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DEVILS STAIRCASE ROUTE TO CHAOS

IN A NONLINEAR CIRCUIT1

L.O. Chua. Y. Yao and Q. Yang2

ABSTRACT

A driven 2nd-order negative-resistance oscillator circuit has been observed experi

mentally to exhibit infinitely many distinct chaotic states in addition to infinitely many

subharmonic responses of all orders. Each chaotic state is found to be born out of a devil's

staircase whose steps are spaced in accordance with a definite period-adding law.

Each devil's staircase emerges at some level of frequency-tuning resolution, where

each level is embedded within an outer level, ad infinitum. The global bifurcation struc

ture is self-similar in the sense that upon rescaling. the devil's staircases appear to be

clones of each other.

^his research is supported in part by the Office of Naval Research under Contract N00O14-70-C-0572 and
by the National Science Foundation under Grant ECS-8313278.

2L.O. Chua is with the University of California, Berkeley. Y. Yao and Q. Yang are with the Shanghai Jiao
Tong University, Shanghai, China.



1. INTRODUCTION

It is now well known that chaos can occur in a 2nd-order non-autonomous circuit

[1-2] via a period-doubling route [3-5]. Another possible route to chaos, called the period-

adding route, was recently observed in a 1-dimensional nonlinear discrete map by Kaneko

[6-8]. Our objective in this paper is to report a detailed experimental study which shows

that the period-adding route to chaos can also occur in a nonlinear circuit described by

ordinary differential equations.

Our circuit essentially consists of a 2nd-order negative-resistance oscillator driven by

a sinusoidal voltage source. By varying the frequency f s of this voltage source while hold

ing all other parameters fixed, we observe a very intricate sequence of bifurcation

phenomena. In particular, subharmonics of all orders are found to occur over a wide range

of the input frequency. Sandwiched between every pair of subharmonics is a chaotic

response which is born out of a period-adding sequence.

More careful measurements reveal a fascinating patterns of self-similar bifurcation

structures, each resembling a devil's staircase [9]. Between every two adjacent steps of each

devil's staircase we find a miniature version of another devil's staircase, whose adjacent

steps themselves harbor even smaller miniatured devil's staircases. In other words, as we

increase the resolution of our frequency tuning experiments, we keep discovering more

miniaturized versions of period-adding routes to chaos. At a given level of resolution, the

associated devil's staircase appears as an ascending series of steps where the spacing

between them varies according to a simple law. As one climbs up the steps in any of these

infinitely many devil's staircases, the width (i.e.. the frequency interval A/5 where the

subharmonic response corresponding to each step can be observed) of the steps decreases

rapidly until chaos sets in.

Since the above bifurcation phenomenon has been observed at every level of resolu

tion of our measuring instruments, we conjecture that all chaotic states in this circuit —

and there are infinitely many of them — are born out of self-similar devil's staircases of



which there are infinitely many.

To clarify the above rather bizarre bifurcation phenomena, we have included a large

collections of bifurcation diagrams and Lissajous figures in this paper. Readers unfamiliar

with the devil's staircase may wish to glance first at Figs. 6. 8. 10, 11 and 13. each of

which harbors a devil's staircase belonging to the next level.

One main goal of this paper is to provide the full experimental details of the above

cited devil's staircase routes to chaos and to formulate an empirical law which can be used

to predict the spacings between steps in each devil's staircase at any level of frequency

tuning resolution.

2. EXPERIMENTAL CIRCUIT AND MEASUREMENT PROCEDURE

The circuit used in our experiment is shown in Fig.l where the nonlinear resistor is a

type-S negative resistance device synthesized by the 2-transistor circuit shown in Fig.2(a)

[10]. Its measured vR —iR characteristic is shown in Fig.2(b). Our basic experimental pro

cedure consists of adjusting the frequency fs &(os I 2tt of our sinusoidal signal generator

(with all other parameters held fixed) while carrying out the following measurement

tasks:

1. Determine whether the capacitor voltage waveform vc (r ) is periodic or not for each

frequency setting fs.

2. If vc (t ) is found to be periodic, determine its period Tc. Since all periodic wave forms

that we have observed from this circuit are subharmonics of the input signal with

periods Tc—nTs. where Ts=-r— and n is an integer, we will report our results in
7 s

T
terms of the normalized period P - -=£- = n.

