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CORNER-BASED GEOMETRIC LAYOUT RULE CHECKING
FOR VLSI CIRCUITS

Michael Helmut Arnold

Abstract

Layout rule checking is traditionally done through sequences of region-operations, and a
few experimental systems use pixel-based processing. This dissertation examines these
approaches in detail, and then proposes corner-based checking as an efficient and flexible
alternative. In corner-based checking contextual rules, specifying conditions at corners
matching patterns, are applied to the design. A rule compiler is used to convert the user-
readable rule description to an efficient, indexed, internal form prior to checking. Hierarchical
and incremental check algorithms that eliminate redundant checking are also developed.
These algorithms greatly enhance the effectiveness of layout rule checking. Measurements
from several systems implementing corner-based checking and the hierarchical and
incremental algorithms demonstrate their viability and effectiveness.

Corner-based checking has several advantages. First, it checks all rules in a single pass
over the data. This avoids the I/O bottleneck that is common in the multi-pass region-
operation systems. The rule-based nature of corner-based checking provides inherent
flexibility: variants of design rules that would require the coding of new operations in region-
operation systems can often be accommodated by modifying the rule specification. Corner-
based rules also permit directional context, which is notoriously difficult to establish in
region-operation systems. Finally corner-based systems associate violations with points in a
design rather than edges or regions. The consequent simplicity of piecewise processing
facilitates hierarchical and incremental checking.

The work described here was supported in part by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 3803, monitored by the Naval Electronic System Command under Contract No. N0003¢-78-G-
0013-0004.
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CHAPTER 1

Introduction

This thesis presents my work in automatic design rule checking for integrated circuits
(DRC). It introduces corner-based design rule checking as an efficient and flexible alternative
to traditional region-based checking, that is well suited for hierarchical and incremetal
checking. A general formalism for corner-based rules is developed that can handle all-angle
data and complex conditional rules, and its implementation is considered. A rule compiler is
introduced to preprocess the input rule description for efficient processing. Hierarchical and
incremental check algorithms are also developed. The identification of violations with points
rather than edges or regions, makes corner-based checking particularly well suited for
hierarchical and incremental systems. Several corner-based systems, are discussed. In
addition, background material on the nature of the design rule checking problem, and other

work in the area, is provided.

This chapter gives an overview. It briefly describes design rules and design rule
checking, discusses the nature and scope of my research, outlines the most important ideas

arising from and/or validated by the research, and outlines the rest of the thesis.

1.1. Design Rules and Design Rule Checking

Integrated circuits are specified in terms of geometric mask patterns, or artwork, for
each of the layers in the circuit; see Figure 1.1. Design rules specify tolerances on thes;e
patterns. Tolerances typically govern width and spacing on conducting lines and various
extensions and enclosu;es on circuit constructs such as transistors and contacts; see Figure
1.2. Design rules stem from the limitations of the circuit fabrication process. They are an
abstraction of these limitations that acts as the interface between circuit design and process

engineering. They free the circuit designer from the intricate details of the fabrication process

11



INTRODUCTION ' 2

and its limitations: he need only make sure he obeys the design rules.

It is important that design rules are checked automatically. Current designs typically
contain one million or more separate geometric figures, making for very tedious and error-
prone manual checking. Manual checking is certain to result in missed design rule violations.
Such violations necessitate expensive and time consuming additional fabrication cycles. In
addition it is very difficult to locate design rule violations by probing 3 finished circuit. Some
violations are likely to go completely undetected, and result in degraded performance and a
lower yield of working parts throughout the lifetime of the product. The only acceptable

solution is complete automatic design rule checking of the mask artwork prior to fabrication.

Figure 1.1. - Mask Artwork. This is the mask artwork for the basic register cell used in the
RISC-II microprocessor chip developed at Berkeley. The RISC chip contains over 4000 such
¢ells, comprising approximately one quarter of the total chip srea. Each type of shading
corresponds to a distinct mask layer in the design.

1.1
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Figure 1.2. - Typleal Design Rules. These examples are taken from the Mead-Conway
rules for nMOS. Parts (a) and (b) give minimum widths and spacings {respectively) for lines on
a particular layer. Parts (c) and (d) specify dimensional constraints on the formation of
contacts and transistors (respectively). A design rule set contains anywhere from two dozen to
over two hundred such rules. Some rules are more complicated; examples will be given in the
next chapter.

To be useful, a design rule checker must meet several requirements. First it must be
accurate. Since a single design rule violation can render an entire design nonfunctional, a
design rule checker must miss no violations. In addition, a design rule checker that hides

genuine violations in a sea of false alarms is almost as bad. This can happen if the checker

1.1



INTRODUCTION 4

inaccurately handles just one commoaly occurring mask configuration. Thus a design rule

checker must be accurate: it must miss no genuine violations, and generate few false alarms.

A useful design rule checker must also be flexible enough to check a variety of design
rules. There are many integrated circuit technologies in use, and for each technology a
number of fabrication lines. Each fabrication line has its own characteristic limitations, and
hence its own design rules. In addition, as fabrication lines are refined and new ones
introduced, design rules change over time. The natures of design rules are also diverse.
Conditional design rules exist, that depend on factors as varied as the geometric context of a
mask feature, the length of conducting lines, the electrical characteristics of a particﬁlar node,
and even the intended function of the signal carried by a line. To be useful over time, and in
more than a narrow context, a design rule checker must be flexible enough to check a variety

of rulesets involving a variety of types of rules.

A design rule checker must also perform reasonably. As design complexity continues to
grow, design rule checkers are faced with large and ever increasing amounts of data to
process. A design rule check on a large design typically takes many hours or even days to
complete. Such checking is expensive in terms of computer resources. In addition it makes
design rule checking a batch process that is typically deferred until the end of the design
cycle. Design rule violations detected so late can be quite difficult to fix: a significant amount
of mask artwork in the vicinity of a violation may need to be altered to make room for the
fix. Expensive design rule checking also inhibits design refinements, since any change in the
design will require another costly design rule check. With the size and complexity of designs
continually increasing, it is clearly important to look for efficient ways to do design rule

checking.

In fact, the basic technique used almost universally for design rule checking was born
more than a decade ago when designs were much smaller and less complex than today. This

technique is poorly suited for processing designs of today’s scale. In this approach, rule

1.1



INTRODUCTION 5

checking is implemented through sequences of region-operations on one or two layers at a
time. These operations typically yield a new, intermediate, layer as output. Layers
frequently consist of over 100,000 figures, and typical rulesets require hundreds of these
operations. This results in the generation of great amounts of intermediate data during a
design rule check, and a great amount of 1/O. The number of data items is very large, and
the amount of computation per item relatively small. Hence processing is 1/O bound, and

slow.

Several ideas for speeding up design rule checking bave been proposed. One approach is
to use special-purpose ha‘rdwnre. A number of hardware-assisted systems have been
suggested. These systems employ pixel-based representations for the mask data; see Figure
1.3. An array of square pixels is laid over the design, and each pixel is marked with the mask
layers occurring in it. In order to have sufficient resolution the pixel-array must be fine. A
fine array over an entire VLSI design involves a very large amount of data. Thus, like the
traditional region-operation approach, the hardware-assisted approaches involve a large
amount of data, ;vith relatively little processing per data item, and hence tend to be
constrained by 1/O bandwidth. Such special-purpose processing engines are -also likely to be
complex and expensive. No fully functional hardware-assisted design rule checker has yet

been completed.

foe elimination of redundant checking can be very effective in speeding up design rule
checking. One such strategy, hierarchical processing, involves checking only one instance of
repeated structures in a design. Since designs typically contain much repetition, such a
strategy can reduce computation very signiﬁcﬁntly. For example, hierarchical checking of the
Riscl microprocessor chip with Leo45 speeds up checking by almost a factor of 6. Another
strategy, incremental checking, is to check only those portions of a design that have been
modified since the last check. Again, this can greatly reduce the computation required for

checking - particularly at the end of the design cycle, when minor modifications are typically

1.1
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Metal

nil Poly Metal/Poly/Cut

Figure 1.3. - Pixel-based Representation of Mask Artwork. In pixel-based systems, a
square array of pixels is laid over the design, and each pixel is marked with the layers present
within it. The pixel-array must be fine enough so that approximations at pixels that are only
partially covered by mask layers don't result in false design rule violation reports or missed
violations.

made t6 fix bugs detected by design rule checking or simulation. An incremental check of
Riscl, (again by Leo45) after a minor modification to the design takes less than 1% of the

time for a full check. Lyra and Leo, corner-based systems developed in conjunction with this

research, pioneered hierarchical and incremental checking (respectively).

1.2. Scope of My Research

My research has centered around an alternative approach to design rule checking: a
corner-based approach where checking is done in terms of the corners in a design and their

immediate environment. Corner-based checking is a fundamentally different approach to
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4

design rule checking that addresses the 1/O bottleneck problem traditionally plaguing design
rule checking. The input rule description is preprocessed with a rule compiler to generate an
efficient, indexed, internal rule form and all rules are processed in parallel in one pass through
the design artwork. Corner-based checking is both accurate and flexible. It lends itself to
checking rules involving directional contex‘t, which are notoriously difficult to check in

traditional region-operation systems.

My research also included the development of Hierarchicel and incremental algorithms
that reduce redundant checking and hence make design rule checks more efficient and
interactive. Although these algorithms could be implemented on top of a region operation
system, the corner-based approach, which associates violations with points rather than edges

or areas, is more convenient.

Corner-based checking was first implemented in the Lyra system, in 1981. Lyra was
written to test the the basic soundness of the corner-based approach and fill the need for an
accurate design rule checker at Berkeley. It demonstrated that corner-based checking can be
both accurate and flexible. It has been used on a number of large design projects, including
the RISC microprocessors at Berkeley, spanning a number of ntMOS and CMOS rulesets. On
its first real use (for the RISC-I chip), Lyra found violations that had been missed by a
previous DRC as well as by manual checking. Even though written in Lisp, Lyra was about 3

times as fast as the region-based NCA system, which was the industry standard at the time.

Lyra was the first hierarchical design rule checker. It demoanstrated the feasibility and
effectivéness of hierarchical checking. With interfaces to the Caesar and Kic geometric
editors, Lyra also pioneered interactive design rule checking. The interface allowed designers
to invoke Lyra on parts of the design currently being edited for “immediate’ feedback on
design rule violations. This feature proved quite useful to designers. Lyra is part of the
Berkeley CAD tool distribution, and has been used at several hundred unviersity and

industrial sites.
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The viability of corner-based checking was further tested with Leo, a second,
commercial, corner-based system. Leo was developed in conjunction with Metheus
Corporation for use in their VLSI design workstation. Wr;tten in C with an eye toward
efficiency, Leo is 3 times as fast as Lyra. In addition Leo is incremental, (it rechecks only the

parts of a design that have been modified). Leo works quite well; its incremental and

interactive checking capabilities have been selling points of the Metheus system.

The Lyra and Leo systems are useful odly within a restricted context. They handle only
manhattan designs, where all feature edges are lined up horizontally and vertically. A later
version of Leo, Leo45, allows edges at 45 degree angles as well, but still excludes all other
angles. The rulesets handled by these systems are composed of relatively simple, mainly
unconditional rules. These restrictions are in the spirit of the simplified design philosophy
popularized by Carver Mead and Lynn Conway. They are suitable for the Mead-Conway
design style widely used in universities and a growing segment of the industrial community.

They simplify the implementation of the systems, and improve performance.

Nevertheless, the question of the usefulness of corner-based checking in more general
contexts must be addressed. To explore this issue, I have developed a general corner-based
formalism and considered its implementation in detail. This formalism has provisions for
processing all-angle mask data, specifying complex conditions on the interrelationship of
features at cornmers (capable of capturing complex conditional rules), and provisions for the
incorporation of nongeometric data, (again for checking conditional rules). This work shows
that a general corner-based system is feasible, but that preprocessing would be required to
generate any nongeometric contextual information used in the rules. The rule formalism is
quite flexible. The proposed implementation uses standard compiler techniques as well as
some tairly elaborate logical manipulations to transform the input rule specification into 3

simple regular internal form that can be efficiently checked. Though the performance of such

a complex system can not be accurately predicted without implementation, it is encouraging

1.2
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that much of the complexity can be shifted to the rule compiler that transforms the input rule
specification to an efficient internal form. The rule compiler is only run infrequently, so its
efficiency is not a large concern. The actual rule checking is still relatively simple, though
more complex and slower than in the more restricted systems that have been implemented.
Many conditional rules rely on preprocessing to generate additional context information.
Such preprocessing would presumably be done using traditional region-based operations. This
suggests a hybrid system, involving region-based preprocessing to generate needed context

information followed by the more efficient and flexible corner-based tolerance check.

