesis progresses estimates of the times needed
for these signals to settle will become available. These estimates are compared
with the allotted clock phases and their lengths. These comparisons can reveal
signals that are not fast enough according to their time allotments and places

where the time allotments are longer than necessary.

This method of analysis reveals the timing of all signals. For the processor. to
function correctly all signals must function properly. Speed problems with any
signal, no matter how minor the signal is, can limit the speed of the entire
processor. Therefore, a method is needed to analyze all signals early in the design
process, not just major signals. In this way unobvious speed problems il; the
microarchitecture will not be overlooked. Steps may be taken to correct any
problems before large amdunts of work would have to be redone for the
corrections. This microarchitectural analysis of the clock phase allotments for the
settling of all functional block input signals becomes the desired critical paths
output of the microarchitecture level in the speed analysis flow diagram (Figure
7.8). Later in the design this output is compared with the increasingly accurate

estimates of the critical paths.

2.2. Area and Power Analysis

SOAR also had area and power specifications. Normally, area and power
analysis consists of allotting area, dimensions, and a power budget to each
functional block (Figure 4.19¢). The assumption for SOAR was that these
specifications were loose and that as long as the total area and power met the
specifications, it did not matter how these characteristics were divided up. Thus,

the original system specifications for power and area were passed through the
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microarchitecture level with no analysis (Figure 7.13).

system specifications- area system specifications- power
- dimensions

micro-
archi-
tecture

micro-
archi-
tecture

total area, total power
dimensions

Figure 7.13- Power and Area Analysis After Microarchitecture Synthesis
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Chapter 8
Functional Block Design
SOAR Case Study

After synthesis and analysis is completed at the microarchitecture level,
design moves to the functional block level (Figure 4.18). The flow diagram for the
functional block steps are shown in Figure 8.1. Functional block synthesis
consists of mapping the functional blocks into the actual circuit blocks. As this is
done, the processor interconnects between the circuit blocks are defined. Analysis
at this level first considers the circuit blocks and interconnects alone. Then the
individual characteristics are combined to arrive at the global characteristics.
These global characteristics are ‘compared to their desired values that were

arrived at through microarchitecture analysis.
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Figure 8.1- Functional Block Synthesis and Analysis
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1. Functional Block Synthesis

As previously discussed, there was no real distinction " between
microarchitecture and functional block synthesis on the SOAR project. In this
section the results of microarchitecture synthesis as it might have been done will
be used (Ch.7, Sec.1). This includes the list of functional blocks along wi};h the
detailed descriptions of their inputs, outputs, and function. Using these inputs to
functional block design, synthesis will be discussed_ to illustrate the methodology

on the SOAR processor.

When assigning functional blocks to circuit blocks, there is not always a one
to one correspondence between functional blocks and circuit blocks. Sometimes
many functional blocks can be incorporated into one circuit block — merging of
functional blocks — or one functional block may be mapped into more than one

circuit block - splitting of functional blocks.

1.1. Merging

It is desirable to merge functional blocks, since it can lead to less circuitry
and fewer and shorter interconnects. The most obvious candidates for merging
are functional blocks that use all or part of the same circuitry and have the same
inputs and outputs. In this way unnecessary duplication of circuitry is avoided.
Table 8.1 shows the functional blocks that were merged on SOAR for this reason.
In the adder, AND, OR, and XOR are formed and used to compute sums.
Subtract is done using the ones complement of the second operand and
performing an add. Therefore, these five functions exist in the adder. In the
shifter, both shift functions are the same except for the most significant bits that
are shifted in. Therefore, .the functional blocks srl and sra were combined to form
the shifter circuit block. Both insert and extract use similar hardware (Figure
6.10). The TempDataln and TempStoreOperand blocks are both temporary
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latches that hold external memory data. One is used during loads and the other
during stores. Since they have the same function and are never both used at the
same time they may be merged. Either the nil constant or the TempALUoutputl
latch data is written into the register file, so the nil constant was merged with the

TempALUoutputl latch.

Functional Block Circuit Block

%

Add

Subtract

And Adder

Or

Xor

Srl . Shifter

Sra

Insert EX/INS

Extract

TempDataln LOADL

TempStoreOperand

Nil Destlatch

TempALUoutputl

Table 8.1- Common Circuitry Merging
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Functional blocks that share the same inputs and outputs but have different
internal circuitry may also be merged into one circuit block. The internal
circuitry of the circuit block is the collection of circuitry from each functional
block. Thus, total circuitry is not reduced. However, the functional blocks have
the same inputs and outputs and caﬁ therefore share interconnects, reducing

routing. Table 8.2 shows blocks that were merged due to shared inputs and

outputs.

Functional Block Circuit Block
#
Adder ALU
Shifter
Global registers | Register file

Local registers

Tag Trap Detection

Trap Instruction Detection TiTtGsDetection
GS Trap Detection

Window Overflow Detection Window logic

Window Underflow Detection

Data Page Fault Detection Page fault detection

Instruction Page Fault Detection

Table 8.2- Shared Inputs and Outputs Merging
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Functional blocks may also be merged when most or all inputs and outputs of
one block are connected to only one other block. This first block provides an
auxillary function for the second block. Routing is minimized by combining such
blocks. A good example of this on SOAR, are the CWP, CWP+, and CWP-
blocks (Table 8.3). CWP+ aild CWP- increment and decrement the CWP,
respectively. Their inputs are the current CWP value and their outputs become
the upFlated CWP value when the conditions are right. D- and S2- are
decrementers for the D and S2 fields of the instruction latch, respectively. PC+
increments the program éounter - PC. WAIT and WAITACK are both derived
| from the WAIT input of the processor.
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Functional Block Circuit Block
W
CWP
CWP+ - CWP
CWP-
D- DST1

Instruction Latch (D field)

S2- SRC2
Instruction Latch (S2 field)

PC | firstPC, PClner
PC+

WAIT WAIT logic
WAITACK

Table 8.3- Auxillary Block Merging

A final reason to merge blocks is when a subset of the inputs or outputs of
one block are used solely by another block. This is perhaps the weakest reason
for merging. When considering these types of merges, many possibilities exist.
Tradebﬂ's have to be made between the routing that is eliminated and any extra
routing that is generated by the merge and the resulting larger block size that
may be harder to place and route than two smaller blocks. Merges of this type on
SOAR are shown in Table 8.4. These consist mainly of latches for various pieces

of combinatorial logic.
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Functional Block Circuit Block
#_——__—

Condition Comparator  Condpla

TempALUoutput2

TiTtGsDetection .
TempTags TTrap Detection
TempOpcode

TempCWP
TempSWP WTrap Detection
Windo;v logic

Table 8.4- Some Outputs=Inputs Merging

Tables 8.1 through 8.4 summarize the functional block merges of SOAR.

There were four types of merges, listed in decreasing order of importance:

1. Common circuitry
2. Shared inputs and outputs
3. Auxillary blocks

4. Some outputs = inputs

The purpose of merges is to eliminate redundant circuitry and minimize routing.

This leads to a more compact, faster, and lower power processor.

1.2. Splitting

Merging is complemented by functional block spli.t.ting. The goals of splitting

are the same as for merging — less circuitry, increased speed, fewer interconnects,
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and flexibility in placement. However, a split will typically improve one or two
factors and make the others worse. Thus, the tradeoffs have to be analyzed

carefully.

The first type of split involves duplication of circuitry. This is done when the
extra circuitry leads to faster circuits and less routing. The instruction latch was
the only functional block duplicated on SOAR. One copy was placed in the
datapath to generate immediate operands. The other copy was part of the

control section. Its various fields are decoded to set control and word lines.

A second way to split blocks is to leave the circuitry unchanged but put parts
of the block in different places. This is done if the various parts do not affect one
another and interface to disjoint blocks. By placing each piece close to where it is
needed, routing is reduced and speed is increased. Table 8.5 summarizes the
blocks of SOAR that were split for this reason. The PSW, instruction latch and
TemplnstrLatch were split into separate latches for each of the ﬁélds that they
included. The decpding functional block was split into blocks for control line

gating and the control line drivers and blocks for the combinatorial logic — the

decode PLAs.



Functional Block

| PSW

Circuit Block

%—;——_—=

PSW
shDST
shOPC

Instruction latch

SRC1
SRC2
DST1
CPIPE1

TemplnstrLatch

DST2
CPIPE2

Decoding

Decode PLAs

Control line gating and drivers

Table 8.5- Block Splitting, Same Circuitry
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Another reason to split blocks is to reduce circuitry. This leads to smaller

and/or faster functional blocks. The prime candidates for this were the PLAs.

Instruction decoding, condition checking, and trap detection on SOAR are done

primarily with PLAs. Originally signals were assigned as outputs of the PLAs

according to the functions that generated them. Six PLAs were identified with

these functions (Table 8.6). As the size of a PLA increases its speed decreases.

Sizes and speed estimates of the original PLAs are shown in Table 8.7.
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Original PLA Functional Blocks

Cplal 1st decode except register access

Cpla2 ' 2nd decode except register access

Condpla Condition comparator,TempALUoutput2

Illpla Illegal opcode detection

Apla decode- register access

Tpla Tag trap detection, trap instruction detection, TempTags,
GS trap detection, TempOpcode, priority-encoder |

Table 8.6- Original PLA Functional Blocks

Original PLA  Inputs Minterms Outputs Delay
-
Cplal 10 80 39 210ns
Cpla2 7 19 10 67ns
Condpla 11 34 2 103ns
Illpfa 8 8 1 46ns
Apla 18 34 24 110ns

Tpla 35 ? 9 ?

Table 8.7- Original PLA Sizes and Speeds

Tpla detects some of the trapping conditions and encodes the trap priority. These
functions were naturally much greater than a single 2 level AND/OR function
and were not able to be generated due to memory limits on our machines. The

large first decode PLA - cplal — would have limited clock phase 1. In the interest
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of being able to genérate all PLAs and speed up the processor, the PLAs were

reorganized into smaller, faster PLAs.

The most obvious PLAs to split are those whose outputs can be grouped so
that each set of outputs is formed from inputs that do not contribute to another
outpﬁt set (Figure 8.2). Thus, each set of outputs will also have its own set of
minterms that are derived from its inputs. When this is the case, the original
PLA is split into multiple PLAs, each corresponding to one set of outputs. Each .

input will be an input to only one of the new PLAs.

— ] >
inputs " | outputs > inputs outputs

Figufe 8.2- No Common Inputs PLA Split

Sometimes it is the case that the outputs can be grouped so that each set of
outputs has its own distinct set of minterms, but sets of inputs are not distinct
(Figure 8.3). A given input may contribute to more than one minterm group.
When this is the situation, a new PLA is formed for each set of minterms. Inputs

are then used by one or more of the new PLAs.
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—>

outputs

—>

—>

inputs outputs

Figure 8.3- No Common Minterms PLA Split

The third type of PLA split leads to the formation of sequential PLAs. PLAs
implement a 2 level AND/OR function. Logic functions that naturally are more
than two levels may be reduced to this format but often at the cost of many more
minterms. The PLA size may balloon and multiple sequential PLAs will be faster.
This was the case with the tpla. Its most complex outputs were three 2 level
AND/OR functions and an intermediate inversion. The attempt to fit it into a
single 2 level AND/OR function generated enough terms to exceed machine

meimory limits.
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mn minterms

U

minterms minterms
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Figure 8.4- Factoring to Split PLAs

The six SOAR PLAs weré split as shown in Figure 8.5 and summarized in
Table 8.7. Cplal was split into two approximately equal PLAs by identifying two
groups of minterms. They are distinct except for one minterm. Seven of the nine
inputs are shared by both PLAs. Tpla was split by first identifying a distinct set
of inputs and outputs that became tplal. The remaining outputs are formed by
factoring the original seven level functions into three sequential PLAs and a small
amount of logic between tpla and tpla2. Apla2 was first split off from apla. It
shares one input and no minterms with the other parts of apla. The remaining
outputs are formed from the same inputs but may be split into two distinct sets of

minterms. This resulted in apla and aplal.



Original PLAs Final PLAs
10 80 39 OpeC Mi 3
cplal F_—) ne Common Minterm Xxcpia
35 ? 9 No Common Input 10 4 2
tpla —> ° puts !I tplal —>
. 14 7
8 8 23 9 4
Factoring —4 tagcompla _lj tpla tpla2 —>
1 3
7 1
j apla 4
11 -
18 a%?a 24, No Common Minterms : l a%)(l)al l)
‘ 1 Common Input 1 1 :
E—— 7 7
s s |
7 19 10 19 1
cpla2 —> unchanged 7 __,I cpla2 ._g
8 8 1 8 1
'_’I illpla > unchanged 8 —-)I ilpla >
11 2. I — 34 |2
condpla [—> unchanged 1 condpla >

Figure 8.5- PLA Splits of SOAR
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Original PLA | Final PLA  Inputs Minterms Outputs Delay
Cplal Cplal 9 38 16 102ns
Xcplal 9 43 23 85ns
Cpla2 Cpla2 7 19 10 67ns
Condpla Condpla 1 34 2 103ns
Nipla Tlipla 8 8 1 46ns
Apla Apla 12 17 10 42ns
Aplal 12 10 7 50ns
Apla2 6 7 7 32ns
Tpla Tpla 15 23 5 54ns
Tplal 10 4 2 45ns
Tpla2 10 9 4 54ns
Tagcompla 8 8 1 42ns

Table 8.7- PLA Splitting

The slowest PLA in the decode path is cplal. The delay through cplal is
102ns, making decode 107ns faster than before the split. The other important
result of the split is that the trap mechanism logic can be realized with

sequentially organized PLAs.