For the circuit in Fig.l. we have found from our experiments that both the periodi

city and the normalized period P of vc (t) can be efficiently and reliably determined by

tracing the Lissajous figure [11] associated with the capacitor voltage waveform vc(r) and



the resistor-voltage source waveform v, (r ) in the oscilloscope. In the Appendix, we proved

that vc and vs are related by the 2nd order non-autonomous state equation

vc = / i (vc . v2. t )

v, =/2(ve.vf.f) (1)

Choosing vc and v$ rather than the more conventional vc and i£ as state variables in our

Lissajous figure allows us to ascertain not only the periodicity of vc (t) but also its nor

malized period P in a single measurement: The Lissajous figure is a closed loop if and only

if both vc (t ) and v, (r ) are periodic with commensurable periods (i.e.. their ratio is a

rational number). Moreover, since the waveform of

v, (r ) = E cos (ast - Rs C vc (t ) (3)

contains the same number "n" of wave crests as that of the the input signal E cos (ast

over each period Te = nTs of vc (t ). we can identify "n" by simply counting the numberof

corresponding "crests on the left side"3 of the Lissajous figure generated by vs(t ) (applied

to horizontal channel).

For example, the Lissajous figure in Fig.3(a). (c). and (e) has 3. 5 and 23 crests on its

left side, respectively, and hence n=3, 5. and 23. respectively.

It is often useful to relate the shape of the Lissajous figure with some basic features

of either vs(t) or vc(r ). For example, the lower waveform in Figs.3(b) and (d) denotes

vs (r ) while that in Fig.3(f) denotes ve (t ) used in tracing the Lissajous figure in Fig.3(a).

(c). and (e), respectively. For time reference purposes, the sinusoidal input signal is taken

at the same time interval and is aligned on top of each of these waveforms. Note that

vs (t) has 3 wave crests per period in Fig.3(b) and 5 wave crests per period in Fig.3(d).

Since vs (t ) is applied to the horizontal channel, the Lissajous figure in Fig.3(a) and (c)

must exhibit 3 and 5 crests on the left side, respectively, similarly, since vc(r ) has only

one local maximum and one local minimum per period in Fig.3(f). and since it is applied to

3A"crest on the leftside" ofa Lissajous figure is denned tobe a local maximum when the Lissajous figure is
rotated by 90° in the clockwise direction.



the vertical channel, it follows that the Lissajous figure in Fig.3(e) can traverse only once

upward and once downward while swinging left and right a total of 12 times.

As examination of Fig.3(f) shows that while it is difficult to count the order "n" of

the subharmonics from the waveforms when n is large (n=23 in this case), it is much

easier to identify n from its associated Lissajous figure in Fig.3(e). Note also that had we

applied the input signal, instead of vs(t ). to the horizontal channel, the resulting Lissajous

figure would have interwined itself many times that once again it would be difficult to

identify n accurately. Our choice of vs(t ) has therefore the effect of spreading out the loci

traversed by the Lissajous figure so that the number of crests on the left can be easily

identified even for fairly large n.

3. EXPERIMENTAL RESULTS

As we decrease the frequency fs from 20 kHz to 500 Hz. with all other parameters

held fixed, we observe subharmonics of all orders from 2 to 33. Each subharmonic is

found to persist over a limited range of the input frequency f s, thereby creating a step

like bifurcation diagram where the normalized period P is plotted as a function of /,. Each

step in this diagram can be interpreted as a synchronization state between the input fre

quency and some submultiple of the circuit's natural frequency; i.e., the oscillation fre

quency when the input signal is set to zero. The length of each step can therefore be inter

preted as the "locking range". While some steps are rather wide (e.g., 300 Hz) and easily

reproduced, others are so narrow that the step reduces to a point within the resolution of

our measurement instruments.

Each pair of adjacent steps is separated by a narrow "frequency gap" where chaos is

observed at some frequency within the gap. A more careful tuning within each gap reveals

an extremely rich dynamical structure: for each finer level of tuning resolution, a new

step-like structure called a devil's staircase emerges. In the following subsections, we sum

marize the experimental results at each level of resolution and derive an empirical law



governing the spacing between the steps.

