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ABSTRACT

Because of the high cost of fabricating an Integrated Circuit(IC), it is important to
verify the design using simulation. There are a wide variety of techniques for simulating
integrated circuit designs. but the most accurate and reliable is to construct the system of
nonlinear ordinary differential equations that describe a given circuit. and solve the system
with a numerical integration method. This approach, referred to as circuit simulation, is
computationally expensive, particularly when applied to large circuits. To reduce the com-
putation time required to simulate large MOS circuits, new numerical integration algo-
rithms based on relaxation techniques have been developed. These techniques can reduce
the simulation time as much as an order of magnitude over standard circuit simulation
programs. In addition. they are particularly suited for parallel implementation. This
thesis covers both the classical numerical techniques and the new relaxation-based élg;)-
rithms, with particular emphasis on the Waveform Relaxation (WR) family of algorithms.
Algorithms in this family are reviewed, convergence theorems are included. and their

implementations on a parallel processor are presented.
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CHAPTER 1 - INTRODUCTION

Reliable and accurate simulation tools must play a key role in Integrated Circuit (IC) design.
This is because fabricating an integrated circuit is expensive and often time-consuming (on the order
of months). In addition, minor errors in the integrated circuit design can not usually be corrected
after fabrication. Therefore, design errors must be uncovered before fabricatiop, and this can be
done through the use of simulation.

There are a wide variety of techniques for simulating integrated circuit designs, but none are
as accurate, reliable, and technology independent as constructing the system of nonlinear ordinary
differential equations that describe a given circuit, and solving this system with a numerical inte-
gration method. This approa.xch, referred to as circuit simulation, has been implemented in a variety
of programs such as SPICE[2] or ASTAP[3] These programs use a standard, or direct, techniques
based on ghe following four steps: ‘

i) An extended form of the nodal analysis technique to construct a system of the differential equations
from the circuit topology. |
ii) Stiffly stable implicit integration methods, such as the Backward Difference formulas, to convert
the differential equations which describe the system into a sequence of nonlinear a]gebraicvequavtions.
iii) Modified Newton methods to solve the algebraic equations by solving a sequence of linear prob-
lems.

iv) Sparse Gaussian Elimination to solve the systems of linear equations generated by the Newton
method.

Circuit simulation tools based on the above techniques are heavily used. Companies spend
many millions of dollars per year in computer costs, and a number of companies run over 60,000
simulations/month. However, these programs were designed in the early 1970’s for the simulation
of circuits with a few hundred transistors at most. They are now being.applied, somewhat inappro-
priately, to the task of simulating digital and analog VLSI circuits, which can contain more than

50,000 devices. As problems increase in size, it becomes less economically feasible to use the above
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direct techniques. SPICE[2] and ASTAP[3] can take several hours (on a VAX11 /780) to simulate
circuits with only a few hundred devices.

There are two reasons why the direct approach described above can become inefficient for
large systems. The Amost obvious reason is that sparse matrix solution time will grow super-linearly
with the size of the problem. Experimental evidence indicates that the point where the matrix sol-
ution time begins to dominate is when the system has over several thousand nodes, and this is the size
of systems that are beginning to be simulated for new IC designs.

The direct methods become inefficient for large problems also because, for large differential
equation systems, the different state variables are changing at very different rates. Direct application
of the integration method forces every differential equation in the system to be discretized identically,
and this discretization must be fine enough so that the fastest changing state variable in the system
is accurately represented. If it were possible to pick different discretization points, or time-steps, for
each differential equation in the system so that each could use the largest time-step that would accu-
rately reflect the behavior of its associated state variable, then the efficiency of the simulation would
be greatly improved. |

Several modifications of the direct method have been used that both avoid large sparse matrix
solutions, and allow the individual equations of the system to use different time-steps
[4,5,6,7,8,9,10,11]. One class of such techniques, Waveform Relaxation[11,12,13,14,15,16,17,18]
is based on "lifting" the Gauss-Seidel and Gauss-Jacobi relaxation techniques for solving large alge-
braic systems to the problem of solving the large systems of ordinary differential equations associated
with MOS digital circuits. Briefly, the idea of these relaxation technique is to first break a large circuit
into loosely coupled subcircuits. Then the behavior of each subcircuit, over some interval of time, is
calculated by "guessing” the behavior of the surrounding subcircuits over the same interval of time.
The responses for each subcircuit are used to improve these guesses, and the response is recalculated.
The procedure is iterated until the convergencé is achieved for each subcircuit over the interval of

time. Other relaxation techniques such as the Gauss-Seidel-Newton algorithm [21] can be applied to
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solve the nonlinear system of algebraic equations in place of the standard Newton-Raphson tech-
niques. |

Two circuit simulation programs have been developed at Berkeley using relaxation techniques:
RELAX, based on Waveform Relaxation[11,18] and SPLICE, based on Iterated Timing Analysis
(ITA) [33], a form of Gauss-Seidel-Newton technique. On a uniprocessor, thesé programs can show
speed improvements over direct methods of up to an order of magnitude even for problems with only
a. few hundred devices. In addition, both the ITA and Waveform Relaxation ax.'e particularly ame-
nable to use on multiprocessors because the computational method already decomposes the problem.
A distributed form of the ITA algorithm, called DITA, has been recently developed and a prototype
DITA simulator, the MSPLICE program, has been implemented[34].

In this thesis I present a complete and consistent study of the existing body of research relating
to the application of numerical integration methods differential systems that describe circuits. I then
present new theoretical and practical results on the application of WR to numerically solving the dif-
ferentjal equations generated from circuits, both on serial and fiarallel processors.

I start in Chapter 2 with an introduction to tﬁe circuit simulation problem, beginning with how
the differential equations that describe a circuit are formulated from the circuit topology. Then, those
aspects of the circuit simulation problem that play a role in the choice of numerical method are de-
scribed. The well-known issues of consistency and stiff stability[1] is mentioned briefly, as is a con-
sistent interpretation of the charge conservation property[41]. The chapter is ended with the
description of a new property that can be used to classify integration methods, that of exhaustive do-
main of dependence.

In Chapter 3, many of integration methods that have been applied to circuit simulation prob-
lems are analyzed with respect to the properties described in Chapter 2. The.standard multistep in-
tegration methods are analyzed first, and it is proved that the implicit multistep integration methods
commonly used in circuit simulation have all the desirable properties given in Chapter 2. Following,

the relaxation algorithms that have been used to solve the large algebraic systems generated by im-
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plicit integration methods is described{21,33], and a theorem guaranteeing the convergence of such
methods for small timesteps is provéd[l2]. Then, the semi-implicit integration algorithms, used in
special purpose timing simulation programs[5,6,7,8], are analyzed with respect to their domain of
dependence and stability properties. The chapter is ended by comparing the semi-implicit and relax-
ation algorithms. | |

The theoretical basis for the family of WR algorithms, methods for the decomposed solution
of differential equations, is presented in Chapter 4. Waveform relaxation is introduced with a simple
example followed by a general algorithm. Then a new proof of the WR convergence, one that dem-
onstrates that the WR algorithm is a contraction mapping in a particular norm, is presented. Exten-
sions to the basic algorithm that allow for modified iteration equations is presented and it is shown
that the convergence of such extensions follows directly from the proof that the WR algorithm is a
contraction mapping. Following, an extension of the Newton Method to function spaces is presented,
and its convergence proved using lemmas from the basic theorem. The waveform Newton algorithm
will then be combined with the WR algorithm to |;mduce a waveform relaxation-Newton(WRN)
algorithm([22].

To compute the iteration waveforms for the WR algorithm it is usually necessary to solve sys-
. tems of nonlinear ordinary differential equations. If multistep integration formulas are used to solve
for the iteration waveforms, the numerical integration method plays a role in the convergence prop-
erties of this discretized WR algorithm{29]. In Chapter 5, the interaction between WR algorithms
and multistep integration methods is considered in detail. The discretized WR algorithm will be an-
alyzed first assuming that every differential equation in the system is discretized identically (the
global-timestep case). A simple example is presented that demonstrates a possible ‘breakdown of the
WR method under discretizations. Then, a comparison is drawn between the discretized WR algo-
rithm and the algebraic relaxation methods described in Chapter 3 and a strong comparison theorem

for linear systems is proved. Following, a convergence theorem for the fixed global-timestep
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discretized WR algorithm will then be presented. The global-timestep restriction will then be lifted,
and the first theorem proving the convergence of the multi-rate WR relaxation algorithm is presented.

In Chapter 6, the theoretical background for two of the techniques for accelerating WR con-
vergence is preseméd. First, why breaking the simulation interval into pieces, called windows, can
be used to reduce the number of relaxation iterations required to achieve convergence is
examined[17}, and then how to partition large systems into subsyst.ems in sucha way that the WR
algorithm converges rapidly is considered[31].

The implementation of the WR algorithm in the RELAX2.3 program is described in Chapter
7. The partitioning, numerical integration, windowing and partial waveform convergence algorithms
- as applied to MOS circuits are presented. The results from simulating a CMOS memory circuitvare
analyzed, in order to demonstrate more clearly both the practicality of the WR algorithm, and the
specific nature of its efficiencies. The chapter will be concluded with a table of results from the
RELAX2.3 program applied to a variety of MOS circuits.

The implementation of two WR-based parallel circuit simulation algorithms on a shared-
memory computer are described in Chapter 8(17]. A brief over'view of the aspects of a shared-
memory computer that effect the algorithm. implementation are bresented, followed by the

description of, and experimental results from, the two parallel WR algorithms.
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CHAPTER 2 - THE CIRCUIT SIMULATION PROBLEM

As mentioned in the introduction, circuit simulation amounts to solving numerically the system
of nonlinear ODE'’s that describe the dynamic behavior of a circuit. In this Chapter, we will address
the two topi.m of the construction of a system of differential equations from a given circuit topology
and its properties, and the issues to consider when choosiné a numerical method for solving that sys-

tem.

SECTION 2.1 - THE EQUATION SYSTEM

The most general formulation of a system of nonlinear differential equations is the following

implicit formulation:
F(x (), x(#), u(®)) = 0 x(0) = xp [2.1]

where x() e R" on te[0T]; u(t)e R* on te[0T] is piecewise continuous; and
F: RexRexR” IR s continuous.

Before considering techniques fc;r numerical solution, we first must guarantee that Eq.n. (2.1)
has a solution. If we require that there exists a transformation of Eqn. (2.1) to the form y = f(y,u)
where f is Lipschitz continuous with respect to y for all u, then a unique solution for the system
exists[39]. Although there are many sets of broad constraints on F that guarantee the existence of
such a transformation, the conditions can be difficult to verify in practice. Rather than carefully
considering the existence question, which will complicate the analyses that follow without lending
much insight, we will consider the following less general form, in which most circuit simulation

prbblems can be described.

Cx(), u®) x (1) = flx(n), u(®)) x(0) = xo [2.2]
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where x(¢f) e R"on t € [0,T]; u(?) € R"on ¢ € [0,T] is piecewise continuous; C: R"xIR" = R™" is
such that C(x, ¥)-! exists and is uniformly bounded with respect to x, »; and f: RxR" - IR" is
globally Lipschitz continuous with respect to x for all u(s) € R".

The fact. that C(x, u) has a well-behaved inverse guarantees the existence of a normal form for
Eqn. (2.2), and th;xt x(#) € IR" is the vector of state variables for the system; Tﬂen as f is globally
Lipschitz continuous with respect to x for all u, C(x, u)-!is uniformly bounded, and u(?) is piecewise

continuous, there exists a unique solution to Eqn. (2.2) on any finite interval [0,7] [39].

SECTION 2.1.1 - CONSTRUCTING THE EQUATION SYSTEM

The behavior of the most commonly modeled nonlinear circuit elements: diodes, bipolar tran-
sistors, and MOS transistors, can be described by voltage-controlled current and charge equations.
For example, consider the diode in Fig. 2.1 for the case where the voltage across the diode
Ve < 00 Then the anode and cathode currents, i, and i, respectively, and the anode and cathode

charges, ¢, and g, respectively, can be computed (to first order) from the following equations,

i, = LY~ 1)

= =i,

1e-v, 4
qa"CO( ¢“)lm

g = —4q,

where I, is the saturation curreht, V, is the thermal voltage, G, is the zero-bias junction capacitance,
and ¢ is the junction potential.

For an arbitrary circuit made up of a network of elements described by voltage-controlled
currént and charge equations, it is possible to construct a system of differential equations that de-

scribes the circuit by using nodal analysis[36]. This amounts to applying the relationship that the
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time derivative of charge, ¢, is a current, and insisting that the sum of the currents leaving each node
(currents entering the node are assigned negative sign) in the network is precisely zero (Kirkchoff’s

Current Law, KCL). That is, for each node in the network:

D GO0+ D himADAO) = O [23]
where v(t)' e R" is the vector of node voltages, and u(s) € IR". If a system were constructed using the
KCL equations for every node in the circuit, the system would be overdetermined. For this reason,
the equation for an arbitrary node in the circuit, referred to as the reference or ground node, is dis-
carded. In addition, the KCL equations for the nodes for which the node voltage is known a priori
(e.g., a node connected to a voltage source whose other terminal is connected to the reference node)
.are discarded.

As an example, consider the Nand circuit in Fig. 2.2. In order to solve for the unknown volt-
ages v and w, we need only form the KCL equations at node 1 and node 2, and can ignore the KCL
equations for the nodes connected to the voltage source and ground. For the first node we have the

equation:
O Vo) = i 05 Vi) + 104, 00 Ve O) + o002 Vo) + €] = 0
and for the second node,
i%(&; Vi) + 81(Vgg—w) + T‘:_[q,m._,(vz, Vppv) + 6] =0

where i and i, , are the the currents flowing from the drain to the source of transistor m1 and m2

respectively, g, ., 4,

ma2® Temaz» Ar€ the charges accumulated at the drain of transistor m1 and the source

and drain of transistor m?2 respectively.
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In general, the nodal analysis leads to systems of the form:
-d";q(v(r).u(o) - V() = 0 [2.4]

where g:RxR™ - IR" is the vector of the sums of the charges at a node, izIR"xIR" - IR" is the vector
of the sums of the currents entering a node, v ¢ IR” is the node voltage vector, and ¥ € R™ is the
vector of inputs. The system in Eqn. (2.4) can be converted to the form of Eqn. (2.2) by applying

the chain rule to establish the identity

raO(0) - %(v(r),y(r))«r) + 0.

We then define x =, C(x(r),u(t)) = %(v(r),u(t)), and
Sx(D)u(r)) = (), u(D) - -g%(v(t),u(t))t)(t) to get a system of the form of Eqn. (2.2). Note that
in order for the f defined above to satisfy the Lipschitz continuity property, either % must be zero,
oru ﬁ\tlst be bounded.

For a broad class of circuits, thé C(x,u) matrix defined by C(x,u) = %(v,u) is strictly
diagonally dominant uniformly in x, a property which guarantees the existence of a bounded
inverse[28]. Many of results concerning relaxation methods for systems of the form of Eqn. (2.2) rely
on this diagonal dominance property, so we will describe under what conditions a circuit will produce
a C(x,u) that is diagonally dominant.

Consider the two node example in Fig. 2.3. Applying the nodal analysis technique descﬁbed

above yields the following differential equations:
(Cl + Cf)él(f) - Cf"'z(f) = glv,(t)

(2 + cPw(t) = () = gw(n)
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As this example demonstrates, for circuits whose only charge elements are capacitors, the i diagonal
entry of the C matrix is the sum of the capacitance incident at node i, and the ij* entry is the negative
value of the capacitance between node i and node j. It therefore follows that the sum of the absolute
value off-diagonal terms is less than or equal to the diagonal terms where strict inequality holds if
there a nonzero capacitance between node i and a voltage source 01; ground node. This example leads

to the following important observation which is easily verified.

Observation If a system of equations of the form of Eqn. (2.2) is constructed by applying the nodal
analysis technique described above to a circuit which contains capacitors (linear or nonlinear), or any
other elements whose charge function has a diagonally dominant Jacobian, then the capacitance ma-
trix C(x,u) of Eqn. (2.2) is diagonally dominant. If, in addition, there exist a linear or nonlinear
capacitor, bounded away from zero, to ground or a voltage source at each node in the circuit, the

matrix C(x,u) is strictly diagonally dominant for all x, u.

SECTION 2.1.2 - EXTENDING THE CONSTRUCTION TECHNIQUE

The nodal analysis techni;lue can only be used to form the differential equations of circuits with
elements whose current or charge is a well-behaved function of voltage. It is possible to extend the
technique to include circuits with inductors and floating voltage sources by using Modified Nodal
Analysis [38]. A similar technique is used in this section to show that circuits with these two types
elements can be described by a differential equation system of the form of Eqn. (2.2). This demon-
strates that the form of Eqn. (2.2) can emcompass much more that just circuits with voltage-
controlled current and charge elements, and is a justification for considering only systems of the form
of Eqn. (2.2) for rest of this thesis.

Consider a large network with two nodes that are connected by a floating voltage source as in

_ Fig. 2.4. The nodal analysis equations can be written for the two nodes and are for node a,
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k
Eij(va, VpV) + e =0
Jj=1
for node b,

{
D i V) = g = 0

J=k+1
where v is the vector of all the other node voltages and i, is the current through the voltage source.
Given an additional variable has been introduced, i,,, an additional equation is needed to compute the

solution,
V= v + V.

In order to convert this set of equations into the form of Eqn. (2.2) we perform a simple substitution

to generate one equation in one unknown (here we have arbitrarily chosen v,)

k
i+ Vi) = 0
Jj=1
It is somewhat more complicated to reorganize the equations of circuits with inductors so that
they fit into the form of Eqn. (2.2). This is because the voltage across the inductor is a function of

the time derivative of current passing through it. For the example in Fig. 2.5a, the KCL equation for

node a is

J
i V) + g = 0
i=1
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and for node b,

k
2 ii(Va, Vb, V) - iind = 0
i=j+1
and for the inductor,
di;
L—d"ri- (=) = 0

where v, and v, are the voltages at the inductor terminals; v is the vector of node voltages for the entire
circuit excluding v, and v;; i, is the inductor current, and L is its inductance.

Since the derivative of inductor current is present in the equations, in order to include the
inductor in the system of Eqn. (2.2), the current must be included in the set of state variables. A
circuit interpretatioﬁ of such a reorganization is to replace‘ the inductor by an extra circuit node, a
grounded capacitor of capacitatice L, and two voltage-controlled current sources (See fig. 2.5b).
Note that the extra row in Eqn. (2.2) that would be generated by including an in(iuctor in a given
circuit will not destroy the invertibility or strict diagonal dominance property of C(x,u), because the

extra row in C(x,u) will contain only one nonzero entry, on the diagonal.

SECTION 2.2 - NUMERICAL INTEGRATION PROPERTIES

Once the system of differential equations has been constructed from the circuit topology, it
must be solved numerically. The usual 'approach is to use one of the many numerical integration
formulas to convert the differential equations which describe the system into a sequence of nonlinear
algebraic equations.

For example, the most obvious numerical integration formula is the explicit-Euler algorithm.

Given the initial condition x(0) = X, it is possible to compute an approximation to x(h), » > 0,
A
x(h) — x(0)

7 for x(0), where the notation x is used to indicate numerical approxi-

by substituting
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mation. Substituting this discrete approximation into Eqn. (2.2) yields the following equation for

2h):

X)) = x(0) + C(x(0). u(0))~*fix(0), u(0)) [2.5]

By substiting alr\ (h) for x(0) in Eqn. (2.5) it is possible to compute .’r\ (2h), and the pr;:»cess can be re-
peated to produce a sequence that approximates the exact solution to the differential equation at
discrete points in time.

The explicit-Euler algorithm is the simplest of a wide variety of discretization techniques for
numerically solving large systems of differential equations. In order to chose a discretization method
that will be efficient and #curate for a given class of problems, it is necessary to éonsider several
properties of the integration method with respect to the class. In this section we will consider several
of the kef aspects of the circuit simulation problem that impact the choice of numerical method. We
will start by presenting the general classical consistency/stability/convergence criteria both for
completeness, and as a vehicle for presenting the notation that will be used throughout this thesis.
We will then consider more specific properties of the circuit sim.ulation problem, starting with the
well-known issue of stiffness. Following, the properties of charge conservation and domain of de-

. pendence will be defined, and in each case we wil consider the impact these properties have on the

choice of numerical method.

SECTION 2.2.1 - CONSISTENCY, STABILITY, AND CONVERGENCE

In general, a numerical integration formula produces a sequence approximation to the solution
of a differential equation by repeated application, starting from some initial condition x,. We will de-
note the approximation produced by the m™ application of a given numerical integration formula to
Eqn. (2.2) by :? (7..), where 7,.°¢ R is such that x (1,) is the numerical approximation to the exact
solutionat ¢ = r,. It will be assumed that if the differential equation is to be solved numerically on

[0,7], that there exists some finite integer M, such that 7,, = T. In addition, we will refer to
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h, = 7, — 7,_; as the m" discretization timestep. Finally, we will denote the entire sequence
x(1,), m € {0,..., M} by {x(,)}.

If 2 numerical integration algorithm is to be of any use, it must be possible to arbitrarily accu-
rately approximate the exact solution to the differential equation system uniformly over [0,7] by re-
ducing the discretization timesteps. An integration method with this property is said to be convergent,
defined formally as follows:

Definition 2.1: Let the discretization timesteps be fixed; that is 4, i for all m € {0,..., M}. A

M
Numerical integration method is convergenr with respect to Eqn. (2.2) if the global error, defined by

max,, < x ll«c () = x(,) [l [2.6]

goestozeroas M -» oc W,

For a numerical integration method to be convergent, it must have two properties. The error
made in one timestep must go to zero rapidly as the timestep decreases, and the errors should not
grow too rapidly over the timesteps. The error made in one timestep is called the Jocal truncation error
(LTE). |
Definition 2.2: Let x (+,) be generated by applying one step of a numerical integration formula to a
system of the form of Eqn. (2.2) given the sequence {? (‘r;')}, m < m such that x (f:) = x(1~).
Then the Jocal truncation error is defined as [I.('\ (T - x(r,)]. 0

The best that one could hope to show for general systems is that the global error for the ap-
proximation, that is max.,,,s M [Ifr\ (7,.) = x(7.) |l is a function of the sum of the local truncation errors,
:EIOLTE,, , where LTE, is the local truncation error at the m™ timestep. Given a fixed interval [0,T],
and that M = -7-'-, this sum is bounded below by -%-LTE,W where LTE,,, is the minimum of the LTE’s

h
over all m. If this sum is to go to zero as 4 -+ 0, then

LTE,

h,.-.o

lim,,_,o
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This property is known as consistency [1] and is shared by any "reasonable'" numerical integration
method.

As an example, it is possible to verify that the explicit-Euler algorithm is consistent for systems
of the form of Eqn. 4(2.2), by using a Taylor series expansion about x(r,,). That is,

hm+l i

> x(1)

X(Tpe1) = x(1p) + hpprx(7y) +
where 7 € [*ms Tms1). From Egn. (2.5) we get
R ppd) = X(1) + hipp  COCT,), u(ep)) " fx (), u(x,)).

Substituting for x using the following identity,

Clx(r,), u(1,))  fx(1,), u(rp)) = X(7p)

and then subtracting,
A X
m+3 ., "~
X (Tm+ 1) - x(7m+]) - 2 X(1) [2.7]
which verifies consistency.

Consistency is not sufficient to guarantee that a numerical integration method is convergent.
Consistency only insures that the local errors are small, but does not indicate anything about how the
errors propagate from one timestep to the next. To insure convergence we need to verify that the

numerical integration method has a second property, that of stability[1].

Definition 2.3: A numerical integration method applied to Eqn. (2.2) is stable if there exists an hy and
a constant K < o« such that for any two different initial conditions x, and x'e, and any

T
h-—N—<ho'
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A A
"X(‘l"l) - X'(Tf,l)ﬂ < K "Xo - X’o"..

The explicit-Euler algorithm is stable, but the proof is lengthy and well-documented elsewhere{1] so
we will not repeat it here.

Not surprisingly, we have the following classical result:

Theorem 2.1: If a numerical integration method is consistent and stable with respect to Eqn. (2.2),
then it is convergent with respect to Eqn. (2.2). B
Several different proofs have been given for this basic result[1].

If an integration method is convergent then when the 'method is used to compute an approxi-
mate solution to a differential equation system, sufficient accuracy can be insured by using timesteps
. that are small enough. Obviously, it is possible to insure that the timesteps are small enough by using
extremely small timesteps, but this very inefficient. Instead, the integration timesteps are usually
controlled by using some check on the discretization error. If, in any given step the error becomes
too large, the timestep is replaced by a smaller timestep. | '

Usually, the check on the discretization error is some computed estimate of the local truncation
error. For the explicit-Euler algorithm, for example, the exact local truncation error at the m'™ step
is O.Sh,?,ﬂii(:) where T € [T, Tme1) Anestimate of the local truncation error of the m explicit-Euler

step can be computed using the following divided-difference estimate forx,

.?(1’,”_',]) - xA(fm) AA’(‘r’n) - Q(Thl—l)

. " b

[2.8]
0.5(hm+] + hm)

i) =

Most of the techniques for estimating local truncation error are only estimates, not bounds. In

practice, these type of estimates have proved to be reliable, but there are certain common cases where
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the estimates are much smaller than the actual error. An example of such a case will be presented in

Section 2.2.4.

SECTION 2.2.2 - STIFFNES AND A-STABILITY

Consider the Example in Fig. 2.6, a resistor-capacitor circuit. The differential equation that

describes the circuit can be constructed using the nodal analysis technique above and is:
W) = — 100v(s) w0) = 1.0 [2.9]

where v(¢) € R is the node voltage. The exact solution for v xs v() = e-1%_ If the interval of interest
is [0,77, this is a two time-scale problem. That is, v changes very rapidly compared to the interval of
interest.

Any system of differential equations that has the kind of multiple time-scale properties of the
above example is said to be sriff. Most circuits of interest generate sﬁf differential equation systems,
and this strongly effects the choice of integration formulas. For example, th‘e explicit-Euler algorithm
applied with a fixed timestep A to numericallly solve Eén. (2.9), yields the following recursion

. A
equation for v,

Pt = (1= 1008,)9 (p_1)

or given (0) = 1,

V() = [Tc1 - 1008).

i=1

Clearly, | C(‘r,,,) | will decay only if #,, < 0.02 for all m, and 3(7,") will decay monotonically to 0 only

if h, < 0.01 for all m. If larger timesteps are used, | C(f,,,) | will grow. What this implies is that in
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order to accurately compute a sequence approximation to the solution of this system using explicit-
Euler, small timesteps must be used even when the solution is not changing appreciably.

Now consider a slightly different numerical integration formula, the implicit-Euler algorithm,
where W, is approximated by _h‘:((? (7 - 3(1-,,,_,)). Just like explicit-Euler, implicit-Euler is
convergent, and the local truncation error is of order42. When applied to Eqn. (2.9) the following

recursion equation results:

A
Sm) = V(tpey) = 100y, ¥ (5,

or reorganizing,

1

— V(T2
(1 +100n,) ™

?('r,,,) =

Again using the fact that v(0) = 1,

v(r,) = ﬁ(l + 100h)~!
i=]

Note that in this case, any &, > 0 will produce a monotoni;:ally decaying sequence. The tremendous
advantage of this method over explicit-Euler is that small timesteps can be used for the first few steps
to accurately resolve the rapid decay, and when the solution stops changing appreciably, the timestep
can safely be made orders of magnitude larger without causing the computed solution to grow.

