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ABSTRACT

Because of the high cost of fabricating an Integrated Circuit(IC). it is important to

verify the design using simulation. There are a wide variety of techniques for simulating

integrated circuit designs, but the most accurate and reliable is to construct the system of

nonlinear ordinary differential equations that describe a given circuit, and solve the system

with a numerical integration method. This approach, referred to as circuit simulation, is

computationally expensive, particularly when applied to large circuits. To reduce the com

putation time required to simulate large MOS circuits, new numerical integration algo

rithms based on relaxation techniques have been developed. These techniques can reduce

the simulation time as much as an order of magnitude over standard circuit simulation

programs. In addition, they are particularly suited for parallel implementation. This

thesis covers both the classical numerical techniques and the new relaxation-based algo

rithms, with particular emphasis on the Waveform Relaxation (WR) family ofalgorithms.

Algorithms in this family are reviewed, convergence theorems are included, and their

implementations on a parallel processor are presented.
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CHAPTER 1 - INTRODUCTION

Reliable and accurate simulation tools must play akey role in Integrated Circuit (IC) design.

This is because fabricating an integrated circuit is expensive and often time-consuming (on the order

of months). In addition, minor errors in the integrated circuit design can not usually be corrected

after fabrication. Therefore, design errors must be uncovered before fabrication, and this can be

done through the use of simulation.

There are awide variety of techniques for simulating integrated circuit designs, but none are

as accurate, reliable, and technology independent as constructing the system of nonlinear ordinary

differential equations that describe a given circuit, and solving this system with a numerical inte

gration method. This approach, referred to as circuit simulation, has been implemented in avariety

of programs such as SPICE[2] or ASTAP[3] These programs use a standard, or direct, techniques

based on the following four steps:

i) Anextended form of the nodal analysis technique toconstruct asystem ofthe differential equations

from the circuit topology.

ii) Stiffly stable implicit integration methods, such as the Backward Difference formulas, toconvert

the differential equations which describe the system into asequence of nonlinear algebraic equations,

iii) Modified Newton methods tosolve the algebraic equations bysolving asequence of linear prob

lems,

iv) Sparse Gaussian Elimination to solve the systems of linear equations generated by the Newton

method.

Circuit simulation tools based on the above techniques are heavily used. Companies spend

many millions of dollars per year in computer costs, and a number of companies run over 60,000

simulations/month. However, these programs were designed in the early 1970's for the simulation

of circuits with a few hundred transistors at most They arenow being applied, somewhat inappro

priately, to the task of simulating digital and analog VLSI circuits, which can contain more than

50,000 devices. As problems increase in size, it becomes less economically feasible to use the above
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direct techniques. SPICE[2] and ASTAP[3] can take several hours (on aVAXl 1/780) tosimulate

circuits with only a few hundred devices.

There are two reasons why the direct approach described above can become inefficient for

large systems. The most obvious reason is that sparse matrix solution time will grow super-linearly

with the size of the problem. Experimental evidence indicates that the point where the matrix sol

ution time begins todominate is when the system has over several thousand nodes, and this is the size

of systems that are beginning to besimulated for new ICdesigns.

The direct methods become inefficient for large problems also because, for large differential

equation systems, the different state variables are changing at very different rates. Direct application

ofthe integration method forces every differential equation in the system to be discretized identically,

and this discretization mustbe fine enough so that the fastest changing state variable in the system

is accurately represented. If itwere possible to pick different discretization points, or time-steps, for

each differential equation in the system so that each could use the largest time-step that would accu

rately reflect the behavior ofits associated state variable, then the efficiency ofthe simulation would

be greatly improved.

Several modifications of the direct method have been used that both avoid large sparse matrix

solutions, and allow the individual equations of the system to use different time-steps

[4,5,6,7,8,9,10,11]. One class of such techniques, Waveform Relaxation^1,12,13,14,15,16,17,18]

is based on "lifting" the Gauss-Seidel and Gauss-Jacobi relaxation techniques for solving large alge

braic systems to the problem ofsolving the large systems of ordinary differential equations associated

with MOS digital circuits. Briefly, the idea ofthese relaxation technique is to first break alarge circuit

into loosely coupled subcircuits. Then the behavior ofeach subcircuit, over some interval oftime, is

calculated by "guessing" the behavior ofthe surrounding subcircuits over the same interval oftime.

The responses for each subcircuit are used to improve these guesses, and the response is recalculated.

The procedure is iterated until the convergence is achieved foreach subcircuit over the interval of

time. Other relaxation techniques such as the Gauss-Seidel-Newton algorithm [21] can be applied to
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solve the nonlinear system of algebraic equations in place of the standard Newton-Raphson tech

niques.

Two circuit simulation programs have been developed atBerkeley using relaxation techniques:

RELAX, based on Waveform Relaxation[11,18] and SPLICE, based on Iterated Timing Analysis

(ITA) [33], a form of Gauss-Seidel-Newton technique. On a uniprocessor, these programs canshow

speed improvements over direct methods of upto an order of magnitude even for problems withonly

a few hundred devices. In addition, both the ITA and Waveform Relaxation are particularly ame-

nable to use on multiprocessors because the computational method already decomposes the problem.

A distributed form of the ITA algorithm, called DITA, has been recently developed and a prototype

DTTA simulator, the MSPLICE program, hasbeen implemented[34].

In this thesis I present acomplete andconsistentstudy of the existing body of research relating

to the application of numerical integration methods differential systems that describecircuits. I then

presentnew theoretical and practical results on the application of WR to numerically solvingthe dif

ferential equations generated from circuits, both on serial and parallel processors.

I start in Chapter 2 with an introduction to the circuit simulation problem, beginning with how

the differential equations that describea circuit are formulated from the circuit topology. Then, those

aspects of the circuitsimulation problemthat play a role in the choice of numerical method are de

scribed. The well-known issuesof consistency and stiff stability[l] is mentioned briefly, as is a con

sistent interpretation of the charge conservation property[41]. The chapter is ended with the

description of a new propertythat canbe used to classify integration methods, that of exhaustive do

main ofdependence.

In Chapter 3, many of integration methods that have been applied to circuit simulation prob

lems are analyzed with respect to the properties described in Chapter 2. The standard multistep in

tegration methods are analyzed first, and it is proved that the implicit multistep integration methods

commonly used in circuit simulation have all the desirable properties given in Chapter 2. Following,

the relaxation algorithms that have been used to solve the large algebraic systems generated by im-
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plicit integration methods is described[21,33], and a theorem guaranteeing the convergence of such

methods for small timesteps is proved[12]. Then, the semi-implicit integration algorithms, used in

special purpose timing simulation programs[5,6,7,8], are analyzed with respect to their domain of

dependence and stability properties. The chapter is ended by comparing the semi-implicit and relax

ation algorithms.

The theoretical basis for the family of WR algorithms, methods for the decomposed solution

of differential equations, is presented in Chapter4. Waveform relaxation is introducedwith a simple

example followed by a general algorithm. Then a new proof of the WR convergence, one that dem

onstrates that the WR algorithmis a contractionmapping in a particular norm, is presented. Exten

sions to the basicalgorithm that allow for modified iteration equations is presented and it is shown

that the convergence of such extensions follows directly from the proof that the WR algorithm is a

contraction mapping. Following, anextensionof the Newton Methodto function spaces is presented,

and its convergence provedusinglemmas fromthe basic theorem. The waveform Newton algorithm

will then be combined with the WR algorithm to produce a waveform relaxation-Newton(WRN)

algorithm[22].

To compute the iteration waveforms for the WR algorithm it is usually necessary to solve sys

tems of nonlinear ordinary differential equations. If multistep integration formulas are used to solve

for the iteration waveforms, the numerical integration method plays a role in the convergence prop

erties of this discretized WR algorithm[29]. In Chapter 5, the interaction between WR algorithms

and multistep integration methods is considered in detail. The discretized WR algorithm will be an

alyzed first assuming that every differential equation in the system is discretized identically (the

global-timestep case). A simple example is presented thatdemonstrates a possible breakdown of the

WR method under discretizations. Then, a comparison is drawn between the discretized WR algo

rithm and the algebraic relaxation methods described in Chapter3 and a strongcomparison theorem

for linear systems is proved. Following, a convergence theorem for the fixed global-timestep
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discretized WR algorithm will thenbe presented. The global-timestep restriction will then be lifted,

and the first theorem proving theconvergence of the multi-rate WR relaxation algorithm is presented.

In Chapter 6, the theoretical background for two of the techniques for accelerating WR con

vergence is presented. First, why breaking the simulation interval into pieces, called windows, can

be used to reduce the number of relaxation iterations required to achieve convergence is

examined[17], and then how to partition large systems into subsystems in such a way that the WR

algorithmconverges rapidly is considered[31].

The implementation of the WR algorithm in the RELAX2.3 program is described in Chapter

7. The partitioning, numerical integration, windowing and partial waveform convergence algorithms

as applied to MOS circuits are presented. The results from simulating a CMOS memory circuit are

analyzed, in order to demonstrate more clearly both the practicality of the WR algorithm, and the

specific nature of its efficiencies. The chapter will be concluded with a table of results from the

RELAX2.3 program applied to a variety of MOS circuits.

The implementation of two WR-based parallel circuit simulation algorithms on a shared-

memory computer are described in Chapter 8[17]. A brief overview of the aspects of a shared-

memory computer that effect the algorithm implementation are presented, followed by the

description of, and experimental results from, the two parallel WR algorithms.
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CHAPTER 2 - THE CIRCUIT SIMULATION PROBLEM

As mentioned in the introduction, circuit simulation amounts to solving numerically the system

of nonlinearODE's that describe the dynamic behavior of a circuit In this Chapter, we will address

the two topics of the construction of a system of differential equations from a given circuittopology

and its properties, and the issues to considerwhen choosing a numerical method for solving that sys

tem.

SECTION 2.1 - THE EQUATION SYSTEM

The most general formulation of a system of nonlinear differential equations is the following

implicit formulation:

f(jc(0, *(/), «(/)) - 0 *(0) - xq [2.1]

where x(t) e 1R" on / c [0,7]; u(t) c R' on / € [0,7] is piecewise continuous; and

F: IR^IR^IR' •*• IR" is continuous.

Before considering techniques for numerical solution, we first must guarantee that Eqn. (2.1)

has a solution. If we require that there exists a transformation of Eqn. (2.1) to the formj> «= Ak»w)

where / is Lipschitz continuous with respect to y for all w, then a unique solution for the system

exists[39]. Although there are manysetsof broad constraints on F that guarantee the existence of

such a transformation, the conditions can be difficult to verify in practice. Rather than carefully

considering the existence question, which will complicate the analyses that follow without lending

much insight, we will consider the following less general form, in which most circuit simulation

problems can be described.

C(x(/), u(t))x{t) «= /WO, «</)) '(0) - x0 [2.2]
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where x(t) e IR" on t € [0,7]; u{t) e Rr on / € [0,7] is piecewise continuous; C: R"jrR' •* R"*" is

such that C(x, u)~l exists and is uniformly bounded with respect to jc, u; and /: R"jcR' -*• R" is

globally Lipschitz continuouswith respectto x for allu(t) e R'.

The fact that C(x, u) has a well-behaved inverse guarantees the existence of a normal form for

Eqn. (2.2), and that x(t) c. R" is the vector of state variables for the system. Then as / is globally

Lipschitz continuouswith respect to x for allu, C(xt u)~l is uniformly bounded, and u(t) is piecewise

continuous, there exists a unique solution to Eqn. (2.2) on any finite interval [0,71 [39].

SECTION 2.1.1 - CONSTRUCTING THE EQUATION SYSTEM

The behavior of the most commonly modeled nonlinear circuit elements: diodes, bipolar tran

sistors, and MOS transistors, can be described by voltage-controlled current and charge equations.

For example, consider the diode in Fig. 2.1 for the case where the voltage across the diode

vx < 0.0. Then the anode and cathode currents, ia and ie respectively, and the anode and cathode

charges, qa and qc respectively, can be computed (to first order) from the following equations,

O/1<*F-/F'-i>

t - "'a

» - r / V(8C *!-»oa *> C0 (—-—)

where /, is the saturation current, V, is the thermal voltage, C0is the zero-bias junction capacitance,

and $ is the junction potential.

For an arbitrary circuit made up of a network of elements described by voltage-controlled

current and charge equations, it is possible to construct a system of differential equations that de

scribes the circuit by using nodal analysis[36]. This amounts to applying the relationship that the
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time derivative of charge,q, is a current, and insisting that the sum of the currentsleavingeach node

(currents entering the node are assigned negative sign) in the network is precisely zero (Kirkchoffs

Current Law, KCL). That is, for each node in the network:

4f 2 ftfa«*(v<0,«W> + 2 4wt/(v(')."(')) - 0. [2.3]
elements at i elements at i

wherev(0 * JRn is the vectorof nodevoltages, andu(t) e R'. If asystemwereconstructed using the

KCL equations for everynode in the circuit, the system would be overdetermined. For this reason,

the equation for an arbitrary node in the circuit, referred to as the reference or ground node, is dis

carded. In addition, the KCL equations for the nodes for which the node voltage is known a priori

(e.g., anode connected to avoltage source whose other terminal isconnected to the reference node)

are discarded.

As anexample, consider the Nand circuit in Fig. 2.2. In order to solve for the unknown volt

ages vi and vj, weneed only form the KCL equations atnode 1and node 2, and can ignore the KCL

equations for the nodes connected to the voltage source and ground. For the first node we have the

equation:

^1.^.0) - idJyi'Vb^O + -jftad,Jvl>Va>W +°sJ^Vb,Vl) + c,v,] - 0

and for the second node,

^(*2.*W +8l(vdd-^ +-£l«sJv2,Vb,Vl) +c2V2] - 0

where (, and id 2are the the currents flowing from the drain to the source of transistor ml and ml

respectively, $, ,qdmV qSmV are the charges accumulated at the drain of transistor ml and the source

and drain of transistor ml respectively.
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In general, the nodal analysis leads to systemsof the form:

4^(K0,w(0) - i(v(0,"(/)) - 0 [2.4]
at

whereqiRrxTRr -•> R" is the vectorof the sumsof the charges at a node, i:R"arRw ■♦ R" is the vector

of the sums of the currents entering a node, v e R" is the node voltage vector, and u e R* is the

vector of inputs. The system in Eqn. (2.4) can be converted to the form of Eqn. (2.2) by applying

the chain rule to establish the identity

-|^(v(/),«(r)) - -^-(v(/),«(r))v(/) +-^v(f),«(/))«(0.

dq
We then define x - v, C(jc(/),m(/)) - -JL(v(f),w(f)), and

ov

dq
fix(t)M0) — i(v(0,"(/)) - -rz-(K0,w(0)w(0 to get a systemof the form of Eqn. (2.2). Note that

au

dq
in order for the /defined above to satisfy the Lipschitz continuity property, either -r— must be zero,

ou

or it must be bounded.

dq
For a broad class of circuits, the C(x,u) matrix defined by C(x,u) - -r—(v,u) is strictly

ov

diagonally dominant uniformly in xt a property which guarantees the existence of a bounded

inverse[28]. Many of results concerning relaxation methods for systems of the form of Eqn. (2.2) rely

on this diagonal dominance property, so we will describe under what conditions a circuit will produce

a C(x,u) that is diagonally dominant

Consider the two node example in Fig. 2.3. Applying the nodal analysis technique described

above yields the following differential equations:

(c, + cf)Vl(t) - cfat) - s,v,<0

(c2 + Cf)V2(t) - Cfiit) = g2V2(0
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As this example demonstrates, for circuits whose only charge elements are capacitors, the i'h diagonal

entry of the C matrix is the sum of the capacitance incident at node i, and the ifhentry is the negative

value of the capacitance between node i and node./. It therefore follows that the sum of the absolute

value off-diagonal terms is less than or equal to the diagonal terms where strict inequality holds if

there a nonzero capacitance between node i and a voltage source or ground node. This example leads

to the following important observation which is easily verified.

Observation If a system of equations of the form of Eqn. (2.2) is constructed by applying the nodal

analysistechnique described above to a circuit which contains capacitors(linear or nonlinear), or any

other elements whose charge function has a diagonally dominant Jacobian, then the capacitance ma

trix C(x,u) of Eqn. (2.2) is diagonally dominant If, in addition, there exist a linear or nonlinear

capacitor, bounded away from zero, to ground or a voltage source at each node in the circuit, the

matrix C(xtu) is strictly diagonally dominant for all x, u.

SECTION 2.1.2 - EXTENDING THE CONSTRUCTION TECHNIQUE

The nodal analysis techniquecanonly be usedto formthe differential equationsof circuits with

elements whose current or charge is a well-behaved function of voltage. It is possible to extend the

technique to include circuits with inductors and floating voltage sources by using Modified Nodal

Analysis [38]. A similar technique is used in this section to show that circuitswith these two types

elements can be described by a differential equationsystem of the form of Eqn. (2.2). This demon

strates that the form of Eqn. (2.2) can emcompass much more that just circuits with voltage-

controlled current and charge elements, and is a justification for consideringonly systems of the form

of Eqn. (2.2) for rest of this thesis.

Consider a large network with two nodes that are connectedby a floating voltage source as in

Fig. 2.4. The nodal analysis equations can be written for the two nodes and are for node a,
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k

2i}(va,v6,v) + isrc - 0
7=1

l

2 'ft* vb>v) ~ W - °
y=*+i

Page 11

where v is the vector of all the other node voltages and ^ is the current through the voltage source.

Given an additional variable has been introduced, 4* an additional equation is needed to compute the

solution, .

vb + V.

In order to convert this set of equations into the form of Eqn. (2.2) we perform a simple substitution

to generateone equation in one unknown (here we have arbitrarily chosen vb)

k

^ijivb+Kv^v) - 0
y»i

It is somewhat more complicated to reorganize the equations of circuits with inductors so that

they fit into the form of Eqn. (2.2). This is because the voltage across the inductor is a function of

the time derivative of current passing through it For the example in Fig. 2.5a, the KCL equation for

node a is

j

2»/(vfl, vb, v) + imd = 0



and for node b,

and for the inductor,

k

2 tf v«» vb* v) - had - °

di/nd i ^ n
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wherev0 and v6 are the voltages at the inductor terminals; vis the vectorof nodevoltages forthe entire

circuit excluding va and vb; i^ is the inductor current and L is its inductance.

Since the derivative of inductor current is present in the equations, in order to include the

inductor in the system of Eqn. (2.2), the current must be included in the set of state variables. A

circuit interpretation of such a reorganization is to replace the inductor by an extra circuit node, a

grounded capacitor of capacitance L, and two voltage-controlled current sources (See fig. 2.5b).

Note that the extra row in Eqn. (2.2) that would be generated by including an inductor in a given

circuit willnot destroy the invertibility or strict diagonal dominance property of C(x,u), because the

extra row in C(x,w) will contain only one nonzero entry, on the diagonal.

SECTION 2.2 - NUMERICAL INTEGRATION PROPERTIES

Once the system of differential equations has been constructed from the circuit topology, it

must be solved numerically. The usual approach is to use one of the many numerical integration

formulas to convertthe differential equations which describe the systeminto a sequence of nonlinear

algebraic equations.

For example, the most obvious numerical integration formula is the expJicit-Euler algorithm.

Given the initial condition x(0) - Xq, it is possible to compute an approximation to x(h), h > 0 ,

x(h) - x(0) . a . . .. . ,
by substituting for jr(0), where the notation jc is used to mdicate numerical approxi-
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mation. Substituting this discrete approximation into Eqn. (2.2) yields the following equation for

i(h):

i(h) - x(0) + C(x(0),t«0)r1/C*(0).tf(0)) [2.5]

By substitihg x (h) for x(0) in Eqn. (2.5) it is possible to compute x (2h), and the process can be re

peated to produce a sequence that approximates the exact solution to the differential equation at

discrete points in time.

The explicit-Euler algorithm is the simplest of a wide variety of discretization techniques for

numerically solving large systems of differentia] equations. In order to chose a discretization method

that will be efficient and accurate for a given class of problems, it is necessary to consider several

properties of the integration method with respect to the class. In this section we will consider several

of the key aspects of the circuit simulation problem that impact the choice of numerical method. We

will start by presenting the general classical consistency/stability/convergence criteria both for

completeness, and as a vehicle for presenting the notation that will be used throughout this thesis.

We will then consider more specific properties of the circuit simulation problem, starting with the

well-known issue of stiffness. Following, the properties of charge conservation and domain of de

pendence will be defined, and in each case we wil consider the impact these properties have on the

choice of numerical method.

SECTION 2.2.1 - CONSISTENCY, STABILITY, AND CONVERGENCE

In general, a numerical integration formula produces a sequence approximation to the solution

of a differential equation by repeated application, starting from some initial condition x0. We will de

note the approximation produced by the m'h application of a given numerical integration formula to

Eqn. (2.2) by jc(tm), where rm'c R is such that x(rm) is the numerical approximation to the exact

solution at / •» rm. It will be assumed that if the differential equation is to be solved numerically on

[0,71 that there exists some finite integer M, such that ta/ « T. In addition, we will refer to
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h^ « Tjn - Tm_j as the m'k discretization timestep. Finally, we will denote the entire sequence

*(tJ, «€{0,..,A/}byWTB)}.

If a numerical integration algorithm is to be of anyuse, it must be possible to arbitrarily accu

rately approximate the exact solution to the differential equation system uniformly over [0,71 by re

ducing thediscretization timesteps. An integration method with this property is said to beconvergent,

defined formally as follows:

7*Definition 2.1: Let the discretization timesteps be fixed; that is hm - — for all m e {0,..., M). A

Numerical integration method is convergent with respect toEqn. (2.2) if the global error, defined by

»««m<M ll£(Tffl)-*(T,„)il [2.6]

goes to zero as M «*• « •.

For anumerical integration method to be convergent it must have two properties. The error

made in one timestep must go to zero rapidly as the timestep decreases, and the errors should not

grow too rapidly over the timesteps. The error made in one timestep is called the local truncation error

(LTE).

Definition 2.2: LetJc (tJ begenerated by applying one step of anumerical integration formula to a
A *M A

system of the form of Eqn. (2.2) given the sequence {x (t~)}, m < msuch that x(t~) - x(t~).

Then the local truncation error is defined as Qx (tJ - x(rm) j|. •

The best that one could hope to show for general systems is that the global error for the ap

proximation, that is max^ [| x(tJ - x(tm) il, is afunction ofthe sum ofthe local truncation errors,

2 LTEn, where LTE^ is the local truncation error at the m'h timestep. Given a fixed interval [0,71,
m-0

and that M- —, this sum is bounded below by ^-LTE^n where LTE^^ is the minimum of the LTE's
h n

over all m. If this sum is to go to zero as h •* 0, then

LTEm
"m/,-o—r— ** °
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This property is known as consistency [1] and is shared by any "reasonable" numerical integration

method.

As an example, it ispossible toverify that the explicit-Euler algorithm isconsistent for systems

of the form of Eqn. (2.2), by using aTaylor series expansion about x(rm). That is,

nm+ i ~

where t c [t^ rm+1]. From Eqn. (2.5) we get

x(Tm+1) - x(rm) + Am+iCWTm),M(Tj)-1Mg,tf(Tm)).

Substituting for x using the following identity,

and then subtracting,

h2
*OWi) - *<Tm+1) - —^—i(r) [2.7]

which verifies consistency.

Consistency is not sufficient to guarantee that a numerical integration method is convergent.

Consistency only insures thatthe local errors are small, but doesnot indicate anything abouthow the

errors propagate from one timestep to the next To insure convergence we need to verify that the

numerical integration method hasa second property, that of stability[l].

Definition 2.3: A numerical integration method applied to Eqn. (2.2) is stable if there existsanh0 and

a constant K < « such that for any two different initial conditions x0 and x'q, and any

T_
N

h - 4r < h%
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Q£(ta/) - x'(tA/)D < K H*o " *'oll-"

The explicit-Euler algorithm is stable, but the proof is lengthy and well-documented elsewhere[l] so

we will not repeat it here.

Not surprisingly, we have the following classical result:

Theorem 2.1: If anumerical integration method is consistent and stable with respect to Eqn. (2.2),

then it is convergentwith respect to Eqn. (2.2). •

Several different proofs have beengiven for this basic result[l].

If an integration method is convergent then when the method is used tocompute an approxi

mate solution to adifferential equation system, sufficient accuracy can be insured by using timesteps

that are small enough. Obviously, it is possible to insure that the timesteps are small enough by using

extremely small timesteps, but this very inefficient Instead, the integration timesteps are usually

controlled byusing some check on the discretization error. If, in any given step the error becomes

too large, the timestep is replaced by a smaller timestep.

Usually, the check on the discretization error is some computed estimate ofthe local truncation

error. For the explicit-Euler algorithm, for example, the exact local truncation error at the m'h step

is 0.5/£+1x(~) where t € [rm, rm+,]. An estimate ofthe local truncation error ofthe m'h explicit-Euler

step can becomputed using the following divided-difference estimate for x,

*(Tm+l) -*(0 x(rm) -*(Tm_,)
„ hmJ.t h

x(t) « m+1 m . [2.8]
0S(hm+l + hm)

Most of the techniques for estimating local truncation error are only estimates, not bounds. In

practice, these type ofestimates have proved to be reliable, but there are certain common cases where
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theestimates are much smaller than theactual error. An example of such a case will be presented in

Section 2.2.4.

SECTION 2.2.2 - STIFFNES AND A-STABILITY

Consider the Example inFig. 2.6, a resistor-capacitor circuit The differential equation that

describes the circuit canbe constructed using the nodal analysis technique above and is:

v{t) - - 100v(/) v(0) - 1.0 [2.9]

where v(f) e R isthe node voltage. The exact solution for visv(/) » e-1001. If the interval of interest

is[0,7], this is atwo time-scale problem. That is, vchanges very rapidly compared tothe interval of

interest

Anysystem of differential equations that has the kind of multiple time-scale properties of the

above example issaid to bestiff Most circuits of interest generate stiffdifferential equation systems,

and this strongly effects the choice of integration formulas. For example, the explicit-Euler algorithm

applied with a fixed timestep h to numerically solve Eqn. (2.9), yields the following recursion

equation for v,

v(rm) - (1 - lOOhjkr^)

or given v(0) - 1,

Clearly, | v(tw) | will decay only ifh,n < 0.02 for all m,and v(tJ will decay monotonically to0only

if hm < 0.01 for all m. If larger timesteps are used, | v(tJ | will grow. What this implies is that in
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order to accurately compute a sequence approximation to the solution of this system using explicit-

Euler, small timesteps mustbe used even when the solution isnotchanging appreciably.

Now consider a slightly different numerical integration formula, the implicit-Euler algorithm,

where i<TM) is approximated by J-(J(tw) - v(tm.,)). Just like explicit-Euler, implicit-Euler is
hm

convergent and the local truncation error is of order A2. When applied to Eqn. (2.9) the following

recursion equation results:

Urm) - krm^) - I00h„,i(rm)

or reorganizing,

^ " (1 +10M„/(T"'-')"

Again using the fact that v(0) - 1,

v(t„.) - fi*1 +100^)"1

Note that inthis case, any ^ > 0 will produce amonotonically decaying sequence. The tremendous

advantage of this method over explicit-Euler is that small timesteps can be used for the first few steps

to accurately resolve the rapid decay, and when the solution stops changing appreciably, the timestep

can safely bemade orders of magnitude larger without causing the computed solution togrow.