A. Level 1 Devil's Staircase

The bifurcation diagram of P vs. fs which we observed at the lowest level of resolu

tion consists of a uniform succession of steps from 1 to 33 as shown in Fig.4. For reasons

that will be obvious soon, we call this structure a level-1 devil's staircase [9]. The steps

are separated by narrow gaps whose width is assumed to be zero at this level of frequency

resolution: i.e.. each tuning frequency increment (A/ )j is larger than the widest gap in

Fig.4. Following Kaneko [6], we call this bifurcation phenomenon a "period-adding bifur

cation" because the normalized period of each new subharmonic waveform is obtained by

adding the normalized input period 1 to the period before bifurcation. This is fundamen

tally different from the well-known "period-doubling" bifurcation [5] where the steps

occur at 1. 2. 4, 8. 16. 32. ... etc.. instead of 1, 2. 3. 4. 5, 6, 7. 8 etc. in Fig.4.

The Lissajous figures corresponding to several steps in Fig.4 are shown in Fig.5 along

with their associated waveforms vs(t) and vc (r) (shown below the input reference

sinusoidal signal). In particular, a period-15 Lissajous figure is shown in Fig.5(a). a

period-10 Lissajous figure is shown in Fig.5(d), a period-8 Lissajous figure is shown in

Fig.5(g), a period-3 Lissajous figure is shown in Fig.5(j). and a period-2 Lissajous figure is

shown in Fig.5(m). The two waveforms v5 (t ) and vc (t) are shown directly below their

associated Lissajous figures in the order listed.

We will summarize our above observations as follows:

level-1 devil's staircase sequence from step 33 to step 1

• • • --33--32--»31--»30-»-» • • --5--»4-->3-->2--»l (4)

The spacing between the broken arrow head denotes the "gap" whose structure we will

investigate next.

B. Level-2 Devil's Staircase



Let us now increase the resolution of our frequency tuning experiment by decreasing

the frequency increment (say (A/ )2 = 0.1 (A/ )j) so that the frequency gap between each

pair of adjacent steps in Fig.4 is magnified sufficiently to reveal some (but not all!) finer

structures.

The magnification of the "gap" between 1 and 2 is shown in Fig.6. As we decrease f s

from about 850 Hz, we discover a new family of steps whose order increases consecutively

from step 2 to 3, to 4, to 5 etc., ad infinitum? and finally to a chaotic state before des

cending back to the left boundary of the period-1 step at around 640 Hz.

The Lissajous figures corresponding to several steps in Fig.6 are shown in Fig.7 along

with their associated waveforms vs(t) and vc (t) as in Fig.5. In particular, the Lissajous

figures corresponding to a period 2. 3. 4, 5. 6, 7. and 8 periodic states are shown in Figs.

7(a). (d). (g). (j). (m). (p), and (s), respectively. The Lissajous figure in Fig.7(v) never

closes upon itself and corresponds to a chaotic state.

As we further decrease /, to the left boundary of the gap. the chaotic waveform

vc (t ) suddenly collapses and reverts back to a periodic waveform of period 1 whose Lissa

jous figure is shown in Fig.7(w).

Further tuning resolution will soon reveal that every 2 steps within the gap in Fig.6

are in turn separated by narrower gaps whose widths are all assumed to be zero at our

level-2 resolution. We call this ascending sequence of steps within the gap in Fig.6 a level-2

devil's staircase [9]. Hence, as we decrease fs from 850 Hz to 640 Hz. we climb up the

level-2 devil's staircase to an arbitrarily high step before plunging down to a period-1

periodic state. We will henceforth refer to this scenario, as well as simliar scenarios below,

as the devil's staircase route to chaos.

4 Clearly, our finite instrument resolution allows us to identify only the first few steps in this sequence. It
appears, however, that this sequence continues ad infinitum following a definite law to be determined in the next
section.



Let us summarize Fig.6 as follows:

level-2 devil's staircase sequence from step 2 to step 1

2 - -3 - -4- -5 - ->6 - -7- -8 - -»..- -+chaos - -1 (5)

The magnification of the "gap" between steps 2 and 3 is shown in Fig.8. As we

decrease the frequency /, from above 1300 Hz. we discover again a new family of steps

whose period increases from 3 to 5. to 7. to 9 etc.. ad infinitum, and finally to a chaotic

state before descending back to the left boundary of the period-2 step at around 1100 Hz.

The Lissajous figures corresponding to several steps in Fig.8 are shown in Fig.9 along

with their associated waveforms vs(t) and vc(t) as in Fig.5. In particular, the Lissajous

figures corresponding to a period 3. 5. 7. 9. 11. and 13 periodic states are shown in

Figs.9(a). (d). (g). (j). (m) and (p). respectively. The Lissajous figure in Fig.9(s) never

closes upon itself and correspond to a chaotic state.