258

1.3. Summary

Table 8.8 summarizes the original functional blocks and their circuit block
assignments. It also categorizes the blocks according to their types: datapath,

control, or control line driver.



259

Functional Block - Circuit Block

SignExt SXT/DIL
Instruction latch DIL
Instruction latch CPIPE1
Instruction latch SRC1
Instruction latch, S2- SRC2
Instruction latch, D- DST1

TempDataln, TempStoreOperand LOADL

globals, locals Register file
SHA SHA

SHB SHB
TempALUinputl INAm
TempALUinput2 INBm
Inserter, Extractor EX/INS

Add, Subtract, And, Or, ALU

Xor, Srl, Sra

Rzero Precharge
TempALUoutputl, Nil Destlatch

PC, PC+ firstPC, PCincr
TempPC , lastPC

TB TB

SWP SWP
SWPcomparator SWPcompare
Address drivers AddressOut
Decoders Decoders

PSW PSW, shDST, shOPC
CWP, CWP-, CWP+ CWP
TemplnstrLatch DST?2, CPIPE2
Decoding, I/D, RD/WR Driver1-8

Forwarding comparators,
apla, aplal, apla2, cplal,

xcplal,
WAIT, WAITACK WAIT logic
Condition comparator, Condpla
TempALUoutput2 )
Illegal Opcode Detection Ilipla

Data drivers DataOut datapath

- datapath

“datapath

Type

datapath
datapath
control

control

control

control

datapath
datapath
datapath
datapath
datapath
datapath
datapath
datapath

datapath

datapath
datapath
datapath
datapath
datapath

datapath
control
datapath
control
driver
control
control
cpla2
control
control-trap

control-trap

Table 8.8 Circuit Block Summary
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Functional Block Circuit Block Type

Tag Trap Detection, TempOpcode Tagcompla, tpla, TTrapLogic  cont.-trap
Trap Instruction Detection,

GS Trap Detection, TempTags

Window Overflow Detection, Window logic cont.-trap
Window Underflow Detection,

TempCWP, TempSWP

SWI Detection SWI Detection cont.-trap
Data Page Fault Detection Page Fault Detection cont.-trap
Instruction Page Fault Detection
1/0 interrupt Detection I/0 interrupt detection cont.-trap
Trap Trap cont.-trap
Priority Encoder tpla2 cont.-trap
Reset Reset control
FSHCNTL : FSHCNTL control

Table 8.8- Circuit Block Summary (cont.)

The desired function of each circuit block is an output of functional block
design and is used in design by the circuit level. The function of each circuit
block is derived from the functional block description that the circuit block |
originated from. Appendix C contains functional descriptions in the form of logic

diagrams for all circuit blocks.

A netlist is another output of functional block design. It is used by the
interconnect design level. It can be derived from tables such as Table 7.8 for each

circuit block or from the logic diagrams.

Circuit block diagrams and a floorplan of the processor were then developed.
Figure 8.6 shows the circuit block diagram of the realized SOAR datapath and its
bus structure. The control line driver interface between the control and datapath
sections is shown in Figure 8.7. The trap and skip mechanisms of the control
section are shown in Figure 8.8. Figure 8.9 shows the remaining parts of the
control section. This includes the PSW, instruction latch and some register access

decoding.



Figure 8.6- Datapath- Data Transfer (Realized SOAR)
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Figure 8.7- Datapath- Control Lines (Realized SOAR)
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Figure 8.8- Control- Trap Section (Realized SOAR)
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The realized SOAR datapath contains a memory address latch - MAL. The

MAL is not on the list of functional blocks that were developed through this

methodology. The PC and TempALUoutputl latch duplicate the function of the

MAL. Thus, the MAL could have been omitted. This was the only difference

between the circuit block diagrams of the realized SOAR processor and a SOAR

processor developed through this methodology, using the realized SOAR pipeline.
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2. Functional Block Analysis

Functional block analysis leads to a comparison of desired values for the
quantities being evaluated, with predicted values for the same quantities. Desired
values were arrived at through microarchitecture analysis. After functional block
synthesis the circuit block and interconnect structure can be determined for all
signals. An estimated value for each characteristic being analyzed is determined
for each circuit block and interconnect. When analyzing speed, power, and area,
esfimates of the delay, power dissipation, and area of each circuit block or
interconnect is needed. These estimates are totaled up to arrive at an estimate of

the speed of each signal, total power, and total area.

2.1. Speed Analysis

On the SOAR project complete functional block agalysis of speed was not
done at this stage in the design. Functional block synthesis was followed by
synthesis at the circuit and interconnect levels with no intervening speed analysis.
Detailed speed analysis was then done and revealed several unacceptably long
delays. At this time functional block analysis was done to discover the reasons for
these delays. For the purpose of illustrating this methodology, functional block
speed analysis, as it should be done, will first be discussed. This will be followed
by the results of functional block speed analysis as it was done. It was done
correctly but if it had been done at the proper time - before detailed circuit and
interconnect synthesis — it would have saved many hours of detailed redesign at

the circuit and interconnect levels.
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" 2.1.1. Method

As previously discussed, each input signal to a block is identified with a
processor activity. Microarchitecture analysis identified the start and finish of
each of these activities. This defines the allowed settling time of the input signal

. corresponding to an activity. During speed analysis at the functional block level,
the circuit blocks and interconnects that the signal passes through when settling
are first identified. This is done with the help of the netlist and leads to diagrams
‘such as Figure 8.10, for each signal. In Figure 8.10 the signal being analyzed
passes through three blocks and the interconnects between them as it settles. To
predict the settling time, the individual block and interconnect delays for this
block structure are totaled. A second part of functional block analysis examines
these block structures to uncover unnecessary components and excessively long

paths. All this is done in the analyze functional block step (Figure 8.1).

: input signal
block 1 —-)I block 2 __,[block 3 —>being analyzed

clock edge
causing signal
to change

Figure 8.10- Block Structure of a Signal

The design process then moves to the analyze functional block wvs.
microarchitecture step. The total delays from the previous step are compared to
the desired delays. The desired delays were found from previous
microarchitecture analysis. They were expressed in terms of allotted clock phases

for the settling of input signals (Figure 7.9).
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This speed analysis can best be illustrated with an example. The
TempALUinput2 functional block became the INBm circuit block. It has four
inputs — busBtoINB, busLtoINB, busB, and b;lSL — as previously discussed. Using
the netlist it can be seen that the ungated version of busBtoINB comes from
xcplal. The function of xcplal is examined and shows that inputs from CPIPE1
form the busBtoINB output (Figure 8.11). The rising phase 1 clock edge at
CPIPE! signals the start of this decode activity (Figure 7.10). Similar analysis
using the netlist and circuit block functipns results in the block structures for the
remaining input signals to INBm - busLtoINB, busL, and busB. Two decoded
signals are combined to form busLtoINB. BusL is driven with information from
either the sign extender — SXT/DIL - or the instruction latch — DIL. Either
SXT/DIL or DIL is enabled by a control line from the Driverl circuit block. Data
from one of the registers, Destlatch, or LOADL is put onto busB during the read

activity. These blocks are also enabled by control lines from driver blocks.
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CP]P}H__,rxcp]al busBtoINB

(ungated)
phil rises
CPIPEH xcplal BusLtoINB
(ungated)
phil i'ies
CPIPE2 __,| cpla2
Driverl ,I SXT/DIL—>
phi2 rises b“SI-j
Driverl __,r DIL —
: register
Driver2 _,l decoders %ilfe S
phi2 rises
Driver6 Destlatch ]5[3511)1_ 5 )busB
phi2 lises
Driverl In-l?lftDr L >

Figure 8.11- Functional Block Structure of Inputs to TempALUinput2

Estimates of the delays through these circuit blocks and interconnects
between them are needed to compute the settling time of each signal (Table 8.9).
Some of this information is available from the characteristics of circuits that were
designed during the preliminary phase. PLA delay estimates are readily available

due to automatic layout generation of the PLAs from logic. descriptions, and
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timing verification of the layout using CRYSTAL. Other delays are unknown and
very rough guesses must be used. Enabling of the control latches — CPIPE1 and
CPIPE2 - should be relatively fast. Interconnect speeds depend on the capacitive
loads and composition of the interconnects. This can vary greatly depending on
the final layout and is therefore left unknown, as indicated by the ‘?". Delays for
circuits that drive buses, control,” and word lines were calculated using the
approximate loads, during preliminary circuit design. Thus, circuit block and

interconnect delays are lumped together for these situations.
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Block or Interconnect Delay (ns) Origin
-
CPIPE1 "0 guess
Xcplal | 100 CRYSTAL
CPIPE2 . 0 guess
Cpla2 70 CRYSTAL
Driverl + control line 20-40 preliminary phase
SXT/DIL +bus 30-45 preliminary phase
DIL + bus 30-45 preliminary phase
Driver2 + control line : 20-40 preliminary phase
Driver6 + controi line 20-40  preliminary phase
Decoder + word line 20-40 preliminary phase
Register file + bus ' 20-25 preliminary phase
Destlatch + bus 30-45 preliminary phase
DestDr + bus 20-45 preliminary phase
InputDr + bus 20-45 preliminary phase
Interconnect— CPIPEL to xcplal ? |
Interconnect- xcplal to INBm ?
Interconnect- CPIPE2 to cpla2 ?
Interconnect- cpla2 to INBm ?

Table 8.9- Circuit Block and Interconnect Speed Estimates

Two types of analysis are done with this block structure and delay
information. The most obvious analysis is to sum up the delays for each signal.

This leads to an estimation of the settling times (Table 8.10).
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Signal Delay

ﬁ

BusBtoINB 100ns + 2 interconnects
BusLtoINB (xcplal)  100ns + 2 interconnects or
(cpla2) * 70ns + 2 interconnects
BusL 50-85ns ‘
BusB (register file))  60-105ns or
(Destlatch) 70-130ns or
(LOADL) 40-85ns

Table 8.10- Input Signal Delays (INBm)

The second type of analysis is more subjective. The block structures for each
signal are examined to identify unnecessarily long paths for signal settling (Figure
8.11). In this example the control lines - busBtoINB and busLtoINB - involve a
minimum number of blocks. A latch holds the opcode. This opcode goes through
one decode PLA and then to its destination. The number of blocks needed to
drive busL is also minimal — a driver block that enables the block holding the
data to be read onto busL. Two of the three paths to drive busB are also minimal
- the register file and InputDr paths. In the third path the Destlatch first drives
busD then the DestDr block transfers the data from busD to busB. This last step
is unnecessary if the microarchitecture can be rearranged so that INBm can be
loaded from busD. Referring to the first part of functional block analysis (Table
8.10), it can be seen that the delay of this third path is estimated to be the longest
settling time for busB. Thus, both types of functional block analysis indicate that
the processor speed can probably be improved by rearranging the

microarchitecture so that busD can load INBm if this is found to be a limiting
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critical path when microarchitecture versus functional block analysis is done.

These two types of delay analysis should be done for the input signal of all

circuit blocks.

Results of this analysis are then compared with the desired critical paths
from microarchitecture speed analysis (Ch.7, Sec.2.1) and redesign is done as
necessary (Table 8.11). All signals except busB, for the INBm circuit block
compare favorably with the previous microarchitecture analysis. BusB is
estimated to take longer than the allotted phi2 phase — 50-85ns. The unminimal
busB path from the Destlatch requires 70-130ns. Even the minimal bus B path
from the register file needs 60-105ns. Thus, even with the proposed
microarchitecture rearrangement the sbeciﬁcation 'will not be met. At this point
all critical paths for phi2 should be inspected. If phi2 must be extended even
further due to some other signal it may not be worthwhile to speed up the reads
onto busB. If these reads prove to be the limiting path for phi2 then either phi2
must be extended to accommodate them or faster circuits must be designed so
that the specification can be met or some compromise between these two solutions

must be agreed upon.

