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SPUR ARCHITECTURE DESIGN RATIONALE
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ABSTRACT: The SPUR ("Symbolic Processing Using RISCs”) Project is a research effort
aimed at applying reduced instruction set computer concepts to the support of LISP
programming environments. In addition, the project extends previous Berkeley RISC
efforts in the direction of multiple processor and co-processor support. The objective of the
project is to build a complete prototype computer system, including extensive software
development. This document records the implementation issues and decisions made during
the design of the hardware prototype.

KEY WORDS AND PHRASES: Reduced Instruction Set Computer, Tightly Coupled
Multiprocessor, Tagged Architecture, LISP Machine, Floating Point Coprocessor;

1. Introduction

This document presents a description of and rationale for the design of the SPUR
(“Symbolic Processing Using Riscs”) multiprocessor. SPUR is intended to be a workstation-
sized computer system incorporating custom-designed processor nodes and off-the-shelf
memory and I/O boards. Its unique features include: (1) a custom-designed VLSI processor
chip, implementing a 40-bit tagged architecture and a load-storeregister-register
instruction set that is well-suited for pipelined execution, (2) a VLSI memory/cache
management chip, implementing a multiprocessor cache consistency protocol as well as
virtual memory management, (3) a custom designed floating point coprocessor that,
combined with software routines, implements the I.E.E.E. standard, and (4) an unusually
large (128K bytes) cache associated with each processor node. Necessity is the mother of
invention, and other features of the design have been influenced by implementation
constraints. For example, to avoid the hardware design of a translation buffer, page table
entries are buffered in the processor cache. Evaluation studies have shown that this is
actually more effective than systems with conventionally sized translation buffers! Another
example is the SPUR bus, which is based upon a dual system bus, one for cache to cache
communication and another for communication among the caches and global memory and
I/O devices. A large software development effort to create the associated operating and
programming systems is also underway.

The SPUR design has evolved from previous VLSI processor design efforts undertaken

"by faculty and graduate students at the University of California, Berkeley over the past five

years [PATT85]. Led by Professors David Patterson and Carlo Sequin, the first generation
processor was called RISC [PATT82]. The processor implemented a “reduced instruction
set,” i.e., one with a small number of instructions, each of which could be executed in a
single processor cycle. This made possible a simple and fast controller design. The
pipelined implementation of the architecture, called RISC-II, was able to achieve an
execution rate of 3 million instructions per second. The other architectural feature that
distinguished the Berkeley RISC processor from other reduced instruction set computers
(e.g., Stanford MIPS [HENN84] and IBM 801 [RADI83]) was its large on-chip register file.
This made it possible to reduce the number of off-chip data references, significantly



improving the processor performance [PATT82].

The RISC architectures were influenced by conventional programming languages, such
as C and PASCAL. The second generation processor, called SOAR ("SmallTalk on a
RISC”), applied RISC-concepts to the radically different programming style of object-
oriented systems [UNGAB84]. SOAR’s most significant architectural enhancement is its use
of tagged words to encode type information, and a trap mechanism to support dynamically
typed data in SmallTalk-80. The tags also include “generation bits” for implementing an
efficient garbage collection scheme, called Generation Scavenging [UNGAB5]. SOAR
designs have been completed in NMOS and P-Well CMOS technologies, and chips have been
submitted for fabrication.

SPUR is the latest generation of VLSI processor designs undertaken at Berkeley, and
the most ambitious to date [KATZ85a, KATZ85b]. It extends the previous efforts along
several dimensions. First, the processor is being designed as a component of a complete
multiprocessor system, including operating system and programming environments.
Second, an on-chip instruction buffer (an instruction cache) will improve processor
performance by further reducing off-chip references. Third, a companion memory
management chip is also being designed for implementation in VLSI. Fourth, a coprocessor
interface will be supported by the processor chip, and a companion floating point co-
processor is being designed to explore that interface.

A key hypothesis of the project is that RISC architectures can provide high
performance for LISP applications while maintaining compatibility with conventional
procedural languages. (We expect the operating system to be written in C.) There already
exist a number of successful implementations of architectures that support “symbolic
processing,” such as the Symbolics 3600, the LMI Lambda, and the Texas Instruments
Explorer. These machines have been customized for LISP support through microcode. On
the other hand, SPUR is a general purpose processor, executing a reduced instruction set
directly.

The rest of this paper is organized as follows. In the next section, the important
design constraints are described. Section 3 describes the design of the processor, while
section 4 describes the combined memory management unit/cache controller/bus controller,
and section 5 discusses the coprocessor interface and the floating point unit. The processor
board design is described in section 6. Conclusions and status is given in section 7.

2. Design Constraints

Our objective is to build a complete multiprocessor computer system. To accomplish
this goal, we must place some constraints on the design to reduce its scope and complexity.
In particular, we have limited the design effort to the level of the processor node, leveraging
off existing memory and /O devices whenever possible.

(1) THE DESIGN EFFORT IS LIMITED TO A PROCESSOR BOARD.

Off-the-shelve memory boards and I/O controllers will be used, rather than designing
these ourselves. This means that the system must be built around an existing and
reasonably popular system bus. We have chosen the Texas Instruments NuBus for a
number of reasons. First, the bus is a state-of-the-art microcomputer bus, based on a
simple protocol that supports multiword transfers of 32-bit words, with a 37.5
Mbyte/second peak bus bandwidth!. Second, the form factor of the board conforms to
the Eurocard format, which is emerging as an industry standard. Backplanes,

This is achieved only with the maximum transfer blocksize. We expect to achicve a maximum peak rate of
35.5 Mbytes/second.
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cabinets, and other “hardware” are readily available from several sources, and the
boards themselves are generously sized (approximately 11" by 14"). Third, the bus
electronics requires only one of the three 96-pin DIN connectors available on the
board, leaving the remaining two connectors for user defined buses. The rack mount
NuMachine provides a 21-slot card cage with a mixture of NuBus and MultiBus slots,
providing a prototype processor like SPUR with access to NuBus native memory and
peripheral boards as well as the large number of peripherals available for the
MultiBus.

This constraint has effected the processor node’s interface to the system bus. The
SPURBUS is actually implemented as a two tightly coupled buses (Memory and
Cache) implementing the same protocol and sharing the same arbitration logic. A
SPURBUS transaction is implemented by tandem transactions on the underlying
buses (they cannot be used independently). The Memory Bus, implemented directly
by the TI NuBus, provides a communications path between the processors and shared
resources such as global memory and I/O devices. It uses physical addresses. The
other bus, called the Cache Bus, provides a parallel communications path among the
processors’ caches. Virtual addresses are used on this bus. Note that the SPUR
processor caches are accessed with virtual addresses, thus eliminating virtual memory
translation overhead on cache accesses. Maintaining cache coherency is much easier
with virtual addresses on the system bus side, since the cache can be accessed with the
same hardware from either side. Otherwise, special reverse translation hardware is
needed to map physical bus addresses into virtual addresses that can be used to access
the cache. A system with virtual addresses throughout would be ideal, but would
require the design of our own memory boards with on-board translation hardware.

PROCESSOR NODE CHIP COUNT IS KEPT SMALL

The processor node design avoids SSI logic wherever possible by placing as much logic
as possible on the custom VLSI chips. However, to obtain the amount of local
processor node memory we need for adequate performance, we must make use of
commercial RAM technology. Some driver circuitry, comparison logic, and so on must
be placed off-chip because of pin limitations on our chip packages. The two major
custom designs involve the processor and a companion memory/cache management
unit with on-chip bus interface. A third design is a floating point co-processor. The
cache size is 128K bytes, organized as 4K x 32 byte transfer blocks. The cache is
implemented by 64 16Kx1 SRAM chips for the cache data, 4 4Kx4 SRAM chips for the
physical tags, 12 4Kx4 RAM chips for the virtual tags, and 2 4Kx4 RAM chips for the
state bits.

3. Central Processor Design

3.1. Instruction Buffer

One of the major departures from RISC II is the incorporation of a prefetching

instruction buffer on the processor. The instruction buffer is organized as a 128 word (512
byte) cache, grouped into 16 blocks of 8 words each. Valid bits are associated with each
word, thus making the subblock size one word. The small number of blocks makes block
selection fast. We chose the large blocksize because it makes prefetching more effective
while simultaneously reducing the size of the address tag array.

The prefetching algorithm proceeds as follows. If a processor instruction fetch misses

in the instruction buffer, a “miss opcode” is delivered to the pipeline and a memory access is



initiated for the target instruction. The instructions following the target are prefetched, as
long as they fall within the same block and as long as such fetches do not result in misses
in the off-processor cache. In-progress prefetching is aborted immediately if the processor
makes another instruction fetch that misses in the instruction buffer.

3.2. Execution Pipeline and Control

An ideal pipeline organization for a register-oriented machine has three stages:
instruction fetch, register read and execute, and register write. However, LOAD/STORE
instructions take longer because of memory access delays to the on-board cache. RISC II
adopted a three stage pipeline structure for REGISTER/REGISTER instructions and a four
stage “stretched” pipeline for LOAD/STORE, i.e., instructions already in the pipeline were
stalled while a load or store waited for completion of the memory access.

The SPUR pipeline is a departure from RISC II in that all instructions use the same
four stage pipeline:

(1) Instruction Fetch

(2) Register Read/Execute OR Effective Address Computation
(3) Memory Access (if load/store operation)

(4) Register Write

The pipeline control is simplified because all instructions behave the same way. However,
the disadvantage is slightly more complicated forwarding logic: the register read stage may
need the result of either of the TWO previous instructions, neither of which will have
written back to the register file in time. '

A conservative four phase non-overlapping clocking scheme has been selected for the
SPUR datapath. Each stage is divided into four phases of 25 ns each, with a 10 ns non-
overlap time, yielding an estimated cycle time of 140 ns. The scheme is well suited for the
register file, which is read and written once per cycle. Precharged bit lines and decoders
are used to achieve reasonable performance while avoiding complicated sense amp circuit
design.

3.3. CPU Control

The control signals and their sequencing for all instructions have been determined,
but the detailed implementation approach is unresolved at this time. We are investigating
a two level decoding scheme, in which a master control finite state machine (most likely
implemented by a PLA) sequences through high level operations that are locally decoded
into detailed control signals (most likely implemented by random logic).

3.4. Exceptions, Faults, and Interrupts

Exceptions are unusual conditions detected inside the CPU or the FPU (e.g., integer
overflow, window overflow, etc.). Faults are unusual conditions outside of the CPU/FPU
that occur during the execution of an instruction, such as a page fault. Interrupts are
unusual conditions outside of the CPU/FPU that occur asynchronous to the execution of an
instruction, such as an I/O interrupt.

An exception appears as though the currently executing instruction has been replaced
by a CALL instruction. The write stage of the executing instruction that caused the
exception is cancelled.

4, Memory/Cache Management Unit Design

Cache memory is an implementation technique for reducing main memory access time,
by placing a high speed memory buffer close to the processor. This is particularly important
in a tightly coupled multiprocessor system such as SPUR, since our pathway to memory is



through a relatively slow microcomputer bus. Futhermore, a cache can reduce the system
bus bandwidth required by a processor. In a multiprocessor system, this reduction will
often be more important than the reduction in main memory access time [GOODS83].
[KATZ85b] showns that the cache must be very large for reasonable multiprocessor
performance to be achieved. Thus, a large cache (128K bytes in the current design) is
associated with each processor node. The SPUR programming model is a single, large,
potentially shared memory; there is no programmer managed local memory. However,
special instructions have been included in the instruction set for manipulating the contents
of the cache.

4.1. Cache Coherency Protocol

A multiprocessor system with caches must maintain cache coherency, i.e., all
processors must have a consistent view of memory. In other words, all cached copies of a
memory block must contain the same data, and main memory must eventually be updated
with changes made to cache blocks. One common solution is to implement a write-through
strategy. Processor writes are written through to main memory, and as a side effect, copies
of the block in other caches are invalidated. Thus, the memory and cached versions of a
block are always identical. In particular, no two copies of a cached block can be different,
and thus consistency is maintained.

The problem with adopting such a strategy is that each processor write requires a bus
transaction, thus consuming more bandwidth of the system’s most critical resource. The
effective miss ratio is equal to the fraction of accesses that are writes — approximately 15 -
30%. These miss ratios are much worse than what could be achieved for a uniprocessor
with the size of the cache we are implementing. Thus, we have have developed a new cache
consistency protocol, called Berkeley Ownership, whose goal is to minimize the additional
bus traffic needed to maintain cache consistency.

The underlying principle of the Berkeley Ownership Protocol is that a cache must
explicitly own a memory block before it is permitted to update the block. The protocol
guarantees that a memory block has only one owner at a time. It also makes it possible for
the cache controller to know when it can update its cache without needing to communicate
with other caches or with memory. However, the owner is responsible for eventually
copying the block back to memory. '

Since memory blocks are now stored in the cache, instead of written through, the
owner must also respond to read requests made by other caches on behalf of their
processors. A distinction is made between acquiring a block for reading, and acquiring it
with the intention of ultimately updating it. Ownership is transfered on the latter
operation. The details of the protocol are reported in [KATZ85a].

The advantage of the Berkeley Protocol over other similar protocols is that it attempts
to transfer blocks between caches directly whenever possible, and only updates memory
when a dirty block is replaced in the cache. For example, the Synapse Protocol [FRANS84]
performs many transfers through main memory. A read request is first aborted by the
owning cache, which then gives up ownership while transfering the block back to memory.
A short time latter, the restarted read request will receive the block from main memory. In
the Berkeley Protocol, the block is transfered to the requesting cache in a single bus
transaction. Qur studies have shown that for several representative reference traces, the
Berkeley Protocol reduces bus traffic by from 20 -- 30% over other similar protocols.

One might observe that sharing of data across processors in existing multiprocessor
applications is rare, and thus unworthy of hardware support. By placing shared data in
non-cacheable pages and/or providing some processor instructions for atomic test-and-set
and cache flushing, data sharing can be managed by software. For example, access to
shared data is through critical sections enforced by software: (1) locks are acquired at the



beginning of the section, (2) the data is accessed, (3) when complete, the cache is flushed to
make memory consistent again, and (4) the locks are released. However, SPUR has been
designed as a vehicle for experimenting with developing shared data applications. As such,
we do not want to make it expensive or difficult for programs to share data among
processors. Thus, we have adopted the more complicated hardware solution. We have been
able to show that for write-shared data, the additional bus utilization associated with our
protocol is no worse than with non-cacheable pages, and is significantly better for read-
shared data. In addition, flushing caches of our size would significantly reduce
performance.

The arbitration logic of the system bus guarantees that at most one of the possible
masters of the bus has control of it at a time. Since every processor is connected to the bus,
bus mastership can be used as a system wide semaphore for synchronization purposes. A
significant advantage of the Berkeley Protocol is that it makes possible an atomic test-and-
set operation in the cache, thus avoiding bus arbitration and transfer latency in many
cases. When a test-and-set operation is applied to a memory block, the block is read and
held until it has been updated by the cache controller. In other words, the cache controller
refuses to give up the block until the test-and-set has completed.

4.2, Virtual Memory Management

For high performance, it is useful if a cache can be addressed with virtual addresses
from the processor side. This allows it to be accessed directly from the processor, without
adding the additional latency of virtual-to-physical address translation to the cache access
time. However, a virtually addressed cache suffers from the synonym problem in that two
virtual addresses may map to the same physical address. Synonyms are a serious problem
for cache update unless the virtual addresses can be constrained to map into the same cache
entry.

The usual solution is to place translation between the processor and the cache (or in
parallel with cache access), and to access the cache with physical addresses. As mentioned
above, this is undesirable from a performance viewpoint. The problem is solved in SPUR by
outlawing synonyms in the address space. The unit of sharing is not the page, but the
segment. The system supports 256 active segments, each of which is one gigabyte in
length. A global virtual address is 38 bits: 8 bit segment identifier plus a 30 bit byte offset.
A given process can access four segments. The processor generates short virtual addresses
that are 32 bits: 2 bit short segment identifier plus a 30 bit byte offset. The cache controller
contains software maintained control registers that map the short segment identifier into a
full global segment identifier. The cache is addressed with global virtual addresses. The
placement of pages within segments is the same for all processes which make use of that
segment, although they may use different short segment identifiers.

Because of the size of the address space, the segment page tables themselves are quite
large. Even with 4K byte pages, a page table requires 256K entries. Assuming 4 bytes per
entry, this would represent a megabyte of contiguous memory per segment!

The most obvious way to avoid contiguous allocation of physical memory is to place
the page tables in virtual memory, allowing them to be paged. To make it possible to
bootstrap the mapping process, a small “root” portion of the page tables are maintained in
physical memory. The mapping mechanism works as follows. The requested word’s virtual
address is used to form the offsets into the various tables; the entries always contain a
presence bit and a physical address. Segment page tables are placed in contiguous virtual
memory. It is likely that they will be allocated by the operating system in a segment
reserved for system data. A root page table map is located in a fixed location in physical
memory. Each entry (one per segmnent) holds 256 pointers to page table pages. Each page
table page holds é024 Rge tal{lg entriq‘fo In tur:, each page table entry maps 4096 bytes of
address space (2° * 27 * 2°° = 2°). The root page table map, which must remain



resident in physical memory, only re:%xires 256K lbytes of contiguous physical memory to
begin the mapping process for the 2°~ byte (256 gigabyte) address space. The two level
scheme allows page tables to be allocated incrementally.

Our method for avoiding contiguous allocation of page tables leads to another
potential problem: the cost of performing the multiple layers of translations. In the worst
case, it may be necessary to first access the root page of the system virtual space, then the
page of the system virtual space page table referenced by the root page, then the root page
of the user segment’s page table in the system virtual address space, then the page table
entry for the referenced page, and finally the block on the referenced page itself.

The SPUR cache is accessed with virtual addresses, thus virtual memory translation is
only necessary in the rare case of a cache miss. Nevertheless, intermediate translations
must be cached if reasonable performance is to be achieved. Conventional systems cache
their translations in a special append only associative buffer called the Translation
Lookaside Buffer or TLB. One of the unique features of SPUR is that page table entries
have virtual addresses and are thus cacheable just like any other data We avoid using
special purpose hardware by using the processor’s cache for translation entries as well as
conventional data and instructions. Our studies [RITC85] have shown that our caches are
sufficiently large so that there is little interference among instructions/data and page table
entries: placing page table entries in the cache has a negligible affect on cache miss ratios.
An advantage of the approach is that the page table entries fall under the same cache
consistency protocol as any other cached data. Thus, changes to page table entries are
guaranteed to leave all copies of the page table in a consistent state. Furthermore, the
caches are large enough so references to page table entries rarely miss in the cache.

Since SPUR does not have a single translation buffer, but rather a buffer distributed
among the processors’ caches, we need a distributed algorithm for maintaining the
REFERENCE and DIRTY status of pages. Normally, this information would be maintained
in the TLB. Performance would be seriously affected if each data reference also required a
cache look up and write to set the REFERENCE and DIRTY status information in the page
table entries. Observe first that REFERENCE information is used as a hint to the
operating system to approximate “least recently used” page replacement with “not recently
used” replacement. We conjecture that some inaccurracy in the REFERENCE information
can be tolerated without significant effect on performance. In SPUR, the page table entry
REFERENCE bit is checked whenever a reference to a block on a page results in a miss. If
the bit is not already set, the cache controller traps to software to set the bit. Inaccuracies
can be introduced after a page table entry’s reference bit is reset by the operating system.
Blocks already in the cache may continue to be referenced, but the REFERENCE bit is not
set because the accesses are not missing in the cache.

In a similar way, DIRTY bit information is a performance hint to the operating
system. In the simplest case, all replaced pages that are writable could be written back to
disk (read-only pages need not be written). This may not be such an awful option as it
sounds, especially if large amounts of physical memory are available and pages are rarely
replaced. However, SPUR does provide a mechanism for recording the DIRTY status of
pages. It works as follows. Each cache entry contains two status bits: one to indicate that
the page that contains the block is dirty, the other to indicate that the block itself is dirty
(the latter status bit would be needed anyway, to determine which cache entries to write
back to memory on a cache flush). When a block is first read into the cache, its associated
page table entry must first be accessed. The PTE’s page dirty bit is copied by the cache
controller is copied into the cache state’s page dirty bit. When a write is directed to a
cached block for which the page dirty bit is NOT already set, the cache controller traps to
software to set the PTE’s page dirty bit. Once the page is marked as dirty, subsequently
accessed blocks will have the cache state’s page dirty bit set correctly. The first update to a
block that had been accessed before the first page write will trap to set the PTE dirty bit,



even though this is redundant. Our simulations have indicated that such redundant traps
occur relatively infrequently [RITC85].

4.3. Bus Controller and Interrupt Mechanism

The bus controller interfaces the SPURBUS and the processor cache controller finite
state machine. Some complexity is introduced because the bus clock, upon which the bus
controller FSM is based, and the processor clock, which controls the cache controller FSM,
are asynchronous. Some interface signals are handled by fully interlocked exchanges, while
others are handled by latched signals with polling.

The interrupt register maintained by the bus controller is controlled by an
asynchronous handshake. It is examined by the cache controller to determine whether an
interrupt should be signalled to the processor. On the other hand, the bus controller may
set it in response to memory mapped interrupts occuring on the SPURBUS. The cache
controller asserts an inhibit line while reading the register, releasing the line when the
read completes.

The bus controller deals with all interfacing to the backplane, while the cache
controller interfaces with the on-board data paths. For example, the processor cache
controller generates the block address, but the bus controller generates the rest of the
address that indicates the bus transfer blocksize. The interface between the two is based on
a request/acknowledge handshake. The interface between the bus controller and the snoop
is based on wakeup/timeout. That is, the bus controller wakes up the snoop controller when
a snoopable event is detected on the bus, and waits for the reply, aborting if time has run
out. This is done because a snoop response can only be bounded; it is not possible to know
in advance how long the response will take.

4.4. Cache Manipulation Instructions
5. Co-Processor Interface and Floating Point Unit

5.1. Co-Processor Interface

VLSI technology has not yet achieved levels of integration that would allow a
complete computer system to be fabricated on a single chip. The approach taken by
commercial microprocessors has been to package some system functionality in a chip
separate from the central processor, and to integrate that functionality into the system
through a coprocessor interface. For example, the DEC MicroVAX II system employs a
floating point coprocessor in conjunction with the main cpu. When the cpu encounters a
floating point point instruction, the floating point unit takes over execution while the cpu is
suspended. Alternatively, the Motorola 68020/68881 coprocessor interface permits the cpu
to continue executing non-floating point instructions during floating point operations, but
only under special conditions. Typically, there is a significant amount of overhead
consumed in resynchronizing the asynchronous execution. The commercial co-processor
interfaces either make it expensive to communicate with the co-processor or do not attempt
to exploit the parallelism available by having more than one execution unit in the system.

The primary goals of the SPUR co-processor interface is to provide a very low
overhead communications interface to the co-processors, while making it possible for both
the processor and its co-processors to be in simultaneous execution. This is accomplished by
incorporating a separate instruction bus into the system that provides a communications
path between the processor and the co-processors. This bus is necessary because the
processor has its own on-chip instruction buffer and does instruction prefetching. Thus, it is
not sufficient for the co-processors to merely monitor instructions entering the processor
from the processor board cache. As soon as an instruction enters the central processor’s
execution pipeline, it is forwarded out along the instruction bus to the co-processors. The



instruction set format has been formulated to make it easy for the processor’s decode stage
to determine that it has a co-processor instruction. In such cases, the execution pipeline
performs no functions for this instruction (this is not quite true for conditional branches
that test conditions in the co-processors).

Perhaps the greatest performance advantage of the co-processor interface comes from
how operands are provided to the co-processors. Most co-processor interfaces provide
explicit instructions for moving co-processor operands from the processor’s registers to the
co-processor. In many cases this involves staging the data into the processor only to move it
to the co-processor, with no processor computations performed on the data other than traffic
control. In SPUR, loads and stores are executed identically for the processor or a co-
processor. Consider a load operation. Effective address computations are performed by the
processor and sent to the processor board cache. When data is returned, it is latched into
the appropriate co-processor’'s register file, rather than the processor’s.

Further, the interface has been formulated to allow simultaneous execution of the
processor and the co-processor. Consecutive co-processor operations force the processor to
stall only in the case that the co-processor is still busy executing a co-processor instruction.

5.2. Floating Point Unit

Because of pin limitations, we have not chosen to implement a completely general co-
processor interface for SPUR, although the issues remain under investigation. The design
has been tailored for the floating point co-processor. For each floating point instruction
encountered by the processor, a co-processor op code and three register specifiers are
transmitted to the floating point unit for decode and execution. The processor will stall if
the floating point unit is busy, and cannot yet accept a new instruction.

From the viewpoint of communications, very high performance can be achieved with
the floating point unit because (1) the pathway between the cache and the fpu is 64-bits,
and (2) the fpu register is dual ported. The wide pathway between memory and the fpu
makes it possible to transfer data into and out of the fpu with a minimum number of
instructions. The dual ported register file organization makes it possible to overlap floating
point loads and stores while the fpu is doing computation. To keep the pipeline
implementation straightforward, the code must be appropriately scheduled at compile time
to avoid pipeline hazards. This is often called software pipeline interlocks.

6. Processor Board Design

The processor board contains the three chips that constitute the processor (CPU,
memory management unit/cache controller, floating point co-processor) and the cache state,
tag, and data RAMs. The cache is a virtual address cache organized into 4096 direct
mapped blocks of 32 bytes each, for a total size of 128K bytes. To provide fast responses to
system as well as processor bus actions, the cache state and virtual tags are dual ported.
This is implemented by providing two sets of RAMs that can be read independently, but
must be written at the same time. Even though the cache is accessed with virtual
addresses, the tag store also includes a set of single ported physical tags. This is used to
replace blocks from the cache to global memory without invoking memory translation.

Much of the SSI logic on the board deals with multiplexing data between the SPUR
bus, the cache, and the processor and floating point unit. The cache data is organized into
16K x 64 bit words. When read or written from the system bus side, the appropriate high
or low order 32-bit portions of the cache word are accessed.

The bus on the processor side is 64 bits wide. Loads and stores on behalf of the
floating point unit access the full 64 bits. The processor accesses 40-bit or 32-bit words
depending upon whether it is executing in tagged or non-tagged mode. In non-taged mode,
the desired word is placed on the low order 32 bits of the processor bus. This requires some



multiplexing logic on the board for the 32 bit word in the high order portion of the cache
word. In tagged mode, the low order 40 bits of the addressed cache word are accessed by
the processor. Thus, in non-tagged mode, the cache can hold 32K x 32 bit words, and can
be accessed by even or odd processor word addresses. In tagged mode, the cache holds 16K
x 40 bit words, and only even addresses are output by the processor. Tagged and non-
tagged blocks can be co-resident in the cache.

We considered end-to-end generation and checking of parity. This would involve parity
checking (on reads) and generation (on writes) between the processor and the cache, and
between the cache and the SPUR Bus. While the NuBus supports optional word parity
checking, we subsequently discovered that the existing memory or I/O boards for the NuBus
ignore parity altogether. Thus, we have decided not to do parity checking on the processor
board.

7. Summary and Conclusions

We have described the architectural design rationale of an ambitious multiprocessor
workstation project currently underway at the University of California, Berkeley. At this
point, the major architectural decisions have been made, pieces of the implementation have
been completed, but considerably more work is necessary to complete the circuit level
design and implementation. We expect to have a prototype workstation for debugging
purposes by the summer of 1986.

Even at this stage of the project, several important architectural contributions have
been made: (1) a new cache coherency protocol has been defined and is actually being
implemented within a custom VLSI cache controller chip, (2) a virtual memory mechanism,
based on cacheable page table entries, has been shown to be superior in performance to
more conventional translation buffer mechanisms, (3) a coprocessor interface has been
defined that permits concurrent and cooperative execution of a floating point coprocessor
with very low overhead, and (4) a “reduced” floating point unit has been designed that
provides excellent I.E.E.E. Standard floating point performance in a straight forward
implementation.
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1. General features

The SPUR instruction set architecture extends RISC-I and RISC-II to include
runtime tag checking and floating point arithmetic. Tag checks are performed in parallel
with data operations in order to run Lisp programs faster. Floating-point arithmetic gives
SPUR comparable performance on arithmetic programs to what it achieves on non-
arithmetic ones.

SPUR retains a number of features from earlier Berkeley RISC processors:
e  Only load and store instructions reference memory. '

e  Addresses are expressed in terms of bytes, although loads and stores transfer four-
byte words aligned on four-byte boundaries.

e  All'instructions are four bytes long.

e  Overlapping register windows are provided with 32 registers visible in each window.

SPUR's extensions to RISC-II include the following:

e The general purpose registers are 40 bits wide: 6-bit type tag + 2-bit generation
number + 32-bit data.

¢  The 32-bit virtual address space of each process is divided into four segments to
allow sharing among processes on a per-segment basis.

o  There are 15 floating-point registers, which are separate from the integer registers
and wide enough to hold IEEE standard extended precision floating-point numbers.

e Integer and floating-point instructions can execute in parallel.



2. Virtual address space

The SPUR system supports 38-bit global virtual addresses composed of an 8-bit
segment number and a 30-bit byte offset within each segment. A process uses 32-bit
virtual addresses composed of a 2-bit short segment number and a 30-bit byte offset. A
process can access four of the 256 global virtual segments by mapping from each of its
short segment numbers to one of the global segment numbers. The mapping makes it
possible to share segments among processes or to have processes that are entirely
independent of each other.

The kernel segment is short segment number O (implicit in the CALL_KERNEL
instruction and the trapping mechanism). This does not mean that all processes share a
single kernel segment, however, since the mapping from short segment 0 into a global
segment number is determined by the four segment registers.

process )
virtual seg |
address
2 30

global
virtual segment :
address

8 30

2.1. Model for sharing instructions and data

A shared object exists at a single location within SPUR's global virtual address
space. Virtual synonyms are not allowed. However, SPUR cén still support dynamic
linking. All of the objects shared among a group of processes exist in one or two segments
that are shared by all of the processes. We chose not to support the fine-grain level of
sharing avaiable in Multics]]. That would have required a much larger number of
segments or the ability to handle virtual synonyms.

3. Data types

SPUR memory consists of four-byte words and eight-byte doublewords. These are
aligned on four byte and eight byte boundaries, respectively, in terms of byte addresses.

data types in memory

four-byte: integer
single precision floating-point

eight-byte:  double precision floating-point
extended precision floating-point {(two parts)
tagged Lisp pointers
tagged Lisp immediate integers and characters




3.1.
Bit and byte numbering convention

Bits and bytes are numbered in the same order. The most significant bit of an
integer is bit 31 and the least significant bit is bit 0.

byte 3 byte 2 byte 1 byte 0

bit 31 bit 0

3.2. Tagged immediates and pointers

SPUR represents Lisp pointers, immediate integers and immediate characters using
five bytes: ome for a tag and four for the pointer or data. The tag byte consists of a 6-bit
type tag and a 2-bit generation number. This number is the basis for a ‘‘generation
scavenging” garbage collection algorithm [Ungar84)].

Operations on the tag and data are logically independent, that is, no information
moves between the two parts by carry propagation or any other implicit mechanism. The
generation number for immediate FIXNUMs and immediate CHARACTERS is normally 0
(oldest) so that generation exception mechanism is simple to implement. See section 6.1.

FIXNUM \7007000( gen

6 2 32

CHARACTER | Q1xxxxx | gen

6 2 32
T
pointer 1..... | gen | seg : .
6 2 2 30

xxxx — don’t cares
gen -- generation tag
seg — short segment number

3.3. Memory storage for tagged words

SPUR stores the five-byte tagged words in eight bytes of memory (aligned on an
eight-byte boundary). This means that only the integer registers and the hardware
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directly connected to the CPU data bus have to deal with five-byte quantities
the system is organized around four-byte or eight-byte words.

The tag and data are stored in memory in the following way:

word n (even)

word n+1 (odd)

byte 3

byte 2 byte 1

byte O

. The rest of

data

undefined

T
I

| tag/gen

The advantage of this ordering is that all of the address bits are valid for the data part of
the tagged word. Memory does not have to distinguish LD_32 from LD_40 since the
processor ignores the tag byte that comes in from memory on a LD_32 instruction.

The upper three bytes in word n+1 are undefined after a ST_40 instruction.

3.4. Tag values

The SPUR Common Lisp compiler and runtime system use the following 19 tag

values:

hex
00-0f immediate FIXNUM
10-1f immediate CHARACTER

MISC_TYPE
BIT_VECTOR
INTEGER_VECTOR
GENERAL_VECTOR
STRING

FUNCTION

ARRAY

NIL

CONS

SYMBOL
GC_FORWARD
BIGNUM

RATIO

COMPLEX
SHORT_FLOAT
LONG_FLOAT
EXTENDED_FLOAT

The hardware knows about the tags for FIXNUM, CHARACTER, CONS, NIL and
the six types of numbers given last in the table. The meanings of the other tags are by

software convention only.

s



NIL and CONS should have a Hamming distance of 1. The six types of numbers
should be in a contiguous group of tag values (for instance 38-3f) for the benefit of the eql
compare condition defined in section 6.3.

3.5. Floating point

SPUR supports the IEEE 754 standard for binary floating point arithmetic [IEEE83].
The details of SPUR's implementation are described in [Lee85].

Floating point numbers can be represented in memory in three different formats:
single, double and extended. Single and double precision floating point numbers are
converted to extended precision when they are loaded into registers. All arithmetic
operations produce an extended precision result in a register.

