
 

 

 

 

 

 

 

 

 

Copyright © 1985, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



iLINEAR AVERAGING THEOREMS, AND THE

DETERMINATION OF PARAMETER CONVERGENCE

RATES IN ADAPTIVE CONTROL

by

Marc Bodson, Shankar Sastry,
Brian D.O. Anderson, Iven Mareels, and
Robert R. Bitmead

Memorandum No. UCB/ERL 85/92

20 November 1985



NONLINEAR AVERAGING THEOREMS, AND THE DETERMINATION OF

PARAMETER CONVERGENCE RATES IN ADAPTIVE CONTROL

by

Marc Bodson, Shankar Sastry,
Irian D.O. Anderson, Iven Mareels,

and Robert R. Bitmead

Memorandum No. UCB/ERL 85/92

20 November 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Nonlinear Averaging Theorems, and the Determination of
Parameter Convergence Rates in Adaptive Control

Marc Bodson,Shankar Sastry '

Electronics Research Laboratory
Department of Electrical Engineering & Computer Science

University of California
Berkeley CA 94720, U.S.A.

Brian D.O. Anderson, Iven Mareels, and Robert R. Bitmead "

Department of Systems Engineering
Research School of Physical Sciences ,

Australian National University
Canberra, ACT 2600. Australia

ABSTRACT

The paper presents nonlinear averaging theorems for two-time scale

systems, where the dynamics of the fast system are allowed to vary with

the slow system. The results are applied to the Narendra-Valavani adap

tive control algorithm, and estimates of the parameter convergence rates are

obtained which do not rely on a linearization of the system around the

equilibrium, and therefore are valid in a larger region in the parameter

space.
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1. Introduction

Averaging methods were recently introduced for the analysis of deterministic adap

tive systems [1-6]. The interest has been focused mostly on the assessment of stability of

adaptive systems in the presence of unmodeled dynamics, and on the- understanding of

instability mechanisms. However, averaging is not only useful in stability problems, but

in general as an approximation method, allowing one to replace a system of nonauto-

nomous differential equations by an autonomous system. This aspect was emphasized in a

recent paper [6], and new theorems were derived for one-time scale, and two-time scale

systems such as those considered in [7]. but without an almost periodicity assumption on

the dynamics. In particular, convergence rate estimates were obtained for some

identification and linearized adaptive control schemes. Such estimates are useful both for

optimal input design, and for robustness considerations.

In this paper, we extend the results of [6], and establish theorems of averaging that

are applicable to more general two-time scale systems, which are not considered in [7].

Our theorems are general in their formulation, and as such they constitute new results in

the theory of averaging. The application is not limited to linearized adaptive control prob

lems, but allow for the analysis of the full nonlinear equations. A recent research paper

[3] considers such equations, and establishes the mathematical foundation to apply the
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integral manifold theory of Pliss. and reduce the nonlinear two-time scale system to a

one-time scale system. This allows for the use of classical one-time scale averaging results.

In this paper, we use the results of [6] to derive averaging theorems that are directly appli

cable to the two-time scale system of interest. These do not assume periodicity, but a

more general averaging assumption. The results also include bounds on the approximation

error, and justify the use of averaging for the determination of parameter convergence

rates. Averaging is applied to the Narendra-Valavani algorithm [9], and it is shown that,

despite the nonlinearity of the equations, a frequency-domain approach can still be used

for the averaged system. A bound on the rate of convergence can be obtained, and is valid

for a larger region in the parameter space than the region where the linearization is accu

rate. Simulations confirm that the original adaptive system is closely approximated by the

averaged system, even for fairly large values of the parameter error and of the adaptation

gain.

2. Two-Time Scale Averaging with Varying Dynamics

2.1 Separated Time Scales

We first consider the system of diflferential equations

x=ef(t\x,y) (2.1)

y =i4(x)>- +€g(r jc.y) (2.2)

where x (0) = x0. y (0) = y0, x £Rn . and y £Rm.

The state vector is divided in a fast state vector y. and a slow state vector x , whose

dynamics are of the order of € with respect to the fast dynamics. The dominant term in

(2.2) is linear in y. but is itself allowed to vary as a function of the slow state vector.
This is a more general situation than the one considered in [5-7], where the matrix A is
independent of x.