The implicit-Euler algorithm has a property that is "stronger" than the numerical stability of
Definition 2.3, which we define below as A-stability:
Definition 2.4: Let {? (.)} be the sequence generated by a numerical integration method applied to

the equation

.A"(I‘) Ax(?) x(0) = xp
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where x(¢) ¢ R*, and A ¢ R™ and 7, — 7,y = h, = h for all m. Given {A}, the set of
eigenvalues of 4, the region of stability for the integration method is the subset of ¢ such that if A},
is inside the region of stability for all i, then x(7,,) == 0 asm - c. The numerical integration method
is A-stable if the region of stability includes the entire left-half plane of ¢m

The above definition differs from the original definition given by D;;hlquist[42] in ti)at a matrix rather
than scalar test problem is used[6]. As will become apparent in following sections, a matrix test
problem is more appropriate for analyzing methods designed for large scale systems.

Both the explicit-Euler and implicit-Euler algorithms can be used to produce arbitrarily accu-
rate discrete approximations to the exact solution of Eqn. (2.9), as both are convergent. The
implicit-Euler algorithm will allow much larger timesteps to be used with no appreciable loss of ac-
curacy and hence will be more efficient. But improving efficiency is not the only reason one would
chqose implicit-Euler.. or another A-stable numerical integration method. There is also the consider-
ation of numerical robustness. That is, if an A-stable method is used, the timestep can safely be set
by only considering local truncation error criteria, which can be reasonably estimated. If a method
that is not A-stable is used, the timestep must be bounded to insure stability. Sucha bound will be a
function of the eigenvalut;.s for a linear problem, and it is difficult to get reasonable estimates of

eigenvalues.

SECTION 2.2.3 - CHARGE CONSERVATION

Many differential equation systems generated frohl physical problems can be characterized by
the preservation of certain quantities, and frequently it is important that the numerical method also
preserve these quantities. For example, when numerically solving the differential equations that de-
scribe the motion of a swinging pendulum in a frictionless environmem,»it is important to insure en-
ergy remains constant. If energy increased due to numerical error, the computed solution -would
indicate that the pendulum would $wing higher and higher, and if energy were lost, the computed

solution would indicate that the pendulum would eventually come to a halt.
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In the case of systems of equations that describe circuits, charge is a physical constant. To
show this, consider surrounding arbitrary circuit by a Guassian surface. Since the surface- is
unpunctured, the charge contained inside must remain constant[43]. As a consequence, the sum of
all the currents musi be zero, as the sum of the currents is the derivative with respect to 7 of the sum
of the charge.

This truly trivial observation can not directly apply to the differential equation systems con-
structed using nodal analysis as above. If the sum of the node charges in Eqn. (2.4) were precisely
zero, then C(x,u) in Eqn. (2.2) would be singular and Eqn. (2.2) would not necessarily have a unique
solution. In order to produce systems of equations that do have unique solutions, the KCL equations
for an arbitrary reference node and for nodes for which the voltages are given a priori are not in-
“cluded, and a solution for the reference node of v, ,(f) = 0 forall tis assumed.

As an example, consider the simple resistor-capacitor cifcnit of Fig. 2.6a. In terms of charges,

the differential equation that describes the behavior of the circuit is

Gv(f)) = —gv() w0) = 1.0,

where the charge q(v()) = cw(f). The solution, v(f) = e"‘f", is not a constant, so neither is the
charge ¢. The differential equation does not exhibit charge conservation because not all the charges
have been considered, and only the sum remains constant. The charge on the ground or reference
node is — ¢v(f) and obviously the sum of the two is zero for all £.

If KCL is applied to every node in the resistor-capacitor example, including the reference node,

an appended system is generated
. . 8 (o

f() = WD) = = Z= () = WD)
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which does not have a unique solution, but an infinite collection, unless it is assumed v, (1) = 0.
However, for any of the solutions the sum of the node charges remains constant.

It is possible to use appended systems generated by applying KCL to every node in a circuit to
test how well a numerical integration method conserves charge. If the method is applied to the ap-
pended system then charge conservation can be checked by summing all the charges at each timestep
to insure the sum remains constant. The algebraic equations generated by the numerical integration
method can still be solved in the usual fashion, with the known node voltages and a reference voltage
used to eliminate the equations associated with the appended differential equations.

Explicit-Euler applied to an autonomous system (independent of u(¢) ) of the form of Eqn.

(2.2) constructed from applying KCL to every node in the circuit yields,

dg A A A A
7;(" TV (Tn141) = V(7)) = B 1 SV (7))
dg A, . . . . . A
where W(v (7.)) is the, possibly singular, jacobian of ¢(v(7,,)) , the vector of all the node charges.
If it is assumed that at 7, the sum of the node charges ‘iq,(c (t.)) = K, where K is some constant,
then charge is conserved only if ‘gq,(/v\ (Tms1) is also equal to K. This is not necessarily the case, as

can be seen from the Taylor series expansion of q(s(f,,,,,,)) about g(v(1,)),

d -
40 1)) = GO () + 2O (T (Tpig1) = ¥ (7)) [2.10]
d2q AA_ A A A A
+ d 2 (V (7))( V(Tny+]) - V(T,") )( V(Tn,+1) - V(Tm) )
v

where 9(7) € [0(r,), ¥(7,.,)). Substituting A,,, f(¥(z.)) for %(’v‘(f,,,))(’v‘(fmf) - ¥(r,)) leads to

q(c("'m-i-l)) = q(c(fm)) + hm+lf(¢("'m)) +
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dzq

= GENG g = Va))F (g ) = ¥ ()
v

Summing the node charges,

n n n )
SO Cma1)) = DGO + DbtV (1)) + 0k, ). [2.11]
i=1 i=l i=]

lo(a) | - '
— <= To simplify Eqn. (2.11), another prop-

where o( « ) is any function such that lim,_,
erty of the original network from which the KCL equations were generated can be used. Since
£+ ) is the vector of sums of the currents incident at each node, and as any current leaving a node

must arrive at some other node, E.J ‘f,(c (7,,)) must be identically zero. Using this fact leads to

ilq.(ﬁ(w,,,,,» = K + Oy,
i= .

which implies that the sum of the node charges will not remain constant unless the second order term
in Eqn. (2.10) is zéro, which will be true if all the node charges are linear functions of the node
voltages, but will not be true in general.

The sum of the charges is constant in the limit as A,,,, goes to zero, so the nonconstant charge
can be viewed as another measure of the local truncation error. However, if the same integration
method is applied slightly differently, using charge as a state variable, then the sum of the node
charges will stay constant regardless of the stepsize. To demonstrate this we again apply the
explicit-Euler algorithm, but to the system in the form of an autonomous version of Eqn. (2.4).

Discretizing the charge function leads to,

q(v(7,41)) = q(v(7,)) by 4 (V7).
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That the sum of charge is constant, independent of the stepsize, follows from:

n
gq,-(v(fm,,,» - Izngq,-(v(f,,.» + mzlh"'*‘f’("(’"'”
and the fact, mentioned above, that “_2‘. ‘j;('v\(-r,,,)) = 0.
We use these ideas to precisely define the charge conservation property.

Definition 2.5: A system of the form of Eqn. (2.4) is of type S if it has the following two properties:
for any exact solution the sum igq,(x(t)) is a constant independent of ¢ ; and é ‘ﬁ(v) = ( for any
v € R". A numerical integration method has the charge conservation property if when applied to any
system of type S, the computed sequence {3(7,)} is such that ‘%q,(v(f,,)) is a constant independent
of m A

In section 3.1 we will show that all multistep integration methods applied with charge as the state

variable have the charge conservation property.

SECTION 2.2.4 - DOMAIN OF DEPENDENCE

In the area of partial differential equations, the concept of domain of dependence is
well-known[44]. The idea is that partial differential equations can be characterized by how rapidly
the behavior of points in space will propagate with time. As time increases, the space of points that
can effect a given point, referred to as the given point’s domain of dependence, grows. For a nu-
merical method used to solve the partial differential equation to be convergent, that is to produce
arbitrarily accurate solutions as the. distance between discretization points becomes small, the nu-
merical method must propagate the behavior of each point in space at a rate that at least approaches
the rate of the original partial differential equation. In the language of domain of &ependence. anu-
merical method is convergent only if for each point in space, as the distance between discretization
points become small the numerical domain of dependence includes, or comes arbitrarily close to

covering, the domain of dependence of the partial differential system.
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In this section, an analogous concept will be introduced for large systems of ordinary differ-
ential equations. But rather than con;paring the domain of dependence of a numerical method to that
of the differential equation system to investigate the numerical method’s convergence properties, we
will show that domain of dependence plays a role in the accuracy of the integration method, and how
well the erro.rs due to discretization can be controlled.

Consider the following differential equation system

() = = (x;(n - 0.01u(n)) [2.124]

() = = (x(1) = 10x3(1))

X,(f) = = (x,() = 10x,_4(D).
x;(0) = 0, ief{l,.,n}

where the input u(f) = 1forall¢> 0.

The exact solution for this system is:

i-1 j

x() = 1071 - (2-{'7) et [2.125)
Jj=0/*

As can be seen by examining Eqn. (2.12Db), the solution to the system of Eqn. (2.12a) is a propagating

step that is being smoothed and is growing rapidly in amplitude through n stages. Systems with this

type of behavior are extremely common among circuit examples (a chain of inverters, for example).
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If the explicit-Euler algorithm is applied to Eqn. (2.12a), the computed value for
$(r) = 0.01h and £(r;) = Oforall1 < i < n. Infact, X, will remain zero until the i timestep
regardless of the size of the timestep. This slow propagation of the solution introduces an error that
is in the form oi’ adelay, thatis £-(~r ,) does not change until j 2 i. Explicit-Euler is convergent, so this

delay error in time must be driven to zero as the timestep decreases, and it does, because 7, ap-

proaches zero.
10°-3h,
(1 +hy)
implicit-Euler algorithm is used, the behavior of the input is propagated thoughout the entire system

If implicit-Euler is applied to Eqn (2.12a), then x(7y) = . Therefore, when the.
in one timestep and there is no error due to delayed propagation of information. This does not nec-
essarily imply that implicit-Euler is more accurate than the, explicit-Euler algorithm. For example,
applied to Eqn. (2.12a) with a timestep #, = 1, explicit-Euler produces the solution .;:‘s(n) = 0.0,
while it;lplicit-Euler produces the solution ?,(7,) = 3.125. The exact solution is x;(1) = 0.359, so
in this case, the explicit-Euler computed solution is closer to the exact solution than the implicit-Euler
computed solution, though neither method produces very accurate results.

For this example, accuracy clearly isn’t the reason for preferﬁng the implicit-Euler’s rapid
propagation of information to explicit-Euler. Implicit-Euler is a more reliable integration method for
this example because the error due to discretization in the computed solution is more visible than the
discretization error in the computed solution produced by the explicit-Euler algorithm. To see why
this is the case, consider the local truncation error estimate presented in Section 2.2.1,

A A A A
X (Tpq1) = X (7)) X (1) = x(7p_y)
hm+l . hm
(hm+l + hm)

LTE= K,

[2.13]

Since in this case, m = 0, J? (t) = Q('r,,,_,) x(0) and h,, = 0, Eqn. (2.13) can be simplified to

LTE = h2, (% (7)) — x(0))
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For explicit-Euler this estimate indicates that the LTE for x;s(7,) is zero, which is a severe underesti-
mate. A timestep control scheme based on local truncatibn error would not shrink the timestep in this
case, and a very inaccurate solution would be computed. For the implicit-Euler algorithm, the error
estimate is 3.125 which is larger than the actual LTE, but this is safe, because an LTE-based timestep
control scheme will detect the error and reduce the timestep.

This example indicates that when applying the explicit-Euler algorithm to a large systém, a
timestep dependent limit is introduced on how fast the behavior of an individual state,variables
propagate through the system. The delay error due to this limited rate of propagation is different
from a local truncation error. An arbitrarily high order explicit multistep integration method could
| have been used at each step, and still x(r,,) would have been zero until the i timestep. The
implicit-Euler algorithm does not introduce such an a priori limitation on how fast the behavior of an
individual state variables propagate through the system. Because of this, when the system behavior
is faster than can be propagated by the explicit-Euler algorithm, the implicit-Euler algorithm can
produce more accurate results, but more importantly, when i; produces r;sults that are in error, those
errors are more observable.

We end this section, and this chapter, by connecting the concept of the delay introduced by an
integration method, the numerical delay to that of Domain of Dependence, the concept borrowed from
the study of partial differential equations. This connection will provide a simple tool for testing in-
tegration methods to determine for what type of systems they will introduce numerical delay.

For this purpose, we can define the numerical delay as follows:

Definition 2.6: Given a numerical integration method applied to a system of the form x(r) = Ax(?)
with some initial condition x(0) = X, if x(r) = x(0) # O forall r € (0, 7] forsome 7 > 0, then
the numerical delay to the ©* variable is defined as the smallest integer M, such that
* (Tag;41) — x(0) # 0.1f no such 7 exists, the numerical delay to the i variable, M, , is zero. The
numerical delay for the integration method applied to the given system with the given initial condition

is the maximum over all i of the M;s R
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In the example above, the numerical delay for implicit-Euler algorithﬁ\ applied to Eqn. (2.12a) is zero,
and the numerical delay for explicit-Eulerisn — 1.

The description of the role of domain of dependen(;e will be based on the following general
definition: | |
bcﬁniﬁon 2.7: Given an equation of the form y = f(x), where x,y ¢ R", and f:R"xR" -~ R", the
domain of dependence of the j* variable of the vector y, y,, is the set of all x;, i € {1,..., n} such that
for some x, -a-&- # 0N,

ox,
Given the matrix test problem

x() = Ax(t) x(0) = xg . [2.14]
where x(f) ¢ R*and 4 € R, the exact solution at 7 = A is, in series form,

' 2 3
x(h) = [T +hd + hTAz + ”7.43 +..]x(0). [2.15])

The domain of dependence of x,(h) can be deduced directly from Eqn. (2.15). The variable x(0) is
in the domain of dependence of x,(4) if the i, j* element of 4" is nonzero for some n.

The equation for one step of explict-Euler applied to Eqn. (2.15) is

x(r)) = [ +hyd] x(0). : [2.16]

As can be seen from the equation, the domain of dependence for the xj* variable in Eqn. (2.16) will
be a proper subset of the domain of dependence for the x/* variable in Eqn. (2.15) unless the powers
of the matrix 4 do not add additional nonzero terms. This would occur, for example, in the case
where A is diagonal. If instead, one step of implicit-Euler were applied to Eqn. (2.14), the following

series expansion results:

X(1y) = U +hA +h2A% + 4% + .1x(0), [2.17]
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where the series expansion is valid for A such that hp < 1 where p is the spectral radius of 4. Com-
paring Eqn. (2.17) to Eqn. (2.15), it can be seen that for a small enough /4 the domains of dependence
of the exact solution and the implicit-Euler algorithm are identical for each variable, x,(h). We define

this property below as exhaustive domain of dependence.

Definition 2.8: If the domain of dependence of each element of the vector produced by one step of
an integration method applied to Eqn. (2.14) matches the domain of dependence of the correspond-
ing element in the left hand side vector of Eqn. (2.15) for a small enough timestep 4 and for any A4
and any initial condition x,, then the numerical method is said to have an exhaustive domain of de--
pendence. B

The following theorem relating domain of dependence to numerical delay follows directly from
the deﬁnitioﬁs: -

Theorem 2.2: If a numerical integration method has an exhaustive domain of dependence then the
numerical delay of the integration method is zero for any 4 and any x,.

If one step of a numerical method has a smaller domain of dependence than the original dif-
ferential equatioh, thén a numerical delay will be introduced and the timesteps used for the calculation
will have to be bounded to insure rapid enough propagation of variable behavior. Like bounds onthe
timestep to insure stability for non-A;stable methods, this additional constraint is difficult to estimate,
and must be done very conservatively. The explict-Euler example. above demonstrates how difficult
the error is to even observe, because the effected variables, for which the error occurs, are left un-
perturbed. For this reason, a robust numerical integration algorithm for large systems must either use
a method like implicit-Euler, which has an exhaustive domain of dependence, or have some technique

for checking that system variables have propagated far enough.
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Figure 2.1 - A Diode in Free Space
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Figure 2.2 - An MOS Nand Gate
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Figure 2.3 - Floating Capacitor Example

Figure 2.4 - Floating Voltage Source
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Figure 2.5a - Floating Inductor Example

Figure 2.5b - Floating Inductor Equivalent Circuit



Figure 2.6 - Stiff Resistor-Capacitor Circuit
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CHAPTER 3 - NUMERICAL TECHNIQUES

The implicit multistep integration algorithms used in general purpose circuit simulation pro-
grams like SPICE2 [ﬁ] and ASTAP[3] have proved to be extremely reliable, but are computationally
expensive wl.:en applied to large systems. This is because each step of the numerical integration re-
quires the solution of a large implicit nonlinear algebraic system. Two approaches have been used to
reduce the computation time required by these methods. Decomposition techniques have been ap-
plied to improve the efficiency of the solution of the large aléebraic systems generated by implicit
integration methods, and less computationally demanding semi-implicit numerical integration algo-
rithms have been developed. In this chapter we will start by demonstrating that the implicit multistep
integration algorithms used in general purpose circuit simulation programs have the three key prop-
erties described in Chapter 2, charge conservation, exhaustive domain of dependence and stiff stability.
Following, the relaxation algorithms that have been used in circuit simulators for solving the large
nonlinear algebraic systems generated by implicit integration methods will be described. Then the
semi-implicit integration methods used in special purpose programs like MOTIS[7], MOTIS2[8], and
SPLICE[45] will then be analyzed with respect to their domain of dependence and stability proper-
ties. Finally, we will end this chapter by comparing some of the special purpose integration algorithms

with algebraic relaxation methods.

SECTION 3.1 - NUMERICAL INTEGRATION IN GENERAL~-PURPOSE -SIMULATORS

Most of the general-purpose circuit simulation programs use implicit multistep integration al-
gorithms applied to the state variable charge (and if inductances are included, also fluxes). That is,

given a system of the form

G(x(0), u(n)) = flx(n),u(n), [3.1]
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where x(#) € R" is the system state, usually the vector of node voltages appended by inductor cur-
rents, u(f) e R’ , is the vector of inputs, and is continuously differentiable with respect to ¢,
f:RxR' - R", continously differentiable, is usually the vector of sums of currents entering a node,
and g:R"xR’ -— R" , continously differentiable, is usuvally the vector of node charges or fluxes. A
function, ; is defined such that}(q(x(t)).u(t)) = f(x(f),u(?)). Using such an}, Eqn. (3.1) is con-

" verted to a system in normal form,

4, uD) = £ @), u(). [32]

One of the collection of multistep integration methods is then used to solve Eqn. (3.2). The general

form for a multistep integration method applied to Eqn. (3.2) is

k ! A
Eai Q('c (7];'_})’ u(fm_i)) - hmzﬁif (‘I(;‘\ (Tm_.i))i u(“'m..i)) [3'3]
i=0 i=0
which is identical to
L A ! A
3 0y (% (Ty)s Ut D) = by 2 BfX (Tys t(Ta)) (3.4]
i=0 i=0

where k,] are postive integers, ap = 1,and «, B, e Rfor0<i<k,0<j< ! depend on the inte-
gration method and the ratio of the timesteps &, m — max(k,/) < i < m. For example, the fixed-
timestep explicit-Euler algorithm used for examples in Chapter 2 can be derived from Eqn. (3.4) by
settingk=1, /= 1,00 = 1,0, = —1,B, = 0,and B; = 1. To derive implicit-Euler the coef-
ficients remain the same except B, = 1,and 8; = 0.

Not all collections of a *s and B's produce useful numerical integration methods. Consistency
is one limitation on the choice of coefficients. It is well known that for a multistep method to be

consistent,
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and

k 1
zi «; + 23} = 0
i=1 i=0
where it is assumed that ay = 1[1]. In addition, if B, = O the integfation method is said to be ex-
plicit, otherwise, the method is implicit.
When a multistep method is applied to a system of the form of Eqn. (3.2), the state at the m*

step, x (7..) , is computed by solving

qx (1), u(r,)) + By Bof(X (1), u(t,)) + [3.5]

:z‘ia,q(:'?(f,,,_,), u(r,_)) - hmizl;ﬂﬂft\ (i) u(tpy_) = O.
for % (r,) given x (1) , g(x (1)), u(r)), and fix(s,), u(x)) forallj < m.

Implicit nonlinear algebraic systems generated by integration methods are usually solved using
the iterative Newton-Raphson(NR) method. The NR algorithm is used because it is guaranteed to
c‘.mverge if the initial guess is close enough to the exact solution. From this observation it follows that
as the exact solution to the differential equation is a continous function, it is possible to pick a
timestep small enough to insure the NR algorithm will converge. Also, the NR algorithm will con-
verge independent of the stiffness of the system, which follows from the observation that the NR al-

gorithm will solve a linear problem exactly in one step.
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The general Newton-Raphson iteration equation to solve F(x) = 0 where x ¢ R" and

F:R" =+ Ris
Jx®) * = 2 Y) @ = FxkY) [3.6]

where J; is the jacobian of F with respect to x. The iteration is continued until [[x* = x*-!]| < eand
F(x*) is close enough to 0. If the Newton algorithm is used to solve Eqn. (3.5) for x(7,), the residue

at the k™ step, F(x*(7,)), is

FGt(r,)) = q@*(r), u(r,)) + Bofix(r,), ulry)) + [3.7]

k . [}
S g (s W) = by DB Gy Uy )

i=1 i=1
and the Jacobian J:(x*(+,)) is
a
T (1)) = o (5 ) = BoglR* (), ) [3.8]

Then J?"*'(f,,) is derived from f"(f_) by solving the linear system of equations

Jxk(r,)) ¥ (r,) = 25(r,)] = = F(r,)) [3.9]

The Newton iteration is continued until sufficient convergence is achieved, that is
f%+1(s,) — x*(r,)[ < eand F(x¥(r,)) is close enough to zero.

Note that here, even if the integration algorithm is explicit ( B, = 0), Eqn. (3.5) will still be
an implicit algebraic problem with respect to x (,,)- This occurs because the multistep algorithm was

applied using charge as a state variable, and charge is a nonlinear function of x.
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One of the important reasons for applying the integration method to the system in the form of
Eqn. (3.2) is that the charge conservation property of Definition 2.5 holds for any consistent multi-

step method.

Theorem 3.1: Any consistent multistep method of the form of Eqn. (3.3) has the charge conservation

property. B

Proof of Theorem 3.1
Let the system of Eqn. (3.1) be of type S, as given in Definition 2.5. To show charge conser-

vation, the vector elements in Eqn. (3.4) are summed to form

n k n [
S S a g (% (1 gy ) = Dy S BFAR (s T ) [3.8]
i=1j=0 = i=1  j=0

Interchanging summations yields

k n U n .
D R ) WD) = iy 2B DS (T T D) [3.9]

j=0 i=1 j=0 i=1

Since the original system is of type S, é ‘j;(.c (T p)t(Tmy)) = 0. Substituting into Eqn. (3.9) and

using that g = 1,

1 k n .
i=21qi(§(1'ln)v u('f'")) = - lzaqul‘(’c(fnt—j)’ u(‘r’n_j)) ]. [3.10]

Jj=1 i=l

Assuming that charge has been conserved up to the m* step ‘ilq,»(? (7)) = Kforj < m. Thenas

k
21“ , = —1 because the method is assumed consistent,
J-
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Sgix (1), u(r,)) = K, (3.11]
i=1

which proves the theorem 8.

Exhaustive domain of dependence is also easy to show for most implicit multistep methods.

Theorem 3.2: Any implicit multistep method with @; # 0 has an exhaustive domain of dependence

when applied to a system of the form x(¢) = Ax(f), where x(f) €« R",and 4 ¢ R".R

Proof of Theorem 3.2

The general form for a multistep method applied to x(r) = .Ax(/) is

k [
E“i'? (T = hmEBiA? (Tm—d)- [3.12]
i=0 . i=0

Reorganizing and using the fact that @y = 1,

k i
2r) = U= hBoAT L D08 (1) + by S BAR (1) )
i=]

i=1

Since the method is implicit, B, # 0, and for small A, [7 — h,8,4)-! can be expanded to yield:

2(ra) = U+ hofioA + -l fod) + %(h,,,poﬁ +.1May = BAR (tpp) + [3.13]

-1 k ‘A ! A :
U = BpBoAT [ D aix (1) + by D BAX (1) )

i=2 i=2
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Following the same argument as presented in Section 2.2.4, the variable fr\,(r,,,_,) is in the domain of
dependence of 2,-(1',,,) if the i** element of 4" is nonzero for some n, which matches the differential
equation and therefore proves the theorem. B
The general qﬁestion of the region of stabilit)} for multistep integration methods has received
considerable attention[1,42,46] and the wealth of material on this question will not be reproduced
here. Instead, we will mention the results that are most critical for circuit simulation applications.
Perhaps the most important result is that there are no A-stable multistep integration methods whose
local truncation error is of order higher than A3. This is known as the Dahlquist barrier{42]. For this
'reason. the program' SPICE[2] uses a combination of the implicit-Euler mentioned in Chapter 2 and
the trapezoidal rule (correspondingtoay = 1,a; = —=1,8, = 0.5,B8; = 0.5) and as a user op-
tion, can also use the variable-order (up to six) backward-difference methods[1]. The program
| ASTAP[3] uses the variable-order backward-difference .methods.' The first and second order
backward-difference methods are A-stable, but the higher order backward-difference integration
methods are only stiffly stable. By this, it is meant that the region of stability for these methods in-
clude the real line in the open left-half plane of ¢ and some sections in the open left-half plane about

the real line[1].

SECTION 3.2 - RELAXATION DECOMPOSITION

As mentioned above, the implicit multistep integration methods used in all the general-purpo;e
circuit simulation programs require solving an implicit system of nonlinear algebraic equations at each
timestep. The algebraic system is usually cast into the form F(x) = O where F: R" - R", and
x € IR", which is then solved using the iterative Newton-Raphson(NR) algorithm as in Eqn. (3.6).

The computation of the Newton iterates can be viewed as two pieces, evaluating the function
F, and its Jacobian J;, and performing a matrix solution. The computational cost of performing the
matrix solution grows superlinearly with the size of the problem, as n¢, where n the number of

equations in the systemand « > 1. Circuit simulation programs are intended to handle large-circuits,
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and as the Jacobian matrices are spal;se, sparse matrix techniques[40] are used to keep « as low as
possible. It has been empirically observed that the time to perform a sparse matrix solution grows as
1.2 <€ a < 1.4 for the matrices associated with circuit simulation problems. The computational cost
of a function eval@ion grows linearly wi;h the size of problem, but for circuit simulation problems,
the evaluation of F and J; is a complicated task. For each element (transistor, capacitor, re;sistor, etc)
in the circuit, the currents, the charges and their derivatives must be evaluated. For example, the
evaluation' of the currents and charges associated with one MOS transistor requires more than a
hundred floating point operations.'