The memory formats are as follows:

) ] | S sign
single s, E . F E exponent
1 3 23 F fraction
T type tag
R rounding bits
T T
double S E ' F
1 11 52
extendedl S ! E ! 'TtR! unused
1 17 9 3 2 32
extended?2 F

64

Six types of floating point numbers are encoded in each precision:

zero
denormalized number
pormalized number
infinity
quiet Not-a-Number
signaling Not-a-Number

The IEEE standard requires that exponents be represented in excess-127 notation for
single precision and excess-1023 notation for double precision. In both of these formats,
the normalized fraction’s leading bit is not stored (hence the name ‘‘hidden bit"). The
hidden bit plus the fraction form a positive number whose value is equal to or greater
than 1.0 and less than 2.0.



The standard does not prescribe the way that extended precision numbers must be
represented. SPUR’s extended precision exponent and fraction are stored in an expanded
form, similar to how they appear in the middle of the floating point hardware data paths.
This allows a software trap handler to modify a number when certain exceptions occur,
achieving the same effect that hardwired control or microcode would in a system that
encoded extended precision in the minimum number of bits. The expanded fraction has
an explicit leading bit. The expanded exponent has 17 bits rather than the minimum 15.
The exponent is represented in 2’s complement - I notation rather than excess notation
because all three precisions need to be converted to a common internal format. The
excess nmotation does not work as well for this purpose because it implies a different bias
for each precision. 2's complement - 1 is the same as two's complement, except that the
numbers are biased down by one (-1 stands for 0, 0 stands for 1, and so on.)

There is additional information in the five bits that make up the data type field and
the rounding tag field. The three-bit data type field encodes which of the six categories
listed above the number belongs to. This field is assigned a value after every load from
memory and after every register-to-register operation. One of the advantages of having it
is that LD_SGL and LD_DBL instructions do not need to convert the exponent of a
number in certain categories to a proper extended precision exponent. The fact that the
conversion was not completed in these cases can be determined from the data type field.

Two bits record enough information so that the last rounding of the number could
be undone. The floating-point standard requires that a system such as SPUR which
delivers all of its results in extended precision must be able to mimic the operation of a
system that has only single precision or only double precision arithmetic. The rounding
tag provides enough information so that a software routine can unround an extended
precision result and re-round it as if the result had been produced directly in single
precision or double precision.



4. Registers i
The registers are divided into three groups: integer, special and floating point.

#1
integer registers special registers
#6
tag date kernel PSW
iO 2ero
1 INSERT
globals
0 ; type sign ezxponent fraction
10 : #o [
‘ inputs
15 P
16 ‘5 - floating point registers
v locals
25 L 14
] e *
: oitputs 5 1 17 64
#31 : #15 FP PSW
8 32

4.1. Integer registers

The integer registers are organized in overlapping windows. Arguments placed in the
output registers of one window appear in the input registers of the next window, after the
program executes a CALL instruction. In a similar way, return values placed in the input
registers of one window appear in output registers of the previous window, after the
program executes a RETURN instruction. The local registers in each window are unique,
while the global registers remain the same across all windows. RO contains zero when
read and does nothing when written.



The register windows are organized in the following way:

globals : :
inputs
locals
) ;u;p;ts_ inputs
locals
_o;t;)u—ts_ _inputs_
locals
I ;)u_tp_u;s i
window I window 2 window 3



4.2. Special registers

The special registers consist of the six registers listed in the table below, the kernel
process status word (KPSW) and the INSERT register. The KPSW is separate from the
other registers because it can be written only when a process is in kernel mode. The
INSERT register is separate because it is written from a different point in the data path
than the other registers.

The special registers cannot be used directly in operations, but they can be copied to
and from the integer registers. The UPSW and KPSW contain mode bits and trap enable
bits that control whether traps occur in response to exceptions, faults and interrupts
detected by the hardware. The CWP and SWP are used to determine when a window
overflow or underflow has occurred. A program can read the PC in order to calculate
PC-relative addresses. The FPU_PC locates the offending instruction when a floating-
point exception occurs while the CPU and the FPU are executing instructions in parallel.
Since the CPU has gone past the floating-point instruction that caused the exception,
there is no other way to determine where that instruction was. The WRITE_PC is read
by the first instruction of a trap handler in order to get the location of the instruction
next after the one that caused the trap. The INSERT register provides the third operand
for the INSERT instruction, since only two operands can be read in a single cycle. More
details are given in the description of individual instructions in section 6.

number name width function description
1 UPSW <05:00> RW user process status word
2 CWP <09:07> RW current window pointer
3 SWP <31:03> RW saved window pointer
4 PC <31:02> R program counter
5 FPU_PC <31:02> RW last FPU instruction initiated
6 WRITE_PC  <31:02> R PC of instruction that is
writing its result this cycle
INSERT - <01:00> RW byte shift count for insert instruction
KPSW <23:00> RW kernel process status word

<we will change the numbering to 0-5>
4.2.1. UPSW




bits description

05-03  trap enables: tag exceptions
integer overflow exception
co-processor exception
02 illegal opcode exception
oD CO-Processor instructions
01 parallel execution with co-processor
00 co-processor number

We may keep the floating-point rounding mode in the UPSW as well as the FP PSW.

We once planned to copy the opcode of a trapping instruction into the UPSW, but
we decided instead that trap handlers should recover the PC of the trapping instruction,
use that to recover the instruction itself, and finally extract the opcode from the
instruction.

4.2.2. KPSW

There are separate virtual address enable bits for I-fetch and D-fetch so that
bootstrap code in PROM has the option to access data with either physical or virtual
addresses. The trap enable bits are discussed in section 8.

bits description

23-16  processor 1D

12-08  trap enables: all traps
interrupt
error fault
normal fauit
window overflow/underflow exception

05 previous mode (kernel = 1)
04 current mode (kernel = 1)
03  virtual address I-fetch

02 virtual address D-fetch

01 instruction buffer enable

00 instruction prefetch enable

Example -- changing from physical to virtual addressing mode:

running in kernel mode

rd_kpsw templ

and temp2, templ, ib_enable_mask save ib_enable

and templ, templ, ~(ib_enable_mask) disable ib

or templ, templ, virtual_addr_mask

jump virtual_target delayed jump

- wr_kpsw templ change address mode

virtual_target: invalidate_ib

or templ, templ, temp2

wr_kpsw templ restore ib_enable

- 10 -



4.3. Floating point
The fifteen floating-point registers hold numbers in the 87-bit extended precision
format described in section 3.5.

The fields of the FP PSW ure:

bits description

14-12  type tag for operand 1
11-09 type tag for operand 2
08-04 exception flags: operand trap
result overflow
result underflow
result inexact
04 write destination register
when exception occur
03  enable inexact exception
02 emnable other exceptions
01-00 rounding mode

- 11 -



5. Instruction formats

SPUR has seven instruction formats. The opcode and the register specifiers are in
the same positions in all formats. The three-register format (RRR) is used for loads,
register to register operations, special register operations and FPU operations. The
register-register-immediate format (RRI) is used for loads and register to register
operations.

5.1. Effective addresses

SPUR does not support PC-relative addresses for data, although the PC can be
copied into a.general-purpose register to accomplish the same effect. Load instructions
have two addressing modes: register + register and register + signed 14-bit displacement.
Store instructions have only the register + displacement mode so that a two-port register
file is sufficient to implement them.

The effective address is a byte address in all cases. Its two or three low order bits
are ignored by memory, but a carry can propagate from these bits into the higher part of
the address during the addition. Address computations never cause arithmetic overflow.

Lisp implementation note: Unlike SOAR, there is no tag check to require that an
effective address is a the sum of a pointer and a FIXNUM. SPUR Lisp checks the type of
a pointer explicitly before using it to reference memory. Distinguishing a pointer from an
immediate is not a sufficient check.

5.2. Long constants .

Constants longer than 14 bits are loaded from a constant table rather than by a
sequence of load-immediate instructions. SPUR does not have an instruction to load a
constant into the high order part of a register, as RISC-II did.

Lisp implementation note: The first word of a Lisp function’s code object is a pointer to
its constants table. When a function is called, it begins executing at the third word of its
compiled code object. By reading the PC into a register, the function can load the pointer
to the constants table into a local register.

=12 -



'RRR

RRI

store

compare RR

compare RI

compare tag

jump, call

| |

|
opcode i dest 1 srcl Q1 sre2 1 unused
1 ! A !
7 5 5 1 5
i T
opcode ' dest ! srcl '] immediate
l | i
7 5 5 1 14
| imm L ,  imm
opcode high srcl ], sre2 | low
7 5 5 1 5 9
j Py word
opcode | cond | srel (), src2 | offset
7 5 5 1 5 9
' i ! short ! word
opcode | cond | srcl 11| imm | offset
7 5 5 1 5 9
! | |
opcode ! cond ! srcl ! ‘tag I word
t ( _imm__, offset
7 5 5 6 9
T
op || word address within current segment

4
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8. Instructions
The SPUR instruction set is listed in Tables ? through ? in Appendix A.

8.1. Loads and stores

The two primary load instructions are LD_40 and LD_32. CXR is the same as
LD_40 except that it also performs a tag check. TEST_AND_SET is the same as LD_32
except that it also performs an atomic read-modify-write in the cache.

CXR stands for “car” or “cdr’’, the Lisp names for the two parts of an element of a
list. The car of an element is the data represented by that element. The cdr points to
the next element.

FPU loads and stores are similar to normal loads and stores. On an FPU load, the
CPU calculates the eflective address and the cache responds with the data. The only °
difference is that the FPU receives the data instead of the CPU. The timing is the same
as if the CPU had taken the data. There is no provision for extra delay.

The TO_FPU and FROM_FPU instructions provide direct 32-bit transfers between
the integer and floating point registers. The primary purpose is to speed the transfer of
operands for an integer multiply or divide operation. The alternative would be store the
data into memory and then load it into the FPU. From the CPU'’s point of view, these
instructions are identical to LD_32 and ST_32 in every respect.

6.1.1. Read for Ownership and Read Anyway

One feature of SPUR’s cache consistency protocol is that a process can read and
write its private data with the same number of bus transactions that it would use in a
system without cache consistency. To do this, the process must gain ownership of the
cache line containing the private data the first time that the data is read. On the other
hand, a process should avoid gaining ownership of shared data unless it intends to do a
write. To distinguish these types of access, SPUR has duplicate sets of load Instructions.
LD_40, CXR, LD_32 and the floating-point load instructions come in two versions -- one
called read and the other called read for ownership.

The LD_32 instruction has yet a third option. LD_32_read anyway reads a word
from memory even if the page table entry says that the page is not available in memory.
This instruction is used by the code that flushes a page from main memory to disk.

8.1.2. Generation exception

The generation tag exception should occur if a pointer to an object in a newer space
is stored into a location in an older space. In terms of the ST_40 instruction, this means
that Rs2 is a pointer and its generation number is newer than Rsl’s. But a simpler tag
check is just to compare the generation numbers without checking Rs2’s type. The two
definitions are equivalent if we assign the oldest generation pumber to immediate
FIXNUMs and CHARACTERs. This also means that storing a pointer into an immediate
will cause an exception. Rsl’s tag can be checked explicitly if it matters.

- 14 -



Without the generation tag check, SPUR would need a five instruction sequence
in front of every store that might cause a generation exception.
rd_tag
and (mask all but generation bits)
rd_tag
and (mask all but generation bits)
cmp_trap

8.2. Register operations
8.2.1. Arithmetic and logical

The arithmetic instructions are ADD, SUB and ADD with no trap (ADD_NT).
ADD_NT is used for address calculations and to copy the tag and data from one register
to another without causing a tag exception. Implicit address calculations within a load or
store instruction do not cause overflow. ADD_NT allows us to perform explicit address
calculations without overflow, also.

The logical operations are bitwise AND, OR and XOR. Integer multiplication,
division and remainder are carried out by converting the operands to floating point,
performing the operation and converting the result back to integer form. See section 12.

6.2.2. Shift
Allows static or dynamic shift control. Shift 0,1,2 or 3 bits left and 0 or 1 bits right.

Alternative that was rejected: SLL, SLL 2, SLL 3, SRL and SRA, all with compile-
time shift counts.

8.2.3. Bytes and characters

Character and string operations are performed with byte INSERT and EXTRACT
instructions. Insert is a two-instruction sequence so that the insertion point can be
specified at compile time or runtime. We decided not to optimize for compile time shift
distances.

We considered LD_BYTE and ST_BYTE instructions to transfer one byte directly
between memory and a register. LD_BYTE was defined to set the tag to CHAR because
Lisp defines each byte of a STRING to be a CHAR. C and Pascal disable tag traps, so
the tag's value would not matter. EXTRACT sets the tag value to FIXNUM. Therefore
LD_BYTE is equivalent to the sequence LD_32, EXTRACT, WR_ TAG.

8.2.4. Tags ‘
RD_TAG is similar to EXTRACT. WR_TAG is similar to INSERT.

8.3. Compare and branch

Compare and branch are combined into one instruction. SPUR does not have
condition codes.

Two types of comparisons: data and tag. Data comparisons are between two
registers or between a register and a five-bit immediate constant. Tag comparisons are
between either two registers or a register and a constant.
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There are two types of delayed branches. The CMP_BR_DELAYED instructions
always execute the following instruction, whether or not the branch is taken. The
CMP_BR_TRUE instructions always fetch the following instruction, but they only execute
it if the branch is taken. If the branch is not taken, the following instruction behaves as a
NOP.

We have the CMP_TRAP instructions because of the short PC-relative offset field in
CMP_BR instructions. CMP_TRAP is an easier way to handle error conditions. The
offset field is left open for a number to pass to the trap handler.

If the test condition is true (and trapping on the CMP_TRAP exception is enabled),
then these instruction cause a trap in exactly the same way that a subtract instruction
would cause an integer overflow trap.

8.4. Special registers
WR_KPSW is separate from WR_SPECIAL instruction so that the opcode alone
tells whether to check for kernel mode.

WR_SPECIAL changes its target register so that the change is visible to the
following instruction.

8.5. Call, return and jump

CALL and JUMP change the PC to an absolute word address in the current
segment. The 28 bits of word offset limit the reach of a CALL or JUMP to one quarter of
the address space. CALL_KERNEL and JUMP_REG are used to transfer control across
segments.

To call a function whose address is in a register, SPUR uses an instruction sequence
rather than a single “call_register’ instruction. The sequence costs three extra cycles and
adds three more instructions to the code. It also requires the allocation of a temporary
global register or output argument register.
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call_reg Ryy : target address in Ryy

nop
continue: - ; return here
target:
return rl0 + 8
nop
move Gxx «— Ryy ; target address in Ryy
call go
nop
continne: ;- return here
go: jump_reg  Gxx
Lop
target:
return rit + 8
nop

Here the assumption is that the CALL instruction saves its own address in R26.

*Je expect to use CALL_ABS much more frequently than CALL_REG in both C and

Lisp. ‘ :
JUMP_REG and RETURN add Rsl to RC to form a byte address. The addition is

inciuded because there is no advantage in terms of either time or layout from taking the
target address before the ALU instead of after it.

8.8. Floatir, point
7. Traps

We divide the unusual conditions that arise at runtime into four groups. Unusual
conditions detected inside the CPU are called exceptions. Examples are the integer
overflow, tag check and window overflow exceptions. Unusual conditions detected by the
FPU are also called exceptions, i.e, the floating point exceptions.

.17 -



Exception Definition

Rs2 generation > (younger than) Rsl generation
floating point

Rsi.tag != CONS or NIL

integer overflow

! (both tags === FIXNUM)

kernel mode

! (both tags == FDXNUM or both tags == CHAR)
true cmp_trap condition

window overflow

tags equal and in range hex 38-3F, and data not equal
window underflow

NeumImOm@moaw»

Notes: .
generation  two-bit field: 3 is youngest, 0 is oldest

All of the other unusual conditions occurring outside the CPU are called faults and
interrupts. Faults occur in response to the execution of an instruction, while interrupts
are asynchronous events that come from outside the processor that receives them. An
example is an I/O interrupt. Faults must be bandled immediately, while interrupts can be
postponed until a convenient time.

The faults are divided into two groups. ‘‘Normal faults” include access violations,
instruction page faults and data page faults. “‘Error faults” mean that there is a
bardware problem. To respond to error faults, the CPU will change to the physical
addressing mode.

The CPU responds to exceptions, faults and interrupts by taking a vectored trap.
The trap vector consists of a trap base address concatenated with the trap type field. In
order to service events external to the CPU, the trap handling software reads special
external registers (with LD_CACHE or FROM_ CPU instructions) to get more

information.

There is a priority ordering for how to respond when more than one unusual
condition occurs at the same time. For instance, while the CPU is waiting for the cache
to respond to a LOAD instruction, it (the CPU) will not immediately respond to the
interrupt line. Instead, it waits until after the data valid line or the normal fault line
becomes active, so that the cache operation will not be left hanging.

The effect of an exception that causes a trap is to make the offending instruction
behave as if it were a CALL instruction (with one or two NOP cycles inserted). The write
to the offending instruction’s destination register is blocked.

All traps are taken during an instruction’s third cycle. This means that only one
instruction can cause a trap (or be the victim of a trap) in any given cycle.
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List of all exceptions, faults and interrupts .’

Priority of traps:

error fault

normal fault

interrupt

floating point exception
window overflow exception
window underflow exception
illegal opcode exception

kernel mode exception

9 integer overflow exception

10 “CONS or NIL” tag exception
11  “FIXNUM tag exception

12  “FIXNUM or CHAR" tag exception
13 ‘‘eql” tag exception

14 generation exception

15 CMP_TRAP exception

00 ~1 B U W N -

trap type description
(priority)
highest 0 error fault (bus fault, debugging): change to physical addressing mode
1 window overflow/underflow (CALL, CALL_KERNEL, RET, RET. KERNEL)
2 normal faults (instruction page fault, data page fault, access violation)
3 interrupt (I/O, timer, uart)
4 floating point exception
5 illegal opcode, kernel mode exception (WR_KPSW, DISABLE),
"cons or nil” tag exception (CXR, TAG_CMP, TAG_CMP_TRAP)
6 integer overflow (ADD, SUB)
7 tag exceptions that recover operands in the same way
"fixnum” ADD, SUB, logical, shift
*fixnum or char” CMP_BR, CMP_TRAP
"eql” CMP_BR, CMP_TRAP
8 generation exception (ST_40):recovers its operands differently
lowest 9 CMP_TRAP, TAG_CMP_TRAP or CP_CMP_TRAP

with TRUE test condition

7.1. Trap enable mechanism

There are eight trap enable bits, five in the KPSW and three in the UPSW. (Others
will be defined in the FP PSW.)

7.2. Interrupts

Each processor board contains a memory-mapped interrupt register that any other
processor can write. When certain bits are set in this interrupt register, the interrupt line
to the CPU goes active.
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8. Timing

An instruction can begin every cycle, even though some instructions require more
than one cycle to complete. Software is responsible for scheduling instructions so that
delayed results are available before they are used.

8.1. Delayed execution

Five groups of instructions have delayed execution: loads, compares, calls, returns
and jumps. A delayed load means that the memory data is not available in the target
register until the second instruction following the load. The instruction immediately after
a load cannot use the target register as either a source or a destination. Using it as a
source provides unpredictable data, depending on whether a trap occurs. Using it as a
destination does not make sense.

Compare_and_branch instructions also take effect after a one cycle delay. The next
instruction is always fetched. However, depending on the type of CMP_BR (one of three
types), the next instruction may be turned into a NOP by the hardware.

8.2. Changing the current window pointer

The instruction next after a CALL or RETURN writes its result into a register in
the new window, but this next instruction can read its operands only from the global
registers or the special registers. The reason for this restriction is so that the processor
will not have to restore its operand forwarding registers to their previous state if the
instruction after a CALL or RETURN causes an instruction page fault.

8.3. Parallel execution of co-processor instructions

8. Kernel mode

Program control goes to a known location in all cases when the mode changes from
user to kernel. The mode is changed by a CALL_KERNEL instruction or when a trap
occurs for the following reasons:

10. Prohibited instruction sequences
load rX, address
followed by op rX, ...

load rX, address
followed by op rY, rX, ...

cmp_br_true, tag_cmp_br_true, fpu_cmp_br_true
call or return

test_and_set

load or store

11. Integer multiply, divide and remainder

We use the floating point multiply and divide operations to perform integer multiply,
divide and remainder. The instruction sequence for integer multiply is:
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cycles
replace mul rcc, raa, rbb

with to_fpu raa, f1 1
to_fpu rbb, 2 1

float f1, 1l 3

float f2, 12 3

fmul 3, f1, 2 6

fix f4, f3 3
from_fpu rcc, f4 1

nop 1

total 19

If the integer operands are in memory rather than the integer registers, replace the
“to-fpu’’ instructions with “Id_int"".

The code sequence for integer division is similar. To meet the definition of division
in most high-level languages, additional code is inserted to save the floating point
rounding mode, change it to ‘‘round-toward-zero”, and restore it. One possible code
sequence would be: ‘

from_fpu rt1, fpu_psw

nop

and rt2, rtl, rounding-mode-mask

or rt2, rt2, round-toward-zero-mask
to_fpu rt2, fpu_psw

code-for-division
to_fpu rt1, fpu_psw

If a floating-point divide takes 18 cycles, then an integer divide will take about 40
cycles.
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14.

Questions
Are 34 tag values enough? We could have more if FIXNUM and CHARACTER were
defined by more than two bits. A: 34 is enough.

Does RETURN_KERNEL need to copy the previous mode bit into the current mode
bit?

. Decisions to make

Should CALL and JUMP contain a PC-relative offset instead of an absolute address?
Absolute addresses were introduced to make one-cycle jumps and calls possible, but
pow all jumps and calls take two cycles. The advantage of a PC-relative offset is
that it makes code position- independent (except for calls to separately compiled
modules).

Answer: Keep absolute addresses because they simplify the hardware and we are
willing to patch the code at load time.

Should floating point exceptions cause traps as soon as possible or should they wait
until the next floating point instruction? This matters only when the CPU and FPU
are executing instructions in parallel.

Should the type tag be in the low order six bits of the tag byte?

Which floating point convert instructions should we have: a pair for double rounding,
a pair for single rounding, or all four? Answer: Only the pair for double rounding.

Do we need the ENABLE and DISABLE instructions? Alternative:

rd_kpsw rd
or rd, rd, mask
wr_kpsw O,rd, O

Answer: No.

Does changing the CWP or SWP with WR_SPECIAL cause window overflow or
window overflow exceptions?
Answer: Whether it does or does not is undefined.

Should a WR_SPECIAL to the PC or the WRITE_PC be a nop or should it remain
undefined?

Instructions considered and rejected

multiply, divide, remainder
Convert to floating point.
find first one
Don’t need it because SPUR has hardware floating-point.
add with carry, subtract with carry
Use 31-bit rather than 32-bit segments for extended precision
arithmetic.
reverse subtract
Subtracting a register from a constant is an infrequent operation.
load multiple, store multiple
Not significantly faster than sequence of loads and stores.
load byte, store byte
Load byte requires an extra multiplexer on the input data path.

-929-



Store byte requires byte enable control lines in the cache.
load immediai2 into high-order bits of a register
Long constants are infrequent.
Load a word from a constant table in memory instead.
call register ‘
Much less frequent in compiled Lisp than interpreted Lisp.
Can substitute a code sequence that includes jump_register.

4

-rotate
We don't know of auy high-level language constructs that make use of it.
shift 0-31
Low frequency of use in Berkeley C programs measured.
extract bit field
We decided not to provide special support for bit fields.
and_not, or_not, xor_not
Originally thought to help graphics programs, but idea not followed up.
operand shadow registers
We thought these might complicate the data path, but now we think not.
The only problem is to control them properly during a trapping sequence.
store substitute result into destination of trapped instruction
Would make the register file decoders more complicated and slower.
cdr coding
We prefer to use more memory in order to have only the standard type
of list representation. Lists are only part of a Lisp program space;
code and arrays probably account for larger portions.
invisible pointers
We don't want to trap on data just after it is read from the cache
or attach another controller to the cache.
compare and branch false
Save total number of instructions to implement and debug.
Can sometimes use compare-and-branch-true instead.

15. How to run C, Fortran and Pascal programs on SPUR
Disable tag exceptions. Use load_32 and store_32 instead of load_40 and store_40.

18. References

[Lee85)

Corinna Lee, “Internal Description of the SPUR Floating-Point Unit”
[IEEE83]

“IEEE Standard 754 for Binary Floating-Point Arithmetic”
[Ungar84] -
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18.

(2)

Changes from Version 8 to Version 9

Substitute the term “floating-point unit” (abbreviated FPU) for “co-processor” (CP)
throughout the document. We decided that CP and CPU were too often confused.

Change CALL, CALL_KERNEL and JUMP from one-cycle execution to delayed
execution.

This means that all PC changes have delayed execution. One advantage is that the
hardware and software trap handling mechanisms become simpler. Normally the
current PC and next PC are saved when a trap occurs. When the trap handler has
finished its work, it returns to original program with a return to current PC,
fump_reg to next PC sequence. But if a page fault occurs on the instruction fetch
for a one-cycle CALL, then there is no next PC in the pipeline because the next PC
comes directly out of the CALL instruction itself. We haven't fetched that
instruction yet because of the page fault. So the trap handler has to examine the
instruction that would have been fetched and return in different ways depending on
the opcode. A second advantage is that one-cycle execution was difficult to
implement.

We expect the cost of this change due to call instructions to be small because their
frequency is low. The frequency of unconditional jumps is higher, so the cost will
depend on how often we can fill the delayed slot.

Add a register-immediate form for the CMP_BR_DELAYE:D, CMP_BR_TRUE and
CMP_TRAP instructions. No new opcodes are required because one value of the
register vs. immediate operand selector (bit 14) was unused.

This new form compares data in a register with a 5-bit unsigned constant in the s2
field. The dynamic Lisp measurements that we have so far show that CMP_ BR R,
accounts for 5% of all instructions.

Remove the CMP_BR_FALSE, TAG_CMP_BR_FALSE and FPU_CMP_BR_FALSE

instructions.

We considered eliminating both CMP_BR_TRUE and CMP_BR_FALSE, but after
going through Dain Samples’ code scheduler, the three types of conditional branches
appear with the following (static) frequencies:

CMP_BR_DELAYED 5 %
CMP_BR_TRUE 80 %
CMP_BR_FALSE 15 %

We expect CMP_BR_TRUE to be even more frequent in the dynamic statistics
because it is the usual branch instruction at the bottom of a loop.

Most delayed conditional branches will be followed by NOPs unless we keep at least
one of the “cancelling” varieties. This result contrasts sharply with the one reported
by the MIPS people, who said that they put useful instructions after a delayed
branch 90% of the time in Pascal programs. It also contrasts with the RISC-II C
compiler that put a useful instruction after about 50% of the delayed branches.
What we're finding is that filling the slots after delayed loads (which RISC-II did not
have) consumes almost all of the instructions that we might have put after the
compares. (Why wasn't this also true for MIPS?)
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Removing CMP_BR_FALSE alone does not, save the hardware from implementing
the conditional NOP capability, but it reduces the number of opcodes. The lack of
CMP_BR_FALSE may cost us an extra cycle at runtime and it may increase the
code size by one instruction for each instance where it would have been used. If the
compiler is smart enough, the code size and number of cycles could remain the same.
CMP_BR_FALSE is the easiest instruction for the compiler to generate because it
does not involve a delayed instruction slot.

We think that CMP_TRAP will be used more often than CMP_BR_FALSE to check

for error cases.

Example:
old: CMP_BR_FALSE cond unlikely
nextl
next2
merge:

unlikely:  unlikelyl

jump merge

new: CMP_BR_TRUE  not(cond) Lnext2
nextl
unlikelyl
jump merge

Lnext2: next2

merge:

Another example (if-then-elseif-elseif type of case statement):

old: CMP_BR_FALSE cond targetl
CMP_BR_FALSE cond target2
CMP_BR_FALSE cond target3
nextl

new:

(5) Remove the FPU_CMP_TRAP instruction.

FPU compares are used less often than integer compares to check for error
conditions.

(8) WR_SPECIAL will change the special register in cycle 2. The next instruction after
a WR_SPECIAL CWP cannot read its operands from the input, output or local
registers. Otherwise, there are no restrictions.
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(10)

Our first idea was that WR_SPECIAL would change the register in cycle 4, but there
is no advantage in waiting past cycle 3. The problem with changing the special
register in cycle 2 is that the change must be blocked if the previous instruction
takes a trap in its cycle 3. In addition, the instruction before the WR_SPECIAL
must be able to complete its register write without interference from the

WR_SPECIAL.

Kong suggested a way to back up the change in case of a trap. We can also isolate
the instruction before a WR_SPECIAL CWP by passing the window number along
with the destination register number through the pipeline.

We could write the special registers in cycle 3 and make WR_SPECIAL into either a
two-cycle instruction or a delayed instruction. <Ezplain why this would not make
the hardware any simpler than it s for writing in cycle 2.>

Code sequence for store-byte:

ST.BYTE Rx,addr <=> LD_.32 Rtemp, addr
WR_SPECIAL INS, addr
INSERT Rtemp, Rtemp, Rx
ST_32 Rtemp, addr

This sequence is one cycle shorter than it would be if WR_SPECIAL changed the
register later than cycle 2.

Calls and returns change the CWP at the same time that WR_ SPECIAL CWP does.
Consequently, the next instruction following cannot read the input, output or local
registers,

The RETURN_TRAP, JUMP_REG sequence at the end of a trap handler must read

the second return address from a global register. Therefore, one global register must
be left open by software convention for use by trap handlers.

WR_KPSW writes the KPSW in cycle 2 and delays the next instruction by one
cycle. WR_KPSW also resets the instruction buffer since we might be changing
between the virtual and physical address spaces.

The instruction fetch for the instruction after a WR_KPSW has to be repeated after
the write has taken place.

If the I-buffer peeds to be invalidated, this is done by software before the
WR_KPSW instruction.

CALL_KERNEL is similar to WR_KPSW. It changes to kernel mode in cycle 2 and
delays the next instruction fetch by one cycle.

We could ignore this problem if instruction fetches did not check the page protection
bits, but we do not plan to distinguish instruction fetches from data fetches, and the
protection bits are checked on data fetches.

The UPSW, CWP, SWP and FPU_PC special registers are writeable, but the PC
and the WRITE_PC are read-only. The effect of writing to either of these registers
is undefined.

Remove the CVTS_UNRND and CVTD_UNRND floating point instructions. These
will be handled by instruction sequences instead.
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(13)

(14)

(15)

(16)

(17)

(18)

The ‘“‘unrounding’’ converts are not expensive to implement in hardware, but we
prefer to have only one pair of convert instructions -- the ones that perform a
“double-rounding”. The impact of doing the unrounding converts in software is that
SPUR will have to evaluate all right-hand-side expressions in extended precision.
This goes against the traditional way to evalute expressions in Fortran. Mimicking
the behavior of machines that do not have extended precision will be slow, but we do
not think that this is important. (Professor Kahan thinks we will fare badly on
comparisons with the National and Weitek chips.)

Add the RETURN_TRAP instruction.

We have to enable all traps (KPSW bit 12) at the same time that we return from a
trap handler. Otherwise, the window overflow handler could get stuck in an infinite
loop. This is partly a consequence of our decision to increment the window pointer
in the process of taking a trap.

The window overflow stack will grow up instead of down.

Add the INVALIDATE_IB instruction.

This function is not easy to encode as part LD_ CACHE or ST_CACHE, as we had
previously planned to do.

Traps vector to addresses 000010x0 rather than addresses 000020x0. There is no
reason for traps to go to a different page than CALL_KERNEL does. It goes to
address 00001000.

The trap vector addresses are 16 bytes apart rather than 8 because we no longer
have one-cycle. JUMP instructions.

Compare conditions “‘always” and “never” will not cause an exception even if the
tags are. not ‘‘fixnum” or “‘character”. The primary use for these conditions is
expected to be “CMP_TRAP always " This instruction should be easier to use if it
can cause only one type of exception.

Add the FMOV ipstruction. Adding floating point zero to a pumber is not
equivalent because the sign of -0 + +0 depends on the rounding mode.

Add the RD_INSERT and WR_INSERT instructions. The INSERT register will not
be in the same location as the other special registers, so it is convenient to have
separate opcodes to read and write it.

Decisions:

There will be two fault pins on the CPU, so that the error faults which change the
processor to physical mode are distinguished from the normal faults which do not.

TO_FPU and FROM_FPU will be retained if the impact on the board design is
small. The impact on the CPU and FPU chips has to do with the opcode PLA, but
nothing else.

CPU FPU

TO_FPU reads rs2 as if ST_32  writes rd as if LD_INT
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FROM_FPU  writes rd as if LD_32 reads rs2 as if ST_INT

We rejected the idea of delayed stores (with the restriction that a memory operation
could not follow a store.) Stores will remain two-cycle instructions, implemented by
causing a stall in the third cycle. This means the subsequent instruction will be in
its execution cycle when the stall occurs.
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17.

(1)

(2)

Changes from Version 7 to Version 8

Remove the LD_BYTE and ST_BYTE instructions.

LD_BYTE was deleted to simplify the path between the data pads and the register
file inside the CPU chip.

ST_BYTE was deleted to simplify the cache implementation. In the current cache
this means that there are fewer chip enable lines. At one time, there were larger
hardware requirements having to do with parity. ST_BYTE would have required
five extra pins on the CPU data bus and there was a conflict between the word
parity used by the NuBus and the byte parity implied by ST_BYTE. But these
reasons no longer matter because we eliminated parity checking.