The following definitions will be useful in the sequel

Definition 2.1 Average Value of a Function, Convergence Function

The function f (t jc .0) is said to have average value fav (x ). if. there exists a continuous,
strictly decreasing function y(T):R+-*R+ such that y(T)—0 as T-*oo, and

1 t+riT f /(T.x.0)rfT-/av(x)B<v(r) (2.3)

for all t. T >0. x £Bh.
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The function y(T) is called the convergence function, and the system

*av = / av (xm. ) Xm. (0) = X0 (2.4)

is called the averaged system corresponding to (2.l)-(2.2).

Definition 2.2 Uniform Exponential Stability

The family of matrices A(x)€RmXm is uniformly exponentially stable for all x £Bh. if

there exist m, X. m\ X' >0. such that, for all x €Bh and t >0

m'e"k'' ^leMx)t\^me-^ (2.5)

Comments

This definition is equivalent to require that the solutions of the system >; -A (x)y

are bounded above and below by decaying exponentials, independently of the parameter x.

It is also possible to show that the definition is equivalent to requiring that there

exist pi. p2. q\. <?2 >0. such that for all x €5A. there exists P(x) satisfying

pxl <P(x)</>2/.and-?2/ ^AT(x)P(x) + P(x)A(x)^-q1I.

We will make the following assumptions. Let Bh be the closed ball of radius h in

R" OTRm.

(CI) The functions / and g are piecewise continuous functions of time, and continu

ous functions of x and y. Moreover. / (f .0,0)=0. g{t .0,0)= 0 for all t ^0. and

for some lit l2.13,14 ^0

1/(*>*i.yi)-f (* .X2>y2>* ^iix^xzi+Zzbi-y^ (2.6)

lg(r ,*i.yi)-g(r .x2.y2)l <*3l*i-*2l +*4lyi-y2l (2-7)

for all t ^0. xj. x2€J5A , y1# y2€5/,. Also assume that / (r .x .0) has continuous

and bounded partial derivatives with respect to x. for all r ^0. and x £Bh .

(C2) The function f (t jc.O) has average value far(x). Moreover. /a,.(0)=0, and

f ay, (x ) has continuous and bounded partial derivatives with respect to x . for all

x €2?/,. so that for some lav ^0

«/av(*lWav(*2)»^av Ix^X^ (2.8)

for all x2 . x2€2?A .

(C3) Let d (t jc) = / (r jc .0)—/av (x ), so that d (r ,x ) has zero average value. Assume

that the convergence function can be written as y(T)Vxl and that -2—_ has

zero average value, with convergence function y(T ).
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(C4) A(x) is uniformly exponentially stable for all x €2?A and. for some ka ^0

Id\U ) I^ka for all x€5„ (2.9)
QX

(C5) For some h' <h . Ixav (t )l € Bh •on the time intervals considered, and for some h0.

y0€5/,o (where h'.h0 are constants to be defined later).

We are now ready to state the first averaging theorem concerning the differential sys

tem (2.1 M2.2). Theorem 2.1 is an approximation theorem, guaranteeing that the trajec
tories of the original and averaged system are arbitrarily close on compact intervals, when

€ tends to zero. Recall that a function \ft(e) € class A', if it is continuous, strictly increas

ing, and *K0) = 0.

Theorem 2.1 Basic Averaging Theorem

If the original system (2.1)-(2.2) and the averaged system (2.4) satisfy assumptions
(C1)-(C5)

Then thereexists *K€ ) € class K. such that, given T ^0

Ox {t )-xov(r )B ^xf,(€)br (2.10)

for some bT. eT >0. and for all t 6 [0.7/ €]. € <€r.

Proof

The proof assumes that for all t €[0.7/ €]. the solutions x it). y (r ). and 2(O (to be

defined) remain in Bh . Since this is not guaranteed apriori, the steps of the proof are only
valid for as long as the condition is verified. We will show that, under the conditions of

the theorem, the time interval over which the condition is satisfied includes the interval

[0.77 e], so that all the steps will bevalid.