Bec;gmse the computation involved in calculating each transistor’s charge and current charac-
teristic is much more complicated than the simpler operations involved in the matrix solution, for
small to medium sized problems the function evaluation time dominates the sparse matrix solution
time. It is only when the problem involves more than several thousand equations that the matrix
solution time dominates. For this reason, the most useful decomposition techniques applied to circuit
simulation problems reduce both the matrix solution time and the function evaluation time.

Two approaches to decomposition have been used in circuit simulation programs. The first,
which we will not describe in detail here, is refered to as tearing decomposition. For linear equations,
tearing is a form of Block LU Factorization[4, 5, 47, 48, 49, 50). Its application to nonlinear systems
has led to Multi-level Newton algorithms[52]. The second approach, closer to the the focus of this
thesis, has been to apply the various forms of the iterative relaxation-Newton or SOR-Newton
algorithms[21, 53].

As background for the relaxation-Newton algorithm, we will will present an extremely brief
description of the Gauss-Jacobi and GausS-Seidel relaxation methods starting with the algorithms for
linear systems. A complete discussion can be found in [28].

The linear problem Ax — b = 0 where x = (x!,...,x)7, b = (b',...,5)" , x, b, ¢ R, and
A = (a,),A € R™ can be solved exactly using gaussian elimination (with pivoting) given 4 is

nonsingular. For matrices with certain properties, it is also possible to solve for x in an iterative
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fashion, where each step of the iteration involves inverting a sequence of one-dimensional problems.

For example, there is the Gauss-Jacobi relaxation algorithm

Algorithm 3.1 (Gauss-Jacobi Algorithm for solving Ax — b= 0)

The superscript k is the iteration count and ¢ is a small positive number. -
k<0;
Guess some x°.
repeat §
kek+1

. 1 i-1 "
foreach (i e {1,.,n} ) x} = Ta[ b - (nga' A1+ ;-% a X1

buntl ( Ixt —x*-1] <e)
n

The Gauss-Seidel relaxation algorithm is very similar, and can be generated from Algorithm 3.1 by

altering the update equation for x} to

i-1 n
k 1 k k-1
X; = a_ii[b‘ - Z:la(-,-x,- + 2 a;x; ].

J=i+l
The Gauss-Jacobi algoﬁthm can be written in matrix form as
ik + k! = b
and the Gauss-Seidel algorithm can be written in matrix form as
(L+D)ix* + Ux*! = b

where L,D,U € IR™" are strictly lower triangular, diagonal, and strictly upper triangular respectively,

.and are such that4 = L + D + U. Taking the difference between k and k — 1 iteration we get
xk = xk1 o D=l + (Y = xb),

for Gauss-Jacobi, and
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xk o k=1 @ (L + D) MUkt - xh,

for Gauss-Seidel. It follows that the Gauss-Jacobi relaxation algorithm will converge if the spectral
radius of D-!(L + U) is inside the unit circle and Gauss-Seidel relaxation algorithm will converge if
the spectral radius of (L + D)-1Uis iﬁside the unit circle. This will be true, for example, if 4 is strictly
diagonally dominant [28].

Now consider using the Gauss-Seidel and Gauss-Jacobi relaxation algorithms to solve the
nonlinear system F(x) = 0 where F(x) = (fj(x),..., f,(x))7 , and f:IR" - R. At each step of the

relaxation, the x, element is updated by solving the implicit algebraic equation,

j}(xf,..., x,!‘_,, xk+1, xil_‘,_ Lyoees x,f) = 0. [3.154]

for the Gauss-Jacobi, and

FOk Lk kL -0 [3.155)

for Gauss-Seidel.

It is possible to use the Newton-Raphson algorithm to accurately solve the implicit algebraic
systems of Eqn. (3.15a) and Eqn. (3.15b) at each step, but this is not essential. That is, it has been
shown that the asymptotic rate of convergence of the nonlinear relaxation is not reduced if rather
than solving the implicit algebraic systems at each step, only one iteration of the Newton method is
used[21]. The algorithms so generated are referred to as the relaxation-Newton methods. The
Gauss-Jacobi-Newton algorithm for solving systems of the form of Eqn. (3.14) is

afix*
H = af - —f:%)-"f,(x") [3.164)

and the Gauss-Seidel-Newton algorithm is



Page 43

af (x*
xkHla XK - ._f‘aT-‘f,(x"“") [3.165]
where x**1 = (xf*+1,..., x4, xF,..., x6)T.

There is the following general theorem about the local convergence of relaxation-Newton

methods.

Theorem 3.3: If a given F:IR" - RR" is continously differentiable, and if there exists an x € IR" such
that F(x) = 0, then if the Jacobian of F at x, J,(x), is strictly diagonally dominant there exist some
& > 0 such that both the Gauss-Jacobi-Newton or the Gauss-Seidel-Newton iterations applied to F

will converge for any x° for which [xo—x[ < 5.8

The proof of the above well-known theorem can be found in the references[21]. As a direct conse-
quence, we have the following theorem for the nonlinear algebriac systems generated by consistant

multistep integration methods.

Theorem 3.4: Let the Gauss-Seidel-Newton or Gauss-Jacobi-Newton relaxation algorithm be used
. o

to solve for x (.») in Eqn. (3.5). If f{x,u) is continously differentiable, a—:(x,u) is strictly diagonally

dominant uniformly over all x, and x (7.-1) is used as the starting point for the relaxation, then there

exists an 4 such that for all h,, € A the relaxation will converge to the solution of Eqn. (3.5). B

As an intuitive explanation for why Theorem 3.4 should be true, and why nonconvergence should
ever occur, consider implicit-Euler applied to Eqn. (2.2) with C(x,#) = C, where C is strictly

diagonally dominant.

Cxir,,.) = Cx(7p_1) + h,, f(x(1,), u(,)). [3.17]
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In the limit as A, - =, Eqn. (3.17) becomes equivalent to solving f(x(r,,), ¥(r,)) = O for x(z,) by
relaxation. Since little is assumed about f other than Lipschitz continuity, it is unlikely that this
problem can be solved, in general, with a relaxation method. However, in the limit as the timestep

becomes small, Eqn. (3.17) becomes
Cx(t,) = b

where b = Cx(1,_;). This problem can be solved by relaxation because C is strictly diagonally

dominant. We formalize this observation in the proof of Theorem 3.4.

Proof of Theorem 3.4:

It is sufficient to show that the system of Eqn. (3.5) will satisfy the conditions of Theorem 3.3
| for small enough 4,,. The Jacobian for the function defined by Egn. (3.5), J, is given in Eqri. (3.8).
That J; is strictly diagonally dominant for #,, small enough follows directly from the observation that
in tke limit as &, - 0, J; approaches -g%- which is a strictly diagonally dominant matrix by assump-
tion. That x (7,.-1) is close enough to the solution of Eqn. (3.5) for a small enough £, follows from
the assumption that the multistep method is consistent. Consistency implies 9 (T = .;'\ (Thg) is @
solution to Eqn. (3.5) for k, = 0 and from the Lipschitz continuity of ¢ and f which imply that
x () is a continous function of /M.

The relaxation-Newton methods have become popular for solving circuit simulation problems
for two reasons. The first is that, as mentioned in Chapter 2, for a broad class of circuits the
capacitance matrix is diagonally dominant and therefore the relaxation-Newton algorithms are guar-
anteed to converge if the timestep is made small enough. They are unlike the standard NR methods
in that the timestep required is not truly independent of the problem stiffness, an issue which will be
presented more thoroughly at the end of this chapter. The second reason for the popularity of the
relaxation-Newton methods is that with proper application, it is possible to both avoid matrix sol-

utions and reduce the computation involved in function evaluation. As the system Jacobian is sparse,
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the i* component of the function F defined in equation 3.5, F;, will be a function of only a few
components of the vector x. During the relaxation-Newton proces; this sparsity can be exploited by
noting whether or not the components of x on which F; depends have changed significantly, and if
none of them have, not reevaluating F,. In addition, if F; is close enough to 0, x}*+! will be equal to x}
aﬁd need not be recomputed.

If implemented as described above, such a partial evaluation scheme involves substantial
checking, to see if F, should be reevaluated. This checking can overwhelm the savings due to partial
function evaluation. To avoid this, practical relaxation-Newton algorithms are implemented using a
selective trace technique[33] that simultaneously determines the order in which the relaxation

equations are solved and the portion of the function that must be recomputed.

SECTION 3.3 - SEMI-IMPLICIT NUMERICAL INTEGRATION METHODS

Although certain implicit multistep integration methods have all the desirable properties de-
scribed in Chapter 2, they are computationally expen;ive when applied to very large systems partly
because each timepoint requires a large matrix solution. Semi-implicit integration methods, as the
name implies, are’ constructed to be as implicit as possible without makiﬁg it necessary to perform
standard matrix solutions to compute the timepoints. In this section we will discuss three semi-
implicit methods, all of which have been used in circuit simulation applications. In order to simplify

the presentation of these algorithms, they will be considered as applied to the following test problem,
X)) = Ax(t)  x(0) = X, [3.18]

where x(f) € IR", and 4 ¢ R"*, The properties of these algorithms with respect to domain of de-
pendence and stiff-stabilityA will be considered. This test problem is too simple to indicate the inte-
gration methods’ charge conservation properties, and that issue will not be considered.

The simplest of the semi-implicit methods is the following mixture of explicit and

implicit-Euler{5,7].
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x(1p) = X(1y_y) + hpul Dx(7,) + (L + Ux(7p_p) ] [3.19]

where L,D,U ¢ IR"* are strictly lower triangular, diagonal, and strictly upper triangular respectively,
and are such that 4 = L + D + U. Note that this algorithm is identical to solving the algebraic
equations generated by implicit-Euler applied to Eqn. (3.18) with with one iteration of a Gauss-
Jacobi relaxation scheme, and therefore the algorithm is referred to as the Jacobi-semi-implicit

method. Solving for x(7,,) leads to
x(rp) = (I=hyD) T + holL + U) 1 x(5p_y)- [3.20] -
Since (I — A,.D) is diagonal, its inverse, if it exists, can be computed trivially. In addition, we have

the following stability fesult (See [6] for similar results).

Theorem 3.5: If the matrix 4 in Eqn. (3.18) is diagonally dominant with negative diagonal entries,
or A is lower or upper triangular, then tﬁe region of stability for the Jacobi-semi-implicit method is

the open left-half plane of {.B

This theorem is of practical value because the systems of differential equations that describe circuits
with resistors and grounded capacitors will be of the form of Eqn. (3.18) and will have the diagonal

dominance property.

Proof of Theorem 3.5:

To prove the first part of the theorem it is sufficient to show that the matrix M defined by

M= (I=h,D) I + hy(L+ )] [3.22]
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has a spectral radius p(M) < 1 if 4 is diagonally dominant and has negative diagonal entries, or if
A is upper or lower triangular and has its eigenvalues in the open left-half plane of ¢. If 4 is upper
or lower triangular, the eigenvalues of 4 are the diagonal entries, which must be negative by as-

sumption. If A is triangular, M will be triangular, and the eigenvalues of M will be its diagonal entries.

S -
1 + h,la;l

To prove the theorem for the case where A is diagonally dominant and has negative diagonal entries,

The i diagonal entry of M can be calculated explicitly, and is which is less than 1.
we use the fact that the spectral radius is bounded by any induced norm. In particular,

o(M) € IM[l, = max, f:l Im,, | , which can be calculated from
= .

n

n 2 layl
e
AL _!l__’_

J=1 —_— a
7 +|a|

m

and is less than 1 by the diagonal dominance property of 4. Therefore, the eigenvalues of M are less
than one. B

Although the stability of the Jacobi-semi-implicit integration method is substantially better
than the explicit-Euler algorithm used in Chapter 2, particularly for almost diagonal problems, the
domains of dependence are identical. This can be seen by comparing Eqn. (3.19) to Eqn. (2.16). It
is possible to construct semi-implicit integration methods that have larger domains of dependence
than the Jacobi-semi-implicit integration method without requiring a matrix solution. In particular,

there is the Seidel-semi-implicit method,
x(t,,) = x(7,_1) + h,[Dx(z,) + (L + Ux(7p_1) ] [3.23]
Solving for x(,,) leads to

x(r,) = (I= k(L + D)"Y + hy,Ux(r,,_y). [3.24]
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where (I - h,(L + D))-! is easy to compute because the matrix is triangular. The Seidel-semi-

implicit method has stability properties that are similar to the Jacobi-semi-implicit method.

Theorem 3.6: If the matrix 4 in Eqn. (3.18) is diagonally dominant, with negative diagonal entries,
or if A is lower or upper triangular, then the region of stability for the Seidel-semi-implicit method is

the open left-half plane of ¢.B

For the case of 4 diagonally dominant with negative diagonals, Theorem 3.6 follows from arguments
similar to those used to ;.n'ove Theorem 3.5. If A is lower triangular, the Seiciel-semi-implicit algorithm
is identical to implicit-Euler which is A-stable, and if A is upper triangular the algorithm is identical
~ to the Jacobi-semi-implicit algorithm.

| The Seidel-semi-implicit method does not have obviously better stability properties than the
Jacobi-semi-implicit method, but it has the clear advantage of a larger domain of dependence. To see

this, consider the expansion of (I — A, (L + D))-! in Eqn. (3.24) for small A,,

x(r,) = [I+h,(L+ D) +h3(L + D)? + (L + D)* + .JU + hpUlx(7p,_y). [3.25]

If A is lower triangular, the domain of dependence of the Seidel-semi-implicit method is exhaustive.
As long as the lower triangular portion of A4 is nonzero, the domain of dependence of the Seidel-
semi-implicit method will be larger than that of the Jacobi-semi-implicit method.

The Seidel-semi-implicit method includes the domain of dependence due to arbitrarily high
powers of the lower triangular portion of 4. The next semi-implicit method we will consider, the
symmetric displacement algorithm[54,6], also includes the domain of dependence due to arbitrarily
high powers of the upper-triangular portion of 4. Applied to Eqn. (3.18), the symmetric displace-

ment algorithm is the following two step process,

X(tmp1/2) = X(T) + 02580 2L + D)x(Thp1/2) + (D +2Ux(1,_1)]  [3.264)
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X(5p) = X(tmy1/2) + 0258, QU + D)x(tpyy172) + (D +2L)x(7,) ) [3.266]

Note that if 4 is diagonal, the symmetric displacement algorithm is precisely the trapezoidal rule.
The symmetric displacement algorithm has several important properties. The local truncation
error is of order 3, unlike the other semi-implicit methods, whose error is of order 4%[6]. In addition,

it has the stability properties given in the following theorem.

Theorem 3.7: If the matrix 4 in Eqn. (3.18) is strictly diagonally dominant, with negative diagonal
entries, or if 4 is symmetric, lower triangular or upber triangular, then the region of stability for the

symmetric-displacement method is the open left-half plane of ¢.B

The proof of Theorem 3.7 for the case where A strictly diagonally dominant with negative diagonal
terms follows from the same reasoning as used in the proof of Theorem 3.5. The proof for case of
A symmetric can be found in [6).

As indicated by Theorem 3.7, the stability properties of the symmetric displacement algorithm
are better for near symmetric problems than those of the Seidel-semi-implicit method, but symmetric
displacement has a smaller region of stability if the problem is almost lower triangulér. The symmetric
disf;lacement algorithm is superior to the Seidel-Semi-implicit method in two important'aspects, its
local truncation is of a higher order, and it has a larger domain of dependence for problems that are

not lower triangular. To show this, Eqn. (3.26a) and Eqn. (3.26b) are reorganized as
x(1py) = [I = 0.25h,(D + 2L)1"' [I + 0.25k,(D + 2U)] [3.27)
[l - 0.25k,(D + 20T~ I + 0.25k,(D + 2L)1 x(1,,).

The expansion of [J — 0.254,(D + 2L)]-! will include all the powers of L, and the expansion of

[7 = 0.25h,(D + 2U)]-! will include all the powers of U. Note that this does not mean that tbe
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symmetric displacement algorithm has an exhaustive domain of dependence. . For example, the do-
main of dependence of 42 is not necessarily the same as L2 + U2, there are possibly addition de-
pendencies due to the cross-product terms LU and UL.

None of the sémi-implicit methods mentioned above match the stiffly-stable implict multistep
method for either stability or domain of dependence. Howevér, they have proved to be extremely
useful for a variety of circuit simulation applications where the either the problem is not that stiff, or
is of a mostly diagonal or lower triangular form. For this reason, extensions of the semi-implicit
methods mentioned above to the case where C(x,u) is not diagonal have been pursued([55,6]. Similar

results about region of stability for these extensions have been shown.

SECTION 3.4 - RELAXATION VS SEMI-IMPLICIT INTEGRATION

The relaxation-Newton algorithms described in Section 2 present a bound on the numerical
integration tﬁnestep to insure that the rélaxation converges. This bound is similar to the bound on the
timestep to insure stability of the semi-implicit numerical integration methods. In order to demon-
strate briefly the similarities of the two approaches, we wil end this chapter by comparing the the
simpliest of each type of method, the Jacobi-relaxation algorithm applied to solving the implicit-Euler
equation, and the Jacobi-semi-implicit algorithm. Again, to keep the analyses simple, we will use the
test problem of Eqn. (3.18)

The timepoint update equation for the Jacobi-semi-implicit algorithm is
x(1,) = (U= hpD) [T + hp(L + U) W1y [3:27]
The iteration update equation o.l' the Jacobi relaxation applied to implicit-Euler is
ey = xk(r,) = (T = hpD) " gL + D Ix¥(r,) = 1m0 [3.28]

The semi-implicit method will be stable if



Page 51

LUI=m,D) T +h,(L+UN] < 1
and the relaxation will converge if
ol =k, D)k, (L+ 1] < 1

Both spectral radii will be less than 1 for any A, if 4 is diagonally dominant and has negative diagonal
elements. If 4 is not diagonally dominant, but has negative diagonal elements, the method that will
allow the larger timestep will depend on the signs and magnitudes of the lower and upper triangular
portions of A4.

Although the size of the largest allowable tin_u.estep does not conclusively favor semi-implicit
integration methods or relaxation methods, relaxation methods are clearly superior with respect to the
relative domains of dependence. By carrying the relaxation iteration to cdnvergence, it is assured that
the information at a given timestep has propagated "far enough". Therefore, relaxation methods
bave the exhaustive domain of dependence property, and, as described above, the semi-implicit

methods do not.
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CHAPTER 4 - THE WAVEFORM RELAXATION ALGORITHM

The multistep numerical integration algorithms for solving ODE systems can become ineffi-
cient for large s&steins where different state variables are changing at very different rates. This is
because the direct application of the integration method forces every differémial equation in the
system to be discretized identically, and this discretization must be fine enough so that the fastest
changing state variable in the system is accurately represented. If it were possible to pick different
discretization points, or timesteps, for each differential equation in the system so that each could use
the largest tiu'testep that would accurately reflect the behavior of its associated state variable, then the
efficiency of the simulation would be greatly improved. This is refered to as the multirate problem[1],
and numerical integration methods that allow for different state variables to use different timesteps
are called multirate integration methods.

The selective trace technique for improving the efficiency of relaxation-Newton methods
(Section 3.2) can be thought of as a limited multirate integration method. If, at a given timestep, the
x, variable is at its equilibﬁu;n (or stationary) point, and the x, variables on which x, depend do not
change, then x; will retain the value it had before the timestep. In fact, x; will never be recoﬁputed
until some x, on which it depends changes. If x, is bypassed for several timesteps the effect is the same
as if a large timestep were used to compute x, Therefore, selective trace algorithm exploits the kind
of multirate behavior that stems from as system in which most of of the variables remain at an equi-
librium state. The selective trace algorithm can not, however, exploit of a system for which the state
variables have different rates of motion, but are not at equilibrium.

Techniques based on semi-implicit integration algorithms have been used both to achieve the
kind of limited multirate integration described above, and to achieve full multi-rate integration
methods[4,57]. However, as pointed out in Section 3.3, the semi-implicit integration algorithms do
not have all of the properties that make a fmmerical method for circuit simulation robust. A different

approach is to somehow decompose the differential equations before introducing discrete approxi-
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mations. lf.the differential equations are solved independently, the numerical integration method
used for each system can pick its own timestep, thereby achieving full multi-rate integration. In ad-
dition, since any ﬁumerical integration algorithm can be used to solve the decomposed systems, one
that retains all the desirable numerical properties described in Chapter 2 can be used.

One method for decomposing differential equations is the family of Wavefoﬁn Relaxation al-
gorithms [11]. WR algorithms have captured considerable attention due to their favorable numerical
properties and to the success in applying the WR algorithms to the solution of Metal-Oxide-
Semiconductor (MOS) digital circuits. In this chapter the theoretical basis for the WR algorithm will
be presented. Waveform relaxation will be introduced with a simple example, which will be followed
by the general algorithm applied to systems of the form of Eqn. (2.2). Then a new proof of the
convergence, one that demonstrates that the WR algorithm is a contraction mapping in a particular
porm, will be presented. Extensions to the basic algorithm that allow for modified iteration equations
(including discrete approximations) will be presented and it will be shown that the convergence of
such extensions follows directly from the proof that the WR algorithm is a contraction mapping. We
will end this chapter by presenting a déﬁvative of the WR algorithm, the waveform
relaxation-Newton(WRN) algorithm, which is the extension to nonlinear differential equations of the

relaxation-Newton algorithm presented in Section 3.2.

SECTION 4.1 - THE BASIC WR ALGORITHM

We will start this section with a simple illustrative example, and then present the general WR
algorithm. Consider the first-order two-dimensional differential equation in: x(f) ¢ R? on

t € [0,T).
x.l = fl(x,, X2y 9] Xl(O) = X10 [4.14)

X = fH(xpx0)  x(0) = Xy [4.18]
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The basic idea of the waveform-relaxation algorithm is to fix the waveform x,: [0,7] - IR and solve
Eqn. (4.1a) as a one dimensional differential equation in x;(#). The solution thus obtained for x;(t)
can be substituted into Eqn. (4.1b) which will then reduce to another first-order differential equation
in one variable, xz(r)'. Eqn (4.1a) is then re-solved using the new solution for x5(#) and the procedure
is repeated.

Alternately, fix the waveform x,(f) in Eqn. (4.1a) and fix x,(#) in Eqn. (4.1b) and solve both
one dimensionai differential equations simultaneously. Use the solution obtained for x, in Eqn.
(4.1b) and the solution obtained for x; in Eqn. (4.1a) and re-solve both equations.

In this fashion, iterative algorithms have been constructed. Either replaces the problem of
solving a differential equation m two variables by one of solving a sequence of differential equations
in one variable. As described above, these two waveform relaxation algorithms can been seen as the
analogues of the Gauss-Seidel a;1d the Gauss-Jacobi techniques for solving nonlinear algebraic
equations. Here, however, the unknowns are waveforms (elements of a function space), rather than
real variables. In this sense, the algoritbms are techniques for time-domain decoupling of differential
equations.

The WR algorithm for solving systems of the form of Eqn. (2.2):

Algorithm 4.1 (WR Gauss-Seidel Algorithm for solving Eqn. (2.2))

The superscript k denotes the iteration count, the subscript i denotes the component index of a
vector and ¢ is a small positive number. '
k<0 .
Guess waveform x9(¢) ; ¢ € [0,7] such that x%(0) = x,
for example, set x°(t) = X, t € [0,T]);

repeat §

kek+1

foreach(ie {1,.,n}){

solve
i
E‘ Ci Xty vonr Xy XED, ooy XE7Y, WDRS +

E Gty ot G o 2, WD —

Jmit
£k oo 38, T o XL 0) =0

for ( x*(1) ; t € [0,T]), with the initial condition xt0) = X,
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}
buntil ( ffxt = x*1] g ¢)

that is, until the iteration converges.
]

Note that the differential equation in Algorithm 4.1 has only one unknown variable x}. The variables
xi5l, ..., x-1 are known from the previous iteration and the variaB!es X}, ..oy XXy have already been
computed. Also, the Gauss-Jacobi version of the WR Algoﬁtﬁm for Eqn. (2.2) can be obtained from
Algorithm 4.1 by replacing the foreach statement with the forall statement and adjusting the iteration

indices.

SECTION 4.2 - CONVERGENCE PROOF FOR THE BASIC WR ALGORITHM

If the matrix C(x,u) is diagonally dominant and Lipschitz continous with respect to x for all v
then both the Gauss-Seide] and the Gauss-Jacobi versions of Algorithm 4.1 are guaranteed to con-
verge. In [12], it was shown that the WR algorithm converges when applied to Eqn. (2.2) if C(x,u)
is diagonally dominant and independent of x. As many systems that are modelled in the form of Eqn.
(2.2) include a dependence of C on x, we will present a more generﬂ convergence proof that extends
the original theorem to include these systems. In addition, we will prove the WR algorithm is a con-
traction in a simpler norm than the one used in the original theorem.

We will prove the theorem by first showing that if C(x,u) is diagonally dominant, then there
exists a bound on the x*'s generated by the WR algorithm that is independent of k. Using this bound,
we will show that the assumption that C(x,u) is Lipschitz continuous implies there exists a norm on

IR~ such that for arbitrary positive integers j and k,
15410 - ol < vIF4O - F01 + 11540 - o1 + Llixko - do1

forsomey < land j, , < «forallte [0,7]). In the properly chosen norm f| « |, on C([0,7], R*)

the above equation implies that
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ux-k+1 _.x'j-l-lub < su.x-,k_‘\-jub

A
where ¥ < 1 and therefore the sequence {x*} converges by the contraction mapping theorem. As
x*(0) = x,for all k, {x*} converges as well.

Before formally proving this basic WR convergence theorem we will state the well-known

contraction mapping theorem{35], and a few lemmas which will be used in the course of the proof.

The Contraction Mapping Theorem: Let Y be a Banach space and F:Y -~ Y. If F is such that

1FQ) = F(x)| < yly—x| forallxy e Y, for some y € [0,1), then F has a unique fixed point;
such that Fi (; ) = ; Furthermore, for any initial guess y° € Y the sequence {y* ¢ Y} generated by

the fixed point algorithm 3* = F(y*-!) converges uniformly to;.

Lemma 4.1: If C(x,u) e R™" is diagonally dominant uniformly over all x € IR", ¥ € IR” then given any
collection of vectors {x1, ..., x"}, x' ¢ R", and any v € IR’, the matrix C?(x!, ..., x", ) € R™" defined
by Cp(x, ..., x" u) = C,(x',u) is also diagonally dominant. In other words, let C? be the matrix
constructed by setting the i row of C? equal to the # row of the given matrix -C(x‘, u). Then this new

matrix is also diagonally dominant. B
Lemma 4.1 follows directly from the definition of diagonal dominance.

Lemma 4.2: Let C ¢ IR™" be any strictly diagonally dominant matrix. Let L strictly lower triangular,
U strictly upper triangular, and D diagonal, be such that C = L + D + U. Then

iD-\(L + . < 1and [(D +L)'U[|. < 1M
Lemma 4.2 is a standard result in matrix theory[28].