Sample code sequences are:

old Id_byte Rxx, Ryy, RC Rxx<07:00> <- M [Ryy + RC]
nop

new ld_32 Rxx, Ryy, RC
nop
extract  Rxx, Rxx, Ryy or RC if only one of Ryy or RC
has non-zero low order bits

pew 1d_32 Rxx, Ryy, RC
add_nt  Rzz, Ryy, RC
extract  Rxx, Rxx, Rzz if both Ryy and RC have
non-zero low order bits

old  st_byte Rxx, Ryy, RC  Rxx<07:00> -> M [Ryy + RC]
new 1d_32 Rzz, Ryy, RC
wr_special INS, Ryy, RC  INS <- (Ryy + RC)<01:00>
insert Rzz, Rzz, Rxx
st_32 Rzz, Ryy, RC

Remove the BYTE_INPUT and BYTE_OUTPUT instructions.

The device registers that are mapped into the physical address space can be read and
written with LD_32 and ST_32, provided that the page table entries are marked
“non-cacheable”. We originally thought that some of the device registers would be
at byte addresses that were not word-aligned.

Remove the NIL instruction.

To substitute for this instruction, we will copy the NIL value from a global register
to each of the local registers that a function uses, one at a time. There are two
reasons to set registers to NIL. One is to initialize local variables after entering a
function. We should be able to avoid NILing variables that are defined before they
are used, The other reason is to clean up local pointer variables before returning
from a function so that the next call will not begin with stale pointers in its register
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(5b)
(6)

(9)

frame. Stale pointers could cause the garbage collector to save more state than
necessary. We expect that this won't be a significant problem.

Remove the shadow registers and the FIXUP instruction.

These features speed up the trap handler when it needs to recover a trapped
instruction's operands or when it needs to store a substitute result into a trapped
instruction's destination. Lisp programs that perform non-integer arithmetic
(floating point, bignums, rational numbers, complex numbers) will take this type of
tag trap.

One way to avoid the overhead of taking a trap and recovering the operands would
be to use declarations in Lisp programs that perform a significant amount of floating
point or other non-integer arithmetic.

Remove the CALL_REG instruction.

In some cases, it is necessary to call a function whose address is in a register. An
alternate code sequence is to put the target address into a global register, then
execute a CALL to a JUMP_REG instruction.

add_nt Gxx, Ryy, 0  target address in Ryy
call_abs go
comeback: jump next return here
go: jump_reg Gxx
nop
next:
target: target code
return ri0 + 4
nop

Here the assumption is that a CALL saves its own address in r26.

We expect to use CALL_ABS much more frequently than CALL_REG in both C and
Lisp. The advantage of deleting CALL_REG is that we will then have only CALLs
that take one cycle (CALL_ABS and CALL_ KERNEL). This will make it easier for
the hardware to save PC’s during a trap in the same way that it saves the return PC
on a CALL.

Remove Trap K -- FUNCTION trap on CALL_ REG.

Change WR_SPECIAL from Sd < RC to Sd < Rsl + RC.
Change WR_KPSW from KPSW « RC to KPSW < Rsl + RC.

Two reasons: (a) there is no advantage in avoiding the ALU operation, and {b) this
makes the ST.BYTE instruction sequence simpler.

STOREs will take two cycles (not visible to the programmer).

CMP_TRAP, TAG_CMP_TRAP, CP_CMP_TRAP will not have a separate trap
base register. The compare-trap exception will vector off of the same trap base
address as all of the other exceptions.

Change the EQL compare condition.
old definition: TRUE if tags equal and data equal

- 30 -



(10)

(11)

(13)

(14)

FALSE if tags not equal
FALSE if tags both FIXINUM or CHAR and data not equal
TRAP if tags equal (but not FIXNUM or CHAR) and data not equal

new definition: TRUE if tags equal and data equal
TRAP if tags equal and any type of number, but data not equal
FALSE otherwise

Remove the floating point REM instruction. We found an acceptable way to
perform argument reduction in software.

Remove the integer MUL, DIV and REM instructions.

We will convert integer operands to floating point, do a floating point multiply or
divide, and then convert the answer back to integer form. Integer overflows will be
detected on the final convert. The multiply product will be exact if it does not
overflow. Division by zero will be detected during the floating point division
operation. We need to think more about correct rounding of integer quotients. Our
current scheme for changing the rounding mode during integer division and then
restoring the rounding mode to its previous value may be slow. Integer multiplies
will take about 20 cycles.

The instruction (call it X) following a CALL or RETURN can write to any register in
the new window, but it can only read from the global registers or the special
registers. Our previous statement that X could read from registers in the old
window was incorrect. The reason is that if the instruction fetch for X causes a page
fault, then the CWP will change before X is re-executed after the fault is serviced. If
no page fault occurs, then the CWP would have its old value at the time that X
reads its operand registers.

Add the SYNC instruction. This causes the CPU to stall until either the FPU data
valid line or the FPU exception line goes high.

Add the floating point NEGATE and ABSOLUTE VALUE instructions.

Decisions:

(1)

We decided to retain the generation exception check on ST_40 instructions. The
two-bit wide comparator for this check does not affect the critical path. If we
removed this tag exception, every ST_40 that might put a pointer to new space into
an old space location would need five extra instructions to compare the generation
tags (whereas SOAR needed only one extra instruction to make the check in software
rather than hardware). We think that the frequency of stores that need to be
checked may be twice as high for Lisp as it was for SOAR. Thus the cost of taking
this hardware out may be ten times greater for SPUR than it would have been for
SOAR.

Storing into a large data array in old space will need to be handled by a higher-level
mechanism that this tag trap. Otherwise, a long list of pointers will be added to the
garbage collection root list and execution speed will be severely degraded.
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LOAD
Op- Instruction Operands Cache Action Delay Excep- Notes
code Op tion
Rd.data — Rd.tag/gen —
LD_40 [RO] Rd,Rs1,RC R [RO] M [(Rsl + RC) & "07] M [(Rst + RC) | 04] yes - 1
CXR [RO] Rd,Rst,RC R [RO] M [(Rst + RC) & 07] M [(Rs1 + RC) | 04] yes C 1
LD_32 [RO} [RA] RdRsL,RC R [RO][RA] M |(Rsi +RC)& "03] FIXNUM, OLDEST yes - 2
TEST_AND_SET Rd,Rst,RC TS M [(Rsl + RC) & "03]  FIXNUM, OLDEST yes - 1.3
M [(Rs1 + RC) & 03] <00> «~ 1
LD_CACHE Rd,Rs1,RC  any data lines FIXINUM, OLDEST yes - 4
cache op = (Rsl + RC)<04:00>
address lines = (Rsl + RC}<31:00>
FROM_FPU Rd,0,Rs2 NA FPU Rs2<83:32> FIXNUM, OLDEST yes - 5
LD_SGL [RO} Rd,Rs1,RC R [RO] FPU Rd — M [(Rs1 + RC) & 703] yes -
LD_DBL |RO] Rd,Rs1,RC R [RO] FPU Rd ~ M [(Rsl + RC) & 07] yes -
LD_EXT!1 {RO] Rd,Rs1,RC R [RO] FPU Rd «~ M [(Rst + RC) & "07] yes - 8
LD_EXT? {RO]} Rd4,Rs1,RC R [RO] FPU Rd «~ M [(Rs1 + RC) & "07] yes - 7
LD_INT [RO] Rd.Rst,RC R [RO] FPU Rd<83:32> « M [(Rs1 + RC} & 03] yes -
STORE
Opcode  Instruction Operands Cache Action Delay Ex.cep- Notes
Op tion

ST_40 Rs2,Rs1,SC Rs2.data — M [(Rs1 + SC) & "07] - A 1

Rs2.tag/gen — M [(Rs1 + SC) | 04}
ST_32 Rs2,Rs1,SC Rs2.data — M [(Rs1 + SC) & 03 - - 2
ST_CACHE Rs2,Rs1,SC  any cache op = (Rsl1 + SC)<04:00> - - 4

address lines = (Rsl + RC)<31:00>

data lines == Rs2.data, Rs2.tag/gen
TO_FPU Rs2,0,Rd NA Rs2.data — FPU Rd<83:32> yes - 8
ST_SGL Rs2,Rs1,5C W FPU Rs2 — M [(Rs1 + SC) & 03] - - -
ST_DBL Rs2,Rs1.8C W FPU Rs2 — M [(Rs1 + SC) & "07] - . -
ST_EXT1 Rs2,Rs1,SC W FPU Rs2 — M [(Rs1 + SC) & "07] - - [
ST_EXT2 Rs2,Rs1,SC W FPU Rs2 — M [(Rs1 + SC) & "07] - - 7
ST_INT Rs2,Rs1,SC W FPU Rs2<63:32> — M [(Rs1 + SC) & 03] - - -




REGISTER

Opcode  Instruction Operands Action Delay E;f;p- Notes
Rd.data — Rd.tag/gen —
ADD_NT Rd,Rs1,RC  Rsl.data + RC Rsl.tag/gen - - 9
ADD Rd,Rs1,RC  Rsl.data + RC Rsl.tag/gen - DE
SUB Rd,Rs1,RC  Rsl.data- RC Rsl.tag/gen - D.E
AND Rd,Rs1,RC  Rsl.data and RC Rsl.tag/gen - E
OR Rd,Rs1,RC  Rsl.data or RC Rsl.tag/gen - E
XOR Rd4,Rs1,RC  Rsl.data xor RC Rsl.tag/gen - E
SLL Rd,Rs1,RC  Rsl.data << RC<01:00> Rsl.tag/gen - E
SRA Rd,Rs1,RC  Rsl.data >> RC<00> Rsl.tag/gen - E
SRL Rd,Rs1,RC  Rsl.data >> RC<00> Rsl.tag/gen - E
RD_TAG Rd,Rs1,0 <31:08> — 0 FIXINUM, OLDEST - -
<07:00> — R:l.tag/gen
EXTRACT Rd4,Rs1,RC <31:08> « 0 FIXINUM, OLDEST - -
<07:00> ~ byte RC<01:00> of Rsl.data
WR_TAG R4,R4,RC  unchanged RC.data<07:00> - -
INSERT Rd,Rst,RC  byte INS<01:00> of Rd.data «- RC<07:00>  Rsl.tag/gen - - 10
other bytes copied from Rsl to Rd
SPECIAL READ/WRITE
Opcode Instruction Operands Action Delay E:i(;ixp- Notes
Rd.data — Rd.tag/gen —
RD_SPECIAL Rd,Ss1,0 Ss1 FIXNUM,OLDEST - -
RD_INSERT Rd,0,0 NSERT FIXNUM,OLDEST - -
RD_KPSW Rd,0,0 KPSW FIXINUM,OLDEST - -
WR_SPECIAL Sd,Rs1,RC  Sd +~ Rsl.data + RC yes - 11
WR_INSERT 0,0,RC INSERT + RC<01:00> - -
WR_KPSW 0,Rs1,RC KPSW «— Rsl.data + RC - F 12
reset instruction buffer
SYNC 0,0,0 stall until FPU is not busy - -
INVALIDATE_IB 0,00 invalidate all instruction buffer entries - -
number name width description
1 UPSW <05:00>  user process status word
2 CWP <09:07>  current window pointer
3 SWP <31:03>  saved window pointer
4 PC <31:02>  program counter
5 FPU_PC <£31:02> last FPU instruction initiated
6 WRITE_PC <31:02> PC of instruction that is
writing its result this cycle




COMPARE AND BRANCH

Excep- Notes

Opcode  Instruction Operands Action Delay tion
CMP_BR_DELAYED cond,Rs1,CC,offset if (Rs1 cond CC) yes G,J
PC « PC + sign-extended offset <10:02>
TAG_CMP_BR_DELAYED  cond,Rs1,TC,offset if (Rs1.tag cond TC) ... yes C
FP_CMP_BR_DELAYED cond,Rs1,Rs2,offset if (FP Rsl cond FP Rs2) ... yes B
CMP_BR_TRUE cord,Rs1,CC,offset if (Rs1 cond CC) yes G,J
PC «~— PC + sign-extended offset <10:02>
else make next instruction into NOP
TAG_CMP_BR_TRUE cond,Rs1 TC,offset if (Rsl.tag cond TC) ... yes C
FP_CMP_BR_TRUE cond,Ks1,Rs2,0ffset if (FP Rsl cond FP Rs2) ... yes B
CMP_TRAP cond,Rs1,0C,unused  if (Rsl cond CC) emp_trap exception occurs - G,JH 13
TAG_CMP_TRAP cond,Rs1, TC,unused  if (Rst.tag cond TC) ... - CH 13
COMPARE CONDITIONS
Instruction Encoding Name Meaning Exception  Notes
CMP_BR_DELAYED, 00 eq data eq G
CMP_BR_TRUE, 01 neq data ne G
CMP_TRAP 02 gt data gt signed G
03 le data le signed G
04 ge data ge signed G
05 It data It signed G
06 ugt data gt unsigned G
07 ule data le unsigned G
08 uge data ge unsigned G
09 ult data 1t unsigned G
0A always always -
0B never never -
0C eq_tag  tags eq -
oD ne_tag  tags ne -
o0E eq_40  tags eq and data eq -
OF ne_40 tags ne or data ne -
1E eql tags eq and data eq J 14
1F negl tags ne or data ne J 14
TAG_CMP_BR_DELAYED, oC eq tag tagseq -
TAG_CMP_BR_TRUE, oD ne_tag tags ne -
TAG_CMP_TRAP 1C endp tags eq C
1D nendp  tags ne C
FP_CMP_BR_DELAYED, bit<24> Invalid Exception if relation is unordered B
FP_CMP_BR_TRUE bit<23> unordered B
bit<22> less than B
bit<21> equal B
bit<20> greater than B




CALL and JUMP
Opcode  Instruction Operands Action Delay E:i‘;;p— Notes
x0--x7  JUMP 28-bit addr PC + PC<31:30> @ addr<29:02> yes -
JUMP_REG 0,Rs1,RC PC « (Rs1 + RC) & 03 yes -
yo-y7  CALL 28-bit addr CWP «— CWP + 1 window yes | 15
R10 (new window) « PC
PC +~ PC<31:30> @ addr<20:02>
CALL_KERNEL 00,0 CWP +~— CWP + 1 window yes I 15,18
R10 (new window) «— PC
PC «— hex 00001000 (2nd page)
KPSW <mode> « 1 (kernel mode}
trap CWP «— CWP + 1 window - 1 17
R10 (new window) + PC
PC + hex 00001000 @ TT <07:04> 18
KPSW<all traps> « 0 (disable traps)
disable certain traps depending on TT
change to kernel mode depending on TT
change to physical mode depending on TT
reset instruction buffer
RET 0,Rs1,RC PC «— (Rs1 + RC) & "03 yes K 15
CWP +— CWP - 1 window
RET_TRAP ORsLRC  PC « (Rsl + RC) & 703 yes K 15
CWP « CWP - 1 window
KPSW<all traps> « 1 (enable traps)
RET_KERNEL 0,Rs1,RC PC ~— (Rst + RC) & "03 yes K 15,18
CWP +« CWP - 1 window
KPSW <mode> + 0 (user mode)
KPSW<all traps> + 1 {enable traps)?
FLOATING-POINT
Opcode  Instruction  Operands Action Delay E::;p— Notes
FADD Rd,Rs1,Rs2 FPU Rd ~ FPU Rsl + FPU Rs2 - B
FSUB Rd,Rs1,Rs2 FPU Rd « FPU Rsl - FPU Rs2 - B
FMUL Rd,Rs1,Rs2  FPU Rd ~ FPU Rs1 * FPU Rs2 - B
FDIV Rd,Rs1,Rs2 FPU Rd « FPU Rs1 / FPU Rs2 - B
FMOV Rd,Rs1,0 FPU Rd ~ FPU Rsl - ?
FABS Rd,Rs1,0 FPU Rd +~ FPU Rsl with zero sign - ?
FNEG Rd,Rs1,0 FPU Rd «— FPU Rsl with opposite sign - ?
FLOAT Rd,Rs1,0 FPU Rd « convert to extended (FPU Rs1<63:32>) - - 19
FIX Rd,Rs1,0 FPU Rd<683:32> «— convert to integer (FPU Rs1) - B,D
CVTS Rd,Rsl1,0 FPU Rd + convert to single (FPU Rsl) - B
CVTD Rd,Rs1,0 FPU Rd « convert to double (FPU Rs1) - B




d number in dest field of an instruction
sl number in srcl field of an instruction
s2 number in src2 field of an instruction
Rd contents of register d
Rsl  contents of register sl
Rs2  contents of register s2

CXR
RC
SC
CcC
TC
FPU
TT

Cache Ops:

car or cdr

Rs2 or 14-bit immediate constant

14-bit store constant

Rs2 or 5-bit unsigned immediate constant
6-bit tag constant

floating-point unit

trap type

R -- read

RO -- read for ownership

RA -- read anyway (ignore fact that PTE says page is unavailable)
TS -- test and set

W -- write

NA -- no access




1

12

13

14

15

16

17

18

19

Address must point to a cacheable page (otherwise either an error or undefined.)

Address may point to either a cacheable or non-cacheable page.

If non-cacheable then a word is read from memory or a memory-mapped device register.
Cannot be followed by a load or store instruction.

Bits <04:00> appear on both the cache op and address lines.

Direct FPU to CPU transfer. Identical to LD_32 (including delayed arrival of the data) for the CPU.
Identical to ST_INT for the FPU.

The cache ignores the bogus address that the CPU sends out.

Sign, exponent and extra information fields of an extended precision floating point number.
64 bit fraction field of an extended precision floating point number {including hidden bit}.
Direct CPU to FPU transfer. Identical to ST_32 for the CPU.

Identical to LD_INT (including delayed arrival of the data) for the FPU.

Rd can be specified because it forms part of the SC field.

The cache ignores the bogus address that the CPU sends out.

ADD with no traps

INSERT depends on the value of the INS special register. The INS register’s value

is assigned with 2 WR_SPECIAL instruction.

No delay when writing the INS, SWP or UPSW registers.

One cycle delay when writing the CWP (meaning that the next instruction can read

only from the global registers or the special registers other than the CWP).

We have not decided whether the hardware will prohibit writing the PG, WRITE_PC and FPU_PC.
In the meantime, writing to the PC has undefined effects.

Writing to the WRITE_PC or the FPU_PC serves no useful purpose.

Whether writing to the CWP or the SWP can cause a window overflow or underflow is undefined.

The next instruction is delayed by one cycle so that the KPSW change will

have taken eflect.

The emp_trap exception (H) is ignored if one of the other exceptions (C, G or J) occurs at the same time.
“teql” is TRUE if the tags are equal and the data are equal,

causes an exception if the tags are equal and in range hex ?7-7? (any type of number), but the data are not equal
is FALSE otherwise

The instruction that executes next after a CALL or a RETURN can read its operands only from

the global registers or the special registers.

The timing of the user/kernel mode change does not matter for CALL_KERNEL,

but it does matter for the instruction fetch after a RET_KERNEL.

When a trap is taken in response to a fault, an interrupt, a CPU exception or an FPU exception,

the processor follows the sequence described by this dummy “trap” instruction.

Whether to assign the trap base address to fixed location and whether to include the opcode

as part of the trap vector are under discussion.

FLOAT takes an integer in the high order half of the fraction part of an FPU register as its operand.
The conversion is tndefined if the low order half of the fraction is non-zero.
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1. Introduction

This report is a summary of the hardware design for the SPUR processor chip
(referred to as CPU henceforth). An overview of the CPU is shown in Figure_1-1. The
estimated area of the CPU (including control logic and routing) is 7000 lambda high by
7000 lambda wide. The goal of this report is to summarize the specifications for the CPU.

An interesting aspect of the CPU register array and instruction buffer is the uniform
pipeline stages. Because the pipeline stages are uniform, the only control signal (other
than clocks) required by the arrays is a "stall” signal, which is used in the latches to
maintain the current state.

This report is divided into three chapters. Chapter 2 explains the selection and
operation of the four stage pipeline used in the CPU. Then the clocking specification,
which is a direct result of the pipeline used, is explained. Chapter 3 briefly explains the
clock generation circuitry required for the CPU.

2. Pipeline and Clocking Specification

2.1. Pipeline Organization

The basic ideas behind the SPUR pipeline organization are very similar to the three-
stage pipeline of RISC-II. [Kate83] In an ideal three-stage pipeline, each instruction takes
three cycles to finish. However, the load instruction, whose frequency of occurrence is
about 15% in RISC-II, takes four cycles to complete.

There are many ways to handle this 4-cycle instruction. The option shown in
Figure_2-1 is used in RISC-1I and SOAR [Kate83]. This option requires suspending the
pipeline for one cycle after a load instruction. This suspension of the pipeline causes less
than ome instruction to be executed per cycle. The major reason for suspending the
pipeline is due to the single port memory. This means that only one memory access can be
in progress at any time. As a result, the memory access of instructionl (the load
instruction) cannot be overlapped with the instruction fetch of instruction3.
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Figure 1-1: Floor Plan of CPU

SPUR avoids this suspension of the pipeline by including an internal instruction
buffer on the CPU chip. The CPU then effectively sees two memory ports, one for
instructions and one for data. The instruction fetch cycle can then proceed in parallel with
the memory access cycle, thereby avoiding the suspension of the pipeline. The instruction
buffer allows the two pipeline options shown in Figure_2-2a and b. Both options require
that the instruction immediately following a LOAD does not depend on the value being
loaded. Both options also require double internal forwarding, although the first option
only requires it after a LOAD (internal forwarding is shown by the arrows in Figure_ 2-2).
When the destination of one instruction is the source of the next instruction, the result of
that instruction is internally forwarded from the temporary latch. The temporary latch

keeps the result to be written into the destination register until a later cycle.



IF (Load) Efl. Addr. Mem. Acc. Write
IF Suspend EX Write
Suspend IF EX Write
Figure 2-1: RISC-II Pipeline
IF (Load) Efl. Addr. Mem. Ace. ] Write Double write
IF EX Write
b 4
N,
IF > EX Write
4
IF EX Write
Figure 2-2a: Option 1
IF (Load) Eff. Addr. Mem. Acc. Write
1 EX - Write s
\
» .
IF EX . Write
IF > EX - Write

Figure 2-2b: Option 2
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The major difference between these two options is the requirement of dual-ported
writing capability in the register file. The first option requires two writings of the register
file in a single cycle. After extensive circuit simulation, it was found that a register file
with dual port writing is not feasible for this application because:

(1) Using a pseudo static, dual port 9T memory cell is safe and easy but requires more
control lines. This results in a larger cell area.

(2) Single port writing with a 6T static RAM cell is possible by bootstrapping the word
line while writing, but it requires unreasonably large bootstrap capacitance as well as
huge bit line drivers if more than one register is written simultaneously.

(3) Other dynamic cells require a refresh cycle once every 1ms or 2ms.

Therefore, the second option was chosen for the SPUR processor. This option
requires a dummy pipeline stage to be inserted into all instructions when LOAD is writing
into the register file. This dummy cycle not only eliminates the double write requirement
on the register file, but it also makes the control of the processor more uniform because all
instructions now have the same number of stages. In addition, adding the extra stage to
delay the write by one cycle does not degrade the performance of the CPU since the result
of each ordinary instruction is still available to the mnext instruction through internal
forwarding.

2.2. Clocking Specification

The clocking scheme chosen for the SPUR processor is a direct result of its register
file operation, which is in turn a direct result of the pipeline operation. As shown in
Figure_2-3, the pipeline selected uses the register file twice per cycle, writing from
instructionl and reading from instruction3

IF (Load) Efl. Addr. Mem. Acc. | * Write Il
IF EX . Write 12
IF * Read . Write

I3

Figure 2-3: Read and Write in One Cycle

To avoid conflicts, at least two phases in each cycle are needed: In order to reduce read
access time and to avoid using sense amplifiers, the bit lines are precharged prior to
reading. Moreover, in order to keep the writing of register cells fast and safe, the bit lines
are also " pre-driven” to their proper values. Due to the two additional phases required for
the register file, the four phase clocking scheme shown in Figure_2-4 is being implemented.

In order to ensure that the word line is discharged after read (phil) and write (phi3),
non-overlap is needed between phil and phi2, and between phi3 and phi4. Otherwise, pre-
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(1) Discharge to 0

Figure 2-4: Four-phase Non-overlapping Clock

drive (phi2) and precharge (phi4) will accidentally destroy the register file contents. As
far as the register file operations are concerned, non-overlapping is not needed between
phi2 and phi3, nor is it needed between phi4 and phil. However, the instruction buffer
operation, which is similar to the register file operation, is read in phi2 and written in
phi4. Therefore, it requires non-overlap between phi2 and phi3, and between phi4 and
phil. This four phase clocking scheme is well suited for dynamic decoders since two
decodings can be done by a dynamic decoder as long as they are not in consecutive phases
(due to precharging the decoders). Therefore, in the four-phase approach, only one
dynamic decoder is needed.

The four-phase clocking scheme employed in this application is superior to the other
clocking schemes. A three-phase scheme is shown in Figure_2-5. The write phase (phi2)
will take longer than in the four phase approach since the bit lines are not pre-driven.

* Consequently, the net gain will not be an entire phase as one might have suspected. Also,
two sets of dynamic decoders or one set of static decoders is needed since decoding must
be done in consecutive phases (phil and phi3).

An alternative is the two-phase clocking scheme shown in Figure_2-6. During the
non-overlap time between phases, the word lines are being discharged. The bit lines
cannot be precharged at this time since this might destroy a register’s contents if the
word line is not discharged to a low enough level. Since the bit lines are neither
precharged nor pre-driven, both the read and write phases will take longer than the
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Figure 2-5: Three-phase Non-overlapping Clock

corresponding phases in the four phase scheme. Also, since the register cell’s pull-up
transistor is small, and the bit line capacitance is high, sense amplifiers might be necessary
for reading. Again, either two sets of dynamic decoders or one set of static decoders is
needed since decoding must be done in consecutive phases.

3. Clocking Generation

To eliminate clock skew between the four phases of the clock, it is desirable to bring
on chip only one phase of the four phase clock and generate the other three phases from
this phase. The functional diagram in Figure_3-1 shows the basic inputs and outputs of
the clock generation circuit. The reference frequency is provided by a crystal oscillator
with a 50% duty cycle running at either 10MHz (100ms) or 8.67MHz (150ms). Phil is
assumed to be generated off chip, and represents one phase of the desired four phase
clock. The outputs of the circuit are the four phases of the clock.

The circuit used to generate the phases of the clock must be process and temperature
independent. Therefore, a second-order digital phase-locked loop (PLL) is used to adjust
the frequency of a voltage controlled oscillator (VCO) to the given reference frequency.
The digital PLL consists of the four major blocks shown in Figure_3-2. The elements of
the system are a phase/frequency detector, a loop filter, an inverting amplifier, and a
VCO. It should be noted that the inverting amplifier is used only as a buffer stage. The
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Figure 2-8: Two-phase Non-overlapping Clock

VCO is simply an oscillator whose frequency is proportional to an externally applied
voltage. The phase/frequency detector compares the reference frequency and the
frequency of the VCO. A signal based upon the difference between the two frequencies is
output to the charge-pump loop filter. The loop filter integrates the signal into the control
voltage used to adjust the VCO frequency so that it approaches the reference frequency.
This is an iterative process, with the VCO frequency nearing the reference frequency with
each cycle. The PLL constantly compares the two voltages to provide any compensation
needed during operation.

The four phases of the clock are produced by a process independent analog delay
line. The delay line and VCO are made from the same basic delay cell and use the same
control voltage. Therefore, once the VCO and reference frequencies are matched, the
delay line has a known delay per stage which is the same as the VCO. For example,
assume the reference frequency is 10MHz. Then the VCO, which contains 10 stages of
delay cells, is at a high output for 50ns and a low output for 50ns. Therefore, it is running
with a 5ns per stage delay. This delay per stage is the same for the delay line, which
contains 20 stages. Taps are taken off of the delay line every five stages to uniformly
divide the entire delay of twenty stages into four equal delays as shown in Figure_3-3.
Phil is fed into the delay line with the desired high time of the phase. The high time must
be less than one-fourth of the overall clock cycle to provide a non-overlap time between
phases. After five stages of delay (or 25ns for this example), phi2 is obtained. As shown in
Figure_3-3, phi2 is identical in shape to the input waveform, but delayed by one-fourth of
the total clock cycle. Phi3 is obtained after ten delay stages (50ns after phil), which is
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Figure 3-1: Functional Diagram of Clock Generator
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Figure 3-2: Phase-Locked Loop System

one-half of the clock cycle. Phi4 is obtained after fifteen delay stages (75ns after phil for
this example). As shown in Figure_3-3, after twenty delay stages, an entire clock cycle of
delay has occurred and phil is obtained. In order to keep the loading and driving abilities
of all phases as close as possible, Phil is being delivered to the rest of the chip from this
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Figure 3-3: Twenty Stage Analog Delay Line

point rather than the initial point where it is brought on chip. This step will help to
prevent clock skew between phases. Although the inversions of phi2 and phi4 are obtained
from the delay line, there is no additional delay in order to generate the "true” values of
the phases. They are generated form the clock drivers in the same way that the
complemented values are generated for phil and phi3. Figure_3-3 showed the true values
of the phases since it is easier to visual the delay if the waveform being considered is
identical to the input, rather than its complement. It should be noted that if the
reference frequency in the above example had been 6.67MHz, then the delay per stage
would have been 7.5 ns. The delays between rising edges of the clock phases are therefore
automatically divided into one-fourth of the total clock cycle.

The distribution of the clock will be done in two stages. First, the clock generator is
buffered to drive a 3pf load in 2ns. This load approximates the expected routing and gate
capacitance. Second, there are distributed buffers before the clock enters main circuit
blocks, such as the register array. This method of clock distribution is beneficial in two
ways. The two stages of buffering permit the use of optimally scaled buffers for the
second stage. Also, the clock signal is regenerated before being applied to the circuits.

In the event the clock generator does not work, the clock can be generated off-chip.
The simplest method of off-chip clock generation would be to use 4 one-shots to generate
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the four phases from the reference frequency. Since the pulse widths of the one-shots are
set by a resistor and capacitor, they can be varied extensively by using a potentiometer
for the resistor. Alternatively, discrete logic gates could be used to generate a delay based
on the reference frequency generated by the crystal. Then phil, which is already being
generated off-chip, can be fed into the delay circuit to obtain the other four phases.
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1. Introduction

This paper describes the design and implementation of the SPUR Cache
Controller Datapath. Section 2 describes the floorplan. Section 3 describes the the
major blocks in the datapath including the register cells, shifter, counters, and
interrupt logic. Section 4 describes control of the datapath and Section 5
concludes with a timing description.

2. Floorplan

The floorplan of the Cache Controller is shown below. Two major busses run
vertically in metal-2. The CURRENT ADDRESS (CA) bus is driven by either the
PROCESSOR ADDRESS BUS (Proc-Adr.Bus), the PROCESSOR DATA BUS
(Proc_Data_Bus) buffer, or a selected register in the datapath. The NEXT ADDRESS
(NA) bus is driven by the Shifter and drives the Proc_Data_Bus output buffer and
the inputs to the datapath registers.

Control lines are run horizontally in metal-1 along with Vdd and GND lines.
The number of control lines has been reduced by running a single Store Register
(STR) line for each register. This STR line is ANDed with a Byte Select line for each
byte of a register to creat the "load" signal for that byte. The Byte Select lines are
run vertically in the datapath. This prevents having to run a separate STR line for
each byte of a register through the whole register. Control lines for the Shifter are
reduced in half for each shift operation by using n-channel pass gates.

The Finite State Machine PLA’s are placed around the datapath according to
the control signals which are needed by the datapath. The Processor Cache
Controller (PCC) FSM is placed next to the address decoders for loads and stores,
and to generate the horizontal control signals for virtual memory operations. The
Bus Controller FSM is placed near the Interrupt Registers and near the PCC since
there is a lot of comrmunication between them. The Snoop FSM communicates .
primarily with the Bus Controller and so is placed near it. Another concern is the
access to the pins on the chip. The FSM's are spread out around the edge of the
chip since most of the pins connect to the FSM’s.



Cache Controller Floorplan

3. Datapath Blocks
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3.1. Register Cells

The register cells for RPTEVA, PTEVA, GSN, and RPTM are the same. They are
loaded from the NA bus and are stored onto the CA bus. The schematic for the
standard register cells is shown below.

NA<n> CA<n>

vdd vdd
LOAD* 4 d ) LUTEN*

S |
LOAD | "_"I>‘—{>‘ ,,j } OUTEN

] Ny

c——| _.*

Standard Register Cell

The signals needed to either load or store the cells are the same, but these
control signals are generated differently. The control signals to either load or store
a register are generated by the controi circuitry on the left of the registers. The
individual byte within the register is selected by the byte select signal running
vertically.

The registers can be loaded from either the processor or from other registers
in the data path (see the Appendix for address mapping). In both cases the data
must pass through the Shifter before being loaded into the appropriate register
from the NA bus. All of the registers’ bytes can be read or written by the processor
in 8-bit bytes. Certain variable-length bit flelds of the registers are loadable from
other registers. Data from another register within the datapath is loaded with a
"latch" signal. Data from the processor data bus is loaded with a "load” (via
processor STORE REGISTER instruction) signal. In both cases, the load and the latch
signal may be combined with the byte select signals to select the appropriate bits
to be loaded.