It was shown in [6]. that under assumptions (C1)-(C5). there exists achange of coor
dinates

x=r+€wf(r.2) (2.11)

such that

l€w€(r^)l^(€)izfl and le^illl <|(€) (2.12)
0-

for some g(e) 6 class K. The change of coordinates is a homeomorphism in Bh for all
€ <€j (where €! is a constant such that |(€j) <1). Under the change of coordinates, it
was also shown that z satisfies the differential equation
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i = € /„. (2 ) + 6 />,(r a .€) + € />2(r .r .y .€) 2(0) = x0 (2.13)

where

«PiU^.€)l^(€)^,l2l and l/>2(r.r.y.€)l<*2ly I (2.14)

and k \. k2 are constants depending on Zj, Z2, Zm., and £(€j).

A bound on the error Izix )-xflv(r )I can be calculated by integrating (2.4)-(2.13).

and using (2.14)

T t

b(r)-xflt.(r)B<€Zov/llz(T)-xflv(T)IrfT +€^(€)^iri2(T)lJT
0 0

I

+€*2/ly(T)!rfT (2.15)

To obtain a bound on \y (t )II. we divide the interval [OX/ e] in intervals fo ^i+i] of

length AT (the last interval may be of smaller length and AT will be defined later). The

differential equation for y is

y =A(x)y +eg(t jc.y) (2.16)

and is rewritten on the time interval [r; X,+\] as follows

y =AX/y +€g(r Jcj) +G4*,-i4X|)y (2.17)

where A^ =A(x(r )). and Ax. =A(x(*i)). so that the solution y(*). for t 6[r;^i+1] is

given by

y(f) =e ' yi+eje ' g(rjc.y)dT

L Ax U-r)
+/ e ' (A,T-AX/)y(T)rfT (2.18)

where y, = y (r,). From the assumptions, it follows that

BA,t-AXj I^k0 Ix B(t-*,)<€ (Z1+/2)/1 *„ AT (2.19)

and. using the uniform exponential stability assumption on A (x )

ly(r**mlyile"x<,-f') +€^- h(Us +Zj +U, +Z2)*a AT) (2.20)

Let the last term in (2.20) be denoted by € kb. and use (2.20) as a recursion formula for

y*. so thai

lyfKGne-^yiyol+c** J? (m «"**" )> (2.21)
y=0
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Choose A7* sufficiently large that

It follows that

m «-**• <«-*""/2 ' i.e. AT ^ ^ ln m (2 22)
A

'£ |m e-"* \ <f (.-*»'» I' =—^77 (2.23)

Combining (2.2l)-(2.23). and using the assumption yo€#j

ly,l<«-"r'"ft0+̂ Jk/a :=e-k'*'2h0+ekc (2.24)
Using this result in (2.20). it follows that for all t €[r, ,ri+1]

Iy(r)l^me"X''/2/l0e-X(f-'') +m6*ce-X('-r')+€ikD

<m fcoe"^'2 +6 (m *c +kb) (2.25)

Since the last inequality does not depend on i. it gives a bound on ly(r)l for all
t € [OX/ €].

We now return to (2.15). and to the approximation error, using the bound on Iy(r )E

82(r)-Xflv(r)B<€Zflv /lr(T)-Xm.(T)WT +€«6)*1 / hrfr

t

+€*2/(m/20e~XT/2 +€(m*c +*6))</t (2.26)
0

so that, using the Generalized BeUrnan-GronwaU Lemma (see the appendix)
r

Mr)-xav(OB </(£(€)*,/* +*2m/i0e-*T'2 +*2€(m*f +*fc))ee€l"(,"T)rfr
o

:=^(e)ar (2.27)

and. using (2.12)

lx(r)-xav(r)l^(€)6r (2.28)

for some bT

We assumed in the proof that all signals remained in Bh. By assumption.
xovU)€Bh-, for some h'<h. Let h0. and €7 be sufficientlv small so that, for all



-7-

€ <€r <€l we have that m h0 +e(m ke+kb) ^h (cf eqn (2.25)). and that
$(€)br ^h —h\ It follows, from a simple contradiction argument, that the solutions
x(t). y(t). and zit) remain in Bh for all t €[0X/ e], so that all steps of the proof are
valid, and (2.28) is in fact satisfied over the whole time interval.