Signal - Allotted Clock Phases Estimated Delay Compare
BusBtoINB  phil + underlap: 170-290ns  100ns + 2 interconnects ok
BusLtoINB  phil + underlap: 170-260ns  100ns + 2 interconnects ok
BusB phi2: 50-85ns 70-130ns not ok
BusL phi2: 50-85ns 50-85ns ok

Table 8.11- Microarchitecture vs. Functional Block Analysis
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2.1.2. SOAR Speed Analysis

Functional block spéed analysis of the PLAs was done after functional block
synthesis on the SOAR project. As previously described, the PLA functions were
originally grouped into six PLAs. Three of these PLAs were then split into
smaller PLAs. As described in section 1.2 of this chapter, the motivations for two
of these splits — cplal and apla — were the long delays through the original PLAs.
Tpla was split because it was unable to be generated. It would have been
extremely long if it was generated and consequently, unacceptably slow. thus, the

PLAs followed the design steps of Figure 8.1:

1. Synthesize functional blocks
2. Analyze functional blocks- not ok
3. Synthesize functional blocks

4. Analyze functional blocks- ok

To analyze the PLA blocks, the layout was used since it was easily available due

to CAD tools.

Other functional block speed analysis was done after detailed circuit and
interconnect design. It revealed unacceptable bottlenecks on the chip and
resulted in microarchitecture redesign. If done at the right time, it would have
identified the problems earlier, before the time consuming circuit and interconnect
design and layout had been completed. As previously discussed (Ch.6, Sec.1.7),
multicycle instructions on SOAR were implemented by an internally generated
series of single cycle opcodes. This was ‘the result of the microarchitecture
redesign after functional block speed analysis. Before the analysis an interlock
mechanism was used to hold the opcode of the multicycle instruction in the

instruction latch for the required number of cycles (Figure 8.12).
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Internal
. Interlock _ Opcodes
loadm cycle 1 loadm
loadm cycle 2 load6
loadm cycle 3 load6
loadm cycle 4 load5
loadm cycle 5 load4
loadm cycle 6 load3
loadm cycle 7 load2
loadm cycle 8 loadl
loadm cycle 9 load0

Figure 8.12- Instruction Latch Opcodes for a Multicycle Instruction—- Loadm

Figure 8.13 shows the original interlock mechanism. CPIPE1 is the
instruction latch holding the multicycle opcode, loadm. This opeode is decoded
by a decode PLA and a signal indicating a multicycle opcode is being processed, is
generated for the interlock logic. DST1 holds the register specifier. During loadm
registers are written, with the loaded data, in descending sequential order. So the
new value of DST1 comes from the decrementer during loadm interlocks. The
interlock logic generates the signal that selects the decrementer for DST1 when a
multicycle opcode is being processed. When DST1 is zero, the multicycle
instruction has been completed and various normal processor activities -
increment the PC, load CPIPEL, load the MAL from the PC, etc. — are resumed.

The control lines for these activities are set by a decode PLA.
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Figure 8.13- Interlock Mechanism Block Structure

There were several control lines that were set by this interlock mechanism.
This path is composed of seven circuit blocks and the routing between them. As
these signals settle, they must go through the largest decode PLAs - cplal, xcplal
— twice, the interlock logic twice, and assorted other pieces of logic. It was not
possible to put all seven blocks in close proximity. Therefore, interconnect
loading and delays are significant. When this path is compared to the minimal
decoding paths of busBtoINB and busLtoINB (Figure 8.11), it is apparent that it

is extremely long.
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The internal opcode mechaﬁism for interlocks is shown in Figure 8.14. The
instruction latch, CPIPEl, holds the opcode. However, unlike the interlock
situation, this opcode changes during the multicycle instruction (Figure 8.12). All
control lines are set according to the opcode. The opcode for each cycle is unique
and therefore the end of the multicycle instruction is indicated by the last opcode
~"load0. Control lines that increment the PC and -load CPIPEl from the
instruction field are emabled when this last opcode is decoded by cplal, and
disabled during the other opcodes of the multicycle instruction. The decrementer
is ﬁsed to address the register file, just as with the interlock method. The
decrementer also supplies the unique piece of the internal opcode for every cycle
of the multicycle instruction. The internal opcode is loaded into CPIPEL at the
start of the each cycle. In this way a unique internal opcode is generated for each

cycle of the multicycle instruction.
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Internal . Instruction
Opcode field

address rjgister ﬁle

Figure 8.14- Internal Opcode Mechanism Block Structure

Using the internal opcode mechanism, control lines that were previously set
with the interlock mechanism, now settle through a path composed of CPIPE1
and one large decode PLA - indicated by the dashed lines of Figure 8.14. This is

the minimal block structure needed to form control lines from an opcode.

A second non-minimal block structure for instruction decoding occurs when
control lines must go through two sequential PLAs, as they are being set (Figure
8.15). This is the situation for control lines that are involved in routing the ALU
output (Destlatch) or data input latch (LOADL) directly to the ALU input -
forwarding — and when writing to the spécial registers. Forwarding occurs when a
source register for an instruction in the read phase, is the same as the destination
register of the previous instruction. The source of the forwarded data is either
the Destlatch or LOADL latch, depending on whether the previous instruction

was a register to register instruction or a load. Cpla2 determines this, according
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to the previous opcode that is in CPIPE2. The signal from cpla2 is combined in
* aplal with the signals from the forwarding comparators to generate the
forwarding control lines. These lines are used during the read phase — phase 2'-
and must therefore have settled by the start of phase 2 (Table 8.12). When
compared with the minimal decode that has the same time allotment, the
forwarding lines have a slightly longer PLA delay and an extra interconnect delay.
This indicates a potential bottleneck to decoding. Therefore, it was decided that
the two PLAs - cpla2 and aplal — should be placed close together. This

requirement becomes an input to interconnect design.

PR l forwarlding
2 F"" cpla2 |_ycontro
| aplal lines

Forwarding
Comparator

special register

apla decode for write

Figure 8.15- Another Non-minimal Block Structure for Instruction Decode



279

Signal Allotted Clock Phases Estimated Delay Compare
ﬁ
Forwarding phil+underlap=170-290ns. 120ns+3interconnects ok
Write specials phil+phi2+2 underlaps=240-395ns 102ns+3interconnects ok

Pointer to reg.

Original phil+phi2+2 underlaps=240-395ns 350ns+2 interconnects .not ok
Revised phil+phi2+2 underlaps=240-395ns " 250ms+1 interconnect ok
Trap

Thru cplal phi3+phil+phi2+2 underlaps=340-495ns 300ns+6 interconnects not ok
Thru cplal phi3+phil+1 underlap=270-390ns 300ns+6 interconnects not ok‘

Not thru cplal  phi3+phil+1 underlap=270-390ns 200ns+4 interconnects ok

Table 8.12- Functional Block Analysis of Key Paths

Writing to the special registers. also requires two sequential PLAs (Figure
8.15). Cpla2 decodes the opcode and indicates a write is to be done. Apla2 is the
decoder for the special registers. This write is done in phase 3. Thus, both phil
and phi2 are allotted to the decode (Table 8.12). This decode requires 100ns of
PLA delays and three interconnect delays. It should easily fit into its 240 to

395ns time slot.

A third non-minimal block structure and therefore potential problem for
instruction decoding, existed with control lines that depended on the pointer to
register signal (Figure 8.16). Pointer to register is asserted whenever a memory
access refers to an on chip register. The SWP comparator is a 24 bit ripple adder
that includes zero detection on the output. This comparator was estimated to
have a 250ns delay. The control lines that depend upon pointer to register must
settle by the start of phase 3 (Table 8.12). The original microarchitecture
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proposal had these control lines settling through the SWP comparator and cplal
sequentially. This was estimated to have a delay of 350ns plus two interconnect
delays. The allotted time for settling was 240-395ns. This indicated a problem
and the microarchitecture was rearranged so that signals would go through the
comparator and cplal simultaneously (Figure 8.16b). The two resulting signals
are combined at the control line drivers to form the control signals. With this
modification the overall delay was reduced by 100ns and an interconnect delay

(Table 8.12).

SWP ‘ Pointer
to
) SWP Register
phil 1lses comparator :I cplal |3 (1;322;01
MAL
CPIPE1
phil rises

(a)- Before Microarchitecture Rearrangement

SWP Pointer
to
K SWP Register
phil ﬂses comparator
MAL

Control

}—, Lines

CPIPE1 cplal

phil rises

(b)- After Microarchitecture Rearrangement

Figure 8.16- A Third Non-minimal Block Structure for Instruction Decode
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The block diagram of the trapping mechanism shows seven possible paths
that may all result in a trap (Figure 8.8). The path that causes the longest delay
is the path through the condition PLA. The block structure for this is shown in
Figure 8.17. Signals on this path start to change at the beginning of phase 3 as
the ALU compares the two operands. The condition PLA evaluates the ALU
result according to the type of comparison being done, and generates a signal
indicating whether a trap should occur or not. When a trap occurs an internal
opcode is placed into the opcode latch (CPIPEL) and then decoded to set control
lines. All but two of these control lines are used in phase 3. The allotted time for
these control lines is 340 to 495ns (Table 8.12). The estimated delays of the PLA
outputs are 300ns plus the delays of six interconnects. This is close to the limit,
making it important to minimize the interconnect delays.l Two control lines must
be generated by phase 2. This would not be possible if they were PLA outputs.
Therefore, théy are generated directly from the trap signal.

control
lines for
ALU condpla .,I 'lroglhéap Trap Tr CPIPE1 _,r cplal |ngxt phi3 |
phi3 rises
2 control lines
DST1 *needed by phi2
phil rises

Figure 8.17- Longest Block Structure of the Trap Mechanism

Functional block speed analysis provided insights into the bottlenecks of
SOAR when speed analysis of the completed layout was carried out. This led to
revisions in the microarchitecture and further functional block analysis. When

this analysis met the requirements of the microarchitecture, the circuit and
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interconnect design and layout was redone. This redesign proceeded according to

the methodology.

2.2. Power Analysis

Power analysis of SOAR was done at the functional block level after
functional block synthesis. DC power dissipation levels of the circuits developed
during the preliminary phase, were used as inputs to functional block analysis.
AC power dissipation for bus and interconnect loads of approximately 1pF, were
calculated based on a 500ms cycle time and proved to be negligible. Table 8.13
summarizes the estimated power dissipation for SOAR from functional block
analysis. The large register file and assortment of PLAs contributed most to
power consumption — 25% and 21% respectively. At this point the .total power
estimate for SOAR Was 600mW.



Block Type Power (mW) %
Datapath latches 60 10
Bus drivers 22 4
Register file 150 25
Word line drivers 86 14
Control line drivers 38 6
Decoders- register file 14 2
EX/INS 4 1
ALU 11 2
Control latches 11 2
Pad drivers 77 . 13
PLAs 129 21
Total 602 100

Table 8.13- Power Estimate from Functional Block Analysis

283



284

Chapter 9
Circuit and Interconnect Design

SOAR Case Study

Once a functional block design that is expected to meet the microarchitecture
requirements has been proposed, design moves to the circuit and interconnect
levels. Figure 9.1 shows the section of the methodology that corresponds to
circuit and interconnect design. Circuit and interconnect design are done
simultaneously due to the close ties between the two levels. Both levels contribute
to the final layout of the processor. During synthesis the sizes and geometries of
the two individual levels must fit together and meet the area specification of the
chip. Port placement on the cillcuit blocks influences interconnect layout. During
analysis, interconnect loading affects the speed of the circuit block outputs.
Circuit block inputs at the terminations of interconnects affect the maximum

possible speed of the interconnect.
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Figure 9.1- Circuit and Interconnect Design

1. Circuit and Interconnect Synthesis

The first design step at the circuit and interconnect level is the synthesis of
the circuit blocks and the routing between them (Figure 9.1). Figure 9.2 shows
the flow diagram for this step. The desired functions inputs to circuit design is -
the set of logic diagrams that describe the circuit blocks. The netlist input to
interconnect design is derived from the circuit block descriptions. Interconnect
characteristics take the form of speed requirements for key interconnects. These
are interconnects on signal paths for which it is ‘quwtionable as to whether they

will meet their timing requirements. Special attention to interconnects on these
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paths can make the difference. Requirements were:

1. Minimize routing between cpla2 and aplal.
2. Minimize routing on the trap instruction detection path.

3. Carry lines made entirely of between the two datapath sections.

desired netlist,
functions characteristics

inter-

size, geomet
B Y connect

port placement

design rules,
layers available

design rules,
devices available,
layers available

Figure 9.2- Circuit and Interconnect Synthesis

Circuit design consisted of customizing the circuits designed during the
preliminary phase so that the logic diagrams for all circuit blocks were realized.
Datapath cells were pitch matched, and their inputs and outputs were placed so
" that adjacent blocks could be butted up aéainst each other. The entire chip was
routed according to the netlist and the routing requirements from previous design

steps. This completed the first cut at circuit and interconnect synthesis.