3.1.1. GSN and RPTM Registers

The GSN registers are located to the left of the RPTM registers. The GSN
registers and the RPTM registers are 8-bits and 20-bits wide respectively. The RPTM
registers consists of 3 bytes. These 3 bytes must be loaded independently, thus 3
different load signals will be required to do the loading into the RPTM registers.
The GSN and RPTM registers are mapped to a single physical address from the
processor's view. A single load signal (Id(STR_GSN_RPTM)) is asserted when the
processor does a store register operation to this address.



Since there are 4 bytes and they must be loaded separately, the 4 signals are
generated to the left of the byte where they are needed. These load signals are
generated by ANDing the LD signal with the byte select signal on each of the bytes.

A control signal floorplan for the registers GSN and RPTM is shown below:

bylea byteld bytel bytel
outen (GSE) | - — l
outen (RME) —
d (STR-GSRY) | "

37

GSN and RPTM registers

The placement of the registers in the datapath is indicated by the numbers
below the boxes. When any of these bytes need to be loaded, the LD signal is
asserted. This LD signal is ANDED with each of the byte select signals, and the
output of the AND gates is used as the load signal for the standard register cells on
each byte.

The GSN registers require a separate OUTEN signal than that of the RPTM
registers because on a virtual address request, the processor will be driving the
lower 30 bits of the CA bus, and the RPTM registers should not be driving it at the
same time. During this time, the upper 8 bits of the CA bus will be driven by one of
the GSN registers.

3.1.2. PTEVA Register

The PTEVA register is 38 bits wide. When read, all the bits are output enabled
into the CA bus. The OUTEN and OUTEN® signals for all the register cells in the
PTEVA register are the same.

The lower 2 bits of the PTEVA register are always 0, and do not need to be
loaded. Because the data of the lower 28 bits to be loaded into the PTEVA register
come from the processor address bus, they are all available at one time, and they
can all be loaded into the PTEVA register at the same time. Only one signal, PTL
(and PTL®*) is required by all these bits. However, to load the bytes in the PTEVA

. register with data coming from the processor data bus, they must be loaded in 8-bit

bytes.



A floor plan of the PTEVA register with the control signals is shown below.

byte4 byte3d byte2 bytel bytel

! | |

outen (PTE) — 00

latch (PTL) —
1d (STR-PTEVA 10 8 18

PTEVA register

3.1.3. RPTEVA Register

The RPTEVA register is 38 bits wide. It also output enables all of its register
cell data onto the CA bus at once.

The lower two bits of the RPTEVA are always zero. There is no need for loading
data in them Bits 3 to 17 come from the PTEVA register. After being passed
through the shifter, they can be loaded simuitaneously. Bits 18 to 37 come from the
processor data bus and they come in 8-bit bytes.

byte4 byted by‘ce2l bytel byteO
outen (REL) —
latch (RPL) —> 00
1d (RTE_RPTEVA; 20 8 8
RPTEVA register

3.1.4. GVA Register

The GVA register is also 38 bits wide. Only 1 output enable signal (GVE) is
needed to read this register. To latch the register, only 1 load signal is required
(GVL). Bits O to 29 come from the processor address bus. The 8 upper bits come
from one of the GSN registers. When the global virtual address is needed, the
processor provides the lower 30 bits. These bits, together with the 8 bits of the GSN
register present on the CA bus, are then latched into the GVA register directly from
the CA bus. This is different from the other registers which are latched from the NA
bus with data from the shifter. The reason for the difference is that the shifter is
being used to generate the value for the PTEVA register at the same time. The
consequence is that the GVA register is not directly modifiable (processor STORE)
by the processor. It can be read by the processor, but the only way to modify it is
with a normal cache access.




The lower 3 bits of the GVA (bits 2-4) are really a counter. This 3 bit counter is
controlled by the BUS FSM during cache block updates. Since the BUS FSM runs off
the BUS clock, there is some circuitry to synchronize the counter control signal.

byte4 byte3 byte2 bytel bytel
outen (GVE) —
latch (GVL) —3¢ 00
1d (STR.GVA) —3 32 3
GVA register iner (GV
3.2. SHIFTER

The shifter in the cache controller datapath is a special purpose shifter.
Because there is no need to shift every bit of the CA bus into every bit of the NA
bus, the operations of the shifter are limited to those needed by the cache
controller datapath.

All of the operations of the shifter are listed helow:

CA <37:10> ===> NA <27:10>
CA <37:24> ===> NA <5:0>
CA <31:24> ===> NA <7:0>
CA <23:16> ===> NA <7:0>

CA <15:8> ===> NA <7:0>
CA <7:0> ===> NA <7:0>
CA <5:0> ===> NA <37:32>
CA <7:0> ===> NA <31:24>
CA <7:0> ===> NA <23:16>
CA <7:0> ===> NA <15:8>

Except for the first operation of the shifter shown above, the shifter performs
byte shifting for processor loads and stores to the cache controller registers. Only
the bits required will be shifted and driven on to the NA bus. The other bits on the
input CA bus can have any value without affecting the resultant output on the NA
bus.

The shifter is formed by the CA and the NA bus running perpendicular to each
other. There are n-channel pass transistors from the CA to the NA bus at some of
their intersections. When a shift operation is needed, the pass transistors will be
made active at the appropriate intersections.

Because there are only 10 different shift operations needed, only 10 control
signals are needed in the shifter. If need for more shift operations arises, the
shifter can accommodate these by adding additional n-channel pass transistors
with their required control signals. This wiil increase the height of the shifter but



will not affect its width.

3.3. COUNTERS

The two counters in the cache controller's datapath will be located below the
RPTEVA registers and above the interrupt logic registers.

Since the counters are only to be read, and reading is only 8-bits at one time,
they will be output enabled into the CA bus. The NA bus does not need to go
through the counters. The bits of the counter cell will all be cutput enabled into
the CA bus at the same time. Only one output enable ( and its complement) signal is
needed for the counters as control signal. The counter works with a two-phase
nonoverlapping clock cycle.

The counters are 32-bits wide. They are formed by four pipelined 8-bit
counters. The overflow signal of an 8-bit counter is saved in a save register, and
used as the increment signal of the next higher order 8-bit counter on the next
clock cycle. :

Because the time for a signal to propagate from bit 1 to bit 32 of a counter is
long, the counters were made of 8-bits cocunters so that it is possible to read the 8
lower bits of the counter while the signal is still propagating through the other 24
bits.

The save register between each 8-bit counter is used to save the overflow bit.
The bit stored will be used by the next higher order 8-bit register. It is because of
this that we can read a B-bit register even though the signal has not been
propagated through the next higher order 8-bit register. The save register also
serves as a buffer for the propagate signal.

A block diagram of the 32 bit counter is shown below with the needed signals for its
operation.

phil——— 8-bit 8-bit 8-bit 8-bit
o ——————
ph;z counter S counter S counter S counter
out ey
(oS-t
cuten

32 BIT COUNTER

The counter cells are made of a toggle register which is toggled depending on
the propagate signal coming to it from the previous lower order counter cell. The
propagate signal can either be propagated or killed by a counter cell depending cn
the state of the cell.
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3 bit counter

1

A signal is propagated if all the bits on the past cells are at a value 1. This
means that the first cell with a value "0" will toggle its value on the next phi2 clock
phase. This cell will then kill the propagate signal so that no higher order bit cells
are toggled.
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INC

outen*

outen

The circuit schematic of a counter cell looks like this:

CA<n>
phil phi2 —

e Tt T,

5 A

Counter cell

The cmos latceh is used to read the data bit of the cell on to the CA bus.



The register used to save the overflow bit of the 8-bits counters is shown below.

8-bit
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_____ . Overflow save register -

The cmos latch is used to provide a strong propagate signal for the next 8
counter cells.

The requirement of the counter cells is that the increment signal must be
made active during phil of the clock cycle. The data will be updated during phi2 of
that same clock cycle. Data cannot be read until after phi2 of the clock cycle when
the counter was incremented. This is necessary to obtain the new updated data on
the counters. The data must have been propagated through the 8-bits to be read.
It is better that the cells are read on either phil or phi2 of the next ciock cycle.
But since back to back increments can occur, the cells should only be read during
phil.

Data is read out of the counters by the outen and the outen* signals. By this,
the data of the 32 bits of the counter will be on the CA bus. The data will go
through the shifter and only the 8 appropriate bits will be transflered to the NA
bus. Note that if an increment signal comes in, on the next clock cycle the
propagate signal will have traveled through the first 8-bit counter and it will also be
loaded into the save register. At this time, the 3 higher order 8-bit registers will not
have been updated. If the counter needs to be read, the output enable signal and
its complement will read the data on all the 32 bits of the counter into the CA bus.
Only the 8 lower bits will be correct because the others will not have been updated
yet. However, only the 8 lower bits will be transferred to the 8 lower bits of the NA
bus. On the next clock cycle, the bit stored on the first save register will be used as
the increment on the next 8-bit counter and the signal will propagate through the
counter and the overflow signal will be stored in the next save register. At this time,
the full 32 bits of the counter will be read into the CA bus, but this time the bits of
the second least significant 8-tit counter will be shifted into the 8 lower bits of the



NA bus. The same procedure will be repeated for the other two 8-bit registers.

The problem of reading a value which has not been updated yet on the counter
is eliminated if the counter is read first by its 8 least significant bits, and then by
the second 8 least significant bits, and so on. The updating of the counter cells is
done by placing a high value on the increment signal of the least significant 8-bit
counter during the phil clock phase.

The cells of the counter are the ones that determined the pitch of the
datapath. The width of the 32-bit counter, including the save registers is 1196
lambda. All the other registers on the data path are to be pitch matched to the the
counters.

3.4. INTERRUPT LOGIC

The SPUR interrupt mechanism consists of a mask register, an interrupt
register, and a decoder. The decoder is explained separately. The interrupt and the
mask registers are described next.

The interrupt register is cleared by performing the AND function of its present
value with that of a byte clearing pattern that is created by a processor store
instruction to the interrupt clear register. The interrupt register is set by the
ORing of its stored data bit with that coming out of the decoder.

The control circuitry will determine which function is to be performed by
sending a signal, either STR_INTCLR or INT®, on the write phase of the clock cycle.
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Decoder

Interrupt Register Cell

To reset or set the interrupt register cell, negative logic on the incoming bits
is required. The input to the bit to be either set or reset, needs to be active low.
Thus, if a bit is to be cleared, a 1 must be present on the byte clearing pattern. To
leave it as it is, a O must be present on the byte clearing pattern.

The output of the decoder is O for the bit that needs to be set to 1, and all
others are 1. The decoder has been designed using NOR array structure to
implement this function.

The interrupt register cell is made out of four bytes. Four different LD and
LD* signals and one pair of OUTEN and OUTEN®* signals are required for control.

The mask register cell is a standard register cell. It is used to AND its bit with
that of the interrupt register. It consists of four bytes, thus four different LD and
LD* signals and one OUTEN and OUTEN® signal are required as control.

Both the mask register cell and the interrupt register cell are loaded from the
NA bus and they both output enable their data to the CA bus. There is a single
decoded LD and LD* signal for each register which is ANDed with the byte select
signals to generate the four different load signals for each register.

3.5. INTERRUPT DECODER

The interrupt decoder is a 5-bit to 32-bit NOR array decoder. Only the output
to be selected will be low, and all the others will remain high. The interrupt logic
has been designed so that the bit to be selected must be active low, and all the



others must remain high.

The decoder is made up of a core of n-channel transistors with p-channel
transistors as pull-ups. The p-channels pull-ups are pseudo-nmos logic. Their gates
are always connected to ground, thus the pull-up transistors are always turned on.

A circuit schematic of the decoder is shown below.
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The inverters at the output of the decoder are used because the interrupt
logic requires negative logic.

3.8. Basic Cells

The following is a brief description of the different cells that are used in the
cache controller datapath. The circuitry for the control of the datapath has not
been implemented. The following cells are the ones that make up the core of the
datapath

The cache coniroller datapath consists of the GSN, RPTM, GVA, PTEVA, and
RPTEVA registers; the MASK and INTERRUPT registers; the counters; the interrupt
decoder; and the shifter.

3.6.1. Standard Cell

The basic cell used for the GSN, RPTM, GVA, PTEVA, and RPTEVA registers is the
same. This is the standard register cell shown below.

NA<n> CA<n>
vdd vdd
i — —
LOAD* d ___QUTEN*
) TL J\_ l\_
LOAD I L1 QUTEN

1—{ ___l

Standard Register Cell

All the registers use this same standard cell, but the controlling signals: LD,
LD+*, OUTEN, and OUTEN®* are generated differently for each register by the control
circuitry. The GVA cell is different in that the NA bus is replaced with the CA bus,
since its is loaded from the CA bus.

3.6.2. Byte Select

The selection of a particular byte within a register is done by the use of a cell
that will be placed next to that byte. The byte selection cell is shown next.
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latch

Byte Select Cell

In some registers such as GSN and RPTM the OR gate is not needed because
data is loaded into the registers only from the processor data bus. The latch signal
is not needed in these registers.

3.6.3. Counter Cells

The counter contains two different célls. They are the counter-cell and the
overflow-save-register cell. They are both shown below.

CA<n>
phil phid

INC ' _}_ —L D

|

LJ,

. .
INC | —
al *ST
outen* :% '

'1('

I3

outen

1

Counter cell
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Overflow save register -

3.6.4. Interrupt Cell

The interrupt logic register and the mask register are combined into one cell
called the interrupt register. Only one cell is needed to perform both functions:
interrupt and clear. The interrupt register cell is shown below.

NA<n> PHI vdd CA<n>
—
STR_INTRCLR—— P | —QUTEN*
INT= ._4?- UTEN
L@coder

Interrupt Register Cell



3.8.5. Decoder

The interrupt decoder is a pseudo n-mos decoder with an inverter used on
each of the outputs
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Interrupt decoder
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3.7. LAYOUTS

The counter cell is one of the most important cells of the cache contreller
datapath architecture because it determines the pitch of the cells in the horizontal
direction. The layout of the counter cell is shown in the next page. The interrupt
cell and the standard register cells layouts are also shown. However, because these
are not pitch matched to the counter cells, the layout of these two cells will be
redesigned.

The width of the datapath is 1400 lambda not including the control circuitry.
The height cannot be determined unti! the shifter and interrupt decoder are laid
out. The estimate is approximately 2500 lambda {if 2 counters are used) not
including the FSM’'s or Bus logic.

The following pages show the layouts of the cells in the datapath. All
dimensions are in lambda. A layout of a full 32-bit counter, including the overflow-
save-registers, is included because it determines the width of the datapath.
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4. Datapath Control

The control signals for the CC datapath shown below (table 1.) are generated
by the PCC FSM. Instead of generating each signal independently, they are derived
from the STATE bits (VAref, PTEref, etc.). For example, The signal S10 for shifting
10 bits is generated by ORing VAref and PTEref. The STATE bits could be reduced
further by encoding the 7 states into 3 bits. But this would require a longer delay
in the control signal path and the savings is only 4 bits of output from the FSM.

The Global Virutal Enable (GVE) and Count (GVC) are generated by the Bus
Controller FSM to control address generation for cache block updates and
replacements. Since the Bus FSM runs on a different clock than the PCC, these
signals must be synchronized to the PCC clock.

4.1. Control Signal Descriptions

ADR - Processor Address Direction: O for input to data path, 1 for output.
0: PROC_ADR_BUS<2%:0> => CA<28:0>.
1: CA<29:0> => PROC_ADR_BUS<28:0>.

GSE - GSN Register Qutput Enable. PA<31:30> selects which one.
1: GSNx<7:0> => CA<37:30>.

RME - RPTM Register Output Enable. PA<31:30> selects which one.
1: RPTMx<18:0> => CA<27:12>.

GVE - GVA Register Qutput Enable onto CA<37:0>.
1: GVA<37:0> => CA<37:0>.

PTE - PTEVA Register Qutput Enable onto CA<37:0>.
1: PTEVA<37:0> => CA<37:0>.

REH - RPTEVA Register High Part Cutput Enable.
1: RPTEVA<37:12> => CA<37:12>.

REL - RPTEVA Register Low Part Qutput Enable.
1: RPTEVA<11:0> => CA<11:0>.

GVL - GVA Register Latch.
1: CA<37:0> => GVA<37:0>. -

GVC - GVA Register Increment.
1: GVA<4:2> + 1 => GVA<4:2>,

PTL - PTEVA Register Latch.
1: NA<27:0> => PTEVA<27:0>.

RPL - RPTEVA Register Latch.
1: NA<17:0> => RPTEVA<17:0>.

S10 - Shift Right 10 bits.
1: CA<37:10> => NA<27:0>.

STR - STORE Register byte from Processor. PROC_ADR_BUS specifies which
register and which byte.
1: CA<7:0> => NA<x+7:x>. -- Shift byte x bits to appropriate position.
NA<x+7:x> => Reg<x+7:x>. -- Load addressed register.

LDR - LOAD Register byte to Processor. PROC_ADR_BUS specifies which register
and which byte.
1: Reg<x+7:x> => CA<x+7:x>. -- Enable addressed register.
CA<x+7:x> => NA<7:0>. -- Shift byte x bits Right to LSB position.



INT - INTERRUPT Request Available. Update INTREG with result.

Control Signal Truth Table

=
i

STATE | ADR | GSE | RME | GVE® | PTE | REH | REL | GVL | GVC* | PTL | RPL| §10 | STR  LDR (AT
Varet o 1] 0| o ]o] oo 1] o] 1]o]1]o]o]o
PTEret | 1 | 0 | 0 | 0 | 1 o |0 o] o |o|1|1]|o0o]o]o
RPTEVArer | 1 | 0 | o | o | o | 1 | 10| 0 0o 0jo0oio0 0 0
RPTEPAret | 1 | O | 1 | o | o | 0| 1| o o o 0lo0o|o0; 0 o
SToREep | 0 | 06 | 0 | o | ol o o o o |00 0l 1]o0 o0
LoADop | 0 | 0 | ¢ | o [ o | o] o} e | o | oo ol o1 o
INTreq | 0 | X | X | 0 ol ojolol olololxiol ol

Table 1. Control Signal Truth Table

5. Datapath Timing

One major goal in the design of the cache controller (CC) datapath is to reduce
the timing constraints of the circuitry. Since it was not known whether the CPU
(processor) four phase clock could be generated accurately on the CC chip and
since fewer functions need to be performed during a clock cycle, a static approach
was implemented. The registers are all pseudo-static since they are fed back on
themselves when not being loaded. The loading or latching of the registers will
occur within a specified phase (the 'write' phase) of the clock cycle to make sure
that the inputs are stable. The only dynamic circuit in the datapath is the
counters.

The counters need to be read by the CPU with a Load Register instruction. The
counter data is not always available since a two-phase clocking- scheme is used.
The counter data can be read any time except during counter phase-2 since it is
being updated by the latest increment. To synchronize this restriction with the
CPU's need to read the data during CPU phase-3, counter phase-2 will occur during
the first half of the CPU clock cycle and counter phase-1 will occur during the
second half. This allows the CPU to read the counters while they are being updated.
The counter clock phase can be longer than a CPU clock phase as long as it occurs
during the correct "half" of the CPU clock cycle.

* These control signals are generated by the Bus Controller FSM which operates off of a
separate Bus Clock.
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Appendix

The table below describes the address map for the SPUR CC registers. These
registers can only be accessed a byte at a time. Each byte is given a unigque
address. The address has been broken up into flelds which make it easier for the
programmer to access the registers.

Physical Address Assignment
Reg PA<11:9> | PA<B:7> | PA<B:4> | PA<3:0>
Name "type" "no."” "byte"

GSNO 000 00 011 XXXX
GSN1 000 01 011 XXX
GSN2 000 10 011 XXX
GSN3 000 11 011 XXX
RPTMO 000 00 000 XXXX
000 00 001 XXX
000 00 010 XXXX
RPTM1 000 01 000 XXX
000 01 001 XXX
000 01 010 XXXX
RPTM2 000 10 000 XXX
000 10 001 XXX
000 10 010 XXXX
RPTM3 000 11 000 XXX
oco 11 001 XXX
coo 11 010 XXXX
PTEVA 010 00 000 XXX
010 00 001 XXX
. 010 00 Q10 XXXX
010 00 011 XXXX
010 00 100 XXX
RPTEVA 011 00 000 XXX
011 00 001 XXX
011 00 G10 XXX
011 00 011 XXXX
011 00 100 XXX
INTMASK 100 00 000 XXXX
100 00 001 XXXX
100 00 010 XXX
100 00 011 XXXX
INTCLR 101 00 000 XXX
101 00 001 XXX
101 00 010 XXXX
101 00 011 XXXX
INTREG 110 00 000 XXX







The Design of a Floating-Point Processor Unit

Glenn Adams,B.K. Bose, Li-Fan Pei, Albert Wang
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ABSTRACT

This report presents the design of a VLSI Floating Point Unit
(FPU) for a LISP-based multi-processor system. The FPU imple-
ments the IEEE standard for the essential operations, supporting
single, double and extended format operands. Whatever is not done
on chip, is handled by supporting software. A four-phase clocking
scheme is used, with cycle time of 140ns. Targeted times for ADD,
MPY and DIV are 1.0us,1.5us and 3.0us respectively. A dual-ported
register file is implemented on chip to allow parallelism between
floating point operations and operand loads. The coprocessor inter-
face is designed to minimise overhead in information transfer. The
chip is being designed in 2 micron, N-well, double-metal CMOS
LOCOS technology. Most of the major modules of the datapath
have been designed and laid out so far, and these will be described
here. Much work remains, including the completion of the datapath,
writing a simulator in SLANG and generating the control PLAs, glo-
bal routing, and verification of the entire design.

1. Introduction

The Floating Point Unit discussed below aims at meeting the following design
objectives :

- fast, single-chip VLSI design

- efficient interface

- simultaneous execution of CPU and FPU

- overlap of FPU LOADs with FPU operations

- execution of the most common functions effictently;

the rest done in software
- follow the IEEE standard (P 754)

1.1. Data Format

Data in Single, Double and Extended formats are accepted by the FPU. The indi-
vidual representations are shown in Fig.1.1. When operands are loaded into the
FPU, the data is unpacked into the internal 80-bit format before writing into the
register file. This is to keep the datapath uniform and regular, and not have to



treat portions of it specially, depending upon operand type. A few extra bits asso-
ciated with each operand are also saved; for example, whether all exponent bits
are 0 or 1, and information about rounding. Before a STORE instruction, though,
an explicit CONVERT instruction is necessary to send the data out in the format
desired.

1.2. Timing

A four-phase clocking scheme is adopted, with each phase 25ns in duration, and
non-overlap guard time of 10ns. This gives a total cycle time of 140ns. Instruc-
tions are latched onto the FPU at the end of phi3 of a cycle, and the appropriate
data, if valid, is available from the cache in the same phase, two cycles later. The
data is converted to the internal format before being stored in the register file in
the same phase of the next cycle.

While the FPU is executing an operation, the CPU may load in new operands in
parallel. This is possible with a register cell with two READ and WRITE ports.
Register access conflicts are avoided by restrictions on the code generator, and
appropriate insertion of NOPs. Once an operation is completed, the FPU sets two
flags, one indicating that it is free to accept new instructions and the other indi-
cating whether there was an exception.

1.3. Operations

The functions that the FPU performs, includes: loading data from memcry and
storing data in memory; floating point add, subtract, multiply, divide; generating
absolute value and negation; conversion to desired formats and different kinds of
compares.

1.4. Interface

The FPU is designed to have an efficient interface with the rest of the system.
The details of the interface are presented in a separate document, and will not be
duplicated here. The key features of the FPU interface are :

1) The interface is synchronous with the rest of the system. Instructions
are sent to both CPU and FPU at the same time, and decoded indepen-
dantly.

There is a 64-bit data path between memory and FPU. Data transfer is
identical for CPU and FPU in terms of timing; the CPU provides the
memory address, and either processor proceeds with a data transfer,
depending on a control signal.

3) The CPU and FPU can continue execution in parallel. The CPU does
not send out valid FPU instructions without making sure that the FPU
is free to accept them. Also, at the end of an FPU instruction, the FPU
indicates whether the instruction concluded normally or with an excep-
tion, and the CPU takes appropriate action.

[ ]
—



4) While the FPU is executing an operation, the CPU can continue to load
the FPU register file with more operands. This overlap is made possible
by using a dual-ported register file, allowing reading or writing of 2
operands simultaneously.

1.5. Special Cases and Exceptions

There are several operands which need to be detected, and treated specially.
These are 0, infinity, denormalized numbers, NaNs and Integers. Exceptions that
need to be indicated are exponent overflow and underflow, divide by zero, inexact
(rounding done), invalid operation and trapping NaNs. Denormalized numbers
are detected and flagged, and the software normalizes and sends out the number
again. The FPU indicates exceptions by raising the EXC line, and expects the
exception handler to take care of it. To make sure that the CPU does not inad-
vertently ignore the exception when servicing an interrupt or doing a process
switch, the FPU-SYNCH instruction is present to make sure that the CPU knows
about an FPU exception (even if it does not attend to it just then), before going
away to service another call.

2. Functional Description

The exponent, fraction and multiply/divide sub-systems are described below.
Specific functions are described, decomposition into smaller modules is shown and
the interaction between these modules and between sub-systems is presented.

2.1. Exponent Datapath

2.1.1. Overview
The exponent handling datapath must provide support for all arithmetic instruc-
tions. The tasks of this unit may be divided into two groups, with one group
representing the tasks for an add/subtract instructions and the other group
representing the multiply/divide instructions. The tasks required for
add/subtract instruction support are:

1) Determination of the operand with the greater (i.e. result) exponent.

Computation of the difference between exponents.

2) Adjustment of result exponent to reflect adder/subtractor normalization.
The multiply /divide instructions require the following support tasks:

1) Computation of the sum/difference of exponents to generate the prelim-
inary result exponent.
2) Adjustment of the preliminary result exponent to reflect
adder/subtractor normalization.
The similarity of these requirements means that much of the hardware that is

used is the same for all four instructions. Thus, the exponent datapath is a
straightforward sequence of two 16 bit arithmetic components. One component



computes the absolute difference of operand exponents and determines which
operands has the greater exponent. The other component is an adder/subtractor
that computes the final result exponent and in the case of multiply/divide finds
the preliminary result exponent as well. The datapath components for the
exponent sub-system is shown in Fig.2.1

2.1.2. Exponent Bias

This datapath would be extremely straightforward were it not for the fact that
the exponents are biased quantities. Inside the chip, exponents are stored as 16
bit positive numbers with a bias of two to the 15th minus one. A problem arises
in that whenever exponents are added or subtracted, their biases are added or
subtracted as well. Thus, the result has its bias either doubled or set to zero
depending on what operation was performed. Clearly, the exponents cannot be
operated on with the bias present. However, simply removing the bias from the
operands and restoring it to the result is too difficult if the bias is two to the 15th
minus one (it would require extra adds and subtracts).

The solution to this problem is to subtract two to the 15th from each exponent
and to interpret all exponents in the datapath as 16 bit two’s complement
numbers with a bias of -1. Subtracting two to the 15th can be done by simply
inverting bit 15 of the operands; inverting the same bit of the result restores the
original bias. Since the bias is now only -1, it is now possible to keep the correct
bias for intermediate results by manipulating the carry input of the two’s comple-
ment add or subtract. To see this, recall that the result bias (without adjustment)
of an add operation would-be -1 + -1 = -2, while for a subtract it would be -1 - -1
= 0. Thus, to restore the bias the result should be incremented if an addition
took place and decremented if a subtraction was performed. Ordinarily the carry
input is asserted only on subtraction, thus both cases will be handled correctly if
the carry input is inverted. In this way, the correct bias is maintained for all
intermediate results in this datapath; there is no need to worry about incorrect
bias accumulation.
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2.1.3. Exponent Difierence Section

As mentioned above, the exponent datapath must compute the absolute (positive)
difference between the two operands and determine which exponent is greater.
This information is sent to the fraction box in three signals, these being:

1) A single line that is asserted if and only if the right operand exponent is
greater than the left operand exponent.

2) A seven bit magnitude that is the shift amount for decimal point align-
ment.



3) A single line that indicates the difference between exponents was greater
than 128.

Since these signals are in the critical path of the add/subtract instructions, the
logic to generate them must be made as fast as possible. Thus, this section com-
putes both differences (left minus right and right minus left) in parallel. Note that
since differences are required, the result bias of the subtraction (zero) is correct;
the carry inputs to the subtractors need not be manipulated. Since the signs of
the operands may be different, the signal that indicates the greater exponent is a
function of the signs of the operands and the signs of the differences. If the signs
are different, then the left operand is greater than the right if and only if the right
hand operand is negative. If the operand signs are the same, then the greater
exponent signal is the sign of the right hand (right minus left) difference. Once
this signal is generated, it is used to select the correct (positive) exponent
difference to send to the fraction bit. The lower seven bits are sent as is, the
upper nine are ORed together to form the difference greater than 128 signal.

2.1.4. Result Exponent Calculation

Although the calculation for the result exponent is different for the two groups of
instructions; the same adder/subtractor may be used. For the add/subtract
instruction, the result exponent can be computed in one step by adjusting the
greater exponent by the normalizing distance. For a multiply/divide instruction,
a preliminary result must first be generated by taking the sum/difference of
operand exponents. That result is then sent through the same adder/subtractor
again to adjust for the normalizing distance. Since the control for this second
iteration of the multiply/divide is the same as the control for the add/subtract
case, only the control for the first iteration will be described here.

For multiply/divide, the left operand to the adder/subtractor is always the left
operand exponent, however for add/subtract the exponent for the greater operand
is desired. Thus the left operand multiplexor always selects the left exponent
unless the right exponent is greater and an add/subtract instruction is being exe-
cuted. The right hand operand is the right exponent for multiply/divide, other-
wise the normalizing distance from the fraction unit must be used. Now, the
add/subtract control signal to the adder/subtractor must be multiplexed as well.
This signal is simply the multiply/divide control signal if a multiply or divide
instruction is executing, for an add or subtract this signal comes from the fraction
unit. Note also that the bias of the normalizing distance is zero, hence the bias
needs correction if and only if we are computing the preliminary result of the
exponent for the multiply/divide instruction. In this way, the unit computes the
correct result exponent for the add/subtract instructions or the correct prelim-
inary result exponent for the instructions multiply and divide. It is a simple
matter to later adjust this preliminary result by the final normalizing distance to
get the correct result for multiply/divide.

2.1.5. Slang Implementation and Status

At the time of this writing, the slang simulator module for this unit is complete
and awaits final testing. Although the details of the four main arithmetic



instructions have been completely worked out, the role of the exponent box in the
remainder and compare instructions is still not quite clear.

2.2. Fraction Datapath

2.2.1. Overview

The fraction datapath is in essence a 64 bit add/subtract unit. Its use however is
not limited to the implementation of the floating point add and subtract instruc-
tions. Indeed, every floating point instruction (except for loads and stores) uses
some portion of this datapath during its execution. However, the datapath has
been designed primarily with floating point add/subtract in mind. Consequently,
the datapath contains the following components:

1) Operand decimal point alignment

2)  Adder/Subtractor

3) Rounding of Result

4) Normalization and Exponent Adjustment

For all instructions, the input values are interpreted as unsigned magnitudes and
the result is also considered to be positive. These components are arranged in
straight sequential order, thus it is possible to view the entire unit as a large piece
of combinational logic. That is precisely the view that will be taken in this
description. A simplified view of the fraction datapath is shown in Fig.2.2.

2.2.2. Operand Alignment

An addition or subtraction operation begins when the 64 bit values are latched
into the inputs from the register file. The fraction datapath cannot begin work on
these operands immediately; it must wait for the exponent unit. The exponent
unit must determine the operand with the greater exponent and the magnitude of
the exponent difference. After this is finished, the fraction unit swaps the
operands if the operand with the lesser exponent is in the left (A) position. The
operand now in the A (greater exponent) position may pass directly to the
adder/subtractor. The decimal point of the right operand must be aligned with
the left operand before addition can take place, however. This is accomplished
using a right shifter whose shift amount is controlled by the exponent difference of
the two operands.
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When the operand is shifted, the two least significant bits that were shifted out of
the operand become the guard (G) and round (R) rounding bits. The rightmost
round bit is generated by ORing the rest of the bits that were shifted out, hence it
is called the sticky (S) bit. Because the lost precision of the operand can be con-
densed, the aligning shifter need only handle a shift amount of up to 66. Shifts of
greater than 66 all result in a zero operand, G and R bits as well as a sticky bit
that is zero if and only if the entire operand was zero. In this way, each input is



made ready for the adder/subtractor.

2.2.3. Adder/Subtractor

Up to now, the operands to the adder/subtractor are assumed to come from the
input conditioning section described above. However, the multiplier and divider
also use this datapath; for those instructions the operands enter directly to the
inputs of this component. In all cases, although each operand is presented to the
adder/subtractor in unsigned form, this component is implemented as a two's
complement adder. When performing a subtraction at the unit! the operands
with the lesser exponent is taken to be the subtrahend. Subtraction is therefore
performed by complementing the left operand and adding it to the right operand.
This way the rounding bits do not have to participate in the subtraction, thus the
width of the adder/subtractor remains at 65 bits.2 As a result, most of the time
the result of the subtraction will be a negative number; an addition will always
result in a positive number. The only exception to this rule is the case where the
operands of a subtraction instruction have the same exponent. In this case the
relative magnitudes of the operands are not known.