1.3. Ideas in My Research

A ;mmber of key ideas on design rule checking have emerged out of my research. These
ideas, more than particular systems or even particular algorithms, are my contribution to the
field. Some of the ideas, such as pattern-directed, rule-based, processing and point/edge
tolerance checks, were mew. Others such as hierarchical, and incremental checking had
previously been proposed, but were elaborated on (and validated) by my work. Still others
involving more general corner-based systems, were just suggested by the research, and remain

to be developed. The most important ideas are introduced below.

Corner-based checking uses pattern-directed, rule-based processing, a technique borrowed
from Artificial Intelligence. The pattern-directed processing of corners works as follows. Each
corner in a design is analyzed for certain mask patterns. The presence of certain predefined
patterns triggers relevant rules. The rules in turn specify conditions to check at the corner.
Care is given to index the triggering patterns so that the relevant rules at each corner can be
identified quickly. Processing of a design involves one pass through the data (all rules, and
layers are processed in parallel), and no intermediate layers are generated (the layers are
checked “in-place’”). This approach is radically different from the traditional region-operation
approach, where rules are checked through sequences of operations, and each operation

involves a separate traversal of the mask data. The pattern-directed processing concentrates

1.3
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the checking per data item scanned, and thus avoids the I/O bottle neck problem. Pattern-
directed processing, looked at from another perspective, is rule-based. The rule-based nature
of corner-based checking provides the characteristic flexibility of rule-based systems. Variants
of design rules, that would require the coding of a new operation in region-based systems, can

be accommodated in a corner-based system by the much simpler process of modifying a rule.

Another innovation of the corner-based approach, is the use of point/edge based
tolerance checking, that is tolerance-checking involving the measuring of distances between
corner-points and edges, rather than between pairs of edges; see Figuré 1.4. This technique
localizes checking to points in the design rather ‘than edges or regions. Violations are
associated with corner-points, and the independent checking of a piece of a design can be
precisely defined as checking all the corner-poicts of that piece. The consequent simplicity of

piecewise checking facilitates the implementation of hierarchical and incremental strategies.

Though hierarchical processing has been widely heralded as the solution to the excessive
times required for design rule checking, hierarchical systems have been slow in coming. Lyra
appears to have been the first fully-functional hierarchical design rule checker. Lyra
demonstrated that hierarchical checking of structured designs can be effective, and that
special restrictions on cell overlap are not required: as long as cell overlap remains relatively
small, hierarchical checking in Lyra is eflective. In addition Lyra’s special handling of arrays
proved very effective. Most of the regularity in VLSI designs is in the form of arrays. Special
handling of arrays alone will give most of the advantages of hierarchical checking. There was
also a negative result: checking of poorly-structured designs was as much as several times
slower hierarchically than flat! This was because mask features involved in cell interactions

ended up being checked at several distinct levels in the hierarchy.

Once hierarchical checking was in place, incremental checking proved easy to implement
and very useful. User response to incremental checking in Leo was extremely favorable. Leo

users frequently run design rule checks each day or so. Violations no longer go unnoticed
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(3) Edge/Edge (b) Point/Edge

Figure 1.4, - Alternative Tolerance Check Methods. Traditionally, tolerance checks on
mask regions have been done by checking the distance between region edges {a). In corner-
based checking, tolerances are measured from corner points to region boundaries (b). Such
point/edge checking has the advantage of very naturally splitting up into piecewise checks:
checking a piece of 2 design, corresponds to checking tolerances from corner-points within that
piece.

until after the design is complete and they are hard to fix.

Several new design rule check systems have incorporated some of the above ideas. The
Mart design rule checker, developed by Bruce Nelson and Mark Shand at CSIRO is based
directly on corner-based checking as in Lyra. The new internal Intel design rule checker uses
point/edge tolerance checking to facilitate piecewise processing. The Magic design rule
checker, recently developed by George Taylor and John Qusterhout at Berkeley, is strongly
influenced by Lyra. Though edge-based rather than corner-based, the Magic system uses
pattern-directed rule-based processing. Its hierarchical algorithm is similar to Lyra’s, and its

handling of arrays is identical. All these systems are discussed in Chapter 7, and references

1.3



INTRODUCTION 12
are given at the end of that chapter.

1.4. QOutline

About half of the material in the following chapters provides background. It discusses
the origin and nature of design rules, and presents the various approaches to design rule
checking. This material provides an introduction to the design rule checking problem, and the
context for the discussion of the corner-based approach, and the hierarchical and incremental

algorithms of Lyra and Leo.

The remaining chapters are organized as follows. Chapter 2 considers where design rules
come from, what they look like, and their role in the various design methodologies. It
develops the topo-tolerance model for design rules that is used through out the thesis.
Chaptef 3 presents the traditional region-operation based method of design rule checking.
Chapter 4 surveys existing design rule checkers, giving examples of traditional systems as well
as other approaches. Chapter 5 introduces corner-based checking in fully gemeral form. It
develops a corner-based formalism and explores the scope of rules that can be handled by it
with a number of examples. Chapter 6 discusses how a general corner-based system might be
efficiently implemented. Chapter 7 surveys actual corner-based systems, focusing on the
restrictions of each: how they simplify the implementation and how they limit rule checking
capabilities. Chapter 8 discusses hierarchical and incremental checking. It presents both the
approaches I used in Lyra and Leo, and the approaches used in other systems. Numerical

measurements are presented in Chapter 9. Chapter 10 is the the conclusion.

1.4
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CHAPTER 2

- The Nature of Design Rules

2.1. Introduction

Design rules specify constraints on the minimum size of circuit components, and the
maximum component density for integrated circuits. These constraints are given as minimum
tolerances on various spacings, widths, enclosures and extensions in the mask artwork for the

circuit. See Figure 2.1 for examples.
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Figure 2.1. - Typical Design Rules. These examples are taken from the Mead-Conway
rules for tMOS. Parts (a) and (b) give minimum widths and spacings (respectively) for lines on
a particular layer. Parts (c) and (d) specily dimensional constraints on the formation of
contacts and transistors respectively. A design rule set contains anywhere from a couple dozen
torover two hundred such rules. Some rules are more complicated; examples will be given later
in this chapter.

2.1
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There are a number of reasons for making devices as small as possible and component
density as high as possible. Most importantly, the probability of any given chip being
fabricated correctly (the yield) decreases dramatically as overall circuit size grows. This is
because fatal defects, caused by impurities in the silicon crystal or dust contamination during
processing, occur with approximately fixed and independent probability in each unit-area of
the circuit. Thus the probability of at least one (fatal) defect occurring in a circuit grows
exponentially with the area of the circuit. Hence smaller circuits have much better yield and
are more economical to produce. In addition, there is a practical limit on the maximum
circuit size that can be fabricated: beyond some size, yield will be so astronomically small
that no fabricated chip is likely to work. Thus smaller devices permit more complex chips.
Even disregarding yield, smaller circuits are more economical simply because there are more
chips per wafer fabricated; see Figure 2.2. Still another reason for minimizing component

sizes is that circuits composed of smaller components are faster and consume less power.

Die Sites

Wafer A. Wafer B.

Figure 2.2. - Wafers and Dle Sites. Multiple copies of an integrated circuit are fabricated
simultaneously on circular silicon wafers. After fabrication is completed, a waler is fractured
(or diced) into rectangular chips (or dice). Each chip contains an individual copy of the circuit.
The smaller the area of a chip, the more copies can be fabricated per wafer, and the more
economical production becomes.

21



THE NATURE OF DESIGN RULES 15

Limitations on the minimum size of circuit components, and hence the design rules, arise
primarily from imperfections in the mask preparation and fabrication process. These
imperfections result in distortions of the artwork during the transfer from the original digital
specification to the actual integrated circuit layers. They are numerous and varied, arising at
every step in the fabrication process. Examples are imperfect optical resolution during certain

processing steps, and imperfect alignment between masks or layers.

In addition design rules result from the physical properties of the fabricated circuit. For
instance, to prevent shearing of brittle metal lines, some processes have design rules that
prohibit metal from crossing over features that rise and fall abruptly. Similarly metal
migration effects, involving the erosion of metal atoms under the influence of a strong electric
current, necessitate wider metal lines in some cases. The gradual nature of diffusion

boundaries also leads to width and spacing restrictions.

Design rules are an abstraction of the physical limitations of the fabrication process that
permits the decoupling of process engineering and circuit design. A circuit designer need not
be concerned with the complex details of the fabrication process: he need only conform to the
design rules. Similarly, process engineers have flexibility in the development or modification

of the fabrication process, as long as the final process meets the design rules.

The following sections explore the origin, form, and uses of design rules in more detail.
First, the next section takes a closer look at the process engineering side of design rules: the
physical structure of integrated circuits is described: the principle artwork transfer steps in the
fabrication process are considered; and it is shown how limita._tions in the lidelity of these
transfers, and physical limitations on the fabricated circuit lead to design rules. The following
section discusses the form of design rules. A model for design rule form is presented and
illustrated with a representative sample of design rules. The final section considers the role of
design rules in the various design methodologies, and argues that a basic automatic design

rule checking capability is important regardless of design methodology.

2.1
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2.2. Integrated Circuit Fabricatlon and the Origin of Design Rules

Integrated circuits consist of layers of patterned conducting material stacked vertically
on the surface of a silicon substrate and separated by insulating material. Electrical devices
such as transistors and capacitors are formed through the interaction of certain layers across
thin insulation. Electrical contacts between layers are formed by cutting through the
insulating material between. Regions of the circuit are implanted with various impurities to
selectively éhange the electrical characteristics of the layers and the devices formed by their
interactions. A circuit is defined by geometric patterns giving the regions where each of these

layers (conducting, insulating or implant) is present.

The physical design of a circuit is originally in the form of digital design files specifying
the geometric pattern for each layer. To realize the circuit, the pattern for each layer must be
transferred to a physical layer in the circuit. This transfer is generally effected in at least
three stages, as illustrated in Figure 2.3. Prior to fabrication a photographic mask patterned
with transparent regions on an opaque background (or vice versa) is created for each layer.
The photomask is used to pattern a photosensitive resist, deposited uniformly over the surface
of the circuit. The actual layer is then patterned from the resist. Typically the layer has
been deposited immediately below the resist, and is patterned by an etchant that dissolves the

layer everywhere it is not covered by the resist.

Each transfer of the patterning information introduces distortions. The type and degree
of distortions is dependent on the procedure and equipment used. Mask generation is often
done by a block flash technique. A photographic emulsion is exposed to flashes of light
directed through a rectangular aperture, whose position, size and angle of rotation are
digitally controlled by a pattern gemeration tape. The pattern generation tape is derived
directly from the physical design files for the circuit. There are several sources of distortion
during flashing. Optical diffraction eflects at the edge of flashes cause a loss of edge acuity on

the emulsion; over- or under-exposure due to imperfect control of the timing and intensity of

2.2
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Digital Mask Artwork Specification
!

Mask Preparation
(with E-beam or Block Flasher)

J

Photographic Masks
d

Resist Patterning
(with Stepper)
)
Patterned Resist on Wafer

3
CEtching or IrnplantatioxD

J
Patterned Circuit Layer

Figure 2.3. - Pattern Transfers in Integrated Clrcuit Fabrication. The fabrication of
integrated circuits generally involves at least three transfers of the geometric pattern
information: from the original digital specification to the photographic mask, from the mask to
a photosensitive resist on the surface of the wafer, and finally from the resist to the actual
cifcuit layer. :
flashes can lead to slight edge motion; and mechanical imprecision in the flasher can result in
inaccurate positioning of flashes. Also, decomposition of the original design into a sequence of

rectangular flashes may require approximations, since the size, position, and angle of flashes

can only be varied in discrete increments. Non-polygonal features, such as circles, require

2.2
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-

approximation too.