The implicit-Euler algorithm has a property that is "stronger" than the numerical stability of

Definition 2.3, which we define below as A-stability:

Definition 2.4: Let {Jc (tw)} bethe sequence generated by anumerical integration method applied to

the equation

x(t) - Ax{t) x(0) - x0
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where x(t) c R-, and Ae R- and tm - r.,., - hm - h for aU m. Given {X,}, the set of

eigenvalues of A, the region ofstability for the integration method is the subset of £such that if h\,
is inside the region of stability for all i, then x(tJ - 0as m- «. The numerical integration method

is A-stable ifthe region ofstability includes the entire left-half plane of $.•

The above definition differs from the original definition given byDahlquist[42] in that amatrix rather

than scalar test problem is used[6]. As will become apparent in following sections, a matrix test

problem is more appropriate for analyzing methods designed for large scale systems.

Both the explicit-Euler and implicit-Euler algorithms can be used to produce arbitrarily accu

rate discrete approximations to the exact solution of Eqn. (2.9), as both are convergent The

implicit-Euler algorithm will allow much larger timesteps to be used with no appreciable loss of ac

curacy and hence will be more efficient But improving efficiency is not the only reason one would

choose implicit-Euler, or another A-stable numerical integration method. There is also the consider

ation of numerical robustness. That is, if an A-stable method isused, the timestep can safely be set

by only considering local truncation error criteria, which can be reasonably estimated. If amethod

that is notA-stable isused, the timestep must be bounded to insure stability. Such abound will be a

function of the eigenvalues for a linear problem, and it is difficult to get reasonable estimates of

eigenvalues.

SECTION 2.23 - CHARGE CONSERVATION

Many differential equation systems generated from physical problems can be characterized by

the preservation of certain quantities, and frequently it is important that the numerical method also

preserve these quantities. For example, when numerically solving the differential equations that de

scribe the motion of a swinging pendulum ina frictionless environment it is important to insure en

ergy remains constant If energy increased due to numerical error, the computed solution would

indicate that the pendulum would swing higher and higher, and if energy were lost the computed

solution wouldindicate that the pendulum would eventually cometo a halt
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In the case of systems of equations that describe circuits, charge is a physical constant To

show this, consider surrounding arbitrary circuit by a Guassian surface. Since the surface is

unpunctured, the charge contained inside must remain constant[43]. As a consequence, the sum of

all the currents must be zero, as the sum of the currents is the derivative with respect to t of the sum

of the charge.

This truly trivial observation can not directly apply to the differential equation systems con

structed using nodal analysis as above. If the sum of the node charges in Eqn. (2.4) were precisely

zero, then C(jc,u) inEqn. (2.2) would besingular and Eqn. (2.2) would notnecessarily have aunique

solution. In order to produce systems of equations that do have unique solutions, the KCL equations

for an arbitrary reference node and for nodes for which the voltages are given a priori are not in

cluded, and asolution for the reference node of vw/(0 « 0 for all / isassumed.

As an example, consider the simple resistor-capacitor circuit of Fig. 2.6a. Interms of charges,

the differential equation that describes the behavior of the circuit is

q(v{t)) - -*v(0 v(0) - 1.0,

where the charge qiv(t)) «* cv(t). The solution, v(/) » e-r't is not a constant so neither is the

charge q. The differential equation does not exhibit charge conservation because not all the charges

have been considered, and only the sum remains constant The charge on the ground or reference

node is - cv{t) and obviously the sum of the two is zero for all t.

IfKCL isapplied toevery node in the resistor-capacitor example, including the reference node,

an appended system is generated

Xt)-i„j<t) - --f-(v(/) - vnJ<t))

yn/i0-«t) - -I-Ofc/o-vO))
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which does not have a unique solution, but an infinite collection, unless it is assumed vfe/(0 = 0.

However, for any of the solutions the sumof the node charges remainsconstant

It ispossible to use appended systems generated byapplying KCL to every node in a circuit to

test how well a numerical integration methodconserves charge. If the method is applied to the ap

pended system thencharge conservation canbe checked bysumming all thecharges at eachtimestep

to insure the sum remains constant The algebraic equations generated by the numerical integration

method can still be solved in the usual fashion, with the known node voltages and a reference voltage

used to eliminate the equations associated with the appended differential equations.

Explicit-Euler applied to an autonomous system (independent of u(t) ) of the form of Eqn.

(2.2) constructed from applying KCL to every node in the circuit yields,

dv
4(vW)(v(Tffl+i)-vy - hm+1f(v(rm))

dq a a
where ~<v (tJ) is the, possibly singular, jacobian of q(y (Tm)), the vector of all the node charges.

dv
m a

If it is assumed that at rm the sum of the node charges 2 q,{v (rm)) — K, where K is some constant

» A
then charge is conserved only if 2<7,(v (rm+1) is also equal to K. This is not necessarily the case, as

can be seen from the Taylor series expansion of q{v (rm+1)) about ^(v(rm)),

-?(v(r„l+1)) - q(.v(rj) +A(J(Tw))(J(Tm+1) - J(t„,)) [2.10]

2

+ —r-(J(T))( v(TflJ+J) - J(Tfl|) )( v(Tnl+1) - J(TflJ) )
dv

where v(?) e [v(tJ, v(rm+1)]. Substituting /»,n+1/(v(TM)) for-^(v(rM))(v (tm+1) - v(tJ) leads to

q(v(r„t+i)) - q(.v(r„,)) + hm+lf{i(rn,)) +



Summing the node charges,

9

dv

n it
.A. _ ^ A
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2w<W> « Sft(5(rffl)) + 2*-.+^(0)' + *(Ai+l>- [2.11]
/=! i=l «=1

where o( •) is any function such that lima,0 5 < °°. To simplify Eqn. (2.11), another prop

erty of the original network from which the KCL equations were generated can be used. Since

Jl • ) is the vector of sums of the currents incident at each node, and asany current leaving a node

must arrive at some other node, %f{(v (tJ) must be identically zero. Using this fact leads to

*«1

which implies thatthe sumof the node charges will notremain constant unless the second order term

in Eqn. (2.10) is zero, which will be true if all the node charges are linear functions of the node

voltages, but will not be true in general.

The sum of the charges is constant in the limitas tX,^ goes to zero, so the nonconstant charge

can be viewed as another measure of the local truncation error. However, if the same integration

method is applied slightly differently, using charge as a state variable, then the sum of the node

charges will stay constant regardless of the stepsize. To demonstrate this we again apply the

explicit-Euler algorithm, but to the system in the form of an autonomous version of Eqn. (2.4).

Discretizing the charge function leads to,

^(KT,I+i))-^(v(Tn)) = /rM+i/Tv(Tn).
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That the sum of charge is constant independent of the stepsize, follows from:

/=»! i=l i=l

" A

and the fact mentioned above, that X/](v (tJ) •» 0.

We use these ideas to precisely define the charge conservation property.

Definition 2.5: A system of the form of Eqn. (2.4) is of type 5 if it has the following two properties:

for any exact solution the sum £?,(*(')) is a constant independent of t; and 2/)(v) - 0 for any

v e R". A numerical integration method has the charge conservation property if when applied to any

A "
system of type S, the computed sequence {v(t,)} is such that 2qt(v(rm)) is a constant independent

of m. •

In section 3.1 we will show that all multistep integration methods applied with charge as the state

variable have the charge conservation property.

SECTION 2.2.4 - DOMAIN OF DEPENDENCE

In the area of partial differential equations, the concept of domain of dependence is

well-known[44]. The idea is that partial differential equations can be characterized by how rapidly

the behavior of points in space will propagatewith time. As time increases, the space of points that

can effect a given point referred to as the given point's domain of dependence, grows. For a nu

merical method used to solve the partial differential equation to be convergent that is to produce

arbitrarily accurate solutions as the distance between discretization points becomes small, the nu

merical method must propagate the behavior of each point in space at a rate that at least approaches

the rate of the original partial differential equation. In the language of domain of dependence, a nu

merical method is convergent only if for each point in space, as the distance between discretization

points become small the numerical domain of dependence includes, or comes arbitrarily close to

covering, the domain of dependence of the partial differential system.
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In this section, an analogous concept will be introduced for large systems of ordinary differ

ential equations. But rather than comparing the domain of dependence of a numerical method to that

of the differential equation system to investigate the numerical method's convergence properties, we

will show that domain of dependence plays a role in the accuracyof the integration method, and how

well the errors due to discretization can be controlled.

Consider the following differential equation system

*l(0 - - Cxj(0 - 0.01«(/) ) [2.12a]

*2(') ('2(0 - H*l(') )

x„(t) - - (x„(t) - 10x„_,(/)).

*,(0) - 0, J€ {1,..., n}

where the input u(t) •» 1 for all t> 0.

The exact solution for this system is:

r,</) - 10''-3[1 - (2-T)>-'- [2.126]

As can be seen by examining Eqn. (2.12b), the solution to the system of Eqn. (2.12a) is a propagating

step that is being smoothed and is growing rapidly in amplitude through n stages. Systems with this

type of behavior are extremely common among circuit examples (a chain of inverters, for example).
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If the explicit-Euler algorithm is applied to Eqn. (2.12a), the computed value for

*i(ti) - O-Ol^andJc^r,) - 0 for ail 1 < i < it. In fact x, will remain zero until the i»* timestep

regardless of the size of the timestep. This slow propagation of the solution introduces an error that

is in the form of adelay, that is £(t7) does not change until j > i. Explicit-Euler is convergent so this

delay error in time must be driven to zero as the timestep decreases, and it does, because ry ap

proaches zero.

10'"3A, ^ , ,_ u
If implicit-Euler is applied to Eqn (2.12a), then ^(t,) - — —. Therefore, when the

* (i + hxy

implicit-Euler algorithm is used, the behavior of the inputis propagated thoughout the entire system

in one timestep andthere is no error due to delayed propagation of information. This does not nec

essarily imply that implicit-Euler is more accurate than the.explicit-Euler algorithm. For example,

applied to Eqn. (2.12a) with a timesteph\ « 1, explicit-Euler produces the solution x5(t,) = 0.0,

whileimplicit-Euler produces the solution x5(t,) - 3.125. The exact solution is x5(l) ». 0.359, so

in thiscase, the explicit-Euler computed solution iscloser to the exactsolution thanthe implicit-Euler

computed solution, though neither method produces very accurate results.

For this example, accuracy clearly isn't the reason for preferring the implicit-Euler's rapid

propagation of informationto explicit-Euler. Implicit-Euler is a more reliable integration method for

this example because the error due to discretization in the computed solutionis more visible than the

discretization errorin the computed solution produced by the explicit-Euleralgorithm. To see why

this is the case, consider the local truncation error estimate presented in Section 2.2.1,

*(Ti»+l) -*(*«,) *(*«,) - £<Tm_i)

LTE* Hl+1 *"+' • K [2-13]
C/ii+l + nm>

Since in this case, m •» 0, x (tJ » x (t,„_,) = x(0) and hm » 0, Eqn. (2.13) can be simplified to

LTE* /ifl21+1(£(T,)-x(0))
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For explicit-Euler this estimate indicates that the LIE for at5(t,) is zero, which is a severe underesti

mate. A timestep control scheme based on local truncation errorwould not shrink the timestep in this

case, and a very inaccurate solution would be computed. For the implicit-Euler algorithm, the error

estimate is 3.125 which is largerthan the actual LTE, but this is safe, because an LTE-based timestep

control scheme will detect the error and reduce the timestep.

This example indicates that when applying the explicit-Euler algorithm to a large system, a

timestep dependent limit is introduced on how fast the behavior of an individual state,variables

propagate through the system. The delay error due to this limited rate of propagation is different

from a local truncation error. An arbitrarily high orderexplicit multistep integration method could

have been used at each step, and still x,(rm) would have been zero until the Ph timestep. The

implicit-Euler algorithm does not introduce such ana priori limitation on how fast the behavior of an

individual statevariables propagate through the system. Because of this, when the system behavior

is faster than can be propagated by the explicit-Euler algorithm, the implicit-Euler algorithm can

produce more accurate results, but more importantly, when it produces results thatare in error, those

errors are more observable.

We end this section, andthischapter, by connecting the conceptof the delay introduced by an

integration method, thenumerical delay to that of Domain of Dependence, theconcept borrowed from

the studyof partial differential equations. This connection will provide a simple tool for testing in

tegration methods to determine for whattypeof systems theywillintroduce numerical delay.

For this purpose,we can define the numerical delay as follows:

Definition 2.6: Given a numerical integration method applied to a system of the form x(t) = Ax{t)

with some initial condition*(0) - *b» »f xt(r) - x,(Q) * 0 for all t e (0, t] for some t > 0, then

the numerical delay to the F* variable is defined as the smallest integer M{ such that

x(tm +t) _ *i(0) ** 0. If no such t exists, the numerical delay to the i1* variable, M(, is zero. The

numerical delay for the integration method applied to thegiven system with thegiven initial condition

is the maximum over all i of the Mp •
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Intheexample above, thenumerical delay for implicit-Euler algorithm applied to Eqn. (2.12a) iszero,

and the numerical delay for explicit-Euler is « — 1.

The description of the role of domain of dependence will be based on the following general

definition:

Definition 2.7: Given an equation of the formj; - f(x\ wherexy € R", and/:R"jrR" -•» R", the

domain of dependence of the/* variable of thevector^, j^, is thesetof all xt,, i £ {1,..., n] such that

dfj
for some jc, —— # OB.

dx,

Given the matrix test problem

x{t) - Ax(t) x(0) « xQ [2.14]

where x(t) e R» and A e RRM, the exact solution at / « A is, in series form,

x{h) - [/ +hA +Ata2 +̂ 3 +-J*(0). [2-15]
2 o

The domainof dependence of x,(h) can be deduced directly from Eqn. (2.15). The variable jry(0) is

in the domain of dependence of xt(h) if the i,/* element of A" is nonzero for some n.

The equation for one step of explict-EuIer applied to Eqn. (2.15) is

£(t,) - [I +hiA]x(0). [2.16]

As can be seen from the equation, the domain of dependence for the x\h variable in Eqn. (2.16) will

be a proper subset of the domain of dependence for the x1* variable in Eqn. (2.15) unless the powers

of the matrix A do not add additional nonzero terms. This would occur, for example, in the case

where A is diagonal. If instead, one step of implicit-Euler were applied to Eqn. (2.14), the following

series expansion results:

£(t,) - [/ +hA +h2A2 +h3A3 + ...]*(0), [2.17]
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where the series expansion is valid for h such that hp < 1 where p is the spectral radius of A. Com

paring Eqn. (2.17) to Eqn. (2.15), it can be seen that for a small enough h the domains of dependence

of the exactsolution andthe implicit-Euler algorithm are identical foreach variable, xj(ji). We define

this property below as exhaustivedomain ofdependence.

Definition 2.8: If the domain of dependence of each element of the vector producedby one step of

an integrationmethod applied to Eqn. (2.14) matches the domain of dependence of the correspond

ing element in the left hand side vector of Eqn. (2.15) for a smallenough timestep h and for any A

and any initial condition a©, then the numerical method is said to have an exhaustive domain of de

pendence. •

The following theorem relating domainof dependence to numerical delay follows directly from

the definitions:

Theorem 2.2: If a numerical integration method has an exhaustive domain of dependence then the

numerical delay of the integration method is zero for any A and any Xq. •

If one step of a numerical method has a smaller domain of dependence than the original dif

ferential equation, then anumerical delaywillbe introduced andthe timesteps used forthe calculation

willhave to be bounded to insure rapid enoughpropagation of variable behavior. Like boundson the

timestep to insure stability fornon-A-stablemethods, thisadditional constraint isdifficult to estimate,

and must be done very conservatively. The explict-Euler example above demonstrates how difficult

the error is to even observe, because the effected variables, for which the error occurs, are left un

perturbed. Forthis reason, arobustnumerical integration algorithm forlarge systems musteitheruse

a method like implicit-Euler, which hasanexhaustive domain of dependence, or have some technique

for checking that system variables have propagated far enough.
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Figure 2.3 - Floating Capacitor Example

Figure 2.4 - FloatingVoltage Source
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Figure 2.5a - Floating Inductor Example

Figure 2.5b - Floating Inductor Equivalent Circuit
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Figure2.6 - Stiff Resistor-Capacitor Circuit
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CHAPTER 3 - NUMERICAL TECHNIQUES

The implicit multistep integration algorithms used in general purpose circuit simulation pro

grams like SPICE2 [2] and ASTAP[3] have proved to beextremely reliable, but are computationally

expensive when applied to large systems. This is because each step of the numerical integration re

quires the solution of a large implicit nonlinear algebraic system. Two approaches havebeen used to

reduce the computation time required by these methods. Decomposition techniques have been ap

plied to improve the efficiency of the solution of the large algebraic systems generated by implicit

integration methods, and less computationally demanding semi-implicit numerical integration algo

rithms have been developed. In this chapter we will start by demonstrating that the implicit multistep

integration algorithms used in general purpose circuit simulation programs have the three key prop

erties described in Chapter 2, charge conservation, exhaustive domain of dependence and stiff stability.

Following, the relaxation algorithms that have been used in circuit simulators for solving the large

nonlinear algebraic systems generated by implicit integration methods will be described. Then the

semi-implicit integration methods usedin special purpose programs like MOTIS[7], MOTIS2[8], and

SPLICE[45] will then be analyzed with respect to their domain of dependence and stability proper

ties. Finally, we will end this chapter by comparingsome of the special purpose integration algorithms

with algebraic relaxation methods.

SECTION 3.1 - NUMERICAL INTEGRATION IN GENERAL-PURPOSE SIMULATORS

Most of the general-purpose circuit simulation programs use implicit multistep integration al

gorithms applied to the state variable charge (and if inductances are included, also fluxes). That is,

given a system of the form

q(x(t),!/(/)) - mOMO), [3.1]
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where x(t) e R" is the system state, usually the vector of node voltages appended by inductor cur

rents, u(t) e R' , is the vector of inputs, and is continuously differentiable with respect to f,

fiJRrxJR' -*• IR", continously differentiable, is usually the vectorof sumsof currents entering a node,

and qiJRrxR' •* IR", continously differentiable, is usually the vector of node charges or fluxes. A
A A A

function,/ is defined such that/(^(x(/)),w(0) - /W).w(O). Using such an/, Eqn. (3.1) is con

verted to a system in normal form,

q(x(t)tu(t)) - /(<K*(0), «('))• [3.2]

One of the collection of multistep integration methods is thenused to solve Eqn. (3.2). The general

form for a multistep integrationmethod appliedto Eqn. (3.2) is

/a>0 /=0

which is identical to

* a 'a

/oO »=o

where kj are postive integers, a0 - 1 , and a„ 0, e R for 0 < i <*, 0 <./< / depend on the inte

gration method and the ratio of the timesteps ht, m- max(*,/) <i <m. For example, the fixed-

timestep explicit-Euler algorithm used for examples inChapter 2 can be derived from Eqn. (3.4) by

setting k = 1, / - 1, a0 - 1, a, = -1, ft, - 0, and ft = 1. To derive implicit-Euler the coef

ficients remain the same except jJ0« 1, and ft - 0.

Not all collections of a 's and 0's produce useful numerical integration methods. Consistency

is one limitation on the choice of coefficients. It is well known that for a multistep method to be

consistent,
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where it is assumed that a0 - 1[1]. In addition, if ft> - 0 the integration method is said to be ex

plicit, otherwise, the method is implicit.

When a multistep method isapplied to asystem of the form of Eqn. (3.2), the state atthe m'A

step, x (rm), is computed by solving

qikrm),u(rm)) + hjtfjc(tJ, u(tJ) + [3.5]

k I

2«irf* <*!*-/>. *ti--i>> - ^2w* <*«-/>* w<t«-/» - °-
/=1 1=1

for Jc (tJ given jf(^) ,^(x(T>),u(Ty)), and/^T,),!/^,)) for ally < m.

Implicit nonlinear algebraic systems generated by integration methods are usually solved using

the iterative Newton-Raphson(NR) method. The NR algorithm is used because it is guaranteed to

converge if the initial guess isclose enough to the exactsolution. From thisobservation it follows that

as the exact solution to the differential equation is a continous function, it is possible to pick a

timestepsmall enough to insure the NR algorithm will converge. Also, the NR algorithm will con

verge independent of the stiffness of the system, which follows from the observation that the NR al

gorithm will solve a linear problem exactly in one step.
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The general Newton-Raphson iteration equation to solve F(x) - 0 where x e R" and

FiTRr •* R" is

jr^*) (jc* _ jf*-") „ _ /r(x*-l) [3.6]

where JF is the jacobian of Fwithrespect tox. The iteration iscontinued until || x* - x*-11| < e and

^(x*) is close enough to 0. If the Newton algorithm is usedto solve Eqn. (3.5) forx(tot), the residue

at the k'h step, F(x*(tJ), is

F(x*(tJ) - <7(**(Tw),u(Tm)) + A)A^(Tj,u(Tm)) + [3.7]

* a 'a
£«#(* (*„,-/)» "(^-l) - ^iSW'^ill-/)*^!!!-/))-
i=l /=1

and the Jacobian J>(x*(Tm)) is

•«**(*«» - -^-(^(tJ,^^,)) - PvjjkPirJ.uirJ) [3.8]

Then x*+,(tw) is derived from x*(tm) by solving the linear system of equations

/^*(T„,)) tJf*+1tT„t> - PlTjl - -jtfVj) [3.9]

The Newton iteration is continued until sufficient convergence is achieved, that is

Bjc*+,(tJ - **(tw)B < c and F(x*(tJ) is close enough to zero.

Note that here, even if the integration algorithm isexplicit ( ft> - 0), Eqn. (3.5) willstill be

animplicit algebraic problem with respect to x (rm). This occurs because the multistep algorithm was

applied using charge as a statevariable, andcharge is a nonlinear function of x.
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One of the important reasons for applying the integration method to the system in the form of

Eqa (3.2) is that the charge conservation property of Definition 2.5 holds for any consistent multi-

step method.

Theorem 3.1: Any consistent multistep method of the form of Eqn. (3.3) has thecharge conservation

property. •

Proof of Theorem 3.1

Let the system of Eqn. (3.1) be of type S, asgiven in Definition2.5. To show charge conser

vation, the vector elements in Eqn. (3.4) are summed to form

/=1J=0 i«=l y'=0

Interchanging summations yields

2«;i*AW'W*W> " *m2fijt/&*m-j>Mrm-j)). [3-9]
y=0 i=l j=0 i=l

Since the original system is oftype 5, Iflx (rm.J),u(rm.J)) - 0 . Substituting into Eqn. (3.9) and

using that a0 — 1,

2^(rJ, u(r„,)) - - [£«;£*,<*(',,,-> M<T™-./» * ^3.10]
1=1 y=i i=i

" A

Assuming that charge hasbeen conserved up to the m'h step 2#(x(Ty)) •» Kforj < m. Then as
A

2a, • —1 because the method is assumed consistent,
y-l
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B A^^(tJ.iKtJ) «*, [311]
i=l

which proves the theorem •.

Exhaustive domain of dependence isalso easy to show for most implicit multistep methods.

Theorem 3.2: Any implicit multistep method with a, # 0 has an exhaustive domain of dependence

when applied to asystem of the form x(/) « Ax(t), where x(0 e R", and A e R"*".B

Proof of Theorem 3.2

Thegeneral form for amultistep method applied to x(/) - Ax(t) is

i=0 '=0

Reorganizing andusing the fact that a0 - 1,

k l A

i=l /=!

Since the method is implicit, ft, * 0, and for small h,„ [I - /UVfl-1 can beexpanded to yield:

x{rm) - [/ +hmPoA +y(^M)2 +-g-(*«M)3 +~3 [«l " Ml* (**-!> + t3l3]

A / A

i=2 »=2
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A

Following the same argument as presented in Section 2.2.4, the variable x,(tw_,) is inthe domain of

dependence ofx/tm) if the if* element ofA" is nonzero for some n, which matches the differential

equation and therefore proves the theorem. •

The general question of the region of stability for multistep integration methods has received

considerable attention[l,42,46] and the wealth of material on this question will not be reproduced

here. Instead, we will mention the results that are most critical for circuit simulation applications.

Perhaps the mostimportant result is that there are no A-stable multistep integration methods whose

local truncation error isof order higher than /r3. This is known as the Dahlquist barrier[42]. For this

reason, the program SPICE[2] uses a combination of the implicit-Euler mentioned in Chapter 2 and

the trapezoidal rule (corresponding to a0 « 1, a, - -1, ft - 0.5, ft - 0.5 ) and as a userop

tion, can also use the variable-order (up to six) backward-difference methods[l]. The program

ASTAP[3] uses the variable-order backward-difference methods. The first and second order

backward-difference methods are A-stable, but the higher order backward-difference integration

methods are only stiffly stable. By this, it is meant that the region of stability for these methods in

clude the real line in the openleft-halfplane of $ and somesections in the openleft-halfplane about

the real line[l].

SECTION 3.2 - RELAXATION DECOMPOSITION

As mentioned above, the implicit multistep integration methods used in all the general-purpose

circuit simulation programs requiresolving an implicit system of nonlinearalgebraic equations at each

timestep. The algebraic system is usually cast into the form F(x) •» 0 where F: R" ■♦ R", and

x e R", which is then solved using the iterativeNewton-Raphson(NR) algorithmas in Eqn. (3.6).

The computation of the Newton iterates can be viewed as two pieces, evaluating the function

Ft and its Jacobian JF, and performing a matrix solution. The computational cost of performing the

matrix solution grows superlinearly with the size of the problem, as na, where n the number of

equations in the system and a > 1. Circuit simulation programsare intended to handle largecircuits,
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and as the Jacobian matrices are sparse, sparse matrix techniques[40] are used to keep a as low as

possible. It has been empirically observed that the time to perform a sparse matrix solution grows as

1.2 < a < 1.4 for the matrices associated with circuit simulation problems. The computational cost

of a function evaluation grows linearly with the size of problem, but for circuit simulation problems,

the evaluation of F and Jf is a complicated task. For each element (transistor, capacitor, resistor,etc)

in the circuit, the currents, the charges and their derivatives must be evaluated. For example, the

evaluation of the currents and charges associated with one MOS transistor requires more than a

hundred floating point operations.

Because the computation involved in calculating each transistor's charge and current charac

teristic is much more complicated than the simpler operations involved in the matrix solution, for

small to medium sized problems the function evaluation time dominates the sparse matrix solution

time. It is only when the problem involves more than several thousand equations that the matrix

solution time dominates. For this reason, the most useful decomposition techniques applied to circuit

simulation problems reduce both the matrixsolution time andthe function evaluation time.