Theorem 2.2 Exponential Stability Theorem

If the original system (2.1)-(2.2), and the averaged system (2.4) satisfy assumptions

(Cl )-(C5).and if the averaged system is exponentially stable

Then the original system is exponentially stable for € sufficiently small.

Proof

The proof relies on a converse theorem of Lyapunov for exponentially stable systems

(see [8] p. 273). Under the hypotheses, there exists a function vav{xav):Xa ->R+. and
strictly positive constants ot1, oe2, a3. a4 and h' <h such that, for all xov £Bh-

a, Bxa, B2 <v (xav ) <a2Ix^. B2 (2.29)

v (x0v)b.4) <- € a31 xflv f (2.30)

8 ^l_|^a4lxa,.B (2.31)
Oxax

The derivative in (2.30) is taken along the trajectories of the averaged system (2.4). We

now study the stability of the original system (2.1)-(2.2). through the transformed sys

tem (2.13M2.2). where x (2 ) is defined in (2.11). Consider the following Lyapunov func
tion

v,(2.y) =v(2)+— yri»(x(2))y (2.32)
P2

where Pix). p2 are defined in the comments after the definition of uniform exponential

stability of A(x ). Defining a'j = min(ai. — p{). it follows that
?2

a,1(B2B2 +Byl2)^v1(2.y)^a2(B2l!24Byll2) (2.33)

The derivative of v, along the trajectories of (2.13)-(2.2) can be bounded, using the previ
ous results

v,(2.y)<-€a3bB2 +€£(€)*1a4bB2 +€*2a4bfiflyS

+^i,e^(filll|i Ni|| v|z_f2 f
P2 dx Qr.. - P2
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+ 4€Z3a2l2 lly l+ 2€Z4a2ly B2 (2.34)

for € <€! (so that, in particular, Ix I <2lz I). We now calculate bounds on the terms in

(2.34). Note that Pix ) can be defined by

so that

§Pix) _
-/

Pix) =feA^x)'QeAlxUdt

_6_ eAT(x)r
dxt

QeAix)t +eATix)t q Q eA(x)t
dXi

The partial derivatives in parentheses solve the differential equation

= A(x)
d_
dt

6 eA(x)t
Bxi

with zero initial conditions, so that

0 eMx)t
Qxi

+ QAjx) eA(x)t
dxt

_9_ eA{x)t = f eAix)U-+) QA(x) eA(x)rdT
8*,

(2.35)

dt (2.36)

(2.37)

(2.38)

flA (x)From the boundedness of -2_ , and from the exponential stabilitv of A (x ). it follows
0*i

that

lJLeMx)ti^m2kate-kt
flx

With (2.36). this implies that D&P}X> | is bounded by some k„ ^0.Qx j p

On the other hand, from (2.12)-(2.14)

b|1|<i +̂ (€)<2 and Izl^eh (ZflV +£ie)k1 +k2)
o-

Using these results in (2.34), and noting the fact that

cBzBSyB^y (€4/ 3lzf +e2' 3lyf)

it follows that

v1(2.y)<-€(a3-^(€)*1a4-€1/3^i-2e1/3Z3a2)B2l2

-(^i?1-2€Z4a2-€2^^i-2€2/3z3tt2

+ 2e — kph ilai. +£ie)k1 +*2))ly I2
7*2

(2.39)

(2.40)

(2.41)
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:=-2€a2a(€)l2B2-g(€)lyB2 (2.42)

Note that, with this definition. «(€)-♦—— as €-0. while qie)-+ — qx. Let € <€i be
2 a2 p2

sufficiently small that aie) >0. and 2€ <*2a(e) ^qie). Then

vi(2.y)<-2€a(€)vj(2.y) (2.43)

so that the z ,y system is exponentially stable with rate of convergence € a(e) (vj being

bounded above and below by the square of the norm of the state). The same conclusion

holds for the x,y system, given the transformation (2.11)-(2.12). Also, for €. h0
sufficiently small, all signals are actually guaranteed to remain in Bh so that all assump
tions are valid.