Patterning of the resist typically involves a stepper that focuses an image of the
photomask successively onto each chip site on the resist-coated wafer. After exposure, the
resist pattern is developed using a solvent that dissolves the exposed (megative resist), or
unexposed (positive resist) sections. Distortions introduced in the patterning of the resist are
due mainly to the limited optical resolution of the imaging system, and diffraction effects at
region edges. Distortions also result from other factors such as nonuniform resist thickness.
Finally, imperfect alignment between masks, both translational and rotational, leads to

uncertéinty about the relative position of shapes on different layers.

The final transfer of the artwork pattern to the circuit layer is through an etching or
implantation step. The fidelity of this transfer is limited by the diffusion of etchant or
implant laterally underneath the resist boundaries. Imperfect control of the reactivity of the
active species (e.g. etchant strength), or of timing, results in uncertainty about the size of the

regions created.

Some distortion effects are pattern dependent, that is, they vary with the circuit
artwork. For example light reflected by metal-coated polysilicon during resist exposure for
the metal layer, can cause edges on the metal layer to be displaced; see Figure 2. This
reflection effect only occurs when a polysilicon edge runs near a metal edge. Another pattern
dependent effect involves etching in open versus confined regions. The rate of etching may be
less in more confined spaces. Thus, for instance, the outside edges of a set of parallel metal

lines may be etched more than the internal edges, as in Figure 2.5.

The above description of circuit fabrication, while correct in outline is greatly simplified.
Processing often involves additional transfers of the artwork pattern. For example working
masks may be produced from master photomasks, or reduced (and repeated) masks called
reticles may be used. A typical integrated circuit fabrication process involves over 100

distinct processing steps [Sze, 1983]. Imperfections in each step conmtribute to overall

2.2
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Figure 2.4, - Reflections A Pattern Dependent Effect. During resist patterning of an
aluminum layer, (a) above, the shiny aluminum-coated wafer reflects as much as 90% of the
incident light back through the resist. Where the wafer is flat the light is reflected harmlessly
straight back up. However, protrusions caused by underlying polysilicon edges scatter the light
resulting in undesired resist exposure. This results in the displacement of metal edges where
polysilcion edges run nearby, as shown in (b). In this case metal edge M is displaced to M’ by
light scattered from the nearby polysilicon edge P.

MM

Varlable Etcht Another Pattern Dependent Effect. Etching can be more
such as outside a set of closely spaced parallel lines, than in confined
This results in the narrowing of lines adjoining open

Figure 2.5. -
vigorous in open areas,
areas, such as between closely spaced lines.
areas.
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distortion in the final circuit.

The sources of artwork distortion during fabrication are numerous and complex. In

general the distortions lead to uncertainty about the exact position of region boundaries in the
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Figure 2.8. - How Distortion Causes Clrcult Fallure. This figure shows examples of how
distortion can lead to circuit failure if minimum tolerances are not observed. Part (a) illustrates
how a narrow line can be split. Part (b) shows the merging of features that are drawn too
closely together. Part (c) shows how the desired connection between layers can be lost if a
contact is drawn with insufficient enclosure. And part {d) shows how transistors can fail, if they
are drawn with insufficient extension.
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fabricated circuit. Shapes may be slightly larger or smaller than intended, and their relative
position, particularly between layers, will be inexact. This is illustrated in Figure 2.6.
Narrow lines may not be resolved at all (i.e. may not appear in the fabricated circuit), while
somewhat wider lines may be narrowed to the point where they are split into pieces, as in
Figure 2.6(a). Similarly shapes that are too closely spaced may be merged during fabrication,
as in Figure 2.6(b). Thus minimum width and spacing tolerances are needed to ensure that

electrical nodes are neither split nor merged together during fabrication.

The formation of comtacts and devices such as transistors and capacitors involves
overlaps and extensions between layers. For example, m a typigal MOS process a contact
from the metal layer to the diffusion layer is formed as shown in Figure 2.1(c). In order for
contact to be made it is necessary that all three layers, metal, diffusion and the cut in the
insulation between them, overlap. Thus minimum overlap tolerances are needed to ensure
all three layers will overlap sufficiently in the fabricated contact despite misalignments

between layers, and shrinks on the individual layers; see Figure 2.6(c).

The formation of MOS transistors involves the extension of a polysilicon line over a
diffusion line, as in Figure 2.1(d). The transistor will not function if the polysilicon fails to
extend all the way across the diffusion line in the fabricated circuit, (see Figure 2.6(d)), so a

minimum tolerance on the extension of the polysilicon beyond the diffusion is required.

In addition to causing circuit failure through broken or shorted nodes and inoperative
contacts or devices, distortions can result in degradation of circuit performance through the
formation of parasitic devices, e.g., capacitors formed by unintended overlap between layers,
or voltage drops in lines that end up too narrow. Cumulatively such effects can lead to
complete functional failure of the circuit, or simply degrade performance so the circuit will
not meet design specifications. In a few cases, distortions can result in long-term failure of the
circuit. For example, narrow metal lines carrying high current are subject to eventual failure

due to metal migration: the metal atoms actually erode away under the influence of the
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electric current.

Many of the factors contributing to artwork distortion during fabrication are random.
They vary from wafer to wafer, and oftea from region to region on an individual chip,
according to some probability distribution. The distortion of individual shapes and
relationships between shapes results from the combined effects of these many random factors,
and thus is best characterized in statistical terms. The maximum distortions occur when all
the individual factors are by bad luck near their respective maxima and all work together in
the same direction. The greatest distortion on an average chip will be much less than such a
worst case since the many factors contributing to distor;ion will tend to average out and

cancel each other.

Specifying design tolerances based on worst case distortions would be overconservative.
Such a choice would lead to unnecessarily large devices and circuit areas, degrading circait
performance, increasing power consumption and quite possibly reducing the yield of working
chips because of fatal random defects whose probability increases exponentially with chip
area. Thus the specification of design rule tolerances is a compromise that seeks to make

minimum tolerances small while, at the same time, keeping losses from pattern distortion low.

2.3. The Form of Design Rules

The last section showed how numerous factors cause distortions of the design artwork
during fabrication. These distortions result in uncertainity about the eventual size and
relative position of artwork shapes in the fabricated circuit. Coupled with physical
requirements of the circuit, such as the need to maintain the integrity of nodes and minimize

parasitic devices, these effects lead to the design rules for the process.

Design rules take the form of minimum tolerances on spacings, widths, enclosures and
extensions on the artwork as designed. These tolerances are intended to be sufficiently large
so that the corresponding relationships in the fabricated design will be maintained (and of

sufficient dimension) despite distortions. Because these rules give tolerances ol topological

2.3
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relationships, I refer to them as topo-tolerance rules.

The simplest and most common design rules specify minimum width and spacing for the
nodes of a single layer. See, for example, Figures 2.1(a) and (b). Here diffusion lines are
required to be at least 2 units wide and distinct nodes are required to be spaced at least 3

units apart.

Enclosure and extension rules generally involve interlayer contact or device comstructs.
For example Figure 2.1(c) shows a typical rule for contacts between diffusion and metal in an
nMOS process. Here both the diffusion and the metal must enclose the comtact cut for a
distance of at least one unit. Figure 2.1(d) shows an pMOS transistor rule that requires

polysilicon to extend past the diffusion for at least two units.

In addition to specifying tolerances on topological relationships for single layers and
between pairs of layers, topo-tolerance rules can refer to regions defined by a combination of
layers. For instance in nMOS processes, the operating characteristics of a transistor can be
changed by implanting the trapsistor gate region: unimplanted transistors are enhancement
mode, while implanted transistors are depletion mode. To ensure that the entire gate region
of depletion mode transistors actually gets implanted, the implant layer is required to enclose
depletion mode gate regions, by some tolerance. Similarly, to avoid accidental implantation
of enhancement mode transistors, there is a spacing rule between enhancement mode gate
regions and the implant mask. These rules are illustrated in Figure 2.7. Note here that

depletion mode gate regions are defined as
Polysilicon AND Diffusion AND Implant,

and enhancement mode gate regions are defined as
Polysilicon AND Diffusion AND (NOT Implant).

In general topo-tolerance rules can refer to regions on composite layers defined as arbitrary
combinations of the mask layers. Such combinations are specified by boolean expressions on

the mask layers, e.g. by using AND, OR and NOT operations.
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Figure 2.7. - Implant Tolerances Involving Comblnntio:;l of Layers. Typical implant
rules require implanted transistors to be enclosed by implant for a minimum of 2 units and
nonimplanted transistors to be spaced at least 2 units from implant regions. These rules do not
involve spacings between mask layers; rather they each involve a spacing between a mask- layer
and a (boolean) combination of mask layers.
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Figure 2.8. - Internode Spacing; a Conditional Rule. Frequently the spacing rule for
distinct nodes specifies a greater minimum spacing than is required between segments of a single
node. Such a spacing rule is conditional because it only applies in limited contexts, ie.,
between boundary edges of distinct nodes.
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Figure 2.9. - Reflection Rule. The spacing between metal lines may be greater when
polysilicon edge(s) are nearby. This is because reflections from the metal coated polysilicon
edges during patterning of the metal layer can cause the metal edges to move outward.

The above rules, with the exception of internode spacing, are unconditional: the
specified spacings, widths, or enclosures apply unconditionally to the mask layers throughout
the circuit. However design rules are often conditional, that is, the specified topo-tolerance is
only relevant in certain contexts. The conditions on design rules can take many forms. The
most common example of a conditional rule is internode spacing on a conducting layer. Such
a spacing rule is conditional because it only applies to mask regions that belong to distinct
nodes; see Figure 2.8. Another example of a conditional design rule involves the reflection
phenomenon introduced in the previous section. To take reflection into account a rule might
require that metal lines be spaced 1 unit apart when there are no polysilicon edges paralleling
the facing metal edges, 1.5 units apart when a polysilicon edge runs near one of the two metal
edges, and 2.0 units apart when polysilicon lines run near both the metal edges. Such a rule is
illustrated in Figure 2.9. Some design rules require that long parallel lines be spaced more
conservatively than short ones, to avoid capacitive coupling. Figure 2.10 gives an example.
A tendency for etching to be more vigorous in open areas can lead to conditional width rules.

For example minimum metal width might be 8 units if no other metal is present nearby, 7
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units if metal is nearby on one side, and 6 units if metal is present on both sides of a line.
Such a rule is illustrated in Figure 2.11. To avoid metal migration effects, metal width is
sometimes dependent on the current density a line will carry; for instance, power and ground

lines are often required to be wider than lines carrying other signals.

Conditional rules can get very intricate. As a final example, consider the following: To
avoid metal shearing due to rough underlying terrain, greater spacing between polysilicon and
diffusion edges may be required when a metal line runs perpendicularly across these edges; see
Figure 2.12. Since shearing in the direction of current does not pose a problem, such a rule is

actually dependent on the direction of current in the overlaying metal.

The above examples illustrate conditional rules that depend on the presence of nearby
regions or edges on the same as well as different mask layers, rules that depend on the length,
expected current density or function of lines, and even a rule that depends on current
direction. In general design rule conditions may be very complex and may involve geometric
information about circuit artwork, topological information (such as node connectivity),

electrical information, and functional information about the circuit.

With the exception of an occasional rule concerning areas, perimeters, or exact (not
minimum) dimensions, the examples of this section illustrate the nature and range of design
rules for integrated circuits. Simple rulesets are comprised of a relatively small number of
conseryative primarily unconditional rules giving minimum tolerances on widths, spacings,
enclosures and extensions for mask layers and layer combinations. More complex rulesets
involve a greater number of conditional rules that give more precise tolerances by specializing

the context in which each rule applies.
2.4. Automatic Design Rule Checking and Design Methodology

The topo-tolerance rules defined in the last section form the basis for the interface
between process engineers and circuit desiguers. However, the nature of the design rules

actually seen by circuit designers varies considerably with design methodology. This section

2.4
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Figure 2.10. - Length-Dependent Spacing. Sometimes spacing rules are conditional on the
length over which lines run parallel. For example, lines might be required to be separated by 3
units if they run parallel for less than 7 units, but be separated by at least 3.5 units if they run
parallel for lengths of 7 units or more.
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Figure 2.11. - Density Dependent Width. Because etching is more vigorous in open areas,
width rules are sometimes conditional on the presence of nearby lines on the same layer. For
example minimum width may be 6 units for interior minimum-spaced lines, 7 units for lines at
the edge of a minimum-spaced set, and 8 units otherwise.
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Figure 2.12. - Spacing Conditional on Current Direction in Overlying Metal.
Sometimes minimum spacing between poly and diffusion is conditional on the presence of
overlying metal. This is because nearly-coincident poly and diffusion edges result in an abrupt

change in the

vertical dimension that can cause overlying metal to shear. Since shearing in the

direction of current flow does not cause problems, the more conservative spacing need only

apply to polys
metal.

explains why a s

ilicon and diffusion edges running across the direction of current in the overlying

pectrum of design methodologies is in use, and briefly describes the major

methodologies and the nature of the design rules each presents to the designer. Then it
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matic topo-tolerance checking is important regardless of the methodology
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2.4.1. The Spectrum of Methodologies

Design methodology and design automation are receiving much attention. There is a
large spectrum of design styles in use, ranging from highly constrained, highly automated, low
density, gate-array designs to full-custom designs finely tuned to a specific process to achieve
maximum density and performance. These methodologies differ in the tradeoff they make
between simplifying design constraints on the one hand and ultimate circuit size and
performance on the other; see Figure 2.13. The nature of design rules and other constraints

employed by the methodologies will be outlined below.