The output of the adder is in all cases is a 69 bit two's complement value. The
value consists of a sign bit, two bits to the left of the decimal point, 63 bits to the
right of the decimal and three rounding bits. After the addition/subtraction is
performed the result must be returned to positive magnitude form. The first part
of this operation is done immediately after the adder/subtractor; the result is
inverted if it is negative. This is implemented by exclusive-ORing all of the 68
rightmost bits with the intermediate sign bit. Thus, the final output of this unit is
a 68 bit positive number. The number is correct if the result of the
adder/subtractor was positive; otherwise the value must be incremented to finish
complementing it.

2.2.4. Rounding and Normalization

At this point, the basic operations that remain to be performed are rounding, nor-
malization and incrementing. Also, the exponent of the result must be adjusted in
order to reflect any normalization that was done. Normalization here means to
bring the uppermost one in the number to the bit position just to the left of the
decimal point. This requires that the value be shifted any amount from right by
one to left by 66. Since rounding must be done to the normalized number; it
would seem that normalization would be the first thing to do in this section. That
is however NOT correct because the number may still need to be incremented
because it is negative. The incrementing may cause the uppermost one to move
left one position; that would require another adjustment to the exponent. Furth-
ermore, the rounding may also require that the number be incremented even if it
was originally positive. Therefore, the primary design goals for this section of the
datapath were to use one incrementer for both rounding and complementing and
to make only one adjustment to the exponent.

! This is NOT the same as executing a subtract instruction.
2 1t is made one bit larger to accomadate the multiplier/divider.



The solution that satisfies the above design criteria exploits the fact that different
actions must be taken based on the value of the input. It can be shown that only
those number that require a shift amount of zero or one (left or right) need to be
rounded. (DESIGN NOTE: Although it should be clear that shifting by more
than two zeroes the rounding bits, the case shift left by two is not obvious. It can
be shown however that numbers in the range (0.25 < x < 0.5) must have
resulted from a subtraction where the lesser exponent operand was shifted by no
more than one. Hence all one’s are shifted out of the rounding bits during the
normalization in this case.) These numbers are therefore treated differently from
those numbers that require only normalization involving a left shift of greater
than one.

First, the input to this section is tested to see if the required shift amount for nor-
malization is right by one, zero, left by one or 1éft by greater than one. This is
done by looking for the uppermost one in the two positions to the left of the
decimal and the uppermost position to the right. If the shift amount is greater
than one, all of the bits of that number are passed to the incrementer latch; no
rounding is done. There all 67 bits (only one bit exists to the left of the decimal
now) are incremented if the number is negative. If the shift magnitude is zero or
one, the number is normalized immediately by a unit that shifts right by one,
passes the number or shifts it left by one. The uppermost 63 bits of this result are
sent to the incremeter; the four least significant bits (L, G, R, and S bits) are sent
to the rounding pla. This pla returns the new value of the L bit and zeroes the
rounding bits. It also returns a signal to increment the upper 63 bits if necessary.
Note that this requires that the incrementer be split into two parts consisting of
63 and 4 bits respectively. Also, a multiplexor is required to choose the correct
version of the four least significant bits; it is controlled by the signal that indicates
a shift left by greater than one.

After the incrementing is complete, the number consists of at most 66 bits and is
almost ready for the final priority encode and normalization step. First, however,
the possibility of an overflow on the increment must be handled. This is done by
placing the carry output of the incrementer back into the uppermost bit of the
number and adjusting the exponent accordingly {exponent adjustment is covered
later). Now the number is passed to a priority encoder; this being a circuit that
finds the amount of left shift required to normalize the value. Here the shift
amount can range from zero to 66; a zero shift will always result for those
numbers that were normalized already. The encoder generates the shift amount
in both a “one-hot” encoding that controls the shifter and a binary encoding that
is used to adjust the result exponent. The normalizing shifter generates the final
result for the fraction unit.

In addition to generating the final result, this section must also adjust the result
exponent to reflect all normalization that was done. Normalization occurs in
three places of this section; these being the initial shifter (zero or one), the incre-
menter overflow or the priority encoder. The first two sources are mutually
exclusive of the third; the correct exponent adjustment will come from the prior-
ity encoder only in the case where the shift test amount (before the increment) is
greater than one. The value from the priority encoder must always be subtracted
from the result. In the other case, the shift amount must be generated using



separate logic; they are a function of the shift test amounts and the incrementer
overflow signal. Two results come from this section; the magnitude of the amount
and a signal that indicates whether to add or subtract that value from the
exponent.

Last but not least, some discussion of the details of the rounding pla must be
made. First the four least significant bits of the operand are collapsed into three
by ORing the lowermost two bits together. These three bits then select a round-
ing output value based upon the two bits of rounding mode (from the control
unit), the sign of the final result and the sign of the intermediate result. The sign
of the intermediate result modifies the truth table to reflect the results of incre-
menting those four bits before rounding. The sign of the final result modifies the
rounding mode that is applied to produce answer. The truth table for the pla is
given in Table 2.1.

2.2.5. Slang Implementation and Status

As mentioned above, the entire add/subtract unit may be thought of as one piece
of combinational logic. This is the view that was taken when generating the slang
module for the device. This view made the implementation of the module very
straightforward and did not sacrifice any usefulness of the results. However, one
complication did arise in the storing and performing operations on large (greater
than 32 bit) quantities. The Franz Lisp implementation of arbitrary precision
integers (bignums) does not have a sufficient set of arithmetic and logical func-
tions, nor can such functions be readily written. Furthermore, functions that han-
dle both single and arbitrary precision integers are very difficult to write. Thus
the fraction datapath was represented as a list of integers, and an
arithmetic/logical functions package was written to operate on these lists.
Although most functions were fairly easy to write, a few (such as shifting by an
arbitrary amount) could not be implemented cleanly. It should be noted that the
problems that forbid the use of arbitrary precision integers stem not from the
slang simulator but from the Franz Lisp interpreter itself.

At the time of this writing, all of the functional details with the possible exception
of the rounding pla have been resolved. The slang simulator has been written,
and the correctness of this functional description will be tested as soon as an
”exhaustive” set of test cases can be found.
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2.3. Multiply/Divide Datapath

The Multiply /Divide sub-system is shown simplified in Fig.2.3.
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2.3.1. Algorithm

The floating point unit chip uses a version of Booth’s algorithm for multiply. For
both multiply and divide operations, the algorithm consists of a loop in which bits
from one operand (the multiplier or divisor) control the addition of the other
operand to the partial results (partial product or remainder). In both cases this
addition is performed by a carry-save adder in order to decrease the loop execu-
tion time. Also, in each scheme the final results from the unit are generated in a
non-binary encoding and must be accumulated to form the true final answer.
Because of the similarity between each algorithm, it was possible to share much of
the hardware required for each operation. Specifically, within this unit the
operand selection multiplexors, carry save adder and and partial result latches are
common to both the multiplier and divider. The adder/subtractor in the fraction
unit is also used in each operation to perform the final result accumulation. Since
chip area is so limited, this hardware sharing was absolutely necessary in order to
meet the design goals for the chip.

’

2.3.2. Multiplier

Although at the highest level the multiply and divide algorithms appear similar,
many of the implementation details are completely different. To begin operations,
the multiplier latches in the two operands (multiplier and multiplicand) from the
register file. The unit, however, also requires the two’s complement of the multi-
plicand in order to function. Thus, the multiplicand is simultaneously latched in
at the subtractor input latch of the fraction unit. The adder/subtractor in the
fraction box is then used to complement the multiplicand. Note that the comple-
ment requires at least two clock phases to generate, furthermore the operand
busses are only available on alternate cycles. Thus, it requires an entire processor
cycle (four phases) to latch in the operands required for multiplication.

Since the multiplier generates eight bits at every step, the control unit must first
select an entire byte of the multiplier for processing. Those eight bits are then
recoded into four groups where each group contains four bits in a “one hot”
encoding. Each group then controls a multiplexor that selects one of four versions
of the multiplicand; the versions being the multiplicand, the multiplicand shifted
left by one (multiplied by two), or the complement of the multiplicand shifted or
unshifted. A single encoding group can select the correct version of the multipli-
cand for two bits of result generation. Thus the four groups control four such
multiplexors, with each multiplexor shifted to the left by two bits from its prede-
cessor. In this way, the partial results for one step of the loop are generated.

This partial result must then be added to the accumulated results of the previous
steps to form the complete result for this step. A tree of four carry-save adder
rows is required for this task. Since four two bit partial results are generated at
once, the carry-save adders must be 73 bits wide. The entire tree reduces six
operands (the four partial results and the partial products from the previous step)
to the sum and carry vectors of the current partial product. Although four rows
of carry-save adders are required, the order of addition has been rearranged so
that the critical path through the tree contains only three adders. This is accom-
plished by placing the six input operands into two groups of three and adding



them in parallel. The four vectors from that level are then accumulated in
sequence to generate the two final result vectors.

Once the result vectors have been generated, they are latched into the master of
the partial product accumulator latches. A new cycle begins on the next phase
when the slave of the accumulator is loaded. The partial product vectors must be
shifted to the right by eight bits before they can returned to the carry-save adder
for the next cycle. The eight bits shifted out of each result vector are the least
significant bits, however they still cannot simply be thrown away. Instead, the
two eight bit vectors are added together to form the rounding bits for that step.?
When this addition is performed in the last step of the multiply, the result is sent
to the rounding bits in the fraction box. The mapping of these bits is, however,
not straightforward. The leftmost bit of this adder actually belongs in the L (bit
63) position of the fraction unit datapath, not in the rounding bits. Thus, the
second from leftmost position of the adder corresponds to the guard bit of the
fraction unit. Furthermore, the multiply unit does NOT produce a bit for the
round (R) bit of the fraction bit; using bit five from the adder is not correct.
Instead, a zero is placed in the round position and the rightmost six bits of the
adder are ORed with the previous value of the sticky bit to form the new sticky
bit. Finally, the carry output from this adder must enter into the formation of
the next partial product. To do this, the carry bit is inserted into the carry save
adder at the rightmost position on the lowest level of the tree. Thus, the preci-
sion generated at each step of the multiply loop is condensed but not lost.

Up to now, no mention has been made of the timing of the multiply loop. Since
the generation of multiplicands and the conditioning of partial product vectors are
data independent, these functions are pipelined. Thus, for a given cycle the shift-
ing and rounding of the partial product vectors is done in parallel with multipli-
cand selection. Each pipelined function is estimated (conservatively) to take two
clock phases, and two phases of latency required to set up the multiplicand selec-
tion of the first cycle. Note that no extra hardware is required to form this pipe-
line; this is because the control unit byte selector (hence the multiplicand selec-
tion) is synchronized with the partial product vector latch. However, all of the
hardware that is in the loop must be implemented using fully restoring logic (fully
static CMOS). A total of 22 clock phases is required therefore for the
multiply /divide unit to perform its intended task.

This does not imply, however, that the multiply instruction requires only 22 clock
phases. The partial product vectors and the rounding bits generated by the last
multiply cycle must be added together in the fraction unit in order to generate
the final answer. Now, the partial product vectors are each 65 bits wide; this
(NOT the add/subtract instruction!) sets the upper bound on the width of the
fraction unit adder/subtractor. However, the final result still is the range (1 < x
< 4), thus no more logic is required in the fraction unit to support the multiply
instruction.

3 Actually, only five of those bits are significant. Five bit adder cells are however no
faster than eight bit cells.



2.3.3. Divider

As mentioned above, the divider uses the same accumulator/selector loop as the
multiplier. However the similarity between the units ends there, for while the
multiplier loop generates eight bits of result per step, the divider can only produce
two. Furthermore, the divide algorithm generates increasing precision with each
step rather than increasing significance. Also, accumulator/selector loop in the
divider loop generates the partial remainder, not the partial quotient. The algo-
rithm therefore begins by loading the partial remainder accumulators (previously
called the partial product accumulators) with the dividend and a zero respec-
tively. The other operand (divisor) plays the same role as the multiplicand did in
the multiplier. Thus, the divisor and its complement are generated and loaded
using the same process described for the multiplicand loading.

The actual divide cycle begins with the topmost eight bits of the partial
remainder vectors being added together. The topmost six bits of this result con-
stitute an estimate of the entire partial remainder at that step. Doing eight bits
of addition rather than just six significantly increases the precision of this estimate
and does not increase execution time. The remainder estimator is then fed along
with the four most significant bits of the divisor into a pla called the quotient box.
The quotient box pla produces the two bits of quotient for this step. Although it
only generates a two bits of quotient the pla still has a large* number of min-
terms; the complexity of this pla dictates the upper bound of result bits per cycle.

Since the data fed into the pla is only an estimate of the partial remainder, the
data output is only an estimate of the partial quotient. Thus, although it really
only contains two bits of significance, the quotient pla output is encoded as a
signed magnitude integer in the range from negative two to positive two. The
result is signed because the quotient estimate from the previous step may have
been too high; in this case the partial remainder and the next quotient bits are
both negative. The pla output is also decoded before being used in the divisor
selection unit. The rest of the loop proceeds in the same manner as the multi-
plier, with the exceptions being that the partial remainder vectors are shifted left
by two bits and that no rounding of the partial remainder takes place. Also, since
only two bits are generated on each cycle, only the topmost of the four selection
multiplexors and CSA are actually used.

The quotient pla output bits are then assigned to one of two latches based on the
sign of the output. Thus, the quotient is encoded in a vector of positive estimates
and a vector of negative estimates. These latches are actually shift registers; the
new data is always placed at the two rightmost position and the entire quantity
shifted to the left by two bits. Each vector is encoded as a 68 bit quantity (65 +
3 rounding bits), however the uppermost bit of the result of the first quotient
cycle is always zero.® To form the final result, the negative estimate vector must
be subtracted from the positive estimate vector. This subtraction is performed by
sending each value to the fraction unit. However, one cannot send all 68 bits of
both quantities to the fraction unit; the fraction unit expects rounding bits from

4 Exact number should be inserted here!!
5 Since a simple loop is used, total time for divide unit is 68 clock phases.



one operand only. Rather than enlarge the adder for this special case, the three
rounding bits are subtracted before being sent to the fraction unit. Also, the final
result must be decremented if the sign of the partial remainder is negative. This
is accomplished by implementing the rounding bit subtractor as a two’s comple-
ment adder and using the complement of the partial remainder sign bit as the
carry input. Thus, to compute the final result the fraction unit is sent two 65 bit
operands, the three rounding bits and the carry output of the three bit subtractor.
The carry output of the three bit subtractor cascades into the carry input of the
fraction unit adder/subtractor.

2.3.4. Status

At the time of this writing, almost all of the details of the function of this unit
have been resolved. It has not been determined, however, exactly how the partial
remainder vectors are to be sent to the fraction unit to generate the result for a
remainder instruction. Also, the slang simulation for this unit is not yet complete.

3. Logic & Circuit Design of Major Modules

Logical design and circuit implementation notes of some major blocks of the data-
path are presented. Wherever appropriate, area and expected performance are
also mentioned. Circuit design notes for the Xerox CMOS process are summarised
in Appendix A.

3.1. A Fast Adder

In the floating point chip, various adders are needed in different parts of the data
path. Specifically, a 64-bit adder is needed in the data path of the fraction part.
Exponent data path needs a general alu which is based on the 16-bit adder. Two
additional subtractors, which are also based on the adder, are needed in order to
determine the exponent difference. And, finally, an 8-bit adder is required in the
multiply /divide unit.

As one can see, the usage of the adders is different and therefore the requirement
is also different. Some may require high speed, as in the subtractor, and the size
of it is not as important. In other places, the size may become the first considera-
tion. Because of the limited amount of time and man power, we decided to design
one adder for all the needs in the FPU with the best compromise between the
speed and area. As a result, we chose to use a carry-lookahead, Brent-Kung
scheme because of its high speed, relatively small area, and fairly regular layout.
The reason we chose static instead of dynamic logic is the timing requirement to
determine the exponent difference. We need to get the difference as fast as possi-
ble, hopefully within one phase, and it is not possible to 'hide’ the precharge time,
needed for a dynamic scheme, anywhere.



3.1.1. The Implementation of Brent-Kung Adder

This is a kind of carry-lookahead adder. The tasks are distributed at different
stages. Before describing each stage in detail, some general schemes needs to be
mentioned which are used throughout the adder.

CMOS static logic is used for the design. According to the study done by Shong,
this scheme has higher speed when the fan-in of the circuit is small. In the adder,
the fan-in is usually only three.

Some optimizations are done on each gate. The optimization involves finding a
path in the pull down net work which results in a minimum number of seperation
zones and maximum sharing of source and drain regions. The second thing is to
find the corresponding path in the pull up net work which is the dual of the pull
down network.

In the Brent-Kung adder, the tasks are distributed into different stages. If static
CMOS logic is used, an inverter has to be added to each stage, resulting in twice
as many gate delays. For this reason, we invert the logic every other stages, using
De Morgan’s theorem. The B-K adder is a particularly nice application of this
scheme because it has clearly identified small blocks and every one of them can be
partitioned into a stage, with no conflict. This way, we reduce the number of
gate delays to a minimum.

As pointed out earlier, the B-K adder has sevaral stages each of which perform
particular functions. We will now describe each one of them in detail.

3.1.1.1. The p and g generation stage

The first thing is to generate p’s and g's, the carry propagate and generate sig-
nals. This is fairly straightforward. We implement the following equations:

p=2aXORb
g=2aANDbD

For carry lookahead, we only have to compute p by OR of a and b. The XOR is
used because in the final stage of the adder, we won’t have to seperately compute
the a XOR b when evaluating the sum. Figure 1.1 shows the layout of this stage -

pgeg.

3.1.1.2, The Carry Lookahead Stage

The second stage is to evaluate the P and G terms. The whole scheme is based
on the B-K operation, which is:

(g1,pl) o (g2,p2) = (gl+plg2,plp2)

The purpose is to allow parallel computation of the P’s and G’s. Figure 3.1a
shows the circuit block for this operator, and figure 3.1b is the actual implementa-
tion if we use this without modifications.



p2 g2 p2 g2

gl gl .
gl+plg2 gl+plg?

e R e e B T
(a) (b)

Fig.3.1 PGG : p and g gernerator

To reduce the number of stages, as described before, we invert the logic every
" alternate stage. This results in two new blocks representing the modified B-K
operators. They are shown in figure 3.1a and 3.1b. Fig. 3.1a is the complement of
the original operator and 3.1b is the same circuit with inverted logic.

p2 g2 p2’ g2’
(g1+p1g2) gl+plg2
pl o———— pl’ ) S
(p1p2) plp2
(a) cla2.1 (b) cla2.2

Fig.3.2 CLA2 : carry lookahead, true & inverted logic

3.1.1.3. The Carry and Sum Evaluation Stage

After getting the P's and G's, the next stage is to evaluate the carry in for each
bit. The final stage is to compute the sum. Both these blocks are simple and
figures 3.2 and 3.3 show them. Putting all the stages together, we get the adder.
Figure 3.4 is the logic diagram of an 8-bit B-K adder. Figure 3.5 is the floor plan
of a 16-bit adder using the modified B-K operator and inverted logic in every
other stage.
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PgE | clal | clal | clal | clal | eval2 sum

pgg cla2.1] clal | ¢]g1 | clal eval2l sum
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pgg | cla2.1] clal | cla2.1] clal | eval2 sum

pgg | clal | cla2.2] cla2.1] clal | eval2 sum

pgg | cla2.1 cla2.2 cla2.1f clal eval2 sum

pgg | clal | clal | clal | cla2.2] eval2l sum

pgg | cla2.1 clal | clal | cla2.2] eval2 sum

pgg | clal | cla2.2 clal | cla2.2 eval2) sum

pgg | cla2.1 ¢]32.9 clal | cla2.2] eval2] sum

pgg | clal | clal | ¢]a2.1f cla2.2] eval2 sum

pgg | cla2.1] clal | cla2.1] ¢]a2.2 eval2l sum

pgg | clal | cla2.2 ;49,1 cla2.2] eval2l sum

pgg | cla2.1] cla2.2] cla2.1} cla2.2] eval3| sum

16-bit CarryLookahead Adder
(Floor Plan)

Fig. 3.5

3.2. Data flow in the Exponent Unit

This part does all the exponent operations for the floating point unit. The main
data path is 16-bits wide (15-bit exponent plus one bit for denormalized numbers)
with some simple blocks placed on both sides to evaluate carry-in’s, detect
overflows, and hold the carry-out for control purposes. The following is a list of
functions supported in the current implementation.

(1) To find the difference of two exponents by doing subtractions, EA-EB and

EB-EA, and detect certain conditions of the subtraction results. First of all,
it will detect whether overflow or underflow has occurred. Next is to check



whether the result is greater than 64 (the fraction width). If none of the
above conditions occurred, the 7-bit difference is sent to the fraction part in
the form of an absolute value.

(2) Add two exponents. This is intented for the multiply instruction.

(3) Subtract one exponent from the other. This is for the divide instruction.

(3) Subtract/Add the normalizing distance to the larger exponent. This is for
floating point add and subtract.

There are two seperate functional block of the exponent part. The first one is to
determine the exponent difference. The second is the general add/subtract unit
with some mux's and latches.

Fig. 3.6 is the block diagram of the exponent part, indicating direction of the data
movement. Inputs, outputs, and control signals, and how to use them to do the
different functions, are presented in figure 3.7.

B FA

ND<0:6>

EC1 kaﬁﬁ
EC2 _ \L
EC3 s

EC4 5 ALU (+/1)

Exponent Block Diagram

Fig. 3.6



3.2.1. Internal Representation of Exponent

The internal format for exponent is in 2's complement minus one form. The
advantage of using this is that converting from external format to internal format
is straightforward, allowing fast and easy conversion, and at the same time retain-
ing the advantages of 2's complement arithmetic. Because of this choice, all the
operations have to be considered and the carry-in of the adder has to be set to
the correct value in order to produce the praper results. All exponents are
represented in the 2's complement minus one form and, on the other hand, all the
data transfer between the exponent part and the fraction part is in 2’s comple-
ment format. This fact complicates the the logic. Table 3.1 lists all the func-
tions performed by the exponent part, corresponding carry-in values, and the for-
mat of the final result.

3.2.2. Exponent Difference Calculation

Determining the exponent difference is the first step in floating point add and sub-
tract. Therefore, the speed of this operation is very important to the speed of the
whole add/subtract instruction. We sacrifice some chip area in order to achieve
high speed. Subtracting hardware is duplicated so the computation of EA-EB
and EB-EA can be done concurrently. The positive difference will be picked and
passed to the Dbox which will pass the low order 7 bits and the OR of the higher
order 8 bits to the fraction part. Figure 3.8 is the logic for Dbox and Fig. 3.9
shows the floor plan of the difference part.

el4 :
o : ﬁ) > d7

eb " d6

€0 : do

Fig. 3.8 Difference Box

inv | (+)} Jobox[ 1 (+) |inv

EEn 10

Floorplan for Difference Computation
Fig. 3.9



3.2.3. General ALU

This ALU need only do the addition and subtraction. Using the ADD to do sub-
traction involves inverting every bit of one of the operands and setting the carry-
in bit to 1. If we have a control line that controls whether to invert an operand
or not, we get the general ALU. Figures 3.10 and 3.11 show how to build the gen-
eral ALU using the adder and controlled inverters.

’

Cl1 C2 func
A out
b la | Adder D— 0 0 A+B
0 1 A-B
1 0 B-A
C 1 1 -A-B
cl ¢2
ALU ALU Function Control

Fig. 3.10 Fig. 3.11

3.2.4. Exponent Timing

Instead of giving the exact timing and phase assignment, some rules are presented.
These, in combination with the control logic, will determine the exact timing of
the exponent part. The rules are:

(1) Precharge the bus one phase before putting the data on it.
(2) Latch the inputs to the ALU prior to ADD block operation.

(3) The results of the ALU have to be latched before any changes to the input
occur. This is because the adder is fully static.

(4) In the difference part, the selection of a positive number is done by the AND
of a control bit and a sign bit. There should be some time between when the
input is stablized and the control is enabled. This time is the delay of the
ADD block and an invert gate delay. Otherwise, the Vdd and GND may be
connected through two pass gates in the Dbox.

3.3. Packing and Unpacking Data

This part deals with the conversion between the external and internal representa-
tions of data. It will also detect exception conditions. Because there are only four
types of data, there is no need to use a full shifter. In stead, each circuit is
designed particularly to convert a specific data format. Figure 3.12 shows the
difference in terms of number of bits. Figure 3.13 shows the different representa-
tions.
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single  sign-magnitude

T
excess 2’ -1

double sign-magnitude

excess ®" -1

extended sign-magnitude

i
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internal sign-magnitude

2’s complement - 1

Fig. 3.13 Data Representation

In the following description:

eed<n:m> - represents exponent external data bits n to m
eid<n:m> - represents exponent data bits n to m
fed<n:m> - represents fraction external data bits n to m
fid<n:m> - represents fraction data bits n tom

Conversions from external format to internal format:

1) Single

eld<0:6> = eed<0:6>
eld<7:14> = eed 7>’
fid<40:63> = fed<0:23>



id<0:39> =0

2) Double

eid<0:8> = eed<0:9>
eld<10:14> = eed <10>'
id<12:63> = fed <0:51>

fid<0:11> =0
3) Extended ( ed<0:14> --> id<0:14> )

eld<0:14> = eed<0:14>
id<0:63> = fed<0:63>

4) Integer

eid<0:14> = 32
fid<31:63> = fed<<0:31>

" Conversions from external format to internal format:

1) Single

eed<0:6> = eid<0:6>
eed<7:14> = eid<14>’

fed <40:63> = fid<0:23>

if eid<7:14> is not same, exception

2) Double

eed<0:9> = eid<0:9>

eed <10:14> = eid<14>’

fed<12:63> = fid<0:51>

if eid<10:14> not same sign, exception.

3) Extended ( ed<0:14> --> id<0:14> )

eed<0:14> = eid<0:14>
fed<0:63> = fed<0:63>

4) Integer

fed<<31:63> = fid<0:31>



The next two figures show how the conversion is done. Figure 3.14 is for the
exponent part and figure 3.15 is for the fraction part. Note the gates at the end
of the block.

D> ] 0 |
A4 \V4
S S
s’ 0
. s’ - 0
d s’ n 0
- -
. .
- .
q 2l

exponent unpacking  fraction unpacking

Fig. 3.14 Fig. 3.15

3.4. The Register File

The FPU has 16 externally addressable, 80-bit registers. One is reserved for con-
trol and status, and the rest are for storing operands and results. As mentioned
earlier, an incoming operand is converted to an internal format consisting of 1
sign bit, 15 exponent bits and 64 fraction bits. A few extra bits are also associ-
ated with each internal representation. These include extra exponent bits for
denormalized numbers, flags to indicate if all exponent bits are Os or 1s, and also
some bits to indicate rounding information. The efective register width thus
increases to nearly 90 bits.

A requirement for the register file is that it be able to read two operands simul-
taneously. Also, to allow for overlapped FPU operations and LOADs, it is neces-
sary that two operands be written at the same time. Thus we need a dual-ported
register file, with two sets of decoders for the two operands.



Fig. 3.16 shows the circuit for the register cell. It contains 9 active devices. Four
are transmission gates providing read and write access to the two data busses A
and B. The rest of the cell is a pseudo-static latch. During READ, the latch feed-
back path is closed, while for WRITE it is open. Thus there is no fight between
input data and what is in the cell.

The data busses A and B are precharged to increase speed and reduce area and
power of bus drivers. Since the high level at X is degraded by the access transmis-
sion gates, the ratio of inverter I is skewed, with a stronger pull-down device than
the normal ratio. Inverter II is larger than I to provide greater drive to allow for
fast discharge of the data busses.

Register Cell

R/W*

iE
-
|z

WB[ ] RB

Bus B

Fig. 3.16
3.5. Bi-directional Barrel Shifter and Decoder

The fraction datapath requires two variable-length shifters. A right shifter is
required almost at the beginning of an ADD/SUB operation to align the fraction
with the smaller exponent to the fraction with the greater exponent. Again, at the
very end of the operation, a left shift is necessary to normalize the fraction result.
Both shifters need to be able to shift the fraction by a number ranging from 0 to
66.

Barrel shifters with large shift length are expensive in silicon, and given the res-
trictions on chip dimensions, it is clear that we cannot afflord to have two such
wide shifters. We have built a single, bi-directional shifter, where the input and
output busses are reversed for right and left shift.



Fig. 3.17 shows the structure of the shifter. both symbolically and schematically.
Busses X and Y are the two data busses, and Bus S is the decoded shift distance.
Both data busses are precharged to avoid having a full complimentary matrix of
transistors. A more common configuration for this kind of shifter has the input
and output busses running perpendicular to each other, and the shift control lines
diagonally traversing the shifter matrix. With our configuration, the shift control
lines are shorter, thus having less parasitic capacitance, and hence faster for the
same size transistor matrix.



Bidirectional Barrel Shifter

R a
—
-
Ipmt
s
L
-
iy

o}

1
Tl
.
L1

o

Y3

Fig. 3.17

Fig.3.18 shows the schematic for decoding the shift distance. It is just like a
precharged NOR decoder in effect, but in practice uses a single level of pre-decode
. with a pseudo-NOR stage following it. The 'NOR’ gate transistors are connected
between two adjacent rows instead of between each row and ground. This reduces
the total number of decoder transistors by about half, allowing the devices to be
about twice as large, thus cutting down the decode time significantly.



3.8. One’s Position Detector

After an ADD/SUB instruction, the intermediate result has to be normalized. To
do this, we need to detect the position of the leading '1’ in the intermediate result.
This information needs to be transferred to the exponent unit so the result
exponent can be appropriately modified. Also, this information has to be decoded
and used to control the left shift distance.

The three most significant bits of the output indicate which byte of the 8 bytes in
the intermediate result has the leading '1’. The remaining three bits of the output
indicate which bit in the above byte has the leading '1'. The implementation of
this combinational logic piece is in dynamic CMOS, using alternating N channel
and P channel sections. Since there are large fan-in AND and OR gates, we chose
alternating N and P sections to avoid long series strings of devices, as would hap-
pen in a standard 'domino’ implementation. The worst case delay is 7 gate
delays, and is estimated at about 20ns.

3.7. The Multiplier

The multiplication of two 64-bit fractions is implemented in 8 iterative steps.
Each iteration implements a 64 bit(MCD) * 8 bit (MR) multiplication. In each
iteration, four overlapped triplets of multiplier bits (9 bits) are decoded by the
modified 'BOOTH’ decoder. Four multiplicand multiples of magnitude +2MCD,
+1MCD, -1IMCD, -2MCD and 0 are needed per iteration. The multiplicand is
always a positive fraction. The -1IMCD (2’s complement of MCD) is generated by
the ALU in the fraction datapath, before the beginning of the iterations and is
latched in the latch NMCD. The +2MCD and -2MCD are implemented by wired
shift left by 1 bit of the +1MCD and -1MCD respectively.

The four overlapped triplets of multiplier pairs generate four multiples of the mul-
tiplicand. They are added to the partial 'sum’ and partial 'carry’ terms of the
previous iteration using the carry save adder array (CSA). Note that the four
multiples of the MCD are shifted left 2 bits with respect to each other, depending
on the significance of each multiplier triplet. The partial 'sum’ and ’carry’ are
shifted left 8 bits and 7 bits respectively, when looping them back to be the new
inputs of the CSA in the next iteration. Since there are negative as well as posi-
tive operands, both in 2's complement form, the MX and CSA array must be fully
sign-extended to the left.

The bit width of the CSA, MX and PPS/PPC are 73 bits (see Fig.3.21). After
right shifting 8 bits, the sum of the 2 partial products will be 65 bits (64 bits mag-
nitude and 1 sign bit). If there are only 72 bits of the PPS, the sign bit will be lost
and the sigh extension will be incorrect. The sticky bit is set if there is at least
one non-zero bit in the right-shifted 64 least significant bits of the product. The
guard and round bits are the 2 most significant bits of the lower half of the 128
bit product. The G,R and S bits are generated by an 8-bit adder and an OR gate
(for S), used at every iteration of the multiply loop. (Fig.3.22)

The CSA tree is configured in a rather irregular way in order to let the data pass
through only three stages of the CSA, instead of 4. Thus two rows of the CSA
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tree compute in parallel. See Fig. 3.23.

3.7.1. Interfacing with the Fraction Datapath

The Multiply/Divide subsystem shares some hardware with the fraction part.
These are :

* 64-bit carry-look-ahead adder

* latches for operands A and B and 2’s complement of MCD

* tri-state driver for writing -1IMCD onto Bus B

* the A and B data busses and the register file

The reading of the multiplier and positive and negative multiplicand are as fol-

lows :
1)

The multiplier and multiplicand are sent out on busses A and B from the
register file to latches MRR and MCD simultaneously, during the first
cycle of the execution. At the same time, the multiplicand is latched in
the OP A latch and converted to 2’s complement by the 64-bit adder.

After the completion of the eight 64 * 8 bit multiplication iterations, the
'sum’ and ’carry’ terms of the product are sent to two latches using
busses A and B, and are added using the fraction unit adder. The result,
latched in the RES latch, is then written back to the register file.

3.7.2. Timing and Control

The timing scheme is determined by the following conditions:

1)

2)

The data busses are both precharged during phases 2 and 4 of every
cycle, and data is valid in phases 1 and 3.

Bus A is available during the first execution cycle of the multiplication,
but not available for internal operations in the other cycles. This is
because that bus is used by external memory to load data into the regis-
ter file. Bus B is available during all cycles of the execution of the multi-
ply instruction.

The propagation delay of the 64 * 8 inner loop is approximately 40ns.
Hence it is possible to execute the loop twice in one machine cycle. The
timing of the activities of each block is illustrated in Fig. 3.24. Table 3.2
is the truth table of the control signals for multiplication.