Lemma 4.3: Letx,y e C([0,T], IR"). If there exists some norm on R" such that

1501 € yIHO1 + Lix(®O1 + LIy ' [4.2)
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for some positive numbers /;, , < « and y < 1 then there exists a norm I« 0,o0nC(0,7}, R

such that
1z, < alpl, + LixO)] + L0 [4.3]

for some positive number a < 1.H Proof of Lemma 4.3:

Substituting fix(r)dr + x(0) for x(s) in Eqn. (4.2) and performing an analogous substitution

for y(r), multiplying the entire equation by e-¥, and moving the norms inside the integral yields:

MO0 < w01 + he [ 1501 + e M IxO) + [44]

!
Le™ f L) e+ Le P 10 1.

Letf « [, be defined by [f1l, = maxre~*[ /(). This is a norm on C([0,7], IR") for any finite
positive number b > 0 and is equivalent to the uniform norm on C€([0,T], R"). Then Eqn. (4.4) im-

plies

1
150, € vlpl, + maxgzlhe™ fbebfd‘r %0, + he™®1x©@1 +

14
he™ f oebfd‘f I5ly + be™ 101 )

1

And since e-¥J! etdr < 5 then for > /; we can write
-1
. Y+ hb .
X, < -l_l_b"l-“yub + Lix(0) + ALly0)1. [4.5]

=4
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. . . - .. (y+hBY) .
In this case y is less than 1, so there exists a finite B for which T —TE = a < 1. Letthe bin
=
Eqn. (4.5) be set equal to this B to get
120 < alplp + L1x(0)] + ALiyO0)1 [4.6]

which completes the proof. &

Now we prove the following WR convergence theorem for systems of equations of the form
of Eqn (2.2). | ‘
Theorem 4.1: If, in addition to the assumptions of Eqn. (2.2), C(x()u(f)) € R™ is strictly
| diagonally dominant uniformly over all x(¢) € IR" and u(f) € IR"and Lil;schitz continuous with respect
to x(7) for all u(7), and x°(¢) is differentiable, then the sequence of waveforms {x*} generated by the
Gauss-Seidel or Gauss-Jacobi WR algorithm will converge uniformly to the solution of Eqn. (2.2) for

all bounded intervals [0,7].0

Proof of Theorem 4.1:
We will present the proof only for the Gauss-Seidel WR algorithm, as the proof for the
Gauss-Jacobi case is almost identical. The equations for one iteration of the Gauss-Seidel WR algo-

rithm applied to Eqn. (2.2) can be written in matrix form as

A A
.C(xk'”, xk, u).’-‘k+l - f(x"“, xk, u)

where - é',j(x"*', xu) = Gttt oy XY, Xhge xk, u) and
z(x“', xk u) = fixi, ..., x4, xb,, .., xbu).  Let e‘(x**‘, xu) = L,y + Dy — U
where L, is strictly lower triangular, U,,, is upper triangular, and D,,, is diagonal (Note that by
Lemma 4.1, the matrix é is diagonally dominant because C is diagonally dominant). Rearranging the

iteration equation yields:

A
ik+1 = (Lk+l + Dk+])-l [ Uk,,,li'k + f(xk+ly xk’ u) 1 [4.7]
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Taking the difference between Eqn. (4.7) at iteration k + 1 and at iteration j + 1 yields

VY (L + D )T i = Wiy + D) G + [4.8]

A .
(LI(-H + Dk+l)- fA(xk+l» xk’ u) - (l:,’+] + Dj+l)_ f(x"”. Xj, u)

A
Using the Lipschitz continuity of f and that [|(L,,; + Dy,4)"'[l < K for some K < « independent of

x and k (because C(x,u) is uniformly diagonally dominant with respect to x) in Eqn. (4.8) leads to

#4410 - #* 1@l < (KA O - S0l + BKIFO - P01 + [4.9]

DLger + Dead)™" = Wiy + D™ IF Y, 0] +
Byt + Diq )™ Uiy i) = (L + Dy )™ G ¥ (01

where J, is the Lipschitz constant of ; with respect to its first argument, and 4 is the Lipschitz con-
stant .of ; with respect to its second argument. That C(x,u) is uniformly diagonally dominant and
Lipschitz continuous with respect to x for all ¥ implies (L, + D,)-! and (L, + D,)-'U, are also
Lipschitz continuous in the same manner. It then follows that there exist some positive finite numbers

ky, ky, ks, k, such that

110 — D1 = KD 0 - 0+ bKIxR - P 0] + - [4.10]

ks 125 10) = O 1 + kg 1250 = P11 1F 4, Xyl +
k+1opy _ i+l key — k ey — &
[k, I x*+1(r) 01 + klx*) =X 1501 +v1550 - #@0)1

where k; is the Lipschitz constant of (L, + D,)-'U, with respect to its first x argument (see definition

of L,, U, and D, above), k; is the Lipschitz constant with respect to the second x argument, k; and



Page 60

k, are the Lipschitz constants for (L, + D,)-! with respect to its first and second x arguments, and y
is such that [| (L, + D,)-'U,|| < v < 1 independent of k (b); Lemma 4.2).

To establish a bound on the terms in Eqn. (4.10) involving [x*() | and l]; (x/*1, x/,u)] itis
necessary to show that the x*’s and therefore the x*’s and ;’ ( » )’s are bounded a priori. We prove

such a bound exists in the following lemma.

Lemma 4.4: If C(x,») in Eqn. (2.2) is strictly diagonally dominant and Lipschitz continuous then the
x*(#)’s produced by Algorithm 4.1 are bounded indeéendem of k.M
Proof of Lemma 4.4

If | + [ isthe [ norm on IR", by Lemma 4.1 [ (L,,, + D) W4l < 1. From Eqn. (4.7),

A
101 < v1Z2O0 + 1Ly + D)™ 1 X0, 0,01 [4.11]

for some positive number y < 1. As f(x, u) is globally Lipschitz continuous with respect to x, there

exist finite positive constants /;, 4 such that

H;(x.y.u) - ;(w,z,u)ll < hlx=wl + Llly—-2zl [4.12]

for all u,x,y,w,ze R™. From Eqo. (4.11) and Eqn. (4.12) and using the fact that

[ (Lyy1 + Diyy)~11l is bounded by some K < = for all k:

I OT < 71O 1 + BKIAHO1 +5KIO 1 + K17 001 [4.13]

Eqn. (4.13) is in the form to apply a slightly modified Lemma 4.3. Therefore there exists some

« [, such that

14410, < al#0, + (K +LOIXO1 + K1, 0, 0] [4.14]
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where a« < 1. This implies that

141, € UK+ BOIXOD + KIF© 0, 01] + @ 11, [4.15]

for all k. Then, since x|, is bounded by assumption, and [|x*1], = max(o;ne"" fxk+1(e) |,

14101 < T2 —K + B IO + KIf0,0,001 + 1:°0,] = M [4.16)

which proves the lemma. B
In Lemma 4.4 it was proved that [[x*(¢) || is bounded a priori by some M. This implies x*(r) is
A ~
bounded on [0,7]. Using the Lipschitz continuity property of f, a bound, N, can be derived for

A
If (x*+1(r), x*(r), u) || . Applying these bounds to Eqn. (4.10) we get

15+ - #0010 < v1E@O - F01 + | [4.17]

(K + kM + IgN) 165410 = X001 + (K + Miy + kyN) 1550 = X0

where y < 1. Eqn. (4.17) is of the form to apply Lemma 4.3. As x*+1(0) — x/+!(0) = O for all

k.j, Lemma 4.3 implies
g+~ ), < allif - Y, [4.18])

for some norm on C([0,7], R") and for some a < 1. As C([0,7], R") is complete in any one of the
B norms, by the contraction mapping theorem x* converges to some x € 'C([O,T], IR") which is a fixed
point of Eqn. (4.7). Any fixed point x of Eqn. (4.7) is a solution to Eqn. (2.2) if x(0) = x
x*(0) = x,for all k, therefore x* converges to the unique solution of Eqn. (2.2). The sequence {x*}

converges because integration from 0 to T, which maps x(¢) to x(¢) , is a bounded continuous function.
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SECTION 4.3 - NONSTATIONARY WR ALGORITHMS

Algorithm 4.1 is stationary in the sense that the equations that define the iteration process do
not change with the iterations. A straight-forward generalizatipn is to allow these iteration equations
to change, and to consider under what conditions the relaxation still converges [13]. There are two
major reasons for studying nonstationary algorithms. The solution of the ordinary differential
equations in the inner loop of Algorithm 4.1 cannot be obtained exactly. Instead numerical methods
compute the solution with som;e error which is in general controlled, but which cannot be eliminated.
However, the discrete approximation can be interpreu;.d as the exact solution to a perturbed system.
Since the approximation changes with the solutions, the perturbed system changes with each iteration.
Hence, practical implementations of WR that must compute the solution to the iteration equations
approximately can be interpreted as nonstationary methods.

The second reason for studying nonstationary methods is that they can be used to improve the
computational efficiency of the basic WR algorithm. An approach would be to improve the accuracy
of the computation of the iteration equations as the relaxation approaches convergence. In this way,
accurate solutions to the original system would still be obtained, but unnecessarily accurate compu-
tation of the early iteration waveforms, which are usually far from the final solution, is avoided.

In this section we show that nonstationary WR algorithms converge as a direct consequence
of the contraction mapping property of the original WR algorithm. That is, given mild assumptions
about the relationship between a general stationary contraction ma;i and a nonstationary map, the
nonstationary map will produce a sequence that will converge to within some tolerance. And if in the
limit as k -+ o the nonstationary map approaches the stationary map, then the sequence generated
by the nonstationary map will converge to the fixed point of ‘the original map. In later sections we

will lean on these results to guarantee the convergence of implementations of WR-based algorithms.

Theorem 4.2: Let Y be a Banach space and F, F:Y - Y. Define y**! = F(*) and ;"*‘ w F"(;") .

If Fis a contraction mapping with contraction factor y (See section 4.2), | F(y) — F*()] < 8" for
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allye Y, and z ¢ Y, is such that z F(2), then for any ¢ > O there exists a § < 1 such that if

8 < & for all k then lim,__3* — p-1] < e and lim,__llz = p*] < Tf—y . Futhermore, if

lim,._§* = O thenlim,__[3* - 1] -+ Oandlim,..[z~-y] - 0.m
Proof of Theorem 4.2
Taking the norm of the difference between the k" and k + 1¢ iteration .of the nonstationary

algorithm we get:

A+ =31 < 1FHIGR - FFGFDI - [4.19]

Given that | F*(y) — F()[ < & forallye Y

M-3R < IFGY - FORHI + & + ot [4.20]

Using the contraction property of F,

¥+ =31 < vIp* -5+ & + oL [4.21]

Unfolding the iteration equation into direct sum form,

k .
R+ - ;kﬂb < &y &y E'Yk- & + 8. [4.22]

i=1
If 8 < & for all k then from Eqn. (4.22)

1
1-vy

imy. 1%+ - J¥1 < 2801 +

). [4.23]

Asy <1, lim,_,_ II_;:“' - ;'[] can be made as small as desired by reducing &, which proves the first

part of Theorem 4.2.
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Let y be the fixed point of F. The difference between the computed and the exact solution at

the k + 1% iteration is

DA =y1 = 1FGY - FO)L. o [424]
Again using the contractive property of F and that [|F(y) — F*(») | '5 &%,

A -yl = v -l + 8 [4.25)
Summing and taking the limit,

» [4.26]

which completes the proof of the first statement of Theorem 4.2. The second statement of the the-
orem follows from almost identical arguments. &

In Sec.tion 4.2 we proved the WR iémﬁon was a contraction mapping in the appropriate norm
f « §,0nC([0,7], R") where B depended on the problem. To repeat the result from that section,

it was shown that:
A+ -, < el - H1,

where a < 1 'l‘his~ WR convergence result and Theorem 4.2 imply that using any "reasonable"” ap-
proximation method to solve the WR iteration equations will still converge, provided the errors in the
approximation are driven to zero. In addition, Theorem 4.2 indicates that it will be difficult to de-
termine a priori how accurately the iteration equations must be solved to guarantee convergence to
within a given tolerance, because an estimate of the contraction factor of the WR algorithm is re-

quired.
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From Theorem 4. 1, the WR is a contraction mapping with respect to x(¢) in a B norm, Theorem
4.2 then implies that the WR iteration equations must be solved accurately with respect to x(7) in this
B norm if the iterations are to converge. There is a more cumbersome proof of the WR convergence
theorem ix; which it'is shown that the WR algorithm is a contraction in x(¢), but in a larger B norm
than the one used in the proof of Theorem 4.1, and the size of this B is a function. of the magnitude
of the off-diagonal terms of C(x,u). With such a result, Theorem 4.2 implies that it is only necessary
to control errors in the computation of x(f) to guarantee iteration convergence. However, conver-
gehce in a larger B norm is in some sense a weaker type of convergence. So, in the case where
C(x,u) has non-zero off-diagonal terms, it is expected that more rapid convergence would be

achieved if the x*()’s are computed in a way that also guarantees that the x*(r)’s are globally accurate.

SECTION 4.4 - WAVEFORM RELAXATION-NEWTON METHODS

The WR aléorithm is an extension to function spaces of the relaxation methods used to solve
linear and nonlinear systems. It is also possible to extend the Newtpn-Raphson algorithm, and its
function space extension also has practical applications. In particular, it is possible to approximately
solve the WR iteration equations with one iteration of the Waveform-Newton algorithm, and this is
the function space extension of the relaxation-Newton methods described in Section 3.2. In this
section we will derive the function-space Newton method .applied to systems of the form of Eqn. (2.2)
and prove that the method has global convergence properties. We will then apply this method in
conjunction with the WR algorithm to generate the Waveform-Relaxation-Newton (WRN) algo-
rithm.

In order to derive a function-space extension to the Newton-Raphson algorithm, let F(x) (from

Eqn. (2.2)) be defined by

F(x) = Clx, u)x — fix, u) = 0 x(0) = x [4.27]
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where x:[0,7] - R", #:[0,T] - R’ and is piecewise continuous; C: RxR’ -» R™" is such that
C(x, u)-! exists and is uniformly bounded with respect to x,u; and f: RxIR’ - IR" is globally
Lipschitz continuous with respect to x for all ». Applying the Newton-Raphson algorithm to find

an x such that F(x) = 0 given some initial guess x° we get
PLARIIPUN )0 [4.28)

where J:(x) is the Frechet derivative of F(x) with respect to x. Note that in this case Jg(x) is a
matrix-valued function on [0,7). Thatis, Jx(x) is a matrix of waveforms.

Using the definition of the Frechet derivative, we can compute Ji(x) ,
tim g,y .o (1/ 12D I Fx + b) = Fx) = J{x)®W] = 0. [4.29]
Evaluati;lg this limit for the F(x) given in Eqn. (4.27) we get
F(x +h) = F(x) = C(x +h,u)(x + k) - C(x; u)x — fix+h,u) + fix,u) [4.30]
and approximating to order {4 |2

Ckw) . ftxa)

; 2
- = 4.31
Fix+h) = F(x) = Clxmh + —= 5+ O 1A1%) [4.31]
As Eqn. (4.29) applies only in the limit as 4 - 0, Eqn. (4.31) implies
. 9C(xu) f(xu)
Je(x)h = C(xu)h + e e Pl [4.32]

Substituting the computed derivative into Eqn. (4.28) and rearranging we get

ac(x*, u)

; aftxk )
kel _ kyik _ ro k k41 _ K .
e (x X)X = fx ) + e (x x") [4.33]

C(x" ,u)ik +1 4
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xk+l(0) - xo

We will refer to Eqn. (4.33) as the Waveform-Newton(WN) algorithm for solving Eqn. (2.2). It is,
however, just the function-space exteﬁsion of the classical Newton-Raphson algorithm.

Newton algbrithms converge quadratically when thé iterated value is close to the correct sol-
ution, but they do not, in general, have global convergence properties. The WN algorithm, along with

inheriting the locally quadratic convergence properties of general Newton methods, will also converge

globally, given mild assumptions on the behavior of —;T'l- stated in the following theorem:
Theorem 4.3: For any system of the form of Eqn. (2.2) in which —(—x'l Lipschitz continuous

with respect to x for all ¥ and f is continuously differentiable, the sequence {x*} generated by the
WN algorithm converges uniformly to the solution of Eqn. (2.2). ®
Proof of Theorem 4.3

For this proof of the convergence of the Waveform-Newton, method we will assume that
C(x,u) is independent of x and . as the proof for the general case is much more involved, and does
‘pot provide much further insight into the nature of the convergence. For the case C(x,u) = CEqn.

(4.33) can be simplified to

-1 af(xk'u)(xk+]

k
™ -x"). [4.34]

o o ey + €

Taking the difference between Eqn. (4.34) at iteration k + 1 and the exact solution and substituting

(x**1 = x) + (x — x*) for x*+1 — x* yields

#H ¢ m o ) - fean] + C"[af“ B (K x) + (x—xN] [435]
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As C has a bounded inverse by the assumptions following Eqn. (2.2), and that f is continuously

af(x,
differentiable on [0,7] and Lipschitz continuous, C"—j;f;:—u)- is bounded by some constant /; . With
this bound,
BJE"“ -xl < []xk -xl + ] le""'l -x + ] [lx" -xf. [4.36]

Lemma 4.3 can be applied to Eqn. (4.36) (with y = 0 ). Therefore there exists some b < « and

a < 1 such that
1254 = %1, < allit - 20, [4.37]

Therefofe {x*} converges to x, the fixed point of Eqn. (4.34). Given x*(0) = x, for all k, {x*} con-
verges to the solution of Eqn. (2.2) on any bounded interval. &

As mentioned in the introduction it is possible to combine the Waveform-Newton method de-
rived above with the WR algorithm to construct the. waveform extension of the relaxation-Newton
algorithms presented in Section 3.2[19]. The WR iteration equations are solved approximately by
performing one step of this Newton method with each waveform relaxation iteration, to yield the
following Waveform-Relaxation-Newton algorithm (WRN).

Algorithm 4.2 - (WRN Gauss-Seidel Algorithm for solving Eqn. (2.2)) )

The superscript k denotes the iteration count, the subscript i € {1, ..., N} denotes the compo-
nent index of a vector and ¢ is a small positive number. -
k<0;
guess waveform x%(r) ; ¢ € [0,T] such that x°(0) = x,
(for example, set xO(f) = xo, ? € [0,7]);

repeat {

k+k+1

forall (iinN){

solve

i-1
I?l q/(xfo ovey xf-h x,’"‘, sovy x:-'w u)x; +

aC','i(xlkt seoy x"*-lv xi*-1' eeey X.f“, u)
ox,

1-%1 Cyxt, oy Xy X1, oy 3271, )31 —

(x} = xp-1)xF +

Tk, ey g xE-1, L xEY, ) —
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Af(xty wuy Xogo XFY, o0y X271, 1)
ox;
for ( xX(t) ; ¢ € [0,T]), with the initial condition x}(0) = x,.

(xt = x1) = 0

}
buntil ( ix* — x*] <2)
.. .

Like Algorithm 4.1, each equation has only one unknown variable x, but in this case, each of the
nonlinear equations has been replaced by a simpler time-varying linear problem.

Given the global convergence properties of both the original WR and the WN algorithms, it is
not surprising that the WRN algorithm has global convergence pioperties. We will state the conver-
gence theorem, but will not present the proof because it quite similar to the proof of the basic WR

and WN convergence theorems.

AC(x,u)
—
with respect to x for all »; then the sequence {x*} generated by the Gauss-Seidel or Gauss-Jacobi

Theorem 4.4: If, in addition to the assumptions of Theorem 4.1, is Lipschitz continuous
WRN algorithm converges to the solution of Eqn. (2.2) on all bounded intervals [0,7T].m

The linear time-varying systems generated by the WRN algorithm are easier to solve numer-
ically than the nonlinear iteration equations of the basic WR algorithm. For example, if an implicit
multistep integration method is used to solve such a system, the implicit algebriac equations the
multistep method generates will be linear. In addition, linear time-varying systems can be solved with
a variety of efficient numerical techniques other than the standard discretization methods, such as

collocation[58] and spectral methods[22].
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CHAPTER 5 - DISCRETIZED WR ALGORITHMS

To compute the iteration waveforms for the WR algorithm it is usually necessary to solve sys-
tems of nonlineér ordinary differential equations. If multistep integration formulas are used to solve
for the iteration waveforms, the differential equations that describe the decoméosed systems will not
be solved exactly. Therefore, the convergence theorem presented in Section 4.2 does not guarantee
the convergence of this discretized WR algorithm. However, the discretized WR algorithm is a non-
stationary method. and the theorems presented in Section 4.3 apply, and guarantee WR convergence
to the solution of the given system of ODE’s when the global discretization error is driven to zero
with the WR iterations. Reducing the error with the iteration is also a reasonable practical approach
to insuring the convergence of the WR algorithm under discretizations. Timesteps for numerical in-
tegration methods are usually chosen based on insuring that esimates of the local truncation error are
kept below some supplied criteria. Reducing this criteria as relaxation iterations progress will insure

- that the WR algorithm will converge.

The view of the discretized WR algorithm as a nonstationary method, although simple and
practical, lends no insight into why the discretized WR algorithm may not converge in some cases,
and therefore provides no guidance for selecting a numerical integration method. It also does not
allow for comparison to more classical integration methods. For this reason, in this chapter the
interaction between WR algorithms and multistep integration methods will be considered in detail.
In the first section, the discretized WR algorithm will be analyzed assuming that every differential
equation in the system is discretized identically (hereafter referred to as the global-timestep case). A
simple example will be presented that demonstrates a possible breakdown of the WR method under
discretizations. The nonconvergence will be investigated by comparing the global-timestep
discretized WR algorithm to the relaxation-Newton methods of Section 3.2. A strong comparison
theorem for linear systems will be proved: the global timesteps required to insure WR convergence

is identical to the timesteps required to insure convergence of the relaxation methods presented in
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Section 3.2. A convergence theorem for the fixed global-timestep discretized WR algorithm will then
be presented. In the second section, the global-timestep restriction will be lifted, and a theorem
demonstrating the convergence of the multi-rate timestep case for systems in normal form will be

presented.

SECTION 5.1 - THE GLOBAL TIMESTEP CASE

Consider the two-node inverter circuit in Fig. 5.1. The current equations at each node can be

written by inspection, and are:
Ciy +8x + 8l —Xx) = 0 [5.1]
Chy + 820y = x1) + lpyy(x1,X3) + if..z(xl) =0
x3(0) = x3(0) = O.

In order to generate a simple linear example, i, i,, were linearized about the pdint where the input
and output voltages were equal to half of the supply voltage. Time is normalized to seconds to obtain

thg following 2x2 example:
X = =x + 0lx [5.2]
X = =Ax; + —X
x1(0) = x,(0) = O.

Note that the initial conditions given for the above example identify a stable equilibrium point.

The Gauss-Seidel WR iteration equations for the linear system example are:

ikl _xkl ook (5.3



Page 72

j§+l - —A.xf"'l - xgﬂ

x*0) = xX0) = £ 0) = x£(0) = 0.

Applying the Implicit-Euler numerical integration method with a fixed timestep 4,
(X(nh) = %[x(nh) - x((n = 1)h)]) to solve the decomposed equations yields the following

recursion equation for x§(n):

k41 1 k4t M x1(0) C jmn_k,

X7 (n) = x (n-1) - [ + 0.1a ) (1 + AY "x3 ()] [5.4]
1+h (a+n? A+ gl

For example, let A = 200, # = 0.5 and as an initial guess use x§(nk) = nh , which is far from

the exact solution x(nh) = 0. The computed sequences for the initial guess and first, second and

. third iterations of Eqn. (5.4) are presented in Table 5.1.

TABLE 5.1 - IMPLICIT-EULER COMPUTED WR ITERATIONS
STEP | TIME INITIAL | ITER#1 ITER #2 ITER #3
0 0 0o 0 0 0
1 0.5 0.5 -1.111 2.469 -5.487
2 1.0 1.0 -3.704 152 - -32.92
3 5 5 -7.778 355 -111.6
4 2.0 | 2.0 -13.17 66.21 -281.3
5 2.5 2.5 -19.66 117.9 -587.5
6 3.0 3.0 27.02 187.9 -1075
7 3.5 3.5 -35.07 276.0 -1786
8 4.0 4.0 -43.64 385 2751
9 4.5 4.5 -52.60 502.9 -3992
.10 5.0 5.0 -61.85 638.4 -5519

As the Table 5.1 indicates, the WR algorithm diverges for this example. In fact, Eqn. (5.4)

indicates that the WR algorithm will converge only if

h < 1 [5.5]

a+mn Vo
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The constraints on the timesteps for which the global-timestep discretized WR algorithm will
converge is very similar to the constraints on the timesteps for which the relaxation-Newton algorithm
applied to Eqn. (3.5) will converge(see Section 3.2). In fact, for linear problems there is the following

comparison theorem.