Comments

The proof of Theorem 2.2 gives a useful bound on the rate of convergence of the

nonautonomous system. As €-»0. the rate tends to 4- —. which is the bound on the rate
2 ot2

of convergence of the averaged system that one would obtain using the Lyapunov function
v(xov.). Since the averaged system is autonomous, such Lyapunov function is usually
easier to find than for the original nonautonomous system, and' conclusions about its

exponential convergence can be applied to the nonautonomous system for € sufficiently
small.

2.2 Mixed Time Scales

We now discuss a more general class of two-time scale systems, arising in adaptive
control:

x=€/'(r,x.y') (2.44)

y' =A ix )y' +hit jc )+ e g'it x ,y') (2.45)

We will show that system (2.44)-(2.45) can be transformed into the system (2.1)-(2.2).
In this case, x is aslow variable, but y*has both a fast, and aslow component.

The averaged system corresponding to (2.44). (2.45) is obtained as follows. Define
the function

t

vitx)=feMx)l'-*>hiTjc)dT (2.46)
o

and assume that the following limit exists uniformly in t and x
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1 ,+r/a,(x)=lim ± f /'(t.x.v(t.x))</t (2.47)

Intuitively, v (r .x ) represents the steady-state value of the variable y with x frozen and
6=0 in (2.45).

Consider now the transformation

y =-y'_v(r,x)

Since vit jc) satisfies

4r vitjc) =Aix)vitjc) +hitx) v(*.0)=0

(2.48)

(2.49)

we have that

y =Aix)y +€
0X

(2.50)

(2.51)

(2.52)

which is of the form studied previously when

fUjc.y) = f'itjc.y+vit jc))

gitjc.y) o-6v<'-*> f 'it * .y+vit jc)) +g'it jc .y+vit *)) .
0-T

The averaged system is obtained by averaging the right-hand side of (2.51) with y=0. so

that the definitions (2.47). and (2.3) agree.

We require assumptions (Cl)-(C5) to be satisfied. In particular, we assume similar

Lipschitz conditions on / '. g'. and the following assumption on hit jc)

(C6) h it ,0)=0 for all t >0. and:

b**<L£2io
dx

(2.53)

for all t >0. x €£*

This new assumption implies that v(r.0)=0. It also implies that l^-ULL fi
Qx

bounded for all t ^O. x €2?A . since

is

Qvitjc) _=j eA(xHr-r)dhiTjc) +Q \eA(xHt-r)\h(7tX)
Jo dxi 6% I Jbx,

dr (2.54)

and using the fact that eA(x)lt^r) and JL eMx)u-r) are bounds by exponentials ((2.5)
OX

and (2.39)).
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3. Two-Time Scale Averaging Applied to Model Reference Adaptive Control

3.1 Application to the Narendra-Valavani Algorithm

We apply the averaging results to the model reference adaptive control system of

Narendra and Valavani [9] for the relative degree 1 case. It was shown in [6] that the

equations describing the system can be written as

e-Ae + bwmitY $ + b<f>TQe (3.1)

4> = -ewmit)cT e -eQecTe (3.2)

The last terms, quadratic in e. <f>. were neglected in [6]. This restricts attention to the

linearized adaptive control scheme, i.e. to its behavior around the equilibrium. We con

sider here the complete set of differential equations, and extend the analysis to the non

linear case. As in section 2. we define

vit.<t>) =felA+b*rQ"'~')bw!!liT)<j>dT (3.3)
0

so that the averaged system

*« =-€/flv(<kv) (3.4)

is defined by the limit

1 S+T/ov(0av)=lim-- f iwmit)cTvit ,0ev) +Gv(f ,<t>av)cT vit 4>av))dt (3.5)

The assumptions of the theorems will be satisfied if the limit in (3.5) is uniform in the

sense of (C3). and provided that the matrix A +b <f>T Q is uniformly exponentially stable
for 4>€Bh . In effect, this means that if the controller parameters are frozen at any point of

the trajectory - the adaptation then being switched off - the resulting time-invariant sys

tem must be closed-loop stable. Naturally, this precludes consideration of adaptation

from initial parametervalues which define an unstable closed-loop system.