2. Circuit and Interconnect Analysis

After this design moved to the step that analyzed the circuit blocks
individually. Theoretically interconnects should have been analyzed individually
also, but their was no clear way to do this for speed analysis. Figure 9.3 shows

the complete flow diagram for this step. As previously discussed, speed was the
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primary characteristic of interest. Area and power specifications for SOAR were
much looser. Thus, analysis concentrated on speed analysis of the circuit blocks,

as shown by the dashed lines in Figure 9.3.

internal block delays interblock delays

r— = - o= - -

inter-

|
|
Speed |
ee I
P | connect
|
° |
I- —-— s -
parameters parameters
circuit block interconnect
power-d,c., a.c.
Power
connect
parameters parameters
circuit block areas interconnegt areas
Area inter-

connect

design rules design rules

Figure 9.3- Circuit and Interconnect Analysis

Circuit blocks were typically 32 bit blocks and therefore were too complex
for practical SPICE analysis. The timing verifier - CRYSTAL - was used to
predict circuit block speeds [Oust85]. The goal of circuit analysis during this step,

was to analyze the speed from the extracted circuit layout, for all circuit blocks



288

on the signal paths outlined during functional block analysis. The layout adds
many parasitic elements, both capacitances and resistances, to the circuits. These
unfortunately, do not always have a negligible affect on performance. Since
layout does not necessarily exist during the pfeliminary phase, they were not
accurately modeled in early speed estimates. Nov;r that ¢complete layouts exist for
circuit blocks,.more accurate speed estimates can be made. PLAs were generated
automatically during previous steps and therefore their speeds have already been
estimated from the layout (Table 8.7). Speeds according to CRYSTAL, of key

circuits are summarized in Table 9.1.

Block Estimated Delay  Allotted Delay
e e
ALU 247ns 100ns
Inserter /extractor . 187ns - 100ns
SWP comparator - 601ns 240-395ns
Decoders 438ns 170-280ns
Sign extender 305ns 170-290ns
PC incrementer 350ns 395-515ns

Table 9.1- Speed Estimates of Key Circuits (CRYSTAL)

2.1. ALU
The first major problem was the ALU. The original ALU layout had a

simulated delay of 400ns. This was primarily due to some large diffusion areas in
the carry circuitry, and their associated parasitic capacitances — node Y in Figure

6.5 [Kong84]. Figure 9.4 shows the modified carry circuitry. The parasitic
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capacitance of node Y was greatly reduced in the layout of this circuit. The
output t;ode of the ALU also had a large capacitance associated with it due to the
layout. Therefore, a buffer was added to drive the ALU output (Figure 9.6).
With these changes and other minor modifications, the ALU delay was reduced to
247ns. This is still more than the desired 100ns, but was accepted for this design.

Cin<n+d>
precharge eyaluate
=+ : node Y
l

xn0r<n-{Y§] gJ_ 1 ‘/
and<n+3> | I
xor<n+3>___“: A _'
xnor<n-¥‘£l§r l .
and<n+2> | g
xor<n+2>__": _! 1

3 =
xnor< n-}-,il g')r 1 J E
and<n+1> |
xor<n+1> —l E _1

- — Vdd {

vddi1 -
xnor<n>. ]
and<n>. | : X
xor<n> _i E _1
. |
IN<n =
Figure 9.4- SOAR ALU

Table 9.2 lists the circuit components used during addition, with this type of
ALU. As previously discussed, the ALU is organized into eight four bit blocks -
nibbles. Each nibble has a carry bypass line used to rapidly propagate the
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incoming carry across it, when conditions are correct - path a in Figure 9.5.
_ Carr& propagation across a nibble was reduced from 43ns to 14ns by including
this bypass scheme. Each ALU output bit requires an input carry to compute its
result value. Within a carry block, the slowest input carry to be generated, is the
one that requires propagation across three bits — path ¢ in Figure 9.5. The delay
of this path is 32 ns. After the input carry for a given bit has settled, another
47ns is needed to compute the result for that bit - path a in Figure 9.6. This
result is then driven onto the ALU output node 17ns later - path b in Figure 9.6.
Table 9.3 gives a breakdown of the circuit components for the worst case

situation of the slowest bit — the second most significant bit.

Circuit Component Delay Figure
Nibble with carry bypass l4ns 9.5, path a
"1 Nibble without carry bypass 43ns  9.5,pathb

Slowest carry generation within a nibble 32ns 9.5, path ¢

Compute result from carry 47ns 9.6, path a
Drive ALU output load 17ns 9.6, path b
Drive split datapath line ' 35ns

Table 9.2- Speed Estimates of ALU Circuit Components (CRYSTAL)
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Operation Component Delay % Total Delay
Generate slowest carry inside first nibble  32ns 13.0
Propagate across 4 nibbles 42ns 17.0
Drive split datapath | 35ns 14.1
Propagate across 3 nibbles 42ns 17.0
Generate slowest carry inside last nibble  32ns 13.0
Compute result from carry . 47ns 19.0
Drive ALU output load ' 17ns 6.9
Total 247ns 100

Table 9.3- Speed Estimates of ALU Operation Components (CRYSTAL)
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Figure 9.5- SOAR ALU- Carry Paths
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Figure 9.6- SOAR ALU- Sum Generation

When the original 100ns estimate was made, there was no layout and
therefore the parasitic capacitances were not known. The original estimate also
only accounted for carry propagation across eight mibbles. Carry propagation
across eight nibbles including parasitic capacitances, is 112 ns. As can be seen
from the difference between total ALU delay and delay for eight nibbles, overhead
delays contribute significantly to the total delay — 54%. Overhead delays are due
to the carry line that crosses the split datapath, generation of the slowest carry in
the first and last nibbles, computation of the result from this carry, and the load

of the output bus.

If 247ns for ALU operation had been considered unacceptable, design would
have returned to the circuit synthesis steb. The ALU could have been redesigned
to increase its speed. One way to do this using existing circuitry, is to add a carry
select scheme to the carry computation. To implement a carry select scheme, an
ALU is divided into carry select blocks. The size of these blocks does not have to
be the same as the block size for the carry bypass or carry lookahead. The carry
output of each carry select block is computed for two situations. It is computed

assuming the carry input to the select block, is ‘one’ and also ‘zero’ (Figure 9.7).
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This is done for all carry select blocks simultaneously. Then the correct carry

output of a given select block is chosen by the carry output of the next lower

order block.
E' < L,
1

sl

Cin=0 Cin=1 Cout,;

i°<}l"i

*Coutll

carry
select
block

| carry bypass or
7 lookahead blocks

A

Coutyg

Figure 9.7- Carry Select Scheme
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Maximum speed for carry computation with carry select depends on:

1. n= T<.>tal number of bits
2. m= Number of bits per carry bypass or lookahead block
3. p= Number of carry select blocks
4. a= Delay across a carry bypass or lookahead block
* 5. i= Maximum delay inside a carry bypass or lookahead block

6. s= Carry select delay as one select block selects another

Using these parameters:

-n/mp = number of bypass or lookahead blocks per select block

The worst case computation time for one carry select block is due to the worst
case computation for the lowest order bypass or lookahead block, followed by

carry propagation across the remaining bypass or lookahead blocks.
i + (n/mp - 1)a = carry computation time for one select block.

All select blocks perform this computation for the cases of carry, = 1 and
carry, = 0, simultaneously at the start of the carry calculation. To complete
the calculation, each lower order select block, starting from the lowest, chooses
| the carry output of the next higher order select block, ending with the highest
order block. Thus, the total delay is:

i + (n/mp - 1)a + (p - 1)s = total computation time
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For SOAR:
n = 32
m=4
i = 32ns
a = l4ns

s = unknown, assume 10ns

p = to be determined so that the overall delay is minimum

With four bits per carry bypass block and 32 total bits, possible values for p, the
number of carry select blocks, are 2, 4, and 8. Using the expression for total carry
computation time, the delay for each of these possibilities is calculated (Table
9.4). The optimum scheme for SOAR would have been to have had four carry
select blocks, each with two nibbles or 8 bits each. This would have lreduced the
ALU delay by 72ns, to 175ns - a 20% improvement.

Carry Scheme Carry Computation Time

%

p=2, carry sglect 84ns
p=4, carry select  76ns
p==S8, carry select 102ns

no carry select 130ns

Table 9.4- Carry Delay for Carry Select Schemes
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2.2. Inserter/Extractor

The inserter/extractor is assigned to the same time slot as 'the ALU. With a
simulated speed of 157ms, it is slower than the desired speed‘. However, the
desired speed was based on the predicted ALU speed. The inserter/extractor, at
157ns, is faster than the newly estimated ALU speed — 247ns. Therefore, it did

not need modifications.

2.3. SWP Comparator

~ The second majér problem was the SWP comparator. Stronger gates were
substituted wherever possible in the layout. The comparator is loaded from the
MAL and SWP in 24ns. It includes a 24 bit ripple carry adder. Each pair of bits
has a delay of 36ns (Table 9.5). After .the sum has been calculated, 106ns are
needed for the output signal to settle, bringing the total delay to 60lns. Any
further improvement would have required a carry scheme other than the ripple

carry.

Circuit Component Delay % of Total Delay
Load comparator 24ns 4.0
12 x delay/2 bits 12x36ns= 432ns 71.8
Drive split datapath  39ns 6.5
Compare signal 106ns 17.7
Total 601ns 100

Table 9.5- Speed Estimates of SWP Comparator Components (CRYSTAL)
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2.4. Register File Decoders

The slowest path through the decoders was 438ns. This was after circuit
modification. Buffers and larger gates were added as necessary to drive large
loads. One contribution to the decoder delay comes from the ability to access a
register using its memory mapped address from the Destlatch (Figure 9.8). The
basic decoders are shown in Figure 6.21 and within the dashed lines of Figure 9.8,
and discussed in Chapter 6, Section 1.2.3. A mux ‘'selects either the register
specifier field or the computed memory address as the decoder input. This
muxing involves a significant amount of chip area devoted to routing. The
capacitive loads of this routing contribute to the delays. The delay through this
mux and its routing are 108ns (Figure 9.9). Four of the mux outputs must go
through the NOR section of the decoders, another mux, and associated routing.
The NOR section, including . buffers, contributes 72ns; the second mux and
associated routing contributes another 204ns. The output of the NOR section
then goes through the NAND decoders that have a delay of 54ns. As can be seen
from the breakdown of the decoder delay, mux and routing delays contribute
significantly to the overall speed. 71% of the delay was due to the muxes and
routing (Table 9.6).
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- Circuit Component Delay % of Total Delay
R —
Memory mapping mux and routing  108ns 24.7
NOR decode 72ns 16.4
Window mux and routing 204ns 46.6
NAND decode 54ns 12.3
Total 438ns 100

Table 9.6- Speed Estimates of Decoder Components (CRYSTAL)

2.6. Sign Extender

The sign extender was estimated to have a 305ns delay after larger buffers
were added to drive large routing loads. Instruction decode and sign e#tension
both ocecur in phase 1. The bits to be sign extended depend on whether or not the
instruct.ion is a store instruction (Figure 6.11). A mux selects these bits. The
instruction is first decoded to determine the mux select line. Table 9.7 gives the

breakdown for the sign extension delay.
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Circuit Component Delay % of Total Delay
Interconnect from instr. latch to decode PLA  115ns 37.7
Decode PLA 63ns 20.7
Interconnect to datapath 92ns 30.2
Control line driver 10ns 33.

Sign extend 25ns 8.2
Total 305ns 100

Table 9.7- Speed Estimates for Sign Extension Components

Only 25ns (8.2%) of the delay is due to actual sign extension. The rest of the
delay is due to the two types of sign extension and decode that they require. 68%

of the total time is due to routing delays.

2.6. Summary
This analysis step revealed three major contributors to spged estimates that

were difficult to estimate in previous steps:

1. Parasitics within circuits
2. Interconnect parasitics

3. Overhead circuitry

Parasitics exist within circuits due to large diffusion areas and high resistance
signal lines. Large diffusion areas contribute significantly to the loads of any gates
whose outputs must drive the large diffusion. High resistance signal lines were
usually less significant on SOAR. They are usually in series with a transistor of
the gate driving the signal line and therefore the total resistance is the sum of the

parasitic and the ‘on’ resistance of the tramsistor. Thus, the parasitic must be
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compared with the transistor resistance~ to determine its significance. Routing
loads within circuit blocks can be significant whenever a circuit block covers a
large area. This was the case for the decoders. Routing capacitances are due to
interconnect areas and the resulting capacitances to the substrate. Interconnect
resistances are the result of polysilicon crossovers. Parasitic resistances of
interconnects were frequently significant on SOAR - the crossover re§istance value
was comparable to the ‘on’ resistance of transistors in the interconnect driver.
Until a layout exists, it is difficult to know the values of parasitics. Necessary
overhead circuitry is known before the circuit and interconnect steps. However, it
proved to be easily overlooked in circuit blocks that were composed of a repeated
series of one cell type — the adders. Overhead circuitry contributed significantly

to delays in these circuits.