Theorem 5.1: Let a consistent and stable multistep integration algorithm be applied to an arbitrary

linear system of the form
Ci() = Ax(D) x(0) = x [5.6]

where C, 4 € R™, C nonsingular, and x(¢) € IR". Assume further that the Gauss-Seidel(Jacobi) al-
gebraic relaxation algdrithm is used to solve the linear algebraic equations generated by the inte-
gration algorithm (as described in Section 3.2). Given a sequence of timesteps, {h.}, the
Gauss-Seidel(Jacobi) algebraic relaxation algorithm will converge at every step, for any initial guess,
if and only if the global-timestep discretized Gauss-Seidel(Jacobi) WR algorithm, generated by solv-
ing the iteration equations with the same multistep integration algorithm and same timestep sequence,

coaverges for any initial guess. &

Proof of Theorem 5.1

The algebraic equations generated by applying a mdltistep integration algorithm to Eqn. (5.6)

k {
S Cx () = iy D BAX (5, [5.7]
i=0 i=0

or reorganizing,
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k [
[C - h,PoA ]Q(fm) + zaic';\ (Tmid) = hmEBA'A‘(} (i) = O [5.8]
i=1 i=1

Let L, D,, U. be the strictly lower triangular, diagonal, and vpper triangular portions of C. Similarly,
let L, D,, U, be the strictly lower triangular, diagonal, and upper triangular portions of 4. Using this

notation, the Gauss-Seidel relaxation iteration equation applied to solving Eqn. (5.8) for x(7,,) is

[(L, +D.) = hyBolLy + D) Wo(ry) + LU, = hpBoU, "1z, +
k A ! A
Ea,-Cx (i) — h,,,EB,-Ax (Tm=id = 0.
i=1 =1

Taking the difference between the k and k-1 iteration and substituting &*(r,,) for

x*(1,) — x*1(z,) leads to
[+ D) = hubolLy + D) 16 (1) = = [ U, = hpfioU, 0711, [5.9]

from which it follows that the relaxation will converge at the m* for any inital guess if and only if the

spectral radius of
[(L.+D,) = hpPolLa+D) T LU, = h,BoU,] [5.10)

is less than one.
If the Gauss-Seidel WR algorithm is used to solve Eqn. (5.6), the iteration equation for x(2) is

(using the above notation),
(L, + DY) + U = (L + D)) + uxw. . [5.11]

Applying the multistep integration algorithm to solve Eqn. (5.11) for x*+1 yields
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[(L, + D) — hyBo(Ly+ D) We(r) + LU, = hnolUs ™ (r) + [5.12]

x Ak Ak—1
S al(Le + D)x* (1) + Ux* "Nz, _0] -
i=1

{
b S BI(Ly + DI (1) + U 1] = 0.
’ i=1

taking the difference between the k and k — 1 iteration leads to

[(L + D) = hyBo(Ly+ D)1 () + LU, = hoBolU, 16" () + [5.13]

k .
zai - (L. + Dc)sk(fm-i) + chk-l(fm—i)] =

i=1

h",é;BJ(La + D)8 () + U1, = 0.
i=
To show that the discretized WR algorithm will only converge if the algebraic relaxation converges,
let 7 be a timestep for which the spectral radius of the matrix in Eqn. (5.10) is not less than one. Use
as an intial guess any sequence for which the first / — 1 points are the exact solution to the discretized
problem. Then é*(7,) = O0form < I, and Eqn. (5.13) is again identical to Eqn. (5.9), and is not
convergent. |

An inductive argument is used to prove that if the algebraic relaxation is convergent then the
discretized WR algorithm is convergent. Assume that the theorem holds form < [then §*(r,_) will
g0 to zero as k = . As this occurs, Eqn. (5.13) for the /* step converges to Eqn. (5.9). The alge-

braic relaxation converges and therefore the spectral radius of the matrix in Eqn. (5.10) for the M step



Page 76

is less than one. This implies that Eqn. (5.9) represents a contraction mapping in some norm at the
I* step, and the results of Section 4.3 can be applied to guarantee that Eqn. (5.13) converges at the
I4 step. Note that §(r,) = 0 forallm < 0, and therefore Eqn. (5.13) is identical to Eqn. (5.9)
form = 1 which cdmplétes the induction.®

The above theorem holds for any system of the form of Eqn. (2.2) if it is assumed fhat an ar-
bitrarily close initial guess for each of the relaxation schemes is available. Although this is not a re-
alistic assumption, it does indicate that even for nonlinear systems the two algorithms present very

similar timestep constraints for a numerical integration method.

SECTION 5.2 - GLOBAL FIXED-TIMESTEP WR CONVERGENCE THEOREM

It is possible to generalize the proof of Theorem S.i to a proof for the global-timestep
discretized WR algorithm for nonlinear problems (but, as mentioned above, the comparison to the'
relaxation-Newton methods would no longer bold). A different approach will be taken, because the
approach followed in Theorem 5.1 does not prove the the discretized WR algorithm converges op a
fixed time interval as the timesteps become small.

To illustrate this point by example, consider solving Eqn. (5.3) using explicit-Euler. The

recursion equation for the xj(n) ’s is:

A+ 1) = (1= - 0.1 - 1)'X1(0) + ",'5_,‘:(1 - ")
j=
The computed sequences {xi+!} ’s for the initial guess and first, second and third iterations of the
above equation are giveﬁ in Table 5.2, for the case of A = 200, 4 = 0.5 and x{(nh) = nh.
As the table indicates, the explicit-Euler discretized WR algorithm converges in just the manner
predicted by Theorem 5.1, a step (or two) with each iteration. In the same example, if half the
timestep is used, similar results are achieved. That is, the relaxation converges two steps with each

jteration. If it were the case that no matter how small the timesteps became, each relaxation iteration
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TABLE 5.2 - EXPLICIT-EULER COMPUTED WR ITERATIONS
STEP | TIME INITIAL | ITER#1 ITER%2 | ITER#3
0 0 0 0 0 0

1 0.5 0.5 0 0 0

2 1.0 1.0 0 0 0

3 5 5 -0.625 0 0

4 2.0 2.0 -1.875 0 0

5 2.5 2.5 3.59%4 0.7813 0

6 3.0 3.0 -5.625 3.125 0

7 3.5 3.5 -7.852 7422 -0.977
8 4.0 40 -10.19 13.67 -4.883
9 4.5 45 | -12.61 21.63 -13.92
10 5.0 5.0 -15.06 . 30.96 29.79

resulted only in two more timesteps converging, then given a fixed interval of interest, the WR algo-
rithm would not be convergent in the limit as the timesteps approached zero. This is not the case for
this example, or in general for the discretized WR algorithm. If, for example, & = 0.05 then the re-
laxation converges in a2 more uniform manner, where the value at each timestep rapidly approaches
its limit point.

In Section 4.2, the WR algorithm was shown to be a contraction mapping, specifically:
maxg e P 155 - ) < y maxgre PN - 0]

where v, B € IR are dependent on the problem, and y < 1. If T is chosen small enough, then

vefT = 9 < 1 and the norm becomes

maxi 1350 - (01 < 7 maxy 155770 - #'01.

That is, the WR algorithm converges uniformly over small time intervals (This point will be discussed
further in Section 6.2). The next theorem will be an analogous proof for the discretized case. It will
be shown that the fixed global timestep discretized WR algorithm is a contraction in a 8 norm (the

technique was first applied to proving discrete WR convergence in [29]).
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Formally, demonstrating that the discretized WR is a contraction in a f norm implieé the con-

vergence of the discretized WR algorithm because of the contraciion mapping theorem. Intuitively,
that the discretized WR algorithm converges in a 8 norm implies an underlying uniformity that guar-
antees convergence ;)ver a fixed time interval as the timesteps shrink to zero. This is the distix;ction
between The;)rem 5.1 and the next theorem.
Theorem 5.2: If, in addition to the assumptions of Theorem 4.1, f in Eqn. (2.2) is differentiable, and
the WR iteration equations are solved using a stable, consistent; multistep integration method with a
fixed timestep A, then the sequences {x*(n)} generated by the Gauss-Seidel or Gauss-Jacobi
discretized WR algorithm will converge fo;' allh >0m |

Before proving Theorem 5.2, some standard notation{1,59] will be presented that will also be

used in the next section. The fixed-timestep multistep integration algorithms applied to
x(1) = fix(1) x(0) = xg, [5.14]

where x:[0,7] = IR", f:IR" - IR" can be represented by backward shift operators. That is, given

k [
Sk (Tped) = by DB X (7)) [5.15]
i=0 i=0
we can define
A k A
p(x(*™) = Dax(r,_) [5.164]
i=0
and

]
s (FE (™) = DB (1)) [5.165]
i=0 .
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Eqn. (5.15) can then be written compactly as

p(X(1,)) = A o(fix (1,,_)) [5.17)

A .
If it is assumed that the operator p can be inverted, i.e. that x (7,,) can be expressed as a function of

. the right-hand side, then Eqn. (5.17) can be written in the form

X(p) = by "of(R (1)), [5.18]

When such and inverse of p exists, it can be shown that Eqn. (5.18) is equivalent to

m .
2(r,) = Ev,ﬂ? (Tm-)) + x(0). [5.19]
Jj=0
As an example, consider implicit—Ehler applied to Eqn. (5.14). The usual form for the discrete

equations is,

‘c () - ‘It\ (Tp-1) = ﬂ'c (Tn)) [5.20]

which is in the form of Eqn. (5.17). The implicit-Euler discrete equations can also be expressed in

the form of Eqn. (5.19),

A o A
x(,) = PAx(r,_)) + x(0). [5.21]
J=0

The solution to Eqn. (5.21) is obviously identical to the solution to Eqn. (5.20). The form of Eqn.

(5.17) for the the trapezoidal rule is

F(rp) = R(tp_y) = OSUE (1) + fR (1 ), [5.22]
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which can also be expressed in the form of Eqn. (5.19) as

A A
X(1p) = OS[AX (1) + SXON] + 3 X (1)) + x(0). [5.23]
j=1
The following lemma, a special case of a theorem proof in [30], will be the key result used in

the course of the proof of Theorem 5.2.

Lemma 5.1: Let H(b) be the map that represents one iteration of the algebraic Gauss-Seidel or
Gauss-Jacobi relaxation algorithm applied to an equation system of the form f{x) — b = 0, where
x,b ¢ R", f:IR" = R". Kf fis such 4that the Jacobian of f, -gg , exists for all x, is strictly diagonally
dominant uniformly over x, then H(b) is a contraction mapping in the }. norm and is a Lipschitz

continous function of b.1W

Proof of Lemma 5.1:
As usual, only the Gauss-Seidel case will be proved. It will be shown that if the Gauss-Seidel
relaxation algorithm is used to solve f(x) — b = 0, then the map implicitly defined by one iteration

of the relaxation, H(b) , is such that given x*, )/ ¢ R", two arbitrary points,
k ) w kK 1
IH®)X" = Hb)y 1, £ vix = yls [5.24]

wherey < 1.

" Define
P 2L AT L Ny L [5.25)

The iteration equation for x}+! is implicitly defined by
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ﬁ(xk+l’x29 9x ) - bl = 0 [5-260]

or, using the above notation fi(x**11) — b = 0 . In the same notation, the implicit iteration

equation for y, is
AGHY) - b =0 [5.266]

Define the function (f) = fi(tx*+t 4 (1 =1r)yW) — b where ¢e[0,1] Clearly,

¥(0) = (1) = 0. By Rolle’s theorem there exists a f, € (0,1) such that

ll"(fo) - 0 - 2 a{;l ( k+1,1 + (l to)yk“ l)(xk-i'll k+l.l) . [5.27]

Jj=1

Reorganizing,

f: T (ke 4 (1= iyt ek - 528)

k+l 1 + (1 to)yk+l.l)(xf+l _yf-l'l) - e 2 a

Jj=1

P
axl ?

dominance of —gé-, and using the fact that |x} — y%| < [x* — y*[. by definition, we get

Dividing Eqn. (5.28) by which is bounded away from zero by the uniform strict diagonal

f1 KL K+ L1y

- L)y
Ixf* =) = -EI f I 0= = %1, [5.29]
l k'l-l.l + (1 - to)yk-i-lol)

Using the property of f that the Jacobian is strictly diagonally dominant uniformly in x leads to

k k41
[xk+l k< g0k = YR,
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where y; < 1. This proves that

L5 = BN < vl = Fle [5.30]
A similar arguinent can be used to show

VH(xY) = HOMI < vlx* = Yo
wherey, < 1. Thenif yis ghosen to be the maximumof they,’s, y < 1and

1HGY - HOMI, < vIx* - . [5.31]

which proves the first part of the theorem. (for a more detailed proof of the general cases, see [30]).

That H is a Lipschitz continous function of b can be seen by examining the implicitly defined

H,,
f,(xf"’l,xf,...,x,',‘) -5=0

which is solved for x}*1. A simple application of the implicit function theorem{35] implies that if

L)
-‘é is bounded away from zero uniformly in x, then x}*! is a Lipschitz continous function of ;. The
1
argument can be carried inductively to show that for each i, H,j < iisa Lipséhitz continous func-

tion of 4 and that therefore H(b) is Lipschitz continous with respect to 5.1
The formal definition of the B norm for a sequence is given below.

Definition 5.1: For a sequence generated by a fixed-timestep numerical integration algorithm,

fx(1,)} , the B norm of the sequence is defined as

lx(za)} 15 = max,, e=Bmm |z ) [5.32]
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where 4 is the fixed timestepand B ¢ R. B
The following simple lemma will be useful for the proof of Theorem 5.2.
Lemma 5.2: Given an arbitrary sequence, {x(7,,)} , the following inequality bolds,

e -Bhm

1y} p < Mg s} 15 [5.33]
i=] - €

where M = max,; |y,|.B

Proof of Lemma 5.2:

The proof of Lemma 5.2 follows from a simple algebraic argument. From Definition 5.1,

1 D vx(rp_ptlp = max,, e 24| {Syx(r, 1l [5.35]
i=] i=1 : .

Using the norm properties, the term

e~ B yx (D1 [5.36]
i=]

can be bounded by

m
- A,
e~ B 1yl 1%+ (s, D . [5.37]
im]

Inserting e&m-M g-Bm-04 = 1 into Eqn. (5.37) yields
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e—ma‘:z: / I Y,’l eBIl(m—i) e—BIr(m—i) u A,"k+l( Tm—i) “ [5.38]
As .
e~ Bhm=0 VD1 € T ()b s [5.39]
Eqn. (5.38) leads to
m
R Iyl M Pl Y PR [5.40]
Reorganiz.ing,
m
(2 Il ™ B elle 541

If |v,] is bounded above by M, then Eqn. (5.41) is bounded by

ML e~ B 14 )1 5. [5.42]

Given that e~2¥ is always positive, the following inequality holds,

and from the infinite series summation formula



Page 85

Using the two in Eqn. (5.42) produces the conclusion of the lemma. B

Proof of Theorem 5.2:
As before, only the Gauss-Seidel case will be proved. In order to insure charge conservation,
the decomposed differential equations generated by the WR algorithm are solved usiné charge as the

state variable. That is, the multistep integration algorithm is applied to
G ), u) = £, u) [5.43]

where x*/(r), defined in Eqn. (5.25), is usually the vector of node voltages. A proof for the case
where x is used as the state variable is given in [29]. Applying the multistep integration algoritbm

using the notation described above, and assuming 4,, = A for all m,

PG (1), ulr, ) = ho (7 (1,,), uCr, D). . [5.44]
Solving, using the "inverse" operator yields

G (2, u(r,)) = o~ (X (1), u(Ta))). [5.45]
Using the sum form for p-1¢, and pulling out the leading term,

@ e ulr,)) = Ryofi (), u(s,))) - [5.46)
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m
By (1w D)) + gfx(0),u(0)) = O
Jj=1
Define F,(x (r,)) as

F(x(r,)) = gix (rp) (1)) = bryo fix (r,), u(r,)) [5.47]

and define b(X,,,» k) € R" by

bilge K) = B DT (1), Ut D) + q{x(0)u(0)) [5.48]
Jj=1

where fc\m k is used to denote the fact that b is a function of ,\""'(1-,) and J'c\""(f,) forall ] < m. Then

Eqn. (5.45) is identical to one iteration of the algebraic Gauss-Seide! algorithm applied to solving
A A
F(x (7)) = b(xpasts k) = O. [5.49]

for .;'\(1’.,). As in Lemma 5.2, J’:\**‘ can be written in terms of the map, H(b(?,,,,. k)) ,'define'd im-

plicitly by the Gauss-Seidel relaxation algorithm applied to Eqn. (5.49),

R4 1) = H O IR (ry). [5.50]

To prove that the iteration described by Eqn. (5.50) is a contraction mapping on the sequence

{9"(7..)} , it will be shown that given two arbitrary sequences, {9"(1-,,,)} , and {9’(1’,,,)},

max,, =Bkt y _ ey < max, e B x%(r,) - )l [5.51]

where we will use the notation
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max,, e~ 2™ X0 = 180} 15 [5.52]

To start, Eqn. (5.50) leads to the following equation for the difference between the two se-

quences at the m™ step,

T ) = ) = HOGg KXty = HGGpa 0D (ry). [5.53]

Breaking into separate differences,

) = P ) = H G IR (1) = H G 09 () + [5.54]

H(bCpa k0 (1) = HGasn kI ()
and taking /_ norms,

Mk

I ) = P ) e € DHGGan X1 = HbGam I (7). + [5.55]

DH(b oo k5 () = HGpr P () 1.

At this point we will demonstrate that for small &, Eqn. (5.55) satisfies the assumptions of
Lemma S.1. It is assumed that the Jacobian of ¢ with respect to x, C(x(#),u(?)) , is strictly diagonally

dominant uniformly in x. By definition, this assumption implies that there exists ane > 0 such that

| Cii(x(0), u())] > & + EIC,-,-(x(r), u(1)) | [5.56]
j#i
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Let/ > 0 be the Lipschitz constant of f with respect to x. Assuming f is differentiable, if yp = 0

(and therefore the method is explicit) orif & < lﬁl , then —(x (7.,)) is strictly diagonally
0

Gx (1)
dominant.
Assuming A is small enough that :’F (.;'\ (7,,)) is strictly diagonally dominant, then Lemma
' 0x (7,)
5.1 can be applied to show
| H (b kD7) = H(bCpar P (5) 1 § VIR (TR) = P a0l [5.57)
forsomey < 1and
THGG g 0 (1) = HOGpan W (2l < [5.58]

Iy 16 B = B0pagn 0113 () I

where I, is the Lipschitz constant of H with respect to b.

Substituting Eqn. (5.57) and Eqn. (5.58) into Eqn. (5.55)

A
124 ) = P e e € VIR ) = ) e + 15 16 K) = bGipase ) [5.59]
where M = max, n}(f,) f.. Multiplying by e-2"* and taking the maximum over m

max,, e~ [z, ) = P r,0, < [5.60]

e A
B nb(x,,,,, = 5O k)l

- A
ymax,, e 2" 2, = Y1)l + IgM max, e

Or, using Definition 5.1,

1 n,) = P et € 1805 = P s + 1M 116 K) = b K3} 15611
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The term in Eqn. (5.60) b(;r\,u, k) - b(;v\,,,,, k) can be expanded using the definition of b in Eqn.

(5.48) to

N7 7 C 2t CMIPRYCIP ) I (ki IR TP N - [5.62]
Jj=1

The B norm of the sequence whose terms are given in Eqn. (5.62) can be bounded using Lemma 5.2.

That s,
ﬂihjzln{f,o’c"“”(f,.._j). UTp)) = [ o ity D) 5 [5.63]

—=Bhm ’
< ”Mﬁm L Y () = SO Mg D,

where M is the max,, v,,. Using the triangle inequality and the Lipschitz property of f,

D Dy M ) = SO Y (D g < [5.64]
Jj=1
-Bhm
hMl—l—"—_—,,,,-;uv?"“(f,,.) = P + 1K) = Yatls
-e

where / is the Lipschitz constant of f with respect to x. This bound can be used in Eqn. (5.60) to yield

~Bhm

(A = mM—=—) | ) = P bl < [5.65]

=Bhm
(¢ = WM 15 ) = S g
—-e



Page 90

or

—Bhm
A r + hM—— )
1+ o) = et s < — i 165G = Yallp [566]

. e
(1 - M 1 - e-ma)

asy < 1 thereexistsan hoanda b > 0 such that

. e-bhm
(v + hMl—1 — e-bhm)
g < 1 [5.67]
1 - hMl——b,—)
1 - e- m

forallh < hy which proves the theorem M.

SECTION 5.3 - THE MULTI-RATE WR CONVERGENCE THEOREM

Theorem 5.1 suggests that the global-timestep discretized WR algorithm is not going to be any
more efficent than the well-known relaxation-Newton algorithms described in Section 3.2, as the
timestep constraints for the two methods are identical for the linear case. In fact, as Eqn. (5.10) in-
dicates, WR is likely to be less e!’ficient, because decomposition errors made in the first few timesteps
propagate through the computations. That the discretized WR algorithm has proved to be more ef-
ficient in practice for some types of problems is because the discretized WR algorithm is intrinsically
a multi-rate integration method. It is because this is the key aspect of the WR algorithm that the rest
of this Chapter will be devoted to a proof that the discretized WR algorithm converges even when the
timesteps for each subsystem are chosen independently.

Usually, choosing how to interpolate the discrete sequence of points produced by a numerical
integration method is based only on what will produce attractive graphs of the computed solution.
When multi-rate integration methods are applied to solving a system, interpolation plays a much ;llore

significant role. If two state variables in a system interact, and they are computed using different
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timesteps, then to provide the value of one variable at the times required to compute the second var-
iable, the first variable must interpolated. In the case of Wi!, if the interpolation is not done carefully,
convergence can be destroyed.

In this sectioﬁ, a convergence theorem for systems in normal form will be presented that dem-
onstrates the i(ey role of interpolation in the convergence of the multi-rate discretized WR algorithm.
The theorem guarantees that the discretized WR algorithm is a contraction mapping assuming that
the points produced by the numerical integration method are interpolated linearly. As the theorem
proof will demonstrate, the linear interpolation has one particular property that aids convergence.

Consider the following system,
x(t) = fix(0), u(t)) [5.68]

where x(f) = (x;(D)y.., (D), x(HeR" , u()e R™ , piecewise continous, and
f = (fi(x)seers [,(x))T, fi:IR* = R is Lipschitz continous. If the Gauss-Seidel WR algorithm is applied

to Eqn. (5.68), the iteration equation for x; is
Hty a £k @, xEH 0, xE 0, XK, u() [5.69]

If Eqn. (5.69) is solved numerically using a multistep integration algorithm with a fixed-timestep A,

the iteration equation becomes

o (1,0) = o Mt dreeos S (T X 1 Tpdseres K (), (7)) [5.70]

If different timesteps are used to solve the differential equations associated with the x} vari-
ables, i s j, then Eqn. (5.70) makes no sense, because 7, for the j* equation may be different than
7,, for the it equation. In order to even write down the equations for the multi-rate case, some kind

of interpolation operator must first be defined.
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Definition 5.2: Given a finite sequence fy(r,)} of M elements, where y(r,) € IR, for allm < M,
an interpolation function I{ « } on the sequence is any function that maps the sequence and the in-

dependent variable f € R, t € [ 7o, 7y ] into R, such that I,{ « } is continous with respect to 1, and that

Lipr)} = y7) m

As an example, the linear interpolation of a sequence at a given time f € [0 Ta] would be

y(fj+1) - )'(‘fj)

(Tjy1 = 1)

JATLCA] ='.}'("'j) + (R 1'_,') [5.71]

where jissuchthat 7, £ ¢ < 7.

In order to write a form of Eqn. (5.70) for the multi-rate case, we will denote 7,, for the i
equation as 7!, Using this notation and the interpolation operator defined above, the unfortunately

indice-filled iteration equation for x':," for the multi-rate fixed-timestep case is

p(xk*1(2h)) = ho(f(llix"“’( ... ,Ia{x"“(f ')}

I {x,+1(f ] - Iy {x k(AL u(rh))
where h, is the fixed-timestep for the i system. Using the inverse operator as in Eqn. (5.25),

R = b U R B L B D, [5.72]

I (R 1 (ol e L SR COY, )

The proof of Theorem 5.2 demonstrated that the fixed global-timestep discretized WR algo-
rithm is a contraction mapping in an , B norm on the sequence (see Definition 5.1). In the multi-rate

case, this is not sufficient. Since interpolated as well as sequence values are used by subsystems, a
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convergence proof must take into account the effect of the the interpolation on the sequence. The
approach that will be used in the proof that follows is to view the multi-rate discretized WR algorithm,
which necessarily includes an interpolation operator, as a map of continuous functions on [0,T] to
continuous function.;.. The implicitly defined map can be derived by applying the interpolation oper-

ator to both sides of Eqn 5.72 to yield

LRI = e~ o 4054 e b I S5 GO, [5.73]

L 5 105 s Iy S5 CETOY, (),
To prove the convergence of the relaxation,'the usual continuous-time /_ norm can be used,
ixlp = maxy ne'a'[ max; | Lix(' )} 1] | : [5.74a]
or equivalently,
Ixlp = max;[ maxgme™® | Lix (e} ), [5.741,]

where x is used to denote the vector function on [0,7] defined by x(#) = (I {x,(t\)},..., Iix,(7i)})T
Under certain conditions Eqn. (5.73) is a contraction map in the 8 norm of Eqn. (5.74). To

prove this, Eqn. (5.73) will be applied to two sequences {x*(r,,)} and {*(,.)} . The difference be-

tween Eqn. (5.73) applied to the two sequences is
LSt - 1 ) = [5.75]

Ltho™ oL (254 D Ly (RN L R 1 (T Db L BRI, () 0 =
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Lo~ o Ly G5+ Db Ly B G Ly D1 (al D Ly BRI ) 1.

It is possible to simplify Eqn. (5.75) by limiting the type of interpolation operators to those that are
linear functions of the sequence. To avoid confusion, by this it is not meant to limit consideration to

only linear interpolation, but to those interpolation functions for which
Lix(r,)} = Lif(7,)} = Iix(7,,) = y(7,)}
and
Ijax(7y)} = aI,{X(f,,,)?

where {x(r,)}, {)(7,)} are sequences in IR, and « ¢ R. For example, any of the spline or polynomial
interpolation operators are linear functions of the sequence. Exploiting this linearity in Eqn. (5.75)

leads to
L) = L - | [5.76]
Rlg ool (UL ARE e h b Ty B el Ly 8 1o Db L B5H DY, w(2),)) -
VAT IV Rt LN W 2 ('t URTID 21 - RTCado} MY 21 1 C/AT RVC VD I
It is possible to show that the multi-rate discretized WR algorithm is a contraction mapping in

the B norm of Eqn. (5.74) if the interpolation operator is limited to linear interpolation (as in Eqn.

(5.71),) and the timesteps are made small enough..
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Theorem 5.3: If the interpolation in Eqn. (5.73) is linear interpolation, then there exists a collection
of timesteps hp > 0, i € {1,..,n} such thatif 0 < h, € hg for all i, then the multi-rate fixed-

timestep discretized WR algorithm converges with the respect to the interpolated sequences.
The following simple Lemmas will be useful in the proof.

Lemma 5.3: If I{ + } is the linear interpolation operator (as in Eqn. (5.73)), then given two sequences
fx(r,)} and {p(r,)}, if x(r) 2 y(z) forall i then Lix(r,)} 2 Liy(r,)} for all ¢ for which the in-
terpolation is defined. In addition, if x,,, = K, K € R, forallm < m', then Lix(r,)} = K for

t £ Ty

Lemma 5.3 follows directly from the definition of linear interpolation. As will be shown in the proof,

this is the key property of linear interpolation with respect Theorem 5.3.

Lemma 5.4: If I{ « } is the linear interpolation operator and {x(7,)} is a sequence in R, then

I=m

maxze® 14 S 1nl Upppbe(r bl 3l 8 —
=0

PR ik U e~ 1 I{1x(r,) 11

where M = max,|y,|

The proof of Lemma 5.4 parallels the arguments given in the proof of Lemma 5.2, and is omitted.

Proof of Theorem 5.3:

Expanding the p-lo operator into its sum form leads to

LR = G -
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I=ny

ki 5_‘,7,[ (AR Al LA 0 SIS -l T Y

f(nl-l){xt+l(7nt )}’ o f(m—l){ ("m)}’ u(fm))
- (f( (m—[){ﬁi‘*’ ( )}V'"t If(”g_[)bh';‘q.l(?fn)}v

Limty Dt s Lo DL w1 1.

Using Lemma 5.3 and the Lipschitz continuity property of f,

Lk ) = A < [5.77]
I=m; Jj=i A J=n A .
A S vl U ALy Uymop 56t = 21+ Eh,L,,u,(,,,_,,{x -1
1=0 Jj=l =i+l

where L, is the Lipschitz constant of f; with respect to x,. Reorganizing, and exploiting the general

linearity property of the interpolation operator and the triangle inequality,

L) = e < [5.78]
Jj=i I=ny N
S hLl I Elnll IS ot ks TR TR
j=1
Jj=n I=m;

zhrl'yll{ 2'?"' (m—l){x -}fl}l H

J=i+l
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Multiplying by e-# and taking maximums,

maxiory e~V LRk ) = PG < [5.79]

Je=i I=m;

A
> hiLymaxgz e |1 Elwl FARIS AL At THE TR
Jj=1

J=n l=m,
zh,L,,max[me Bryag Zlm Uymontxt = 11 31
J=ivl
Applying Lemma 5.4,
maxgy e~ B | L) = PRGN < [5.80]

1-¢ - e ! j=it1

Mr 2 Per1 _ fesd ' M, S
[ _B,,,ZL-,] P 4 [ 2 L1 -

where | x* — p*[ , is the L8 norm defined in Eqn. (5.74b).