Two approaches to decomposition have been used in circuit simulation programs. The first,

which we will not describe in detail here, is refered to as tearing decomposition. For linearequations,

tearing is a form of BlockLU Factorization[4,5,47,48,49,50]. Its application to nonlinear systems

has led to Multi-level Newton algorithms[52]. The second approach, closer to the the focus of this

thesis, has been to apply the various forms of the iterative relaxation-Newton or SOR-Newton

algorithms[21, 53].

As background for the relaxation-Newton algorithm, we will will present an extremely brief

description of the Gauss-Jacobi and Gauss-Seidel relaxation methods starting withthealgorithms for

linear systems. A complete discussion canbe found in [28].

The linear problem Ax - b - 0 where x - (x1,..., x„)r, b - (61,..., b„)T , x„ 6, € R , and

A •» (atJ) ,A c R"*" can be solved exactly using gaussian elimination (with pivoting) given A is

nonsingular. For matrices with certain properties, it is also possible to solve for x in an iterative
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fashion, where each step of the iteration involves inverting a sequence of one-dimensional problems.

For example, there is the Gauss-Jacobi relaxationalgorithm

Algorithm 3.1 (Gauss-Jacobi Algorithm for solving Ax - b « 0)
The superscript k is the iteration count ande is a smallpositive number.
k-Q;
Guess some x°.

repeat{
k*-k + l

foreach(i€ U,..ji})xj< - -L[^ - (fattf-x +£°irf~1)]
}untfl( B**-**-1! <e)

•

The Gauss-Seidel relaxation algorithm is very similar, and can be generated from Algorithm 3.1 by

altering the update equation for jc* to

/-l

The Gauss-Jacobi algorithm can be written in matrix form as

Dxk + (L + t/)x*_1 - b

and the Gauss-Seidel algorithm can be written in matrix form as

(L + D)xk + t/x*~! - b

where LJ>tU € R"** are strictly lower triangular,diagonal, and strictly upper triangular respectively,

and are such that A •» L + D + U. Taking the difference between k and k — 1 iteration we get

x*-x*_1 - D~\L + UXx*-1 - xk),

for Gauss-Jacobi, and
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x*-x*_1 - (L + D)-1U(xk-1 -x*),

for Gauss-Seidel. It follows that the Gauss-Jacobi relaxation algorithm will converge if the spectral

radius of D~\L + U)is inside the unit circle and Gauss-Seidel relaxation algorithm will converge if

the spectral radius of (L + D)-1U is insidethe unit circle. This willbe true, forexample,if A is strictly

diagonally dominant [28].

Now consider using the Gauss-Seidel and Gauss-Jacobi relaxation algorithms to solve the

nonlinear system F(x) - 0 where F(x) - (/,(x),...,/„(x))r , and /:R" - R. At each step of the

relaxation, the x,element is updated by solvingthe implicitalgebraic equation,

/K4,...xjfe_1,xf+1,x/*.1,...,x*) - 0. [3.15a]

for the Gauss-Jacobi, and

/^f+V.*(*+\4,,...,**) - 0. [3.154]

for Gauss-Seidel.

It is possible to use the Newton-Raphson algorithm to accurately solve the implicit algebraic

systems of Eqn. (3.15a) and Eqn. (3.15b) ateach step, but this isnotessential. That is, it has been

shown that the asymptotic rate of convergence of the nonlinear relaxation is not reduced if rather

than solving the implicit algebraic systems at each step, only one iteration of the Newton method is

used[21]. The algorithms so generated are referred to as the relaxation-Newton methods. The

Gauss-Jacobi-Newton algorithm forsolving systemsof the form of Eqn. (3.14) is

,*♦• „4 _ wtl-iffj) [3.1&7]

and the Gauss-Seidel-Newton algorithm is
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t*+> - 4 - W^l-W+U) [3.16b]
' ' OX;

where x**1-' - (x1*+*,...,xfJil,xf,...,x*)5r.

There is the following general theorem about the local convergence of relaxation-Newton

methods.

Theorem 3.3: If a given F:R" •* R" is continously differentiable, and if there exists an x e R" such

that F(x) b 0, then if the Jacobian of F at x, Jf(x), is strictiy diagonally dominant there exist some

S > 0 such that both the Gauss-Jacobi-Newton or the Gauss-Seidel-Newton iterations applied to F

will converge for any x° for which flx0-x|| < SM

The proof of the above well-known theorem can be found in the references[21]. As a direct conse

quence, we have the following theorem for the nonlinear algebriac systems generated by consistant

multistep integration methods.

Theorem 3.4: Let the Gauss-Seidel-Newton or Gauss-Jacobi-Newton relaxation algorithm be used

a dq
to solve for x (rm) in Eqn. (3.5). If f{x,u) is continously differentiable, -r—(x,u) is strictly diagonally

ox

dominant uniformly over all x, and x (xm_,) is used as the starting point for the relaxation, then there

exists an h such that for all hm < h the relaxation will converge to the solution of Eqn. (3.5). •

As an intuitive explanation for why Theorem 3.4 should be true, and why nonconvergence should

ever occur, consider implicit-Euler applied to Eqa (2.2) with C(x,u) - C, where C is strictly

diagonally dominant

Cx(rm) - Cx(rm_x) + hmf(x(Tm),u{Tm)). [3.17]
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In the limit as h,„ -+ *>, Eqn. (3.17) becomes equivalent to solving /l(x(Tm), w(tJ) - 0 forx(rm) by

relaxation. Since little is assumed about / other than Lipschitz continuity, it is unlikely that this

problem can be solved, in general, with a relaxation method. However, in the limit as the timestep

becomes small, Eqn. (3.17) becomes

Cxijm) - b

where b - Cx(Tm_J). This problem can be solved by relaxation because C is strictly diagonally

dominant We formalize this observation in the proof of Theorem 3.4.

Proof of Theorem 3.4:

It is sufficient to show that the system of Eqn. (3.5) will satisfy the conditionsof Theorem 3.3

for smallenoughhm. The Jacobian for the function defined by Eqn. (3.5), JF, is givenin Eqn. (3.8).

That JF is strictlydiagonally dominant for hm smallenough follows directly from the observation that

dq . ^in the limit as /^ •* 0, JF approaches -r— which is a strictly diagonally dominant matrix by assump-
ox

tion. That x (rm_,) is close enough to the solution of Eqn. (3.5) for a smallenough hm follows from

the assumption that the multistep method is consistent Consistency implies x(rm) - x(rm_i) is a

solution to Eqn. (3.5) for h„ - 0 and from the Lipschitz continuity of q and / which imply that

x (rm) is a continous function of hJM.

The relaxation-Newton methods have become popular for solvingcircuitsimulation problems

for two reasons. The first is that as mentioned in Chapter 2, for a broad class of circuits the

capacitance matrix is diagonally dominant and therefore the relaxation-Newton algorithms are guar

anteed to converge if the timestepis made small enough. They are unlike the standard NR methods

in that the timestep required is not trulyindependent of the problem stiffness, anissue which will be

presented more thoroughly at the end of this chapter. The second reason for the popularity of the

relaxation-Newton methods is that with proper application, it is possible to both avoid matrix sol

utions andreducethe computationinvolved in function evaluation. As the system Jacobian is sparse.
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the i7* component of the function F defined in equation 3.5, F,, will be a function of only a few

components of the vector x. During the relaxation-Newton process this sparsity can beexploited by

noting whether or not the components of x on which Ft depends have changed significantly, and if

noneof them have, not reevaluating F(. In addition, if Ff is close enough to 0, xf*1 will be equal to xf

and need not be recomputed.

If implemented as described above, such a partial evaluation scheme involves substantial

checking, to see if F, should be reevaluated. This checking can overwhelm the savings due to partial

function evaluation. To avoid this, practical relaxation-Newton algorithms are implemented using a

selective trace technique[33] that simultaneously determines the order in which the relaxation

equations are solved andthe portion of the function that must be recomputed.

SECTION 3.3 - SEMI-IMPLICIT NUMERICAL INTEGRATION METHODS

Although certain implicit multistep integration methods have all the desirable properties de

scribed in Chapter 2, they are computationally expensive when applied to very large systems partly

because each timepoint requires a large matrix solution. Semi-implicit integration methods, as the

name implies, are* constructed to be as implicit as possible without making it necessary to perform

standard matrix solutions to compute the timepoints. In this section we will discuss three semi-

implicitmethods, allof which have been used in circuit simulation applications. In orderto simplify

the presentation of these algorithms, they willbe considered as applied to the following test problem,

x(0 - Ax(t) x(0) - Xq [3.18]

where x(/) € R", and A e R"*". The properties of these algorithms with respect to domain of de

pendence and stiff-stability will be considered. This test problem is too simple to indicate the inte

gration methods' charge conservation properties, and that issue will not be considered.

The simplest of the semi-implicit methods is the following mixture of explicit and

implicit-Euler[5,7].
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*i*m) - *(*m-l) + UW* + (L+U)x(rm^)] [3.19]

where LJ)tU e R**" are strictly lower triangular, diagonal, and strictly upper triangular respectively,

and are such that A «• L + D + U. Note that this algorithm is identical to solving the algebraic

equations generated by implicit-Euler applied to Eqn. (3.18) with with one iteration of a Gauss-

Jacobi relaxation scheme, and therefore the algorithm is referred to as the Jacobi-semi-implicit

method. Solving for x(rm) leads to

x(rm) - (/- h„py\I + hm(L+U)] x(Tm_,). [3-20]

Since (J - hJD) is diagonal, its inverse, if it exists, can be computed trivially. In addition, we have

the following stability result (See [6] for similar results).

Theorem 3.5: If the matrix A in Eqn. (3.18) is diagonally dominant with negative diagonal entries,

or A is loweror upper triangular, then the region of stability for the Jacobi-semi-implicit method is

the openleft-half plane of £.•

This theorem is of practical value because the systems of differential equations that describe circuits

with resistors and grounded capacitors willbe of the form of Eqn. (3.18) and will have the diagonal

dominance property.

Proof of Theorem 3.5:

To prove the first part of the theorem it is sufficient to showthat the matrix M defined by

M - (/ - hntD)~\ J + hm(L + U) ] [3.22]
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has a spectral radius p(M) < 1 if A isdiagonally dominant and has negative diagonal entries, orif

A is upper or lower triangular and has its eigenvalues in the open left-half plane of <f. IfA is upper

or lower triangular, the eigenvalues of A are the diagonal entries, which must be negative by as

sumption. If A is triangular, M will be triangular, and theeigenvalues of Mwill be itsdiagonal entries.

The i7* diagonal entry of M can be calculated explicitly, and is -—•—— which is less than 1.
1 + hjaj

To prove the theorem for the casewhereA is diagonally dominant and has negativediagonal entries,

we use the fact that the spectral radius is bounded by any induced norm. In particular,

n

p(M) < WIL - max,2 \mtJ\ , which can be calculated from
/-1

2 i*i

,=1 -L. + \au\
m

and is less than 1 by the diagonal dominance property of A. Therefore, the eigenvalues of M are less

than one. •

Although the stability of the Jacobi-semi-implicit integration method is substantially better

than the explicit-Euler algorithm used in Chapter 2, particularly for almost diagonal problems, the

domains of dependence are identical. This can be seen by comparing Eqn. (3.19) to Eqn. (2.16). It

is possible to construct semi-implicit integration methods that have larger domains of dependence

than the Jacobi-semi-implicit integration method without requiring a matrix solution. In particular,

there is the Seidel-semi-implicit method,

x(rm) - x(tw_,) + h„,[Dx(Tm) + (L + £/)x(7m_,) ]. [3.23]

Solving for x(rm) leads to

x(twi) « U-hJL + D))-l(I + hmU)xirm.l). [3.24]
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where (/ - hm(L + Z)))_1 is easy to compute because the matrix is triangular. The Seidel-semi-

implicit method has stability properties that are similar to the Jacobi-semi-implicit method.

Theorem 3.6: If the matrix A in Eqn. (3.18) is diagonally dominant with negative diagonal entries,

or if A is lower or upper triangular, then the region of stability for the Seidel-semi-implicit method is

the open left-half plane of £.•

For the case of A diagonally dominant with negative diagonals, Theorem 3.6 follows from arguments

similar to those used to prove Theorem 3.5. If A is lower triangular, the Seidel-semi-implicit algorithm

is identical to implicit-Euler which is A-stable, and if A is upper triangular the algorithm is identical

to the Jacobi-semi-implicit algorithm.

The Seidel-semi-implicit method does not have obviously better stability properties than the

Jacobi-semi-implicit method, but it has the clearadvantage of a larger domain of dependence. To see

this, consider the expansion of (/ - hm(L + D))-1 in Eqn. (3.24) for small A,,,

*(rm) - [/ +hm(L +D) +hl(L +D)2 +hl(L +2»3 +...][/ +^.IlWv,). [3.25]

If A is lower triangular, the domain of dependence of the Seidel-semi-implicit method is exhaustive.

As long as the lower triangular portion of A is nonzero, the domain of dependence of the Seidel-

semi-implicit method will be largerthan that of the Jacobi-semi-implicitmethod.

The Seidel-semi-implicit method includes the domain of dependence due to arbitrarily high

powers of the lower triangular portion of A. The next semi-implicit method we will consider, the

symmetricdisplacement algorithm[54,6], also includes the domain of dependence due to arbitrarily

high powersof the upper-triangular portionof A. Applied to Eqn. (3.18), the symmetricdisplace

ment algorithm is the following two step process,

*(t„i+1/2) = *(T«.) + 0.25Afl,[(2L +i»x(Ti,J+1/2) + (D +2t/)x(T„1_1)]. [3.26*]
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*(*„,) - *(Wl/2) + 0-25U W +^(rm+1/2) + (D +2L)x(Tm) I [3-266]

Note thatif A isdiagonal, the symmetric displacement algorithm is precisely the trapezoidal rule.

The symmetric displacement algorithm has several important properties. The local truncation

error is of order A3, unlike the othersemi-implicit methods, whoseerror is of orderhz[6]. In addition,

it has the stability properties given in the following theorem.

Theorem 3.7: If the matrix ,4 in Eqn. (3.18) is strictly diagonally dominant with negative diagonal

entries, or if A is symmetric, lower triangular or upper triangular, then the region of stability for the

symmetric-displacement method istheopen left-half plane of £.•

The proof of Theorem 3.7 for the case whereA strictlydiagonally dominant with negative diagonal

terms follows from the same reasoning as used in the proof of Theorem 3.5. The proof for case of

A symmetric can be found in [6].

As indicated by Theorem 3.7, the stability propertiesof the symmetric displacement algorithm

are better for near symmetric problems than those of the Seidel-semi-implicit method, but symmetric

displacement has a smallerregionof stability if the problem is almost lower triangular. The symmetric

displacement algorithm is superior to the Seidel-Semi-implicit method in two important aspects, its

local truncation is of a higher order, and it has a larger domain of dependence for problems that are

not lower triangular. To show this, Eqn. (3.26a) and Eqn. (3.26b) are reorganized as

x(rm) - [/ - 0.25h„,(D + 2L)]"1 [/+0.25HJLD + 2U)] [3.27]

[/- 0.25h„,(D + 2U)ri U+ 0.25hm(D + 2L)]x(rm).

The expansion of [/ — 0.25hm(D + 2L)]-1 will include all the powers of L, and the expansion of

[/ - 0.25hm(D + 21/)]-1 will include all the powers of U. Note that this does not mean that the
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symmetric displacement algorithm has an exhaustive domain of dependence. For example, the do

main of dependence of A2 is not necessarily the same as L2 + U2, there are possibly addition de

pendencies due to the cross-product terms LU and UL.

None of the semi-implicit methods mentionedabove match the stiffly-stable implictmultistep

method for eitherstability or domain of dependence. However, they have proved to be extremely

useful fora variety of circuit simulation applications where the eitherthe problem is not that stiff, or

is of a mostly diagonal or lower triangular form. For this reason, extensions of the semi-implicit

methods mentioned above to the casewhere C(x,u) is not diagonal havebeen pursued[55,6]. Similar

results about region of stability for these extensions have been shown.

SECTION 3.4 - RELAXATION VS SEMI-IMPLICIT INTEGRATION

The relaxation-Newton algorithms described in Section 2 present a bound on the numerical

integration timestep to insure that the relaxation converges. This bound issimilar to the bound onthe

timestep to insure stability of the semi-implicit numerical integration methods. In order to demon

strate briefly the similarities of the two approaches, we wil end this chapter by comparing the the

simpliest ofeach type of method, the Jacobi-relaxation algorithm applied tosolving the implicit-Euler

equation, and the Jacobi-semi-implicit algorithm. Again, tokeep the analyses simple, we will use the

test problem of Eqn. (3.18)

The timepoint update equation forthe Jacobi-semi-implicit algorithm is

x(rm) - (J - h„p)'\ I + hm(L +U) ]x(rfll_,). [3.27]

The iteration update equation of the Jacobi relaxation applied to implicit-Euler is

**+1(t»> - *k(Tm) - (' - *nPr\hm(L +CO] [*VflI) - Xk-\r„,)). [3.28]

The semi-implicit method will be stable if



p[V-hmD)-\l + hm(L+U))] < 1

and the relaxation will converge if

P[(I-h„,D)-\hJL+U))] < 1.
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Bothspectral radii will be less than 1 for any hmi(Ais diagonally dominant and has negative diagonal

elements. If A is not diagonally dominant but hasnegative diagonal elements, the method that will

allow the larger timestepwilldepend on the signs andmagnitudes of the lower andupper triangular

portions of A.

Although the size of the largest allowable timestep does not conclusively favor semi-implicit

integration methods or relaxationmethods, relaxation methods are clearlysuperiorwith respect to the

relativedomains of dependence. By carrying the relaxationiteration to convergence, it is assuredthat

the information at a given timestep has propagated "far enough". Therefore, relaxation methods

have the exhaustive domain of dependence property, and, as described above, the semi-implicit

methods do not
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CHAPTER 4 - THE WAVEFORM RELAXATION ALGORITHM

The multistep numerical integration algorithms for solving ODE systems can become ineffi

cient for large systems where different state variables are changing at very different rates. This is

because the direct application of the integration method forces every differential equation in the

system to be discretized identically, and this discretization must be fine enough so that the fastest

changing state variable in the system is accurately represented. If it were possible to pick different

discretization points, or timesteps, for each differential equation in the system so that each could use

the largest timestep that would accurately reflect the behavior of its associated state variable, then the

efficiency of the simulation would be greatly improved. This is refered to as the multirate problem[l],

and numerical integration methods that allow for different state variables to use different timesteps

are called multirate integration methods.

The selective trace technique for improving the efficiency of relaxation-Newton methods

(Section 3.2) can be thought of as alimited multirate integration method. If, at agiven timestep, the

x, variable is at its equilibrium (or stationary) point and the x, variables on which x, depend do not

change, then x, will retain the value it had before the timestep. In fact x( will never be recomputed

until some x, on which it depends changes. If x, is bypassed for several timesteps the effect is the same

as if alarge timestep were used to compute x,. Therefore, selective trace algorithm exploits the kind

ofmultirate behavior that stems from as system in which most ofof the variables remain at an equi

librium state. The selective trace algorithm can not, however, exploit ofasystem for which the state

variables have different rates of motion, but are not atequilibrium.

Techniques based on semi-implicit integration algorithms have been used both to achieve the

kind of limited multirate integration described above, and to achieve full multi-rate integration

methods[4,57]. However, as pointed out in Section 3.3, the semi-implicit integration algorithms do

not have all ofthe properties that make anumerical method for circuit simulation robust. Adifferent

approach is to somehow decompose the differential equations before introducing discrete approxi-
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matrons. If the differential equations are solved independently, the numerical integration method

used for each system can pick itsown timestep, thereby achieving full multi-rate integration. In ad

dition, since any numerical integration algorithm can be used to solve the decomposed systems, one

that retains allthe desirable numerical properties described in Chapter 2 canbe used.

One method fordecomposing differential equations is the family of Waveform Relaxation al

gorithms [11]. WR algorithms have captured considerable attention due to their favorable numerical

properties and to the success in applying the WR algorithms to the solution of Metal-Oxide-

Semiconductor (MOS) digital circuits. In this chapter the theoretical basis for the WR algorithm will

be presented. Waveformrelaxation willbe introduced with asimple example, whichwillbe followed

by the general algorithm applied to systems of the form of Eqn. (2.2). Then a new proof of the

convergence, one that demonstrates that the WR algorithm is a contraction mapping in a particular

norm, will be presented. Extensions to the basic algorithmthat allow for modified iteration equations

(including discrete approximations) will be presented and it will be shown that the convergence of

such extensions follows directly from the proof that the WR algorithm is a contraction mapping. We

will end this chapter by presenting a derivative of the WR algorithm, the waveform

relaxation-Newton(WRN) algorithm, which is the extension to nonlinear differential equations of the

relaxation-Newton algorithm presented in Section 3.2.

SECTION 4.1 - THE BASIC WR ALGORITHM

We will start this section with a simple illustrative example, and then present the general WR

algorithm. Consider the first-order two-dimensional differential equation in: xif) e R2 on

/ € [0,71

*i " /i(*i» *2i') *i(°) m *10 [41fl]

*2 - /2(*1.*2.0 *2«>) - *20 t41*]
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The basic idea of the waveform-relaxation algorithm is to fix the waveform x2: [0,7] ■♦ R and solve

Eqn. (4.1a) as aone dimensional differential equation inx,(f). The solution thus obtained for x,(f)

can besubstituted into Eqn. (4.1b) which will then reduce to another first-order differential equation

inone variable, x2(f). Eqn. (4.1a) is then re-solved using the new solution forx2(0 and the procedure

is repeated.

Alternately, fix the waveform x2(/) in Eqn. (4.1a) and fix xt(t) in Eqn. (4.1b) and solve both

one dimensional differential equations simultaneously. Use the solution obtained for x2 in Eqn.

(4.1b) and the solution obtained for x, inEqn. (4.1a) and re-solve both equations.

In this fashion, iterative algorithms have been constructed. Either replaces the problem of

solving adifferential equation in two variables by one ofsolving asequence ofdifferential equations

inone variable. As described above, these twowaveform relaxation algorithms can been seen as the

analogues of the Gauss-Seidel and the Gauss-Jacobi techniques for solving nonlinear algebraic

equations. Here, however, the unknowns are waveforms (elements ofa function space), rather than

real variables. In this sense, the algorithms are techniques for time-domain decoupling ofdifferential

equations.

The WR algorithm for solving systems of the form of Eqn. (2.2):

Algorithm 4.1 (WR Gauss-Seidel Algorithm for solvingEon. (2.2))
The superscript k denotes the iteration count, the subscript i denotes the component index ofa
vectorand e is a smallpositive number.
k+-0
Guess waveform x°(/); t e [0,7] such thatx°(0) - x0

forexample, setx°(f) - x<„ te [0,7]);
repeat{

k+-k + l

foreach ( i e { l,..,/i} ) {

solve

i C„(x,\.... xf, xjtf,.... x*-», u)x* +

2 C/y(xf,..., x*, xjtf, -.. J*"1, w)**-1 -
y-i+i '

fix\ x?,x?+-,' x*-1,*) -0

for (x,*(r) ; / e [0,7] ), with theinitial condition xf(0) = x^.
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}
} until ( |x* - jc*-1 0 <0

that is, until the iteration converges.
m

Note that the differential equation in Algorithm 4.1 hasonly one unknown variable xf. The variables

x&i1, ..mX*-1 are known from the previous iteration and the variables xf, ...,xf_! have already been

computed. Also, the Gauss-Jacobi versionof the WR Algorithm for Eqn. (2.2) can be obtained from

Algorithm 4.1 by replacing the foreach statement with the forall statement and adjusting the iteration

indices.

SECTION 4.2 - CONVERGENCE PROOF FOR THE BASIC WR ALGORITHM

If the matrix C(x,u) is diagonally dominant and Lipschitz continous with respect to x for all u

then both the Gauss-Seidel and the Gauss-Jacobi versions of Algorithm 4.1 are guaranteed to con

verge. In [12], it was shown that the WR algorithm converges when applied to Eqn. (2.2) if C(x,u)

is diagonally dominant and independent of x. As many systems that are modelled in the form of Eqn.

(2.2) include a dependence of C on x, we.will present a more general convergence proof that extends

the original theorem to include these systems. In addition, we will prove the WR algorithm is a con

traction in a simpler norm than the one used in the original theorem.

We will prove the theorem by first showing that if C(x,«) is diagonally dominant, then there

exists a bound on the x*'s generated by the WR algorithm that is independent of k. Using this bound,

we will show that the assumption that C(x,u) is Lipschitz continuous implies there exists a norm on

R" such that for arbitrary positive integers j and kt

flx*+l(/) - x>+,(/) [| < y!x*(/) - x>(/) [| +/, llx*+1(0 - Jc'*V) II + h0**W " **«) 0

for some y < 1 and /,, /2 < oe for all / e [0,7]. In the properly chosen norm H• H6 on C([0,J], R")

the above equation implies that
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i*+,-^+1its Yli*-*'!*

A
where y < 1 and therefore the sequence {x*} converges by the contraction mapping theorem. As

x*(0) «- x0 for all k, {x*} converges as well.

Before formally proving this basic WR convergence theorem we will state the well-known

contraction mapping theorem[35], and a few lemmas which will be used in the course of the proof.

The Contraction Mapping Theorem; Let Y be a Banach space and F:Y-+ Y. If F is such that

| F(y) - F(x)B < y lb - x Bfor all xy e Y, for some y € [0,1), thenF has a unique fixed point y

such that F{y) » y. Furthermore, for any initial guess y» € Y the sequence {y* e Y\ generated by

the fixed point algorithm / - Fty-1) convergesuniformly toy.

Lemma 4.1; If C(x,u) e JR"'" isdiagonally dominant uniformly overall x € R", u e R' thengiven any

collection of vectors {x1,..., x"}, x' e JR.", and any u c R\ the matrix Cp(xK ....x",u) e R"*n defined

by Cftx1,..., x", u) b C/y(x', w) is also diagonally dominant In other words, let Cp be the matrix

constructed bysetting the fk row of Cp equal tothe i1* row of the given matrix C(x',«). Then this new

matrix is also diagonally dominant •

Lemma 4.1 follows directly from the definition of diagonal dominance.

Lemma 4.2; LetC € R™" be any strictly diagonally dominant matrix. LetL strictly lower triangular,

U strictly upper triangular, and D diagonal, be such that C » L + D + U. Then

BZ>-»(L + t/)L < land HO)+ L)-1I/IL< 1."

Lemma 4.2 is a standard result in matrix theory[28].

Lemma 4.3; Letx,.y e C([0,7], R"). If there existssomenormon R" suchthat

IWOll < yHrtOO + /ifl*O)0 + WOII [4-2]
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for some positive numbers /„ /2 < « and y < 1then there exists anorm D• h on C([0,7l R")

such that

mb < *wh + hiwo)n + w°)fl t4-31

for some positive numbera < !.• Proof of Lemma 4.3;

Substituting J^c(r)dr + x(0) for x(/) in Eqn. (4.2) and performing an analogous substitution

for y(t),multiplying the entire equation bye-*, and moving the norms inside the integral yields:

*"* |x(OD <ye'btWn + lie-^rWxWWdT +/,*"*'Bx(O)0 + [4.4]
«/ 0

^fm^yr +i2e-bty(on.