As we further decrease f s to the left boundary of the gap. the chaotic wave form

vc (t ) suddenly collapses and reverts back to a periodic wave form of period 2 whose Lis

sajous figure is shown in Fig.9(u).

Hence, just as in Fig.6, we have here a devil's staircase route to chaos.

Let us summarize Fig.8 as follows:

level-2 devil's staircase sequence from step 3 to step 2

3--5-->7--»9-»-ll--43--» • • • -~>chaos --2 (6)

The magnification of the "gap between steps 3 and 4 is shown in Fig.10. As we

decrease the frequency /, from about 1840 Hz, we discover a similar devil's staircase

route to chaos, which we summarize as follows:

level-2 devil's staircase sequence from step 4 to step 3

4--7--»10--13--16-- • • • ->-+chaos --3 (7)

Indeed, the same scenarios have been observed in every gap in Fig.4 which we have meas

ured. From these observations, we can deduce the following empirical law which defines

8



the

level-2 devil's staircase sequence from step n+1 to step n

(/i+l)--*Oi+l)+n -->(n+l)+2* --»(n+l)+3n --»(n+l)+4n

• • • • -*-*chaos *n (8)

As a check, note that if we let n=l, 2. and 3. respectively, in (8). we could obtain (5). (6).

and (7), respectively.

C. Level-3 Devil's Staircase

Let us now increase the resolution of our frequency tuning experiment even further

(say (A/ )3 = 0.1 (A/ )2 = 0.01 (A/ \) so that the frequency gap between each pair of

adjacent steps in Figs.6, 8 and 10 is magnified further to reveal additional (but not all!)

yet finer structures.

The magnification of the "gap" between steps 2 and 3 in Fig.6 is shown in Fig.l 1. As

we decrease the frequency f s from about 860 Hz, we discover yet another family of

devil's staircase as shown in Fig.l 1. which increases from step 2 to 5, to 8. to 11. ... etc..

ad infinitum, and finally to yet another chaoticstate before plunging back to the left boun

dary of the period-3 step at around 780 Hz. Hence, once again, we observe a devil's stair

case route to chaos.

The Lissajous figures corresponding to several steps in Fig.11 are shown in Fig.12. In

particular, the Lissajous figures corresponding to a period 2, 5 and 8 periodic states are

shown in Fig.12(a), (b) and (c), respectively. The Lissajous figure in Fig.12(d) never

closes upon itself and corresponds to a chaotic state. The Lissajous figure in Fig.12(e)

corresponds to the period-3 periodic state right after chaos.

For comparison purposes, the waveforms vs{t) and vc(t) associated with the

period-5 Lissajous figure in Fig.l2(b) are shown in Figs.12(f) and (g), respectively.



Let us summarize Fig.l 1 as follows:

level-3 devil's staircase sequencefrom step 2 to step 3

2_-*5--»8_->n__»i4_->i7_-+ . . . -->chaos --*3 (9)

Likewise, the magnification of the "gap" between steps 3 and 5 in Fig.8 is shown in

Fig.13. Once again, we see a devil's staircase route to chaos. Figs.14(a) and (b) show the

Lissajous figures corresponding to a period-3 and period-8 step in this staircase. The Lissa

jous figure corresponding to the chaotic state and the final transition to a period-5 periodic

state are shown in Figs.14(c) and (d) respectively.

We can summarize Fig.l 4 as follows:

level-3 devil's staircase sequence from step 3 to step 5

3--8 . 13--18--23-->28--> • •• --+chaos - ->5 (10)

Repeated experiments at level-3 accuracy for several other gaps in Figs. 6.8. and 10

reveal the following empirical law:

level-3 devil's staircase sequence from step p to step q

p *P+q *P+2q 'P+3q * ' - - p+nq ••• *chaos *q (11)

As a check on the validity of this empirical law. observe that if we let p=2 and q=3

in (11). we would obtain (9). Similarly, if we let p=3 and q=5 in (11). we would obtain

(10).

In fact, if we let p=n+l and q=n in (11). we would obtain the level-2 empirical law in

(8). it appears therefore that the empirical law (11) is quite general, at least for the non

linear circuit in Fig.l, and can be used to predict the sequence of steps in any devil's stair

case route to chaos, at any level.