3. Functional Block Analysis

After the final circuit and interconnect analysis step, design moves to the
functional block analysis step (Figure 9.1). Theoretically, functional block
analysis should be able to be done by considering the block structure of each
signal just as it was done before circuit and interconnect synthesis (Figure 9.10).
Now that circuit and interconnect synthesis has been done, accurate estimates of
the internal block delays and interblock delays should be available from the
circuit and interconnect analysis step. However, on the SOAR project individual
interconnect delays were not computed. Therefore, functional block analysis
incorporated circuit and interconnect analysis also (Figure 9.11). The timing

verifier, CRYSTAL, was used to estimate the critical paths from the layout.
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Figure 9.11- Functional Block Analysis with Circuit and Interconnect Levels

Delay analysis was done for all signals that were analyzed during the
previous functional block analysis step (Ch.8, Sec.2.1). First, signals that were
allotted a single phase and tﬁe following underlap, were analyzed. Signals that
were the bottlenecks of the individual phase lengths were identified. Following

the methodology, design returned to the functional block synthesis step (Figure
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9.1). This option to redesign the circuit block structure was considered but no
obvious improvements were found. Thus, design proceeded to the circuit and
interconnect step once again. Stronger buffers were substituted at the PLA
outputs for the limiting signals that included PLAs in their paths (Figure 9.12).
Larger drivers and gates were put into datapath blocks that had to drive buses on
limiting signal paths in the datapath. This inclu«?ed the block that drove the
ALU output bus and blocks in the signal path that transferred data from busD
onto either busA or busB. The transfer of data from busD to busA and busB was
first identified as a potential bottleneck during functional block design (Ch.8,
Sec.2.1.1). Analysis of the extracted layout confirmed this bottleneck. |

Original Largest
PLA Output Buffer : PLA Output Buffer

Figure 9.12- PLA Output Buffer Optimization

The first instruction latch drove routing, five PLA inputs, and two latch
inputs. This was a considerable load and these signals were consequently slow.
To correct this, the outputs of this instruction latch were split into two branches,
each with its own buffer (Figure 9.13). One branch drove one PLA and the two
latches. The other branch drove the remaining four PLAs. Table 9.8a gives the
delay breakdown for the slowest signal paths with this scheme. These include the
first instruction latch and the slowest PLA - cplal. If the PLAs had not been
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split during functional block synthesis, the instruction latch load would have been
less and the delay of the interconnect between the instruction latch and decode
PLA would have been smaller. The breakdown for this option is shown in Table
9.8b. The smallest possible load - short routing to one PLA - provides the lower
bound here. This data is from the second instruction latch which is in close
proximity to the one PLA it drives. In reality, the first instruction latch would
have driven three PLAs and two latches, if the PLAs had not been split. Thus,
the interconnect speed would have fallen somewhere between this lower bound
and the present speed. With the split PLA scheme, the interconnect speed is
slower but the PLA speed more than makes up for the difference. The net result
is that without the split PLA scheme instruction decode would have been 18-30%

slower.
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Figure 9.13- Instruction Latch Output Buffering

Component Delay

Load instruction latch 36ns

Drive buffer from the instruction latch 98ns

Drive PLA input from the buffer 12ns
Cplal (split) 102ns
Total 248ns

Table 9.8a- Speed Estimate for Decode with Split PLAs (CRYSTAL)
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Component Delay
M
Load instruction latch 36ns

Drive PLA input from the instruction latch ~ 56-110ns
Cplal (unsplit) 210ns
Total 302-356ns

Table 9.8b- Speed Estimate for Decode with Unsplit PLAs (CRYSTAL)

This scheme of buffering each branch of signal lines that split as they go to
their various destinations, is used on other slow signals also. Nilling signals, CwWP
updating signals, and the critical signals between cpla2 and aplal are other places

where these repeaters are incorporated.

4. Microarchitecture vs. Functional Block Analysis

The previous section discussed functional block analysis that led to revisions
_in the circuit and interconnect designs. These revisions were followed by a second
functional block analysis step. Design then moved to the microarchitecture vs.
functional block analysis step (Figure 9.1). In this step the results of functional

block analysis are compared to the microarchitecture requirements.

4.1. Phase 1 Analysis

Signals that were allotted phase 1 and the following underlap to settle were

the sign extended immediate and control lines for:
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1. Shadowing

2. Forwarding

3. Special register decode

4. ALU input latch loading

5. Reads to buses A, B, and L

Figure 9.14 is a histogram of the final settling times for these signals. These are
the settling times after stronger buffers were substituted to drive large
interconnect loads. The ranges of settling times for the various categories of
signals are shown below the histogram. The paths for phase 1 are well balanced
except for the forwarding signals and the one shadow signal. Transistor ratios of
the gates at the destinations of these slower signals were designed so that the gate
outputs switch at lower voltages. The effect of this is that the destination gates
will switch on even though the input signal is farther from its final value than for

gates with standard transistor ratios.
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Figure 9.14- Phase 1 Signal Settling Times

Except for sign extension, all signals settling in phase 1 are the result of
decoding using PLAs. Significant fractions of these settling times were due to
routing delays; an average of 51%, with a standard deviation of 6%, of the delay
times were due to routing. The range for routing delays was 34% to 61%.
Knowing the settling times for signals allotted to phase 1 and the following
underlap, a more accurate estimate of the length of phase 1 may be made. Phase

1 plus the subsequent underlap require 320ns.

4.2. Phase 2 Analysis

During phase 2 operands are read onto buses A, B, D, L, and S, and latched
at the ALU input. Bus values are latched at the end of phase 2 and therefore
only the phase 2 high time is allotted to the settling of these buses (Ch.7, Sec.2.1).
Phase 2 is limited by signals that are first read onto one bus and then transferred

to either busA or busB. BusD must be transferred onto busA when the TB, SWP,
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or PC is used as an operand. Forwarding requires the ALU output latch
(Destlatch) data to first be read onto busD and then transferred to either busA or
busB. This takes 202ns (Table 9.9). 182ns is required for busA to settle when
data from busS is transferred to busA. If these buses could be directly loaded into
the ALU input latches, the longest settling time for any bus loading the input
latches, would be 163ns. This occurs when busA or busB is driven by the data
input latch (LOADL). Register file data is driven onto the buses in 154ns. With

the present scheme, 202ns is required for phase 2.

Signal Origin Delay
BusA,B busD 202ns
BusA busS (CWP, PSW) 182ns
BusAB  data latch- LOADL | '163ns
BusA,B register file 154ns
BusA SHA, SHB | 141ns
BusD ALU output latch, TB, SWP, PC <124ns
BusL sign extender, instruction latch <124ns

Table 9.9- Speed Estimates for Read (CRYSTAL)

Before phase 3 begins, logic in the ALU must settle. This logic is used by the
carry chain. The carry chain is precharged before phase 3 and then evaluated
during phase 3. Any unsettled carry chain inputs at the start of phase 3 can
cause false discharging of the carry chain. There is no way to recover from this
which leads to incorrect results. In Table 9.10 these are the XNOR, XOR, and
AND signals.
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Signal Delay
—_— e ————————————— |
XNOR 335ns
XOR 329ns
AND 288ns

tbusA<28:31> 318ns
tbusB<28:31>  318ns

tagcompare 325ns

Table 9.10- Speed Estimates for Phase 2 + Underlap (CRYSTAL)

Operand tags — tbusA and tbusB — are also latched at the start of phase 3 for
trap detectibn. ‘Tagcompare is formed by the tagcompla from the operand tags.
These signals — tbusA, tbusB, and tagcompare — depend on the operands and
therefore start to settle at the beginning of phase 2. They must finish settling by
the start of phase 3. Thus, phase 2 and the following underlap must total to
335ms.

During the underlap between phase 2 and phase 3 the register file word lines
must be disabled. This was estimated to take 125ns.

4.3. Phase 3 Analysis

During phase 3, buses A, B, and D ai'e driven with data tﬁat is being written.
Delays for this are similar to bus delays for the read operation - 200ms (Table
9.11). Addition is also performed in the ALU during phase 3. The ALU result
must then be driven onto the EAbus, to be loaded into the PC or MAL, before the
end of phase 3. This requires 255ns, of which 247ns is the ALU delay. Thus,

phase 3 must be 255ns long.
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Signal  Delay Pipeline Function

BusA,B  200ns Write
BusD 124ns Write
EAbus 255ns Alu

Table 9.11- Speed Estimates for Phase 3

Again the word lines must be disabled between phase 3 and phase 1. This

requires a_125ns underlap between these two phases.

4.4. TRAP Analysis

The previous three sections have discussed single phase length and underlap
_ requirements. However, this does not cover all signals. Several signals that span
more than one phase exist. Trép mechanism signals fall into this category.
SOAR had ten different types of traps (Ch.5, 'Sec.l.ﬁ). Trap detection occurs
through a variety of paths as shown in Figure 8.8. Once the trap is detected,
tpla2 encodes its priority and the Trap circuit block generates a signal that loads
the internal TRAP opcode into the first instruction latch (CPIPE1). Figure 9.15
shows a more detailed circuit block structure for each type of trap detection.
Outputs of these block stx.'uctures are used by tpla2 and the Trap circuit block.
The clock phase that initiates trap defection varies accordiﬁg to the type of trap.
Illegal opcode traps, window traps, and software interrupt traps are initiated
when the first instruction latch changes — at the beginning of phase 1. The start
of phase 2 triggers page fault interrupts, IO interrupts, tag traps, and generation
scavenging traps. Trap instructions and overflow tag traps use the ALU results

and therefore are initiated on phase 3. Settling times for the various trap
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detection signals also vary. -Consequently, the completion time of trap detection

depends on the type of trap.
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Figure 9.15- Trép Block Structures

The Trap circuit block samples the trap detection signals on phase 1 and

subsequently causes the TRAP internal opcode to be loaded into the first

instruction latch when a trap is detected. This opcode is then decoded to set

control lines. Therefore, the TRAP internal opcode should be loaded as early in
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phase 1 as possible. Figure 9.16 shows the timing of the various types of traps.
Clock phase lengths are those that were determined by single cycle analysis. Most
Atypes of traps are detected by early in phase 3 and therefore are not limiting
factors. The .exceptions to this are trap instructions and overflow tag traps.
These both depend on the ALU output which must then be interpreted by the
condition PLA (condpla). Consequently, the signal (CPIPEtrap) from the Trap
circuit block that loads the first instruction latch settles 154ns after the start of
phase 1. This is 125 ns after the instruction latch would have been loaded if there
had not been a trap. Thus, control lines settle 125ns later when a trap is
detected. This presents no problem for control lines that are used in phase 2
because these control lines determine what is to be read and operated on, and do
not change the state of SOAR. However, phase 3 control lines are used for
writing and loading of state registers. Therefore, this 125ns delay must be

considered when analyzing control lines used during phase 3.
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Figure 9.16- Trap Timing

4.5. Decode for Phase 3 Analysis

Phase 3 is the phase during which ALU operations are completed, results are
written, and latches are loaded with future values. Control lines for phase 3 .

direct:



1. ALU operation
2. Writes

3. Addressing latch loads

4. Internal opcode loads

5. Other state latch loading
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Figure 9.17 is a hisi;ogram of the delays for these signals. ASettling times

range from 226ns to 432ns when a trap has not occurred during the previous

cycle, and 351ns to 557ns when a trap has occurred. These signals are allotted

phase 1, the phasel/2 underlap, phase 2, the phase2/3 underlap for settling.

According to the restrictions on single cycle lengths, this allotted time is 655ns.

Therefore, the requirements of this decode are not a limiting factor for phase

lengths. The slowest of these signals will still be ready 100ns before it is needed.

number
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Figure 9.17- Decode Settling Times for Phase 3

As seen in the histogram the deléy ranges for the different types of phase 3

control lines overlap signiﬁcant,]y. The longest delays are for signals that control

the loading of the addressing latches - PC, MAL. The fastest signals are those
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that load internal opcodes into the first instruction latch.

4.6. Microarchitecture Analysis

Functional block analysis provided speed estimates of all signal paths. These
estimates led to minimum lengths for individual clock phases and groups of clock
phases (Table 9.12a,b). The requirements of the signals that spanned multiple
phases were consistent with the individual phase requirements for all signals

except register file decoding for reads and the SWP comparison (Table 9.12b).

Prevmus circuit analysis of the register file decoders showed that they needed
440ns to complete a decode (Sec.2.4). With the register specifier available at the
start of phase 1 and a read occurring during phase 2, only phase 1 and the
following underlap are available for decoding of the operand specifiers.
Instruction decode requires this period to be 320ns. Thus, register decode for

reads would have extended phase 1 by 120ns, to 440ns.