3.2 Frequency Domain Analysis

The expression of far in (3.5) can be translated into the frequency domain, using
Parseval's equality, and noting that wm is related to r through some vector transfer func
tion n is ) (cf [6])

/ov(0ov)= -^ f (n(ya>) +G(yo>/-A -b *£ Q)~lb *£ hija>) J

. \cT i-j<oI -A -6 *£ Q)-1* *£ n(-/«) )srida>) (3.6)
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where srid(a) is the spectral measure of r (cf [10]). Although there is apparently no
direct way to simplify this expression (as is possible in the linearized case), we claim that

Claim

(1) far (<f>av) can be factored as fm. (&,, )=Aav i<f>av )0fl,

(2) $lv Aav (0flv )0a,. =<t>av R i<f>av )0flV. where Ri^.) isa positive semidefinite matrix
(not necessarily symmetric) for all 0m.. Whenever wm it) is persistently exciting.
•# (0av ) ^a >0 for all <f>av €Bh . and for someconstant a.

Proof

Part (1) is trivial, while part (2) requires some manipulations. We will use the fact
that the zeroes of single input multiple output (SIMO) transfer functions remain constant

under output feedback. For convenience, we will also drop the "av" subscripts.

We have that

CO

4>T Aari<t>)<>>= -^ / i4>rhijw))Ci +4>r Q(Jul -A -Z> <f>T Q^b)

.icr (-yo»7 -A-b <f>T Q)~*b)i<i>T n{-ja>))s, ido) (3.7)

where the four main terms in parenthesis are scalars. The two terms in the middle

represent SISO uansfer functions which will be calculated now. By definition, the
transfer function

c'UZ-A)-1^*, 5^.= im(5) (3.8)

where mis) is strictly positive real. hmis). dmis) are monic polynomials in s. and

c<» =*m/ kp is a positive constant. The iA.b.c7) representation in (3.8) is not minimal

since dim .4 =3n—2. and dmis) is an nth order polynomial. Let

An(* )=det (sJ —A )=dmis )Iis ). where lis) is a monic polynomial containing the
unobservable modes of A .

The SISO transfer function <f>r Q isJ —A )~lb can be written

tTQisl-A)-H=l*!±L (3.9)
Dmis)

where h^is ) is a polynomial in s. not necessarily monic.
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We can also write the SISO transfer function

4>r Q(si -A -* <f>T QTH =1^1 (3.10)
D^is)

where D<t>is) = deiisl—A —b<f>T Q) is a monic polynomial which must satisfy

D^is ) = Dm is ) —h fis ). From this it follows that

1+<t>T Qisl -A -b<f>TQTlb =£^1 (3.11)
D+is)

Finally, we also have, using the above mentioned fact about SIMO transfer functions, that

cTisl-A-b<f>TQrH=kp nm{*]l{S) (3.12)
D^is)

Using the previous identities in (3.7). the result follows with

Ri<f>):= * 7i>_ IDJ"{(J(*\ I2 n(;W)n7(-;tt)m(-ia.)ir((f(o) (3.13)
2tt J^km D+ijv)

It is remarkable that the result differs from the expression obtained by linearization fol-

lowed by averaging in [6] only by the scalar weighting factor \Dm I Z>0K This term is

strictly positive, given any 0 bounded, and it approaches unity continuously as <f>

approaches zero. Since m is ) is strictly positive real. R i<f>) is at least positivesemi-definite.

As in the linearized case, it is positive definite if wm it ) is persistently exciting [6].

Comments

As can easily be shown, using the Lyapunov function vflt.(0ov)= l0ol.l2, the claim

itself constitutes a proof of exponential stability of the averaged system. By Theorem 2.2,

the exponential stability of the original system is also guaranteed for € sufficiently small.

The persistency of excitation condition is not a condition on signals located inside the

adaptive system, but on exogeneous model signals, and can be directly translated into a

sufficient richness condition on the input ([10]).

Rates of convergence can also be determined, using the Lyapunov function

voi- (4>av ) = 4>L <f>av >SO that

- v« = € <t>l i R (0flv ) + RTi$av ) ) )<}>av

>2e inf (A^ R i<j>av) ) vav := 2 € a vQX (3.14)

and the guaranteed rate of parameter convergence of the averaged adaptive system is € a.