In general, properly chosen constraints can simplify the design process. Such

simplifications improve designer productivity directly, since design decisions can be made
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Constrained Unconstrained
Automated — Manual
Easy to Design Hard to Design

Figure 2.13. - Design Cost/Density Tradeoff. There is a basic tradeoff between the degree
to' which a design method is constrained, and hence automated, quick, and painless on the one
hand, and the penalty in circuit density, performance, and functionality engendered by those
constraints on the other. Different positions with respect to this tradeofl are appropriate to
different projects. A wide spectrum of design methods ranging from fully automated gate-array
to hand-tailored analog design are in use.
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more quickly and accurately, and indirectly since they facilitate the automation of the design
process. On the other hand, more constrained design styles generally lead to less dense and
less efficient circuits, resulting in more stringent limits on the maximum functionality per
chip, lower performance, and increased production cost. The best methodology to use for a
particular product depends on the functionality and performance required, the volume of chips
that will be produced, and the particular mix of resources available for design and fabrication.
However, it is apparent that over time, as fabrication technology continues to improve, more

constrained methodologies will be increasingly favored.

2.4.2. Design Rules and Other Constraints Employed by the Methodologies

Table 2.1 summarizes the characteristics of a number of design methodologies. The
methods are given in order of increasing design rule complexity. In fully automatic gate array
designs [Soukup 1981] the designer does not deal with topo-tolerance rules at all; he works at
the netlist level, specifying the gate interconnections required to implement the circuit. A
designer using the standard cell approach [Soukup 1981] need not deal with a full set of topo-
tolerance rules either, since all devices and hence device rules are encapsulated in the
predefined cells. Designers using symbolic design systems [Bales 1979] [Hsueh 1979] work with
a more abstract representation than mask data: transistors, contacts, and their
interconnections are represented explicitly. Layout is generated automatically and is usually
guaranteed to be design-rule correct. The remaining methodologies, i.e., Mead-Conway [Mead
& Conway 1980|, traditional custom, and memory & analog design, all work directly with the
mask layer specification, and all require a full set of topo-tolerance rules. They differ mainly

in the number and complexity of the rules employed.

2.4.3. The Need for an Automatic Topo-Tolerance Checking Capability.

Regardless of the design methodology used, there must be some automatic method for

guaraﬂteeing that the final mask artwork for the design satisifies the topo-tolerance rules for
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Design Methodologies

Method

Description & Constraints

Design Rules

Gate-Array

Predefined, fixed, regular, array of gates with
horizontal and vertical wiring channels. Only
netlist is specified by designer. Gate
assignment and routing of netlist is done
automatically.

None.

Standard-Cell

Prededned library of fixed-height cells. Power
and ground routed horizontally through cells
at standard locations. Designer selects cells of
desired functionality, places cells in rows and
routes the signals. External pads must also be
placed and routed, and power and ground
connections made. No transistors are
permitted outside cells. Routing is usually
semi-automatic.

Simple width and spacing
rules for wiring, with
stylized  contacts. No
transistor rules, since all
devices encapsulated in
predefined cells.

Intelligent Layout
Systems.

Designer places and routes devices freely using
abstract representations for devices and
interconnect. Abstract representation permits

stretch/compact operations that preserve
integrity of design. Upon completion,
abstract representation automatically

converted to mask layers.

Simple width and spacing
of interconnect and devices
must be considered during
automatic generation of
mask data. More complex
device form rules are not

relevant  since  correct,
stylized, devices are
automatically  generated.
Simple rules make

automatic stretch/compact
feasible.

Mead-Conway. Designers strive for regular placement and | Full set of topo-tolerance
interconnection schemes that take full | rules. Rulesets are simple,
advantage of the topological properties of the | ie., 2 small number of
implementation medium. Simple conservative mostly unconditional rules.
design rules are used to free designer from
messy low-level details.

Traditional Full | Devices are placed and interconnected with | Elaborate full topo-

Custom. emphasis on high density and performance. A | tolerance ruleset.
set of stylized layouts for gates, memory cells, | Conditional rules allow
etc., is developed and used whenever practical. | more precise tolerances to

be used, permitting denser
design.

Memory and | Designers work closely with a particular | Large complex rulesets with

Analog Designs. process to achieve maximum performance and | many conditional rules.
density. Rules often depend on

anticipated power  and

signal strength in particular
regions of a circuit.
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the particular process being used: manual checking is unacceptable. The size and complexity
of VLSI designs makes manual checking an extremely tedious and error prone process. Even
experienced people concentrating on a single rule with diligence miss rule violations
[Fitzpatrick et. al. 1981]. Trial fabrication runs on circuits are time consuming (turn around
is typically several weeks to several months) and expensive. In addition it is difficult to
trouble-shoot finished circuits, even for fatal DRC violations that render the circuit
completely nonfunctional. Nonfatal violations contributing to reduced yield, reliability, and
performance of the circuit are likely to go completely undetected during circuit testing. Thus
the mask artwork must be automatically generated, in a design rule correct way, or accurate
automatic design rule checking must be used to eliminate all design rule violations prior to

fabrication.

In fact an automatic topo-tolerance checking capability is important regardless of the
methodology employed. Although the more constrained methodologies shield the user from
much of the detail of topo-tolerance design rules, a topo-tolerance checking capability is still
important. Topo-tolerance checking is used for the development and maintenance of systems
employing constrained methodologies. For instance the library cells in standard cell systems
and the templates for gate-arrays must be verified with a full topo-tolerance DRC. Further,
automatic layout generation systems are complex and hence prome to error. Topo-tolerance

checking is required to verify the correctness of automatically generated layout.

Topo-tolerance checking is also used to verify that no errors have been introduced
during the composition of independently-generated pieces of a circuit into a complete design.
Designs often combine elements developed with a variety of tools and within the framework
of a variety of systems. Integration and composition of these components is an error-prone
process involving multiple format conversions and often manual intervention to complete final
placement and route where automatic tools are not available or not quite adequate. Topo-

tolerance checking on the mask data has the advantage that it is dome on the final
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representation of the design, and thus can catch errors introduced during the final conversion

and integration steps: it provides a check oa the correctness of all the steps leading to the

final design.

This thesis focuses on the automatic checking of full topo-tolerance rules on the mask

data for designs.

2.5. Summary

Dense designs are more economiéal, have better performance characteristics, and allow
greater functionality per chip. Design rules codify limitations on the minimum size of circuit
components, and hence on the maximum density achievable. These limitations originate from
numerous distortions introduced during circuit fabrication and to some extent from the

physical characteristics of the fabricated circuits.

Design rules provide an interface between the process engineers and the circuit designers.
The process engineers need not concern themselves with the details of the circuits being
fabricated as long as they can meet the specified design rules, and the circuit designers need
pot concern themselves with the details of the fabrication process, as long as they obey the

design rules.

Design rules take a topo-tolerance form, that is, they specify tolerances on certain
spacing, width, overlap, and extension relationships in the circuit artwork. The intention is
that these tolerances are sufficient to maintain the relationships to some minimum acceptable
dimension despite process distortions. In general topo-tolerance rules involve relationships
between regions defined by combinations of mask layers. Many rules are unconditional: the
specified tolerances apply to the artwork relationships wherever they occur throughout the
designs. However rules can be conditional on nearby artwork on the same or different layers,
on topological relationships (such as node connectivity), on electrical properties, and even on

information about the function of the circuit.
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Though topo-tolerance rules are the basis for the designer/process interface, the nature
of the rules a designer sees directly varies with design methodology. Design methodologies
range from highly constrained, automated, low density, methods such as gate-array, to hand-
tailored, high-density, high-performance custom designs. The more constrained methodologies
shield the designer from low-level details such as a complete set of topo-tolerance rules.

Designers using these systems work with simpler, more abstract design rules.

Full topo-tolerance checking of mask artwork data is important regardless of the design
method. This is true for several reasons: complex automated systems can make mistakes,
manual intervention into automated systems can introduce errors, and the final composition

of a design from independently generated pieces is often ad hoc and error prone. This thesis

focuses on full topo-tolerance checking of mask data.
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CHAPTER 3

The Region-Operation Approach

3.1. Introduction

This chapter presents the region-operation approach to design rule checking which, with
variations, is used throughout the industry. A region-operation based system consists of a
collection of primitive operations, each of which takes one or two layers as input and
generates an output layer. There are several types of operations. Tolerance operations check
topo-tolerances between layers and output the portions of regions that are in violation.
Tolerance operations can be preceded by boolean operations to select layer combinations for
checking, and by topological, sizing, connectivity and other operations to select regions for
conditional checks. Since each operation is independent and yet can be combined with any
other, a region-operation system is extremely flexible: operations can be sequenced together
as desired, and new operations can be added whenever needed without disturbing the integrity
of the system. Region-operation systems provide an integrated solution to mask artwork
processing: a comprehensive set of operations is used that can handle circuit extraction ( i.e.
the extraction of transistor connection networks, capacitances and other electrical
information), and other mask artwork functions as well as design rule checking. The
operations intended primarily for non-DRC functions still serve to enrich the DRC, enabling a

variet}" of conditional checks.

The main drawback of the region-operation approach is that each operation
independently requires a pass through two input layers and the generation of an intermediate
output layer. Since mask layers for large circuits contain hundreds of thousands of figures,
and si;xce hundreds of operations are required to implement a complete design rule check,

design rule checking with region operations requires a deal of- I/O and hence is slow. Another

3.1
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problem with the region-operation approach is that direction-sensitive rules, often involved in
transistor or contact form, are notoriously difficult to check. These problems are considered
in detail later in the chapter, after the form, function, and implementation of region-based

systems are discussed.

The next chapter, which surveys DRC systems, presents a number of examples of

region-operation systems.

3.2. Mask Artwork and Mask Artwork Functions

In the region-operation approach, design rule checking is done in the context of a more
general mask artwork processing system. Such mask artwork systems are very similar,
consisting of similar sets of operations implemented in similar ways. This similarity in form is
due in part to similarity in function: they all process mask artwork, and all provide the same
basic functions. This section introduces this common ground: it presents the form of mask

artwork, and the functions typically performed on it.

Mask artwork files specify the two-dimensional geometric pattern of regions for each

layer in the circuit. Artwork file formats have the following characteristics:

i. Regions are defined in terms of primitive closed figures such as rectangles, trapezoids,
polygons and round flashes. Figures are identified with individual mask layers. Often there is
one file per layer.

ii. Figures on a layer are in general allowed to abut and overlap. However some formats do
not allow overlap between the figures composing a single layer.

iii. There is usually a symbol/instance mechanism, which allows a symbol consisting of a
collection of primitive figures (and possibly instances of other symbols) to be defined. A design
may contain multiple instances of any given symbol. Each instance has an associated
translation and rotation, which specifies where the symbol instance is to be placed. Symbol
instances may be nested to structure a design hierarchically. Hierarchy simplifies the design
process by allowing modular structuring of designs, allows far more space-efficient
representation of repetitive designs, and can be exploited to expedite some processing of designs,
such as design rule checking (see Chapter 8).