D. Robustness

To ensure that the above devil's staircase route to chaos is rather robust, we repeated

our experiments with different transistors and parameters. In each case, the same qualita

tive behavior is observed. Fig.15 is a case in point. The Lissajous figures here are

10



qualitatively similar to the corresponding ones in Fig.9. In particular. Figs.9(a) and 15(a).

Figs.9(d) and 15(d). Figs.9(g) and 15(c). Fig.9(j) and 15(d). Figs.9(m) and 15(e). Figs.9(p)

and 15(f). Figs.9(s) and 15(g), and finally Figs.9(u) and 15(h). are similar to each other.

Yet, these Lissajous figures are traced with a different transistor (NPN type no.3DG 100A)

and a different set of parameters (E=0.48V. EB =2.45V. C =10/x/r ).

4. CONCLUSION

Based on extensive experimental observations, we conjecture that the bifurcation

phenomena for the nonlinear circuit in Fig.l (with the input frequency /, as the tuning

parameter) consists of an infinitely many levels of devil's staircases, each one having a

finer resolution than its preceding level. The ascending steps in each devil's staircase are

sandwiched between 2 adjacent steps which themselves belong to another devil's staircase

at level (k-1). The steps belonging to eachdevil's staircase at any level k obeys the follow

ing period-adding law:

p *P+q *P+2q *P+ty * *' *p+nq >p+(n+l)q

> . . . *chaos *q (12)

This "period-adding law" is distinctly different from the well-known "period-doubling

law" discovered by Feigenbaum [3]. It is similar, however, to the phenomenon first

discovered by Kaneko for nonlinear discrete maps [6-8].

A careful analysis of the level-1 devil's staircase in Fig.4 shows that each step P=n

always occurs in the vicinity of fs = nf 0. where / 0 as500 Hz is the circuit's natural fre

quency measured with the voltage source short circuited. For example, the n=5 step occurs

in the vicinity of 5(500)=2500 Hz while the n=26 step occurs in the vicinity of

26(500)=13000 Hz. We can therefore interpret each step in Fig.4 as a synchronization

between the input frequency fs and some multiple of the natural frequency / 0.

A similar analysis of the higher-level staircases in Figs.6, 8, 10. 11, and 13 reveals

that each P=n step in a level-k devil's staircase occurs in the vicinity of fs = (IL)/ 0. For

11



example, the n=3 step in the level-2 devil's staircase in Fig.6 occurs in the neighborhood of

3
/, = (-=-)500 = 750Hz. Likewise, the n=5 step in the level-3 devil's staircase in Fig.11

occurs in the neighborhood of fs = (^-)500 = 833 Hz. We can therefore interpret each

step P=n in a level-k devil's staircase as a synchronization phenomenon between the k th

multiple of the input frequency fs and the n th multiple of the circuit's natural fre

quency.

Finally we remark that qualitatively similar bifurcation behaviors have also been

observed with other circuit parameters chosen as the bifurcation parameter. We have

chosen f s as our bifurcation parameter in this paper because f s can be more accurately

tuned than the other circuit elements.

12



APPENDIX

Our objective in this Appendix is to derive the state equations governing the circuit in

Fig.l with vc and vs chosen as the state variables. The state equation for vc can be

obtained by inspection:

# E cos <ast — vs
v,. =

CRS
* /l(Vc.V,.«)

To derive the state equation for vs , differentiate the equation

E cos u)s t — vs
iL =

Rs

with respect to time and solve for vs to obtain

vs = —Rs iL — E (its sin (ost

Solving the equation

L *l = v, - vc - v,

for iL and substituting the result in (A.3). we obtain

(A.1)

(A.2)

(A.3)

(A.4)

vs = —-j- v, —vc —vR ——<as sm <>)st (A.5)

It remains for us to express vR in (A.5) in terms of the state variables vc and vs. To do

this, note that

is = C vc - —— / (ije) - EB
kb I

Substituting (A.l) for vc into (A.6) and rearranging the equation, we obtain

/ (ip) +RBiR =EB +-£- Ecos o>,r - vs
For any value of vs and t, (A.7) has a unique solution

ip =h (vs,t)

Rb > ~ f' Up ) for all iR

(A.6)

(A.7)

(A.8)

(A.9)

This condition is equivalent to requiring the bias resistance RB to be large enough so that

its associated load line intersects the vR —iR curve at only one point. Since this is the

13



same condition for the circuit to function as a negative-resistance oscillator when E=0, it

follows that

Rr
vc = — vs - vc - / \h (vr, t) — -r=- (os sin 6>s t

L

& /2(vc.vs.O (A.10)

Equations (A.l) and (A.10) are the desired state equations for the circuit in Fig.l.