The SWP comparator was also simulated during circuit analysis. Its speed
was estimated to be 600ns (Sec.2.3). An extra 150ns is needed to route its result
across the chip to where it is used. This brings the total time for the comparison
to 750ns, which is 95ns longer than the time available according to the single
phase requirements. Extending phase 1 by 120ns for the register decode would
have given SWP comparison 775ns to complete, which would have satisfied its

requirements.
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Phases Required Length Reason
W
O1+ull 320ns instruction decode (reads)

02 200ns read

@2+ul2 335ns ALU setup |
ul2 125ns disable word lines
03 255ns ALU

03 200ns write

ul3 125ns disable word lines
Cycle 1035ns Total

Table 9.12a- Individual Phase Length Requirements

Phases Required
Length
O1+ull+P2+ul2  555ns 655ns
P1+ull 440ns 320ns
@1+ull+O2+ul2  440ns .655ns
O1+ull+@P2+ul2  750Ds 655ns

Length from Single

Phase Requirements

W

register decode (reads)

Reason

instruction decode

register decode (writes)

SWP comparison

Table 9.12b- Multiple Phase Length Requirements
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Phases Required  Length from Single Reason
. Length  Phase Requirements

ﬁ

?3+ul3+P1+ull 585ns  700ms reg. dec.-read

O3+ul3+O1+ull+@2+ul2  990ns 1035ns SWP compare

Table 9.12¢- Modifications to Multiple Phase Requirements

To. satisfy these two signals the cycle time would have been extended bj
12%, from 1035ns to 1155ns. However, the microarchitecture analysis step
providw the option of returning to microarchitecture design if the analysis results
are unsatisfactory. This option was explored and with a few minor
microarchitecture modifications it was possible to fit these two signals into the

single phase requirements.

~ Originally register decode started on phase 1. However, the register specifiers
become available during the previous phase 3. So the start of the register
decoding for reads was moved to phase 3 (Table 9.12¢). An extra 145ns is now
needed for fead decoding to allow address calculation to settle for the case of
memory mapped register reads. However, even with this longer decode, the read

decode now finishes 115ns before it is needed.

Similarly, the SWP comparison also began at the start of phase 1. The data
used for this comparison was loaded into the slave sections of the MAL and SWP
at the start of phase 1. However, it is loaded into the master sections during the
previous phase 3. The comparator was modified to compare the data from the
master sections. In this way the comparison also starts one phase earlier, in phase
3 (Table 9.12c). Address calculation occurs during this phase 3’and provides the

MAL data that is used in the comparison. This causes the start of the comparison
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to be delayed by 240ns to allow portions of the address calculation to complete.
This brings the total comparison delay to 990ns which is less than the 1035ns

provided by the single phase requirements.

Another possible microarchitecture modification is to eliminate the transfer of
data from busD and busS, onto the ALU input buses during the read operation.
As previously discussed, this would reduce phase 2 by 20% from 200 to 160ns.
The overall impact on the 1035ns cycle time would have been a 4% improvement.
This change would have been more complicated and the benefit did not seem

greaf enough for it to be worth implementing.

Another microarchitecture modification concerns the loading of the shadow
lafches - SHA, SHB, shDST, and shOPC. The shadow latches capture the
operands, opcode, and destination field of an instruction that causes a trap. They
are always loaded during the read phase — phase 2 — except for the cycles after a
trap has occurred (Figures 9.18 and 9.19). In this way the information from the
instruction causing the trap, is saved. This presents two problems. The control
line that loads these latches must be ready by phase 2. Simulation showed that
this was one of the slowest signals — 360ns. On SOAR transistor ratios were
adjusted so that this would not be a limit, but a much cleaner solution exists.
The second problem arises because these registers may be used as operands.
When used as operands, they will be read as they are being loaded on phase 2.
They are read onto precharged buses. A race condition exists between the load
enable line and the read enable line. Thus, when shadowing is enabled
(PSW<1>), reading them leads to unknown operands. This may not affect much

of the software but does add inconsistency to the architecture.
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Figure 9.19- Shadow Latch Timing

A better solution is to load them on phase 3 from the ALU input latches or
instruction latch (Figures 9.18 and 9.19). By postponing the load to phase 3, the
slow control signal has ample time to settle. The race condition between loading
and reading the shadows is also eliminated, since loads and reads no longer occur

simultaneously.

Once these microarchitecture changes were decided upon, the functional
block and circuit block descriptions were modified. The modifications were
verified using SLANG. Design and layout at the circuit and interconnect levels
was then updated and verified. After these modifications, the limits on the SOAR
cycle time are due to read, ALU setup, ALU operation, instruction decoding, and
word line disabling (Tables 9.12a,b,c). Extra time is available for register
decoding, the SWP comparison and writes. Table 9.13 lists the final clocking
according to CRYSTAL speed estimates.
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Phase Length
Phase 1 300ns
Phasel/2 underlap  20ns

Pha.se‘ 2 200ns
Phase2/3 underlap  135ns
Phase 3 255ns
Phase3/1 underlap  125ns
Total 1035ns

Table 9.13- Phase Lengths, Realized SOAR

6. Optimized Pipeline Analysis

SOAR was designed and sent to fab before this methodology was solidified.
Further design of SOAR using this methodology revealed an optimized SOAR
pipeline (Ch.6, Sec.1.5). Using the more detailed speed estimates that became
available after circuit and interconnect design, the optimized SOAR speed may be
estimated. Table 9.14 shows the requirements for the lengths of the individual
phases and combinations of phases. Using these requirements the lengths of the

individual phases may be determined (Table 9.15).
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Phases Required  Single Phase Reason
Length  Requirements

O1w-+ullw+@lp+ullp  320ns 440ns instruction decode
D2 200ns 200f1s read
O2+ul2 i’»35ns 335ns ALU setup
ul2 125ns 135ns disable word lines
O1w 200ns 200ns write
ullw 125ns 125ns disable word lines
¢1w+ullw+01_p 255ns 415ns ALU
O1p 80ns 90ns precharge
ullp 20ns 25ns skew
Olp+ullp+02+ul2 440ns 450ns register decode-write
Olw+ullw+Qlp+ullp  440ns 440ns register decode-read
full cycle - 750ns 775ns | SWP compare

Table 9:14- Phase Length Requirements, Optimized Pipeline
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Phase Length
1w 200ns
@1w/@1p underlap  125ns
@1p 90ns
@1p/D?2 underlap 25ns
02 200ns
@2/®@1w underlap 135ns
Total 775ns

Table 9.15- Phase Lengths, Optimized Pipeline

The optimized SOAR is limited by the register file operation, register file
decode, and ALU setup. As previously discussed, the register file has no idle time.
The time needed to cycle through the register file operatiops - precharge, read,
word line disable, write, word line disable - becomes the processor cycle time.
| Time requirements and clock phase assignments for register file decode, ALU
setup, and the SWP comparison are compatible with the register file clocking,
with little wasted time. Thus, the limiting paths of the chip would have been well
balanced. Instruction decode and ALU operation do not limit the cycle time as
they do in the realized SOAR. The total cycle time is estimated to be 775ns,
~ which is 260ns faster than the realized SOAR. This would have been a 25%

improvement over the realized SOAR.
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6. Split Datapath Analysis

The SOAR datapath was split into two 16 bit halves to reduce the time
needed to drive the word and control lines. SPICE simulations were done using
circuit models from the extracted layout for the 16 bit and 32 bit datapath
widths. Operations aﬁected by this split are shown in Table 9.16. The unsplit
datapath would have required an extra 25ns for the enabling of control and word
lines, and disabling of word lines. However, the ALU would not have had a carry
line to drive across the chip and therefore would have been 35ns faster. With the
realized SOAR pipeline, the phasé2/3 underlap would have been limited by the
longer word line discharge, not the ALU setup time as it is with the split datapath
(Table 9.17a). W}'ites, not ALU operation, would have limited phase 3 on a
SOAR with an unsplit datapath and the same pipeline. The cycle time would
have been 1070ns - 3.4% longer.

Function - Split Datapath  Unsplit Datapath
Read 200ns 225ns
Disable word lines .125ns 150ns
Write 200ns 225ns
ALU 255ns 220ns

Table 9.16- Function Times

The affect of the split datapath on a processor with the optimized SOAR
pipeline is greater (Table 9.17b). This is because the register file limits all phase
lengths. The register file benefits most from the split datapath. The ALU, which
is hurt by the split datapath, does not limit any phase lengths. SOAR, with the
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optimized pipeliﬁe, but unsplit datapath would be 115ns or 14.8% slower than it
would be with the split datapath. The unsplit datapath cycle time would be
890ns as opposed to 775ns for the version with the split datapath.

Phase Limit . Unsplit vs. Split Datapath Time
I A——

O1+ull  decode same

02 read +25ns

ul2 disable word lines  +15ns

@3 write -30ns

ul3 disable word lines  +25ns

Cycle +35ns = +3.4%

Table 9.17a- Unsplit Datapath Phase Limits, Realized SOAR Pipeline

Phase: -  Limit ' Unsplit vs. Split'Datapath Time
O1w write +25ns -

ullw disable word lines +25ns

Q1p precharge +25ns

ullp skew . same

2 read +25ns

ul2 disable word lines  +15ns

Cycle - +115ns = +14.8%

Table 9.17b- Unsplit Datapath Phase Limits, Optimized SOAR Pipeline
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Chapter 10
Results
SOAR Case Study

This chapter discusses results of the SOAR processor in three separate areas:

1. Methodology
2. Processor

3. Architecture

The first section summarizes optimizations for SOAR that were revealed by this
methodology. Speed and functionality were the primary concerns during the
design of SOAR; power and area had looser restrictions. Thus, the optimizations
discussed in this section are for speed improvements. Simulations were used for

detailed delay analysis. | Therefore, all delays in this section are simulated delays;

The second section discusses results from testing of the fabricated SOAR.
The testing strategy and initial test setup are first described, followed by a report
on the basic functionality. Again, the speed was the" primary concern (after
functionality) during testing. The speed restrictions for each phase are analyzed.
Delays reported in this section are the measured delays of the fabricated
processor. Differences between the measured a.xid simulated delays are discussed

in the section on process effects — Section 2.4.

The architecture of SOAR was designed for a high performance Smalltalk
system. SOAR included several features to facilitate this. The impact of these
architectural features on the implementation is discussed in the last section of this
chapter. These features are individually analyzed for their contributions to the

area, circuitry, complexity, and cycle time of SOAR.
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1. Methodology Results

The SOAR design involves many optimizations for . speed improvement.
Some of these optimizations were implemented;' others were not discovered until
this methodology was developed. Unfortunately, that was after fabrication was
underway. Table 10.1 lists the major optimizations. These optimizations and
their impact on processor speed have already been discussed individually. Table
10.2 summarizes the effects of these speed improvements. All delay times in this

section are the result of CRYSTAL simulations.

Optimization Implemented Discussion
I
Internal opcodés yes Ch.6 Sec.1.7, Ch.8 Sec.2.1.2
Pipeline no Ch.6 Sec.1.5, Ch.9 Sec.5
Balanced critical paths yes Ch.8 Sec.2.1.2, Ch.9
Split PLAs yes Ch.8 Sec.1.2, Ch.9 Sec.3
ALU- carry select no Ch.9 Sec.2.1
No bus to bus transfer no Ch.8 Sec.2.1.1
Split datapath yes " Ch.6 Sec.2, Ch.9 Sec.6

Table 10.1- SOAR Optimizations
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Optimization Cycle Time Reduction % Reduction
-

Internal opcodes “1500mns 145
Pipeline ' 260ns 25
Balanced critical paths  120ns 12- realized
Split PLAs 54-108ns- realized 5-10

Ons- optimized 0
ALU- carry select 54ns- realized 5

Ons- optimized 0
No bus to bus transfers  40ns 4- realized, 5- optimized
Split datapath 35ns- realized 3.4

' 115ns- optimized 14.8

Table 10.2- Simulated Cycle Time Reduction Due to Optimization

The most significant improvement was due to the use of internal opcodes.
This cut the decode time from -about 1800ns to 300ns - a factor of six
improvement for the length of phase 1. SOAR would have had a cycle time of

about 2.5psec if internal opcodes had not been used — 145% slower.

The next major improvement comes from the optimized pipeline - 25%.
Unfortunately, this was discovered after submittal for fabrication. If SOAR had
been implemented with the optimized pipeline a faster ALU and the split PLAs
would not have made a difference in the cycle time. This is because instruction
decode and ALU computation do not limit any phase lengths in the optimized
version (Ch. 9, Sec. 5). |

The third greatest reduction in cycle time is due to the balancing of critical

paths that are significantly affected by the interconnect delays. Table 10.3 lists
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critical path optimizations that are not part of other optimizations and the
techniques used to eliminate the problems. These optimizations involve minor
revisions at most design levels — microarchitecture, functional block, circuit, and
interconnect — and are discussed in detail in Chapter 9. They are good examples
of the ‘not ok’ methodology paths in Figure 4.18. Together these solutions
resulted in a 120ns reduction in the cycle time of the realized SOAR - 12%.

Critical Path Problem Solutions

W——_—_——

SWP comparison Microarchitecture revision
Faster circuits
Register file decode Separate source and destination decoders
Microarchitecture revision
. Faster circuits
Decode- delay to PLAs  Extra buffering

. — forwarding signals  Transistor sizes at interconnect terminations

Table 10.3- Critical Path Optimizations

PLA splitting on SOAR reduced the cycle time by 5 to 10%. This was due

to a shorter instruction decode time — phase 1.