Let | . B6be defined by fl/B *e maxjo.rje-6' Il/WD• This is a norm on C([0,71 R") for any finite

positive number b> 0 and isequivalent to the uniform norm on C([0,71 R"). Then Eqa (4.4) im

plies

1*0* < yWb + "WHHorf V"*r/'*r* 0*0* +/i'~*IU(0)

l^Ce^dr Mb +JfeT*ILKO)I ]
•/ o

And since *-*/£e^dr < —, then for b> /i wecan write

7 +A**"1
0^0* < =—tILkOa + /iIU(O)!! + /2ll>'(0)

1- 7,*-1
[4.5]
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(y + l2B~l)
In this case y is less than 1, so there existsa finite B for which —-— . - a < 1. Let the b in

1 — *|/»

Eqa (4.5) be set equal to this B to get

Uh < «0>0j + hMon + hhiOH [4.6]

which completes the proof. •

Now we prove the following WR convergence theorem for systems of equations of the form

of Eqn (2.2).

Theorem 4.1; If, in addition to the assumptions of Eqn. (2.2), C(x(/),w(0) e R"" is strictly

diagonally dominant uniformly over all x(/) € R"and «(/) € R' and Lipschitz continuous with respect

tox(0 for all «(/), and x°(/) isdifferentiable, then the sequence of waveforms {x*} generated by the

Gauss-Seidel orGauss-Jacobi WR algorithm will converge uniformly to the solution of Eqn. (2.2) for

all bounded intervals [0,7].B

Proof of Theorem 4.1;

We will present the proof only for the Gauss-Seidel WR algorithm, as the proof for the

Gauss-Jacobi case isalmost identical. The equations for one iteration of the Gauss-Seidel WR algo

rithm applied to Eqn. (2.2) canbe written in matrix form as

CUk+l, x".u)xM -f(xM,xk,u)

where C,/*»*', *»,«)- C,yW, .... xf*', <, x*,u) and
A A
/;(x*+i, x*,u) - /Axf1, ..., xf+», xf+1, .... x*,t/). Let C(x*+1, x*, u) - Z*+1 + Dk+l - UM

where I*+ris strictiy lower triangular, UM is upper triangular, and 2>*+1 is diagonal (Note that by

Lemma 4.1, the matrix Cis diagonally dominant because Cis diagonally dominant). Rearranging the

iteration equation yields:

c*+I - (LM +Dm)-1 [Oi+1i* +/(x*+1. x\ u) ]. [4.7]
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Taking the difference between Eqa (4.7) at iteration k + 1 and at iteration j + 1 yields

**+'-*/+» - tft+| +Dk+1r*Uk+1xk - (Lj+1+Dj+1rlUJ+1x>- + [4.8]

o*+i +Ak+ir!/c**+I. **. w> - (%+i+ty+ir1/^*1. **.«)

A

Using the Lipschitz continuityof/ and that || (LA+i + Z>*+i)_l fl < A" for some K < <* independentof

x and &(because C(x,w) is uniformly diagonally dominant with respect to x) in Eqn. (4.8) leads to

Dx*+1(0-^+1(/)U < /,JC0x*+1(/)-x/+,(/)0 + yroAo-x'WD + [4.9]

B(L*+1 +D^+j)-1 - Oy+1 +|>y+1r' DH/C**1, *>, «) B+

i(Ak+i+^k+i)"1^+i^w- ay+i +D/fir,i{4ii/(/)D

A

where lt is the Lipschitz constant of/ with respect to its first argument and /2 is the Lipschitz con-

A

stant of / with respect to its second argument That C(x,u) is uniformly diagonally dominant and

Lipschitz continuous with respect to x for all u implies (Lk + At)-1 and (At + At)_,£4 are a'so

Lipschitz continuous in the same manner. It then follows that there exist some positive finite numbers

K » k2,k3,k4 such that

Bx*+1(/)-x/+1(/)B - /1JCD**+l(/)-*/+l(O0 + ^nAo-VWU + [4.10]

[*3 iu*+V) - ^+,(on + *4 iix*(/) - y'(/) b] ii/(x/+I, y, u) n +

[kiO^+'w-x^'WO + M**<O-*/Mfl]0i*(O0 +yOAo-*/(/)ll

where ^ is the Lipschitz constant of (Lk + D*)'114with respect to its first x argument (see definition

of Z4, Uk and Dk above), k^ is the Lipschitz constant with respect to the second x argument, k3 and
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k4 are the Lipschitz constants for (Lk + Dk)~x with respect to its first and second x arguments, and y

is such that H(L* + A)"1^* II < r < 1 independent of k (by Lemma 4.2).
A

To establish a bound on the terms in Eqn. (4.10) involving D**(0 Band |/(x>+1, x>,«) 0 it is
A

necessary to show that the x*'s and therefore the x*'s and /(• )'s are bounded a priori. We prove

such a bound exists in the following lemma.

Lemma4.4; If C(x,w) in Eqa (2.2) is strictlydiagonally dominantand Lipschitz continuous then the

x*(/)'s produced by Algorithm 4.1 are bounded independent of kM

Proof of Lemma 4.4

If B • fl is the /. normon R", by Lemma 4.1 1(LM + DM)-*UM D < 1 • FromEqa (4.7),

B**+,(/)II <y|i*W0 + 0(l*+i+J>A+ir!0 0/(x*+,W. A0.1OO [4.11]

for some positive number y < 1. As/(x, w) isglobally Lipschitz continuous withrespect to x, there

exist finite positive constants /t, /2 such that

0/(x,jMf) -/(w,r,i/)B < /,I|x-H>B + 40jr-*l [4.12]

for all «,x,^, w,2€ R". From Eqa (4.11) and Eqn. (4.12) and using the fact that

B(Z*+i + Ah-i)-10 k boundedby some K < <* for allk:

Uk+\00 < yil**(0B +/,JCD**+I(00 +/2* 0*V)0 +^11/(0,0,1/) II [4.13]

Eqa (4.13) is in the form to apply a slightly modified Lemma 4.3. Therefore there exists some

B • 06such that

uk+lh < «ukh + ViK+/2/on*(o)n + /n/(o, o, ion [4.h]
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where a < 1. This implies that

Uk+1h < -t-±—l(/1tf +/2K)ll*(0)i| +*!l/(0, 0, u)fl] + {a)kU°h [4.15]
1 — a

for allk. Then, since t|jr°U6is boundedby assumption, and [| x*+1 [| b «= max^^-* II x*+1(0 ii,

Bx*+1(/)|| < e*r[ _!_[(/,*+/2tf)|U(0)| + jq/(0,0,t/)||] + M°hl - M [4.16]
1 — a

which proves the lemma. •

In Lemma 4.4 it was proved that B**(0 II is bounded a priori by some M. This implies x*(0 is
a ~

bounded on [0,7]. Using the Lipschitz continuity property of /, a bound, N, can be derived for

A

D/(x*+1(0, x*(t), u) || . Applying these bounds to Eqa (4.10) we get

Bx*+1(/) - i/+,(0 B < y!!**(/) - *«)II + [4.17]

(/,*+*,M +k3N) flx*+1(/) - x'+'w B+ (/2* +Mk2 +k4N) [|x*(r) - y'(r) ||

where y < 1. Eqa (4.17) is of the form to apply Lemma 4.3. As x*+,(0) - x>+!(0) = 0 for all

kj. Lemma 4.3 implies

flx^-x^Ba < «ll**-;r% [4.18]

for some norm on C([0,7], IR") and for some a < 1. As C([0,7], R") is complete in any one of the

B norms, by the contraction mapping theorem x* converges to some x 6 C([0,7], R") which is a fixed

point of Eqa (4.7). Any fixed point x of Eqn. (4.7) is a solution to Eqn. (2.2) if x(0) = Xq,

x*(0) - x0 for all k, therefore x* converges to the unique solution of Eqn. (2.2). The sequence {x*}

converges because integration from 0 to 7*, which mapsx(f) tox(t) »is a bounded continuous function.
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SECTION 43 - NONSTATIONARY WR ALGORITHMS

Algorithm 4.1 is stationary in the sense that the equations that define the iteration process do

not change with the iterations. A straight-forward generalization is to allow these iterationequations

to change, and to consider underwhat conditions the relaxation stillconverges [13]. There are two

major reasons for studying nonstationary algorithms. The solution of the ordinary differential

equations in the innerloop of Algorithm 4.1 cannot be obtained exactly. Instead numerical methods

compute the solution with someerror which is in general controlled, but which cannot be eliminated.

However, the discrete approximation can be interpreted as the exactsolution to a perturbed system.

Since the approximation changes with the solutions, the perturbed systemchanges with each iteratioa

Hence, practical implementations of WR that must compute the solution to the iteration equations

approximately can be interpreted as nonstationary methods.

The second reason for studying nonstationary methodsis that they canbe used to improve the

computational efficiencyof the basic WR algorithm. An approach would be to improvethe accuracy

of the computation of the iteration equations asthe relaxation approaches convergence. In thisway,

accurate solutions to the original system would still be obtained, but unnecessarily accurate compu

tation of the early iteration waveforms, which are usually far from the final solution, is avoided.

In this section we show that nonstationary WR algorithms converge as a direct consequence

of the contraction mapping property of the original WR algorithm. That is, given mild assumptions

about the relationship between a general stationary contraction map and a nonstationary map, the

nonstationary map will produce asequence that will converge to within some tolerance. Andif inthe

limit as k -+ « the nonstationary map approaches the stationary map, then the sequence generated

by the nonstationary map will converge to the fixed point of the original map. In later sections we

will lean on these results to guarantee the convergence of implementations of WR-based algorithms.

Theorem 4.2; Let Ybe a Banach space and F, Fk:Y-» Y. Define/*1 - F(y*) and/+1 - fV)-

If Fisacontraction mapping with contraction factor y (See section 4.2), || F(y) - Fk(y) H < Sk for
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ally € y, and z e y, is such that z = F(z), then for any e > 0 there exists a 6 < 1 such that if

A* <5 for all k then lim^. fljJ* - /-1 B<e and lim*.„||z-</B <yi— * Futnermore» if
lim^.S* -» Othenlim^Jiy-y-^ •* 0andlira^J*-.?0 - O.B

Proof of Theorem 4.2

Taking the norm of the difference between the k'k and k + \* iterationof the nonstationary

algorithm we get:

fl?+1-?0 < UJ^ '̂cT") - I! [4.19]

Given that lFk{y) - F(y) B < Sk for ah> e Y

B7+»-7.D < BF^-F^1)!! + «* + S*+1. [4.20]

Using the contraction property of F,

B?+1-?ll < yB?-?"1!! + «* + «*+1. [4.21]

Unfolding the iteration equation into direct sum form,

l?+1 - ?h < «*+1 + «* + S/'W +«/_1)- [4-22]

If fi* < fi for all * then from Eqn. (4.22)

lim*-J?+l " ?Q <25(1 +yi—). [423]

As y < 1, lim*.. U>»*+1 — y* [| can be made as small as desired by reducing 8, which proves the first

part of Theorem 4.2.
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Letj> be the fixed point of F. The difference between the computed and the exact solution at

the k + Vk iteration is

D?+1-^0 - BF*(?)-F00B. [4.24]

Again using the contractive propertyof F and that fl F(y) - Fk(y) (I < Sk,

fl?+,-^0 - yB?-jHI + «*. [4.25]

Summing and taking the limit

limA_J?+1 - j>lb <y^-, [4.26]

which completesthe proof of the first statementof Theorem 4.2. The second statement of the the

orem follows from almost identical arguments. •

In Section4.2 we provedthe WR iteration wasa contraction mapping in the appropriate norm

B• BftonC([0,7], R") where B depended on the problem. To repeat the result from that section,

it was shown that:

Dx*+,-x/+1i6< ««**-*%

where a < 1This WR convergence result and Theorem 4.2 imply that using any "reasonable" ap

proximation methodto solve the WR iteration equations willstill converge, provided the errors in the

approximation are driven to zero. In addition, Theorem 4.2 indicates that it will be difficult to de

termine a priori how accurately the iteration equations must be solved to guarantee convergence to

within a given tolerance, because an estimate of the contraction factor of the WR algorithm is re

quired.
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From Theorem 4.1, the WR is a contractionmappingwith respect to x(/) in a B norm, Theorem

4.2 then implies that theWR iteration equations mustbe solvedaccurately with respect to x(0 in this

B norm if the iterationsare to converge. There is a more cumbersome proof of the WR convergence

theorem in which it is shown that the WR algorithm is a contraction in x(/), but in a largerB norm

than the one used in the proof of Theorem 4.1, and the size of this £ is a function of the magnitude

of the off-diagonal terms of C(xtu). With such a result Theorem 4.2 implies that it is only necessary

to control errors in the computation of x(0 to guarantee iteration convergence. However, conver

gence in a larger B norm is in some sense a weaker type of convergence. So, in the case where

C(xtu) has non-zero off-diagonal terms, it is expected that more rapid convergence would be

achieved if the x*(/)'s arecomputed in a way that also guaranteesthat the x*(0's are globally accurate.

SECTION 4.4 - WAVEFORM RELAXATION-NEWTON METHODS

The WR algorithm is an extension to function spaces of the relaxation methods used to solve

linear and nonlinear systems. It is also possible to extend the Newton-Raphson algorithm, and its

function space extension also has practical applications. In particular, it is possible to approximately

solve the WR iteration equations with one iteration of the Waveform-Newton algorithm, and this is

the function space extension of the relaxation-Newton methods described in Section 3.2. In this

section we will derive the function-space Newton method applied to systems of the form of Eqn. (2.2)

and prove that the method has global convergence properties. We will then apply this method in

conjunction with the WR algorithm to generate the Waveform-Relaxation-Newton (WRN) algo

rithm.

In order to derive a function-space extension to the Newton-Raphson algorithm, let F(x) (from

Eqa (2.2)) be defined by

F(x) - C(x, u)x - /tx, u) - 0 x(0) - xo [4.27]
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where x:[0,7/J -*> R», w:[0,7] -*• R' and is piecewise continuous; C: R"xR' •* R"™ is such that

C(x, i/)-1 exists and is uniformly bounded with respect to x, u\ and /: RnxRr — R" is globally

Lipschitz continuous with respect to x for all u. Applying the Newton-Raphson algoritiim to find

an x such that F(x) = 0 given some initial guess x° we get

x*+1 - xk - jf(xk)F{xk) [4.28]

where JF(x) is the Frechet derivative of F(x) with respect to x. Note that in this case JF(x) is a

matrix-valued function on [0,7]. That is, JF(x) is a matrix of waveforms.

Using the definition of the Frechet derivative, we can compute Jf(x),

Km|i/rH-(>a/l|AO)IlF(x + /i) - F(x) - J&Mn •- 0. [4.29]

Evaluating this limit for the F(x) given in Eqa (4.27) we get

F(x + A) - F{x) - C(x + A, w)(x + h) - dxtu)x - fix + h,u) + fix.u) [4.30]

and approximating to order Qh fl2

F(x +A)-F(x) - C(x,i/)A + dC{*,U)hx - -^1a +0([|A||2) [4.31]
ox ex

As Eqn. (4.29) applies only in the limit as h -+ 0, Eqn. (4.31) implies

r,M. „ x£ *C{XJt) dfjX,u)Jpix)h = Cix,u)h + —- hx •? h [4.32]

Substituting the computed derivative into Eqn. (4.28) and rearranging we get

C(*V)i*+1 + ***'">(,«»• _,V -/(**.«) +-^lu*+> - x*) [4.33]
ox ' ox
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xk+liO) - Xq

We will refer to Eqn. (4.33) as the Waveform-Newton(WN) algorithm for solving Eqn. (2.2). It is,

however, just the function-space extension of the classical Newton-Raphson algorithm.

Newton algorithms converge quadratically when the iterated value is close to the correct sol

ution,but they do not in general, haveglobal convergence properties. The WN algorithm, along with

inheriting the locally quadraticconvergence propertiesof general Newton methods, will alsoconverge

dCix,u)
globally, given mild assumptions on the behavior of —- stated in the following theorem:

ox

dCix,u)
Theorem 4.3: For any system of the form of Eqn. (2.2) in which —r is Lipschitz continuous

ox

with respect to x for all u and / is continuously differentiable, the sequence {x*} generated by the

WN algorithm converges uniformly to the solution of Eqa (2.2). •

Proof of Theorem 43

For this proof of the convergence of the Waveform-Newton method we will assume that

C(x,w) is independent of x and u. as the proof for the general case is much more involved, and does

not provide much further insight into the nature of the convergence. For the case C(x,u) - C Eqa

(4.33) can be simplified to

dx
c*+1 - CT!x* +C-V(x*,u) +C",i^(xA+,-x*). [4.34]

Taking the difference between Eqn. (4.34) at iteration k + 1 and the exact solution and substituting

(x*+1 - x) + (x - x*) for x*+1 - x* yields

x*+,-x - C-1\fixktu)^fixtu)} +C^[dAXd^U)Hxk+1^x) +(x-x*))]. [4.35]
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As C has a bounded inverse by the assumptions following Eqn. (2.2), and that / is continuously

differentiable on [0,71 andLipschitzcontinuous, C_1——^— is boundedby some constant lx. With
ox

this bound,

Qx*+1-xfl < /,flx*-xB + /,Bx*+1-xQ + /,Qx*-xn. [4.36]

Lemma 4.3 can be applied to Eqa (4.36) (with y •* 0 ). Therefore there exists some b < « and

a < 1 such that

B**+,-xO* < alli'-xU*. [4-37]

Therefore {x*} converges to x, the fixed point of Eqn. (4.34). Given x*(0) = x0 for all k, {xk} con

verges to the solution of Eqa (2.2) on any bounded interval. •

As mentioned in the introduction it is possible to combine the Waveform-Newton method de

rived above with the WR algorithm to construct the waveform extension of the relaxation-Newton

algorithms presented in Section 3.2[19]. The WR iteration equations are solved approximately by

performing one step of this Newton method with each waveform relaxation iteration, to yield the

following Waveform-Relaxation-Newton algorithm (WRN).

Algorithm 4.2 - (WRN Gauss-Seidel Algorithm for solving Eon. (2.2))

Thesuperscript k denotes the iteration count, thesubscript i e |1»•••» W denotes thecompo
nent index ofa vectorand e is a small positivenumber.
*«-0;
guess waveform x°(f); / e [0,7] such thatx°(0) « x0

(for example, set x°(/) - x* te [0,T\);
repeat{

k-k + l

for all (/in #) {
solve

2, Q/xf,.... x*_„ x*-»,..., x*-1, w)xj +

9CM ^"-^-^(xf-xf-^ +
£ fC„(x? x*.„ x*-' x*-', t/)x*-» -

Z(X|,..., xjLi, xf" ,..., x„~ , u) —
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*>M *}-*>x'~l **"*' u) (t* ^ . o
dx, ' '

for (xfit); t € [0,7] ), with theinitial condition xf(0) - x^.
}

} until( flx* - x*B <e)
• . .

Like Algorithm 4.1, each equation has only one unknown variable xf, but in this case, each of the

nonlinear equations hasbeen replaced by asimpler time-varying linear problem.

Giventhe global convergence properties of both the original WR and theWN algorithms, it is

not surprising that the WRN algorithm has global convergence properties. We willstate the conver

gence theorem, but will not present the proof because it quite similar to the proof of the basic WR

and WN convergence theorems.

dC(x,w)
Theorem 4.4; If, in addition to the assumptions of Theorem 4.1, —r is Lipschitz continuous

with respect to x for all u; then the sequence {x*} generated by the Gauss-Seidel or Gauss-Jacobi

WRN algorithm converges to the solution of Eqa (2.2) on all bounded intervals [0,71.1

The linear time-varying systems generated by the WRN algorithm are easier to solve numer

ically than the nonlinear iteration equations of the basic WR algorithm. Forexample, if an implicit

multistep integration method is used to solve such a system, the implicit algebriac equations the

multistepmethod generates willbe linear. In addition, linear time-varying systemscanbe solvedwith

a variety of efficient numerical techniques other than the standard discretization methods, such as

collocation[58] and spectral methods[22].
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CHAPTER 5 - DISCRETIZED WR ALGORITHMS

To compute the iteration waveforms for the WR algorithm it is usually necessary to solve sys

tems of nonlinear ordinary differential equations. If multistepintegration formulas are used to solve

for the iterationwaveforms, the differential equations that describe the decomposedsystems will not

be solved exactly. Therefore, the convergence theorem presented in Section 4.2 does not guarantee

the convergence of this discretized WR algorithm. However, the discretized WR algorithm is a non-

stationary method, and the theorems presented in Section 4.3 apply, and guaranteeWR convergence

to the solution of the given system of ODE's when the global discretization error is driven to zero

with the WR iterations. Reducing the error with the iteration is also a reasonable practical approach

to insuring the convergence of the WR algorithm under discretizations. Timesteps fornumerical in

tegration methods are usually chosenbasedon insuring that esimates of the local truncation error are

kept belowsome supplied criteria. Reducing this criteria as relaxation iterations progress will insure

that the WR algorithm will converge.

The view of the discretized WR algorithm as a nonstationary method, although simple and

practical, lends no insight into why the discretized WR algorithm may not converge in some cases,

and therefore provides no guidance for selecting a numerical integration method. It also does not

allow for comparison to more classical integration methods. For this reason, in this chapter the

interaction between WR algorithms and multistep integration methods will be considered in detail.

In the first section, the discretized WR algorithm will be analyzed assuming that every differential

equation inthe system isdiscretized identically (hereafter referred to as the global-timestep case). A

simple example will be presented that demonstrates a possible breakdown of the WR method under

discretizations. The nonconvergence will be investigated by comparing the global-timestep

discretized WR algorithm to the relaxation-Newton methods of Section 3.2. A strong comparison

theorem for linear systems will be proved: the global timesteps required to insure WR convergence

is identical to the timesteps required to insure convergence of the relaxation methods presented in
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Section 3.2. A convergence theorem for the fixed global-timestep discretized WR algorithm will then

be presented. In the second section, the global-timestep restriction will be lifted, and a theorem

demonstrating the convergence of the multi-rate timestep case for systems in normal form will be

presented.

SECTION 5.1 - THE GLOBAL TIMESTEP CASE

Consider the two-node invertercircuit in Fig. 5.1. The currentequationsat each node can be

written by inspection, and are:

C*l +Sl*l + Siix\-x2) - 0 [5.1]

Cx2^g2ix2-xl) + <„,!(*„ x2) + i„a(xi) - 0

*i(0) - *2(0) - 0.

In orderto generate a simple linear example, 4,,, i^, were linearized about the point where the input

and outputvoltages wereequal to halfof the supply voltage. Time isnormalized to seconds to obtain

the following 2x2 example:

x, - -x, + 0.1x2 [5.2]

X2 •« - Xx1 + - x2

*,(0) - *2(0) - 0.

Note that the initial conditions given for the above example identify a stable equilibrium point

The Gauss-Seidel WR iteration equations for the linear system example are:

xk+l xk+l + 0Axk [5.3]
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•A+l
x2 -AX! - X2

x,*+1(0) - xf(0) - x£+1(0) » x£(0) - 0.

Applying the Implicit-Euler numerical integration method with a fixed timestep h,

1
ixinh) x(nh) —x((/i - !)/»)]) to solve the decomposed equations yields the following

recursion equation for x|(/i):

*2+V) 1 x*+1(n-l)- XJr h^nr +o.i^i(i +hrnxk<j)l [5.4]
1+A (1+/,)2 (1+A) j=i

For example, let X - 200, h » 0.5 and as an initialguess use xfinn) «= nh , which is far from

the exact solution x$(nh) - 0. The computed sequences for the initial guess and first, second and

third iterations of Eqa (5.4) are presented in Table 5.1.

TABLE 5.1 - IMPLICIT-EULER COMPUTED WR ITERATIONS

STEP TIME INITIAL ITER#1 ITER #2 ITER #3

0 0 0 0 0 0

1 0.5 0.5 -1.111 2.469 -5.487

2 1.0 1.0 -3.704 152 -32.92

3 5 5 -7.778 355 -111.6

4 2.0 2.0 -13.17 66.21 -281.3

5 2.5 2.5 -19.66 117.9 -587.5

6 3.0 3.0 -27.02 187.9 -1075

7 3.5 3.5 -35.07 276.0 -1786

8 4.0 4.0 -43.64 385 -2751

9 4.5 4.5 -52.60 502.9 -3992

10 5.0 5.0 -61.85 638.4 -5519

As the Table 5.1 indicates, the WR algorithmdiverges for this example. In fact, Eqn. (5.4)

indicates that the WR algorithm will converge only if

il+h)

1

'0.1X
[5.5]
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The constraints on the timesteps for which the global-timestep discretized WR algorithm will

converge is very similar tothe constraints onthe timesteps for which the relaxation-Newton algorithm

applied toEqn. (3.5) will converge(see Section 3.2). In fact, for linear problems there is the following

comparison theorem.

Theorem 5.1: Let a consistent andstable multistep integration algorithm be applied to an arbitrary

linear system of the form

Cxit) - Axit) x(0) - xq [5.6]

where C,A € IR"*', C nonsingular, and x(/) e IR". Assume further that the Gauss-Seidel(Jacobi) al

gebraic relaxation algorithm is used to solve the linear algebraic equations generated by the inte

gration algorithm (as described in Section 3.2). Given a sequence of timesteps, {hj, the

Gauss-Seidel(Jacobi) algebraic relaxation algorithm willconverge at every step, for anyinitial guess,

if and only if the global-timestep discretized Gauss-Seidel(Jacobi) WR algorithm, generated by solv

ingthe iteration equations with the same multistep integration algorithm and same timestep sequence,

converges for any initial guess. •

Proof of Theorem 5.1

The algebraic equations generated by applying a multistep integration algorithm to Eqn. (5.6)

is

or reorganizing,

S^Cx^,.,) - K^iir^). [5.7]
/=0 »=o
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k I

[C - hnfoA$iTm) + 2«A(^f) " A|,,2>^<Ti«-/> » 0. [5.8]

Let1^ Do Uc be thestrictly lower triangular, diagonal, andupper triangular portions of C. Similarly,

letL*Da, Utt be thestrictiy lower triangular, diagonal, andupper triangular portions of A. Using this

notation, the Gauss-Seidel relaxation iterationequationapplied to solving Eqn. (5.8) forx(rm) is

ULC +DC) - h„MLa +Da)$kiTm) + [Uc - h„,p0Ua^k-\rm) +

k ' A

/si «=1

Taking the difference between the k and fc - 1 iteration and substituting 5*(tw) for

x*(tJ - x'-VJ leads to

[ (Lc +Dc) - /g3b(La +Z)fl) tfirj - - [ t/r - h„fioUa la*-1^J [5.9]

from which it follows that the relaxation will converge at them'h for anyinital guess if andonlyif the

spectral radius of

[ <LC +Dc) - h„MLa +Da) T![ Ue - /rJW] [510]

is less than one.