For any & > O there exists a collection of steps {hy,..., ing}, all strictly positive, and a

B > O0such that

j=i
Mh,EL,J
A
8> —m— [5.81]
1 - e B

forallh, < hy, foralli Substituting into Eqn 5.80,

- A i A A "A
maxio e~ L) = M < s 1x T =5 + 8k -1 (5.82]
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Since Eqn. (5.81) holds for all i,
T Y A TR D E el P [583]

Reorganizing,

8

A+l At
X -— <
" yUls £ 75

A A
1% =yl g [5.84]

5 A
T—3 < 1). Letd be that
A

§. Since there exists a B > 0 and collection of &;’s > 0 such that Eqn. (5.84) holds for & = &

Clearly, there exists aé > 0 such that Eqn. (5.84) is a contraction (

forall0 < h < b, the theorem is proved. &

Perhaps the most surprising aspect of the proof of Theorem 5.3 is that the ratio of the timesteps
from one system to the next does not seem to play a role. This is an extremely important observation
given that the discretized WR algorithm was developed to allow different subsystems to take vastly
different timesteps. If a large ratio betwef:n timesteps destroyed the WR convergence, then the ap-
plichility of the WR algorithm to multi-rate problems would be limited.

A second import;mt observation is that .the only property of linear inierpoiation used in the
course of the proof was that stated in Lemma 5.3. Therefore, other interpolations that have this
property will work as well. Higher order polynomial interpolation functions do not have the property
stated in Lemma 5.3, but as they are substantially more accurate than linear interpolation, they are
extremely useful. An extension of the above theorem to general polynomial interpolation does not

seem to be straight-forward, and may call for an entirely different approach.
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Figure 5.1 - Two Node Inverter Circuit with Feedback
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CHAPTER 6 - ACCELERATING WR CONVERGENCE

In Chapter 7, several techniques used to improve the efficiency and robustness of the WR al-
gorithm when applied to simulating MOS circuits will be described. In this chapter the theoretical
background for two of these tecﬁniques will be presented. We will first analyze nonuniformity in
WR convergence, which explains why bre;king the simulation interval into pieces, called windows,
can be used to reduce the number of relaxation iterations required to achieve convergence. Then we
will considgr how to partition large systems into subsystems in such a way that the WR algorithm

will converge rapidly.

SECTION 6.1 - UNIFORMITY OF WR CONVERGENCE

The convergence theorem presented in Section 3.2 guarantees that the WR algorithm is a
contraction mapping in an exponentially weighted norm. In this section, we will examine the impli-
cations of this choice of norm. First, the WR algorithm will be applied to two example problems to
exhibit the different manners in which the algorithm converges. We will then prove that for a special
class of systems WR converges in a uniform manner, or formally, that WR is a contraction in an un-
weighted norm for any time interval. Because most circuit problems do not generate systems in this
special class, we will prove that'the WR algorithm is a contraction in an unweighted norm for any
system for which the WR algorithm converges, if the time interval is made short enough. This sug-
gests that the number of iterations required to achieve WR convergence can be reduced by breaking
the simulation interval into short pieces, and in Chapter 7 we will present an adaptive algorithm that
attempts to exploit this property of WR.

Consider the following nonlinear ordinary differengial equation in x,(r), x;(r) € R with input
u e IR that approximately describes the cross-coupled nor logic gate in Fig. 6.1a (the approximate

equations represent a normalization that converts the simulation interval [0,71 to [0,1D).
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i o= (5=xp) — x;(xp)% = Sxqu [6.1]
B o= (5=x) = xx)’
x(0) = 50  x,(0) = 0.0

The Gauss-Seidel WR Algorithm given in Section 1.2 was used to solve‘the for the behavior
of the cross-coupled nor gate circuit approximated by the above small system of equations. In Fig.
6.1b plots of the input u(f), the exact solution for x;(f), and the relaxation iteration waveforms for
x4(7) for the 5th, 10th and 20th iterations are shown. The plots demonstrate a property typical of the
WR algorithm when applied to systems with strong coupling: the difference between the iteration
waveforms and correct solution is not reduced at everSr time point in the waveform. Instead, each
iteration lengthens the interval of time, starting from zero, for which the waveform is close to the
exact solution.

As an example of "better" oonvetgence; consider the following differential equation in
Xy, Xz, X3 With input v that approximately describes the shift register in Fig. 6.2a (here the simulation

interval [0,7] has been normalized to [0,1])
i = (50 = x)) — x;)? - (x; — xp) [6.2]
X = (x) = X))
¥y = (5.0 = X3) — x3(xp)°
x(0) = 0.

The Gauss-Seidel WR Algorithm given in Section 1.2 was used to solve the original system approxi-

mated by the above system of equations. The input u(r), the exact solution for x,(f) , and the
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waveforms for x,(#) computed from the first, second, and third iterations of the WR algorithm are
plotted in Fig. 6.2b. As the plots for this example show, the difference between the iteration
waveforms and the correct solution is reduced throughout the entire waveform.

Perhaps sumﬁsingly, the behavior of the first example is consistent with the WR convergence
theorem, even though that theorem states that the iterations converge uniformly. This is because it
was proved that the WR method is a contraction map in the following nonuniform norm on

C(0,7}, R"): .

maxio e £ ]

where 5> 0, f(f) e R",and || « [ is a norm on R". Note that [|f(s) || can increase as e” without
increasing the value of this function space norm. If f(¢) grows slowly, or is bounded, it is possible to
reduce the function space norm by reducing /()| only ¢;n some small interval in [0,7], though it
will be necessary to increase this interval to further decrease the function space norm. The
waveforms in the more slowly converging example above, converge in just this way; the fupction
" space norm is decreased after every iteration of the WR algorithm because significant errors are re-
duced over larger and larger intervals of time.
The examples above lead to the following definition:

Definition 6.1: A differential system of the form given in Eqn. (2.2) said to have strict WR
contractivity property on [0,T], if the WR algorithm applied to the system contracts in a uniform norm

on [0,T], i.e.

maxioqy 1551 - (1 < maxgq 10 - 0] [6.3)

where x*(/) ¢ R"on ¢ ¢ [0,T] is the k* jterate of Algorithm 4.1 and || « [ is any norm onIR". If the
WR algorithm applied to the system is a contraction in a uniform norm on [0,7] for any T > 0 then

we say that the system has the strict WR contractivity property on [0, <) B
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For a system of equations to have the strict WR contractivity property on [0, =) it must be
more than just loosely coupled. In addition, the decomposed equations solved at each iteration of the
waveform relaxation must be well-damped, so that errors due to the decomposition die off in time,

instead of accumulaiing or growing. As an example, we will prove that a system in normal form,
x(1) = fix(n), u(t)) x(0) = xo [6.4]

where x(¢) € R" on t € [0,7]; u(s) ¢ R’ on ¢ € [0,T] piecewise continuous; and f: R'xIR” - IR" is
globally Lipschitz continuous will have the strict WR contractivity property on [0,T] forany T < e
if £ bas a property we refer to as diagonally doniinant negative monotonicity. This property, which
we define precisely below, just implies that the original system is loosely coupled, and the decom-
posed equations genefated by a WR algorithm are well-damped (A similar result in a different setting
can be found in [61]).

Definition 6.2: Let f(x, ¥) be a continuous map from RR*xIR" - IR" where x € R", ¥ € IR" and f'is
globally Lipschitz continuous with respect to x for all ¥ € R". f is said to be negative monotone if

there exists a positive number A such that
(x-)’) . mxa ll) "f(y, u)) € - A(x "y) L (x—y) [6.5]

(here « indicates a scalar product) for all x,y € R" and v € R. Let v € R” be the i unit vector.
Then f is said to be diagonally negative monotone if there exists a collection of positive numbers A,

such that
oo (fx + & u) = flxu)) < - Ag [6.6]

for any positive £ € R, x € R" and v € IR". If f is globally Lipschitz continous, there exist positive

numbers [, iy € [1, ..., n] such that for any ¢ ¢ R

v e (fx + &/, w) = fxa)ll < Jylel [6.7]
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for all x € R", w ¢ R". A mapping f, is a diagonally dominant negative monotone if f is a strictly
diagonally negative monotone and A\, > /)3:”" where A, is as in Eqn. (6.6). (This is a stricter definition
than in previous literature[30]).

To prove the theorem about diagonally dominant negative monotone systems we will use the

following lemma.

Lemma 6.1: Let k, x(¢), x(¢) € R be such that
x(X(f) € = Ax(x()) + kx(t)  x(0) = O [6.8]

for some positive number A. Then [x(f)| < |k|A-1forallz> 0.

Proof of Lemma 6.1:

Substituting 7‘1’- | x(r) |2 for 2x(£)x(?) in Eqn. (6.8) and taking absolute values
L1x012 ¢ ~AIx01? + 21k 1%

Therefore,%lx(t)l < =Alx(®)] + |kl or |x(9)| = 0. This implies, by a theorem in dif-

ferential inequalities[39], that

13!

(1-e7M) < A

Ix(D| <

I3
A

which proves the lemma. R

We now prove the theorem.
Theorem 6.1: Let a system of equations of the form of Eqn. (_6.4) be such that f (x,uj is diagonally
dominant negative monotone. Then the system has the strict WR contractivity property on [0, 7] for
allT € .8

Proof of Theorem 6.1:
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Again we will only present the proof for the Gauss-Seidel case, but the result holds for the
Gauss-Jacobi case also. The iteration equations for the Gauss-Seidel WR algorithm applied to Eqn.

(6.4) are, foreach i ¢ [1,...,n],

. k k
i+l okl xRl ke K (6.9]

where x, u, and f are functions of time, but the dependence on time has been dropped for notational

convenience. Taking the difference between the k and k + 1 iteration for each i € [1, ..., n] yields:

k41 -k k k+1 _k k k- k-
FH -3 - f;(xl"'l. oo X T Xy g eenr Xgr U) = f,(xf, - x:‘, x,“’, ey Xy Lu

Multiplying through by x+! — x} and using the Lipschitz and diagonal negative monotone properties

of f we get

A W ¢ L L) WP W G D 16 AR ) S " [6.10]

i-1 n
kel _ kp L okl _ ok k_ k-1 kel _ K
DAL AR I Pran A B W M TC - b RN P b /o

(]
j=1 jmitl

where | x;| denotes the absolute value of x,, and /; and A, are as in Definition 6.2. From the estimate

in Lemma 6.1,

i-1 n
k+1 k =1 k+1 k -1 k k-1
Ixf*1 = xf < zll,-}\i gt =+ 3 lli,x,. Ixf = xf1) [6.11]
Jj= J=i+

Let A € R™" be a matrix defined by 4,(i#/j) = [A;'and4; = 0. Then4 = L + Uwhere L

is strictly lower triangular, U is strictly upper triangular. Rewriting Eqn. (6.11) in matrix form

U-L) <+ =k < v)xk - xk-1) [6.12]
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where | x| is the vector whose elements are the absolute value of the elements of x, and the inequality
holds for each element-by-element comparison. To show that Eqn. (6.12) implies
l(x*+! = x|, < fx*+! = x*[_ requires slightly complicated argument, as the inequality will not
still hol(_l if both sides of Eqn. (6.12) are mullipiied by (J - L)-'. Since (I — L) is diagonally domi-
nant with unity on the diagonal and negative lower triangular off-diagonal entries, if r is a solution to
(-~-L)|r| - Ulxt—=x*1} then |r] > |x**'=x*|. Given that f is diagonally dominant,
i - L)-'U]. < 1 (Lemma 4.2), from which it follows that |x**! — x*| € r < |x¥=x*1] .

Then from Eqn. (6.12) we get
maxo 7 1x**1(0) = x40 1, < max 1x*() - =*"'@)1 [6.13]

for any T < o, which proves the theorem. B

As the crossed nand gate example indicates, many systems of interest do not have the strict
WR contractivity property on [0,7] for all T < . However, we will prove that any system that
satisfies the WR convergence thgorem will also have the strict WR contractivity property on sonte
nonzero interval.
Theorem 6.2: For any system of the form of Eqn. (2.2) which satisfies the assumptions of the WR
convergence theorem (Theorem 4.1) there exists a 7> 0 such that the system has the strict WR
contractivity property on [0,T].
Proof of Theorem 6.2

We prove the theorem only for the Gauss-Seidel WR algorithm but, as before, the theorem also

bolds for the Gauss-Jacobi case. Starting with Eqn. (4.8) and substituting x* for x/,
#+ny - k@) = [6.14]

(Lis 1) + Dyt ()" Uiy 10550 = (L)) + D)™ G(0F* 1) +
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X A
(Lipr(D + Dk+,(:))-‘}‘(x**', 2 u) = (L) + DI, XL )

To simplify the notation, let 4,(r), B,(f) € R™" be defined by 4,(f) = (L) + DU ,
B(0) = (L(f) + D(N)-' . It is important to keep in mind that (L(1) + D())-'U (1) , and
(L,(¢) + D,(1))-! are functions of x*, and by definition, so are 4,(f) and B,(?). Expanding the above

equation and integrating,

[ ;(i"“(f)-x"(f))dw - ;Am(f)(f"(f) - #1()dr + [6.15]
! k-1
f O[Ak,...x(f) = A ()X () dr +
H A A '
I} Bt @, 2@, w) = £, e, ueler +

! | Ak k=1
fo[Bk“('r) - Bi(D1f (x"(7), x*~(r), u(r))dr

Integrating by parts and using the fact that x*(0) ~ x*-1(0) = 0,

Ky = X)) = A (0 ) = 0] - _ [6.16)

t d - t ok~
fo.d?A“,(f)[x"(f)-x" loMr + fo[""“(” - A4 dr 4+
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! A
S B o, 5, wte) = F ¥, 54, wtelar +

' A k. k=1
f0[3k+,(f) = BUn1f ), x5 N), u(r))dr

Taking norms, and using the Lipschitz continuity of f, 4,(r) , and B,(¢), and the uniform boundedness

of B,(¢) in x (see Theorem 4.1):

' L . .
15t - <*o)1 - f o (K + kM + kg Ix**1(r) = x¥(n)1 < [6.17]

' ~ ~ ~
y Ix*) = x* 01 + f . (LK + kM + 2eM + kN [1x5(2) = x*~ () 1dr

. A . . .
where }, L are the Lipschitz constants of f with respect to x**! and x* respectively;
ky, kp, ki, k4 are the Lipschitz constants for A,,,(f), B,,,(¢) with respect to their x,,; and x, ar-
guments respectively; y = max_[(Z, + D,)U] < 1; and M and N are the a priori bounds on x*

A
and f found in the proof of Theorem 4.1 Note that

—d;Am(f) - —1—!‘“1(1’)«*"*' + d:*AH.‘(f)x." < kyM + kM . Moving the max ( over ¢ )

d dxt+1
norms outside the integrals and integrating yields

maxjo 73 1x**1(0) - x*(01 < [6.18]

+ T(LK + kM + 2,M + kN) _
U AR il maxo 71 1 x*(0) = x*~ 1) 1.

1 = TUyK + kM + k3N)




Page 109

y + T (LK + kM + 2kM + kuN)

Since y < 1, a T' > 0 exists such that — — =a< 1.
1 = T(hK + ksM + kyN)
With this 7/, Eqn. (6.17) becomes
- max(g, 7] It -2k < @ maxjq, /) Ix* = x¥=1g [6.19]

for a < 1, which proves the theorem. B

Theorem 6.2 guarantees that the WR algorithm is a contraction mapping in a uniform norm for
any system, provided the interval of time over which the waveforms are computed is made small
enough. This suggest that the interval of simulation [0,7] should be broken up. into windows,
[0, 1), (T3, T5), ..., [T,_;, T,] where the size of each window is small enough so that the WR algo-
rithm contracts uniformly throughout the entire window. The sﬁnaller the window is made, the faster
the convergence. However, as the window size becomes smaller, the advantages of the waveform
relaxation are lost. Scheduling overhead increases when the windows become smaller, since each
subsystem must be processeci at each iteration in every window. If tﬁe windows are made very small,
timesteps chosen to calculate the wavefoﬁns are limited by the window size rather than by the local
truncation error, and the advantages of the multi-rate nature of WR will be lost. |

The lower bound for the region over which WR contracts uniformly given in Theorem §.2 is
too conservative in most cases to be of direct practical use. As mentioned above, in order for the
WR algorithm to be efficient it is important to pick the largest windows over which the iterations ac-
tually contract uniformly, but the theorem only provides a worst-case estimate. Since it is difficult to
determine a priori a reasonable window size to use for a given nonlinear problem, window sizes are
usually determined dynamically, by monitoring the computed iterations(See Chapter 7)[18]. Since
Theorem 6.2 guarantees the convergence of WR over any finite interval, a dynamic scheme does not
have to pick the window sizes very accurately. The only cost of a bad choice of window is loss of

efficiency, the relaxation still converges.
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SECTION 6.2 - PARTITIONING LARGE SYSTEMS

In Algorithm 4.1, the system equations are solved as single differential equations in one un-
known, and these solutions are iterated until convergence. If this kind of node-by-node decompos-
ition strategy is used for systems with even just a few tightly coupled nodes, the WR algorithm will
converge very slowly. As anexample, consider the three node circuit in Fig. 6.3a, a two inverter chain
separated by a resistor-capacitor network. In this case, the resistor-capacitor network is intended to
model wiring delays, so the resistor bas a large conductance compared to the other conductances in

the circuit. The current equations for the system can be written down by inspection and are:
Cxy + lpyy(xg, vdd) + ipp(xp, u) + 8(x;=x3) = 0 [6.20]
Cxypg(xg=x1) = 0
C Xy ip3(x3, X0) + im4(x3; vdd) = 0

Linearizing and normalizing time (so that the simulation interval [0,7] is convertecf to [0,1]) yields a

3x3 linear equation:

X'l -10 9.5 0 Xy 5
H| = |95 =95 of [x| + |0 [6.21]
EX 0 -1 -1} |x 0

x1(0) = x3(0) =0 x3(0) = 5

Algorithm 4.1 was used to solve the original nonlinear system. The input u(t), the exact sol-
ution for x,, and the first, fifth and tenth iteration waveforms generated by the WR algorithm for x;

are plotted in Fig. 6.3b. As the plot indicates, the iteration waveforms for this example are converg-
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ing very slowly. The reason for this slow convergence can be seen by examining the linearized sys-
tem. Itis clear x, and x; are tightly coupled by the small resistor modeling the wiring delay.
If Algorithm 4.1 is modified, so that x; and x, are lumped together and solved directly, we get

the following iteration equations:

x{m-l -
i+t -10 95 o] | .. 5
- s+ [6.22]
ix+ 9.5 -9.5 0 ; 0
X3 ’
PRt SR LS P S8

The modified WR algorithm now converges in one iteration, because x; only depénds on the "block"
of x; and x;, and that l:tlock is independent of x; . |

As th.e example above shows, lumping together tightly coupled nodes and solving them directly
can greatly improve the efficiency of the WR algorithm. For this reason, the first step in almost every
WR-based program is to partition the system, to scan all the nodes in the system and detefmine which
should be lumped together and solved directly. Partitioning "well" is difficult for several reasons. If
too many nodes are lumped together, the advantages of using relaxation will be lost, but if any tightly
coupled nodes are not lumped together then the WR algorithm will converge very slowly. And since
the aim of WR is to perform the simulation rapidly, it is important that the partitioning step not be
computationally expensive.

Several approaches have been gpplied to solve this partitioning problem. The first approach
fs to require the user to partition the system[15). This technique is reasonable for the simulation of
large digital integrated circuits because usually the large circuit has already been broken up into small,
fairly independent pieces to make the design easier to understand and manage. However, what is a
sensible partitioning from a design point of view may not be a good partitioning for the WR algorithm.

For this reason programs that require the user to partition the system sometimes perform a "sanity
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check” on the partitioning. A warning is issued if there are tightly coupled nodes that have not been
lumped together. .

A second approach to partitioning, also tailored to digital integrated circuits_, is the functional
extraction method[i6]. In this method the equations that déscribe the system are carefully examined
to try to find functional blocks (i.e. a nand gate or a flip-flop). It is then assumed that nodes of the
system that are members of the same functional block are tightly coupled, and are therefore grouped
together. This type of partitioning is difficult to perform, since the algorithm must recognize broad
classes of functional blocks, or nonstandard blocks ma)'r not be treated properly. However, the
functional extraction method can produce very good partitions because the relative importance of the
coupling of the nodes can be accﬁrately estimated.

Since it is the intent of the partitioning to improve the speed of convergence of the relaxation,
it is sensible to partition a large circuit with this, rather than topology or functionality, in mind. In this
section we wﬁl develop an algorithm based on this idea. As it is difficult to get estimates of the speed
of WR convergence directly, We will start with an exact analysis of a relaxation algorithm applied to
a simple 2x2 linear algebraic example, and then lift the result to a heuristic for partitioning large linear
algebraic problems. .Then a rélationsbip will be established between the convergence speed of the
linear WR algorithm, and that of two linear algebraic problems.

The following definition will be useful for describing the rate of convergence of relaxation al-
gorithms.

Definition 6.3: Let x* ¢ IR” be generated by the k* iteration of an algebraic relaxation algorithm ap-

plied to a system of the form f(x) = 0, where x ¢ R" and f:R" -+ R". Then the /, iteration factor

y. is defined as the smallest positive number such that
k+1 k k k-1
Ix** = x* e € Y I =x"" o

for any k > 0, and any bounded initial guess x° B.
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Since the difference between the exact solution, x, and the result of the k™ step of a relaxation,
x*, is less than (v, )* [ x — x°[. , the size of y, is an indication of how fast the relaxation converges.
If v is much less than 1 then the relaxation is certain to converge rapidly, butif y. > 1 the relaxa-

tion may not converge, and if v, is close to 1 the convergence may be very slow.

Consider the simple 2x2 matrix problem,

[“11“12] ["l] by
- [6.23]
@16 | Lx; b |

If the Gauss-Jacobi relaxation algorithm is used to solve Eqn. (6.23) (See Section 3.2) then the /, it-

eration factor is the /, induced norm of

0 g2
an
2!. 0 ‘ [6.244]
a2
which is
j a2, 9
= max(—, — .
e = max(g=, ) [6.24b)

and if the Gauss-Seidel relaxation algoﬁthm is used, then the [_ iteration factor is the /, induced norm

of
a2 I [6-250]
a11922
which is
a,1a
N [6.255]

a)1az;
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For the 2x2 linear system of Ecjn. (6.23), Eqn. (6.24b) and Eqn. (6.25b) can be used to decide
whether to use relaxation, or lump the two nodes together and use direct methods. The critera that
v& be small (much less than one), which we will refer to as the diagonally dominant loop criteria, has
proved to be a usefﬁl heuristic for partitioning the large systems generated by circuit problems. For

the linear algebraic problem
Ax = b [6.26]

where x = (X,...,x,)7, b = .(b,,.., b)7, x,b € R", A ¢ R, invertible, 4 = (g,) , we have the

following partitioning algorithm.

Algorithm 6.1 Diagonal Dominant Loop Partitioning for Ax = b

forall (ijinN)§

a4
%4Pu

if ( > a ) {xislumped withx;}

|
The constant a is dependent on the problem, and is roughly related to the desired [, iteration factor,
so the smaller a is made; the more likely nodes are to be lumped together.

Although Algorithm 6.1 works well for the matrices generated by a wide variety of circuit
problems, it is only a hueristic. There are circuit examples for which the diagonally dominant loop
criteria does not indicate tightly coupled nodes that should be placed in the same partition. A par-
ticularly common circuit example for which Algorithm 6.1 does not lump tightly coupled nodes to-
gether is given in Fig. 6.4, an inverter driving a series of resistors. This is just a more complex version
of the example given at the beginning of this section. The KCL equations for the circuit, approxi-

mating the inverter’s output as a one volt voltage source,

0.01x; + 10.0(x; — x;) = 0.01
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10-0(X2-X]) + 1.0(X2 —X3) =0

1.0(x; ~ x5) + 10.0(x3 —x,) = O

0.01x; + 10.0(x4 —x3) = O

or in matrix form,

[ 1001 -100 00 00 | [x 1.0

-100 110 -1.0 00 % 0
. - | [6.27]
00 -10 110 -100| |x| - ]o
00 00 -1001001 | |, 0

If Algorithm 6.1 is used to partition the matrix in Eqn. (6.27) and a = 0.1, then x; will be lumped
with x;, and x; will be lumped with x,. The spectral radius for the iteration matrix generated by ap-
plying block Gauss-Seidel ;elaxation to the partitioned subsystems is = 0.98. The spectral radius is a
lower bound on the iteration factor in any norm. Since it is very close to one, the relaxation will
converge slowly.

The reason the diagonally dominant loop criteria sometimes produces misleaﬁing results is that
it is too local a criterion, it only indicates how mutually coupled two nodes are, compared to how
coupled they are to other nodes ir the problem. If two nodes are extremely tightly coupled as are the
pairs xy, X, and x3, x, in the example of Eqn. (6.27), then each of the nodes in the pair will appear
relatively loosely coupled to other nodes in the problem, even if they are tightly enough coupled to
other nodes to slow the relaxation.

It is possible to modify the diagonally dominant loop partitioning algorithm so that it will
produce good partitions for problems which contain subsysiems like the example of Eqn. (6.27). To

demonstrate the algorithm, we consider a different approach to partitioning. Consider a problem of
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the. form of Eqn. (6.26), Ax — b = 0, and define \; = , which is just the i diagonal term of

ax,
ab,
of A-1. Then new algorithm is generated by replacing al,,' with A, in Algorithm 6.1.
Algorithm 6.2 -~ Reduced System Partitioning for 4x = b
forall (iinn) §{ compute A, }
forall (ijinN){

if(gaAN; > «){xislumped with x;}

|

A simple circuit interpretation can be given for the two partitioning algorithms based on
Norton equivalents[36]. Using the diagonally dominant loop criteria directly to decide whether or
not to lump node x, with x; amounts to examining a circuit for which the elements to the right of x,
and to the left of x, have been replace with a current source in parallel with a 6.1 ohm resistor to
ground. Using the reduced system partitioning algorithm amounts to using the exact equivalent for
the circuit in Fig. 6.4, that is, to replace the elements to the right of x; and to the left of x; with their
Norton equivaleni, a current source in parallel with a 100.1 ohm resistor to ground. Then diagonally
dominant loop test applied to this reduced system indicates that y, = 0.98 , and is identical to the
spectral radius computed above.

Of course, computing the inverse of A is a foolish approach to partitioning if the problem is to
compute a matrix solution by relaxation. It is a useful notion though, because there are many cases
where reasonable approximations to A, can be computed easily, as we will demonstrate in Chapter 7.