In addition to design rule checking, region-operation systems provide for circust

ezxtraction, and compensation functions. Circuit extraction involves recognizing transistors in
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the mask artwork, establishing their interconnection network, and determining electrical
parameters such as capacitances. (Extracted circuits are compared with original schematics,
checked for electrical rule violations, and used as input to cireuit simulators.) Compensation
inviolves growing and shrinking of regions on certain mask layers to accomodate peculiarities
of a pax;ticular process. An advantage of this integrated approach to mask artwork functions
is that operations intended primarily for circuit extraction or compensation functions are

never-the-less available to the DRC, enabling a variety of conditional checks.

3.3. Region Operations

Most mask artwork systems use the region-operation approach to implement design rule
checking, circuit extraction, and compensation functions in one integrated system. Each
function is achieved through an appropriate sequence of region-operations. The following
types of region-operations are usually provided:

i. Tolerance

ii. Boolean

ili. Topological

iv. Sizing

v. Connectivity and Tagging

vi. Area, Length and Perimeter

Each operation takes one or two layers as input and generates an (intermediate) output
layer, typically consisting of selected or modified portions of the input. In the case of
tolerance operations the output consists of the parts of input regions involved in design rule
violations. Some of the operations involved in extraction, e.g., connectivity and area
operations, generate numerical output such as node numbers and node areas, or tag the mask
data with such inforruation. This will be considered further when the individual operations

are discussed.
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a) No Violation. b) False Violation.
V.
¢) Genuine Violation. d) Missed Violation.

Figure 3.1. - Region-Based vs. Figure-Based Operations. A width check based on
figures (b) rather than the regions formed by the figures (a) can lead to spurious violation
reports. Conversely, parts (c) and (d) show how a figure-based width check can miss violations.
In general it is important that operations work on regions as a whole, rather than the figures
composing the regions.

Operations are region not figure based, e.g. a width check verifies the width of entire
connected regions, not of figures in the mask artwork description. Figure 3.1 illustrates why
this distinction is important: region-based operations avoid pathological dependencies on the
decomposition of mask regions into figures. Region operations are implemented using edge-
based algorithms that operate on the region boundary edges. The input mask data is

converted to such edge-files at the beginning of processing, and the output of region-

operations is in boundary-edge form.
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The edge-files used by the region-operations differ from the mask artwork representation
in another important respect: mask artwork files are usually hierarchical, containing symbol
definitions and instances, while edge-files are generally flat. During conversion to boundary-

edge form, symbol instances in the original mask artwork are replaced by their definitions.

Since most region-operations read and write‘boundary-edge files, they can be freely
combined. All of the types of operations listed above, regardless of their primary function,
contribute to the design rule checker. For example, sizing operations, though needed
primarily to implement grows and shrinks for compensation, are useful for establishing certain
contexts in conditional design rule checking. Similarly, connectivity operations, needed
primarily for circuit extraction, also allow for the checking of conditional design rules
depending on connectivity. Each type of operation is discussed below, with emphasis on the

role it plays in design rule checking.

3.3.1. Tolerance Operations

Tolerance operations check width, spacing, enclosure and eztension. Tolerance
operations take one or two layers and a tolerance as input, and output boundary-edges that
are too close together, as shown in Figure 3.2. Violating edges are often thickened and output

as regions, to facilitate plotting or further processing.

A spacing check between layers A and B for distance n can be visualized as follows:
An n wide halo is drawn around each region on layer A and checked for intrusion by layer B,
see Figure 3.3. Such a halo can be constructed piecemeal, creating an n-deep outward-facing
box adjacent to each boundary-edge and joining together these boxes with circular sectors at
each convex corner, see Figure 3.4. When an edge intrudes into a halo, both the intruding
edge, and the edge giving rise to the particular halo piece are output. Checking halos for
intruding edges can miss situations where a region on one layer completely encloses a region
on the other, thus a halo based spacing operation must also check for, and flag, overlaps

between the layers.
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Figure 3.2 - Tolerance Operations. Tolerance operations output (portions} of edges that
are too close together. Often edges are “thickened” into regions to permit plotting or further
region-operations. The dotted versions of the input regions regions are for reference: they are
not actually part of the output.

In some cases it is desirable to check spacings perpendicularly outward from region
boundaries, but not diagonally out from corners. Such checks can be done using halos
without corner sectors, as in Figure 3.4(a). This sort of check is appropriate, for example, in

facing-edge rules; see Figure 3.5. Such rules guard against the formation of long narrow

slivers of resist during processing, which could physically break off and deposit themselves
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elsewhere.

In single-layer spacing checks it is often desirable to avoid reporting situations where a
region intrudes into its own halo; see Figure 3.6. A variant of the SPACING operation is
usually provided for this purpose. Such operations require prior tagging of edges with node

numbers, via the connectivity operations discussed below.

Spacing and other tolerance operations usually have provisions for user-supplied filter
routines. Such routines can be used to implement less common or more complicated
conditional checks, depending on node numbers or other information tagged to edges.
Tolerance operations pass the filter routines each pair of edges that violate the specified
tolerance, along with all the information tagged to them. Based on this information the filter
routines determine whether the edge pairs should be output or not. This facility is very

powerful. It allows tolerance checks to be conditional on connectivity, edge length, region

\ ’.’.‘.“““J

Figure 3.3. - Tolerance Checking with Halos. Interlayer spacing between layers A and B
is verified by checking for the presence of layer B within a halo around A. In general tolerance
checks can be done by checking for the presence of the appropriate layers in the appropriate
outward- or inward- facing halo regions. Actual overlap between regions must also be checked
for, since one region may completely enclose another.
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Figure 3.4. - Halo Construction. An outward facing haio can be constructed from two
components: boxes extending perpendicularly outward from region edges (a), and circular
sectors around convex corners (b). This construction lends itsell to the boundary-edge
processing employed by the region-operations. Some checks involve only perpendicular
tolerances. Such checks can be implemented by leaving the corner sectors out of halos, as in (a)
alone.

3.3.1



THE REGION-OPERATION APPROACH 44

N
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Figure 3.5. - Facing-Edge Rules. Facing-edge rules specify a minimum spacing between
facing edges (b), that does not apply diagonally (a). They guard against the formation of
narrow slivers of resist during processing, which could break off and float to other parts of a
circuit. Such rules are checked with exclusion halos having no corner sectors. These rules are
checked by leaving the corners out of exclusion halos.

Figure 3.8. - Notches and Single Layer Spacing. This figure shows how a notched region
can intrude into its own halo. Single layer spacing rules often permit such notches, being
concerned only with internode spacing. Such rules can be implemented by using a variant on
the spacing tolerance check that compares the node numbers of intruding edges with the node
number of the region to which the halo belongs.

. 3.3.1



THE REGION-OPERATION APPROACH 45

//// | s

y
B

Figure 3.7. - Extenslon checks. This figure illustrates how the extension of a layer A
beyond a layer B is checked. The check is unusual in that halo-boxes extend outward only from
those parts of edges on the second layer (B), covered by the first layer (A). No corner-sectors
are involved.

area or perimeter, electrical characteristics of a node, and even on the function of the

intended function of a node. In addition, since filter routines are written in a general purpose

programming language, complex and unanticipated conditions are readily handled.

Width and enclosure checks are closely related to spacing. In fact they can be expressed

in terms of the SPACING operation as follows:

WIDTH[A,n] <=> SPACING1|(NOT A)n];
ENCLOSURE(4 ,B,n| <=> SPACING{4,(NOT B)nJ;

Here SPACINGT1 checks spacings between regions on a single layer, and SPACING checks
spacings between regions on two distinct layers. The NOT operation takes the complement
of a layer, i.e. all the regions where the layer is not present. Alternately, width and enclosure

can be visualized in terms of inward facing halos.
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Extension checks are less closely related to the other tolerance checks; see Figure 3.7.
Note that extension checks involve a perpendicular tolerance only - diagonal tolerances are
not involved. Halos are not drawn around the entire boundary, but only from portions of

edges of the second layer that are covered by the first layer.
3.3.2. Boolean Operations

Boolean Operations, typically AND, OR, and AND_NOT, take two layers as input
and create a composite layer as output. These operations are illustrated in Figure 3.8. Note
that the AND_NOT operation also serves as a not or complement operation when

performed on a single layer.

Boolean operations permit layer combinations to be selected for tolerance checks. For
example, the implant/nonimplanted-gate spacing rule illustrated in Figure 2.7 can be checked

by the following sequence of operations:

Gate = Polysilicon AND Diffusion;
~ NIGate = Gate AND_NOT Implant;
Violations = SPACING[NiGate,Implant,2];

The first operation generates a layer, Gate, layer consisting of all regions where both
polysilicon and diffusion are present. The second operation generates a layer, NIGate,
consisting of all gate regions where implant is not present. The final operation generates a
layer, Violations, of all cases where implant is closer than 2 units to a nonimplanted gate
region.

Boolean operations are also useful during circuit extraction, for instance to determine

contacts and gate regions.

3.3.3. Topological Operations

Topological  operations, such as TOUCHING, OVERLAPPING, and
ENCLOSING, select regions based on topological relationships; see Figure 3.9. They differ

from boolean operations in that they select an entire input region when part is involved in the
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Figure 3.8. - Boolean Operations. Boolean operations define regions in terms of layer
combinations. The AND operation outputs the regions where both input layers are present,
OR outputs regions where at least one of the input layers is present, and AND_NOT outputs
regions where only the first input layer is present. The dotted regions are only for reference,
they are not part of the output.

specified interaction, while boolean operations only select the interacting portion.

Topological operations are useful for determining the roles of regions to permit
conditional checks. For instance polysilicon/diflusion overlap usually implies a transistor

region for which a certain minimum width as well as polysilicon and diffusion extensions are
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Figure 3.9. - Topologieal Operations. Topological operations select regions based on their
relationship to other regions. They differ from boolean operations in that they select entire
regions of the input when an interaction with another layer occurs, while boolean operations
only select the interacting parts of regions. TOUCHING selects regions on the first layer that
touch or overlap regions on the second layer. OVERLAPPING selects regions on the first
layer that actually overlap (not just touch) regions on the second layer. ENCLOSING selects
regions on the first layer that entirely enclose a region on the second layer.

333



THE REGION-OPERATION APPROACH 49
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required. However polysilicon and diffusion also overlap in butting contacts where these
tolerances are not relevant. See Figure 3.10. These cases can be distinguished between, both

for DRC and circuit extraction purposes, by the following sequence of operations:

PD = Polysilicon AND Diffusion
PDBC = PD OVERLAPPING Cut
Gate = PD AND_NOT PDBC

The first operation creates a layer, PD, containing all polysilicon/diffusion overlap. The
second operation, selects the regions of PD involved in contacts, and the third operation

selects all the other regions in PD.

3.3.4. Slzing Operatlons

Sizing operations are grows and shrinks on layers; see Figure 3.11. A grow operation
generates widened versions of the input regions, and a shrink generates narrower versions. A
true GROW or SHRINK operation involves rounding of region corners, as in the top part
of Figure 3.11. Since many mask artwork representations do not include arcs, grows (shrinks)
are usually done by moving all edges outward (inward) and extending them so they continue
to meet, as in middle part of Figure 3.11. More elaborate polygonal approximations of the
true GROW and SHRINK operations are also possible, e.g., as in the bottom part of Figure
3.11. Sizing operations are used to adjust the width of regions to compensate for peculiarities
of a particular process, e.g., a tendency to print lines on certain layers either a bit too

parrowly or a bit too widely.

Sizing operations are also used to implement conditicnal design rules, where a tolerance
is dependent on the proximity of another layer. For example, to take the reflection
phenofnenon into account (see Figure 2.4), the metal width check in Figure 2.9 treats metal
edges flanked by polysilicon edges differently. This rule treats metal edges affected by
reflection from polysilicon edges as if they were moved outwards 0.5 units. The following

sequence of operations implements this rule:
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Figure 3.10. - Transistor vs. Butting Contact in Poly/Dif Overlap.
Polysilicon/Diffusion overlap occurs in transistors and butting contact (circled regions).
Extensions and minimum width are required for such regions in transistors but not when they
occur in contacts. These cases can be distinguished between with an OVERLAPPING
operation that checks whether each polysilicon/diffusion region overlaps a contact-cut.