If theGauss-Seidel WR algorithm isused tosolve Eqn. (5.6), the iteration equation for x(/) is

(using the above notation),

iLc +Dc)xk+\t) + UAO - iLa +Da)xk+\t) + U^it). [5.11]

Applying the multistep integration algorithm tosolve Eqn. (5.11) for x*+1 yields
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lA&, x . r rr l O tt 1A*-1[(Lc +Dc) - h„MLa +A,) XtJ + [ Uc - Vo^l^ (O + [5.12]

* A A

/si

/

I
/=!

Ami^+̂ V^^"1^-/)] " 0.

taking the difference between the k and k — 1 iteration leads to

[(LC +0C) - AJWItt +J^VVj.) + [tfc - *»,/W]**~W + t513!

A:

i=l

/

i=i

To show that the discretized WR algorithm will only converge if the algebraic relaxation converges,

let / be a timestep for which the spectral radius of the matrix in Eqn. (5.10) is not less than one. Use

as an intial guess any sequence for which the first / - 1 points are the exact solution to the discretized

problem. Then 5*(tJ - 0 for m < /, and Eqn. (5.13) is again identical to Eqn. (5.9), and is not

convergent

An inductive argument is used to prove that if the algebraic relaxation is convergent then the

discretized WR algorithm is convergent Assume that the theorem holds for m < / then £*(r/_i) will

go to zero as k •* «. As this occurs, Eqn. (5.13) for the /'* step converges to Eqn. (5.9). The alge

braicrelaxationconverges and therefore the spectralradiusof the matrix in Eqn. (5.10) for the Vh step
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is less thanone. This implies that Eqn. (5.9) represents a contraction mapping in some norm at the

/'* step, and the results of Section 4.3 can be applied to guarantee that Eqn. (5.13) converges at the

/'* step. Note that Sk(rJ - 0 for all m < 0, and therefore Eqn. (5.13) is identical to Eqn. (5.9)

for m — 1 which completes the induction.!

The above theoremholds for any systemof the form of Eqn. (2.2) if it is assumed that an ar

bitrarily close initial guess for each of the relaxation schemes is available. Although this is not a re

alistic assumption, it does indicate that even for nonlinear systems the two algorithms present very

similar timestepconstraints fora numerical integration method.

SECTION 5.2 - GLOBAL FKED-TIMESTEP WR CONVERGENCE THEOREM

It is possible to generalize the proof of Theorem 5.1 to a proof for the global-timestep

discretized WR algorithm for nonlinear problems (but, as mentioned above, the comparison to the

relaxation-Newton methods wouldno longer hold). A different approach willbe taken, because the

approach followed inTheorem 5.1 does notprove the the discretized WR algorithm converges ona

fixed time interval as the timesteps become small.

To illustrate this point by example, consider solving Eqn. (5.3) using explicit-Euler. The

recursionequation for the x$(n) 's is:

n-l

x$+\n +l) - (l-/»*2*+1(/i) -aiAA^d-tfVrfto) + 2<1-A)""*W*£U) ]
jssl

The computed sequences {x^*1} *s for the initial guess and first, second and third iterations of the

above equation are given in Table 5.2, for the case of X«= 200, h •» 0.5 and x%{nh) = nh.

As thetable indicates, theexplicit-Euler discretized WR algorithm converges in justthe manner

predicted byTheorem 5.1, a step (or two) with each iteration. In the same example, if half the

timestep is used, similar results are achieved. That is, the relaxation converges two steps with each

iteration. If it were the case thatno matter howsmall thetimesteps became, each relaxation iteration
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TABLE 5.2 - EXPLICIT-EULER COMPUTED WR ITERATIONS

STEP TIME INITIAL ITER#1 ITER #2 ITER #3

0 0 0 0 0 0

1 0.5 0.5 0 0 0

2 1.0 1.0 0 0 0

3 5 5 -0.625 0 0

4 2.0 2.0 -1.875 0 0

5 2.5 2.5 3.594 0.7813 0

6 3.0 3.0 -5.625 3.125 0

7 3.5 3.5 -7.852 7.422 -0.977

8 4.0 4.0 -10.19 13.67 -4.883

9 4.5 4.5 -12.61 21.63 -13.92

10 5.0 5.0 -15.06 30.96 -29.79

resulted only in two more timesteps converging, then given a fixed interval of interest, the WR algo

rithm would not be convergent in the limit as the timesteps approached zero. This is not the case for

this example, or in general for the discretized WR algorithm. If, for example, h « 0.05 then the re

laxation converges in a more uniform manner, where the value at each timestep rapidly approaches

its limit point

In Section 4.2, the WR algorithm was shown to be a contraction mapping, specifically:

max[0Jle-^[|i*(0 - xV)D < y max^e"*fOi*~,(0 - xl~\tn

where y, 0 e IR are dependent on the problem, and y < 1. If T is chosen small enough, then

yepr By < i and the norm becomes

maxiojl ll**(0 - *'(')il < y max[0J1 Uk"\t) - xl~\t)h

That is, the WR algorithm converges uniformly over small time intervals (This point will be discussed

further in Section 6.2). The next theorem will be an analogous proof for the discretized case. It will

be shown that the fixed global timestep discretized WR algorithm is a contraction in a p norm (the

technique was first applied to proving discrete WR convergence in [29]).
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Formally, demonstrating that the discretized WR is a contraction in a ft norm implies the con

vergence of the discretized WR algorithm because of the contraction mapping theorem. Intuitively,

that the discretized WR algorithm converges in a 0 norm implies an underlying uniformity that guar

antees convergence over a fixed time interval as the timesteps shrink to zero. This is the distinction

between Theorem 5.1 and the next theorem.

Theorem 5.2: If, in addition to the assumptions of Theorem 4.1,/in Eqn. (2.2) is differentiable, and

the WR iteration equations are solved usinga stable, consistent, multistepintegration method with a

fixed timestep h, then the sequences {x*(n)} generated by the Gauss-Seidel or Gauss-Jacobi

discretized WR algorithm will converge for all h > 0.1

Before proving Theorem 5.2, some standard notation[l,59] willbe presented that willalso be

used in the next section. The fixed-timestepmultistepintegration algorithms applied to

i(/) - /(*(/)) x(0) - *0, [5.14]

where x:[0,T\ •* R", /:R" •* IR" canbe represented by backward shift operators. That is, given

we can define

and

/=0 i=0

P(V')) - £v(t„_,> [5.16a]
i=0

o(/-(V«))- £^(tw-/)) f5-16^
/=0
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Eqn. (5.15) can then be written compactly as

p(jf(TIH)) - VCA^(TffI_/)) [5.17]

If it is assumed that the operator p can be inverted, i.e. that x (rm) can be expressed as a function of

the right-hand side, then Eqn. (5.17) can be written in the form

*(*»,) - V~V(*(t„,)). [5-18]

When such and inverse of p exists, it can be shown that Eqn. (5.18) is equivalent to

*(**> - Sr/tf(«*.-/)) +*«>>. [519]
y=o

As an example, consider implicit-Euler applied to Eqn. (5.14). The usual form for the discrete

equations is,

J?(tw) - x(tbi-1) - f£{rm)) [5.20]

which is in the form of Eqn. (5.17). The implicit-Euler discrete equations can also be expressed in

the form of Eqn. (5.19),

jmO

The solution to Eqn. (5.21) is obviously identical to the solution to Eqn. (5.20). The form of Eqn.

(5.17) for the the trapezoidal rule is

*(0 - *<*«-i> - 0.5\f(x(rm)) + f$irm_i»l [5.22]
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which can also be expressed in the form of Eqn. (5.19) as

-, A*(Tm) - a5[/U(T„)) +/WO))] + £ A* ('„,-/)) + x(0). [5.23]

The following lemma, a special case of a theorem proof in [30], will be the key result used in

the course of the proof of Theorem 5.2.

Lemma 5.1: Let H(b) be the map that represents one iteration of the algebraic Gauss-Seidel or

Gauss-Jacobi relaxation algorithm applied to an equation system of the form f{x) - b •» 0, where

xjb eR",/:1R" •* R". If / is such that the Jacobian of /, -^-, exists for all x, is strictly diagonally
dominant uniformly over x, then H(b) is a contraction mapping in the /. norm and is a Lipschitz

continous function of bM

Proof of Lemma 5.1:

As usual, only the Gauss-Seidel case will be proved. It will be shownthat if the Gauss-Seidel

relaxation algorithm is used to solve f(x) - b « 0, thenthe map implicitly defined by oneiteration

of the relaxation, H(b), is such that given **,/ € IR", two arbitrary points,

Wb)xk - H(b)y1^ < yl|jc* - j/H. [5.24]

where y < 1.

Define

X — {Xi ,...,X/ tXj+if...,Xn) . LJ.^.->J

The iteration equation for xf+1 is implicitly defined by
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f1(xk+\xk1...1xkn) -6,-0 [5.26a]

or, using the above notation /iC***1'1) -.b «= 0 . In the same notation, the implicit iteration

equation for j>i is

/•,(/+».') _ b _ 0< [5.266]

Define the function *(/) - /,(f jc*+1'! + (1 - 0/+1,1) - b where t c [0,1]. Clearly,

i//(0) « ^(1) - 0. By Rolle's theorem there exists a f0 e (0,1) such that

fW - 0. i-^*'*'-1 +(l-%)/+I-1)(*/+U-^+U) . [527]
y=i ~v

Reorganizing,

d/l ,4+1,1 . M , \Jk+l.lwJk+l ,.*+l\ _ V d^^V+W +(1 " 'o)/+UX*l+1 - rf+l> " - S-fL^+1,1 +O- «^+U)(tf -4*55.28]
«*l ,,=1 «*>

d/,
Dividing Eqn. (5.28) by —— , which is bounded away from zero by the uniform strict diagonal

dxt

dominance of -^-, and using the fact that \xj-yj\ < 0** - .P* D« by definition, we get

m|V+U+(l-<6)/+U)
|,*+,-j-*+,| - -Sl^ 1 I** -/l- ["SI

Using the property of /that the Jacobian is strictly diagonally dominant uniformly in x leads to

\xk+l -yk+1\ < y,D**-/lL
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where y, < 1. This proves that

\H1(xk) - Hx{yk)\ < y,0jr* - /[I.. [5.30]

A similar argument can be used to show

\Htixk) - H{/)\ < y,[|x* -/lL.

where y, < 1. Then if y is chosen to be the maximum of the y, 's, y < 1 and

fl#(**) - H(ykH„ < yD** - /B„. [5.31]

which proves the first part of the theorem, (for amore detailed proof of the general cases, see [30]).

That H is a Lipschitzcontinous function of b canbe seen by examining the implicitly defined

/iC*i+l. *&«..*£> - bt - 0

which is solved for jcf+1. A simple application of the implicit function theorem[35] implies that if

Sf
-r-^- isbounded away from zero uniformly inx, then *f+1 isaLipschitz continous function of bv The
dxx

argument can becarried inductively to show that for each i, Hpj < i isa Lipschitz continous func

tion of b and that therefore H(b) is Lipschitz continous with respect to bM

The formal definition of the 0 norm for a sequence is given below.

Definition 5.1: For a sequence generated by a fixed-timestep numerical integration algorithm,

{*(OJ»toe p norm of the sequence is defined as

BWrJIBs- ma^e-^IWTjII [5.32]
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where h is the fixed timestep and B e IR. •

The following simple lemma will be useful for the proof of Theorem 5.2.

Lemma 5.2: Given an arbitrary sequence, {x(rm)}, the following inequality holds,

m -Bhm

0!2V<V.-I>!h * M -Bhm ^x^mB [5.33]
1=1 1• — e

whereM - max, |y,|.l

Proof of Lemma 5.2:

The proof of Lemma 5.2 follows from a simple algebraic argument From Definition 5.1,

U%jcirm_,mB - max», e-Bhm\\i%pc(rm^)}\\ [5.35]
i=l i=i

Using the norm properties, the term

can be bounded by

i=l

m

e^^SlYll &+li*m-in. [5.37]
iml

Inserting e*m~M e-Sim-M = 1 into Eqn. (5.37) yields
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Eqn. (5.38) leads to

Reorganizing,
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e-Bhm^ ,7i, eBh(»,-!) e-Bh(m-i) |jj*+1^) [| [5.38]
i=l

e-Bk*-l>&+\Tm_ln < Uxk+\r„,)nBt [5.39]

e-B,m2 Iy, IeBA(w-0 II iik+\rm)} 0* [5.40]
i=l

m

[^\yi\e'Bhi] Hik+\rm)UB- 15,41]
jssl

If | y, | is bounded above by M, then Eqn. (5.41) is boundedby

1=1

Given that e"M is always positive, the following inequality holds,

/=! i*=l

and from the infinite series summation formula



$-BU e~BH
ff " l-e-""'

Page 85

Using the two in Eqn. (5.42) produces the conclusion of the lemma. •

Proof of Theorem 5.2:

As before, only the Gauss-Seidel case will be proved. In order to insure charge conservation,

the decomposed differential equations generated by the WR algorithm are solved using charge as the

state variable. That is, the multistep integration algorithm is applied to

qt<xkJ(t),u(t)) - fi(xkJ(t),u(t)) [5.43]

where jc*-^/), defined in Eqn. (5.25), is usually the vector of node voltages. A proof for the case

where x is used as the state variable is given in [29]. Applying the multistep integration algorithm

using the notation described above, and assuming h„ » h for all m,

pWxkJ(rm)tu(rm))) - ho(f{xkJ{Tm),u(Tm))). [5.44]

Solving,using the "inverse" operatoryields

^"K). **(**,)) - hf>-lo{f£k\Tm), u(rm))). [5.45]

Using the sum form for p-'o, and pullingout the leading term,

^kJ(rm)tu(rm)) - kYtffpJ{rm),uiTm))) - [5.46]
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Jol

Define /^(tJ) as

flCx(rJ) - ^(rj,u(rm)) - krofdcirJMTj) [5.47]

anddefine b{xposn k) e IR" by

m

biiXpasfi® - ^y/f^ir^Mr^)) +*,<*(0),«(0)) [5.48]
y«i

where xpaat k isused to denote the fact thatbisa function ofx*(t/) and x*~1{ti) forall / < m. Then

Eqn. (5.45) is identical to one iteration of the algebraic Gauss-Seidel algorithm applied to solving

F(i{rm)) - b(£past, k) - 0. [5.49]

for x (tJ. As in Lemma 5.2, x*+1 can be written in terms of the map, H(b(xpasn k)), defined im

plicitly by the Gauss-Seidel relaxation algorithm applied to Eqn. (5.49),

iM(rm) - H(b(£past, k))ik(rm). [5.50]

To prove that the iteration described by Eqn. (5.50) is a contraction mapping on the sequence

ixk{rm)}, it will be shown that given two arbitrary sequences, {xk(rm)}, and {/(OJ,

max,, f-*"*l)jf*+l(Tm) - ^+1(rm)ll < max,, ,-—&(rJ - ^(Oll [5.51]

where we will use the notation



Page 87

max^^-^HxVjII - Ux\rm)}\\B [5.52]

To start, Eqn. (5.50) leads to the following equation for the difference between the two se

quences at the m'k step,

xk+\rm) - J^+1(t„,) - H{b$past, k))ik(rm) - Hib^ fc))^(Tw). [5.53]

Breaking into separate differences,

**+W - ^+1(tw) - H(b(ipastf k))Hk(rm) - H(b(ipastt k))?{Tm) + [5.54]

H{b(£past, k)&{rm) - H{b(Ppast, ^))^(tw)

and taking /. norms,

B**+1(0 " ^+I(01. < ^mb(xpast1 k))ik(rm) - mb(xpast, k)$c(rmnm + [5.55]

WH^a* *)$*(**> " Hibtipas,' *Wp*(T*>0.

At this point we will demonstrate that for small A, Eqn. (5.55) satisfies the assumptions of

Lemma 5.1. It is assumed that the Jacobian of q with respect to x, C(x(t),u(t)), is strictly diagonally

dominant uniformly in x. By definition, this assumption implies that there exists an e > 0 such that

|Q,(*('),w(0)l > t + 2lc0<*<'>.«(0>l [5.56]
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Let / > 0 be the Lipschitz constant of /with respect to jr. Assuming /is differentiable, if y0 - 0

(and therefore the method is explicit) or if h < \—- | , then {x (tm)) is strictly diagonally

dominant

air a

Assuming h is small enough that (x (tJ) is strictly diagonally dominant, then Lemma

dJ?(Tj
5.1 can be applied to show

mb£past, k)}ik(rm) - H(b(£paa, lOlfcrJIL < yl^rj - $"(*„)%„ [5.57]

for some y < 1 and

IWKV*. *».?Vm) - mbtipasf *>!?*<**> 1- < [558]

fc BK^r. *> - *(w *)UL?*<OII<

where 4r is the Lipschitz constantof H with respect to b.

Substituting Eqn. (5.57) and Eqn. (5.58) into Eqn. (5.55)

l^+,W - ^+,WL * rD^(rm) -^(rjl. + lHM W*paa,k) - AC^^B. [5.59]

where M « max,, OJ^CO B.. Multiplying by e~Bmh and taking the maximum over m

maxw e~Bmh||̂ +,(rfll) - ^+1(rm) |. < [5.60]

ymaxm e-Bmh\i\^ - ftrJB. +'tfA'max,, *-*"* \b$^ k) - b$past, *)0«.

Or, using Definition 5.1,

m£*+i<T|M) - ^Wn* < !i^(Tfll)-^(Tm)}iis + iHMUb(£pasnk)-b(ypast,k)nfa6\}
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The term in Eqn. (5.60) b(xpoa1 k) - b(ypaxn k) can be expanded using the definition of b in Eqn.

(5.48) to

m

y=i

The p normof the sequencewhose terms are givenin Eqn. (5.62) can be bounded usingLemma 5.2.

That is,

A A

i Ia2tjKCx*+W(t^. «(t»,-J» " fty"U(Tm-P. «(Tm-j))]} h [5.63]

Bhnt

1 — e

where A/ is the max,,,ym. Using the triangle inequality and the Lipschitz property of/,

l*%Jft<?+Uirm-p. W(W> " /Kp^W' iKt^))]! 0b < [5.64]
y=l

1 - e

where /is the Lipschitz constant of/with respect to*. This bound can be used in Eqn. (5.60) to yield

—Bhm At i At. t(1 - hMI e _Blmt)Uxk+\rm) - 7+1(T/M)}is < [5.65]

-Bhm A ^

1 — e
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or

f^+Vm) - /*'(Tjl h i 1~_1„ 0#<tJ - ^(Tjl h [5.66]
g

1 - e

(y + hKff
e

-Bhm
\

1 —

e-Bhmr'

(l hMl—
e

-Bhm

-)

as y < 1 there exists an h0and a b > 0 such that

(y + hMl
e"

-bhm
\

1 —

—Mm
e

,J

(l M/A-
*"

-bhm

-)

< 1 [5.67]
ni

j _ e^MmJ)

for all h < /to, which proves the theorem •.

SECTION S3 - THE MULTI-RATE WR CONVERGENCE THEOREM

Theorem 5.1 suggests that the global-timestep discretized WR algorithm is not going to be any

more efficent than the well-known relaxation-Newton algorithms described in Section 3.2, as the

timestep constraints for the two methods are identical for the linear case. In fact, as Eqn. (5.10) in

dicates, WR is likely to be lessefficient, becausedecomposition errors made in the first few timesteps

propagate through the computations. That the discretized WR algorithm hasproved to be more ef

ficient in practice for some typesof problems is because the discretized WR algorithm is intrinsically

a multi-rate integration method. It is because this is the key aspect of the WR algorithm that the rest

of thisChapter willbe devotedto a proofthatthe discretized WR algorithm converges evenwhenthe

timesteps for each subsystem are chosen independently.

Usually, choosing how to interpolate the discrete sequence of points produced by a numerical

integration method is based only on whatwill produce attractive graphs of the computed solution.

When multi-rate integration methodsareapplied to solving asystem,interpolation plays a much more

significant role. If two state variables in a system interact, and they are computed using different
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timesteps, then toprovide the value ofone variable at the times required tocompute the second var

iable, the first variable must interpolated. In the case of WR, if the interpolation isnotdone carefully,

convergence can be destroyed.

In this section, a convergence theorem for systems in normal form will be presented thatdem

onstrates the key role of interpolation in the convergence of themulti-rate discretized WR algorithm.

The theorem guarantees that the discretized WR algorithm is a contraction mapping assuming that

the points produced by the numerical integration method are interpolated linearly. As the theorem

proofwilldemonstrate, the linear interpolation has one particular property that aids convergence.

Consider the following system,

x(t) - /W0,«(0) [5.68]

where *(/) - (*,(/),...,x„(t))T, *,(/) e IR" , u(0«RM , piecewise continous, and

/ - (/*,0O,..., fn{x))T ./ilR" -* IR isLipschitz continous. If theGauss-Seidel WR algorithm isapplied

to Eqn. (5.68), the iteration equation for x, is

xk+\t) -//(x{c+,(/),...,^+1(/),^,W,...^*(/),w(0) [5.69]

If Eqn. (5.69) is solved numerically using a multistep integration algorithm with a fixed-timestep h,

the iteration equation becomes

P$+W) - ^^*+^Tj,...,^+,(0,^1(0,...,^Tj,u(rfll)) [5.70]

If different timesteps are used to solve the differential equations associated with the jc* vari

ables, i#j, then Eqn. (5.70) makes no sense, because rm for the/* equation may be different than

rm for the i'* equation. In order to even write down the equations for the multi-rate case, some kind

of interpolation operator must first be defined.
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Definition 5.2: Given a finite sequence tKOJ of Melements, where j<tJ e IR, for all m < M,

an interpolation function /,{ • }on the sequence isany function that maps the sequence and the in

dependent variable / € 1R, t e [t©, t„ ]into IR, such that /,{ • }is continous with respect to /, and that

/vWt,)} - ><t,) .•

As an example, the linear interpolation ofasequence at agiven time t e [tq, rM] would be

yirj+l)-y(*j), x r<-71l
WO) --j<v) +—h 7T{t-rj) [ ]

where jis such that t, < / < t;+i«

In order to write a form ofEqn. (5.70) for the multi-rate case, we will denote rm for the f*

equation as t^,. Using this notation and the interpolaUon operator defined above, the unfortunately

indice-filled iteration equation for xf for the multi-rate fixed-timestep case is

Ir'JXi^r':1)} Irl{ik(Oh «(TW))

where h, is the fixed-timestep for the i1* system. Using the inverse operator as in Eqn. (5.25),

^♦Vj'-v-1^/^1^-^*1^1^ [572]

The proof of Theorem 5.2 demonstrated that the fixed global-timestep discretized WR algo

rithm is acontraction mapping in an /. Pnorm on the sequence (see Definition 5.1). In the multi-rate

case, this is not sufficient Since interpolated as well as sequence values are used by subsystems, a
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convergence proof must take into account the effect of the the interpolation on the sequence. The

approach that will be used in the proof that follows is to view the multi-rate discretized WR algorithm,

which necessarily includes an interpolation operator, as amap of continuous functions on [0,7] to

continuous functions. The implicitly defined map can be derived byapplying the interpolation oper

ator to both sides of Eqn 5.72 to yield

/.tff'otM - Wr-^jZ+Wj} /^'Oi. I5-™

To prove the convergence ofthe relaxation, the usual continuous-time /J3 norm can be used,

or equivalently,

Uh- max,-[ m*x[0Xf-Bt| /,[*,<£)!I ]. [5.746]

where x is used to denote the vector function on [0,7] defined by x(t) •» (/,{xi(TJj}f..., /rWOI)r

Under certain conditions Eqn. (5.73) is a contraction map in the 0 norm of Eqn. (5.74). To

prove this, Eqn. (5.73) will be applied totwo sequences {x*(tJ} and {/(tJ} . The difference be

tween Eqn. (5.73) applied to the two sequences is

4#+Vji - i.ti+hrln - t5-75)
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/,{A/P~W( Ir<Jyk+\*lm)},~, IT>Jyk+\rm)h /t^/+i(t/w-1)},..., IT'Jyfanm)}, u(t„) )}.

It is possible to simplify Eqn. (5.75) by limiting the type of interpolation operators to those that are

linear functions of the sequence. To avoid confusion, by this it is not meant to limit consideration to

only linear interpolation, but to those interpolation functions for which

I,{x(rm)} - It\yirm)} - It{x(rm) -rfrjl

and

Itiax(rm)} - alt{x(rm)}

where {x(,rm)}t {KOJ *resequences in IR, anda eJR. Forexample, anyof the splineor polynomial

interpolation operators are linear functions of the sequence. Exploiting this linearity in Eqn. (5.75)

leads to

I.tf+Vj - #+Vi,)} - [5.76]

W,> iPf+VJ,)}..... If {fr+Vjl. 7T, ift,^1)}...., IT, #(,Di. «(*!,,» ] }.
'» III Wl I"

It is possible to show thatthemulti-rate discretized WR algorithm isa contraction mapping in

the Pnorm of Eqn. (5.74) if the interpolation operator is limited to linear interpolation (as in Eqn.

(5.71),) and the timesteps are made small enough..
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Theorem 5.3: If the interpolation in Eqn. (5.73) is linear interpolation, then there exists acollection

of timesteps /.*> > 0 , i£{1,.., n] such that if 0 < h, < A* for all /, then the multi-rate fixed-

timestep discretized WR algorithm converges with the respect to the interpolated sequences.

The following simple Lemmas will beuseful inthe proof.

Lemma 5.3: If/,{•} is the linear interpolation operator (as in Eqn. (5.73)), then given two sequences

{jc(TjJand{KTM)},if*(T,) > M^forallithen/.WrJ} > WOHor all / for which the in

terpolation is defined. In addition, if x^ - Kt KeR , for all m < m\ then J,{x(tJ} - K for

t < Tm:

Lemma 5.3 follows directly from the definition of linear interpolation. Aswill be shown in the proof,

this isthe key property of linear interpolation with respect Theorem 5.3.

Lemma 5.4: If /,{•} is the linear interpolation operator and {x{rj} is asequence in IR, then

-Ri . . .
maxty

/=o i - e

where M - max/|y/|

The proof ofLemma 5.4 parallels the arguments given in the proof ofLemma 5.2, and is omitted.

Proof of Theorem 5.3:

Expanding the p~la operator into itssum form leads to

'Mi kt„,) - }'i Kfm)i -
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/=0
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'rim-!)#+l(*m)U, /,<„,-/){«. "W)

Using Lemma 5.3 and the Lipschitz continuity property of/,

W^Vj-JfVjHS [5.77]

/=0 >ol i=/+l

where I,y is the Lipschitz constant of / with respect to xf Reorganizing, and exploiting the general

linearity property of the interpolation operator and the triangle inequality,

l/^Vj-J^Vjil s [578]

j's] /=0

7=/+l /=o



Multiplying by e-* and takingmaximums,

max[0f21,-B'l/^+l(Tw)-^+,(Tw)}| <

y=l /=0

rAA+l A*+l:

/«=«/7=n
•A* A*,2 /^max^*"*'!/,* 2 ly/l \IT(m-^xJ ~ &\ *l

y=/+1 /=o

Applying Lemma 5.4,

•itei'-'HI?"^ - J^+l(OJI *
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[5.79]

[5.80]

MA, tJ,
"TaT-i^y1 - *-«*'.£

l^'-j^'b + MA' 2%I^^Bht . —7- I*-.?!.

where Ijc* - y* fl3 is the Ijp norm defined in Eqa (5.74b).