Either the diagonally dominant loop or the reduced system criteria are heuristic techniques for
partitioning linear algebraic systems. The next step is to lift the techique to an approach for parti-

tioning the differential systems of the form of Eqn. (2.2).

Cx(r) = Ax()) + u(t) x(0) = xp [6.28]
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where C, 4 € IR’W‘, C nonsingular, and x(f) € IR". We will start by presenting the waveform equiv-

alent of the iteration factor.

Definition 6.4: Let x::[0,7] - IR” be the function generated by the k" iteration of the WR algorithm
applied to a system of the form of Eqn. (6.28). Then the WR I, uniform iteration factor, y2'# , for

the system is defined as the smallest positive number such that

WR

maxpo 77 [1x¥+1() = k() 1, < ¥2R maxopllx*() - ¥,

for any k > 0, any continously differentiable initial guess v?, and any piecewise continuous input
u.ll

T;lere are two ways to reduce y¥®. The first, discussed in the Section 6.1, is to reduce the
simulation interval [0,7] until y¥® is less than one. The second approach is to partition the circuit into
loosely coupled subsystems. A combination of the two techniques is needed to allow for reasonably
large windows and reasonable small partitions.

As mentioned above, it is difficult to estimate y#? directly for a given problem of the form of
Eqn. (6.28). There are the following theorems which relate y¥® to iteration factors applied to a
simplified system of equations.
Theorem 6.3: Let y¥ 2 be the WR uniform iteration factor for a given system of equations of the form
of Eqn. (6.28) solved on [0,T). Then in the limit as T'+ o, Y¥? is bounded below by the spectral
radius of (L, +D,)"U° where LD, U, are the strictly lower, diagoxial, and strictly upper triangular
portions of 4 given in Eqn. (6.28).

The theorem is simple to prove given the following lemma, the proof of which is given in [32].

Lemma 6.2: Let F be any linear map such thaty = Fx, y, x:[0, <) = IR". Define y(s), x(s), F(s) as
the Laplace tranforms of y, x, and F respectively. Then the spectral radius of the map F, p(F) is equal

to the max, p(F(s)).H
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Proof of Theorem 6.3
Let L, D, U, be the strictly lower triangular, diagonal, and upper triangular portions of C.
Similarly, let L, D,, U, be the strictly lower triangular, diagonal, and upper triangular portions of 4.

Using this notation, the Gauss-Seidel WR iteration equation applied to solving Eqn. (6.28) is
k+1 -k k+1 k
Lo+ D)7 () + UX"() = (Lg+D)x"" (1) + Ux (0). [6.29]

Define e*(f) = x*(f) — x*-1(¢). Taking the difference between the k + 1* and k* iteration of Eqn.

(6.29) yields
(L, + DY) + UKD = (L, + D10 + Ut [6.30]
Taking the Laplace transform of Eqn. (6.30) yields,
s(L, + DY*1(s) + sUEK() = (L, + D"t () + U [6.31]
Reorganizing, assuming the diagonal elements of C are nonzero,
*1(s) = [s(L, + Do) + (Ly + DI 'GU + Upef(s), [6.32]
from which it can be seen that
F(s) = [s(L, + D,) + (L, + DY) (sU, + U) | [6.33)
lﬁ particular,
F0) = [L,+ D) U,

which, given Lemma 6.2, proves the theorem.®



Page 119

Theorem 6.4: Let yi¥'R be the WR uniform iteration factor for a given system of equations of the form
of Eqn. (2.1). Then y¥? is is bounded below by the spectral radius of (L, +D,)-1U, where LD, U,

are the strictly lower, diagonal, and strictly upper triangular portions of C given in Eqn. (6.28)‘.
Proof of Theorem 6.4
Algebraically reorganizing Eqn. (6.30),
#0 = —@ +D) U - [6.35]
(Lo + D)~ WL, + DY) + (L. + D) 'U ).
Integrating Eqn. (6.35) and using the fact that £(0) = O,

) = — (L + D)t Ut() - | [6.36]

f o‘(Lc + D)L, + DY+ (n)dr + f ol(Lq + D) Ut (r)dr.

Since Eqn. (6.36) bolds for all ¢, it holds as ¢ -+ 0, which proves the theorem. B

In Eqn. (6.28), C represents the matrix of linear capacitors, and 4 is the net circuit currents
generated by conductances. The two theorems above indicate that it is possible to get lower bound
estimates of y¥? by examining circuits where only the capacitances and conductances are independ-
ently present. These estimates are lower bounds, hence, to decrease y¥® below a desired a, it is nec-
essary to partition in such a way that the iteration factors for the Gauss-Seidel iteration applied to the

algebraic systems are decreased below a.
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Figure 6.1a - Cross-Coupled Nor Gate
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Figure 6.1b - WR Iteration from Cross-Coupled Nor Gate
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*+

Figure 6.2a - Shift Register
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Figure 6.2b - WR Itcrations from Shift Register
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Figure 6.3a - Inverter with Delay
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Figure 6.3b - WR Itcrations from Inverter with Delay
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Figure 6.4 - Inverter Driving a Serics of Resistors
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CHAPTER 7 - THE IMPLEMENTATION OF WR IN RELAX2.3

In this Chapter, a description of the implementation of the WR algorithm in the RELAX2.3
program is given. We start with a brief overview of the steps performed in the RELAX2.3 program
when simulating a circuit. A detailed description of the major steps is contained in the sections that
follow.

The first step in simulating a circuit using the RELAX2.3 program is to create the circuit de-,
scription file. In this file a user must épecify .device model parameters, circuit topology, analysis
specifications, and plotting requests. The circuit topology can be described in as hierarchical or flat
a form as the user desires[60). This circuit description file is used as an input to the RELAX2.3
program, whose first step is to flatten the hierarchy.

éefore applying the WR algorithm, the flattened circuit is decomposed into a collection of
subcircuits. This is done by partitioning the circuit into clusters of tightly coupled nodes. Then the
elements (e.g. transistors, resistors, capacitors) that connect to any of ghe nodes in:a given cluster are
gathered together to make the subcircuits. Once the entire circuit has been carved up into subcircuits,
the subcircuits are ordered, or scheduled, starting with subcircuits that are connected to the user-
defined inputs and then following the natural directionality of the circuit (as much as possible).

After a large circuit has been broken up into subcircuits, and these subcircuits have been or-
dered, the RELAX2.3 program begins the waveform relaxation process. An initial guess is made for
each of the node voltage waveforms. Then the numerical solution for each of the subcircuits is
computed in the order determined above. The computation is performed using a variable-timestep
trapezoidal rule numerical integration algorithm, with local trunction error timestep control{1]. To
perform the numerical integration, those nodes in the subcircuit that where not part of the cluster
around which the subcircuit was built are treated as external time-varying voltage sources. The values
for the external voltage sources are either the initial guess waveforms, or if the subcircuit containing

the external node was simulated previously, that computed waveform. As the node waveforms are
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computed, they replace the existing waveforms (initial guesses or previous iterations), and the process
is repeated until the waveforms converge.

As mentioned in Chapter 6, the WR algorithm becomes inefficient when used to simulate dig-
ital circuits with logfcal feedback(e.g. finite state machines, ring oscillators, etc.) for many cycles,
because tl;e relaxation converges in a very nonuniform manner. For this reason the RELAX2.3
program does not actually perform the relaxation iterations by computing the transient behavior of
each subcircuit for the entire user-defined simulation interval. Instead, the RELAX?2.3 program uses
a modified WR algorithm[17], in whif:b the relaxation is only performed for a small piece of the
user-defined simulation interval at a time. Exactly how large a piece of the waveform, referred to as
‘ a as a window to use is determined automatically, at the beginning of every WR iteration.

If the WR algorithm applied to very large circuits, it is often the case that some pieces of the
circuit will converge much more rapidly than others. This phenomenon, called partial waveform
convergence; can be exploited to improve the overall efficiency of the WR method. The details of the
algorithm for avoiding recomputing the waveforms that bave already con:verged are given in Section
7.5.

As afinal point, in Chapter 5 it was mentioned that when the WR iteration equations are solved
using a numerical integration algorithm, the resulting discretized WR algorithm is not guaranteed to
converge unless the discretization error is driven to zero with the iterations. For this reason, the
RELAX2.3 program reduces the acceptable local truncation error criteria used for selecting the nu-

merical integration timesteps as the iterations in a given window progress.

SECTION 7.1 - PARTITIONING MOS CIRCUITS

As was shown in Section 6.2, the convergence of WR is greatly accelerated if groups of tightly
coupled nodes are solved together as one subsystem or subcircuit. For this reason the RELAX2.3
program groups together tightly coupled nodes into subcircuits before beginning the relaxation proc-

ess. The algorithms used in the RELAX2.3 program to partition large MOS circuits is based on Al-
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goritﬁm 6.2 for partitioning linear algebraic systems, and Theorems 6.3 and 6.4 that relate the
problem of partitioning linear algebraic systems to partitioning linear differential systems.

MOS circuits are not linear, so the ideas presented in Section 6.2 must be modified if they are
to be applie& to nonlinear systems. The RELAX2.3 program uses several conservative heuristics
(conservative in the sense that they tend to error on the side of producing .larger than optimal sub-
circuits) to handle the nonlinear MOS transistors. The first heuristic is that each of the MOS tran-
sistors is initially treated as a nonlinear resistor between the transistor's source and drain, and the
coupling between the gate and source and gate and drain is considered separately, during scheduling
(See Section 7.2). With this simplification, the following algorithm for partitioning circuits with

two-terminal linear and nonligear resistances is applied.

Algorithm 7.1 - (Conductance Partitioning)

for each ( conductive element in the circuit ) §
& < maximum element conductance over all v.
Remove the element from the circuit.
Replace each of the other conductances in the circuit by its minimum values over all v.
Compute g, and g,,-the Norton Equivalent conductances at the element terminals
8 83

I (
& +8) (& +83)
Tie the two terminal nodes together.

> a) § Here, a is the desired WR iteration factor, typically 0.3

i
} -
n

Computing the Norton equivalent conductances, Geg, at a node can be performed using a
simple recursive formula if there are no loops of conductances.among only non-voltage source nodes.
Note that this recursion will not be very deep. The recursion will stop at any MOS transistor, because

the minimum conductance of the MOS transistor is zero.

Algorithm 7.2 - (Norton Equivalent Conductance for Node i)
Geq < 0.0
foreach ( conductive element incident at node i) §
G < element conductance
nodej - the conductive element’s other node.
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If ( nodej is a voltage source node ) §
Geg - Geq + G

}
else {

‘ Gegj < Norton equivalent conductance at nodej with this element removed.
} Geq « Gegq + (G x Gegj)/(G + Geg))

!
]

If the circuit does contain conductance loops among onl& non-voltage source nodes, the above algo-
rithm can still be used if the recursion is truncated in such a way that no circuit node is visited twice.
In this case, only an estimate of the Norton equivalent will be computed.

The conductance partitioning algorithm is justified by Theorem 6.3, that the WR iteration
factor is bounded below by the iteration factor for solving just the algebraic portion of the problem.
Theorem 6.4 suggests that an analogous algorithm to Algorithm 7.1 be constructed for the capacitive
elements in the circuit. Since the capacitance problem is almost identical in nature to the conductance
problem, a capacitance partitioning algorithm can follow almost the same strategy as the conductance
partitioning. The ;'lifferenoe is that instead of comparing floating capacitances to Norton equivalent
conductances, they are compared to equivalent capacitances. These equivalent capacitances are en-
tirely analogous to the equivalent conductances, and can be computed using the same recursive ap-
proach as in Algorithm 7.2.

The RELAX2.3 program uses both conductance and capacitivé partitioning, and forms sub-
circuits from the union of the two results. The algorithm has been applied to a wide variety of MOS
digital circuits, including a large VHSIC memory gircuit with 2900 nodes and over 3500 parasitic
components. The results have always matched the best attempts at hand partitioning, in as many in-
stances as we had the patience to check. However, it is likely that if the method is applied to larger
problems, the subcircuits produced may become quite large. Should this be the case, the present
simple algorithm could be extended, so that an additional pass is made over only the excessively large

subcircuits, to subpartitioning them using more sophisticated algorithms. In particular, to use better
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estimates of the equivalent conductances and capacitances, as the present algorithm may be unnec-

essarily conservative.

SECTION 7.2 - ORDERING THE SUBSYSTEM COMPUTATION

When applying the Gauss-Seidel WR algorithm to a decomposed system of differential
equations, the order in which the equations are solved can strongly effect the number of WR iter-
ations required to achieve satisfactory convergence. In order to explain this effect, consider the case
where there are only grounded two-ten;tinal capacitors for each node of the circuit. Thus, the matrix
C(x,u) of Eqn. (2.2) is diagonal. Then let the dependency matrix of 4 fin Eqn. (2.2) be defined as a
zero-one matrix P = [p,]such thatp, = 1if f;depends onx, p, = 0 otherwise. Note that P also

‘represents the zero-nonzero structure of the Jacobian of f.

If P is lower triangular, then one iteration of the Gauss-Seidel WR algorithm will produce the
exact solution to the original differential equation system (in practice, two iterations will be per-
formed because a second iteration is needed to verify that convergence has been achieved). If Pis
not lower triangular, but the dependence of the f; component of f on x,, i < J, is "weak", then the
result of one iteration of the Gauss-Seidel WR algorithm will be close to the exact solution, and sub-
sequent iterations will converge rapidly. For this reason, when applying relaxation techniques to the
solution of circuit equations, the technique can be made much more efficient by reordering the
equations to make P as close to a lower triangular matrix as possible.

As discussed in Section 6.2, subsets of nodes in a large circuit may be mutually tightly coupled,
and in order to insure that the relaxation algorithm converges rapidly when applied to such a circuit,
these subsets are grouped together into subcircuits and solved with direct methods. This corresponds
to block relaxation method, and an ordering algorithm applied to a system being solved with block
relaxation should attempt to make f as block lower triangular as possible.

In some sense, partitioning and ordering the subsystem of equations are performing similar

functions. They are both attempting to eliminate slow relaxation convergence due to two nodes in a
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large circuit being tightly coupled. There is, however, a key difference. If, for example, x; is strongly
dependent on x; and x, is strongly dependent on x; , then a partitioning algorithm should lump the two
nodes together into one subcircuit. However, if x, is strongly dependent on x, but x; is weakly de-
peadent on x, then node i and node J should not be lumped together, but the ordering algorithm
should insure that the system.is block lower triangular by ordeﬁng the equations so that x, is computed
before computing x,. |

Resistors and capacitors do not exhibit the kind of unidirectional coupling that is of concern
to the ordering algorithm. In fact, the only element type of concern to the ordering algorithm are
transistors, because they exhibit unidirectional coupling. That is, the drain and source terminals of
an MOS transistor are strongly dependent on the gate terminal of the transistor, but the gate is almost
independent of the drain and source. Clearly, this implies that the subcircuits containing the given
transistor’s drain or‘ source should be analyzed after the subcircuit containing the given transistor’s
gate.

To dévise an algorithm to carry out this task, it is convenient to introduce the dependency graph
'of the partitioned circuit. If we represént the circuit with a directed graph G(X, E) , where the set of
nodes, X, is in one-to-one correspondence with the subcircuits obtained by a partitioner, and where
there is a directed edge between the node corresponding to subcircuit i and the node corresponding
to subcircuit j if there is a transistor whose gate is in subcircuit i and whose drain or source is in sub-
circuit j. If the graph is acyclic, it can be levelized, i.e. all the nodes can be ordered in /ewels so that
a node in level i can have incoming edges only from nodes in levels lower than i. The ordering so
obtained is the one used by RELAX?2.3 to process the subcircuits. .

However, there may be cases where cycles exist in the graph. In this case, either the subcircuit
defintions are changed by grouping two or more subcircuits together, effe;:tively performing part of
the partitioning task(As aluded to in Section 7.1), or edgés of the graph are discarded to remove the
cycles. In either case, at the end of this process an acyclic graph and an ordering of the subcircuits

corresponding to the leveling of the (perhaps altered) graph is obtained.
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One question remains, which is when to repartition to remove a feedback loop versus breaking
the loop. As the example Section 6.1 indicates, if signal propagation around the feedback loop is fast
compared to the size of the window, the relaxation convergence will be slow and nonuniform.. For
this reason, the ordeﬁng algorithm makes the decision about partitioning based on an estimate of the
delay arounﬂ the feedback loop. I it is smaller than one percent(somewhat arbitrarily chosen) of the
simulation interval, the feedback loop is removed by repartitioning. If the delay is larger, then the

feedback loop is broken by removing an edge from the directed graph.

Algorithm 7.3 - (Relax2.3 Subcircuit Ordering Algorithm)
Initialization.
ordered__list = NULL;
unordered__list = List of subcircuits from the partitioner;
Main Loop.
while ( unordered__list # NULL ) §
none__ordered == FALSE;
while ( none__ordered == FALSE ) {
none__ordered == TRUE;
for each (subcircuit in the unordered__list) {
if (all subcircuits on incoming arcs are on ordered___list) {
none__ordered = FALSE;
append__to__end__of__ordered__list(subcircuit);
delete__from__unordered__list(subcircuit);
}
: }
if (unorder__list # NULL ) §{ Must be a feedback loop.
found__loop = FALSE;
depth =.1;
while ( found__loop == FALSE ) §
depth = depth + 1;
for each ( subcircuit in the unordered list ) §
if ( there exists a loop of length = depth) §
found__loop = TRUE;
if ( delay around the loop > 0.01 * the simulation interval ) §
break the loop
}

else { .
collapse loop into one subcircuit.
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SECTION 7.3 - COMPUTATION OF THE SUBSYSTEM WAVEFORMS

As in standard circuit simulators, the RELAX2.3 program solves Eqn. (4.4) using a numerical
integration method with varying timesteps. Since the major aim of the RELAX2.3 program is to
simulate digital circuits, the integration method was chosen based on how effectively it solves prob-
lems with the properties of digital circuits. Digital circuits are very stif‘f, therefore only A-stable in-
tegration methods were considered. In addition, digital circuits contain very rapid transitions, aﬁd low
order one-step integration methods are usuall).v suggested for sucil problems. Although the
Backward-Euler method is computationally the simplest A-stable one-step method, the trapezoidal
rule, an A-stable second-order one-step method, was chosen instead because of its better accuracy.

There is a second important reason for chosing the trapezoidal integration algorithm over the
implicit-Euler formula. If the WR algorithm is used to solve the system, and a numerical iﬁuegration
method is used to solve the WR iteration equations, then the upper bound on the timestep to guar-
antee WR convergence (see Chapter 5) is a function of the integration method. This timestep con-
straint is larger for the trapezoidal rule than for implicit-Euler. To show this, consider the simple case
of the WR algorithm applied to Eqn. (2.2) with C(v,u) = I, that is assume all the capacitors are lin-

ear, grounded and unity. The WR iteration equations become
o ok O K ). [7.11

where /' is as defined in Section 4.2. Now consider computing the first time step of the implicit-Euler

discretized WR algorithm:

FHE) = vy = (R =) + LOF @+ 1), e+ 1), 0). [7.2]

Applying the trapezoidal rule yields:
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FH(R) = vy = (F(B) = vp) + 0.5RL(F*(n + 1), v+ 1),u) + 0.5 flvg, u). [7.3]

The reason for the relaxation iteration is to resolve f’(v*+}(n + 1), v*(n + 1), u) , and it plays a
smaller role in Eqn. (7.3) than in Eqn. (7.2), and therefore the iteration of Eqn. (7.3) will achieve
and given convergence threshold faster. 4

Given a timestep A, the trapezoidal integration method applied to Eqn. (4.4) yields:

Qb+ k) = qlt) — 05K (gt +ma) + (@), 1)) = 0 [7.4]

The above equation is a nonlinear algebraic equation in g. The user is usually more interested

in the voltage, so before solving Eqn. (7.4) we substitute for g in terms of v.
gt + h)) = q(v(0) = 0.5A[f(Nt + h)u) + flv(),u)] = 0 {7.5]

In Eqn. (7.5) vw(r) and ¢(f) are known, and the equation must be solved to compute v(¢ + A).
Nonlinear algebraic systems generated by integration methods are usually solved using the iterative
Newton-Raphson method. This is because Newton methods have quadratic convergence properties
and because they are guaranteed to converge if the initial guess is close enough to the correct solution.

The general Newton-Raphson iteration equation to solve F(x) = 0 is
Jexky ok = xk<Yy = - Fx*Y) , [7.6]

where J; is the jacobian of F with respect to x. The iteration is continued until [|x* — x*-!|| < e and

F(x) is close enough to 0. If the Newton algorithm is used to solve Eqn. (7.5) for v(¢ + k), the resi-

due, F(v*(t + h)), is:
FOX@ + 1) = g%t + 1) = q(W(D) = 0.5h( SV (e + W) + fin(e), u) ) (1.7

and the Jacobian of F(V(t + h)), J:(V(t + h)) is:
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o (t + h), u)

J (e + 1)) = COH(t+ ) + 0.5k =

Then v*+1(¢t + h) is derived from v*(¢t + h) by solving the linear system of equations:
TR+ M) A e+ h) = K+ = = FO e+ k) [7.8]

The Newton iteration is continued until sufficient convergence is achieved, that is
v+t + h) — vV(t+h)] < eand F(v."‘(t + h)) is close enough to zero.

Each iteration of the Newton algorithm requires a function evaluation, a Jacobian evaluation,
and a matrix solution. For the algebraic systems generated by the numerical integration of MOS
digital circuits it is often inefficient to evaluate the Jacobian every Newton iteration. If the Jacoﬁian
" is reevaluated only every few Newton iterations[27], the number of iterations required to achieve
convergence is usually unchanged and the computation required is significantly reduced. Not only
are Jacobian evaluations skipped, but if the matrix solution is computed by LU factorization[40],
subsequent matrix solutions using the same matrix can skip the LU factorization step. In the
RELAX2.3 progfam the Jacobian is evaluated every third iteration, this choice based on experimental

evidence in several exalilples given in the table below.

TABLE 7.1 - CPU TIME VS # OF NEWTON ITERATIONS/JACOBIAN EVALUATION
Circuit Devices 1 2 3 4

Ring Osc. 7 0.95s 0.77s 0.71s 0.75s
Oper. Amp 25 1 6.28s 5.2s 4.52s 4.67s
flip-flop 33 ©20.47s 16.82s 13.93s 13.67s
Cmos Memory | 621 1080s 976s 885s 886s

On Vax11/780 running Unix

The integration method used in the SPICE2 program is very similar to the direct method used
in RELAX2.3. Both use the trapezoidal integration formula with local truncation error timestep
control, the Newton method to solve the algebraic system, and sparse LU factorization to perform the

matrix solution. However, as can be seen from Table 7.2, the RELAX2.3 program, using the direct
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method described above, is eight to twenty times faster than the SPICE2 program. This can be at-
tributed to many factors. The first is that RELAX2.3 is written in "C", SPICE2 is in FORTRAN,
and "C" programs under the UNIX operating system run almost a factor of two times faster than
FORTRAN prograxﬁs. The other factor of four to ten is due to more sophisticated programming
techniquer;, the more efficent equation formulation and the modified Newton method mentioned

above, and better numerical integration error control.

TABLE 7.2 - RELAX2.3 (DIRECT) VS SPICE ON INDUSTRIAL CIRCUITS
Circuit | Devices SPICE2 RELAX2.3 Ratio
Ring Osc. 7 17s 0.75s 22
Op-amp 25 42s 5s 8
uP Control 232 1400s S0s 15
Cmos Memory | 621 10400s 995s 10
4-bit Counter 259 4300s 540s . 8
Encode-Decode| 1326 115,840s 5000s 23
On Vax11/780 running Unix

It should be pointed out that without a fundamentally new circuit simulation method, just by
carefully exploiting some very general properties of MOS digital circuits, almost an order of magni-

tude decrease in computation time has been achieved over the much more general SPICE2 program.

SECTION 7.4 - WINDOWSIZE DETERMINATION

As mentioned in Section 6.2, the WR algorithm used in RELAX2.3 becomes inefficient when
used to simulate digital circuits with logical feedback(e.g. finite state machines, ring oscillators, etc.)
for many cycles. However, the WR algorithm can still be very efficient if the relaxation is only per-
formed on a piece of the waveform to be computeci at a time. For general circuits, an ideal situation
would be to break the simulation interval into windows over which every time point of the iteration
waveform moves closer to the correct solution. However, if the windows are too small some of the
advantages of waveform relaxation are lost. One cannot take advantage of a digital circuit’s natural

latency over the entire waveform, but only in that window; the scheduling overhead increases when
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the windows become smaller, as each circuit Jump must be scheduled once for each window; and if
the windows are made very small, timesteps chosen to calculate the waveforms will be limited by the
window size rather than by the discretization error, and unnecessary calculations will be performed.

Rathef than use a conservative a prz:ori lower bound as given in Theorem 6.2, in the RELAX2.3
program, the "windowsize" is determined dynamically, by two criteria. Tbo.z first criterion is to pick
the windowsize to limit the number of timepoints required to represent each node waveform in a
window. This puts a strict upper bound on the amount of storage needed for the waveforms, and thus
allows the RELAX2.3 program to avoid dynamically managing waveform storage space. The second
- criterion ns to try to pick the windowsize so that the convergence of the WR is rapid, in particular, that
the waveforms approach the correct solution in a uniform manner over the entire window. The
RELAX2.3 program presently uses the following windowsize determination algorithm:

Algorithm 7.4 (RELAX?2.3 Windowing Algorithm)
starttime = Beginning of the window ’
stoptime = End of the window
endtime = End of user-defined simulation interval
usedpts = Max. # of points used in the last window
maxpts = Max. # of points in a waveform buffer
prevwindow = Size of the window used in the previous iteration
if ( Not entirely converged in this window ) then §
if ( usedpts > maxpts ) then §
Shorten window if the waveforms overran storage buffers.
stoptime = starttime + (prevwindow * maxpts * 0.7)/usedpts;
}
else if ( (numiters mod 5) == 0 ) then { Half windowsize every five WR iterations.
stoptime = prevwindow/2 + starttime;
} .

else § Else just do the same window again.
stoptime == starttime + prevwindow;

i
}
else §

starttime = stoptime;

stoptime = starttime + (prevwindow * maxpts * 0.7)/usedpts;
}
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At present, one twentieth of the simulation interval is being used as an initial guess for the
windowsize. Adding a simple critical path analyzer to RELAX2.3 is being considering to provide a

better initial guess.

SECTION 7.5 - PARTIAL WAVEFORM CONVERGENCE

If the WR algorithm is used to compute the time domain behavior for very large circuits, it is
often the case that some pieces of the circuit will converge much more rapidly than others. The
overall efficiency of the WR method can be improved if the waveforms that have already converged
are not recﬁmputed every subsequent iteratién.

To take advantage of partial waveform convergence requires a simple modification to Algo-
rithm 4.1. Before giving the exact algorithm we present the following useful definition.