Other optimizations to the realized SOAR include a carry select scheme in
the ALU, elimination of bus to bus transfers on reads, and the split datapath.
Each of these optimizations reduces the cycle time of the realized SOAR by 5% or
less. According to simulations, SOAR with the realized pipeline, would ha\.re a

cycle time of 941ns — 9.1% faster — if these other optimizations were all included.
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With the optimized pipeline the split datapath has a greater impact on the
cycl.e time — 14.8%. If the optimized pipeline had beenAimplement'ed and bus to
bus transfers on reads avoided, a cycle time of 735ns could have been achieved.
This would be 29% faster — 300ns — than the simulated cyclé time of the realized
SOAR. |

Analysis of SOAR according to this methodology shows that in many places

sound design decisions were made:

1. Use of internal opcodes

2. Split datapath _

3. Choice of circuit blocks— except for the MAL
4. Split PLAs

5. Separate source and deétinat_,ion decoders

6. Balanced critical paths

However, the methodology also reveals significant improvements that were

overlooked on the realized SOAR:

1. More efficient pipeline
2. Carry select scheme on the ALU

3. No bus to bus transfers on reads

2. Processor Results

SOAR was initially fabricated during the winter and spring of 1985 by both
MOSIS and Xerox. Both facilities used \=2 microns, leading to minimum line
widths of 4 microns, on the original runs. The die size including scribe lines, is
432mils by 320mils. Dies passing visual inspection were packaged at the
fabrication facility and then sent to Berkeley. These chips are packaged in an 84

pin grid array with a large cavity, made by Kyocera.
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The debugging and testing strategy for SOAR relied heavily on CAD tools
and a complete diagnostic set. As previously described (Ch. 7, Sec. 1.5),
(iiagnostics were written to test all SOAR operations and features. This
diagnostic set was used to verify the design at all levels through the use of CAD
tool simulators. These diagnostics were run on the design representations
associated with each design level (Table 10.4). Results from the different levels

were compared and verification was complete when all results were consistent.

Level Simulator
ﬁ ———
Architecture Daedalus
Microarchitecture . SLANG
Functional Block SLANG
Circuit- extracted layout ESIM

Interconnect- extracted layout ESIM

Table 10.4- Verification Simulators

Inconsistent comparisons resulted from bugs in several places:

1. Simulator
2. Diagnostic
3. Design

Computer simulation of complete designs of large chips requires large amounts of
memory and CPU time. Therefore, writers of simulators must make
generalizations and assumptions where they judge that it is safe, so that
simulators are practical. However, this can lead to subtle bugs in the simulators

and result in inconsistent comparisons. Diagnostic bugs arose from
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misunderstandings of fine points in the architecture. Many of these were due to
the processor pipelining. Ideally, the pipelining should be invisible at the
architecture level but in practice this is not always true. Finally, there were
many bugs in the design itself. Consistent comparisons do not guarantee that
there are no bugs but it is unlikely that al} simulators can miss the same bug.

Bugs may also still exist due to oversights in the diagnostic set.

In addition to simulation a test die that included risky circuits, was designed,
fabricated, and tested. This test die includéd all bootstrap drivers [Kong85). It

verified their functions and speeds.

~ Because qf the large simulation effort and test die characterization [Kong85],
SOAR was submitted for fabrication with confidence that the basic functions
would work. These included reading the register file and all state registers
(special registers) and input/output functions. With this functionality the chip can
be debugged. Instructions can ‘be loaded, éxecuted, and results outputted. When
bugs arise SOAR can .be run in small loops that isolate the bug and read out the
contents of all registers for analysis. Extra hardware for testing, such as scan
in/scan out hardware, was not included on SOAR. The testability of SOAR relies

on:

1. Accessibility of all state registers
2. Thorough CAD simulations to ensure basic functionality

3. Test dies to prove high risk circuits

The testing strategy followed was to first test SOAR for basic functionalify
and characterize its speed and I/O timing on a simple board. After basic
functionality and pad timing was. verified, SOAR was incorporated into the SUN
workstation on the Orion board. The complete diagnostic set (Ch. 7 ,.Sec. 1.5)
was then downloaded into Orion’s memory and used to complete the functional

verification. After this, the final step was to bring the Smalltalk software up on
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the complete system. The remainder of this section describes the initial tests and

results.

2.1. Test Setup

To initially characterize the processor a simple test board was built and
driven by a digital analyzer — Tektronix DAS-9100. Figure 10.1is a schematic of
this board. The DAS supplies the clock cycle, wait, reset, page fault, and I/O
interrupt signals. All clock phases and the underlap between phase 2 and phase 3
are generated by monostable multivibrators — 26S02s. The input clock cycle
triggers a string of four of these multivibrators for these signals. The underlap
between pinase 3 and phase 1 is determined by adjusting the cycle time after all
phase lengths and other underlaps have been set. The underlap between phase 1
and phase 2 is too short to be | generated by a multivibrator and is therefore
determined by inverter deélays and the loading on the inverters. The phase
lengths have an adjustment range of 24-460ns (Table 10.5). The underlap
between phase 1 and phase 2 may be set between 10ns and 25ns. The phase
2/phase 3 underlap is adjustable between 30ns and 235ns. This test board also
buffers the WAIT, RESET, PAGE, and I/O inputs with inverters.
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Figure 10.1- Test Board Schematic

Phase Range
O
Phase 1 24-460ns
Phasel/2 underlap  10-25ns
Phase 2 24-460ns
Phase2/3 underlap  30-235ns
Phase 3 24- 460ns

Table 10.5- Test Board Clock Phase Adjustment Ranges
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The complete test setup is shown in Figure 10.2. In addition to driving the
test board, the 'DAS directly drove the data inputs of SOAR - D00-D3l.
Instructiop sequences were programmed into the DAS and suppliéd to the chip
through these pins. Separate power supplies were used for board circuitry, the
processor supply voltage, and substrate bias. In this way clock levels and SOAR
supply voltages could be independently adjusted if necessary. All sighals could be
monitored on the oscilliscope. Results of processor operations were read off chip
through the address outputs using the call, jump, and return instructions. The

data aquisition channels of the DAS collected and displayed this information.

[ 72

aquisition channels

DAS

synthesis channe:]s
15
|
DOQ-P31
Board §E§ ! SOAR PSHG
Cil’ Cllitl'y R ;.!r::‘* WMAC X
&GE*
VDD VsS
T T T
Power Power Power
Supply Supply | | Supply

Figure 10.2- Test Setup
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2.2. Functionality
Using this setup the functionality of a significant portion of SOAR was
verified. Simple programs that initialize SOAR after resetting and jump to test

code showed the following features to be functional:
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Jumps and calls- address formation
- saving of the return address on calls
- CWP change on calls
Returns- address calculation
- interrupt enable
- CWP change
Loads- address formation
- data capture
Shifts
Adds
Inserts
Extracts
Ors
Reads- register file
— special registers
- sign extension of immediates
Writes— register file
- special registers
Forwarding- load forwarding
- ALU forwarding
Trap mechanism— vector formation
— priority encoding
- saving of the return address
- shadow register operation
Trap types— illegal opcode
-I/0O interrupt

- pagé faults
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External signals— WAIT
- RESET
- FSHCNTL
-1/D
- WAITACK

The only feature tested that did not work was the nilling option of the return
instruction. Investigation of this problem showed that the drivers that write to
the register file were not designed to be strong enough to write to six regist.ers
simultaneously. Functions that were not tested initially were stores, load
multiple, pointer to register, skips, and some types of traps. It was judged that
enough workedv to incorporate SOAR into the Orion board and complete the

testing there.

2.3. Speed

" The ‘minimum cycle time was determined by writing test programs that
exercised the critical paths and reducing the phase lengths until failure occurred.
This was done with SOAR at its stable operating temperature, a supply voltage of
5 volts, no substrate bias, and clock high levels of 4.5 volts. Phase iengths were
measured from the midpoints of the transitions on the oscilliscope trace and were
repeatable to within 5ns. The minimum cycle time is 400ns for the MOSIS chips
and 330ns for the Xerox chips by this method. Table 10.6 summarizes the
minimum phasé lengths. The following sections analyze the individual phase

lengths in detail for the MOSIS chips. Pad timing is shown in appendix D.
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Phase MOSIS Xerox
— —————————————— |
Phase 1 80ns 55ns
Phasel/2 underlap  <10ns Ons
Phase 2 80ns 980ns

Phase2/3 underlap <25ns  <25ms

Phase 3 145ns 125ns
Phase3/1 underlap 40ns 35ns
Total <400ns <330ns

Table 10.6- Measured Cycle and Phase Lengths

2.3.1. Phase 1

T.he length of phase 1 is determined by instruction decode and sign extension
(Ch. 9, Sec. 4.1). The slowest signals that must settle in phase 1 are the
forwarding and shadow contro! lines (Figure 9.14). As previously described, the
gates at the terminations of these signals were designed so that these signals
would not limit phase 1. A program that exercised forwarding and the same
program Witl.l NOPs inserted to avoid forwarding require the same phase 1 length
(within the accuracy of the measurements) — 85-90ns (Table 10.7). Shadowing
also proved to not be a limiting factor to the phase 1 length. The many other
control lines of phase 1 have settling times within the same ranges according to

simulations (Figure 9.14).
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Feature Minimum Phase 1 Length
Forwarding 85ns
No forwarding 80ns
Shadowing <85ns

Table 10.7- Measured Minimum Phase 1 Length

2.3.2. Phase 2

Operand reads are assigned to phase 2 (Ch. 9, Sec. 4.2). There are several
operand sources and simulated access times vary accordingly (Table 9.9). Test

programs were written to exercise these operand reads (Table 10.8).

Signal Origin Measured Phase 2
BusA ALU forwarding to busD 70ns
BusA SWP to busD 75ns
BusB ALU forwarding to busD 80ns
BusA CWP to busS 70ns
BusA Load forward 65ns
BusB Load forward 60ns
BusA,B Register file 90ns

Table 10.8- Measured Minimum Phase 2 Length
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The slowest reads are on register file accesses — 90ns. According to
simulations the register file cell is faster than the master slave latch cell (Ch. 6,
Sec. 1.2.2). Therefore, this extra delay is due to the extra time needed to enable
the word line drivers before they can drive the word lines. At the register file,
phase 2 gates a driver that enables the word line drivers. In contrast to this,
phase 2 directly gates the control line drivers for latch accesses, resulting in a
faster access.

The reads that involve the transfer of data from one bus to another bus all
require 70-80ns. This is the situation during ALU forwarding and when using the
CWP, PSW, SWP, TB, or PC as operands.

The fastest operand accesses occur when data is driven directly onto the bus
to the ALU input — 60-65ns. This occurs during load forwarding, shadow register

operands, immediate operands, and the zZero operand.

2.3.3. Phase 3

The slowest path of phase 3 involves the ALU. It occurs when carry must
propagate across seven nibbles and the three least significant bits of the most
significant nibble (Ch. 9, Sec. 2.1). This requires 145ns (Table 10.9). Phase 3
measurements were taken for carry propagation across 3 to 7 nibbles. Using this
data, the delay of the. carry bypass is calculated to be 8.8ns with a standard

deviation of 4.8ns.
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Event Measured Phase 3
-
ALU to Destlatch- 7FFFFFFF+1 145ns
ALU to Destlatch- 07FFFFFF+1 - 140ns
ALU to MAL- 07FFFFFF+1 120ns
ALU to MAL- 007FFFFF+1 105ns
ALU to MAL- 0007FFFF+1 100ns
ALU to MAL- 00007FFF+1 : <90ns
Carry bypass speed 8.Shs

Table 10.9- Measured ALU Limits to Phase 3

The other major function of phase 3 is the write of .the result from the
previous instruction. Table 10.10 shows the required phase 3 lengths for different
types of writes. The slowest write is to the register file — 110ns. Data is first put
onto bus D and then transferred to buses A and B to get to the register file.
Special registers that are written to.directly from busD - such as the SWP -
require 100ns. 90ns is needed to write to the CWP which is located in the control

section.
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Write Destination Measured Phase 3
Register file- busD to busA,B | 110ns
| SWP- busD _ 100ns
CWP- control 90ns

Table 10.10- Measured Write Limits to Phase 3

2.4. Process Eﬂ'écts

The process design level was a fixed input during SOAR design. The
importance of this design level to the characteristics of the processor can be seen
by comparing the measured characteristics to simulation results. Simulations

were based on a more conservative set of parameters than those of the fabricated

. Pprocessor.