Figure 3.11. - Slsing Operations. A true grow or shrink (by a certain radius) involves
rounded corners (top). Since region edges are limited to straight line segments in the region-
operation approach, a polygonal approximation must be used. The simplest approximation is
obtained by moving all boundary edges out (in) by the radius of the grow (shrink), and then
extending or trimming the edges so they just meet again (middle). More elaborate
approximations are also possible (bottom) and yield more accurate results.
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PGrow = Grow{Polysilicon 1)

PHalo = PGrow AND_NOT Polysilicon
MShrink = SHRINK(Metal,.01)
MEdges = Metal AND_NOT MShrink
MRefEdges = PHalo AND MEdges
MAdd = GROW(MRefEdges,.5)
MetalNew = MAdd OR Metal
Violations = SPACING1(MetalNew,1)

Figure 3.12 illustrates how this works. The first two operations, 2 GROW followed by an
AND_NOT, generate the PHalo layer identifying areas near (but to the outside of)
polysilicon edges. The next two operations, 3 SHRINK and an AND_NOT, create the
layer MEdges consisting of very narrow regions along metal edges. Then the intersection of
PHalo and MEdges is formed, (via AND) to create the MRefEdges. This layer consists of
narrow regions along those portions of Metal edges effected by reflection. Next MRefEdges is
grown by .5 units and combined with the original metal layer (via OR) to create the
MetalNew layer. MetalNew is the original metal layer, with all edges eflected by reflection

moved out .5 units. The actual spacing check is done on this layer.
3.3.5. Connectivity and Tag Operations

Connectivity operations are used to identify connected regions on a layer with a2 unique
node number, and to determine connections between regions on different layers. The output
of connectivity operations is originally in the form of a tag-file giving pairs of edges or nodes
that are connected. Tag-files can be processed to gemerate nongeometric data, such as
transistor comnection lists, or can be used as input to a TAG operation that actually tags

edges in an edge-file with node numbers or other information.

The primary use of connectivity operations is to determine circuit connection networks
during circuit extraction. For details on how this is accomplished see [Szymanski & Van
Wyk 1983]. What is important for design rule checking is that operations exist for tagging
mask data with node numbers. This permits connectivity-dependent design rules to be
handled, via built in primitives such as single-layer internode spacing, or in more complicated

or unusual cases via user-written filter routines that discriminate on the basis of the attached
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(d) Check New Metal Spacing

Figure 3.12. - Implementation of a Reflection Rule using Grows and Shrinks. A
reflection rule requiring greater spacing between metal edges aflected by nearby polysilicon can
be checked as follows. Use 3 GROW and an AND_NOT operation to generate halos around
polysilicon regions, (a). Use s SHRINK and an AND_NOT to mark metal edges with thin
slivers, (b). Then AND together the polysilicon halos with the metal edge slivers to identify
metal edges affected by reflection, and GROW out the resulting layer, (¢). Finally AND
together the grown metal edges with the original metal layer to obtain a new metal layer that is
widened at affected edges, and do a spacing check on the new layer, (d).
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connectivity information.

The TAG operation can be used to associate arbitrary information with the edges in an
edge-file. This allows design rules to be conditional on any information, as long as there is
some way to generate a tag-file associating the information with edges or nodes in the mask
data. The area and perimeter operations of the next section, for example, generate tag files

that can be used by TAG to associate area and perimeter information with the mask regions.

3.3.8. Area, Length and Perimeter Checks

Region areas and perimeters, and edge lengths, are important for calculating electrical
properties of circuits such as capacitance and transistor sizes. In addition design rules
occasionally depend on these parameters, e.g., the length-dependent spacing rule illustrated in
Figure 2.10. AREA, LENGTH and PERIMETER operations generally generate output
in the form of tag files for regions or edges giving the numerical values of their area, length or
perimeter (respectively). These tag-files consist of region-number/parameter-value pairs. If
desired, a second pass through the layer can be made to incorporate the tag data directly into

the edge-file.

Area, length, and perimeter tags can be accessed by user-supplied selection routines to
implement conditional tolerance checks depending on these parameters. In addition, variants
of AREA, LENGTH, and PERIMETER operations that output, those regions where the
relevant parameter falls in a specified range, are usually provided for design rule checking; see
Figure 3.13. For example such an AREA operation can be used to check contact rules

requiring contacts of fixed area.

3.4. Scanline Implementation of Region Operations

Recall that region-operations process region boundary-edges, mot the abutting and
overlapping figures of the input mask artwork description. One edge-file is kept for each layer

in the input, and for each intermediate layer generated by the region-operations. Edge-files
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Figure 3.13 - Area, Length, and Perlmeter Operations. Area, length and perimeter
operations can be used to tag edges with these parameters, for use in circuit extraction or design
rule checking. Variants of these operations (shown above) allow selection of regions (or edges in
the case of LENGTH) where these parameters fall within a specified range.

are too large to comfortably fit into main memory: a single edge-file will typically contain

several hundred thousand edges.

Traditionally, edge-files are processed using scanline techmiques [Szymanski & Van Wyk

1983|. Scanline processing allows a sequential pass through 4he input edge-files; it does not
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require more than a fraction of the edges to be kept in main memory at any one time; and it
permits ready access to local geometric context, such as the lavers present at a point, and the

edges that are nearby.

Scanline processing proceeds horizontal scaniine by horizontal scanline, left to right,
and bottom to top, as shown in Figure 3.14(a). Prior to scanline processing, the input edge-
fles are sorted into scan order, the order in which they will be encountered during the
scanline processing. During the scanline processing an active-list of edges crossing the current
scanline is maintained in main mémory; see Figure 3.14(b). Note that edges are of two types,
beginning and ending. Beginning edges lie to the left of regions, (precede them in scan order),
and ending edges lie to the right of regions, (succeed them in scan order). Horizontal edges
are not explicitly represented. Their presence is readily deduced during processing. As a
scanline is processed from left to right, new edges beginning on the current scanline are
merged into the active list, and edges ending at the current scanline are deleted from the
active list. The maintenance of the active list together with a running nesting count for each
layer, i.e. beginning edges less ending edges encountered in the current scanline, provides
complete information about the layers and boundaries present at the current point in the

scan. This allows a wide range of processing to be integrated into the scan algorithm.

Copsider for example, the single-layer OR operation. This operation is usually
performed after initial conversion of figure data to edge form. The iritial edge file is not
really in boundary-edge form, as it includes all (nonhorizontal) edges from the original figures,
including interior edges of abutting or overlapping figures. The single-layer OR removes such
non-boundary edges, creating a true boundary-edge. file for use with tolerance and other
region-operations; see Figure 3.15. The single-layer OR can be implemented by marking
edges for output whenever a transition from or to 0 occurs in the nesting count. If the 0
transition occurs only below or above the current scanline, the edge is split. When the tops of

marked edges are reached they are written to the output. Since the output need not be

.
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Figure 3.14. - Scanline processing. In scanline processing, regions are bracketed by
beginning and ending edges, that are processed in left to right scans, beginning at the bottom
of the design and working up (a). The numbers indicate the order in which the edges will be
first encountered during scanning. Edges are sorted into this scan order prior to processing. An
active-list of edges crossing the current scanline is maintained in main memory during
processing.
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strictly in scan order it will have to be sorted prior to further scanline processing. The other

boolean operations are implemented in a similar manner.

Tolerance checks are implemented with an augmented active-list that allows ready
access to all data in proximity to the current point. A halo region is computed for each edge
as it is encountered and intrusion into the halo is. checked with the help of the augmented
active-list. In addition actual overlap between the layers is checked. This is analogous to the
boolean AND operation.

Most other region-operations have straightforward scanline implementations.

Sometimes a second pass through the data is needed to tag or select regions based on the

computation of the first pass. For example topological and conpectivity operations involve

7

(a) Input Figures (b) Initial Edge-File

.

NN
1

(c) Ouput of OR

Figure 3.15. Singlelayer OR implementation. A single-layer OR eliminates nonboundary
edges (b) resulting from overlapping or abutting figures (a), by outputting only those portions of
edges where the nesting count {numbers in b) undergoes a transition to or from 0 (c}.
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the determination of junctures between regions. This information is readily computed in one
scan, but a second scan is needed to to output selected regions in topological operations, and
to tag regions with node numbers in connectivity operations. Similarly, area and perimeter
computations can be performed in one pass through the data provided edges are tagged with
region numbers. A second pass is required to output selected regions or to tag the data with
the computed values. Sizing operations require a single pass. They generate a new, shifted,
edge for each edge in the input. Since scanline processing permits access to adjacent edges at
edge end-points, the amount that the edges need to be extended to meet properly is readily

determined.

An important feature of scanline algorithms is that they permit sequential processing of
the input after the initial sort, and only the edges crossing the current scanline need to be
stored in main memory at any given time. Since VLSI designs have relatively uniform edge
density, and are roughly square, the number of edges on the active-list and hence the main
memory requirement is O(\/r_z'), where n is the total number of edges in the design. The

processing time, excluding the initial sort, is O(n).

Note that the processing time is very sensitive to the average number of scanlines per
unit-y: if the number of scanlines doubles, the processing time doubles. This is because an
edge must be handled once for every scanline it crosses. The number of scanlines per unit-y is
just the number of distinct y-coordinates of end-points per unit-y. Thus scanline processing is

sensitive to the ‘‘utilized” resolution of the design.

3.5. Pros and Cons of the Region-Operation Approach

The region-operation approach to design rule checking has a number of strong points.
The bag of tools approach, providing a set of operations that can be pieced together to
provide the required functionality, is extremely flexible. The system can be retargeted to new
design rules by simply piecing together the appropriate operations. If functions are required

which are not supported by existing operations, new operations can be added without
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impacting any existing componeats of the system.

The region-operation approach neatly integrates design rule checking with the closely
related Tunctions of circuit extraction and compensation. This saves redundant software and

user interfaces, and gives the DRC complete access to extraction functions as needed.

The tolerance, compensation, and boolean operations match the way designers think

about design rules. They provide a natural language for expressing design rule checks.

The use of scanline algorithms allows data files (which are often very large) to be read

and processed sequentially, with relatively small main memory requirements (O(\/ﬁ )-

The decomposition of design rule checks into sequences of simple operations, each with
its own input and output, intrinsically provides frequent check points. Since design rule

checks of large designs involve many hours of processing, this is a very useful feature.

However the region-operation approach does have shortcomings. A full design rule
check involves many region-operations with the consequent generation of many intermediate
layers. Typically the edge files are too large to be kept in main memory and hence are kept
on disk resulting in great amounts of disk I/O with relatively little CPU processing. DRC

runs tend to be disk-bound and slow.

Because most region-operations apply uniformly in all directions rules involving
directional context are difficult to check. Such rules are commonly involved in the
specification of transistor or contact form. For example, transistors must have polysilicon and
diffusion extensions; see Figure 3.16. The size of extensions, if present are readily checked via
an extension tolerance operation. However checking for the presence of extensions is tricky.
The regions directly opposite gate edges must be checked for the presence of polysilicon or
diffusion extensions. However the presence of polysilicon extensions outside two adjacent gate
edges signals a bent transistor; see Figure 3.16(b). In this case an additional check must be
made to ensure that the polysilicon encloses the corner. Thus the tolerances that need to be

checked depend on which layers abut adjacent edges at gate corners. Such a rule is extremely
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Figure 3.18 - Transistor Rule Involving Directional Context. In MOS processes
polysilicon and diffusion must extend laterally beyond transistor gate regions (a). In addition
extensions must be present around corners of bent transistors (b). To check this rule the layers
present outside each of the two edges at a gate corner must be compared. Such directional
context is difficult to generate in the region-operation approach: it requires long sequences of
operations.

difficult to check through a sequence of region-operations.
3.8. Summary

The region-operation approach to design rule checking is used almost universally. This
approach includes DRC functions as part of an integrated mask artwork system which is also

used to do circuit extraction, and compensation. All of these functions are implemented by
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sequences of region-operations. Region operaticns take one or two input files and generate ax

.

output file.

Mask data is converted to sorted edge-files, one per layer, and region-operations are
generally implemented using scanline algorithms. This allows for sequential access of input
files, and approximately O(v/7) main memory requirement where n is the total number of

edges in the input.

The region-operation approach provides a flexible, natural, and powerful system for
formulating design rule checks. It also has the advantage of neatly integrating DRC with
related functions, thus avoiding redundant code and user interfaces, and allowing the DRC full

access to extraction functions when needed.