3.8. The Divider

Fig. 3.25 shows the schematic diagram of the DIVIDE unit. It is clear that
much of the hardware is shared between the multiply and divide units.

The hardware design for fraction division is based on the radix four, non-
restoring division algorithm using estimates of divisor and partial remainder.
The radix four quotient digits are expressed ,using redundant representations
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-2, -1, 0, +1 and +2, and the partial remainders are irredundant. This
redundancy of the expression of the quotient digits permits less precision in
comparing the divisor and partial remainder to select a quotient digit.
Atkins has presented the theory of high-radix non-restoring division. The
required precision in inspecting the partial remainder and the divisor can be
determined using the P/D plot method suggested by Freiman. It was found
that 7 bits of the partial remainder and four bits of the divisor are needed for
determining the next quotient digit. The quotient digits are generated by a
PLA, which is provided input from the truncated partial remainder (7 bits)
and the truncated divisor (4 bits plus an implicit MSB). The truth table of
the PLA is shown in Fig. 3.26.

Since the hardware for creating -2MCD, -1MCD etec. is already there, this is
shared between multiply and divide to generate the partial remainder from
the divisor and the quotient digit. See Fig. 3.25.

The division is done iteratively, with two quotient bits computed per
iteration.The hardware loop for generating the next remainder in parallel
with generating the next quotient digit is :

1} A 7-bit carry-lookahead-adder, which generates the truncated par-
tial remainder from the 'sum’ and 'carry’ terms of the previous par-
tial remainder and four bits of the truncated divisor. The three-bit
output represents one of the possible values of the quotient digit,
out of -2, -1, 0, +1 and +2. The outputs of the PLA are further
decoded into two 2-bit sets corresponding to the groups -2, -1, 0 and
+2, +1, 0. These two 2-bit numbers are fed into registers POSQ
(positive quotient) and NEGQ (negative quotient) respectively, and
shifted left two bits per iteration. The 3-bit output of the PLA are
also decoded into another 4-bit set which is used to control a mux
(MX-I) to make the product of the next quotient digit and the divi-
sor (-2DVR, -1DVR, 0, +1DVR, +2DVR) for generating the next
partial remainder. The iterative relation is:

J+ J in

j index of the recursive loop <31:0>
p, partial remainder obtained in the jth loop
p, dividend ’
P,, final remainder
q,, quotient digit after the jth loop
d divisor
r radix (r=4, rp => shift p left 2 bits)
2) One row of the CSA array is used for adding the '-q d’ term with
the partial remainder, 'rp’.

3) Master-slave registers PPS and PPC are used to keep the updated
partial remainder in separate 'sum’ and ’carry’ terms.



4) Shift registers, POSQ and NEGQ, are used to keep the positive and
negative digits of the quotient respectively, and shift left two bits
every iteration.

The critical path of the quotient/partial remainder generation loop includes
the following: an 8-bit carry-lookahead-adder, a PLA with approximately 20
minterms, a 2:1 mux, a 4:1 mux, one stage of CSA and the PPS/PPC latch.
The loop delay is estimated to be 40 ns, and so we expect to run the loop
twice per machine cycle. Thus the inner loop for 64 bits takes 32 iterations or
16 cycles. A few cycles are needed before and after loop evaluation for get-
ting divisor and dividend, forming the negative divisor, adding POSQ and
NEGQ to get the quotient and adding PPS and PPC to get the remainder.

A mux (MUX-1) is added in front of PPS to latch in the dividend from data
Bus B. There are two muxes inserted between master and slave stages of PPS
and PPC. These two muxes are used to shift the contents of these latches.
Shift length for 'sum’ is & bits and for ’carry’ is 7 bits, when multiplying.
However, when dividing, 'sum’ is shifted left 2 bits, and ’ carry is shifted left
3 bits. This is done by muxes MUX_2 and MUX_3

In order to make the division loop as fast as p0551b1e, the output of the first
row of the CSA array is routed directly to the inputs of MUX_1 and
PPC.MS. The control signals and timing for divide are shown in Table 3.3.
Circuit implementation details of important sections of the multiply/divide
unit are enclosed in Appendix B, together with relevant design notes. A
SPICE simulation of the CSA is included in Appendix C.

4. Chip Floorplan and Power Supply Routing

The tentative floorplan of the FPU is shown in Fig. 4.1. The total chip size
is estimated to be .8cm * lem. (.8 square cm.) The area of the fraction data-
path is estimated to be 4500u * 5500u and of the mul/div datapath is tenta-
tively 2500u * 5500u. A strip immediately above the main datapath, 500u
wide, is reserved for decoders, buffers, and other miscellaneous logic. The
exponent datapath is expected to be 3500u * 2000u. Totalling all this, the
datapath area is about .5 square cm., about 60% of total chip area. With
about 22% of the chip area reserved for peripheral circuits, we are left with
about 18% chip area for control and global routing.

Fig. 4.2 shows power supply routing in the FPU. Since we are restricted in
the X direction, we decided to run data lines in parallel with power supply
lines in that direction, all in second layer metal. Control lines run orthogo-
nally in first layer metal. Because of the high bit rates and small rise and fall
times of external signals, inductance between pins can be a severe perfor-
mance limitation. According to present estimates, we may need to reserve as
many as 15 VDD and GND pads, to minimise this inductance problem, and
enable us to run at speed.

’
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5. Design Status

We still have to do detailed SPICE simulations on some of the cells that are

process-sensitive and speed-critical.

Once the individual blocks are ready,

they will have to be connected together, and then tested for functional



correctness using ESIM, and also timing estimates will have to be verified
using CRYSTAL.

A description of data flow in the FPU is being coded in SLANG. Once it is
complete, we will have to verify functional correctness of the datapath. Then
the timing information will have to be included in the SLANG description,
and when the whole system is verified, the control PLAs have to be gen-
erated, and laid out.

When the datapath and the control sections are complete, global routing will
have to be done, and diagnostics run on the extraction of the laid-out circuit
to see if the circuit indeed matches the already verified simulator.

We plan to build at least two test chips and send them out for fabrication, to
analyse key blocks in the design and get invaluable feedback about our target
pocess. One will be a 64-bit adder/subtractor with a 16-bit Brent-Kung
carry-lookahead scheme; the other will be the multiply/divide unit.

6. Summary

The design of a VLSI circuit to perform floating-point operations is described
above. It conforms to the IEEE standard, and supports the different operand
types, rounding modes, special cases etc, that the standard demands. The
estimated number of cycles for ADD, MPY and DIV are 4, 7 and 20 respec-
tively. The area of the chip is estimated to be 0.8 square cm. Much work has
been accomplished this past semester. Major modules of the datapath have
been designed and laid out. But, as expected with a project of this magni-
tude, much work still remains to be done.



SPUR COPROCESSOR INTERFACE DESCRIPTION
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Computer Science Division of EECS
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

This report describes the SPUR coprocessor interface. The interface provides
enhanced performance potential by allowing parallel operations between the
SPUR processor and SPUR coprocessors. A decoupled control and execution
architecture allow data transfers to proceed while coprocessor functions are
performed. Implicit and explicit synchronization mechanisms provide the
programmer complete control and flexibility. On-chip coprocessor register
files and a wide data path between the memory and coprocessor minimize
data transfer overhead. An intelligent interface control unit provides
parallel decoding of instructions for maximum performance. Other
coprocessor functions applicable to signal processing, workstation graphics,
and so forth are being considered, but will not be reported here. -



1. INTRODUCTION

The SPUR CPU is a custom VLSI 32 bit general purpose host targeted to
support Lisp and other high-level language software environments. The RISC-like
architecture provides high performance for a wide range of applications.

Traditional von Neumann computer architectures have achieved enhanced
performance by adding optional hardware to perform tasks that are usually
executed in software. These devices include such things as attached processors,
array processors, floating point accelerators, data channels, graphics display
processors, etc., and are called coprocessors. Thus, a coprocessor is an optional
piece of hardware that replaces a piece of software for a higher level of
performance. A

Many peripheral devices as well as more closely coupled coprocessors fall in
this general category. It is nevertheless important to recognize a distinction
between standard peripheral hardware devices and tightly coupled COPIoCessors:
the programming model for the coprocessor differs from that of peripheral devices.
Standard peripheral hardware usually appears to the programmer as a set of
registers in the memory space of the main processor. The programmer must
consider the communication protocol and implement the interface between the
peripheral and the device in software.

The tightly coupled coprocessor on the other hand adds additional
instructions and generally additional registers and data types which are not
directly supported by the main processor architecture. Dedicated COprocessor
instructions allow the programmer to utilize the coprocessor capabilities.
However, certain interactions needed between the main processor and the
coprocessor (i.e., the communications protocol) are implemented in hardware and
are transparent to the programmer. Thus, the coprocessor can extend the
functions provided to the user without appearing as hardware external to the
main processor. This provides a more uniform programming model from a user
point of view.

The SPUR system employs an optional special purpose device for floating
point arithmetic. We refer to this as the SPUR Floating Point Unit, or simply
FPU. In the general case, it would seem logical to refer to all signals and
mnemonics related to the coprocessor to be designated “CP”. Other applications
are being considered besides floating point arithmetic, but this report will focus on
the FPU. Thus, to avoid confusion between the CPU and CP designations, the
coprocessor interface signals, blocks, modules and functions will be designated
with the “FPU” prefix (even though, as mentioned, the interface will support
other devices).

Section 2 of this report provides a brief overview of the SPUR COProcessor
interface and functions. Section 3 provides a greater degree of detail and timing
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diagrams for various operations, instructions, and CPU <---> FPU interaction.

2. FLOATING POINT COPROCESSOR INTERFACE OVERVIEW

From the assembly language programmers point of view, the SPUR FPU
consists of 15 read/write 80-bit operand registers and one read/write
control/status register (nominally 64 bits). All arithmetic operations involve three
registers: two source and one destination.

2.1. Instructions

As of this writing, approximately 30 operations are defined for floating point
arithmetic and general coprocessor functions. These are listed in Table 1 at the
end of the report.

2.2. Control Flow

The FPU coprocessor will employ two function units: the bus interface
control unit (BICU) and the execution unit (EU). The pipelined architecture of
the FPU is identical to the CPU. On phi3 of every cycle, the FPU BICU accepts
and decodes the INSTRUCTION BUS fragment conveyed on fpuOpcode lines,
and initiates operation in the subsequent cycle if it is an FPU operation. This
continues until cycle n (n depends on the particular instruction being executed).
The fpuBusy signal is asserted in cycle (n-1) to indicate when the FPU EU is done
and allow instruction overlap. (See section 2.6 for complete definitions of signals.)

Under normal circumstances, CPU and FPU instructions execute in parallel.
This parallelism is controlled in two possible ways: (1) explicit: the fpuParallel bit
in the UPSW may be set, which will prevent overlap of CPU and FPU operation
instructions, and (2) implicit: the fpuBusy line will prevent the CPU from issuing
FPU operation instructions if the FPU is still in the execution phase of a
previously issued instruction. In all cases where overlap is prevented, the CPU
stalls until the fpuBusy line is not asserted.

2.3. Data Flow

Data flows between the FPU and the SPUR data cache memory under direct
control of the CPU. The data path to the cache is 64 bits wide. Double precision
operands are loaded in one cycle. As well, loads may proceed in parallel with
FPU operation, since the FPU register file is dual ported. The FPU pipeline is
similar to the CPU pipeline: the load instruction requires the fetch, effective
addresses calculation, memory access and register write cycles before the operand
is ready for use. However, there is no operand forwarding in the FPU, so loaded
data is not ready for use as an operand in the FPU until the third instruction
following the load.
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Two instructions allow loading the CPU registers directly from FPU
registers, and vice versa without passing through cache memory. This is useful
for transferring integer operands and status and control information.

2.4. Perfer:nanes
Initial aualyses indicate the timing for fundamiental algebraic instructions
supported by the FPU as shown in Table 2.

Studies comparing the SPUR FPU with commercial microprocessor-based
systems employing VLSI floating point coprocessors indicate that the SPUR-FPU
combination can execute the Berkeley Loops between 5 and 15 times faster than
other systems [Han85]. The main performance advantages come from (1) the dual
ported register file allowing data loads during FPU operation, (2) the overlapped
execution of the FPU and CPU, and (3) very efficient algorithms and hardware
structures for the four operations implemented on-chip: add, subtract, multiply,
and divide.

2.5. Programming Interface

The FPU effectively adds new data types, new registers, and new instructions
to the CPU For the most part, the coordination of the processor-coprocessor
operation is handled by the programming languages and coprocessor interface
automatically. 'I'he architecture is Load/Store, with arithmetic operations
between FPU registers. The hardware is invoked directly by the programmers
instructions, and no recompilation is necessary for systems which are not equipped
with an FPU. Simple link-time command arguments direct the loading of
algebraic routines in the absence of the FPU. One bit in the UPSW causes the
CPU to trap if an FPU is not available in the system.

2.6. Hardware Interface

As a coprocessor in the SPUR system, the FPU is connected as shown in
Figure 1. Figure 2 shows the logical interconnections between the CPU and FPU.
The CPU and FPU both employ a 4-phase non-overlapped clocking scheme as
illustrated in Figure 3. The interface signals fall into three groups: (1) new
instruction valid, opcode specifier, coprocessor identification, and coprocessor
suspend (2) register specifiers, and (3) coprocessor status.

2.6.1. CPU to FPU Signals

The signals between the CPU and FPU which provide control are described
next. Many of the details of operation are contained in section 3 of this report:
Coprocessor Interface Details.
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fpuOpcode: 7 bits. This specifies the opcode of the instruction which the
CPU broadcasts to all coprocessors. The CPU starts driving these lines at the
beginning of phi3.

fpuRS1: 5 bits. This specifies the Source One register of the instruction
which the CPU broadcasts to all coprocessors. The CPU starts driving these
lines at the beginning of phi3.

fpuRS2: 5 bits. This specifies the Source Two register of the instruction
which the CPU broadcasts to all coprocessors. The CPU starts driving these
lines at the beginning of phi3.

fpuRD: 5 bits. This specifies the Destination register of the instruction which
the CPU broadcasts to all coprocessors. The CPU starts driving these lines at
the beginning of phi3.

fpuNewlnstr: 1 bit. Asserted by the CPU whenever a valid instruction is
issued. Similar to fpuOpcode, the CPU starts driving this signal at the
beginning of phi3.

fpulD: 1 bit coprocesser identifier provided by the CPU to identify its target
coprocesser. This bit is part of UPSW and is available to all coprocessors.
The CPU may change this line only during phil. (SPUR can have at most
two coprocessors in this version. Later versions will allow multiple
COProcessors.)

fpuSuspend: 1 bit. Asserted by the CPU to stall the FPU’s operation. The
CPU may change the value of this signal only during phi4.

2.6.2. FPU to CPU Signals

The signals between the FPU and CPU which provide status are described
next. Many.of the details of operation are contained in section 3 of this report:
Coprocessor Interface Details.

fpuBusy: 1 bit. Asserted by the active coprocessor (in this case, the FPU) to
indicate that the FPU is busy. The CPU reads (latches in) this bit during
phi3. Therefore, the FPU must assert this signal before phi3 of the 2nd cycle
(1st execution cycle) in a FPU’s instruction.

fpuExcep: 1 bit notifies the CPU that an error condition exists in one of the
coprocessors. This line is shared by all coprocessors because only one
coprocessor can be active at any given time. The CPU reads (latches in) this
signal during phil. The fpuFEzcep signal is valid only when fpuBusy Iis
unasserted. .

fpuBrT_F: 1 bit. True/false line for FPU compare instructions. The CPU

reads (latches in) this bit during phi3. The fpuBrT_ F line is valid only if the
fpuBusy is unasserted.
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Figure 1. The UC Berkeley SPUR Multiprocessor System.
The processor is a single chip with an on-board instruction buffer (IB). The floating point unit
(FPU) is tightly coupled to the CPU via the local processor bus. The cache controller is
integrated on one chip with off chip tag and data RAMs. The caches work together to implement
a cache consistency protocol, described in [KEP]. Shared memory and 1/O devices are accessible

through the system bus.
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Signals dataMay Valid and tagMatch come from the cache controller, as shown, to both the CPU

and FPU.

Besides the signals above, the CPU must also have the following hardware to

SUppOl‘t COprocessors:
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Figure 3. The SPUR system clocking scheme.
Clocking is 4-phase, non-overlapping as shown, with 25 nsec high levels, 10 nsec underlap low

levels yielding a 140 nsec total cycle time.

fpulDbit: This bit is sent out to the coprocessors via the fpulD signal line to
inform which coprocessor is selected by the CPU. In the current
implementation, this is 1 bit (maximum number of coprocessors is two) and is
part of the UPSW.

fpuParallel: 1 bit. When asserted, it enables concurrent operation (parallel
mode) of the processor (CPU) and the active coprocessor (FPU). If this bit is
unasserted, concurrent operation is prohibited (forcing sequential mode).
Concurrent operation is described later.

fpuPresent: 1 bit. When asserted, it indicates to the CPU that an FPU
device is available in the system. When not asserted, the CPU traps to
runtime routines to emulate floating point hardware operations.

fpuPC: A special register which stores the address of the last FPU
instruction the CPU issues. Due to concurrent operation of the CPU and
FPU, the PC inside the CPU may not be pointing at the FPU instruction
that causes the exception.

2.7. Floating Point Unit Micro-Architecture

The description of the internal architecture and structure of the floating
point unit is discussed in another report in this Technical Memo. The following
sections of this report describe in detail the interaction between the CPU and
FPU relative to normal processing, exception and interrupt handling, concurrent
operation, and so forth. Much of the material and diagrams included here
appeared earlier as part of an internal working document: Chapter 7.
Coprocessor Interface - Processor’s Perspective, by Shing 1. Kong, UC Berkeley,



August 1985.

3. COPROCESSOR INTERFACE DETAILS

3.1. Sending Instructions to Coprocessors and Suspending Operation

Every instruction the CPU fetches from its internal instruction buffer is sent
to all co-processors via fpuOpcode, fpuRS1, fpuRS2, and fpuRS3. The active
coprocessor, which is selected by the fpulDbit must decode every new instruction
it receives to determine whether or not the instruction is intended for it. However,
due to occasional CPU pipeline suspension, the CPU may not fetch one
instruction per cycle and thus may not have one instruction to broadcast every
cycle. Two reasons may exist for CPU pipeline suspension:

1. The FPU is busy with a previous operation and the CPU must to wait until
it becomes free.

2. Other reasons that are NOT related to FPU operation. These include cache
miss, multiple cycle instructions, and so forth.

Whenever the CPU’s pipeline is suspended because the FPU is busy, the FPU
operation cannot be suspended. Otherwise, deadlock may result. On the other
hand, whenever the CPU’s pipeline is suspended due to reasons mentioned above
in the second category, certain FPU activities must be suspended to prevent it
from advancing to an inconsistent state if a trap occurs. Thus, FPU operations
can be suspended by the CPU with the fpuSuspend signal. (Note: The FPU does
not have to suspend everything as soon as it receives the fpuSuspend signal. It
must simply remain in a state where certain instructions can be killed if a trap
occurs and before writing to internal registers.) This is illustrated in Figure 4,
which shows that the CPU asserts the fpuSuspend signal during phi4 before the
first suspended cycle and disasserts the fpuSuspend signal during phi4 before the
first normal cycle after suspension.

There are two other things in Figure 4 worth pointing out before continuing
the discussion:

1. Ifet(FPU) means FPU is in Ifet cycle and NoOp(CPU) means CPU is in
NoOp cycle.

2.  Depending on whether I1 is a CPU instruction or an FPU instruction, the
Exec cycle of I1 can either be in the CPU or the FPU.

The CPU asserts the signal fpuNewlnstr to tell the coprocessor that new
values for fpuOpcode, fpuRS1, fpuRS2, and fpuRS3 are available and valid.
During CPU pipeline suspension, no new instructions are issued to the FPU. This
is also illustrated in Figure 4 which shows signal fpuNewlInstr unasserted zero
during the CPU pipeline suspension. '
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Figure 4. Ilustration of fpuSuspend signal.

In Figure 4, also notice that during CPU pipeline suspension, the CPU
continues broadcasting the last instruction it issued (I1 in Figure 4} before
suspension. Thus, the FPU can continue latching in the instruction (I1 is always
available to the FPU during CPU pipeline suspension) until the suspension is over.
In other words, the Ifet cycle of I1 in the FPU is being repeated until the CPU
pipeline suspension is over. This is illustrated in Figure 4 by the repeating
Ifet(FPU) cycles of 1.

One final note: an instruction buffer miss does not cause the CPU pipeline to
be suspended. This is handled by using an internal MISS instruction (detailed in
the report by S. Kong).

3.2. Concurrent Operation of CPU and FPU

The CPU and FPU can function in two different modes: parallel and
sequential. In parallel mode, the fpuParallel bit in CPU’s UPSW is asserted and
concurrent operations of the CPU and FPU are allowed. The concurrent
operation of the CPU and FPU can be summarized as follows:

1. After the FPU load or FPU store is issued, the CPU and FPU can continue
to execute either CPU or FPU instructions. (Note: There must be at least
one FPU instruction between the FPU store and the FPU instruction that
produces the result to be stored. The pseudo FPU instruction SYNC may be
used for this purpose.) '
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2.  After the FPU compare instruction is issued, the CPU cannot execute any
other instruction until the FPU compare instruction is done.

3. After an FPU instruction is issued which is not in the above two categories,
the CPU can continue to execute CPU instructions, or FPU load or FPU
store instructions. No new FPU operation instructions are allowed to begin
until the previous FPU operation instruction is done.

In sequential mode, the fpuParallel bit is not asserted and concurrent
operations of CPU and FPU are disallowed. All instructions must be executed
sequentially. After the CPU issues an FPU instruction, the CPU cannot continue
to execute any instructions until the FPU instruction is done. In other words, all
FPU instructions are treated like FPU compare mentioned in Case 2 above.

In the above discussion, the phrase "instruction is done” is used without any
explanation of how it is detected. In this FPU interface, the FPU will disassert the
fpuBusy signal whenever the FPU instruction is done. This is illustrated more
clearly in the next section with timing diagrams.

3.3. Timing of Coprocessor (FPU) Instructions

3.3.1. Timing of the FPU Load & Store

Figure 5b shows the timing of the FPU load instruction. The only obvious
difference between this and a regular CPU load (Figure 5a) is that the FPU
latches in the data instead of the CPU. Similarly the only obvious difference
between a regular CPU store (Figure 6a) and the FPU store (Figure 6b) is that
the FPU sends out the data instead of the CPU. The goal here is to make the
FPU behave identically to the CPU: receive input data and send output data
during the same times the CPU would. This essentially makes the FPU
transparent to the cache controller.

One important point shown in Figures 5 and 6 is that in a FPU load or store
instruction, both the CPU and FPU are responsible for checking cache miss. Both
the CPU and FPU must monitor the dataMayValid and tagMatch signals to form
their own dataValid line (see Figure 2) This is necessary because a cache miss
requires both the CPU and FPU to do something special. The CPU has to
suspend the pipeline (as discussed in the cache controller section). The FPU, on
the other hand, has to repeat its memory access cycle and suspend all FPU
activities that are related to FPU instructions received after the FPU memory
access instruction.

This is illustrated in Figure 7, which shows an FPU load, which causes a
cache miss, and is followed by another FPU load instruction. For the more
complicated case where a CPU load or store instruction is followed by an FPU
load or store instruction, please refer to Section 3.4.1. Notice that in Figure 7,
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Figure 5. CPU and FPU load instruction timing.

the CPU does not assert the fpuSuspendfP signal during the CPU pipeline
suspension, because the FPU cannot stall its memory access operation. The FPU,
however, must suspend all FPU activities that are related to FPU instructions
recetved after the FPU memory access instruction, until the pending cache miss
ts serviced. For erample in Figure 7, the second FPU load instruction is
suspended until valid data ts received for 10. Any FPU instruction received by
the FPU before 10, however, can continue its execution.

Furthermore, the FPU load and store instructions do not cause fpuBusy to

be asserted. If there is no cache miss, the FPU load and store instructions are
both four cycle instructions, the same as all other CPU instructions. In the case of
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Figure 6. CPU and FPU store instruction timing.

a cache miss, the fpuBusy line must also remain low so that the FPU load and
store can be handled like CPU load and store.

In Section 3.2, it was shown that the FPU load or store instruction can be
treated the same as a CPU instruction as far as concurrent operation of the CPU
and FPU is concerned. Here it is shown that the timing of the FPU load or store
is very similar to regular CPU load. Therefore, it may be advantageous to give
the FPU load and store an opcode similar to other CPU instructions as compared
to an opcode similar to other FPU instructions. Even though both the CPU and
FPU monitor the dataValid line, only the CPU has to monitor the pageFault or
busFault lines. This is explained in Section 3.4.
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Figure 7. FPU cache miss followed by FPU load or store.

3.3.2. Timing of FPU Compare Instruction

The timing of the FPU compare instruction is shown in Figure & For
simplicity, it is assumed that when this instruction is launched, the FPU is not
busy (fpuBusy = 0). The case where the FPU is busy (fpuBusy = 1) is similar to
the case discussed in Section 3.3.3.

Assuming the FPU compare instruction takes more than one cycle to finish,
the fpuBusy signal will be asserted in the following phi3 to indicate that the FPU
is busy doing the comparison and the fpuBrT. F signal is therefore not valid.
Since no instruction can be executed until the FPU compare is done (see Section
3.2), the CPU pipeline is suspended until the FPU disasserts the fruBusy line to
indicate that the comparison is done and fpuBrT F is valid. There are several
things worth noticing in Figure 7.

1. During the CPU pipeline suspension, the fpuNewlnstr signal is not asserted
and the instruction I1 is broadcast repeatly to the FPU.

2. The address of instruction I2 is a function of the fpuBrT_F signal.
Depending on the signal fpuBrT_F, 12 can either be I1 + 4 (each instruction
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Figure 8 FPU compare instruction timing.

is 4 bytes long) or be the target address provided by I0.

3. During the CPU pipeline suspension, the FPU operation is not suspended
(fpuSuspend remains unasserted throughout), otherwise a deadlock results.

3.3.3. Timing of Other FPU Instructions

The timing of an FPU instruction, which is neither an FPU load, an FPU
store, nor an FPU compare instruction is shown in Figure 9. In this figure, I0 is
the FPU instruction that caused the FPU to be busy (fpuBusy = 1).

Figure 9 shows the more complicated case in which the fpuParallel bit is on
(parallel mode - see Section 3.2) and I1 is another FPU instruction. Since the
CPU reads the fpuBusy signal during phi3 of I1’s Ifet cycle, in order to stop I1 in
time, the FPU must assert this signal by phi3 of the Ist execution cycle of I0.
Furthermore, notice the following:

1. Both I0 and I1 have more than one Exec cycle. This is possible because these
Exec cycles are performed by the FPU.

2.  During the CPU pipeline suspension, the fpuNewlnstr signal is disasserted
and the instruction I1 is broadcast repeatly to the FPU.
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Figure 9. General FPU instruction timing.

3. During the CPU pipeline suspension, the FPU operation is not suspended
(fpuSuspend remains unasserted throughout), otherwise a deadlock results.

4. Instruction I2, which is not an FPU instruction, is allowed to continue (does
not cause the CPU pipeline to suspend) because it is assumed that the
fpuParallel bit is asserted and I1 is not an FPU compare instruction.

3.4. How Special Cases Are Handled By This Interface

3.4.1. CPU Cache Reference Followed By FPU Cache Reference

A CPU cache reference followed by an FPU cache reference (or any
combination of the two) can be handled by the FPU as long as the FPU monitors
the dataValid and fpuSuspend signals. This is illustrated in Figure 10.

Figure 10a shows the simplest case where neither instruction 10 nor I1 causes
a cache miss. The FPU will not be mislead by the first assertion of the dataValid
signal as long as the FPU knows when to start checking the dataValid signal.
This is a requirement even for the simplest case when an FPU load or store
instruction is not preceded by any other cache reference instruction. As indicated
in Figures 5, 6, and 7 (Il in Figure 7), without any pending cache miss, the FPU
does not start checking the dataValid signal until two cycles (third cycle overall)
after it receives the FPU load or store instruction.
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causes a cache miss. Dye to the pending cache miss caused by the CPU load, the
FPU cannot start looking at the dataValid line unti] two cycles after jt receives

signal. The CPU pipeline is suspended due to the cache miss caysed by I0. Since
the CPU pipeline Suspension is caused by Io (which is not an FPU instruction) the

SpuSuspend signal is asserted (see Section 3.1).

By comparing I1 in Figure 102 and 11 in Figure 10b, it is obvious that the
SpuSuspend signal stops the FPU from getting into I1’s memory access cycle
(Mem) until the pending cache miss s serviced. Since II is not i its memory
access cycle, the FPU does not look at the dataValid signal and will pot be

mislead by the first assertion of the dataValid signal.
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Figure 10b. Timing for CPU cache miss followed by FPU load or store.

Finally, as pointed out in Section 3.3.1, if I1 in Figure 10b causes a cache
miss, the CPU pipeline will again be suspended, but the fpuSuspend signal won't
be asserted. The FPU controller must repeat the memory access cycle of I1 until
valid data is received (dataValid == 1) and suspend all all other activities in the
FPU.

By using the fpuSuspend signal, the FPU does not have to understand the
CPU load or store instruction. Also, the FPU does not have to match each
assertion of dataValid with each cache reference. All the FPU has to do is mind
its own business and keep an eye on the fpuSuspend signal. That is:

1. If fpuSuspend is asserted, suspend FPU'’s activities, (Note: The FPU does not
have to suspend everything as soon as it receives in which certain
instructions, if they happen to be FPU instructions, can, be killed (see Section
3.4.2) if a trap occurs.) otherwise,

2. Start looking for valid data by monitoring the dataValid signal two cycles
after it receives the FPU load or store instruction.
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3. If dataValid is not asserted, repeat the memory access cycle and suspend all
FPU activities that are related to FPU instructions received after the FPU
memory access instruction until dataValid is asserted.

Figure 10c shows the case in which the FPU load or store instruction results
in a page fault or a bus fault (see the discussion on the cache controller chip). The
FPU need not monitor the pageFault or busFault lines because the FPU knows a
pageFault or busFault has occurred when it receives the internal (internal to the
CPU) TRAP_CALL instruction, The only thing that can cause a trap when the
CPU pipeline is suspended is a page fault or bus fault. Figure 10c only shows why
the FPU does not have to monitor the fault lines. For a detailed discussion of
what the FPU has to do after receiving the TRAP_CALL instruction, please refer
to Section 3.4.2.

CPU Pipeline

Suspension

fault is

(CPY) detect
Mem(FPU) by the CPU

Eff Addr Mem(FPU) Meu(FPU)
>4 i I I ] } i I | ] 1 i b)) |
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(Cache Miss)

FPU recetves internal

fnstruction TRAP_CALL
et
Internal | . } 5

'I'R.AP_CALLBI"‘I<

Figure 10c. Timing of FPU cache miss which results in a fault.

3.56. FPU’s Response to CPU Trap

The FPU knows the CPU is taking a trap when it receives the internal
(internal to the CPU) TRAP_CALL instruction. This section discusses the
procedure the FPU must follow after it receives the TRAP_CALL instruction.

Inside the CPU, there is a slight difference between a trap caused by a page
fault or bus fault and a trap caused by something else: a page fault or bus fault
causes a trap during CPU pipeline suspension while the other conditions can only
cause a trap when the CPU pipeline is not suspended. How the FPU should
response to TRAP_CALL depends on whether the page or bus fault is caused by
an FPU cache access, or by a CPU cache access. Therefore, there are three
different cases to consider:

1. The CPU takes a trap because the CPU cache reference results in a page or
bus fault,
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2. The CPU takes a trap because the FPU cache reference results in a page or
bus fault, '

3. The CPU takes a trap for reasons other than 1 or 2 above. This will be
referred to as “regular trap” for the rest of this section.

Case 3 described above is the simplest and is illustrated in Figure 11a. When
the FPU receives the internal instruction TRAP_CALL, all it has to do is check
whether the last instruction it received before receiving TRAP_CALL (in Figure
11a, this is I1) was an FPU instruction. If that is the case, then that instruction
must be killed. Otherwise, no action has to be taken.

FPU sends out internal

Trap request available instruction TRAP_GALL
Het Brec \Nuu / Wr
l J | 4 l b oy L l . 4 4 l H L L
1 T 1 l

|
IOITIw"YT] LA
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l!eth/ Fxec Null Wr
Internal - | . ' % | L . : l j) . i l i : L ]

Istipsructionin |, .} . o ),
the trap handler | 1 ! T 1 T T 1 | v

Figure 11a. A regular TRAP timing sequence.

Figure 11b illustrates Case 1 in which the CPU takes a trap because a CPU
cache reference results in a page or bus fault. As discussed in Section 3.1,
whenever the CPU pipeline is suspended for a CPU instruction, FPU operation is
also suspended. In other words, during CPU pipeline suspension, no FPU
instruction can complete its execution even if the CPU-FPU pair operates in
parallel mode. I1, which is shown in Figure 11b as a FPU instruction, and thus
won't finish its execution during the CPU pipeline suspension and can be killed
easily when FPU receives the TRAP_CALL instruction. Any FPU instruction
received before I1, however, must be allowed to finish.
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Figure 11b. Timing of trap caused by CPU page or bus fault.