Transistor parameters used in the simulations and measured on wafers

containing the fabricated SOAR are shown in Tables 10.11a and 10.11b. These

transistor
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Parameter Simulation . Fabricated Fabricated
MOSIS Xerox
VTO (V) 8 .93 .65
GAMMA (V) 40 41
KP (uA/V?) 17.2 32.3 49.5
UO (em?/Vs) 350 654
LAMBDA (V'}) 01 021

Table 10.11a- Enhancement Transistor Parameters

Parameter Simulation Fabricated Fabricated
MOSIS Xerox

S
VTO (V) 2.5 -3.3 42
GAMMA (V) 51 43

|KP (uA/VY 18 31.4 448
UO (cm?/Vs) 366 900
LAMBDA (V'}) 015 0

Table 10.11b- Depletion Transistor Parameters

parameters determine the current that is available to charge and discharge |
capacitive loads. In the saturated region a first order approximation for transistor
current is:

Isat = KP/2(W/L)(Vqg-Vrp) 1+LAMBDA(Vpo)]
Tables 10.12a and 10.12b show the saturation currents for low VDS and no
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substrate bias (VT = VTO) using the simulation and measured parameters. The
enhancement and depletion MOSIS transistors conduct 1.6 and 3.1 times as much
current in the saturation region as the transistors used in simulations. Xerox
transistors were also much stronger than the transistors of the simulations - 2.8
and 7.0 times as strong for the enhancement and depletion devices, respectively.
In the linear region transistors can be described by their ‘on’ resistance:
Ron = 1/gm = 1/[KP(W/ L)(Vgs‘vT)]

The ‘on’ resistances of the fabricated transistors are much less than those of the
transistors used in simulations — 24% to 58% of the simulation resistances. Thus,
the fabricated transistors conduct more current than the simulation transistors in

all situations of interest.

Isat/yy /L Normalized Isat Ron/; /W Normalized Ron

W—————_—_

Simulation .166ma 1.0 13.2K 1.0
MOSIS (fab)  .268ma 1.6 7.6K 58
Xerox (fab)  .468ma 2.8 46K 35

Table 10.12a- Enhancement Transistors - VGS=5.0volts
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Isat/\ /L Normalized Isat Ron/L /W Normalized Ron

W—_——-—_—__—

Simulation .056ma 1.0 22.2K 1.0
MOSIS (fab)  .174ma 3.1 9.6K 43
Xerox (fab) .393ma 7.0 5.3K 24

Table 10.12b- Depletion Current Sources

The risé and fall times of many nodes are limited by the capacitive loads of
the nodes and the currents available to drive these loads. Capacitance depends on
area and process dependent capacitance parameters. Capacitance parameters
used in simulations and for the fabricated devices are shown in Table 10.13.
Depending on the size, shape, and type of capacitor, fabricated node capacitances
may range from .7 to 1.4 times those of the simulations. Nodes dominated by
gate capacitance have higher capacitances in the fabricated devices — 1.22 to 1.37
times as much for the MOSIS and Xerox devices, respectively. This is the
situation for the output nodes of high fanout gates. Another common situation is
an interconnect node that is predominately a field capacitor. The fabricated field
capacitors have similiar values to those of the simulations — .83 to 1.17 as much

capacitance.
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- Capacitor Simulation MOSIS Xerox

value normalized value normalized
Gate | aargu? | s6F/u? 1.37 50fF 1.22
Field 06F/p? | .07(F/p 1.17 05(F 83
Diffusion side 35(F /p 50F /s 1.43
Diffusion area .l(ifF/p2 .llfF/;x2 .69

Table 10.13- Capacitance Parameters

When charging a node, curreﬁt is supplied by a depletion transistor used as a
current source. In this situation the current available to drive the load is 3.1 to
7.0 times l;igher for the fabricated devices than for the simulated devices (Table
10.12b). This more than offsets the higher capacitances of the fabricated devices,
resulting in shorter rise times. For example, gate dominated capacitances will be

charged approximately 2.3 times faster on MOSIS devices than in the simulations.

Nodes are discharged through enhancement pulldown devices. Fabricated
pulldown devices are stronger than those of the simulations - 1.6 to 2.8 times
stronger (Table 10.12a). This also more than offsets the higher capacitances of
the fabricated devices but not as dramatically as for the depletion devices. Thus,
fall times on the fabricated devices are slightly faster than those of the

simulations.

Interconnect resistances are also process dependent. Resistivities for the
fabricated devices and simulations are shown in Table 10.14. Signal lines that
could not be routed in metal are routed in polysilicon. Polysilicon for both the
MOSIS and Xerox processes, has a much lower resistivity than anticipated — 40%

to 48% of the simulation value. Signal lines that have delays limited by their RC
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time constants are consequently faster on the fabricated devices than in the
simulations. This is the situation for control lines, word lines, and interconnects

with long polysilicon crossovers.

Resistor Simulations MOSIS  Xerox

1 ﬁ

Diffusion 200 /g 26Q0/q 1904
Polysilicon 50040 2000 2404

Table 10.14- Polysilicon and Diffusion Resistivities

The shorter cycle times of the fabricated devices - 400ns and 330ns for the
MOSIS and Xerox devices respectively — than of the sirn;ulated device — 1035ns -
can be traced to the differences in process parameters. The stronger depletion
and enhancement transistors of the fabricated processors result in shorter rise and
fall times than in the simulations. Lower polysilicon resistivities also contribute to

the shorter cycle times of the fabricated Processors.

2.6. Summary

The SOAR processor chip was started in the spring of 1983 with the primary
goals of an instruction set targeted to compiled Smalltalk and a cycle time of
360ns (Table 10.15). These goals are critical for overall system performance.
Allowing for fabrication variations, a cycle time of 330ns to 400ns was achieved
with 4micton NMOS technologies. Functionality according to the target
instruction set was verified except for the register nilling option on returns. Thus,
the SOAR processor is close to being fully successful in meeting the two primary

goals. Other goals are not crucial for system performance but are a matter of
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practicality — power, size, packaging, and design time. The die size was limited
by the process technology in the shorter direction to 320mils. Allowing for some
slack space between the chip and cavity wall, the 440x440mil package cavity
limited the chip length to 435mils. Originally design time was predicted to be
twice that of RISCII due to the increased complexity of SOAR. These goals were

all met except for power consumption.

Characteristic Goal Realized
Instruction set  see Chapter all but register nilling
Cycle time 360ns 330-400ns

Power 25W 2.75-3.00W

Die size 320x435mils 320x432mils
Transistors 50,000 35,700

Process 4micron NMOS 4micron NMOS
Package  84PGA 84 PGA

Design time 67.2 person months  38.5 person months

Table 10.15- SOAR Processor Characteristics

3. Architecture Results

Although this methodology is primarily concerned with tradeoffs between the
five design levels — microarchitecture, functional block, circuit, interconnect, and
process levels — tradeoffs with the architecture and system level are also
important. The impact of the architecture and system requirements on the

implementation is important in design decisions concerning the architecture and
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system.

SOAR included many features to imcrease Smalltalk execution speed
[Unga85]. Some of these prove to greatly reduce the number of cycles needed to
execute programs and others are less significant. To further understand the worth
of these features, their effects on the speed, power, area, and complexity of the

chip should be considered.

3.1. Overview

SOAR is based on a RISC style of architecture [Kate83]. RISCs traditionally
have a relatively small control section — 10% of RISCII for example. The benefits
of this are a fast and relatively simple processor. SOAR is a more complex
processor than previous RISCs, partially due to the features that enhance
Smalltalk execution. The control section is therefore larger — 20% - but still less

than half of the processor (Table 10.16).

Section M)‘2 % Area
Datapath 11.05 51.2
Control- circuits 4.45 20.6

- routing 1.82 8.4
Periphery 4.28 19.8
Total 21.60 100.0

Table 10.16- Major SOAR Sections
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3.2. Area and Gedmetry

Table 10.17 lists the SOAR features that enhance Smalltalk execution and
potentially require special purpose circuitry. Transistor counts and the areas
occupied by these features are listed. The features requiring the most extra area
are the shadow registers, register windows, byte instructions, and the pointer to
register capability. The loadc and sll instructions use no extra circuitry.
Together, all Smalltalk features use 12.4% of the chip area (excluding the

periphery) and 13.9% of the transistors.
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Feature Number of % Transistors Area % Area
Transistors (MX2) (internal)

Register windows 969 271  .430 2.48
Inline cache 24 07 029 17
Byte instructions 308 .86 345 1.99
Tagged integers 211 .59 .076 44
Forwarding 136 38 .045 .26
Fast Shuffle 18 .05 .014 .08
Tagged immediates 79 22 034 .20
Nilling 254 71 .038 22
Trap instructions 123 .35 .048 .28
Loadm/storem 269 7 5 .105 .61
Pointer to register 705 1.98 .230 1.33
Vectored traps 453 1.27 171 .99
Generation tags 165 .46 065 .38
Loade 0 0 0 0
Shadow registers 1159 325 478 2.76
sl 0 0 0 0
Extracodes 99 28 .034 20
Total 4972 1394 2.142 12.36

"Table 10.17- Transistor Count and Area of Smalltalk Features
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3.3. Complexity

Table 10.18 outlines the complexity of these added features. Corhplexity can
be measured in .several ways. One measure is the number of circuit blocks that
the feature is distributed among. All blocks must be correctly connected and this
leads to routing complexity. Routing delays contribute to settling times and
therefore a large number of circuit blocks indicates a potentially' long critical
path. These paths require extra attention so that they do not limit processor
speed. Register windows, shadow registers, and nilling require the most circuit

blocks - ten or more.
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Feature Number of Number of Hand % Diagnostics
Circuit Blocks Drawn Transistors

Register windows 20 149 14.9
Inline Cache 4 8 2.2
Byte instructions 6 128 N
Tagged integers 8 25 12.0
.Forwarding 5 106 3.7
Fast Shuffle 4 4 0
Tagged immediates 4 12 0
Nilling 10 10 2.8
Trap instructions 6 14 1.8
Loadm/storem 6 16 9
Pointer to register 7 78 6.7
Vectored traps 4 0 3.2
Generation tags 5 8 6.0
Loade 0 0 0
Shadow registers 11 50 9
Sil 0 0 2
Extracodes 3 1 43
| Total 60.3

Table 10.18- Complexity of Smalltalk Features

A second measure of complexity is the number of transistors that must be

drawn by hand. These require extra design time and are more prone to bugs due

to human error. Thus, they also increase debugging time. The features that are
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most complex by this measure are register windows, byte instructions, forwarding,
pointer to register, and the shadow registers. Many features required ten or less
hand drawn transistors - inline caching, fast shuffle, nilling, vectored traps,

generation tags, loade, sll, and extracodes.

A third indication of complexity is the number of diagnostics needed to test
the feature. This is perhaps more a measure of architectural complexity than
implementation complexity. The diagnostic effort for a given feature is a
reflection of the variations and subtleties of that feature. The tagged integers and
register windows require the most diagnostics - 12.0% and 14.9% respectively.
Also requiring a large number of diagnostics are the pointer to register, generation
tags, and extracodes features — 6.7%, 6.0%, and 4_.3% respectively. All other

features need fewer diagnostics.

3.4. Speed

As previously discussed, the cycle time is limited by instruction decoding,
register file reads, and ALU operation. None of these critical paths involve the
Smalltalk features. Therefore, although these features have added area and
complexity, they do not appear to affect the cycle time. This is due to the effort
put forth to identify and balance the critical paths (Chapter 9). Two critical
paths that would have caused a significant speed reduction — 12% - are the
register file decode and SWP comparison. These can be traced to the register

windows and pointer to register feature, respectively.

Although the Smalltalk features do not explicitly appear in ény of the critical
paths, they may add to signal delays because of the increase in chip size due to
the area that they occupy. This effect is difficult to measure. So.me of the extra
circuitry fits into areas that would otherwise have been left empty and therefore

did not increase the processor size; other additional circuitry probably increased
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Feature | % Slowdown % Transistors % Area  Complexity
if omitted Index

Register windows 46 2.71 2.48 10.0
Inline cache : 33 07 A7 1.3
Byte instructions 33 .86 1.99 4.0
Tagged integers 26 .59 44 46
Forwarding 15 .38 .26 4.0
Fast shuffle 11 .05 .08 .8

| Tagged immediates 9.6 ' 22 .20 -9
Nilling 4.3 a1 22 2.5
Trap instructions 3.9 35 .28 1.7
Loadm/storem 34 75 .81 1.8
Pointer to register 3.1 1.98 1.33 44
Vectored traps 2.9 1.27 99 1.4
Generation tags 1.3 .46 .38 2.3
Loade ‘ 46 0 0 0
Shadow registers 04 3.25 2.76 3.2
‘ISl 0. 0 0 0
~| Extracodes 0 .28 .20 1.5

Table 10.19- Effects of Smalltalk Features -

From these processor considerations, the greatest benefits for the lowest costs
are due to the inline caching and fast shuffle features. Register windows, tagged
integers, and byte instructions have large benefits but also have relatively high

costs.
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In the 3 to 5% range for speed increase all costs are relatively low except
those of the pointer to register feature. Pointer to register is costly by all
measures and reduces the cycle count by only 3.1%. Vectored traps are also

fairly costly in terms of circuitry and area and only contribute a 2.9% speedup.

The features that contribute less than 1% to the speed increase cost very
little except for the shadow registers. The shadow registet;s involve a large
amount of circuitry and area, and are moderately complex. These shadow
registers stand out as the first feature to eliminafe in any redesign.
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