Definition 7.1: Let

D CAD, u(D) v (1) = fHD, u(®) V(0) = vy [7.9]
J=1

be the i equation of the system in Eqn. (2.2). We say v/(#) is an input to this equation if there exists
P »
some aftcR and 2zyeR" such that I‘_z.‘lc,j(z, u(n)y, # EIC,,(z +ae,u(f))y, or
Sz, u()) # f(z + ae,, u(r)), where e is the j* unit vector. The input set for the i equation is the set
of j € [1, ..., n] such that v/(¢) is an input ®.
The WR algorithm is then modified slightly using this notion of the set of inputs to a given

ODE.

Algorithm ‘7.5 = WR Algorithm with Partial Waveform Convergence

The superscript k denotes the iteration count, the subscript i denotes the component index of a
vector and ¢ is a small positive number. k <« 0

guess waveform x%(¢) ; ¢ ¢ [0,T] such that x%(0) = x,
(for example, set x°(t) = xo, t € [0,T])
repeat {
kek+1
foreach (iin N) §
Partialflag = TRUE
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if (k = 1) Partialflag = FALSE
Foreach (j < i,j ¢ inputsetof v;) .
if (maxio 7| v} — v}~'| > ¢) Partialflag = FALSE
For each (j 2 i, j € input set of v;)
if (maxn)| v}-! = v*-2| > ¢) Partialflag = FALSE
if ( Partialflag = TRUE) v/*! = ¥
else solve

{
5, G0 o v Vi e W, 0
2 G0t i i )

Sy o o VT n L 1) = 0
for (v(t) ; ¢ € [0,T]), with the initial condition v}(0) = v,

p
} until (mazx, g, max, on V() = ') <e)
that is, until the iteration converges.
| |

SECTION 7.6 - EXPERIMENTAL RESULTS

The degree to which the WR algorithm improves circuit simulation efficiency can be traced to
two properties of a circuit. The first, met;tioned before, is the differences in the rates of change of
voltages in the system, as this will determine l'{ow much efficiency is gained by solving the subsystems
with independent integration timesteps. The second is the amount of coupling between the subsys-
tems. If the subsystems are tightly coupled, then many relaxation iterations will be required to
achieve convergence, and the advantage gained by solving each subsystem with its own timestep will
be lost. To show this interaction for a practical example, we will use the Relax2.3[13] program to
compare the computation time required to simulate a 141-node CMOS memory circuit using standard
direct methods and using the WR algorithm. In order to demonstrate the effect of tighter coupling,
the CMOS memory circuit will be simulated using several values of a parameter XQC, which is the
percent of the gate oxide capacitance that is considered as gate-drain or gate-source overlap

capacitance.
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TABLE 7.3 - DIRECT VS WR ON A MEMORY CIRCUIT WITH DIFFERENT COUPLINGS
METHOD XQC TIMEPOINTS # WR ITERS CPU TIME
Direct 0.01 124,539 1 933s
WR 0.01 17,728 2.5 304s
Direct 0.05 122,988 1 945s
WR 0.05 19,199 3 410s
Direct 0.2 118,335 1 917s
WR 0.2 19,193 4 530s
Direct 0.33 115,233 1 895s
WR 0.33 19,315 6.5 707s

The results in Table 7.3 are exactly as expected. As the coupling increases, the number pf WR
iterations required increases, and the difference in the simulation time for WR and the direct method
decreases.

It is possible to verify, for this example, our claim of the nature of the efficiencies of using WR.
: Consid;ar the number of timepoints computed by the direct method versus the number of computed -
timepoints for the WR method in the final iteration. By comparing these two numbers, a bound can

be put on the maximum speed increase that can achieved by solving different subsystems using dif-
ferent timesteps (Note that we are only considering the number of timepoints computed by the WR
method in the final iteration, because we are only interested in the number of timepoints needed to
accurately represent the given waveform). '

The total number of timepoints computed for each of the simulation casés of the memory cir-
cuit example is also given in Table 7.3. This number is the sum of the computed timepoints over all
the waveforms in the circuit. If most of the efficency of a decomposition method stems from solving
each of the subsystems with its own timestep, then the maximum improvement that could be gained
from a decomposition integration method would be the ratio of the number of timepoints computed
using the direct method compared to the number of timepoints computed in the final WR iteration.
As can be seen from the Table 7.3, for the CMOS memory example this ratio is approximately six.

In order to compute the actual efficiency of the WR method, the average number of WR iterations
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performed must be considered, because for each WR iteration, the set of timepoints is recomputed.
Then, if our claims above are correct, when the ratio of the number of timepoints for the direct
method to the number of WR timepoints is divided into the average number of relaxation iterations,
the result should be' almost equal to the ratio of WR computation time to direct computation time.
And as Table 7.3 shows, it is.

In the above analysis we have ignored an important advantage of relaxation methods: that tl.xey
avoid large matrix solutions. This is a reasonable assumption for the above example because the
matrix operations account for only a small percentage of the computations, even when direct methods
are used. However, for much larger problems, of the order of several thousand n@es, the time to
perform the large matrix solutions required by direct methods will dominate. In those cases WR
methods should compare even mofe favorably because gbey avoid these large matrix solutions.

I-‘inally. in Table 7.4, we present several circuits that have been simulated using RELAX?2.3

with direct and WR methods.

TABLE 7.4 - DIRECT METHODS VS WR FOR SEVERAL INDUSTRIAL CIRCUITS
Circuit Devices DIRECT WR
uP Control 232 90s* 45s*
Cmos Memory 621 99Ss* 308s*-
4-bit Counter 259 540s* 299s*
Inverter Chain 1 250 98s** 38s**
Digital Filter 1082 1800s* 520s*
Encode-Decode 3295 5000s* 1500s*
VHSIC Memory 625 17174s** 12505s**

*On Vax11/780 running Unix using Shichman-Hodges Mosfet model
**On Vax11/780 running VMS using Yang-Chatterjee Mosfet model
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CHAPTER 8 - PARALLEL WR ALGORITHMS

Exploiting parallel computation for circuit simulation is extremely important because the size
of the circuits for v}hich circuit simulation has been applied has grown at rate that far exceeds the
increase in computational power due to technological improvement. The only way-t.o keep pace with
the increasing demand is to be able to apply many processors to the problem, and the number of
processors that can be used must scale up with the size of the problem.

A variety of techniques for the parallel soiutfon of ordinary differential equations have been
examined in the literature[63]. For circuit simulation, four techniques have been applied. The
SPICE2 program was rewritten to take advantage of the Cray Computer vector capability[48]; a
i’aral!el version of a sin;ilar direct method has been implemented on the Cosmic-Cube, a message-
passing based parallel computer; the Gauss-Jacobi form of the algebraic relaxation-Newton aigorithm
presented in Section 3.2 has been implemented on both a shared-memory computer, the Sequent
Balance 3000[64], and ITM’s Connection Machine[65]; and a version of the Iterated Timing Analysis
algorithm (Section 3.2) has been implemented on the BBN Butterfly[34].

In this chapter, the implementation of tv(ro WR-based parallel circuit simulation algorithms on
a shared memory computer will be described. We will start by presenting a brief overview of the as-
- pects of a shared-memory computer that effect the algorithin implementation, and then describe the
two parallel WR algorithms, one based on using a mixture of Gauss-Seidel and Gauss-Jacobi relaxa-
tion, and the other based on pipelining the waveform computation. For each algorithm, experimental

results will be presented.

SECTION 8.1 - A BRIEF OVERVIEW OF THE SHARED MEMORY COMPUTER

When attempting to write efficient programs for serial computers, knowledge about the specific
details of the architecture is useful, but not essential. This is not the case for programming on a par-

allel computer. Specific details about the architecture can influence decisions about the implemen-
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tation of an algorithm, and can even effect the choice of algorithm. Since the algorithms that will be
described below were implemented on the Sequent Balance 8000, a shared-memory parallel com-
puter, in this section we will describe those aspects of the architecture that effected the implementa-
tion of parallel versions of the WR algorithm. For a more detailed treatment of this subject, see[56).

The key problem in designing a parallel processor is that of communication between the
processors. One simple approach is to design a parallel computer by gathering together many stand-
ard serial computers, and connecting them together with a comunication network. Usually such
computers are referred to as message-péssing parallel computers, because data is tranferred between
the many processors by passing messages on the communication network. The disadvantage of such
a system is that in order to move data from the memory of one processor into the memory of the
second processor, both the transmitting and receiving processors must be involved.

Another approach to the problem of communicating between parallel proceésors is to redesign
the memory system, so that the aggragate memory of all the processors is directly addressable byv any
one of the individual processors. Such a system is referred to as a shared-memory system because the
processors are all sl;aring the single resource, the memory. The main advantages of a shared-memory
machine is that it is not necessary to éxplicitly transfer data from one processor to another. When a
processor needs data from another processor, it simply reads from the memory locations in which the
other processor has written. This also allows for more dynamic algorithm structures, because it is not
necessary to determine beforehand which processors will need the results of a given calculation. The
disadvantages of the shared-memory computer are that all processors must contend for a single re-
source, the memory, and guaranteed syncronization between processors is not simple without
special-purpose hardware.

One of the most important aspects of a shared-memory parallel computer is how the memory
is distributed among the individual processors. There are fundamentally only two choices, either each

processor has a portion of the shared memory which it can access rapidly, and that others can access
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but not as quickly, or all the memory is centralized, and the many processors contend on an equal
footing for access to it. .

If the memory is distributed among the processors, then a parallel algorithm will perform better
if the data for the computation can be partitioned so that each processor performs computations using
only the data in its own portion of the shared memory. It is usually the case that by partitioning the
data, so that each of the processors can only \.avork on an exclusive portion of a large problem, some
of the parallelism of a given algorithm will no longer be exploitable and parallel efficiency will be lost.
For example, if at a certain point in the process of solving a large problem, several calculations that
could be performed concurrently‘r all require data from the same partition, those calculations will be
performed serially. If simultaneously, there are no calculations to be performed using data from an-
othex" partition, a processor will be idle.

A way of eliminating the loss of parallelism at the cost of complicating the control structure of
the program is to have each processor use a priority scheme. In such a scheme, each processor at-
tempts to perform calculations using data in its own partition, and then if there are none to be per-
formed, the processor will atttempt to perform calculations using data from other partitions. |

Clearly, when using a shared-memory computer with distributed memory, the trade-off’s of
faster memory access, loss of parallelism, and more complicated control structure must be examined
carefully(For an example for the case of circuit simulation see[34]).

The memory on the parallel computer used for parallel WR experiments is centralized, where
all the processors contend for one large shared memory. For such an architecture, there is no ad-
vantage to partitioning the data for a large problem among the processors, as they will still have to
contend for the same centralized memory pool. For this reason, the algorithms presented below ig-
nore the issue of partitioning the data among many processors.

In order to avoid the obvious bottleneck created by having many processors contend for data
out of the same central memory, most implementations of shared-memory computers that use cen-

tralized memory attempt to reduce this contention by including a large cache memory with each of
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the processors. As with any cache memory scheme, these caches attempt to exploit locality of refer-
ence, that it will usually be the case that each of the processors are actively using only a small amount
of data. Since this data will probably be available from the cache, for most memory accesses it will
not be necessary to.generate a request to the main central memory.

Usir;g caches on a parallel computer is not as straight-forward as on a serial computer. Since
there are many caches, and they are .all supposed to contain a copy of the data in the central memory,
and any processor can write in any memory location, it is possible for the caches to loose consistency.
By this it is meant that the contents of a cache may not reflect the current contents of the central
memory. For examplé, if the contents of memory location 4 is in both the cache for processor 1 and
the cache for processor 2, and processor 1 updates 4, then the data in the cache for processor 2 will
be incorrect.

As the example demonstrates, even if the central memory is updated whenever a processor
updates a location contained in its cache, a cache inconsistency can occur within a cache of another
processor. There are a variety of schemes for avoiding this problem[62], but we will only mention the
technique applied in the computer used for experimentation. The scheme is simple, ali the caches
monitor all the writes to central memory from any of the processors. If a cache contains a location
being written to by any of the other processors, it updates its own copy of the data in the given lo-
cation. By snooping in on the writes to central memory, each cache assures that it has the most cur-
rent data.

The snooping cache consistency strategy has a particularly useful implication. 1t is frequently
necessary to have one processor wait for another processor to finish a computation. If the computing
processor is to change a location in memory when finished, the second processor can continously test
that location to determine when the computing processor is finished. Normally, this is a poor ap-
proach for a parallel environment, because the waiting processor will be continuously reading from
the central memory and generating excess memory traffic. If many processors are waiting for the

completion of one processor’s computation, this excess traffic can become enormous, and slow the
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computing processor which will have to contend with the excess traffic. If the. cache architecture
described above is used, the excess traffic is eliminated. Each waiting processor will keep rereading
a location which will be in its own cache, and will therefore not be generating any central memory
traffic. Wheti the @mputing processor finishes, each of the other processor caches will spot the write
to the monitored location in central memory and each cache will update it.;s own copy of the data.
The waiting processors will therefore be made immediately aware of the completion of the computing
processor, but will not have impeded the progress of the computing processor by generating excess
memory traffic.

The last aspect of the parallel computer architecture that we will consider is that of mutual
exclusion or Jocking. In almost all parallel programs there are critical sections that must be performed
serially, that is, only one processor should be executing the section at a time. The usual mechanism
for insuring this is the fest-and-set instruction. If a processor executes a fesr-and-set instruction on a
given location in memory, the contents of the location is returnéd to the processor and simultane-
ously, if the location was not set, it is set.

The mechanism can be used to perform locking as follows. A paniéular location in memory is
used as the lock.. If a processor is about to execute a critical section of a parallel program, it first ex-
ecutes a test-and-set on the lock location. If the result indicates that the location was not set, then
the processor can safely execute the critical section, and clear the lock location when finished. If the
result indicates that the lock was already set, the processor must wait until until the lock becomes

clear and then retry the test-and-set.

SECTION 8.2 - A MIXED GAUSS-SEIDEL/JACOBI PARALLEL WR ALGORTIHM

An obvious way of -parallelizing WR is to use the Gauss-Jacobi version of WR. In this algo- -
rithim, the relaxation makes use of the waveforms computed at the previous iteration for all the sub-
systems. In this case, all the subsystems can be analyzed independently by different processors. One

of the difficulties in applying this algorithm is that MOS digital circuits are highly directional, and, as
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mentioned in Section 7.2, if this directionality is not exploited slow convergence may result. For ex-
ample, consider applying WR to compute the transient ;esponse of a chain of inverters. If the first
inverter’s output is computed first, and the result is used to compute the second inverter’s output,
which is then used for the third inverter, etc., the resulting waveforms for this first iteration of the
WR algorithm will be very close to the correct solution. However, if the second and third inverter
outputs are computed in parallel with the first inverter’s output, the results will not be close to the
correct solution because no reasonable guess for the second and third inverter inputs will be available.
For this reason, after partitioning, the RELAX2.3 program orders the subcircuits so that the
directionality of the circuit is followed as closely as possible.

Following a strict ordering of the relaxation computation (Gauss-Seidel) does not allow for
computing entire waveforms in parallel, and computing the next iteration waveforms for every sub-
circuit at once (Gauss-Jacobi) allows for substantial parallelism, but is not very efficient (conQerges
more slowly). In order to preserve the efficiency of the Gauss-Seidel algorithm and allow for some
of the parallelism of Gauss-Jacobi, a mixed approach can be employed. The mixed approach is based
on the observation that large digital circuits contain many subsystems that can be computed in parallel
without slowing the convergence. This is because large digital circuits tend to be wide. Rather than
being like a long chain of gates, they are like many parallel chains, with some interaction between the
chains. For this reason, it is possible to order the computation so that subcircuits in parallel "chains"
can be computed in parallel, but the serial dependence inside a chain is preserved. This will not allow
for as much parallelism as the Gauss-Jacobi scheme, but should preserve most of the efficiency of the
Gauss-Seidel scheme.

In Algorithm 8.1, we present a probabilistic approach to attempting to follow the ordering of
the subcircuits. The algorithm is set up by establishing both the space in shared memory for storage
of the iteration waveforms, and a buffer or (iueue with the list of subcircuits in the order derived from
Algorithm 7.3. Each of the processors then begins by taking a subcircuit from the queue and then

computing the subcircuits output waveforms using the newest available external waveforms. When
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the waveform computation is completed, the subcircuit is temporarily discarded and and the processor
takes a nmext subcircuit off the queue. This continues until the queue is exhausted and all the
processors are finished. Then queue is reset, and the processors all start picking up subcircuits again.
This algorithlh is probabilistic in the sense that there is no guarantee that the transient com-
Vputation for a given subcircuit will be finished before its output is needed by another subcircuit who
is strongly serially dependent on the first subcircuit’s output. It is likely that the given subcircuit’s
output will have been computed if the circuit is very wide (there are a large number of parallel chains)
compared to the number of processors. In addition, since all the subcircuit outputs must be computed

before any subcircuit’s output is recomputed, no subcircuit will be more than one iteration behind.

Algorithm 8.1 - (J acobi/Seidel based Parallel WR)

Initialization. Both subcircuits and waveforms in shared-memory.
queue = ordered__list__of__subcircuits
while ( all__converged == FALSE) { Parallel iteration loop. All processors execute.
if ( processor == 1) §
reset__queue()
idle__count =0
}
while ( idle__count # number of processors ) §
while ( test-and-set(queuelock) == set ) § Tight loop waiting for queue to unlock. }
Queue is locked, get next subcircuit
NextSub = Get__next__queue__entry()
if ( NextSub == NULL ) {
increment(idle__count)
clear(queuelock)
}
else § There is another subcircuit on the queue.
clear(queuelock)
Compute_Subcircuit_Waveforms(NextSub)
Check__Waveform__Convergence(NextSub)
}
}

H
]

Note that the artributes of the parallel architecture have been considered in Algorithm 8.1.
Since the machine is a centralized shared-memory machine, the data describing the subcircuits and
the computed waveforms are left in shared memory, to be accessed as needed. Also note that each

" of the processors waits for the queue to be free by examining the lock variable in a tight loop. As



Page 150

mentioned above, this exploits the nature of the cache consistency strategy. Finally, in this case it is
not necessary to separately control access to the waveforms. Since the waveforms will only be written
as a result of the computations perform on their associated subcircuits, and a waveform is associated
with only one subcifcuit(’l’his would not be the case if an overlapped relaxation algoritbm were used)

the mutual exclusion of the subcircuit queue willl prevent waveform writes from colliding.

SECTION 8.3 - TIMEPOINT-PIPELINING WR ALGORITHM

Itis i;ossible to parallelize the WR algorithm while still preserving a strict ordering of the
computation of the subcircuit waveforms (Gauss-Seidel), by pipelining the waveform computation.
In this approach, one processor starts computing the transient response for a subcircuit. Once a first
timepoint is generatéd, a second processor begins computing the first timepoint for the second sub-
circuit, while the first processor computes the second timepoint for the first subcircuit. On the next
step a third processor is introduced, to compute the first timepoint for the third subcircuit, and so on.

Conceptually, the o;.:erations of a given processor in a parallel tin{epoint pipelining algorithm
are quite simple. The algorithm is set up by establishing both the space in shared memory for storage
of the iteration waveforms, and a buffer or queue with the list of subcircuits. Each of the processors
then starts by taking a subcircuit from the queue. The individual processors examine their respective
subcircuit’s external waveforms to see if the waveform values needed to compute the next integration
timestep are available. If so, the next timestep for the subcircuit is computed. Otherwise, the sub-
circuit is returned to the queue and the processor trys again with another subcircuit from the queue.
As timepoints are computed, more of the subcircuits will have the information needed to compute
their own timepoints.

As one might expect, a practical timepoint pipelining algorithm is more complicated that the
conceptual algorithm. Perhaps the most' obvious difficulty is that there is a tremendous overhead in

having every processor search through all the subcircuits to find one of the few for which a timepoint

[}
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can be computed. Itis possible to reduce the number of candidate subcircuits a processox; must search
by ox;ly considering those subcircuits for which at least one of the external waveforms has more
timepoints than it had when the subcircuit was last processed. Clearly, this will avoid having the
processors continubﬁsly rechecking subcircuits for which no new information is available, and there-
fore no new timestep could be computed.

This kind of selective search algorithm can be implemented by altering the way the queue of
subcircuits is used. When a processor discerns that it is not possible to compute a new timepoint for
a subcircuit, instead of returning the subcircuit to the queue, the subcircuit is temporarily discarded.
If a processor succeeds in computing a timepoint for a subcircuit, those subcircuits that are connected
to the given subcircuit, referred to as the fanouts of the subcircuit, are added to the queue (Of course,
any of the fanouts that are already on the queue are not duplicated). In this way, the only subcircuits
that will-be on the queue are those for which it is. likely that the waveform values needed to compute
a next; timepoint will be available.

Another aspect of the timepoint pipelining algorithm that increases the exploitable parallelism
at the cost of élightly complicating the algorithm is to allow the timepoint pipelining to extend across
iteration boundaries. For example, consider 5 chain of two inverters, and assume that it takes two
timesteps to compute each of the inverter outputs. As before, the second timestep of the first inverter
can be computed in parallel with the computation of the first timestep of the second inverter. Then,
while the second timestep of the the second inverter is being computed, there is enough informz;tion
to compute the first timestep of the first inverter for the second WR iteration.

This enhancement doesn’t really complicate the conceptual algorithm, until one considers the
question of when to stop. For a long chain of inverters, allowing the pipelining to extend across it-
eration boundaries can easily allow for .the first inverter to be many iterations ahead of the last
inverter. Since WR convergence can only be determined when all the waveforms for a given iteration
have been computed, it may well be that the WR iteration being computed for the first inverter is

many iterations beyond what is necessary to achieve satisfactory convergence. The difficultly is that
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this fact will not be discovered until much later, when all inverter outputs have been computed for the
iteration for which satisfactory wnvergence is achieved.

This is not a disasterous problem, the algorithm will still prodl;ce correct solutions, but unnec-
essary compntationS will be performed and efficiency will be degraded. The unnecessary computa-
tions are reasonably simple to avoid, by not allowing any subcircuit to start on iteration N+17 until
nonconvergence of some waveform of iteration N has been detected. It is, of course, important to
discover as quickly as possible if it will be necessary to compute iteration N+ I, so that the pipelining
of that iteration can begin. For this reason, in the timepoint pipelining algorithm presented below,
convergence is checked on a timepoint by timepoint basis, immediately after a timepoint is computed.

rithm 8.2 - (Timepoint Pipelining WR Algorithm
Initialization. Both subcircuits and waveforms in shared-memory.
queue = ordered__list__of__subcircuits
idle__count = 0
Max__iter_so__far is the iter after the last one for which nonconvergence was detected
max__jter__so_ far= 1
Parallel iteration loop All processors execute.
while ( idle__count # number of processors ) { at least one processor is still computing.
while ( test-and-set(queuelock) == set ) { Tight loop waiting for queue to unlock. }
Queue is locked, get next subcircuit in the queue for which the work that might be performed on
it is for an iteration that is no more than one beyond the maximum iteration for which noncon-
vergence has been detected.
NextSub = Get__next__queue__entry(max__jter__so__far)
if ( NextSub == NULL) {
increment(idle__count)
clear(queuelock)
H
else {
There is a subckt on the queue whose iteration is not beyond max___iter. so_far
clear(queuelock)
Compute as many timepoints as possible with available waveform values.
repeat §
Check to see if external values needed to compute the next timestep are available.
cando = Check__for__next__step(NextSub)
if ( cando == TRUE) §
Compute__Next__Step(NextSub)
converged = Check__Step__Convergence(NextSub)
if ( (converged == FALSE) and (NextSub.iter__count == max__iter__so__far) ) {
Keep max__iter__so__far ahead of the noncon verged iterations.
mcrement(max iter__so__far)

1

enqueue__fanouts(NextSub)
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} until ( cando == FALSE)
}

i
]

SECTION 8.4 - PARALLEL ALGORITHM TEST RESULTS

As mentioned above, the two algorithms were implemented on a 9 processor configuration of
the Sequent Balance 8000 computer (larger configurations a1;e available): The results from several
experiments for the two algorithms are given in Tables 8.1 and 8.2. As the results from the Eprom
and microprocessor control circuit indicate, the timepoint pipelining algorithm makes much more ef-
ficient use of the available processors. In fact, as Table 8.2 shows, the timepoint pipelining algorithm
running on the Balance 8000 runs substantially faster than the serial WR algorithm running on a
Vax/780.

A second point should be made about the timepoint pipelining examples. It can be seen that
the speed-up does not remain lineér to nine processors, but starts to drop off. This is surprising given
the size of the examples, but not when the type of circuit being simulated is considered. For the
biggest example, the cmos ram, the partitioning algorithm produces approximately 75 subcircuits, and
this would indicate that a speed-up of 75 should be obtainable, or ét least approachable. This ignores .
one of the features of the WR algorithm, in that only those portions of the circuit that are active are
participating in the computation. For digital circuits, this is usually less than ten percent of the circuit.
This implies that for the cmos ram example over any given interval, roughly seven subcircuits are ac-

tive, and involved in the computation, and therefore only a speed-up of seven could be expected.

Table 8.1 - G-S/G-J WR ON SEVERAL # OF PROCESSORS
" Circuit FET’s 1 3 6 9

uP Control 66 595 338 270 259
Eprom 348 512 317 286 266
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Table 8.2 - TIMEPOINT PIPELINING WR ON SEVERAL # OF PROCESSORS
Circuit FET’s 1 3 6 9 VAX/780
uP Control 116 704 247 159 149 240
Eprom 348 745 265 185 182 212
Cmos Ram 428 3379 1217 642 496 960

»
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'CHAPTER 9 - CONCLUSIONS

In this thesis, a wide variety of new theoretical and practical results relating to numerical inte-
gration methods forlcircuit simulatipn problems have been presented. A novel property that can be
used to classify integration methods, that of domain of dependence, was introduced, and its impbrtance
demonstrated by example. A wide collection of integration methods that have been used for circuit
simulation were then analyzed with respect to this and several other properties.

Following, the WR algorithm was introduced, and a new proof of the WR convergence, one
that demonstrates that the WR algorithm is a contraction mapping in a particular norm, was pre-
sented. Extensions to the WR algorithm, élong with convergence theorems, were also presented. In
addition, the interaction between WR algorithms and multistep integration methods was considered
in detail, and the first theorem proving the convergence of the multi-rate discretized WR relaxation
algorithm was presented.

The practical aspects of WR .were examined using a mew circuit simulation program,
RELAX2.3. The novel algorithms used by the program to partition large circuits and dynamically
adjust the windows were described, and results from the program on industrial circuits presented. In
addition, the implementation of two WR-based parallel circuit simulation algorithms were presented
along with results.

There are several theoreticai questions about WR that were only partially answered in this
thesis. In particular, research is needed to more thoroughly understand the nature of WR conver-
gence under discretization, and to characterize systems for which WR algorithms contract in uniform
norm. In addition, theoretical and practical work needs to be continued on breal_.cing large systems
into smaller subsystems in such a way that relaxation algorithms converge rapidly.

There is also much work to be dore to improve the speed and robustness of the WR algorithm.
In particular, more sophisticated partitioning algorithms should be devised. Also, the results on par-

allel WR algorithms presented in this thesis are preliminary. Experiments should be carried out on a
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variety of different architectures to investigate the relationships between algorithms and computer

architecture.
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