The rate of convergence of the original system can be estimated by the same value, for €
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sufficiently small.

It is interesting to note that, as l<f>ax. I increases. Xmia( R (0av) ) tends to zero in some

directions. This indicates that the adaptive control system is not globally exponentially
stable (with uniform rate of convergence).

33 Example

We now consider a simple two parameter example, in fact the well-known "Rohrs

example" [ll] when no unmodeled dynamics are present. The adaptive system is described
by

e=-ame +bp i<f>r r +0y e+<f>y ym ) (3.15)

<f>r = -€ e r (3.!6)

*> = e2~eey„ (3.17)

Consider the case when r =r0sin (a>0r ). Using (3.3). (3.5). the averaged system can
be computed. After lenghty but straightforward manipulations, we obtain, for the aver

aged system (dropping again the "av" subscripts for simplicity)

r2 •

*' =~€^ -4- ,,2., f„ A , xa \(am-bp<f>v)4>t2 a>$ + iam - bp.<f>y Y \ F •

., 2ambm- bpambm ,
+ ^ —x n- —Dm) 0V - -_ ,- ipf

«*o + am0>0+*r2

«m &n><x _ . ro 1
>-rw+(«m -6,^)2

2j. fy> a/n *m

b™ $' + 2_i_ 5 $y

Using this result, or using (3.13M3.14). we find that for v =<f>T 0

<•><? +am2 1 r-2
— 4?] 2 v

fl/n t>„, b£ia*-u$)

;=2€J^
2 i *

Cm + <«>0 W + W)2

** | otf +U,*-*,^)2 Vmb*

Cm + «0 «+««z

(3.18)

(3.19)

0(3.20)

It can be checked that when the first term in brackets is equal to 1 (i.e. with 0V replaced
by zero), the result is the same as the result obtained by first linearizing the system, then
averaging it. Also, given any prescribed Bh (but such that D^is ) is Hurwitz), (3.20) can

be used to obtain estimates of the rates of convergence of the nonlinear system.
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We reproduce here simulations for the following values of the parameters: am = 3.

bm =3,ap =l.bp =2,r0al,Wo = l.€ = l. The first set of figures is a simulation for ini

tial conditions <f>r (0) = —0.5, and <f>y (0) =0.5. Fig. 1 represents the time variation of the

function ln(v =<f>T<f>) for the original, averaged, and linearized-averaged systems (the

minimum slope of the curve gives the rate of convergence). It shows the close approxima

tion of the original system by the averaged system. The slope for the linearized-averaged

system is asymptotically identical to that of the averaged system, since parameters even

tually get arbitrarily close to their nominal values. Fig. 2 and Fig. 3 show the approxima

tion of the trajectories of <j>r. and 4>y.

Fig. 4 represents the logarithm of the Lyapunov function for a simulation with

identical parameters, but initial conditions <f>ri0) = 0.5. <f>yiO) = —0.5. Due to the change

of sign in <f>y(0), the rate of convergence is less here than the rate of the linearized system,

while it was larger in the previous case. These simulations demonstrate the close approxi

mation by the averaged system, and it should be noted that this is achieved despite an

adaptation gain € equal to 1. This shows that the averaging method is useful for values of

€ which are not necessarily infinitesimal (i.e. not necessarily for very slow adaptation),

but for values which are often practical ones.

4. Conclusions

Averaging methods have been extended to include differential systems representing

adaptive control schemes. Previous results on the frequency-domain analysis of an adap

tive control scheme were generalized to the full nonlinear equations, and some estimates of

the parameter convergence rates were obtained. One general restriction is that the parame

ter estimates along trajectories have the property that the associated frozen closed-loop

system is stable. This application is only one of many possible uses of averaging, but it

demonstrates its usefulness as a method of analysis of adaptive systems.
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APPENDK

Generalized Bellman-Gronwall Lemma (cf e.g. [10], p. 169)

If: x it), a it ).uit) are positivefunctions satisfying:

xit )^fair)xir)dt+uit ) (Al)
o

for all t €[0X], and u it) is differentiable.

Then:

fa(o)d<r t fa(a)dL
xit)^uiO)e ° +fuir)e * dr (A2)

o

for all t €[0X].
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