For any 6* > 0 there exists a collection of steps {/»i0,..., /»«<,}, all strictly positive, and a

£ > 0 such that

8 >

Mh^Ltj
1 - e-Bh>

for all hf < h^, for all /. Substituting into Eqn 5.80,

B.ax(0J1,-B'|/,f^+1(^)-^+I(Ti,)}| Hi!**1-?***, + «|£->l.

[5.81]

[5.82]
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Since Eqn. (5.81) holds for all i,

BA*+l.^+lb < S^-P^h + fiO^-^ls [5-83]

Reorganizing,

Clearly, there exists afi > 0such that Eqn. (5.84) is acontraction (-JZY < D- ***6 be that
A

8. Since there exists aB > 0 and collection of h^s > 0such that Eqn. (5.84) holds for 5 - 8

for alio < h, < h^ the theorem is proved. •

Perhaps the most surprising aspect of the proof ofTheorem 5.3 is that the ratio of the timesteps

from one system to the next does not seem to play arole. This is an extremely important observation

given that the discretized WR algorithm was developed to allow different subsystems to take vastly

different timesteps. Ifalarge ratio between timesteps destroyed the WR convergence, then the ap

plicability ofthe WR algorithm to multi-rate problems would be limited.

A second important observation is that the only property of linear interpolation used in the

course of the proof was that stated in Lemma 5.3. Therefore, other interpolations that have this

property will work as well. Higher order polynomial interpolation functions do not have the property

stated in Lemma 5.3, but as they are substantially more accurate than linear interpolation, they are

extremely useful. An extension of the above theorem to general polynomial interpolation does not

seem tobe straight-forward, and may call for an entirely different approach.
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Figure 5.1 - Two Node Inverter Circuit with Feedback
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CHAPTER 6 - ACCELERATING WR CONVERGENCE

In Chapter 7, several techniques used to improve the efficiency and robustness of the WR al

gorithm when applied to simulating MOS circuits will be described. In this chapter the theoretical

background for two of these techniques will be presented. We will first analyze nonuniformity in

WR convergence, which explains why breaking the simulation interval into pieces, called windows,

can be used to reduce the number of relaxation iterations required to achieve convergence. Then we

will consider how to partition large systems into subsystems in such a way that the WR algorithm

will converge rapidly.

SECTION 6.1 - UNIFORMITY OF WR CONVERGENCE

The convergence theorem presented in Section 3.2 guarantees that the WR algorithm is a

contraction mapping in anexponentially weighted norm. In this section, we will examine the impli

cations of this choice of norm. First, the WR algorithm willbe applied to two example problems to

exhibitthe differentmanners in which the algorithm converges. We will then prove that for aspecial

class of systems WR converges in a uniform manner, or formally, thatWR is a contraction in anun

weighted norm for any time interval. Because most circuit problems do notgenerate systems in this

special class, we will prove that the WR algorithm is a contraction in an unweighted norm for any

system for which theWR algorithm converges, if the time interval is made short enough. This sug

gests that the number of iterations required toachieve WR convergence can bereduced bybreaking

thesimulation interval into short pieces, and inChapter 7 wewill present an adaptive algorithm that

attempts to exploit this property of WR.

Consider the following nonlinear ordinary differential equation in jr,(f), x2(t) c IR with input

w€ IR that approximately describes the cross-coupled nor logic gate in Fig. 6.1a (the approximate

equations represent anormalization that converts the simulation interval [0,7] to [0,1]).
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,2ij - (5-jr,) - *,(jr2) - 5x,w [6.1]

*2 - (5-*z) " -^(^l)2

jcj(0) - 5.0 x2(0) - 0.0

The Gauss-Seidel WR Algorithm given in Section 1.2 was used to solve the for the behavior

of the cross-coupled nor gate circuit approximated by the above small system of equations. In Fig.

6.1b plots of the input «(/), the exact solution for xt(t), and the relaxation iteration waveforms for

*,(/) for the 5th, 10th and 20th iterations are shown. The plots demonstrate a property typical of the

WR algorithm when applied to systems with strong coupling: the difference between the iteration

waveforms and correct solution is not reduced at every time point in the waveform. Instead, each

iteration lengthens the interval of time, starting from zero, for which the waveform is close to the

exact solution.

As an example of "better" convergence, consider the following differential equation in

xu x2, x3with input u that approximately describes the shift register in Fig. 6.2a (here the simulation

interval [0,7] has been normalized to [0,1])

i, - (5.0 - *,) - *,(t/)2 - (x, - x2) [6.2]

f2 - (Xj - X2)

i3 - (5.0 - *3) - x3(x2)2

x(0) - 0.

The Gauss-Seidel WR Algorithm given in Section 1.2 was used to solve the original system approxi

mated by the above system of equations. The input «(/), the exact solution for xt(t) , and the
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waveforms for xx(t) computed from the first, second, and third iterations of the WR algorithm are

plotted in Fig. 6.2b. As the plots for this example show, the difference between the iteration

waveforms and the correct solution is reduced throughout the entire waveform.

Perhaps surprisingly, the behavior of the first example is consistent with the WR convergence

theorem, even though that theorem states that the iterations converge uniformly. This is because it

was proved that the WR method is a contraction map in the following nonuniform norm on

C([0,7], Rn):

maxfofl^O/WII

where b > 0, /(/) c IR", and I| • Qis a norm on IR". Note that [1/(0 0 can increase ase* without

increasing the value of this function space norm, ft fit) grows slowly, or is bounded, it is possible to

reduce the function space norm by reducing []/(/) II only on some small interval in [0,71, though it

will be necessary to increase this interval to further decrease the function space norm. The

waveforms in the more slowly converging example above, converge in just this way; the function

space normis decreased afterevery iteration of theWR algorithm because significant errors are re

duced over larger and larger intervals of time.

The examples above lead to the following definition:

Definition 6.1; A differential system of the form given in Eqn. (2.2) said to have strict WR

contractivity property on [0,71, if theWR algorithm applied to the system contracts in a uniform norm

on [0,7], i.e.

max^fl ll**+V) - **(/)[! < maxicfl IU*(0 - **~V)ll [6-3]

where xk{t) e IR" on / € [0,71 is the k'h iterate of Algorithm 4.1 and || • [| is anynorm on IR". If the

WR algorithm applied to the system is a contraction in auniform norm on [0,71 for any T> 0 then

we say that the systemhas the strict WR contractivity property on [0,«) •
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For a system of equations to have the strict WR contractivity property on [0,«) it must be

more than justloosely coupled. Inaddition, thedecomposed equations solved ateach iteration of the

waveform relaxation must be well-damped, so that errors due to the decomposition die off in time,

insteadof accumulating or growing. As an example,we will provethat a system in normal form,

x(t) - f{x(t)t i/(0) *(0) - x0 [6.4]

where x{t) e IR" on t e [0,7]; u(t) € IR' on / € [0,71 piecewise continuous; and /: IR^R' — IR" is

globally Lipschitzcontinuous willhavethe strictWR contractivity property on [0,71 for any T < «

if /has a property we refer to as diagonally dominant negative monotonicity. This property, which

we define precisely below, just implies that the original system is loosely coupled, and the decom

posed equations generated by a WR algorithm arewell-damped (A similar result in a different setting

can be found in [61]).

Definition 6.2: Let/(jr, u) be a continuous map from R"jriRr -* IR" where x e IR", u e IR' and/is

globally Lipschitz continuous with respect to x for all u c IRr. /is said to be negative monotone if

there exists a positive number X such that

(x-y) . (fix, u) -/0% «)) < - Mx-y) • (x-y) [6.5]

(here • indicates a scalar product) for all x,y e IR" and u c IRr. Let v' e IR" be the iM unit vector.

Then /is said to be diagonally negative monotone if there exists a collection of positive numbers X,

such that

ev' . {fix + ev', u) - f(x,u)) < - X,e2 [6.6]

for any positive e € IR , x e IR" and u e JR\ If/is globally Lipschitz continous, there exist positive

numbers Iu, ij e [1,..., n] such that for anye e IR

fi vl . (fix + ei/t u) - f(x,u)) || < ly\e\ [6.7]
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for all x e IR", u e IR'. A mapping /, is a diagonally dominant negative monotone if / is a strictly

diagonally negative monotone and X, > 2 L where X, is as in Eqn. (6.6). (This is a stricterdefinition

than in previous Iiterature[30]).

To prove the theorem about diagonally dominant negative monotone systems we will use the

following lemma.

Lemma 6.1; Let k, xit)t x(t) e IR be such that

x(t)x(t) < - Ax(/)x(0 + kxit) *(0) = 0 [6.8]

for some positive number X. Then | x{t) | < | k \ X-1 for all t > 0.

Proof of Lemma 6.1;

Substituting-7-1 x{t) |2 for 2x{t)xit) in Eqn. (6.8) and taking absolute values
at

•yl*MI2 * -2XU(/)|2 +2\k\ \x(t)\

Therefore, -4~ Ix(t) \ < - X|x(t) \ + \k\ or \x(t) \ - 0. This implies, by atheorem in dif-
dt

ferential inequalities[39], that

WD I <-x-<l-'-*'>£-1£

which proves the lemma. •

We now prove the theorem.

Theorem 6.1: Let a system of equations of the form of Eqn. (6.4) be such that/(x,u) is diagonally

dominant negative monotone. Then the system has the strict WR contractivity property on [0, 7] for

all T < <*.•

Proof of Theorem 6.1:
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Again we will only present the proof for the Gauss-Seidel case, but the result holds for the

Gauss-Jacobi case also. The iteration equations for the Gauss-Seidel WR algorithm applied to Eqn.

(6.4) are, for each i e [1,..., n],

*i+1 " ft*!*'*.•- **+1' xll *lw> IW

where x, w, and/are functions of time, but the dependence on time has been dropped for notational

convenience. Taking the differencebetween the k andk + 1 iteration for each i e [1,..., n] yields:

•A+l -k ffy.k+1 A+l * k x f,k k k-1 k-l v

Multiplying through by xf*1 —xf and using the Lipschitz and diagonal negative monotone properties

of/we get

(xk+1-x?)(xk+l-xk) £ -\.(xk+1-xf)(xk+1-x?) + [6.10]

sW+I-*fi • i*f+I-*fi + 2 '<,i(*/-*/_,)i • i**+,-**i

where |x,| denotes the absolute value of*,, and ltJ and X, are asin Definition 6.2. From theestimate

in Lemma 6.1,

\xk+1-xk\ <2/^rV+,-*/i + iw'if^'i t6-11]
7=i y=/+i

Let A e IR"" be a matrix defined by Au(i#j) = ^r1 and 4, •» 0. Then A —L + U where L

is strictly lower triangular, tf is strictly upper triangular. Rewriting Eqn. (6.11) in matrix form

(I-L)\xk+l-xk\ < U\xk-xk-1\ [6.12]
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where \x\ is the vector whose elements are the absolute value of the elements of jc, and the inequality

holds for each element-by-element comparison. To show that Eqn. (6.12) implies

8(jc*+1 - jc*) 0. < fljc*+1 -Jc*!. requires slightly complicated argument, as the inequality will not

still hold if both sides of Eqn. (6.12) are multiplied by (J - I)-1. Since (/ - L) is diagonally domi

nant with unity on the diagonal and negative lower triangular off-diagonal entries, if r is a solution to

(7-L)|r| - tf|jt*-jc*-!| then \r\ £ |jc*+1-x*|. Given that / is diagonally dominant,

B(/- L)~W^ < 1 (Lemma 4.2), from which it follows that |**+1 - jc* | < r < |jc* —jc*-1 | .

Then from Eqn. (6.12) we get

maxicn D**+V) - xk(t) 0. < max[0tr, 0A/)- **'V> 0 [6.13]

for any T < «, which proves the theorem. •

As the crossed nand gate example indicates, many systems of interest do not have the strict

WR contractivity property on [0,71 for all T < <*. However, we will prove that any system that

satisfies the WR convergence theorem will also have the strict WR contractivity property on some

nonzero interval.

Theorem 6.2: For any system of the form of Eqn. (2.2) which satisfies the assumptions of the WR

convergence theorem (Theorem 4.1) there exists a T> 0 such that the system has the strictWR

contractivity propertyon [0,71.

Proof of Theorem 6.2

We prove the theorem only forthe Gauss-Seidel WR algorithm but, asbefore,the theorem also

holds for the Gauss-Jacobi case. Starting with Eqn. (4.8) and substituting xk for x',

xk+1(t)-xk(t) - [6.14]

(j^+iW +Dik+iCor'ci+iW^w - (Lkit) +Dk{t)r1uk(t)xk"\t) +
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,-l2/Jfc+l Jk .a #f /A^nrrti-^Jk -*"1(Lk+l{t)+Dk+iit))'lf(xk+\ x\u) - (Lk(t)+Dkit))-lf(x\ x*~\u)

To simplify the notation, let Ak(t\ Bk(t) e IR"*" be defined by ,4,(0 = (Lk(t) + Dk(t))-Wk{t) ,

£*(0 - (!*(/) +D*(0)_1 • It is important to keep in mind that (Lk(t) + Dk(t))~lUk(t) , and

(lfc(0 + />*(/))"' are functions of x*, and bydefinition, so are Ak(t) and Bk(t). Expanding the above

equation and integrating,

f\xk+\T)-xk(T))dT - fUk+iWC**W - **~V))</t + [6.15]

rw+i^-^T)]^-1^)^ +
•/o

r **+iwc**+i<t), **<*)» «w)-/(At), ^"'(t), «<t))]</t +
«/o

f[Bk+1(T)-Bk{T)]f(xkir)t xk-\r), u(r))dr

Integrating by parts and usingthe fact that xk(0) - jc '̂CO) - 0,

xk+1(t) - xk(t) - Ak+1(t) [xk(t) - xk-\t)] - [6.16]

/'-|r^+,(T)[x*(T)-x*-1(T)]^T +f[Ak+1(r) - ^(T)]i*-! </t +
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fVlWtf(x*+,W, At), «/(t))-/(xV), **~!<t>. u(r))]dr +

f[Bk+1(r) - Bk(T)]f(xk(r)t x*"1^), u(t))</t

Taking norms, and using the Lipschitz continuity of f,Ak(t), and 2?*(0> and the uniform boundedness

of Bk(t) in jc(see Theorem 4.1):

|jr*+1(0-**(0ll - f'(/iJi: +ik^f +*|i5)0**+,(T)-**(T)l < [6.17]

y|/(0 - xk~l(t) | + f (/2tf +fcjM +2*23/ +k4N) |At) - **_1(t) |4r
•'0

A

where /lt 4 are the Lipschitz constants of / with respect to x*+1 and x* respectively;

kit k* k3, k4 are the Lipschitz constants for AMit)t BM(t) with respect to their xM and xk ar-

guments respectively; y - max^ttL* + D*)14] < 1; and M and Jv" are the apriori bounds onx*
A

and / found in the proof of Theorem 4.1. Note that

4rAk+M " ^P4*^^***1 +-£rAk+Mxk <ktM +kzM. Moving the max (over /)
norms outside the integrals and integrating yields

max[0,rj||x*+,(0-**(0ll < [6«]

Y + Tj!2K + k1M + 2k2M + k4N) k k*
- = max[0t71 I] (x {t) - x it))

1 - TiliK + k}M + *3A0
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_, y + f (1,K + ktM+ 2k2M + k4N)
Since y < 1, a T > 0 exists such that = ^ ^ « a < 1 .

1 - filiK + kiM + W)
With this7*, Eqn. (6.17) becomes

max[0>7^ ||x*+1-x*fl < a maxl0i7^ 0**-**"1! [6-10]

for a < 1, which proves the theorem. •

Theorem 6.2 guarantees that the WR algorithm is a contractionmapping in a uniform norm for

any system, provided the interval of time over which the waveforms are computed is made small

enough. This suggest that the interval of simulation [0,71 should be broken up into windows,

[0,7*i], [Ti,7y,..., [T„_v T„] where the size of each window is small enough so that the WR algo

rithm contractsuniformly throughout the entire window. The smallerthe window is made, the faster

the convergence. However, as the window size becomes smaller, the advantages of the waveform

relaxation are lost Scheduling overhead increases when the windows become smaller, since each

subsystem must be processed at each iteration in every window. If the windows are made very small,

timesteps chosen to calculate the waveforms are limited by the window size rather than by the local

truncation error, and the advantages of the multi-rate nature of WR will be lost

The lower bound for the region over which WR contracts uniformly given in Theorem 6.2 is

too conservative in most cases to be of direct practical use. As mentioned above, in order for the

WR algorithm to be efficient it is important to pick the largest windows over which the iterations ac

tually contract uniformly, but the theorem only provides a worst-case estimate. Since it is difficult to

determine a priori a reasonable window size to use for a given nonlinear problem, window sizes are

usually determined dynamically, by monitoring the computed iterations(See Chapter 7)[18]. Since

Theorem 6.2 guarantees the convergence of WR over any finite interval, a dynamic scheme does not

have to pick the window sizes very accurately. The only cost of a bad choice of window is loss of

efficiency, the relaxation still converges.
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SECTION 6.2 - PARTITIONING LARGE SYSTEMS

In Algorithm 4.1, the system equations are solved as single differential equations in one un

known, and these solutionsare iterateduntil convergence. If this kind of node-by-node decompos

ition strategy is used for systems witheven justa few tightly coupled nodes, theWR algorithm will

converge very slowly. Asan example, consider the three node circuit inFig. 6.3a, atwo inverter chain

separated byaresistor-capacitor network. In this case, the resistor-capacitor network is intended to

model wiring delays, so the resistor has a large conductance compared to the other conductances in

the circuit The current equations for thesystemcan be written downby inspection andare:

C*l + kl(*l« W**) + W^w) + 8(xi~x2) - 0 [6.20]

Cx2gix2-Xl) - 0

Cxyim3ixvx2) + im4ix3,vdd) - 0

Linearizing and normalizing time (so that the simulation interval [0,7] is converted to [0,1]) yields a

3x3 linear equation:

*1 -10 9.5 0 *l 5

*L -
9.5 -9.5 0 x2 + 0

*3 0 -1 -1 *3. 0

x,(0) = x2(0) = 0 x3(0)-5

[6.21]

Algorithm 4.1 was used tosolve the original nonlinear system. The input u(0, the exact sol

ution for x2, and the first fifth and tenth iteration waveforms generated by the WR algorithm for x2

are plotted in Fig. 6.3b. Asthe plot indicates, the iteration waveforms for this example are converg-
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ing very slowly. The reason for this slow convergence can be seen byexamining the linearized sys

tem. It isclear Xi and x2 are tightly coupled bythe small resistor modeling the wiring delay.

If Algorithm 4.1 ismodified, sothat xt and x2 are lumped together and solved directly, weget

the following iteration equations:

x2

" *+l"

-10 9.5 Of
4**

9.5 -9.5 0.

.**.

.*+l
*3 ~ x2 ~ *3

a [6.22]

IlLi .11The modifiedWR algorithm now converges in one iteration, because x3only depends on the block

of Xi and x2, and that block is independent of x3.

As the exampleabove shows,lumpingtogethertightlycoupled nodes andsolvingthem directly

can greatlyimprove the efficiency of the WR algorithm. For this reason, the firststep in almost every

WR-based program is to partition the system, to scanallthe nodes in the system anddeterminewhich

should be lumped together and solved directly. Partitioning "well" is difficult forseveral reasons. If

too many nodes arelumped together, the advantages of usingrelaxation will be lost, but if any tightly

coupled nodes are not lumped together then the WR algorithm will converge very slowly. And since

the aim of WR is to perform the simulation rapidly, it is important that the partitioning step not be

computationally expensive.

Several approaches have been applied to solve this partitioning problem. The first approach

is to require the user to partition the system[15]. This technique is reasonable for the simulationof

largedigital integrated circuitsbecause usually the largecircuit has already been broken up into small,

fairly independent pieces to make the design easier to understand and manage. However, what is a

sensible partitioning from adesign point of view may not be a good partitioning for the WR algorithm.

For this reason programs that require the user to partition the system sometimes perform a "sanity
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check" onthe partitioning. A warning isissued if there are tightly coupled nodes that have notbeen

lumped together.

A second approach to partitioning, also tailored todigital integrated circuits, is the functional

extraction method[16]. Inthis method the equations that describe the system are carefully examined

to try to find functional blocks (i.e. anand gate or aflip-flop). It is then assumed that nodes of the

system that are members ofthe same functional block are tightly coupled, and are therefore grouped

together. This type of partitioning is difficult to perform, since the algorithm must recognize broad

classes of functional blocks, or nonstandard blocks may not be treated properly. However, the

functional extraction method can produce very good partitions because the relative importance ofthe

coupling of the nodes can be accurately estimated

Since it isthe intent of the partitioning toimprove the speed of convergence of the relaxation,

it is sensible to partition alarge circuit with this, rather than topology or functionality, in mind. In this

section we will develop an algorithm based on this idea. As itis difficult to get estimates ofthe speed

ofWR convergence directly, We will start with an exact analysis ofarelaxation algorithm applied to

asimple 2x2 linear algebraic example, and then lift the result to aheuristic for partitioning large linear

algebraic problems. Then arelationship wUl be established between the convergence speed of the

linear WR algorithm, andthatof two linear algebraic problems.

The following definition will be useful for describing the rate ofconvergence ofrelaxation al

gorithms.

Definition 6.3: Letx* e IR" be generated bythe k'h iteration of an algebraic relaxation algorithm ap

plied to asystem ofthe form/[x) - 0 , where x e IR" and/:R" - IR". Then the /«iteration factor

Y. isdefined asthe smallest positive number such that

llx*+1-x*lL < T-l**-**"!0.

for any A: > 0, and any bounded initial guess x°•.



Page 113

Since the difference between the exact solution, x, and the result of the k'h stepof a relaxation,

x*, isless than (y« )* II x - x°0« , the size of y. isan indication of how fast the relaxation converges.

If y. ismuch less than 1then the relaxation is certain toconverge rapidly, butif ym > 1the relaxa

tionmay notconverge, and if ym isclose to 1 theconvergence may be veryslow.

Consider the simple 2x2 matrix problem,

*11*12

*21*22 *2.

[6.23]

If the Gauss-Jacobi relaxation algorithm is used to solve Eqn. (6.23) (See Section3.2) then the /. it

eration factor is the /,induced norm of

which is

g2l

*22

a\2

gj , a\2 °2\ vy% - max(-^—, -=—)

[6.24a]

[6.246]

and if the Gauss-Seidel relaxationalgorithmis used, then the /«iteration factor is the /„ induced norm

of

which is

°21g12
ana22

« . g21°12 •

71 ana22 '

[6.25a]

[6.256]
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For the 2x2linear system of Eqn. (6.23), Eqn. (6.24b) andEqa (6.25b) canbe used to decide

whether to use relaxation, or lump the two nodes together and use direct methods. The critera that

Y? besmall (much less than one), which we will refer to as the diagonally dominant loop criteria, has

proved tobe a useful heuristic for partitioning the large systems generated by circuit problems. For

the linear algebraic problem

Ax - b [6.26]

where x - (x„.., xH)T, b - (*„.., KY , x„ b, € IR", Ae IR"" , invertible, A - (*„) , we have the

following partitioning algorithm.

Algorithm 6.1 Diagonal Dominant Loop Partitioning for Ax » b

for all (iV in AT) {

If ( -£f- > a ) {x,is lumped withx,}

}

The constant a is dependent on the problem, and is roughly related to the desired /„ iteration factor,

so the smallera is made, the more likelynodes are to be lumped together.

Although Algorithm 6.1 works well for the matrices generated by a wide variety of circuit

problems, it is only ahueristic. There are circuit examples for which the diagonally dominant loop

criteria does not indicate tightly coupled nodes that should be placed in the same partition. A par

ticularly common circuit example for which Algorithm 6.1 does not lump tightly coupled nodes to

gether is given in Fig. 6.4, an inverter driving aseries of resistors. This is just amore complex version

of the example given at the beginning of this section. The KCL equations for the circuit, approxi

mating the inverter's output as a one voltvoltage source,

O.Olx! + lO.O^-Xj) - 0.01



or in matrix form,

10.0(x2-x,) + 1.0(x2-x3) - 0

1.0(x3-x2) + 10.0(x3-x4) - 0

0.01x4 + 10.0(x4-x3) « 0

10.01 -10.0 0.0 0.0 *1 1.0

-10.0 11.0 -10 0.0 *2 0

0.0 -1.0 11.0 -10.0 '3 0

0.0 0.0 -10.0 10.01 x4 0
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[6.27]

If Algorithm 6.1 is used to partition the matrix in Eqn. (6.27) and a « 0.1, then xt will be lumped

with X2 and x3will be lumped with x4. The spectral radius for the iteration matrix generated by ap

plying block Gauss-Seidel relaxationto the partitioned subsystems is « 0.98. The spectral radiusis a

lower bound on the iteration factor in any norm. Since it is very close to one, the relaxation will

converge slowly.

The reason the diagonally dominant loop criteria sometimes produces misleading results is that

it is too local a criterion, it only indicates how mutually coupled two nodes are, compared to how

coupled they are to other nodes in the problem. If two nodes are extremely tightly coupled as are the

pairs xv x2 and x3,x4 in the example of Eqn. (6.27), then each of the nodes in the pair will appear

relatively loosely coupled to other nodes in the problem, even if they are tightly enough coupled to

other nodes to slow the relaxation.

It is possible to modify the diagonally dominant loop partitioning algorithm so that it will

produce good partitions for problems which contain subsystems like the example of Eqn. (6.27). To

demonstrate the algorithm, we consider a different approach to partitioning. Consider a problem of
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the form of Eqn. (6.26), Ax - b » 0, and define A, - -—7, which is just the f* diagonal termof
dbf

of 4-1. Then new algorithmis generatedby replacing — with \u in Algorithm 6.1.

Algorithm 6.2-Reduced System Partitioning fornix ° fe

for all (1 in « ) I compute \„}

for all (ij in .AT) f

if (Of/ijiKiKj > a ) f x,is lumped withXj \

}

A simple circuit interpretation can be given for the two partitioning algorithms based on

Norton equivalents[36]. Using the diagonally dominant loop criteria directly to decide whether or

not to lump node x2 with x3 amounts to examining a circuit forwhich the elements to the right of x2

and to the left of x3 have been replace with a current source in parallel with a 0.1 ohm resistor to

ground. Using the reduced system partitioning algorithm amounts to using the exactequivalent for

the circuit in Fig. 6.4, that is, to replace the elements to the right of x^and to the left of x3 with their

Norton equivalenta current source in parallel witha 100.1 ohmresistor to ground. Then diagonally

dominant loop test applied to this reduced system indicates that ym a 0.98 , and is identical to the

spectral radius computed above.