Notice that in Figure 11b the fpuSuspend signal is still asserted when the
FPU receives the TRAP_CALL instruction. As discussed in Section 3.1, as long as
fpuSuspend is asserted, the Ifet cycle of the 12 is being repeated by the FPU.
Consequently, when the FPU receives the TRAP_CALL, the FPU still considers
[2 to be in its Ifet cycle. As far as the FPU is concerned, instruction I2 is
overwritten by the TRAP_CALL instruction. The last instruction the FPU
received before receiving the TRAP_CALL is, in effect, still I1. Therefore the
same hardware, which is used in Case 1 to kill I1 in Figure 11a, can be used here
for Case 1 as long as the hardware ignores the empty cycles when the FPU is
suspended by the fpuSuspend signal.

Figure 11c illustrates Case 2 in which the CPU takes a trap because the FPU
cache reference results in a page or bus fault. The CPU pipeline is suspended due
to the cache miss, and the FPU must suspend all execution activities.
Consequently, during an FPU cache miss, no FPU instruction can complete its
execution even if the CPU-FPU pair operates in parallel mode. This is discussed
in detail in Section 3.3.2. I1, which is shown in Figure 11c¢ as a FPU instruction,
thus won't finish its execution during an FPU cache miss and can be killed easily
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when the FPU receives the TRAP_CALL instruction.
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Figure 11c. Timing of trap caused by FPU page or bus fault.

Since the FPU is not looking at the page fault or bus fault line, it does not
know a fault has occurred until the FPU receives the TRAP_CALL instruction.
Therefore in Figure 11c, when the FPU receives the TRAP_ CALL instruction, the
FPU still considers I2 is in its Ifet cycle. Once again, the TRAP_CALL
instruction has overwritten instruction I2 and Il is still, in effect, the last
instruction the FPU received before receiving the TRAP_CALL. Therefore the
same hardware, which is used Case 1 to kill I1 in Figure 11b, can be used here for
Case 2 as long as the hardware ignores the empty cycles when most of the FPU
activities are suspended due to an FPU cache miss.

3.8. Internal MISS Instruction

Besides the internal TRAP_ CALL instruction, the FPU must also understand
the internal MISS instruction, which is used to handle instruction buffer misses.
Upon receiving this instruction, the FPU should not do anything. Thus, the FPU
must treat this instruction the same way it treats all others CPU (integer)



instructions.

3.7. Exception Handling in the CPU-FPU

Figure 12 shows a most critical case, where two FPU instructions are in series
and the first one causes an exception. In this case, the CPU must respond to the
exception before the CPU updates the FpuPC incorrectly. When the CPU
responds to the exception by taking a trap, the FpuPC must contain the address
of 10 - the FPU instruction that caused the exception.

CPU detects
1puBxcept =0
FpuPC CFU Pipeline
FRU =10 Suspension
instruction
Het %«PPU BedFFU) Wr(F'RJ)
. I L | i . ! ] L I I b}
Io [ T T T T T ) T i Y T T I 1
out internal
fpuBusy =0 fpuBusy =1 fpuBusy =1 tpuBusy =0 {CFU d’“’i; instruction
TRAP_CALL
FPU vpua..y-o
instruction e (FFU) u«(m )
N:Op(
| . i | | . ! >
Il - ™ T I
(o 28] unh k CPU repeats sending ) CcruU dou not fpuNewlnstre=]
11 to FFU 1t FPU
fpuNewinstre=1
i Hes Bxec
This instruction I | L L L 1 . >
i killed 2 | T 1 T T | T T ™
CFU sends
FRU
12 to FPU receives
fpuNewlnstr=el instruction

Figure 12. Timing of FPU exception.

Figure 12 should be compared with Figure 9, which shows the case where two
FPU instructions are in series but none causes an exception. The following two
assumptions are made in Figure 12:

1. The CPU looks at the fpuE:tcep line only when it encounters another FPU
instruction.

2. The CPU, if no exception has occurred, updates the FpuPC during phi2 of
the first execution cycle of an FPU instruction. (Note: The FpuPC is likely
to be a master slave register. The master will latch in every instruction
address. The slave, however, is updated only if the instruction turns out to be
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a FPU instruction.)

In Figure 12, when the CPU encounters the FPU instruction I1, the CPU
checks for a perding FPU exception. In Figure 12, the pending exception is caused
by 10. The FpuPC :nust therefore contain the address of I0 when exception is
serviced. To preveat the CPU from updating the FpuPC to the address of I1, the
CPU must read the fpuEzcep during phil of I1’s first execute cycle. I1’s address is
saved automatically by the internal TRAP_CALL instruction because the CPU
considers I1 the instruction that caused the trap. Instruction I2 is killed because it
is the instruction immediately following the ”trapped” instruction.

CPU Pipeline
Suspension
(Cache Miss)}
dx.ttVLlidﬂO dxt;Vn.lid=0 d.l.ta.Valid—l
] : I !
t I T t t T T

Eff Addr
10 A4—F— T ; % 1I
Load
fpuSuspend=0 fbuSuspend*——-l PpuSuspend—l ﬁ:uSuspendﬁ)
fpuBusyas0 CPU sends
out internal
CPU detects instruction
fpubxceps=] TRAP_CALL
Ifet l NoOp(FPU) NoOp(FPU) l
| ! . L It 1wy ! L L > ! I L ] L i >
I1 | T BN T T T | ¢ ] T T T T TT ! ] T
FPU
Insstruction CPU does not fpuNewInstr=]
update FpuPC
Ifet(FPU) Ifet(FPU)
Ifet NoOp(CPU) NoOp(CPU) Exec
| L L L | : . 4 | b)) ] I . L | i . l | >
12 I ! T T T | R T i 1 s | T T LA | 1 T T ] T
CPU sends FPU
12 to FPU recetves
fouNewlnstres] o l':‘:m”mm instruction
TRAP_CALL
fpuNewlnstr=0 I
Ifet
| ! l I | >
I T T T ' (

Figure 18. Timing of CPU cache miss followed by FPU exception.

A very interesting question can be raised in Figure 11b, and 1lc: what
happens if I1 is an FPU instruction and there is a pending exception caused by an
earlier FPU instruction. As explained in Section 3.4.2, the Il is simply killed.
Therefore, instruction I1 will not detect the pending exception because the page
or bus fault has killed I1. The pending exception will either be detected in the
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trap routine (if there is at least one FPU instruction inside the trap handle)r or
will be detected when Il is re-executed after the trap. Finally, if I0 in Figure 11b
and 1lc does not cause a page or bus fault, I1 will still cause a trap. However,
that trap will not occur until the CPU pipeline suspension is over. This is
illustrated in Figure 13.
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Implementing a Cache Consistency Protocol, 12th Annual Symposium
on Computer Architecture, Boston, MA, (June 1985)..
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Table 1. SPUR FPU Coprocessor Instructions

ARITHMETIC OPERATIONS

Instruction Syntax

Instruction Semantics

FADD Rd,Rs1,Rs2 CP Rd <-- CP Rsl + CP Rs2

FSUB Rd,Rs1,Rs2 CP Rd <- CP Rsl - CP Rs2

FMUL Rd,Rs1 Rs2 CP Rd <- CP Rsl * CP Rs2

FDIV Rd,Rs1,Rs2 CP Rd < CP Rsl / CP Rs2

FABS Rd,Rs1,0 CP Rd <- CP Rsl with sign = 0
FNEG Rd,Rs1,0 CP Rd <- CP Rsl with inverted sign
FLOAT Rd,Rs1,0 CP Rd <- convert to extended (CP Rsl)
FIX Rd,Rs1,0 CP Rd <- convert to integer (CP Rsl)
CVTS Rd,Rs1,0 CP Rd <- convert to single (CP Rsl)
CVTS_UNRND Rd,Rs1,0 CP Rd < convert to single (CP Rsl)
CVTD Rd,Rs1,0 CP Rd <L - convert to double {CP Rs1)
CVTD_UNRND Rd,Rs1,0 CP Rd < - convert to double (CP Rsl)

LOAD COPROCESSOR REGISTERS

Instruction Syntax

Instruction Semantics

LD_SGL Rd,Rs1 RC CP Rd <- M [(Rs] + RC)
LD_DBL Rd,Rs1 RC CP Rd <- M [(Rs1 + RC)
LD_EXTI1 Rd,Rs1,RC CP Rd <- M [(Rs1 + RC)
LD_EXT?2 Rd,Rs1,RC CP Rd <- M [(Rsl + RC)
LD_INT Rd,Rsl RC CP Rd <- M [(Rsl + RC)

STORE COPROCESSOR REGISTERS

Instruction Syntax

Instruction Semantics

ST_SGL Rs2,Rs1,SC CP Rs2 -> M [(Rsl + SC)
ST_DBL - Rs2,Rs1,SC CP Rs2 -> M [(Rsl + SC)
ST_EXT1 Rs2,Rs1,5C CP Rs2 -> M [(Rs1 + SC)
ST_EXT?2 Rs2,Rs1,5C CP Rs2 -> M [(Rs1 + 5C)
ST_INT Rs2,Rs1,SC CP Rs2 -> M [(Rsl + SC)

CPU <—> COPROCESSOR REGISTERS

Instruction Syntax

Instruction Semantics

FROM_CP Rd,Rs1,Rs2
TO_CP Rs2,Rs1,Rd

CP RD.data
Rs2.data

<-- CP Rs2<«31:00>
-> CP Rd

COMPARE AND BRANCH ON COPROCESSOR CONDITIONS

Instruction Syntax

Instruction Semantics

CP_CMP_BR_D- cond,Rs1,Rs2,offset
CP_CMP_BR_TRUE cond,Rs1,Rs2 offset
CP_CMP_BR_FALSE cond,Rs1,Rs2 offset

CP_CMP_TRAP cond Rs1,Rs2
CP_CMP_BR_xxx bit<24>
CP_CMP_TRAP bit<23>
bit <22>
bit<21>
bit<20>

equal

if (CP Rsl cond CP Rs2)

if (CP Rs1 cond CP Rs2)

if (CP Rsl cond CP Rs2)

if (CP Rsl cond CP Rs2)

Invalid Exception if relation unordered
unordered

less than

greater than
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Table 2. SPUR FPU Coprocessor Instruction Cycle Times

Cycles (operation only)

QOO OOt et et s OO O

ARITHMETIC OPERATIONS
Instruction
FADD ‘Rd,Rs1,Rs2
FSUB Rd,Rs1,Rs2
FMUL Rd,Rs1,Rs2
FDIV Rd,Rs1,Rs2
FABS Rd,Rs1,0
FNEG Rd,Rs1,0
FLOAT Rd,Rs1,0
FIX Rd,Rs1,0
CVTS Rd,Rs1,0
CVTS_UNRND Rd,Rs1,0
CVTD Rd,Rs1,0
CVTD_UNRND Rd,Rs1,0
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1. Introduction

This documents specifies the design of a shared system bus for a synchronous
rmultiprocessor based on shared memory. The bus is called the SpurBus and it is
part of the SPUR, Symbolic Processing Using RISCs, project.

SPUR is a multiprocessor workstation. Each processor is a RISC, Reduced
Instruction Set Computer, with a tagged architecture for supporting the LISP
programming environment and an instruction buffer to reduce the instruction
traffic across the chip borders. Each node in the multiprocessor contains a
processor, a large cache, a floating point coprocessor and a cache controller. The
caches are kept consistent by a *“snooping cache protocol” [Katz85a] implemented
in the cache controller and across the bus.

The goal of SPUR is to provide a low cost, fast uniprocessor with additional
processors available for research efforts into shared memory multiprocessing. The
number of processors is small (8 to 10) so that a low cost interconnect, the system
bus, will be able to supply the required memory bandwidth. The choice of a system
bus is influenced by the focus of our research: a multiprocessor LISP programming
environment. The system bus is well-understood, flexible, reliable, a convenient
point of serialization for synchronization and monitoring and, most important, its
design can be borrowed from existing microcomputer system buses.

The Texas Instruments NuBus was selected for our basis design. The NuBus is
described in detail in this document. A subset of it is extended to provide for the
cache coherency and virtual memory mechanisms in SPUR The extensions are
transparent to the NuBus subset because the SPUR project will be using
cormmercial memory and 1/0 boards using the NuBus protocol. The resulting design
is called the SpurBus.

This specification is organized so that the SpurBus is presented as modifications to
the NuBus. Section 2 presents the NuBus in detail including features that the
SpurBus does not support. These absent features are discussed in section 3. The
new features of the SpurBus are introduced and detailed in section 4. Finally the
details of the mechanical backplane are presented in section 5.
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2. NuBus Specifications

The description of the NuBus in this document is drawn from the Texas Instruments
document, “NuMachine NuBus Specification,” part number TI-2242825-0001,
published in 1983. Both documents are subject to change without notice.

2.1. Overview

Figure 2.1 shows an overview of a NuBus configuration. Each board has a NuBus
interface connected to the backplane. The NuBus provides each interface with a
group of data transfer lines {address/data and control), a group of arbitration
lines, a central clock and an unique identifier.

Some of the major characteristics of the NuBus are:

synchronous
All events are synchronized by a central clock; however, the number of cycles
between events is usually unspecified. In this way events are asynchronous in
bus cycle units.

bandwidth
The 10 MHz nominal cycle time coupled with block transfers gives a peak
transfer rate of 37.5 Mbytes/sec.

Systemn Board System Board
NuBus Interface NuBus Interface
A ‘ P F 1’ A
-4 |- d___]-_NuBus | _ | } __|__J%
// slot slot \\
d d
,’ « CLK/ > ‘\
/\ B v arbitration 2 . ;
< - );
\ B + address/data g > p
d /
\\ ___________________________ /
; \ ’

Figure 2.1: NuBus Block Diagram
The NuBus provides 32 multiplezed address /data lines, some conérol,
arbitration, clocking and unigue identifiers to each backplane slot,
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simple
The only operations on the bus are reads and writes. Interrupts and IO
transfers are memory mapped into a large physical address space (4 GBytes)

small consumption of backplane lines
Multiplexing address and data lines helps limit signal lines to a total of 49.
With power and ground lines included, only one 98 pin backplane connector is
required by the NuBus.

distributed configuration
Each of the 16 possible bus ports are provided with backplane identification.
This eliminates board "DIP” switches and allows distributed, parallel
arbitration rather than daisy chain bus grants.

multiprocessor support
The fair arbitration policy and the capability to lock the bus across distinct
transfers provides basic and effective muitiprocessor support.

2.2. Connector Pins Description

All NuBus signals use negative logic; that is, the asserted state has a low voltage on
the line and the unasserted state has a high voltage on the line. This is indicated in
Table 2.1 by the suffix /" on each signal name. To try to reduce confusion, values
referred to in this document will be given as high or low and will represent the
voltage of the negative logic signal. This means that high value is & logic zero and a
low value is a logic 1. This document will also use the terminology “‘asserted” and
“unasserted” to indicate movement of data. An asserted signal will usually be a
signal driven low; however, the address/data lines are asserted whenever they are
driven high or low.

The NuBus defined backplane lines can be grouped as Clock, Control, Address/Data,
Arbitration, Parity, Utility, Reserved and Power and Ground. Table 2.1 shows these
groups, their member signals, the connector pins they require and the electrical
protocol of each. The Clock is described in the next section, Utility is describe in
its own section, Control, Address/Data and Parity are described in the section on
data transfer and Arbitration is described in its own section. The electrical
protocols are input-only, tri-state {(drive as output, receive as input and short
circuited) and open-collector (value is the logic AND of all ports driving the signal
as output).

2.3. System Timing

The NuBus clock, shown in Figure 2.2, has a nominal cycle time of 100 nsec. It has a
75% duty cycle; that is, 75 nsec unasserted and 25 nsec asserted phases. The low to
high transition (clock assertion edge) triggers changes in bus signals. The high to
low transition {clock deassertion edge) triggers bus signal sampling. The duty cycle
of the central clock is asymmetric to provide increased time for propagation and
setup time while preserving enough time between signal sample and change to avoid
skew problems. Figure 2.3 shows the setup, hold, propagation, assertion and
release times relative to the clock phases.

2.4. Physical Memory Map

The NuBus defines a large physical address space (4 GBytes). Each bus port, called
a slot, has some of this memory mapped to it. In total the top 16th (256 Mbytes) of
the physical address space, called slot space, memory maps the 16 possibie bus
ports. Figure 2.4 shows this organization of physical memory as it applies to a
board in slot 13.

The board at each bus port interprets reads and writes to its slot without
constraint. Processor boards desiring interrupt capabilities associate interrupt
registers with slot space addresses. They may also provide debug or status
information through slot space addresses. Memory boards may provide their RAM
through slot space and 10 boards can provide control, status and data ports
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GROUP SIGNAL # OF PINS PROTOCOL
Clock CLK/ 1 input-only

Control START/ 1 tri-state

ACK/ 1 tri-state

™0/ 1 tri-state

™1/ 1 tri-state
Address/Data | AD<31..0>/ 32 tri-state
Parity Sp/ 1 tri-state

SPV/ 1 tri-state
Arbitration ARB<3..0>/ 4 open-collector

RQST/ 1  open-collector
Utility RESET/ 1 open-collector

ID<3..0>/ 4 input-only

Total Signals 49

Reserved RSVD/ 1

Power/Ground | +5 11

-5 8

+12 2

-12 2

GND/ 23

Total Lines 96

Table 2.1: NuBus Backplane Lines

The NuBus defines the use of one 96 pin backplane connector for 49
signal lines plus power and ground. The protacol of a signal refers to
its driving characteristics.




Draft SpurBus Specification

. 75 ns ﬁml
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The NuBus has a synchronous design. The central clock, CLK/, has a
75% duty cycle separating its sample and assertion edges.
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Figure 2.3: Signal Timing
The selection of the 75% duty cycle provides for greater relative
emphasis on propagation and setup times while preserving freedom
Jrom bus skew problems.
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18 MBytes 258 Ubytes 4 GBytes
'mm L LT FPFTFYYEF g
S FFFFFITF Slot Spece :
.......... 0000000
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slot 15 i phyxical
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space i space
. Y
FDOOO000 F0000000 00000030

Figure 2.4: Physical Memory Layout
MNuBus physical memory maps the top 256 MB to its 16 slots, 16 ME
each. 7This slof space is used to memory map inlerrupl and [1/0
transfers.

through slot space. All boards should provide identification {(board type, revision,
name, ete.) and configuration control registers through slot space. The remaining
physical memory (non-slot space) is not constrained by the NuBus specification.
Typically, memory boards will allow their RAM addresses to be remapped to
arbitrary locations (if the RAM of different memory boards is required to be
contiguous in physical memory).

2.5. Utility Signals

RESET/
This open-collector signal is used to synchronize the state of the system. If it
is asserted for one cycle all NuBus interfaces are initialized. This is referred
to as a Bus Reset. If it is asserted for more than one clock period, then it
should be asserted for at least a millisecond (10000 cycles) and the entire
system is initialized to the power-up state. This is called a System Reset.

ID<3..0>/
These four bits name, in binary, the backplane slot that the reading board
occupies. In addition to uniquely naming each slot these lines are used for
NuBus arbitration (see section 2.7). These lines are also used to determine
whether a physical address is mapped to the local slot (addresses
F(ID)XXXXXX, X any hex digit are mapped to the local slot).
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2.8. Data Transfer

The NuBus defines read and write data transfers. These may move bytes, halfwords,
words, doublewords, quadwords, octwords and doubleoctwords. All units must be
aligned in physical memory according to their size {more precisely, starting address
modulo size is zero). For the small units, the byte and halfword units, the data is
returned as if the word enclosing them was read. It is up to the board or processor
receiving the unit to justify the data as it wishes. Far these sizes and the word size,
one transfer across the backplane is all that is needed. These are referred to as
word reads and word writes. For the larger sizes, multiple transfers across the
backplane are needed. These are referred to as block transfers. This section
describes word and block transfers in detail.

Before a NuBus interface may begin a data transfer it mmst become the bus master.
This is the process of arbitration. Once a master, the interface mist still wait for
the possible current transfer to complete. When it has obtained mastery and seen
the end of the last master’s transfer then the interface rmay initiate a new transfer.

To avoid system deadlock when board or backplane errors occur, the system is
required to provide a “watchdog timer”. This timer is started at the beginning of
each transaction, reset each time a word is successfully transferred and cancelled
at the end of a transaction. If it fires at any time during a transfer, then an error is
very likely and the watchdog generates a transfer termination in error.

2.6.1. Control Signals

The signals START/, ACK/, TMO/, TMO/, AD<5..0>/ and SPV/ are data transfer
control signals.

START
The START signal originates data transfers and triggers arbitration. When
asserted, it has a one cycle duration. This cycle is referred to as a START
Cycle. During a START cycle all possibly addressed boards, slaves to the
current bus master, examine the remaining control lines and the address lines
to determine whether they are eflected. Each START cycle is paired with
exactly one ACK cycle.

ACK The ACK signal terminates data transfers and triggers the current arbitration
winner to take over bus mastery. It also has a one cycle duration and this
cycle is referred to as an ACK cycle. During an ACK cycle the last word of data
transferred is valid and the remaining control lines contain transfer status.
There is exactly one ACK cycle for each START cycle.

TMO and TM1
These are multi-purpose control lines. During a START cycle TM1 carries the
transfer type (unasserted=read, asserted=write) and TMO determines whether
the transfer unit size is a byte (asserted=byte transfer) as shown in Table 2.2.
During an ACK cycle they carry transfer status inforrmation as shown in Table
2.4. Between a START and ACK cycle of a block transfer TMO is used to strobe
word transfers (asserted means data lines valid for non-final word transfer).

AD<1> and AD<O>
During a START cycle these are used for control instead of addressing.
Conveniently, if the transfer unit is a byte, these can be interpreted as the
byte address. If the transfer unit is not a byte they describe units of word, low
halfword, high halfword and block transfer as shown in Table 2.2. When block
transfer is specified, AD<5..2> may adso carry control information.

AD<5..2>
During a START cycle of a block transfer at least some of the low order address
bits carry no information because blocks are aligned. For example, the
smallest block is a doubleword and is doubleword aligned. So its low order
address bits (AD<2..0>) are 000. NuBus block transfer encoding, shown in
Table 2.3, specifies that if AD<2> is unasserted then the transfer unit is a
doubleword and AD<S5..3> are valid address bits. However, if AD<2> is

LT IO



Draft SpurBus Specification

TM1/ | TMO/ | AD<1>/ | AD<0>/ | Transfer

L L L L Write Byte 3

L L L H Write Byte 2

L L H L Write Byte 1

L L H H Write Byte 0

L H L L Write Halfword 1
L H L H Write Block

L H H L Write Halfword O
L H H H Write Word

H L L L Read Byte 3

H L L H Read Byte 2

H L H L Read Byte 1

H L H H Read Byte O

H H L L Read Halfword 1
H H L H Read Block

H H H L Read Halfword O
H H H H Read Word

Table 2.2: Transfer Mode Encoding
The type and size of a transfer unit are encoded in the Transfer Mode
(TM) lines and the low order address lines during a START cycle.

asserted, then the transfer unit must be bigger than a doubleword and AD<3>
should be examined. This algorithm is applied to each of AD<3> and AD<4> in
turn. If AD<4> is asserted, then AD<5> is examined, but it must be unasserted
because the largest transfer unit defined is 16 words long.

SPV The signal SP carries an even word parity bit on any cycle that SPV is asserted.
The AD lines are the only lines covered by this parity mechanism.

2.6.2. Single Transfer Operations

A single transfer operation is composed of a START cycle specifying a byte, halfword
or word transfer unit and its address followed by and ACK cycle specifying the data
and the transfer status. Many cycles may pass between these two events, as long as

AD<5>/ | AD<4>/ | AD<3>/ | AD<2>/ | # of Words Address
X X X H 2 AD<31..3> 000
X X H L 4 AD<31..4> 0000
X H L L 8 AD<31..5> 00000
H 1_4 L L 18 AD<31..6> 000000

Tabie 2.3: Block Size Encoding
Pransfer units must be aligned according to their size in memory.
This forces some of the low order bits of an address to zeroes. The
encoding of block sizes larger than one word takes advantage of these
address bits with knouwn values.
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the watchdog timeout does not occur. During the START cycle the transfer size is
specified as shown in Table 2.2. If the operation type is read, TM1 is unasserted; if
it is write, TM1 is asserted. For byte transfers TMO is asserted and AD<1..0> used
for addressing. For halfword transfers TMO is unasserted, AD<0> asserted and
AD<1> used for addressing. For word transfers TMO is unasserted and AD<1..0>
used for addressing (that is; unasserted).

2.8.2.1. Byte, Halfword and Word Read Protocol
In Figure 2.5, the protocol for single transfer read operations is shown.

R(1) The bus master drives the address and control lines (TMx, SPV and START) to
signal a START cycle. The TMx and AD<1..0> lines indicate the transfer unit
size. TM1 is unasserted and AD<1.0> are not asserted and unasserted
respectively.

F(1) All potentially addressed slaves sample the control and address lines to
determine if they are affected.

R(2) The master releases the address and control lines and waits for the ACK cycle.

R(n) The selected slave drives the data and control lines (TMx, SPV and ACK) to
signal an ACK cycle. The TMx lines indicate the transfer completion status.

R(1) ORD o . R P Riat1)
CLK/ 55

! |

: ' | |
I

| |
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i ! : !
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Figure 2.5: Word Read Protocol

Single transfer reads are composed of an address /mode cycle and a
data /status cycle. The duration of a single transfer read can be
rmany cycles as long as it is less than the system timeout period.
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F(n) The master samples the data, status and ACK lines on all falling edges until it
sees the ACK cycle.

R(n+1)
The selected slave releases the data and control lines for the next master to
use.

(1) The parameter “n” will be less than the system timeout because a watchdog on
the NuBus interface will generate an ACK cycle with a “timeout” status
whenever the transfer takes too long.

2.6.2.2. Byte, Hallword and Word Write Protocol
The single transfer write operation protocol is shown is Figure 2.8.

R(1) The bus master drives the address and control lines (TMx, SPV and START) to
signal a START cycle. The TMx and AD<1..0> lines indicate the transfer unit
size. TM1 is asserted and AD<1.0> are not asserted and unasserted
respectively.

F(1) All potentially addressed slaves sample the control and address lines to
determine if they are affected.

R(1) F(1) R(®) c R(n) F@@) R(n+1)
CLK/ 4 [
l | | |
i |
: NS S |
. |
AD<31:0>/ ———’Q ADDRESS | S : DATA >__
| : |
]
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Figure 2.6: Word Write Protocol

A single transfer write operation appears very similar to a single
transfer read. The important distinction is that the data must be
valid on the first cycle after the address has been issued.
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R(2) The master releases the control lines, drives the data and SPV lines and waits
for the ACK cycle.

R(n) The selected slave drives the control lines (TMx and ACK) to signal an ACK
cycle. The TMx lines indicate the transfer completion status. The slave may
sample the data lines on or before the ACK cycle.

F(n) The master samples the status and ACK lines on every cycle until is sees the
ACK cycle.

R(n+1)
The selected slave releases control lines and the current master releases the
data lines for the next master to use.

(1) The parameter “n" will be less than the system timeout because a watchdog on
the NuBus interface will generate an ACK cycle with a “timeout” status
whenever the transfer takes too long.

2.6.3. Multi-Transfer Operations

A multi-transfer operation, commonly called a block transfer, is composed of a
START cycle specifying a transfer unit size and its address followed by enough
intermediate data strobes to transfer all but the last word of the transfer unit and
finally an ACK cycle specifying the final word of data and the transfer status. The
data in a block transfer is contiguous in physical memory and aligned according to
the unit size. Many cycles may pass between each word transfer, as long as the
watchdog timeout does not occur. During the START cycle the operation type and
transfer size are specified. If the operation type is read, TM1 is unasserted; if it is
write, TM1 is asserted. Because it is a block transfer TMO, AD<1> and AD<0> are,
respectively, unasserted, asserted and unasserted. The transfer size is specified by
one or more of the AD<5..2> lines as follows: if AD<2> is unasserted then transfer 2
words, else if AD<3> is unasserted transfer 4 words, else if AD<4> is unasserted
transfer B words, else dernand AD<5> to be unasserted and transfer 16 words.

2.6.3.1. Block Transfer Read Protocol
The protocol of a block transfer read operation is shown in Figure 2.7.

R(1) The master drives the address lines (AD<5..0> with control), SPV if SP is valid,
drives TMO and TM1 high and START low.

F(1) All potentially addressed slaves sample the address and control lines to
determine whether they are affected.

R(2) The master release the address, TMx and START lines and begins waiting on the
TMO and ACK lines. The slave will drive TMO unasserted.

R(n) The slave drives the data, SPV and TMO lines. TMO is asserted to indicate that
a word, bit not the last word, is valid on the data lines.

F(n) The master is continually sampling the data, TMx and ACK lines looking for TMO
asserted and ACK unasserted. This is called an intermediate ACK cycle. The
data lines contain a intermediate word on the transfer unit.

R(n+1)

The slave drives TMO unasserted and begins to form the next word to transfer.

NOTE:
These intermediate stages (n) are repeated B-1 times where the size in words
of the transfer unit is B.

R(b) The slave drives the data, SPV, TMx (with a status code) and ACK lines.

F(b) The master continually samples the data, TMx and ACK lines looking for
intermediate or final ACK cycles. On the ACK cycle, the data lines contain the
last word of the transfer unit and the TMx lines contain the transfer status. If
this cycle occurs before the master believes that the last word is due then the
master must detect this and realize that its transfer is over (in error).



Draft SpurBus Specification

R(1) 1) R Bx) P R(as) RB) PO ROSD) |
| | | I -
| | : |

o e |
|

|
|
i

|
|
i | |
— —5
Y — [ i ' ’ N\ STATUS TH>—
| |
| | | [ : |
! 4 L < ¢ i
BTART/ 7 f g 7 T |
| | |
| | | | | i
|
¢ < L | ¢ . I
T2 7 [ |
[} I 1

.............................................................................................................................................

Figure 2.7: Block Read Protocol
Rock transfers use the THO line to strobe intermedinte words across
the backplane. The slave controls the data and mode lines during a
read. Fach completed word transfer resels the system watchdog
timer, so a block transfer can last much longer than a single word
transfer.

R(b+1)
The slave releases the data and control lines for the next master to use.

(1) The parameter "n” will be less than the system timeout because a watchdog on
the NuBus interface will generate an ACK cycle with a *“timeout” status
whenever the transfer takes too long.

(2) The parameter “b" will be less than the product of the transfer unit size in
words, B, and the system timeout constant referred to above.

2.8.3.2. Block Transfer Write Protocol
The protocol for a block transfer write operation is shown in Figure 2.8.

R(1) The master drives the address lines (AD<5..0> with control), SPV if SP is valid,
drives TMO high, TM1 low and START low.

F(1) All potentially addressed slaves sample the address and control lines to
determine whether they are affected.

R(2) The master release the TMx and START lines, drives the data lines with the first
word of the transfer unit and begins waiting on the TMO and ACK lines. The



Draft SpurBus Specification

R(1) r(l)R]e) g Rm)  Fn) R(ns1) R(®) F(5) RO+D)
/ j——l | |
| |

| I
| S ! S '
AD<31:6>/ —————  ADDRESS ¢ | Dam ]xé A [ Dama  D>—
il 7 1 7 |
| } i
| : ] | |
| S { S J 2
AD<s:0>/ —————K BLocx suE >€ ‘ | DATA bé : | DATA >—
| | J ] J i
| t

]
-V
THO/

£
I

3
g

|
' !
|
!
!

|
|
|
| |
C I —< <
mxziﬁ’ | ad \  STATUS '>—
| | !
| l | I | |
| C ¢ ¢ {
START/ \ l/s’ I I)) T |
|
| ! ) ! i
I | | | i
| ¢ ¢ ! ¢ ¢ 1 '
7> J ‘ 2 O I
] : ]

.............................................................................................................................................

Figure 2.8: Block Write Protocol
A block write transfer is very similar to a block read transfer. The
important difference, like the single word transfer case; is that the
master retains control of the data lines and must be able to provide
the next data word on the cycle after an intermediate acknowledge
or address lransmission,

slave will drive TMO unasserted.
R(n) The slave drives the TMO line. It samples the data lines on or before this cycle.

F(n) The master is continually sampling the TMx and ACK lines looking for an
intermediate ACK cycle. On the intermediate ACK cycle the slave may sample
the data.

R(n+1)

The slave drives TMO unasserted. The master must change the value on the
data lines to the next word of the transfer unit.

NOTE:
These intermediate stages (n) are repeated B-1 times where the size in words
of the transfer unit is B.

R(b) The slave drives TMx (with a status code) and ACK lines. It must sample the
data lines on or before this cycle.

F(b) The master continually samples TMx and ACK lines looking for intermediate or
final ACK cycles. On the ACK cycle, the TMx lines contain the transfer status.
The slave may sample the data lines on the ACK cycle. If this cycle occurs

—-13 —
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before the master believes that the last word is due then the master must
detect this and realize that its transfer is over (in error).

R(b+1)

(1

()

The slave releases the control lines and the current master releases the data
lines for the next master to use.

The parameter ““n" will be less than the system timeout because a watchdog on
the NuBus interface will generate an ACK cycle with a *timeout’ status
whenever the transfer takes too long.

The parameter “b" will be less than the product of the transfer unit size in
words, B, and the system timeout constant referred to above.

2.6.4. Transfer Completion Status Codes

The status of each transfer according to the slave is reported to the master using
the mode lines (TMx) during the ACK cycle. Table 2.4 shows the encoding and status
types.

Successful Completion

This indicates that the slave believes the transfer is successfully complete.