14



FIGURE CAPTIONS

Fig. 1 A negative-resistance oscillator circuit driven by a sinusoidal voltage source of
frequency/,. Here,
Rs = 200U RB = 470U L = 0.1 H, C =7fiFJE = \VandEB = 2.6 V.

Fig. 2 (a) A 2-transistor realization of the negative-resistance
device in Fig.l. Here.
Rx = 2.2K a R2 = 560U and R3 = 120ft
NPN transistor has type no. 3DG6D.

(b) vR —iR characteristic curve of the negative resistance device.
Fig. 3 (a) A P=3 Lissajous figure.

(b) Reference sine wave (top) and 3rd order subharmonic waveform for v. (t)
(below) applied to horizontal channel.

(c) A P=5 Lissajous figure.
(d) Reference sine wave (top) and 5th order subharmonic waveform for vc (r)

(below) applied to horizontal channel.
(e) A P=23 Lissajous figure.
(f) Reference sine wave (top) and 23rd order subharmonic waveform for vc (f )

applied to vertical channel.

Fig. 4 Level-1 devil's staircase. P denotes the order of the subharmonic response relative
to the forcing frequency fs. Encircled regions are magnified in Figs. 6. 8, and 10
and represent level-2 devil's staircases.

Fig. 5 Lissajous figures associated with Fig.4 and the waveforms for vc (r) and vc (t)
along with reference sine wave on top of each waveform. vs(t ) is always applied
to the horizontal channel while vc (r) is always applied to the vertical channel.
Each Lissajous figure is followed by v, (r) and then by vc{t).

(a).(b).(c): P=15: (d).(e),(f): P=10; (g).(h).G) : P=8;
(j).(k).U) : P=3: (m).(n).(o): P=2

Fig. 6 Level-2 devil's staircase between steps 1 and 2: magnification of the gap between
steps 1 and 2 in Fig.4. Encircled region is further magnified in Fig.l 1. giving rise
to a level-3 devil's staircase.

Fig. 7 Lissajous figure associated with Fig.6 and the waveforms for vs(t) and vc (r ).
Interpret as in Fig.5 caption.

(a).(b).(c) : P=2: (d).(e),(f) : P=3; (g).(h),(i): P=4;
(j).(k).O) : P=5: (m).(n).(o) : P=6; (p).(q).(r) : P=7;
(s).(t).(u) : P=8
(v) chaos (w) : P=l

Fig. 8 Level-2 devil's staircase between steps 2 and 3: magnificaion of the gap between
steps 2 and 3 in Fig.4. Encircled region is further magnified in Fig.l3. giving rise
to a level-3 devil's staircase.

Fig. 9 Lissajous figures associated with Fig.8 and the waveforms for v, (t ) and vc (r ).
Interpret as in Fig.5 caption.

(a).(b).(c) : P=3: (d).(e).(f) : P=5; (g).(h).(i) : P=7:
(j).(k).(l) : P-9: (m),(n).(o) : Ml; (p).(q).(r) : P=13:
(s) chaos; (t) vs(t ) chaotic waveform
(u) P=2; (v) vc(t) waveform.

15



Fig. 10 Level-2 devil's staircase between steps 3 and 4: magnification of the gap between
steps 3 and 4 in Fig.4.

Fig. 11 Level-3 devil's staircase between steps 2 and 3: magnification of the gap between
steps 2 and 3 in Fig.6.

Fig. 12 Lissajous figures associated with Fig.l 1 and the waveforms for vs U ) and vc (t).

(a) P=2 (b) P=5 (c) P=8
(d)chaos (e) P=3 (f) 5th order subharmonic

waveform for vs{t )

(g) 5th order subharmonic waveform for vc (r).
Fig. 13 Level-3 devil's staircase between steps 3 and 5: magnification of the gap between

steps 3 and 5 in Fig.8.

Fig. 14 Lissajous figures associated with Fig.8

(a) P=3 (b) P=8
(c) chaos (d) P=5

Fig. 15 Lissajous figures traced with a different set of parameters (E=0.48 V. EB =2.45 V.
and C=10fiF) and a different NPN transistor type no. 3DG100A. The other
parameters remain unchanged.

(a) P=3 (b) P=5 (c) P=7
(d) P=9 (e) P=ll (f) P=13
(g) chaos (h) P=2
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