On the negative side, a full DRC requires the sequential application of many primitive
operations and the generation of many intermediate layers. This requires a great amount of
1/O with relatively little CPU processing, leading to slow I/O bound processing. In addition,
anisotropic rules, involving directional context, are clumsy to check, requiring long sequences

of operations.
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CHAPTER 4

Survey of Non-Corner-Based DRC Systems

4.1. Introduction

There are three types of design rule checking systems in existence today: region-
operation, pixel-based, and corner-based. The vast majority of systems use variants of the
region-operation approach presented in the last chapter. They perform design rule checks

through sequences of region operations that process boundary-edge data.

A few systems use a pixel-based approach: these systems process two-dimensional
pixel-arrays rather than edges. Each pixel position is marked with the mask layers present
there, and in some cases with additional state information during processing. Pixel-based
design rule checking is of interest largely because it is amenable to highly parallel hardware

implementation.

Corner-based systems are the topic of this thesis. They apply conditions at each

location in a design according to the pattern of layers present at that location. These systems

differ from region-operation systems in that there is no sequencing of operations: all rules are

applied concurrently.

This chapter surveys region-operation and pixel-based systems. Corner-based systems,
(and the related Magic, and Intel DRC’s) will be considered in Chapter 7, after the

presentation of the corner-based approach.

Performance data for some of the systems presented in this chapter is given at the

’

beginning of Appendix I
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4.2. Region-Operation Systems

The vast majority of DRC systems employ variations of the region-operation approach.
This section examines a number of such systems. All of these express design rule checks in
terms of sequences of the same basic region-operations, and they all use edge-based data

representations and processing.

The systems vary from each other mainly in the functionality they provide and the
internal data organization employed. Functionality ranges from very high for the commercial
DRC vendors such as NCA Corporation, Phoenix Data Systems (PDS), and ECAD
Corporation to minimal as in university software to support Mead-Conway-style design
activity. The commercial packages handle arbitrary angles in the input data, and allow a fuil
complement of conditional checks, with full access to extracted network information and an
interface to user-supplied selection routines, as described in the previous chapter. University
software is generally restricted to orthogonal mask data (for speed and simplicity) and does

not implement conditional checks, since these are not needed for Mead-Conway designs.

A variety of data organizations are used in these systems, including scanline, two
dimensional bins of edges, and swaths of sorted trapezoids, (see Figure 4.1). Each of these
seeks to organize the data in a way that allows edge/edge and edge/quadrilateral intersections
to be computed quickly and systematically, since these are the basic data operations required
to implement the region operations. The choice of data organization impacts the speed of the
operations. Scanline processing, presented in the last chapter, is conceptually simple and
elegant and is used by most systems. However, 3 typical edge is handled many times during
scanline processing: once for each scanline crossing the edge. This multiple handling of data
slows down processing. The fastest systems today use alternative data structures: such as
two dimensional bins (PDS), or the more exotic swatus of sorted trapezoids (ECAD). The

latter is particularly effective in minimizing the number of times each edge is dealt with.
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Figure 4.1. - Internal Data Representations. The internal data representations used by
region-operation systems vary. Traditionally the scanline organization presented in the last
chapter is used (a). Some recent systems (e.g. PDS) organize edges or polygons into square bins
(b). At least one system (ECAD) organizes data into sorted horizontal swaths of quadrilaterals
(c). All these organizations facilitate processing by allowing quick and systematic computation
of edge/edge and edge/quadrilateral intersections.

The choice of data structure also determines how much of a design needs to be
maintained in main memory at a time. The scanline and swath methods require a thin slice
of the design to be in main memory, thus the main memory required is proportional to v
where n is the size of the design. If bins are used, only the current bin (and possibly the 8

neighboring bins) need be in memory at one time, so the amount of main memory required

remains constant regardless of the size of the design.

Note that the data organization used impacts the speed and order of the computation,
but not its character. Regardless of the organization employed the same edge-based

processing occurs, thus the user model remains the same.

The following subsections examine systems one by one. Special attention is given to the

main dimensions of variability outlined above: functionality and internal data organization.

4.2.1. Baird’s System

In his masters thesis at Rutgers, on artwork verification for integrated circuits [Baird
1976], Henry Baird surveyed a number of early artwork systems and observed surprising

uniformity: the same primitive operations came up again and again. He proposed an
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integrated artwork system including all the types of operations presented in the [ast chapter.
Baird noted that to avoid spurious errors, operations must be region-based, not fgure-based
as in some of the early systems, and he showed how region-based operations could be

implemented using scan-order edge-based processing of region boundaries. He allowed for

circular arc edges as well as straight edges, to permit true grow operations (see Figure 3.11).

Though his proposed system employed scan-order processing, the data structures and
algorithms were much more complicated than the current scanline algorithms. Internally,
data was maintained in fully intersected form, i.e. edges were split at intersection points and
intersections were represented explicitly as vertices. Data structures were kept both for edges
and vertices and these structures were cross referenced. Processing actually proceeded vertex
by vertex.

Baird’s thesis was the first thorough exposition of region-operation based mask artwork

processing. He documented his algorithms with pseudo-code and careful analysis. Later he

implemented many of his ideas in a DRC system at RCA.

4.2.2. Lauther's Algorithm

Ulrﬁl Lauther of Siemens Corporation, presented a paper at the 18th Design
Automation Conference (Lauther 1981] showing how a scanline algorithm proposed by Bentley
could be modified to perform boolean operations efficiently. Lauther’s algorithm uses a true
scanline approach, as described in the previous chapter. It has O(nlogn) time, and O(\/ﬁ)

main memory requirements. Edges are restricted to straight lines.

The Siemens DRC employs this algorithm to implement region-operations.

4.2.3.. Haken's System

Dorothea Haken developed a DRC program at Carnegie-Mellon University [Haken 1980]
for orthogonal mask data. This program was written to support the Mead-Conway design

activity at CMU. The system includes boolean operations, topological operations (which were
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required to handle butting contacts in the Mead-Conway nMOS process) and a basic
tolerance-check primitive for checking widths, spacings, extensions and enclosures. Extraction
functions were not supported, and node information was not maintained, thus spurious same-
node spacing violations could not be avoided. A simple filter was written to eliminate most of

these spurious violations.

Tolerance checks were implemented by building exclusion rectangles for each edge, and
then checking for intersections between mask features and the exclusion rectangles, i.e.
tolerance checks were implemented via manhattan halos (see Section 3.1 of Chapter 3). All

primitives were implemented using scanline algorithms.

4.2.4. Hitacht

T. Kazowa described the Hitachi artwork system in a paper presented at the 18th
Design Automation Conference [Kozawa 1981]. The Hitachi system uses exactly the region-
operation approach as described in the previous chapter. All the operation types are
supported. Implementat’ion is via scanline algorithms. For tolerance checks, the Hitachi
system uses a modified scanline algorithm that maintains a list of edges within a thin swath

below the current scanline.

4.2.5. NCA

NCA [Alexander 1978, 1983] has been the major vendor of DRC services for many
years. Their primary aim has been to capture all the rules employed by the industry.

Processing speed has been secondary.

The NCA system uses standard region-operations and mainly scanline processing.
Tolerance checks use a modified scanline algorithm that maintains edges within a swath of
fixed width below the current scanline. A few operations, such as GROW, actually operate
on a figure-based data representation. User written selection routines are used to implement

complex conditional checks.
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4.2.8. Phoenix Data Systems

Phoenix Data Systems (PDS) [Spink 1983] has recently emerged as a major competitor
with NCA for mask artwork verification and preparation services. The PDS system employs
a preprocessing step that cross-indexes connected mask data for efficient extraction and
simulation. The DRC again uses the region-operation approach. Output of the tolerance
check operation can be all violating edges, or just the portions of edges which are in violation.
This gives flexibility in building up conditional checks. Edges are sorted into two-dimensional

bins and processed bin-by-bin rather than in scan order.

4.2.7. ECAD

ECAD [Huang 84] has recently entered the DRC vendor market (their first product was
announced in 1983). Their system uses region-operations, providing about the same
functionality as the PDS system. ECAD uses sorted swaths of trapezoids (see Figure 4.1c.) as
their basic data structure. This data structure allows very fast implementations of the

primitive operations.

4.2.8. Other Systems

There are many other systems employing region-operations on boundary-edge mask
data, with variations on functionality, special restrictions on input data, and varied internal
data organizations. But the examples given above illustrate the type and range of variation

in these systems.

4.3. Pixel Systems

A few DRC systems represent mask data by a pixel-array, rather than by boundary
edges. Each pixel is marked with the layers present in it. The algorithms employed by these
systems have a decidedly different flavor from those employed in the region-operation

approach, since they deal with pixels rather than region edges.
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Pixels are square, and mask data is usually required to be orthogounal, although tricks
have been developed for handling 45s and other angles as well (given enough resolution). The
computation in these systems is organized so that the processing of each pixel depends only
on its own state and that of a small number of nearby pixels. The main appeal of the pixel-
based approach is that, since the pixels can be processed independently, highly parallel

hardware implementations are possible.

The method for expressing design rules varies. In some systems primitive operations are
implemented that can be pieced together to implement traditional region-operations (though
in terms of pixels not edges). In others each rule is expressed in terms of a finite state
machine. In one system the Mead-Conway design rules are hard-coded: they can not be

modified without rewriting the system.

The main problem with the pixel approach is that the required resolution can result in a
very large number of (tiny) pixels in a design; see Figure 4.2. The size of pixels is determined
not by feature sizes, but by the minimum amount by which region shapes and positions can
be varied, i.e. the resolution used in specifying the design. If the resolution is doubled, the
pumber of pixels increases by a factor of 4. As the resolution increases with respect to
average feature size the number of pixels quickly becomes much greater than the
corresponding number of edges in an edge-based representation. The large amount of data to
be processed puts stringent requirements on the efficiency of reading, processing, and writing
the individual pixels if the overall processing is to be faster than or even competitive with the
region-operation approach. Recall that the amount of processing per individual data item is
already small in the region-operation approach, so design rule chec'king will not be speeded up
significantly by reducing this time, unless corresponding reductions are made in the time

required for 1/0.

Pixel-based systems are largely experimental. Though a number of interesting systems

have been proposed, only one, Baker's, has been fully implemented.
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(a) Unit Resolution (b) Half Unit Resolution

Figure 4.2. - Exponential Growth of Pixel-Array as Resolution Increases. Increasing
the resolution of a design from full units (a) to half-units (b}, quadruples the number of pixels
required to represent a design. Because of this exponential growth, as resolution increases, the
amount of data required to represent a design in a pixel-based system quickly becomes much
greater than that required by a region-operation system.

4.3.1. Baker’s System

Clark Baker developed a pixel-based DRC [Baker 1980] as part of his Master’s thesis at
MIT. For several years, this DRC was the principal one used in the university VLSI
community to check Mead-Conway-style designs. It also may have been the first pixel-based

DRC.

Baker’s DRC is based on pattern matching on small windows into the design, see Figure
4.3. Pixels are processed in raster order, with 3 lines {(plus 4 additional pixels) buffered for a
4x4 window check. Conceptually, the window is moved systematically across the design, and
at each window position, a check is made to see if the pattern under the window is legal
Illegal patterns are reported as design rule violations. Baker’s DRC employed 2x2, 3x3 and
4x4 window checks. A typical 4x4 check might be done by first checking the center 4 cells,
and if they satisfy some criterion, then using the contents of the peripheral cells to generate

an index into a table that specifies whether the pattern is acceptable. Pattern checks are hard

4.3.1



SURVEY OF NON-CORNER-BASED DRC SYSTEMS | 72

coded and ad hoc. Consequently they can not be readily extended to more complex rules, or

greater resolution.

Baker's program checks all of the Mead-Conway rules except for the rules involving

implants. A postfilter eliminates many spurious violations involving same-node spacing.

4.3.2. Seller’s System

Larry Seiler, also at MIT, is currently working on a pixel-based DRC with hardware
assist [Seiler 1982] that greatly extends Baker’s concept. Each operation in Seiler’s system
outputs a mask in pixel form, allowing sequencing of operations. This is done by identifying a
key cell position within a window. If the window does not pattern match, a 0 is output for
the key position, and if it does match a 1 is output. As the window is moved over the design
an entire new layer is generated. A set of hard-wired patterns implement the following

operations:

i. WIDTH-2 - check for width of at least 2.
ii. WIDTH-3 - check for width of at least 3.
iii. SHRINK-2 - shrink by 2.