Bus Timeout Error

The NuBus specifies that a system timer (probably located with the system
clock) limit the duration between START and ACK cycles of a single transfer
operation and between each transfer of a multi-transfer operation. If this
timer expires, the watchdog logic will generate an ACK cycle with the *‘bus
timeout error” status.

The typical reascn for a bus timeout is that the address transmitted during a
START cycle is unimplemented by the active slaves. The timeout value should
be large enough that any valid operation will complete (ie., substantially
longer than a reasonable transfer duration).

The system timer is also intend to discover SpurBoards that arbitrate and
obtain the bus, but don't use it {generate a START cycle). To do this, the
system timer should also start whenever arbitration selects a winner.

Try Again Later

If the addressed slave is unable to respond to the transfer request for a
transient reason, it can generate a “try again later” ACK cycle. The master’s
request is not in error and should be retried later.

Unspecified Error

This is the catch-all error status. Typical reasons for an “unspecified error”
are: bus parity error in transit or memory parity/ECC error.

TM1/ | TMO/ | Status Message

L Successful Completion
H Unspecified Error
Bus Timeout Error

H Try Again Later

Table 2.4: NuBus Status Codes
During the ACK cycle of any transfer the mode lines pass an overall
status code. The "try again later” code is intended for bus-to-bus
interface board usage.

mofte ol o
£
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2.6.5. Idle Cycles

An idle cycle is any cycle during which START and ACK are asserted. When this
occurs no information is passed on the mode or data lines. This type of cycle is
intended to reinitiate bus arbitration. The primary situation where this is required
occurs when the bus is requested and obtained, but the master does not require a
transfer.

2.6.8. Interrupts

Interrupts are not given special attention in a NuBus system They are
implemented as memory mapped write transfers. The transfer unit size is
unspecifled, so considerable volumes of data can be passed. The destination of an
interrupt write transfer must be an address that a processor board will recognize
as interrupt space. Typically part of a board's slot space will be used for this.
Software can construct interrupt priorities and levels according the address of the
interrupt write transfer.

2.6.7. Parity

Parity can be used to protect the integrity of the address/data lines during any
transfer. A pair of lines are defined to implement the optional use of even word
parity. One line, SP/, is unasserted if an even number of the lines AD<31> to
AD<O> are asserted; otherwise, it is asserted. The other line, SPV/, is asserted if
SP/ is valid. Parity is optional on a cycle by cycle basis. Either masters or slaves
may choose to ignore it, but must drive SPV/ unasserted if they are driving the
AD<31..0> lines.

The following policies should be used when parity errors are detected:

During a START cycle
All slaves should ignore the transfer. The system timer will reinitiate
arbitration if the master doesn't.

During transfers of a read operation
The master should ignore the data it receives and treat the transfer as in
error once the ACK cycle arrives.

During transfers of a write operation
The slave should generate an ACK cycle with an unspecified error status code.

2.7. NuBus Arbitration

NuBus arbitration is distributed across boards that act as bus masters. It uses five
“open-collector' backplane lines' (RQST/ and ARB<3..0>/). Allocation of backplane
bandwidth through NuBus arbitration prevents the “starvation’ of any particular
requestor. In this sense this scheme is "fair”. In the limiting case, each requestor
will receive the same fraction of bandwidth.

The NuBus arbitration mechanism resolves all contention between bus masters.
When a bus master requires the bus it begins by entering arbitration for bus
ownership. All masters that enter arbitration at the same time form a “wave’”. One
master at a time will be selected and gain bus ownership. Within a contest the
physical position of backplane boards is used to select a winner. The winner uses,
then releases the bus. The winner of the next contest within the original wave then
gets the bus. This continues until all masters in the original wave have been given
the bus and the last has released the bus. At this point a new wave is allowed to
form. Because a new wave cannot begin until all members of the previous have
been served, it is guaranteed that a high priority master cannot preempt a lower
priority master.

! An open-collector line implements a “wired-AND" logic function. The line will take a low value if
any master drives it low and it will take a high value if all masters drive it high.
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2.7.1. Arbitration Specification

A bus master enters a wave by pulling the RQST/ line low {asserting RQST/). This is
only allowed when RQST/ is not currently asserted; that is, a wave is formed by
those masters that assert RQST/ on the same clock cycle.

A schematic for the arbitration logic on each bus master board is shown in Figure
2.9. In this diagram the line arb/ and GRANT are internal to the bus master board.
The arb/ line indicates the master’s desire to use the bus and the GRANT line
indicates that bus ownership has been attained. This logic corresponds to the
following equations (where ARBx is the inverted value of ARBx/, ARBxo is the driven
value and ARBxi is the read value):

ARB30 = arb *ID3
ARB20 = arb * ID2 * (ID3 + ARB3/i
ARBlo = arb *ID1 *(ID3 + ARB3/i) * ?DZ + ARBZ/ig
ARBOo = arb * IDO * (ID3 + ARB3/i) * (ID2 + ARB2/i) * (ID1 + ARB1/i)

When a master enters arbitration by asserting RQST/ it activates the arbitration
logic on its board. The slot ID of the board is driven onto the ARB<3..0>/ lines and
the boards determine the highest priority slot ID in parallel (slot zero has the
lowest priority). After two clock cycles the arbitration logic on all boards must
have settled and the winner is the board whose slot 1D is still on the ARBx lines.

The winner of arbitration will be the next master to initiate a transaction, but it
may not be able to this immediately. Arbitration may be overlapped with the last -
winner's last (or only) transfer so the new winner may have to wait for this transfer
to complete. At this point the new winner may begin a transfer. Once it has begun
a transfer, it can release ownership of the bus; that is, re-initiate arbitration
among the masters that lost to it.

D3/ ARB3/ De/ ARBE/ D1/ ARB1/ Do/ ARBO/

............................................................................................................

Figure 2.9: Possible Arbitration Schematic

An implementalion of the distriduted arbilration logic is shown here.
The Dz lines are backplane supplied and unique to each bus port.
They contain the binary coded slot number of that bus port. The
open-collector ARBx lines are used to selected the slot number of the
nezl bus master from those that are asserting arb/. The winner will
see GRANT asserted. Circuil design must guarantee that GRANT has
settled within two clock cycles (200 nsec) of the assertion of arb/.
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After a winner has been selected in arbitration, the winner and losers alike
continue to assert RQST/ to prevent new requestors from entering the wave. The
losers will examine the ARBx lines again two cycles after the next START cycle they
see on the bus. If the current winner stops driving its slot ID onto the ARBx lines by
the end of the START cycle then a new winner will be selected. If the current winner
is going to stop driving its slot ID at the end of a START cycle it must release the
RQST/ line at the beginning of that START cycle. This ensures that boards waiting
to start a new contest may enter arbitration during the transfer of the last winner
in the current contest.

2.7.2. Bus Locking

An important feature of arbitration mechanisms is the provision of multi-transfer
transactions. A good example of this is the operation *test-and-set”. In this
operation a memory location is read and a integer value of 1 is written back into it
without any intervening operation by any other processor. This is used to
construct a variety of multiprocessor synchronization mechanisms.

The NuBus arbitration mechanism specifies that a new winner within a wave will be
selected two cycles after each START cycle during that arbitration sequence.
Usually the current winner will withdraw from arbitration on the START cycle it
enerates after winning. This corresponds to a single transfer per transaction
period of bus ownership). However, the current winner may not withdraw from the
arbitration on its START cycle. Because it is the current winner and because no
new contender is allowed into the arbitration until all have withdrawn, the
continued presence of the current winner ensures that it will win again. In this way
the current master can complete many eonsecutive transfers. In general it is not
good policy for a processor to hold the bus for too long because it increases the
overall average time every processor is blocked waiting for the bus.

2.7.3. Bus Parking

When there are a small number of bus masters in the system or when requests are
generally rare but clustered, it is often the case that the last user of the bus will be
the sole member of a wave. When this is the case it will be held up two cycles
arbitrating without competition. This adds unnecessary latency to the transfer
duration.

In the NuBus specification “bus parking” is defined to allow this problem to be
reduced. A bus master is parked on the bus if after withdrawing from arbitration
there is no other contender (RQST/ becomes unasserted). This parked master
remains parked until a new wave is formed. While it is parked it may begin a
transfer without arbitrating (note that it rmst still look at RQST/ to determine if it
is still parked on the bus). If a wave begins after the parked master has begun a
transfer the selected winner will wait for the current transfer to end and the
parked master will realize that it is no longer parked when it next wants to use the
bus.

2.7.4. Arbitration Timing

The timing of the arbitration logic is shown by example in Figure 2.10. The most
important details are that the ARBx lines are driven beginning on the sample edge
instead of the assertion edge and that the arbitration logic must settle within 200
nsec after starting.

In this example the bus masters on boards in slot 5, 10 and 15 want to use the bus.
Masters 5 and 10 go after the bus together and master 15 comes after the bus a few
cycles later. At the time masters 5 and 10 becormne interested in the bus it is idle;
that is, the last transfer is finished and the RQST/ line is unasserted.

F(0) Masters 5 (binary coded 0101) and 10 (binary coded 1010) notice that RQST/
is unasserted and begin driving the ARBx lines with their respective IDx lines
immediately (note that the ARBx lines are asserted on the samplie clock not on
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Figure 2.10: Arbitration Timing Example

The behaviour of the arbitration logic is demonstrated with this
sample contest between boards #10 and #5 followed by a contest
containing only board #15. The bus is inactive at the time that the
first contest begins. Board #10 wins after two cycles, begins ils
transfer and releases bus ownership. This prompts #5 to arbitrate
against itself, win and then wait for the end of the current transfer.
When #10 is finished with the bus, #5 starts its transfer and releases
bus oumership. This prompts #15 to begin to arbitrate against itself.

the assertion clock). Using the sample arbitration logic shown in Figure 2.9,
driving the ARBx lines corresponds to asserting the arb/ line on their
respective boards. The ARBx lines will be changing as the logic settles but
must be stable early enough so that the internal signal GRANT correctly
reports the winning master after two cycles.

R(1) Masters 5 and 10 both assert RQST/ (form a wave) to stop further masters
from entering arbitration late (specifically, master 15 will be blocked until
both 5 and 10 release RQST/).

F(1) Arbitration continues.
R(2) Arbitration continues; that is, both masters continue to assert their arb/ and
RQST/ lines.

F(2) The arbitration period is over. Masters 5 and 10 look at their respective
GRANT lines to see who is the winner. Master 10 sees an asserted GRANT and
master 5 sees an unasserted GRANT. Master 10 is the winner. Both masters
continue to assert RQST/ and their own arb/ lines.

R(3) Master 10 begins the START cycle of its transfer. Since it does not want to
lock the bus it releases its assertion of RQST/, but it continues to assert its
arb/ line. Master 5 continues to assert RQST/ and its arb/ line.

F(3) Master 10 releases its local arb/ line which releases its assertion of the ARBx

. lines. Master 5 detects the START cycle and begins waiting for this arbitration
to settle.
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R(4) Master 5 continues to assert RQST/ and its arb/ line.

F(4) Arbitration continues. Master 15 wants to use the bus and looks at RQST/.
Since RQST/ is asserted master 15 is not allowed to arbitrate. It will poll
RQST/ each cycle until it is unasserted.

R(5) Arbitration continues; that is, master 5 continues to assert RQST/ and its arb/
line.

F(5) This arbitration is over. Master 5 sees its GRANT asserted and is the winner.
Master 15 sees RQST/ still asserted.

R(68) Master 5 would like to begin its transfer, but master 10's transfer is not
finished. Master 5 will poll the ACK/ line each sample edge waiting for the
current transfer to end. It will continue to assert RQST/ and its arb/ line so
that it holds bus ownership until it can begin a transfer.

R(n) Master 10 finishes its transfer by asserting ACK/. Master 5 is still asserting
RQST/ and its arb/.

F(n) Master 5 sees the ACK cycle. Master 15 still sees RQST/ asserted.

R(n+1)
Master 5 releases RQST/. This allows RQST/ to become unasserted. Master 5
also begins the START cycle of its transfer.

F(n+1)
Master 5 releases its arb/ line. Master 15 sees RQST/ unasserted so it asserts
(immediately) its arb/ line. It also sees the START so it will monitor for the
ACK to track the current transfer.

R(n+2)
Master 15 asserts RQST/ to form a contest with itself only. This contest will be
won in two cycles and master 15 will proceed much as master 5 did after it
won.
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3. NuBus Subset in SpurBus

The SpurBus design is based on the NuBus specifications; however, it doesn't
implement the full protocol. The subset selected eliminates portions of the NuBus
design that the SPUR system does not use. The SpurBus subset applies to
SpurBoards only; NuBus protocols not supported in SpurBus may still exist in a
SPUR system.

3.1. One and Eight Word Transfer Sizes

Data transfers have two possible transfer unit sizes: 1 word and 8 words

(respectively, 4 bytes and 32 bytes). The 8 word unit corresponds to a SPUR cache

line size and typical program activity will use this size unit. The 1 word size is
rovided for direct processor operations on physical memory or device registers
bypassing the cacheg.

'8.2. No Bus Parity

The SpurBus does not generate or detect parity on the bus. Refer to the SPUR
Design Rationale document [??7?] for a discussion of this decision.

3.3. Dataless Interrupts

The SpurBus interrupts do not pass information after the START cycle. All
information is contained in the address passed during the START cycle of a write
operation. The ACK cycle is used to delay the transfer (or rather the beginning of
the next transfer) until the receiving SpurBoard has recorded the interrupt.

A SpurBoard recognizes addresses in its slot space as interrupts if they fall within
the low 1 MB; that is, if the address begins *F(id)0" (hex) where “id" is the Slot ID
of the SpurBoard. This space folds around 16 unique interrupt addresses, all word
aligned; that is, the four bits AD<5,2> are used to fix the interrupt type. The
transfer unit size of a SpurBus interrupt is a word.

3.4. No Bus-based Test-and-Set

The SPUR processor cache controller design provides test-and-set operations on
data obtained by the normal read for ownership cache operations. Because this
operation is entirely carried out on data in the cache {or brought into the cache
for this operation) the bus multi-transfer facilities are not used.

— 20 —
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4. NuBus Extensions for SpurBus

The SPUR project will use the NuBus design; however, its cache consistency and
virtually addressed caches make demands on the bus that the NuBus does not
attend to well. An extended NuBus design, called the SpurBus, supports the needs
of SPUR more fully.

4.1. Snooping Caches’ Datapath

The SPUR system employs “snooping caches” [Katz85a???] to provide cache
consistency across multiprocessor caches. In essence this means that each cache
in the system must monitor all bus transfers and be prepared to provide data from
its RAMs whenever it has the most up-to-date copy. This is implemented with state
bits on each cache line that distinguish states “invalid”, “owned private”, “owned
shared” and “unowned’”. The concept of ownership is used to determine when a
cache may write its copy of the data without informing the other caches. There is
at most one cache in the system that owns a block. When a block is not owned by a

cache, it is implicitly owned by memory.

System Board System Board System Board
SpurBus Interface NuBus Intm'fac;l SpurBus Interface
1
e e e e e = e e o] —— - [N VPN U PRI EE _\
. : N I U D N O O N
i A Ny
CLK/ IO
arbitration 2 v R ,‘ \'\
physicel addr/data ] L R / /
v 4
_____________________ - - — ,'/
p_virtual addr/data $ _ /
_________ SpurBus S
!
/

Figure 4.1: SpurBus Block Diagram
The SpurBus eztends the NuBus design with a second data path. This
second path is used by Spurboard snooping caches fo pass shared
data lines amongst themselves. This path has its own conirol for
transfers, but it is synchronized to the NuBus data path arbitration
and STAKT cycle.
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The implementation of a snooping cache requires bus bandwidth, the ability to
monitor bus events and the ability to cancel memory operations. The NuBus
specification and the memory boards that are currently available for NuBus racks
(1/2 MB boards and plans for 2 and 8 MB boards) do not make any allowances for
cancelling operations. The addition of a second data path in SpurBus allows inter-
cache operations to occur in parallel with memory operations witheut loss of
bandwidth. This way memory operations do not need to be cancelled; they can be
allowed to finish without delaying the inter-cache operation.

This second path also allows the inter-cache address to be different than the
memory address. This is important because it allows the SpurBoard cache to be
accessed on virtual addresses and the memory systemn to use physical addresses.
During any read on the SpurBus the virtual address is sent on the inter-cache bus
and the physical address is sent on the NuBus.

4.2. SpurBus Signals

CLASS GROUP SIGNAL # OF PINS PROTOCOL
‘Shared_ | Clock CLK/ 1__input-only
Arbitration ARB<3..0>/ 4 open-collector
RQST/ 1 open-collector
Utility RESET/ 1 open-collector
1D<3..0>/ 4 input-only
NuBus Address/Data AD<31..0>/ 32 tri-state
Parity Sp/ 1 tri-state
SPV/ 1 tri-state
Control START/ 1 tri-state
ACK/ 1 tri-state
TMO/ 1 tri-state
T™1/ 1 tri-state
SpurBus | Address/Data | VAD<32..0>/ 33 tri-state
Control VACK/ 1 tri-state
VTMO/ 1 tri-state
VIM1/ 1 tri-state
Total Signals 85
Shared Reserved. RSVD/ 1
Power/Ground | +5 22
-5 16
+12 4
-12 4
GND/ 46
Total Lines 178

Table 4.1: SpurBus Backplane Lines
The SpurBus extends the NuBus backplane needs by 36 signal pins
and 46 power/ground pins. The resulting 178 pins use the better
part of two 96 pin connectors.
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The SpurBus extension to the NuBus design, shown in Figure 4.1, calls for an
additional 36 backplane lines, shown in Table 4.1. These are the address/data
lines, VAD<32..0>, and control lines, VACK, VTM0O and VTM1, for the inter-cache
datapath.

The use of the inter-cache datapath is synchronized with the NuBus datapath. This
means that only one set of arbitration logic and only one START line are needed.
The master of the bus always performs a NuBus operation and can optionally
perform an inter-cache operation at the same time.

Some of the control for a NuBus operation applies to the inter-cache operation.
Both datapaths read or write together; that is, the read/wnte characteristic of a
NuBus operation applies to both paths. Also, snooping reads only apply to cache
lines which are 32 byte blocks.

4.3. Snoop Operations

Three operations are needed to support snooping caches. Two of these are
modifications on the NuBus block transfer read operation. The third is a non-
NuBus operation for invalidating cache lines.

4.3.1. Snooping Reads

“Snooping reads’ are variations on the NuBus block transfer read. In the START
cycle of these operations the NuBus describes a regular 32 byte read and the

...................................................................................................................................................................
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Figure 4.2: Snooping Read Protocol

A SpurBus snooping read may rasult in a cache-to-cache transfer of
a shared data cache line on the inter-cache data path. [f any cache
intends to use this path, then only one will and it will generate an
ownership acknowledgement indicating that it will reply within a
timeout guaranteed to be shorter than the NuBus data path transfer.
The two transfers proceed with distinct control and may end at
different times. The address sent on the inter-cache bus is the
mrt1)1.a.l address of the line in the master s cache (less the block offset
bits
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inter-cache bus qualifies this for the benefit of the other caches as non-snooped,
snooped for a shared copy (called "‘read shared”) or snooped for a private copy
(called “read for ownership”). The NuBus operation is unaffected; the inter-cache
bus carries the modifiers and the potential inter-cache data.

Figure 4.2 shows the protocol for snooping reads.

R(1) The master drives AD<31..5> with a cache line physical address (in units of
aligned 32 byte blocks) and VAD<32..0> with the virtual address of the same
cache line (also in units of aligned 32 byte blocks). It drives the control lines
AD<4..0> to high, low, low, low and high respectively and TM0, TM1 and VTMO to
high, high and low respectively. If the operation is read for ownership, it also
drives VTM1 low. Finally, to make this a START cycle, it drives START low.,

F(1) All potentially addressed slaves on the NuBus sample the AD<31..0> and TMx
lines to determine whether they are affected. All SpurBoards sample the
AD<4..0>, TMx, VAD<32..0> and VIMx lines and check their cache line states to
determine whether they are aflected and should reply with a cache line of
data.

R(2) The master releases the ADx, TMx, VADx, VTMx and START lines. It will now wait
on the TMO, ACK and VTMx lines.

NOTE: )

The transfers on the NuBus datapath and inter-cache datapath are decoupled.
In the following descriptions, two events are sequential if they apply to the
same datapath; otherwise, they may occur together or in either order. The
one exception to this is that an OACK cycle, if one is to occur, must not occur
after an ACK cycle.?

R(k) If a cache on a slave SpurBoard decides to respond with a cache line on the
inter-cache datapath it asserts VITMO for a cycle. This is called an OACK cycle
{ownership ack).

F(k) The master samples the VTMx lines and determines that a inter-cache transfer
will take place. This implies that data arriving on the NuBus datapath to be
thrown away. The master then starts sampling the VADx, VTMx and VACK lines
for data and compietion.

F(k+1)

The responding slave cache drives VTMO unasserted and begins to form the
first word of the line.

R(n) The addressed NuBus slave drives the ADx and TMO lines. This is one of the
first 7 words of the 8 word block.

F(n) The master captures the data from the ADx lines if it has not decided to throw
away this data in preference for inter-cache data.

R(n+1)
The NuBus slave drives TMO unasserted and begins to form the next word of to
transfer.

NOTE:
These NuBus intermediate stages (n) are repeated B-1 times where the size of
the transfer unit in words is B.

R(i) The responding cache drives the VADx and VTMO lines. This is one of the first 7
words of the 8 word block.

F(i) The master captures the data from the VADx lines. It will keep this data in
preference over data from the NuBus datapath.

R(i+1)

The responding cache drives VITMO unasserted and begins to form the next

€ This is a source of trouble if the NuBus slave generates an error ACK before it would normally be
possible to terminate normally {B cycles to transfer B words). All SpurBoard caches currently snooping
must see this abnormal ACK, terminate snooping and be ready to snoop again on the next bus cycle.
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word to be transferred.

NOTE:
These inter-cache intermediate steps (i) are repeated B-1 times where the size
of the transfer unit in words is B.

R(b) The addressed NuBus slave drives the ADx lines with the last word of the line,
the TMx lines with a status code and the ACK line.

F(b) The master captures the final word of the data and the status code.

R(b+1)
The NuBus slave releases the ADx, TMx and ACK lines for the next NuBus
master to use. There can be a complication here if the inter-cache transfer
operation is not finished. This is covered in section (???7??).

R(v) The responding cache drives the VADx lines with the last word of the line, the
VTMx lines with a status code and the VACK line. The status code is shown in
Table 4.3. It includes information to tell the receiving cache whether the
cache line transferred is dirty (memory has not been updated after a cache
store into this line).

F(v) The master captures the final word of the data and the status code.

R(v+1)
The responding cache releases the VADx, VIMx, and VACK line for the next
master to use.

(1) The parameter “k" is restricted to be less than or equal to the eighth cycle
after the START cycle (ie., k <= 9). After this point the master assumes that
the cache line it is looking for will come from memory only.

(2) The parameter “n'" is constrained to be less than the system timeout on
transfers. If the timeout fires the transfer will be aborted by a "timeout” ACK
cycle generated by the system logic.

(3) The parameter *i” should be constrained by an inter-cache transfer timeout in
the same way that the NuBus datapath transfers are constrained.

(4) The parameter "b’ must be less than the product of the line size, B, in words
and the NuBus system timeout.

(5) The parameter *v” should be less than the product of the line size, B, in words
and the inter-cache transfer timeout.

4.3.2. Write For Invalidate

The third operation needed to support snooping caches is called ‘“‘write for
invalidation”. It is used by a cache that wants all other caches to invalidate (throw
away) their copies of a cache line. It requires a bus operation, but it doesn't
correspond to a parallel NuBus operation. The SpurBus defines a NuBus write
operation to pass the write for invalidation. This uses a NuBus write of one word to
a physical address in the slot space of the generating board at a non-interrupt
address. The snoop operation is sent during the START cycle and the operation
lasts long enough for all caches to complete it then the master generates an ACK
cycle to itself.

The protocol for an write for invalidation operation is shown is Figure 4.3.

R(1) The master drives the ADx lines with "“F(id)F00000" (hex) where *id" is the Slot
ID of the master. This is a dummy physical address that falls into the master's
own slot space. This guarantees that no NuBus slave will respond to this
operation. The master will complete this operation itself after an appropriate
delay. Also driven by the master during the START cycle is TMO, VIMO and the
VADx lines. This makes the operation a snooped word write. The VADx lines
carry the virtual address of a cache line to be invalidated by other snooping
caches.
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Figure 4.3: Write For Invalidation Protocol

A SpurBus write of invalidate operation employs a NuBus word write
back into the generating board’s slot space not inio inferrupt
locations). The invalidation information is the virtual address of the
cache line to invalidate and is carried on the inter-cache data path.
The duration of the operation is controlled by the generaling board
and must be large enough that all other caches have time to complete
the invalidation.

F(1) All SpurBoard snooping caches determine that a write for invalidation is active
and look into their caches to see if they have the line to be invalidated. They
will not drive any backplane lines in this operation.

R(2) The master releases the ADx, VADx, VTMx and TMx lines. It will delay a fixed
period of time before completing the operation.

R(w) The master completes its own operation by driving a successful status code on
the TMx lines during a ACK cycle.

(1) The duration of the write for invalidate operation is selected to guarantee that
all snooping caches have time to complete their own invalidations, but it must
be less than the system timeout.

4 4. Inter-cache Datapath Control

The inter-cache datapath is composed of address/data lines, VAD<32..0>, and
acknowledgement line, VACK, and two multi-purpose control lines, VTMO and VIM1.
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VAD<32..0>

The inter-cache data path is VAD<31..0>. It has the same characteristics as
the NuBus data path except that it is used to move cache lines according to
the snooping cache protocols.

The inter-cache data path is wider than the NuBus data path because of SPUR
virtual addressing. Global virtual addresses in the SPUR system are 38 bits
wide. Since cache lines are aligned on 32 byte boundaries the low order 5 bits
are always zero and are not transferred. So inter-cache addresses are 33 bits.

VACK
The VACK line on the inter-cache datapath corresponds to the NuBus ACK line.
When transfers occur on the inter-cache datapath (when an ownership ACK
occurs on a snooping read) VACK terminates the operation. A cycle that has
VACK asserted is called a VACK cycle.

VTMO and VTM1
These two control lines parallel the transaction mode lines on the NuBus
datapath.
During a START cycle VTMO is asserted if the inter-cache datapath is being
used. If a read is taking place then VIM1 indicates the type of snooping
required as shown in Table 4.2. VTM1 asserted indicates a ‘“read for
ownership’ and VTM1 unasserted indicates a “read shared" operation.
After the START cycle of a snooping read caches on boards other than the
current bus master have a window of time to determine whether they should
provide the requested data. This window is eight cycles long. If a cache
decides to provide the data it will assert VIMO for a cycle. This is called an
OACK (ownership ack) cycle.
After an OACK cycle VIMO is used to strobe data across the inter-cache
datapath in the same way that TMO is used on the NuBus datapath. When the
last word of the cache line is transferred VACK is asserted and VIMx carry

VTMO/ | TM1/ | VIM1/ || Inter-cache Operation
H None
L L Write for Invalidation
L H H Read for Shared Copy
L H L Read for Private Copy ||

Table 4.2: Snooping Operation Encoding
During the START cycle of any NuBus operation the usage of the
inter-cache datapath is determined from the VIMO, VIM1 and TM1
lines.

VIMO/ | VTM1/ || Status Message and Cache Line Status

L L Successful Completion; Line Dirty
L H Successful Completion; Line Clean
H Unspecified Error

Table 4.3: Snooping Operation Status Codes
During the VACK cycle of a snooping read on the inter-cache
datapath VTMO carries a success /error status code. [f VIMO indicates
success, VTM! indicates whether the data that came across the
inter-cache bus matches its memory image (clean) or has been
written since memory was last updated (dirty).
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operation status information as shown in Table 4.3.3 In the status code VITMO
indicates success (asserted) or error (unasserted) and when VTMO indicates
success VTM1 indicates cache line clean/dirty state information. A cache line
is “dirty” if the memory copy of this data is not up-to-date (ie. a store into
this block has not yet propagated to the memory); otherwise, it is “clean”.
During a write for invalidation operation (indicated by a NuBus write with
snooping activated) VTMO and VIM1 are not used after the START cycle and
VACK is not used at all.

4.4.1. Late Finishing Inter-cache Operation Complication

The SpurBus design expects inter-cache operations to be faster than the NuBus
operations. Unfortunately, this is not ensured.

If the NuBus portion of a snooping read completes before the inter-cache portion
then it is possible for the NuBus datapath to be reused immediately. This occurs
because arbitration is overlapped with data transfer and the winner of arbitration
delays until the ACK cycle of the current operation before beginning the next.

SpurBoards, participants in SpurBus, are required to delay a subsequent operation
until both the ACK and VACK cycle are complete (if the inter-cache datapath was
used). This means that the only operations that might be started before the inter-
cache transfer completes are those that are not SpurBus. These will not use the
inter-cache datapath so no collisions will occur; however, there is still the
complexity of two distinct simultaneous operations. The only foreseen operations
on the NuBus during an inter-cache operation are device interrupts (such as DMA
complete).

3 There needs to be & timeout on inter-cache transfers paralleling the system timeout on transfers
on the NuBus datapath.
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5. Mechanical Specifications

5.1. Boards

The mechanical structure of NuBus/SpurBus boards follows the “Eurocard* design.
They are triple height IEC boards (9U high where U

(11.024in).

5.2. Backplane Connectors

There are three 603-2-IEC-C096-M connectors mounted on each board. These are
referred to as P1, P2 and P3 from top to bottom respectively. NuBus defines the
pins on P1. SpurBus additionally defines some of the P2 pins. See Tables 5.1 and

5.2 for the pin assignments.

= 1.74in) and have triple depth

Pin/Row | Col.A | Col. B | Col. C Pin/Row | Co. A | Col. B | Col. C
1 -12 -12 RESET/ 17 AD23/ | GND AD22/
2 GND GND | GND 18 AD25/ | GND | AD24/
3 SpPv/ GND +5 19 AD27/ | GND AD26/
4 Sp/ +5 +5 20 AD29/ | GND AD28/
5 TM1/ | +5 T™M0/ 21 AD31/ | GND | AD30/
6 AD1/ | +5 ADO/ 22 GND GND | GND
7 AD3/ | +5 AD2/ 23 GND GND | RSVD/
8 ADS/ -5 AD4/ 24 ARB1/ | -5 ARBO/
8 AD7/ -5 AD6/ 25 ARB3/ { -5 ARB2

10 AD9/ | -5 ADB/ 28 mo/ | -5 D1/

11 AD11/ | -5 AD10/ 27 3/ -5 D2/

12 AD13/ | GND | AD12/ 28 ACK/ | +5 START/
13 AD15/ | GND | AD14/ 29 +5 +5 +5

14 AD17/ | GND | AD18/ 30 RQST/ | GND | +5

15 AD19/ | GND | AD18/ 31 GND GND | GND

16 AD21/ | GND AD20/ 32 +12 +12 CLX/

Table 5.1: P1 Connector Assignments
The P1 connector on a MuBus board has thase pin ]

assignments., The
connector is type 603-2-IEC-C096-F. (olumn Bis optional, allowing a
64 pin minimum power subset.
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Pin/Row | CoLA | Col.B | Col.C || Pin/Row | CoLA | Col. B | Col. C

1 12 -12 - 17 VAD23,/ | GND | VAD22/ |
2 GND GND | GND 18 VAD25/ | GND | VAD24/
3 - GND | +5 19 VAD27/ | GND | VAD26/
4 - +5 +5 20 VAD29/ | GND | VAD28/
5 VIM1/ | +5 VTMO/ 21 VAD31/ | GND | VAD30/
6 VAD1/ | +5 VADO/ 22 GND GND | VAD32/
7 VAD3/ | +5 VAD2/ 23 GND GND | GND
8 VADS/ | -5 VAD4/ 24 - -5 -
9 VAD7/ | -5 VADB/ 25 - -5 -

10 VADS/ | -5 VADS/ 26 - -5 -

11 VAD11/ | -5 VAD10/ 27 - -5 -

12 VAD13/ | GND | VAD12/ 28 VACK/ | 45 -

13 VAD15/ | GND | VAD14/ 29 +5 +5 +5

14 VAD17/ | GND | VAD18/ 30 - GND | +5

15 VAD1S/ | GND | VAD18/ 31 GND GND | GND

16 VAD21/ | GND | VAD20/ 32 +12 +12 | -

The P2 connector on a

Table 5.2: P2 Connector Assignments
SpurBus board has these pin assignments. The

connector is type 603 2-IEC-CO096-F. Column Bis optional, allowing a
84 pin minimum power subset.

Pin/Row | Col. A | Col. B | Col. C || Pin/Row | Col. A | Col. B | Col. C
1 - = = 17 - - -
2 |- GND | - 18 | - - -
3 |- GND | - 19 |- GND | -
4 . - - 20 - - -
5 . +5 - 21 - - -
8 - +5 - 22 - - -
7 . +5 - 23 - GND | -
8 - - - 24 - - -
9 . - - 25 - - -

10 - - - 26 - - -
11 . - - 27 - - -
12 . GND | - 28 - +5 -
13 - - - 29 - - -
14 . - - 30 - GND | -
15 |- - - 31 | - GND | -
16 |- GND | - 3z |- ) -

Table 5.3: P3 Connector Assignments

The P3 connector on a MNuBus board should have these pin
assignments. The connector is type 603 2-IEC-CO96-F.