Of course, computing the inverse of A is a foolish approach to partitioning if the problem is to

compute a matrix solution by relaxation. It is a useful notionthough, because there are many cases

where reasonable approximations to X, can becomputed easily, as wewill demonstrate in Chapter 7.

Either the diagonally dominant loop or the reduced system criteria are heuristic techniques for

partitioning linear algebraic systems. The nextstep is to lift the techique to an approach for parti

tioning the differential systems of the form of Eqn. (2.2).

Cx(0 - Axit) + uit) x(0) - Xq [6.28]
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where C,A € IR"", C nonsingular, andx(0 e IR". We will startby presenting the waveform equiv

alent of the iteration factor.

Definition 6.4: Let x*:[0,7l -+ IR" be the function generated by the k'h iteration of the WR algorithm

applied to a systemof the form of Eqn. (6.28). Then the WR /. uniform iteration factor, y«* . for

the system is defined as the smallest positive number such that

max[0tr)Ux*+V) - **(0 D. <yIT* max[0J1 ||x*(0 - **~V) L

for any k > 0, any continously differentiable initial guess v°, and any piecewise continuous input

uM

There are two ways to reduce y**. The first discussed in the Section 6.1, is to reduce the

simulation interval [0,71 until y«* is less than one. The second approach is to partition the circuit into

loosely coupled subsystems. A combination of the two techniques is needed to allow for reasonably

large windows and reasonable small partitions.

As mentioned above, it is difficult to estimate y*R directly for a given problem of the form of

Eqn. (6.28). There are the following theorems which relate y*R to iteration factors applied to a

simplified system of equations.

Theorem 6.3: Let y*R be the WR uniform iteration factor for a given system of equations of the form

of Eqn. (6.28) solved on [0,T]. Then in the limit as T-+ «, y*R is bounded below by the spectral

radius of {La +Da)~xUa where LJD& Ua are the strictly lower, diagonal, and strictly upper triangular

portions of A given in Eqn. (6.28).

The.theorem is simple to prove given the following lemma, the proof of which is given in [32].

Lemma 6.2: Let F be any linear map such thatj; « Fxtyt x:[0,«) -* IR". Define >'(j), x(s), Fis) as

the Laplace tranforms ofy, x, and F respectively. Then the spectral radius of the map F, p{F) is equal

to the max, p(F(s))M
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Proof of Theorem 6.3

Let Lc D& Ue be the strictly lower triangular, diagonal, and upper triangular portions of C.

Similarly, let L# Da, Ua be the strictly lower triangular, diagonal, and upper triangular portions of A.

Using this notation, the Gauss-Seidel WR iteration equation applied to solving Eqn. (6.28) is

(Lc + Dc)xk+1(t) + UJck(t) - (La +Da)xk+1(t) + U^it). [6.29]

Define e*(0 - **(0 - x*_1(0. Taking the difference between the k + 1M and k'k iteration of Eqn.

(6.29) yields

{Lc +Dc)ek+1it) + u/it) - iLa +Da)ek+\t) + u/it). [6.30]

Taking the Laplacetransform of Eqn. (6.30) yields,

siLc +Dc)ek+\s) + su/is) - {La +Da)ek+\s) + U^is). [6.31]

Reorganizing, assuming the diagonal elements of C are nonzero,

eM(s) - [s(Le + Dc) +(La +Da)T\sUc + Ua)ekis), [6.32]

from which it can be seen that

Fis) - [s{Lc + Dc) + iLa +Da)]-\sUc + Ua) [6.33]

In particular,

W) - [La + Da]~lUa

which, given Lemma 6.2, proves the theorem.!
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Theorem 6.4: Let yl™ be theWR uniform iteration factor for agiven system of equations of the form

of Eqn. (2.1). Then y*R is isbounded below by the spectral radius of (L, +De)~lUe where L^D^ Uc

are the strictly lower, diagonal, and strictly upper triangular portions of C given in Eqn. (6.28).

Proof of Theorem 6.4

Algebraically reorganizing Eqn. (6.30),

e*+1(0 - -(Lc +Dcr,I/c£*(0 - [635]

(4 +Dc)~\La +Da)tMit) + iLc +Dc)~lu/it).

Integrating Eqn. (6.35) and using the fact that e(0) «=» 0,

e*+1(0 - -(Zfc +Z),)-117/(0 - [636]

f'tft +D^dto +D^+^T)* + f'(Lc +Dc)'lUaek(T)dr.
J o »0 •

Since Eqn. (6.36) holds for all /, it holds as t -> 0, which proves the theorem. •

In Eqn. (6.28), C represents the matrix of linear capacitors, and A is the net circuit currents

generated by conductances. The two theorems above indicate that it is possible to get lower bound

estimates of y"'R by examining circuits where only the capacitances and conductances are independ

ently present These estimates are lower bounds, hence, to decrease y«* below a desired a, it is nec

essary to partition in such a way that the iteration factors for the Gauss-Seidel iteration applied to the

algebraic systems are decreased below a.
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CHAPTER 7 - THE IMPLEMENTATION OF WR IN RELAX2.3

In this Chapter, a description of the implementation of the WR algorithm in the RELAX2.3

program is given. We start with a brief overview of the steps performed in the RELAX2.3 program

when simulating a circuit A detailed description of the major steps is contained in the sections that

follow.

The first step in simulating a circuit using the RELAX2.3 program is to create the circuit de-,

scription file. In this file a user must specify device model parameters, circuit topology, analysis

specifications, and plotting requests. The circuit topology can be described in as hierarchicalor flat

a form as the user desires[60]. This circuit description file is used as an input to the RELAX2.3

program, whose first step is to flatten the hierarchy.

Before applying the WR algorithm, the flattened circuit is decomposed into a collection of

subcircuits. This is done by partitioning the circuit into clusters of tightiy coupled nodes. Then the

elements (e.g. transistors,,resistors, capacitors) that connect to any of the nodes in a given cluster are

gathered together to make the subcircuits. Once the entire circuit has been carved up into subcircuits,

the subcircuits are ordered, or scheduled, starting with subcircuits that are connected to the user-

defined inputs and then following the natural directionality of the circuit (as much as possible).

After a large circuit has been broken up into subcircuits, and these subcircuits have been or

dered, the RELAX2.3 program begins the waveform relaxation process. An initial guess is made for

each of the node voltage waveforms. Then the numerical solution for each of the subcircuits is

computed in the order determined above. The computation is performed using a variable-timestep

trapezoidal rule numerical integration algorithm, with local trunction error timestep control[l]. To

perform the numerical integration, those nodes in the subcircuit that where not part of the cluster

around which the subcircuit was built are treated asexternal time-varying voltage sources. The values

for the external voltage sources are either the initial guess waveforms, or if the subcircuit containing

the external node was simulated previously, that computed waveform. As the node waveforms are
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computed, they replace the existing waveforms (initial guesses or previous iterations), and the process

is repeated until the waveforms converge.

As mentioned in Chapter 6, the WR algorithm becomes inefficient when used to simulate dig

ital circuits with logical feedback(e.g. finite state machines, ring oscillators, etc.) for many cycles,

because the relaxation converges in a very nonuniform manner. For this reason the RELAX2.3

program does not actually perform the relaxation iterations by computing tiie transient behavior of

each subcircuit for the entire user-defined simulation interval Instead, the RELAX2.3 program uses

a modified WR algorithmic7], in which the relaxation is only performed for a small piece of the

user-defined simulation interval at a time. Exactly how large a piece of the waveform, referred to as

a as a window to use is determined automatically, at the beginning of every WR iteration.

If the WR algorithm applied to very large circuits, it is often the case that some pieces of the

circuit will converge much more rapidly than others. This phenomenon, called partial waveform

convergence, canbe exploited to improvethe overall efficiencyof the WR method. The details of the

algorithm for avoidingrecomputing the waveforms that have already converged are given in Section

7.5.

As a final point,in Chapter5 it wasmentionedthatwhen the WR iteration equations are solved

usinga numerical integration algorithm, the resulting discretized WR algorithm is not guaranteed to

converge unless the discretization error is driven to zero with the iterations. For this reason, the

RELAX2.3 program reduces the acceptable local truncation error criteria used for selecting the nu

merical integration timesteps as the iterations in a given window progress.

SECTION 7.1 - PARTITIONING MOS CIRCUITS

As was shown in Section 6.2, the convergence of WR is greatly accelerated if groups of tightly

coupled nodes are solved together as one subsystem or subcircuit For this reason the RELAX2.3

program groups together tightly coupled nodes intosubcircuits before beginning the relaxation proc

ess. The algorithms used in the RELAX2.3 program to partition large MOS circuits is based on Al-
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gorithm 6.2 for partitioning linear algebraic systems, and Theorems 6.3 and 6.4 that relate the

problem of partitioning linear algebraic systems to partitioning linear differential systems.

MOS circuits are not linear, so the ideas presented in Section6.2 must be modifiedif they are

to be applied to nonlinear systems. The RELAX2.3 program uses several conservative heuristics

(conservative in the sense that they tend to error on the side of producing larger than optimal sub-

circuits) to handle the nonlinear MOS transistors. The first heuristic is that each of the MOS tran

sistors is initially treated as a nonlinear resistor between the transistor's source and drain, and the

coupling between the gate and source and gate and drain is considered separately, during scheduling

(See Section 7.2). With this simplification, the following algorithm for partitioning circuits with

two-terminal linear and nonlinear resistances is applied.

Algorithm 7.1 - (Conductance Partitioning)
for each (conductive element in the circuit) {

g3 •«- maximum element conductance over all v.
Remove the element from the circuit
Replace each of the other conductances in the circuit by itsminimum values over all v.
Compute gi and g2,-the Norton Equivalent conductances at the element terminals

If ( — — > o ) | Here, a is the desired WR iteration factor, typically 0.3
(& + &) (&+&)

I

Tie the two terminal nodes together.

Computing the Norton equivalent conductances, Geq, at a node can be performed using a

simple recursive formula if there are noloops of conductances,among only non-voltage source nodes.

Note that this recursion willnot be verydeep. The recursion willstop at any MOS transistor, because

the minimum conductance of the MOS transistor is zero.

Algorithm 7.2 - (Norton Equivalent Conductance for Node i)

Geq *• 0.0
foreach (conductive element incident at node 01

G •*- element conductance

nodej +• the conductive element's other node.
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If (nodej is a voltage source node) {
Geq -•» Geq + G

}
else {

Geqj+- Norton equivalent conductance at nodej with this element removed.
Geq +- Geq + (G x Geqj)/(G + Geqj)

}
}

If the circuitdoes contain conductance loops amongonly non-voltage source nodes, the above algo

rithm can still be used if the recursion is truncated in such a way that no circuit node is visited twice.

In this case, only an estimate of the Norton equivalent will be computed.

The conductance partitioning algorithm is justified by Theorem 6.3, that the WR iteration

factor is bounded below by the iteration factor for solvingjust the algebraic portionof the problem.

Theorem6.4 suggests that an analogous algorithm to Algorithm 7.1 be constructed forthe capacitive

elements in the circuit Since the capacitance problemis almostidenticalin nature to the conductance

problem, a capacitance partitioning algorithm canfollow almost the same strategy asthe conductance

partitioning. The difference is thatinstead of comparing floating capacitances to Norton equivalent

conductances, they arecompared to equivalent capacitances. These equivalentcapacitances are en

tirely analogous to the equivalent conductances, and can be computed using the same recursive ap

proach as in Algorithm 7.2.

The RELAX2.3 program uses both conductance and capacitive partitioning, and forms sub-

circuits from the union of the two results. The algorithm hasbeen applied to a wide varietyof MOS

digital circuits, including a large VHSIC memory circuit with 2900 nodes and over 3500 parasitic

components. The results have always matched the-best attempts at hand partitioning, in as many in

stances as we had the patience to check. However, it is likely thatif the method is applied to larger

problems, the subcircuits produced may become quite large. Should this be the case, the present

simple algorithm could beextended, sothat an additional pass ismade over only the excessively large

subcircuits, to subpartitioning them using more sophisticated algorithms. In particular, to use better
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estimates of the equivalent conductances and capacitances, as the present algorithm maybe unnec

essarily conservative.

SECTION 7.2 - ORDERING THE SUBSYSTEM COMPUTATION

When applying the Gauss-Seidel WR algorithm to a decomposed system of differential

equations, the order in which the equations are solved can strongly effect the number of WR iter

ations required to achieve satisfactory convergence. In order to explain this effect, consider the case

where thereare only grounded two-terminal capacitors foreach node of the circuit Thus, the matrix

C(xtu) of Eqn. (2.2) is diagonal. Then let the dependency matrix of /in Eqn. (2.2) be defined as a

zero-one matrix P - [ptJ] such that/>iy - 1if f, depends onxJt pfJ - 0 otherwise. Note that Palso

represents the zero-nonzero structure of the Jacobianoff.

If P is lower triangular, then one iteration of the Gauss-Seidel WR algorithm will produce the

exact solution to the original differential equation system (in practice, two iterations will be per

formed because a second iteration is needed to verify that convergence has been achieved). If P is

notlower triangular, butthe dependence of the ft component of/on xp i < j, is "weak", then the

result of one iteration of the Gauss-SeidelWR algorithm will be close to the exact solution, and sub

sequent iterations will converge rapidly. For this reason, when applying relaxation techniques to the

solution of circuit equations, the technique can be made much more efficient by reordering the

equations to make P as close to a lower triangularmatrix as possible.

As discussed in Section 6.2, subsets of nodes in a large circuit may be mutually tightly coupled,

and in order to insure that the relaxationalgorithmconverges rapidly when applied to such a circuit,

these subsets aregrouped together into subcircuits and solved with direct methods. This corresponds

to block relaxation method, and an ordering algorithm applied to a system being sblved with block

relaxation should attempt to make/as block lowertriangular as possible.

In some sense, partitioning and ordering the subsystem of equations are performing similar

functions. They are both attempting to eliminate slow relaxation convergence due to two nodes in a
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large circuit being tightly coupled. There is, however, a key difference. If, for example, xt is strongly

dependent on xjandxjis strongly dependent onx,, thena partitioning algorithm should lumpthe two

nodestogether into one subcircuit However, if xt is strongly dependent on xJt but x, is weakly de

pendent on xt then node i and node j should not be lumped together, but the ordering algorithm

shouldinsurethat the system is block lowertriangular by ordering the equations so that*, is computed

before computing x(.

Resistors and capacitors do not exhibit the kind of unidirectional coupling that is of concern

to the ordering algorithm. In fact, the only element type of concern to the ordering algorithm are

transistors, because they exhibit unidirectional coupling. That is, the drain and source terminals of

an MOS transistor are strongly dependent on the gate terminalof the transistor,but the gate is almost

independent of the drain and source. Clearly, this implies that the subcircuits containing the given

transistor's drain or source should be analyzed after the subcircuit containing the given transistor's

gate.

To devise an algorithm to carryout this task, it is convenient to introduce the dependency graph

of the partitionedcircuit If we represent the circuitwith a directedgraph G(Xt E), where the set of

nodes, AT, is in one-to-one correspondence with the subcircuitsobtained by a partitioner, and where

there is a directed edge between the node corresponding to subcircuit i and the node corresponding

to subcircuit / if there is a transistor whose gate is in subcircuit i and whose drain or source is in sub-

circuit j. IS the graph is acyclic, it can be levelized, i.e. all the nodes can be ordered in levels so that

a node in level i can have incoming edges only from nodes in levels lower than i. The ordering so

obtained is the one used by RELAX2.3 to process the subcircuits.

However, there may be caseswhere cyclesexist in the graph. In this case,either the subcircuit

defintions are changed by grouping two or moresubcircuits together, effectively performing partof

the partitioning task(As aluded to in Section7.1), or edgesof the graph are discarded to remove the

cycles. In eithercase, at the end of this process an acyclic graph and an ordering of the subcircuits

corresponding to the leveling of the (perhaps altered) graph is obtained.
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One question remains, which iswhen to repartition to remove a feedback loop versus breaking

the loop. As the example Section 6.1 indicates, if signal propagation around the feedback loop is fast

compared to the size of the window, the relaxation convergence will be slow and nonuniform.. For

this reason, the ordering algorithm makes the decision about partitioning based on anestimate of the

delay around the feedback loop. If it issmaller than one percent(somewhat arbitrarily chosen) of the

simulation interval, the feedback loop is removed by repartitioning. If the delay is larger, then the

feedback loop is broken by removing an edge from the directedgraph.

Algorithm 7.3 - (Relax2.3 Subcircuit Ordering Algorithm)
Initialization.

ordered list = NULL;
unordered list» List of subcircuits from the partitioner;
Main Loop.
while (unordered__Iist 9* NULL) {

none ordered «= FALSE;
while (none ordered =« FALSE) {

none ordered —= TRUE;
for each (subcircuit in the unordered list) {

if (all subcircuitson incomingarcs areon ordered list) {
none ordered •» FALSE;
append to end of ordered list(subcircuit);
delete from unordered list(subcircuit);

1
}

}
if (unorder list *& NULL) {Must bea feedback loop.

found loop - FALSE;
depth - 1;
while (found loop «*= FALSE) f

depth <= depth + 1;
for each ( subcircuit in the unordered list) \

if (there exists a loop of length » depth) {
found__loop = TRUE;
if (delay aroundthe loop > 0.01 * the simulation interval) {

break the loop
I
else 1

collapse loop into one subcircuit

I

}
$
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SECTION 7.3 - COMPUTATION OF THE SUBSYSTEM WAVEFORMS

As in standard circuit simulators, the RELAX2.3 program solves Eqn. (4.4) using a numerical

integration method with varying timesteps. Since the major aim of the RELAX2.3 program is to

simulate digital circuits, the integration method was chosen based on how effectively it solves prob

lems with the properties of digital circuits. Digital circuits are very stiff, therefore only A-stable in

tegration methods were considered. In addition, digital circuits contain very rapid transitions, and low

order one-step integration methods are usually suggested for such problems. Although the

Backward-Euler method is computationally the simplest A-stable one-step method, the trapezoidal

rule, an A-stable second-order one-step method, waschosen instead because of its better accuracy.

There is a second important reason for chosing the trapezoidal integration algorithm over the

implicit-Euler fonnula. If the WR algorithm is used to solve the system, and anumerical integration

method is used to solve the WR iteration equations, then the upper bound on the timestep to guar

antee WR convergence (see Chapter 5) is a function of the integration method. This timestep con

straint is larger for the trapezoidal rule than for implicit-Euler. Toshow this, consider the simple case

of the WRalgorithm applied toEqn. (2.2) with C(v,m) - /, that is assume all the capacitors are lin

ear,grounded andunity. The WR iteration equations become

v*+1 - v* +/(v*+1, v\u). [7.1]

where / is as defined in Section 4.2. Now consider computing the first time step of the implicit-Euler

discretized WR algorithm:

v*+1(/0 - vq - (vk(h) - vq) + f(vM(n +1), vk(n +1), u). [7.2]

Applying the trapezoidal rule yields:
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v*+1(/r) - vfc - (v*(A)-v0) + Q.5hf(vk+\n + l), vk(n + l),u) + 0.5hfiv0,u). [7.3]

The reason for the relaxation iteration is to resolve /(v*+,(« + 1). v*(« + 1), u) , and it plays a

smaller role in Eqn. (7.3) than in Eqn. (7.2), and therefore the iteration of Eqa (7.3) will achieve

and given convergence threshold faster.

Given a timestep h, the trapezoidal integrationmethod applied to Eqn. (4.4) yields:

q« + h) - qit) - 0.5hifiqit + h),u) + fiqit\u)) - 0 [7.4]

The above equation is a nonlinear algebraic equation in q. The user is usually more interested

in the voltage, so before solving Eqa (7.4) we substitute for q in terms of v.

q(v(t + h)) - q(v(t)) - 0.5h[fivit + h)tu) + /(v(/), u) ] - 0 [7.5]

In Eqa (7.5) v(t) and q{t) are known, and the equation must be solved to compute v(r+ h).

Nonlinear algebraic systems generated by integration methods are usually solved using the iterative

Newton-Raphson method. This is because Newton methods have quadratic convergence properties

and because they are guaranteed to converge if the initial guess is close enough to the correct solution.

The general Newton-Raphson iteration equation to solve Fix) - 0 is

Jf{xk)ixk-xk-1) F(x*-!) [7.6]

where JF is the jacobian of F with respect to x. The iterationis continued until [| jc* - jc*-1 [1 < e and

Fix) is close enough to 0. If the Newton algorithm is used to solve Eqa (7.5) for v(r + h), the resi

due, F(v*(/ + A)), is:

Fivkit + h)) - qivkit +h)) - qivit)) - O.Shi f(vkit + h)tu) +/W0,u) > U^

and the Jacobian of Fi^it + A)), Jfi^it + h)) is:



k k , dfiv it + A), u)Jj<vkit +h)) - dvkit +h)tu) +0.5A Kdv

Then v*+,(f+ A) is derived from v*(r + A) by solving the linear system of equations:

..ft+i/*(/(/"+«)[/+1(f +A) - v*(f + A)] = -F(v*(/ + A))
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[7.8]

The Newton iteration is continued until sufficient convergence is achieved, that is

||v*+,('+ A) - v*(f+ A)0 < e and F(v*(r+ A)) is close enough to zero.

Each iteration of the Newton algorithm requires a function evaluation, a Jacobian evaluation,

and a matrix solution. For the algebraic systems generated by the numerical integration of MOS

digital circuits it is often inefficient to evaluate the Jacobian every Newton iteratioa If the Jacobian

is reevaluated only every few Newton iterations[27], the number of iterations required to achieve

convergence is usually unchanged and the computation required is significantiy reduced. Not only

are Jacobian evaluations skipped, but if the matrix solution is computed by LU factorization[40],

subsequent matrix solutions using the same matrix can skip the LU factorization step. In the

RELAX2.3 program the Jacobian isevaluated every third iteratioa thischoice based onexperimental

evidence in several examples given in the table below.

TABLE 7.1 - CPU TIME VS # OF NEWTON ITERATIONS/JACOBIAN EVALUATION

Circuit Devices 1 2 3 4

Ring Osc.
Oper. Amp
flip-flop
Cmos Memory

7

25

33

621

0.95s

6.28s

20.47s

1080s

0.77s

5.2s

16.82s

976s

0.71s

4.52s

13.93s

885s

0.75s

4.67s

13.67s

886s

On Vaxl 1/780 running Unix

The integration method used inthe SPICE2 program isvery similar to the direct method used

in RELAX2.3. Both use the trapezoidal integration formula with local truncation error timestep

control, the Newton methodto solvethe algebraic system, andsparse LU factorization to perform the

matrix solution. However, as can be seen from Table 7.2, the RELAX2.3 program, using the direct
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method described above, is eightto twentytimes faster than the SPICE2 program. This can be at

tributed to many factors. The first is that RELAX2.3 is written in "C", SPICE2 is inFORTRAN,

and "C" programs under the UNIX operating system run almost a factor of two times faster than

FORTRAN programs. The other factor of four to ten is due to more sophisticated programming

techniques, the more efficent equation formulation and the modified Newton method mentioned

above, and better numerical integration error control.

TABLE 7.2 - RELAX23 (DIRECT) VS SPICE ON INDUSTRIAL CIRCUITS

Circuit Devices SPICE2 RELAX2.3 Ratio

Ring Osc 7 17s 0.75s 22

Op-amp 25 42s 5s 8

uP Control 232 1400s 90s 15

Cmos Memory 621 10400s 995s 10

4-bit Counter 259 4300s 540s . 8

Encode-Decode 1326 115,840s 5000s 23

On Vaxl 1/780 running Unix

It should be pointed out that without a fundamentally new circuit simulation method, just by

carefully exploiting some very general properties of MOSdigital circuits, almost an order of magni

tude decrease in computationtime hasbeen achieved over the much more general SPICE2 program.

SECTION 7.4 - WINDOWSIZE DETERMINATION

As mentioned in Section 6.2, the WR algorithm used in RELAX2.3 becomes inefficient when

used to simulate digital circuits with logical feedback(e.g. finite state machines, ringoscillators, etc.)

for many cycles. However, the WR algorithm canstillbe very efficient if the relaxation is only per

formedon a piece of the waveform to be computedat a time. Forgeneral circuits, an idealsituation

would be to break the simulation interval into windows over which every time point of the iteration

waveform moves closer to the correct solutioa However, if the windows are too small some of the

advantagesof waveform relaxation are lost One cannot take advantage of a digital circuit's natural

latency over the entire waveform, but only in that window; the scheduling overhead increases when
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the windows become smaller, as each circuit lump must be scheduled once for each window; and if

the windows are made very small, timesteps chosen to calculate the waveforms will be limited by the

window size rather than by the discretization error, and unnecessarycalculationswill be performed.

Rather than use a conservative a priori lower bound asgiven in Theorem 6.2, in the RELAX2.3

program, the "windowsize" is determined dynamically, by two criteria. The first criterion is to pick

the windowsize to limit the number of timepoints required to represent each node waveform in a

window. This puts a strict upper bound on the amount of storage needed for the waveforms, and thus

allowsthe RELAX2.3 program to avoiddynamically managing waveform storagespace. The second

criterion is to try to pick the windowsize so that the convergenceof the WR is rapid, in particular, that

the waveforms approach the correct solution in a uniform manner over the entire window. The

RELAX2.3 program presently uses the following windowsize determinationalgorithm:
s

Algorithm 7.4 (RELAX2.3 Windowing Algorithm)

starttime » Beginning of the window
stoptime - End of the window
endtime •» End of user-defined simulation interval
usedpts —Max. # ofpoints usedin the last window
maxpts = Max. # ofpoints in a waveform buffer
prevwindow « Size of the windowused in theprevious iteration
If ( Not entirely converged in this window) then {

if (usedpts > maxpts) then {
Shorten window if the waveforms overran storagebuffers.
stoptime- starttime + (prevwindow * maxpts * 0.7)/usedpts;

I
else if ( (numiters mod 5) «« 0) then {Half windowsize everyfive WR iterations.

stoptime » prevwindow/2 + starttime;
I
else {Else just do the same windowagain.

stoptime «= starttime + prevwindow;
I

I
else |

starttime «= stoptime;
stoptime » starttime + (prevwindow * maxpts * 0.7)/usedpts;

I
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At present, one twentieth of the simulation interval is being used as an initial guess for the

windowsize. Addinga simple critical path analyzer to RELAX2.3 is beingconsidering to provide a

better initial guess.

SECTION 7.5 - PARTIAL WAVEFORM CONVERGENCE

If the WR algorithm is used to compute the time domain behavior for very large circuits, it is

often the case that some pieces of the circuit will converge much more rapidly than others. The

overall efficiency of the WR method canbe improved if the waveforms that have already converged

are not recomputed every subsequent iteratioa

To take advantage of partial waveform convergence requires a simple modification to Algo

rithm 4.1. Before giving the exact algorithm we present the following useful definition.

Definition 7.1: Let

2<yv(l)f «(/)) v,(/) - /)<v(0, i/(/)) v'(0) - Vfl [7.9]

be the r* equation of the system in Eqn. (2.2). We sayv,(f) is aninputto thisequation if there exists

some a, / e IR and zy e IR" such that X C,Xz, uit))y. # X CJz + aep u{t))yj or
Jm\ J * Jml ' '

ffe, i/(0) ^ /(* + oep t/(0), where e,is the/* unitvector. The input set for the ?* equation is the set

of j € [1,..., n]suchthat vy(0 is aninput•.

The WR algorithm is then modified slightly using this notion of the set of inputs to a given

ODE.

Algorithm 7.5 - WR Algorithm with Partial Waveform Convergence

The superscript k denotes the iteration count, the subscript i denotes the component index of a
vector and e is a smallpositive number, k <*- 0
guess waveform *°(0 ; t e [0,71such that ^°(0) «= x0

(for example, setx°it) = Xq, t e [0,7] )
repeat{

k-k + 1

foreach ( i in AO {
Partialflag - TRUE



if(* - 1) Partialflag - FALSE
For each ( j < i, j e input set of v,)

if (max^rj j| v* - v)'1 \ >e)Partialflag • FALSE
For each (j > i,/ € input set of v,)

if (maxpj, jv*-1 - v*"21 > e)Partialflag = FALSE
if (Partialflag - 7Kt/£) tf+1 - v*
else solve

iiC//vf,...,^,^V,...,»5j-,,«/)vf +
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^ C„(vf,.... tf, vf+i»,.... vi-\ t/)vf-» +

/Of *vkV".tf-,.«) -o

for ( tf(0 ; t € [0,7]), with the initial condition vf(0) « v^

I
}until (maxls/sn max,,^Iyf(0 - tf'KO I £ *)

/Aa/ w, un//7 the iteration converges.
U

SECTION 7.6 - EXPERIMENTAL RESULTS

The degree to which the WR algorithm improves circuitsimulation efficiency can be traced to

two properties of a circuit The first, mentioned before, is the differences in the rates of change of

voltages in the system, as thiswill determine howmuch efficiency isgained by solving thesubsystems

with independent integration timesteps. The second is the amount of coupling between the subsys

tems. If the subsystems are tightly coupled, then many relaxation iterations will be required to

achieve convergence, and the advantage gained bysolving eachsubsystem with itsowntimestep will

be lost To showthis interaction for a practical example, we will use the Relax2.3[13] program to

compare the computation time required to simulate a 141-node CMOS memory circuit using standard

directmethods and using the WR algorithm. In orderto demonstrate the effectof tighter coupling,

the CMOS memory circuit will be simulated using several values of a parameter XQC, which is the

percent of the gate oxide capacitance that is considered as gate-drain or gate-source overlap

capacitance.
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TABLE 73 - DIRECT VS WR ON A MEMORY CIRCUIT WITH DIFFERENT COUPLINGS

METHOD XQC TIMEPOINTS # WR ITERS CPU TIME

Direct

WR

0.01

0.01

124,539
17,728

1

2.5

933s

304s

Direct

WR

0.05

0.05

122,988
19,199

1

3

945s

410s

Direct

WR

0.2

0.2

118,335

19,193
1

4

917s

530s

Direct

WR

0.33

0.33

115,233
19,315

1

6.5

895s

707s

The results in Table 7.3 are exactly asexpected. As the coupling increases, the number of WR

iterations required increases, andthe difference in the simulation time forWR andthe direct method

decreases.

It is possible to verify, forthisexample, ourclaim of the nature of the efficiencies of using WR.

Consider the number of timepoints computedby the directmethod versus the numberof computed

timepoints for the WR method in the final iteration. By comparing these two numbers, a bound can

be put on the maximum speed increase that can achieved by solving different subsystems using dif

ferent timesteps (Note that we are only considering the number of timepointscomputed by the WR

method in the final iteration, because we are only interested in the number of timepoints needed to

accurately represent the given waveform).

The total number of timepoints computed for each of the simulation cases of the memory cir

cuit example is alsogiven in Table 7.3. This number is the sum of the computed timepoints over all

the waveforms in the circuit If most of the efficency of a decomposition method steins from solving

each of the subsystems with its own timestep, then the maximum improvement that could be gained

from a decomposition integration method would be the ratio of the number of timepoints computed

using the direct method compared to the number of timepoints computed in the final WR iteration.

As can be seen from the Table 7.3, for the CMOS memory example this ratio is approximately six.

In order to compute the actual efficiency of the WR method, the average number of WR iterations
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performed must be considered, because for each WR iteration, the set of timepoints is recomputed.

Then, if our claims above are correct, when the ratio of the number of timepoints for the direct

method to the number of WR timepoints is divided into the average number of relaxationiterations,

the result should be almost equal to the ratio of WR computation time to direct computation time.

And as Table 7.3 shows, it is.

In the above analysis we have ignoredan important advantage of relaxation methods: that they

avoid large matrix solutions. This is a reasonable assumption for the above example because the

matrixoperations account for only a smallpercentage of the computations, even when directmethods

are used. However, for much larger problems, of the order of several thousand nodes, the time to

perform the large matrix solutions required by direct methods will dominate. In those cases WR

methods shouldcompare even more favorably because they avoid these large matrixsolutions.

Finally, in Table 7.4, we presentseveral circuits that have been simulated using RELAX2.3

with direct and WR methods.

TABLE 7.4 - DIRECT METHODS VS WR FOR SEVERAL INDUSTRIAL CIRCUITS

Circuit Devices DIRECT WR

uP Control 232 90s* 45s*

Cmos Memory 621 995s* 308s*

4-bit Counter 259 540s* 299s*

Inverter Chain 250 98s** 38s**

Digital Filter 1082 1800s* 520s*

Encode-Decode 3295 5000s* 1500s*

VHSIC Memory 625 17174s** 12505s**

•On Vaxl 1/780 running Unix usingShichman-Hodges Mosfet model
**On Vaxl 1/780 running VMS using Yang-Chatterjee Mosfet model
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CHAPTER 8 - PARALLEL WR ALGORITHMS

Exploiting parallel computation for circuit simulation is extremely important because the size

of the circuits for which circuit simulation has been applied has grown at rate that far exceeds the

increase in computational powerdue to technological improvement The onlyway to keep pace with

the increasing demand is to be able to apply many processors to the problem, and the number of

processors that can be used must scaleup with the size of the problem.

A variety of techniques for the parallel solution of ordinary differential equations have been

examined in the Iiterature[63]. For circuit simulation, four techniques have been applied. The

SPICE2 program was rewritten to take advantage of the Cray Computer vector capability[48]; a

parallel version of a similar direct method has been implemented on the Cosmic-Cube, a message-

passing based parallelcomputer; the Gauss-Jacobi form of the algebraic relaxation-Newton algorithm

presented in Section 3.2 has been implemented on both a shared-memory computer, the Sequent

Balance 3000[64], and ITM's Connection Machine[65]; and a version of the Iterated Timing Analysis

algorithm (Section 3.2) has been implemented on the BBN Butterfly[34].

In this chapter, the implementation of two WR-based parallel circuit simulation algorithms on

a shared memory computer will be described. We will start by presenting a brief overview of the as

pects of a shared-memory computer that effect the algorithm implementation, and then describe the

two parallelWR algorithms, one based on using a mixture of Gauss-Seidel and Gauss-Jacobi relaxa

tion, and the other based on pipelining the waveform computation. For each algorithm, experimental

results will be presented.

SECTION 8.1 - A BRIEF OVERVIEW OF THE SHARED MEMORY COMPUTER

When attempting to write efficient programs for serial computers, knowledge about the specific

details of the architecture is useful, but not essential. This is not the case for programming on a par

allel computer. Specific details about the architecture can influence decisions about the implemen-
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tation of an algorithm, and can even effect the choice of algorithm. Since the algorithms that will be

described below were implemented on the Sequent Balance 8000, a shared-memory parallel com

puter, in this section we willdescribe those aspects of the architecture that effected the implementa

tion of parallel versions of theWR algorithm. For amore detailed treatment of this subject see[56].

The key problem in designing a parallel processor is that of communication between the

processors. One simple approach is to design a parallel computer by gathering together many stand

ard serial computers, and connecting them together with a comunication network. Usually such

computers are referred to as message-passing parallel computers, because data is tranferred between

themany processors by passing messages on the communication network. The disadvantage of such

a system is that in order to move data from the memory of one processor into the memory of the

second processor, boththe transmitting andreceiving processors mustbe involved.

Another approach to the problem of communicating between parallel processors is to redesign

thememory system, so thatthe aggregate memory of all the processors isdirectly addressable by any

oneof theindividual processors. Such asystem is referred to as ashared-memory system because the

processors are all sharing thesingle resource, the memory. The main advantages of ashared-memory

machine is that it is not necessary to explicitiy transfer data from one processor to another. When a

processor needs data from another processor, it simply reads from the memory locations inwhich the

other processor has written. This also allows for more dynamic algorithm structures, because it isnot

necessary todetermine beforehand which processors will need the results of agiven calculation. The

disadvantages of the shared-memory computer are that all processors must contend for asingle re

source, the memory, and guaranteed syncronization between processors is not simple without

special-purpose hardware.

Oneof the most important aspects of a shared-memory parallel computer is how the memory

isdistributed among the individual processors. There are fundamentally only twochoices, either each

processor has a portion of the shared memory which it can access rapidly, and that others can access
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but not as quickly, or all the memory is centralized, and the many processors contend on an equal

footing for access to it

If the memoryisdistributed among the process6rs, then a parallel algorithm will perform better

if the data for the computationcanbe partitioned so that each processor performs computations using

only the data in its own portion of the shared memory. It is usually the case that by partitioning the

data, so that each of the processors can only work on an exclusive portion of a large problem, some

of the parallelism of a givenalgorithm willno longer be exploitable andparallel efficiency willbe lost

For example, if at a certain point in the process of solving a large problem, several calculations that

could be performed concurrently all require data from the same partition, those calculations will be

performedserially. If simultaneously, there are no calculations to be performedusing data from an

other partition, a processor will be idle.

A way of eliminating the loss of parallelism at the cost of complicating the control structure of

the program is to have each processoruse a priority scheme. In such a scheme, each processorat

tempts to perform calculations using data in its own partition, and then if there are none to be per

formed, the processorwill atttempt to perform calculations using data from other partitions.

Clearly, when using a shared-memory computer with distributed memory, the trade-offs of

faster memory access, loss of parallelism, and more complicated control structure must be examined

carefulry(For an example for the caseof circuitsimulationsee[34]).

The memory on the parallelcomputer used for parallelWR experiments is centralized, where

all the processors contend for one large shared memory. For such an architecture, there is no ad

vantage to partitioning the data for a large problem among the processors, as they will still have to

contend for the same centralized memory pool. For this reason, the algorithms presented below ig

nore the issue of partitioning the data among many processors.

In order to avoid the obvious bottleneck created by having many processors contend for data

out of the same central memory, most implementations of shared-memory computers that use cen

tralized memory attempt to reduce this contention by including a large cache memory with each of
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the processors. As with any cache memoryscheme, these caches attempt to exploit locality of refer

ence, that it willusually be the case thateachof the processors are actively using onlyasmall amount

of data. Since this data will probably be available from the cache, for mostmemory accesses it will

not be necessary to generate a request to the main central memory.

Using caches on a parallel computer is not asstraight-forward ason a serial computer. Since

there are manycaches, andthey are all supposed to contain acopyof the data in the central memory,

and any processor can write in anymemory location, it ispossible for the caches to loose consistency.

By this it is meant that the contents of a cache may not reflect the current contents of the central

memory. For example, if thecontents of memory location A is inboth thecache for processor 1and

the cache for processor 2, and processor 1updates A, then thedata in the cache for processor 2 will

be incorrect

As the example demonstrates, even if the central memory is updated whenever a processor

updates a location contained in its cache, a cache inconsistency can occur within a cache of another

processor. There are avariety of schemes for avoiding this problem[62], but we will only mention the

technique applied in the computer used for experimentation. The scheme is simple, all the caches

monitor all the writes to central memory from any of the processors. If a cache contains a location

being written toby any of the other processors, it updates its own copy of the data inthe given lo-

catioa Bysnooping inon the writes to central memory, each cache assures that it has the most cur

rent data.

The snooping cache consistency strategy has aparticularly useful implication. It is frequently

necessary tohave one processor wait for another processor to finish acomputation. If the computing

processor is tochange alocation in memory when finished, the second processor can continously test

that location to determine when the computing processor is finished. Normally, this is a poor ap

proach for a parallel environment, because the waiting processor will be continuously reading from

the central memory and generating excess memory traffic. If many processors are waiting for the

completion of one processor's computation, this excess traffic can become enormous, and slow the
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computing processor which will have to contend with the excess traffic. If the. cache architecture

described above is used, the excess traffic is eliminated. Each waiting processor willkeep rereading

a location which will be in its own cache, and will therefore not be generating any central memory

traffic When thecomputing processor finishes, each of theother processor caches will spot thewrite

to the monitored location in central memory and each cache will update its own copy of the data.

The waiting processors will therefore bemade immediately aware of thecompletion of thecomputing

processor, but will not have impeded the progress of the computing processor by generating excess

memory traffic.

The last aspect of the parallel computer architecture that we will consider is that of mutual

exclusion or locking. Inalmost all parallel programs there are critical sections thatmustbe performed

serially, that is, only one processor should be executing the section at a time. The usual mechanism

for insuring this is the test-and-set instruction. If a processor executes a test-and-set instruction on a

given location in memory, the contents of the location is returned to the processor and simultane

ously, if the location was not set, it is set

The mechanism canbe used to perform locking as follows. A particular location in memory is

used as the lock. If a processor is about to execute a critical section of a parallel program, it firstex

ecutes a test-and-set on the lock location. If the result indicates that the location was not set, then

the processor can safelyexecute the critical section, and clear the lock location when finished. If the

result indicates that the lock was already set, the processor must wait until until the lock becomes

clear and then retry the test-and-set

SECTION 8.2 - A MIXED GAUSS-SEIDEL/JACOBI PARALLEL WR ALGORTIHM

An obvious way of parallelizing WR is to use the Gauss-Jacobi version of WR. In this algo

rithm, the relaxation makes use of the waveforms computed at the previous iteration for all the sub

systems. In this case, all the subsystems can be analyzed independently by different processors. One

of the difficulties in applying this algorithm is that MOS digital circuits are highly directional, and, as
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mentioned in Section 7.2, if this directionality is not exploited slow convergence may result For ex

ample, consider applying WR to compute the transient response of a chain of inverters. If the first

inverter's output is computed first, and the result is used to compute the second inverter's output,

which is then used for the third inverter, etc., the resulting waveforms for this first iteration of the

WR algorithm will be very close to the correct solutioa However, if the second and third inverter

outputs are computed in parallel with the first inverter's output, the results will not be close to the

correctsolution because no reasonable guess forthe second andthirdinverterinputswillbe available.

For this reason, after partitioning, the RELAX2.3 program orders the subcircuits so that the

directionality of the circuit is followed as closely as possible.

Following a strict ordering of the relaxation computation (Gauss-Seidel) does not allow for

computing entire waveforms in parallel, and computing the next iteration waveforms for every sub-

circuit at once (Gauss-Jacobi) allows for substantial parallelism, but is not very efficient (converges

more slowly). In order to preserve the efficiency of the Gauss-Seidel algorithm and allow for some

of theparallelism of Gauss-Jacobi, amixed approach can beemployed. The muted approach isbased

on the observation that large digital circuits contain manysubsystems thatcanbe computed in parallel

without slowing the convergence. This is because large digital circuits tend to be wide. Rather than

being like along chain of gates, theyare like many parallel chains, with some interaction between the

chains. For this reason, it ispossible toorder the computation so that subcircuits in parallel "chains"

can be computed inparallel, but the serial dependence inside achain ispreserved. This will notallow

for as much parallelism as theGauss-Jacobi scheme, butshould preserve most of the efficiency of the

Gauss-Seidel scheme.

In Algorithm 8.1, we present a probabilistic approach to attempting to follow the ordering of

the subcircuits. The algorithm is setupby establishing boththe space in shared memory for storage

of the iteration waveforms, andabufferorqueue withthe listof subcircuits in the order derived from

Algorithm 7.3. Each of the processors then begins by taking asubcircuit from the queue and then

computing the subcircuits output waveforms using the newest available external waveforms. When
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the waveform computation is completed, the subcircuit is temporarily discarded and and the processor

takes a next subcircuit off the queue. This continues until the queue is exhausted and all the

processors are finished. Then queue is reset, and the processors all start picking up subcircuits again.

This algorithm is probabilistic in the sense that there is no guarantee that the transient com

putation for agiven subcircuit will be finished before its output is needed by another subcircuit who

is strongly serially dependent on the first subcircuit's output It is likely that the given subcircuit's

output will have been computed ifthe circuit is very wide (there are alarge number ofparallel chains)

compared to the number of processors. In additioa since all the subcircuit outputs must be computed

before any subcircuit's output is recomputed, no subcircuit will be more than one iteration behind.

Algorithm 8.1 - (Jacobi/Seidel based Parallel WR)
Initialization. Both subcircuits and waveforms in shared-memory.
queue = ordered list of subcircuits
while ( all converged -« FALSE) {Parallel iteration loop. Allprocessors execute.

If ( processor ~ 1) {
reset queue()
idle count •» 0

}
while (idle count &number of processors) I

while (test-and-set(queuelock) — set) { Tight loop waiting forqueue to unlock. }
Queue is locked, get nextsubcircuit
NextSub - Get__next__queue entryO
if(NextSub-»NULL){

increment(idle count)
clear(queuelock)

I
else { There is anothersubcircuit on the queue.

clear(queuelock)
Compute Subcircuit Waveforms(NextSub)
Check Waveform Convergence(NextSub)

\
i

m

Note that the attributes of the parallel architecture have been considered in Algorithm 8.1.

Since the machine is a centralized shared-memory machine, the data describing the subcircuits and

thecomputed waveforms are left in shared memory, to be accessed as needed. Also note that each

of the processors waits for the queue to be free by examining the lock variable in a tight loop. As
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mentioned above, this exploits the nature of the cache consistency strategy. Finally, inthis case it is

not necessary to separately control access to the waveforms. Since the waveforms will only be written

as aresult of the computations perform on their associated subcircuits, and awaveform is associated

with only one subcircuit(This would not be the case ifan overlapped relaxation algorithm were used)

themutual exclusion of the subcircuit queue willl prevent waveform writes from colliding.

SECTION 8.3 - TIMEPOINT-PIPELINING WR ALGORITHM

It is possible to parallelize the WR algorithm while still preserving a strict ordering of the

computation of the subcircuit waveforms (Gauss-Seidel), by pipelining the waveform computation.

In this approach, one processor starts computing the transient response for asubcircuit Once afirst

timepoint is generated, asecond processor begins computing the first timepoint for the second sub-

circuit, while the first processor computes the second timepoint for the first subcircuit On the next

step athird processor is introduced, to compute the first timepoint for the third subcircuit, and so on.

Conceptually, the operations ofagiven processor in aparallel timepoint pipelining algorithm

are quite simple. The algorithm is set up by establishing both the space in shared memory for storage

of the iteration waveforms, and abuffer orqueue with the list of subcircuits. Each of the processors

then starts by taking asubcircuit from the queue. The individual processors examine their respective

subcircuit's external waveforms tosee if the waveform values needed tocompute the next integration

timestep are available. If so, the next timestep for the subcircuit is computed. Otherwise, the sub-

circuit is returned to the queue and the processor trys again with another subcircuit from the queue.

As timepoints are computed, more of the subcircuits will have the information needed to compute

their own timepoints.

As one might expect, a practical timepoint pipelining algorithm is more complicated that the

conceptual algorithm. Perhaps the most obvious difficulty is that there is atremendous overhead in

having every processor search through all the subcircuits to find one of the few for which atimepoint
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canbe computed. It ispossible to reduce thenumber of candidate subcircuits a processor mustsearch

by only considering those subcircuits for which at least one of the external waveforms has more

timepoints than it had when the subcircuit was last processed. Clearly, this will avoid having the

processors continuously rechecking subcircuits for which no new information is available, and there

fore no new timestep could be computed.

This kind of selective search algorithm can be implemented by altering the way the queue of

subcircuits is used. When a processor discerns that it is not possible to compute a new timepoint for

a subcircuit, instead of returningthe subcircuit to the queue, the subcircuit is temporarily discarded.

If a processor succeeds in computing atimepoint for asubcircuit, those subcircuits that are connected

to the givensubcircuit, referred to asthe fanouts of the subcircuit, areadded to the queue (Of course,

any of the fanoutsthat arealready on the queue are not duplicated). In this way, the only subcircuits

that will be on the queue are those for which it is likely that the waveform values needed to compute

a next timepoint will be available.

Another aspect of the timepoint pipelining algorithm that increases the exploitable parallelism

at the cost of slightly complicating the algorithm is to allow the timepoint pipelining to extend across

iteration boundaries. For example, consider a chain of two inverters, and assume that it takes two

timesteps to compute each of the inverteroutputs. As before, the second timestep of the first inverter

can be computed in parallelwith the computation of the first timestep of the second inverter. Then,

while the second timestep of the the second inverter is being computed, there is enough information

to compute the first timestep of the first inverter for the secondWR iteration.

This enhancement doesn't really complicate the conceptual algorithm, until one considers the

question of when to stop. For a long chain of inverters, allowing the pipelining to extend across it

eration boundaries can easily allow for the first inverter to be many iterations ahead of the last

inverter. Since WR convergence can only be determined when all the waveforms for a given iteration

have been computed, it may well be that the WR iteration being computed for the first inverter is

many iterations beyond what is necessary to achieve satisfactory convergence. The difficultly is that
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this fact will not be discovered until much later, when all inverter outputs have been computed for the

iteration for which satisfactory convergence is achieved.

This is not a disasterous problem, the algorithmwill still produce correct solutions, but unnec

essary computations will be performed and efficiency will be degraded. The unnecessary computa

tions are reasonably simple to avoid, by not allowing any subcircuit to start on iteration N+I until

nonconvergence of some waveform of iteration N has been detected. It is, of course, important to

discover as quickly as possible if it will be necessaryto compute iteration N+l, so that the pipelining

of that iteration can begia For this reason, in the timepoint pipelining algorithm presented below,

convergence is checked on a timepoint by timepointbasis, immediatelyafter a timepoint is computed.

Algorithm 8.2 - (Timepoint Pipelining WR Algorithm)

Initialization. Both subcircuitsand waveformsin shared-memory.
queue - ordered list of subcircuits
idle count •« 0
Max iter so far is the iterafter the lastonefor which nonconvergence wasdetected
max iter so far •« 1
Parallel iteration loop. Allprocessorsexecute.
while(idle count ^ number of processors) {at least oneprocessor is still computing.

while (test-and-set(queuelock) »« set) { Tight loop waiting for queue to unlock. }
Queue is locked, getnext subcircuit in the queue for which the work that might beperformed on
it is for an iteration that is nomore than one beyond the maximum iteration for which noncon
vergence has been detected.
NextSub « Get next queue entry(max iter so__far)
if(NextSub —NULL){

increment(idle count)
clear(queuelock)

\
elsef

There is a subckt on the queue whose iteration is not beyond max iter so far.
clear(queuelock)
Compute as many timepoints aspossible with available waveform values.
repeat{

Check to see ifexternal values needed to compute the next timestep areavailable.
cando « Check for next step(NextSub)
if (cando — TRUE) {

Compute Next Step(NextSub)
converged = Check Step Convergence(NextSub)
if ((converged «= FALSE) and (NextSub.iter__count =» max iter so far)) {

Keep max iter so far ahead of the nonconverged iterations.
increment(max iter so far)

}
enqueue fanouts(NextSub)

\
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| until ( cando -= FALSE)

SECTION 8.4 - PARALLEL ALGORITHM TEST RESULTS

As mentioned above, the two algorithms were implemented on a 9 processor configuration of

the Sequent Balance 8000 computer (larger configurations are available). The results from several

experiments for the two algorithms are given in Tables 8.1 and 8.2. As the results from the Eprom

and microprocessor control circuit indicate, the timepoint pipelining algorithm makes much more ef

ficient useof the available processors. In fact, asTable 8.2shows, the timepoint pipelining algorithm

running on the Balance 8000 runs substantially faster than the serial WR algorithm running on a

Vax/780.

A second point should be made about the timepoint pipelining examples. It can be seen that

the speed-up does not remain linear to nine processors, but starts todrop off. this is surprising given

the size of the examples, but not when the type of circuit beingsimulated is considered. For the

biggest example, the cmosram, the partitioning algorithm produces approximately 75 subcircuits, and

this would indicate that aspeed-upof 75 should be obtainable, or at leastapproachable. This ignores

one of the features of the WR algorithm, in that only those portions of the circuit that are active are

participating in the computation. Fordigital circuits, thisisusually less thanten percent of the circuit

This implies that for the cmos ram example over any giveninterval, roughly seven subcircuits are ac

tive, and involved in the computation, and therefore only a speed-up of seven could be expected.

Table 8.1 - G-S/G-J WR ON SEVERAL # OF PROCESSORS

Circuit FETs 1 3 6 9

uP Control

Eprom
66

348

595

512

338

317

270

286

259

266
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Table 8.2 - TIMEPOINT PIPELINING WR ON SEVERAL # OF PROCESSORS

Circuit FETs 1 3 6 9 VAX/780

uP Control

Eprom
Cmos Ram

116

348

428

704

745

3379

247

265

1217

159

185

642

149

182

496

240

212

960
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CHAPTER 9 - CONCLUSIONS

In this thesis, a wide variety of new theoretical and practical results relating to numerical inte

gration methods for circuit simulation problems have been presented. A novel property that can be

used to classify integrationmethods, that of domain ofdependence, was introduced, and its importance

demonstrated by example. A wide collection of integration methods that have been used for circuit

simulation were then analyzed with respect to this and several other properties.

Following, the WR algorithm was introduced, and a new proof of the WR convergence, one

that demonstrates that the WR algorithm is a contraction mapping in a particular norm, was pre

sented. Extensions to the WR algorithm, along with convergence theorems, were also presented. In

addition, the interaction between WR algorithms and multistep integration methods was considered

in detail, and the first theorem proving the convergence of the multi-rate discretized WR relaxation

algorithm was presented.

The practical aspects of WR were examined using a new circuit simulation program,

RELAX2.3. The novel algorithms used by the program to partition large circuits and dynamically

adjust the windows were described, and results from the program on industrial circuits presented. In

addition, the implementation of two WR-based parallel circuit simulation algorithms were presented

along with results.

There are several theoretical questions about WR that were only partially answered in this

thesis. In particular, research is needed to more thoroughly understand the nature of WR conver

gence under discretization, and to characterize systems for which WR algorithms contract in uniform

norm. In addition, theoretical and practical work needs to be continued on breaking large systems

into smaller subsystems in such a way that relaxation algorithms converge rapidly.

There is also much work to be done to improve the speed and robustness of the WR algorithm.

In particular, more sophisticated partitioning algorithms should be devised. Also, the results on par

allel WR algorithms presented in this thesis are preliminary. Experiments should be carried out on a
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variety of different architectures to investigate the relationships between algorithms and computer

architecture.
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