The hardware also supports boolean operations. Larger width checks can be implemented by
a sequence of width checks alternated with sbriﬁks. (A width check must be done after each
shrink, So that a too narrow region does not disappear entirely before a width violation is
detected.) Spacing checks can be implemented as width checks on the complement of a layer.
Grows can be implemented as shrinks on the complement. Thus tolerance checks and boolean
operations, the main DRC primitives of traditional region-operation systems, can be built up

from the more basic operations of Seiler’s system.
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Figure 4.3. - Baker's DRC. In Baker's DRC, a small window (a) is systematically stepped
across the design: the window is moved from left to right and bottom to top. This allows pixels
to be read in scan-order, buffering 3 rows plus 4 pixels internally (b) for a 4x4 window. The
pattern of pixels at each window position is checked for legality.

4.3.
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A few additional primitives are provided:

iv. PRUNE - remove narrow fingers.
v. FILL - fill narrow canyons.

vi. EDGE-CONDITIONS - check 2x2 user-programmable patterns.

These operations allow spurious violations to be avoided in single-layer spacing checks, and

permit some simple conditional checks.

Seiler's system is designed to handle 45 degree data. This is done largely by handling
partially filled pixels “appropriately” in converting data from figure-based to pixel form.
Appropriate handling means marking such pixels as empty or full, depending on the operation

to be performed.

The actual pixel processing is to be implemented with a special-purpose hardware DRC
engine. Figure-based input data will be scanned in software via a scanline algorithm, and
intervals covering the current scanline will be passed to the engine for conversion to a pixel
stream and processing. Internally, data paths in the DRC engine allow for recirculation of
data for sequencing of operations. Output from the engine will also be in interval form, and

will need to be postprocessed {or error reporting.

The hardware is designed around four custom VLSI chips which are currently only

partially designed and implemented.

4.3.3. Mudge's Approach

In a paper given at the 19th Design Automation Conference [Mudge et. al. 1982], T. N.
Mudge of the University of Michigan at Ann Arbor suggested how the Cytocomputer could be

usad to implement a pixel-based DRC check.

The Cytocomputer is a general-purpose pixel-based image processing engine currently

under development. The engine is built up of an expandable series of identical stages. Pixels
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enter and exit each stage serially (in scan order). Each stage buffers two rows plus 3 pixels
internally and outputs a bit depending on the current bit and its 8 nearest neighbors. Looked

at another way, each stage implements a 3x3 window operation.

The basic operations implemented by Mudge on the cytocomputer differ from those in
Seiler's DRC engine. Mudge’s operations, based on the imagf; algebra foymalism developed by
Sternberg [Sternberg 1980], rely on generalized grows and shrinks called erosion and dslation.
Like Seiler’s primitives, Mudge’s operations can be combined to implement the traditional

region-operations.

If a Cytocomputer with a sufficient number of stages is available an entire DRC check
can be made with one pass through the pipeline. Mudge estimates that a full Mead-Conway
check would require 250 stages. Thus given a 250 stage Cytocomputer with a 1 microsecond
cycle time, a 2000 x 2000 lambda design could be processed in 10.5 seconds. However this
timing estimate does not take into account the conversion of the design from figure-based to
pixel form and the postprocéssing of the output, both of which are likely to be very significant

in practice.

Mudge illustrated how DRC operations might be implemented with a 3x3 spacing check.
It is not zpparent to me what form a general spacing check would take. Much work would be
required to code a complete set of region-operations. At the time of the 1982 Design
Automation Conference paper, only a one stage TTL prototype of the Cytocomputer was

available.

4.3.4. Eustace's Approach

R. Alan Eustace and Amar Mukhopadhyay of the University of Florida at Orlando have
proposed yet another pixel-based design rule checking system |Eustace & Mukhopadhyay
1982]. In their system a good deal of state is stored along with each pixel. Two-dimensional
transition functions determine the state of each pixel based on the state of its immediate left

and bottom neighbors and on the layers present at the pixel itself; see Figure 4.4. The state
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of all pixels can be computed by processing from left to right and bottom to top. One
transition function is required for each rule to be checked. The number of states required
depends on the type of check and the maximum dimension involved, for example a 3x3

spacing check can be implemented with 12 states.

No systematic method for obtaining transition functions was suggested. The authors
generated transition functions by hand for a subset of the Mead-Conway rules using ad hoc

methods, specifying the functions in tabular form.

The major drawbacks to this method are the large amount of state information

4

associated with each cell, and the difficulty of specifying and implementing transition

functions. The number of states required grows quickly with the maximum dimension

115 125 135 145 [I55

114 [l24 134 fl44 (154

133/@;@ 153 L

s13| 7 s23 —> *
112 122/ 132/ 14%{\152
s12| 529 532 7649 % (143 .533.542
111 121/ 131/ la1 ~ |I51 = f(143,533,s 2)
s11| 7 s21] 7 s3ll ~ s41

Figure 4.4. - Eustace’s Approach. In Eustace’s approach, state information (bottom right
corners) as well as layer information (top left corners) is associated with each pixel. The state
of each pixel is computed (by a two-dimensional finite state machine [from the states of the
left and bottom neighbors, and the layers present at the pixel itself. A separate state machine,
and set of states, is required for each design rule. Whenever an error state is reached, a design
rule violation is reported.
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involved in a check. and the table space required to store a transition function grows as
O(n"‘logn) where n is the number of states. Thus as resolution increases, the method

becomes untenable.

4.3.5.' Zech's Archltecture

Karl-Adolf Zech, suggests an elegant hardware organization for implementing the
Eustace-Mukhopadhyay method of design rule checking [Zech 82]. This architecture requires
the maintenance of state information for only a very few pixels at any one time, thus
eliminating one of the major obstacles to a practical implementation of this method of design

rule checking.

The basic building block for Zech's architecture is a processing element capable of
computing the state of a pixel, given the states of its left and bottom neighbors, and the
layers present at the pixel. Processing proceeds from left to right. Thus normally a
processing element stores the state of the left neighbor internally (this is just the result of its
previous computation) and takes the layer information for the current cell, and the state of
the bottom neighbor as input, see Figure -4.5(a). A two-dimensional array of processing
elements allows multiple rows of pixels and multiple rules to be checked simultaneously; see
Figure 4.5(b) Each column of processing elements handles one rule, and each row handles one
row of input pixels. The processing in each successive row is delayed one pixel with respect to

the previous row, to minimizes the number of pixel states that must be maintained: each

processing element stores one state internally.

Zech does not discuss the design of the individual processing elements, or the critical

problem of constructing and representing transition functions for design rules.

4.4, Summary

All but a very few DRCs are of the region-operation type presented in the last chapter.

However, these systems do vary in elaborateness. For example, the major DRC vendors allow
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Adjacent Pizels

Pizels Pizel Buffers

(a) Processing Element

Rule1 Rule?2 Rule8
| / / /

------- 1 PE |-{ PE | PE

.

‘Row 2 )| PE

Row1 | PE |-

PE |1 PE |{ PE
-1 PE |1 PE
| PE |4 PE

(b) Processing Network

Figure 4.5. - Zech's Architecture. On each cycle, each processing element takes two states
and one set of layers as input, and generates one output state, (a). Processing elements can be
interconnected in a staggered array (b) to check multiple rows of pixels, and multiple design

rules simultaneously.
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arbitrary angle data to high resolution and permit access to extracted data to check

sophisticated conditional rules. In contrast, software for Mead-Conway designs is often

restricted to orthogonal data, has coarse resolution ( (e.g. 1/4 the minimum transistor width),

and has few provisions for conditional rules.

4.4



SURVEY OF NON-CORNER-BASED DRC SYSTEMS 79

Region-operation systems also vary in the data structures they use to organize
processing of the mask dzta. Typical organizations are scanlines, two dimensional bins, and
sorted swaths. The basic data elements are usually edges, but may also be rectangles or
trapezoids. Despite these differences, the systems remain very similar in flavor: the same
primitives are used, and implementation is in terms of intersection calculations between

boundaries and other boundaries, or boundaries and halo regions.

There are two other broad types of DRC’s: pixel-based systems, and context-driven
systems. Pixel-based systems differ from region-operation systems in the type of data
representation they employ. In pixel-based systems the mask data is represented and
processed as a two-dimensional array of pixels, rather than in terms of region boundaries.
Pixel-based systems are largely experimental, and of interest mainly because they are
amenable to parallel or pipelined special purpose hardware implementations. Only one pixel-
based system, Baker's Mead-Conway DRC, has received a significant amount of actual use.
There are serious questions as to the practicality of the pixel-l;ased approach, centered around
the O(n?) growth in the nurﬁber of data elements needed to represent a design as the
resolution requirements increase. (Here n is the diameter of the design in minimum resolvable

units.)

Corner-based DRCs, the final type, differ from the region-operation approach in an even
more fundamental way: there is no notion of sequencing primitive operations in context
driven systems. Instead rules are represented in terms of local patterns of layers, and
conditions to be checked wherever the patterns apply. Rules are independent of order and are

all checked simultaneously in one pass through the data.

Corner-based systems are the topic of this thesis. Corner-based and related systems are
discussed in Chapter 7, following the presentation of the corner-based approach in the next

two chapters.
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CHAPTER 5

The Corner-Based Approach

5.1, Introduction

This chapter begins the presentation of the corner-based approach to design rule
checking. It presents corner-based checking in its most general form. The form of the rules
presented is likely to appear some what varied and complex. The next chapter, shows how
these rules can be implemented in a uniform and relatively straight-forward manaer. Current
corner-based systems are less general than this, and have considerably simpler rules and

implementations. These will be considered in Chapter 7.

In corner-based design rule checking, conditions are verified at mask artwork corners; see
Figure 5.1. Conditions specify circular sectors in which given layer combinations must be
present or absent. For example, spacing checks are coded by conditions that require a layer
to be absent within sectors located to the outside of corners, while width checks are coded by
conditions that require a layer to be present within sectors inside corners. There are a few
embellishments. The angles of corners can be taken into account when specifying coaditions:
often rules specify one condition on convex corners and another onm concave. Several
conditions can be logically combined to specify more complex conditional rules. Attributes

attached to the mask data can be referenced in conditions to express rules that are

conditional on nongeometric information.

The above paragraph gives the entire corner-based mechanism. It has the following

features:

i. Sector conditions are attached to corners of given angles and layer combinations.
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/

(a) Spacing

-

(b) Width

Figure 5.1. - Corner-Based Checking. The main idea of the corner-based approach is to
verify circular sector conditions, attached to corners, that require the presence or absence of
certain layers. Spacing is checked, (a), by verifying outward-facing sector conditions that
require a layer to be absent. Width is checked, (b), by verifying inward-facing sector conditions
that require a layer to be present. The shaded conditions have been violated.

ii. Sector conditions consist of circular sectors within which layer combinations must be present

(or absent).

iii. Conditions can be logically combined to implement conditional rules.

iv. Layers can be qualified by reference to attributes tagged to the mask data.

83

The layer combinations in i. and ii. and the combination of conditions in iii. can be general

boolean expressions. Features i. and ii.,, providing for sector conditions om corners, are

powerful enough to replace all the boolean and tolerance operations of the regidn operation

approach: they permit all unconditional rules to be checked. Feature iii., permitting the

logical combination of sector conditions, allows many (though not all) rules conditional on

geometric context to be checked without recourse to sizing operations. Feature iv., allowing

reference to mask feature attributes when specifying layer combinations, provides an interface

to nongeometric information, facilitating the checking of a variety of conditional rules.

5.1
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Together these features provide 3 single fexible mechanism powerful enough to check most
rules that can be checked by the region-operation approach. In addition, unanticipated
variations on checks that would require a new primitive in a region-operation system can

often be expressed without difficulty in corner-based systems.

Corner-based checking is contezt-based: the conditions that are verified at a location are
determined by the local context, i.e., the corners present thers, and sometimes by the validity
of other conditions at the corner. Context-based checking facilitates the coding of
directionally sensitive rules, common in the specification of transistors and other circuit
constructs (see Figure 3.16). For example, a sector condition to the left of a corner may be
made conditional on another sector condition to the right of a corner. Directionally sensitive
rules are very clumsy to check with region-operations: they require long complicated
sequences of operations. This is because region-operations are not easily biased by local

context.

The use of context-based rules, rather than sequences of operations, permits all rules to
be checked simultaneously in one pass through the mask data. Each corner in the mask data
is identified, and all conditions applying to it are verified. This single pass through the mask
layers, made possible by context-based rules, is a great boon to performance. It eliminates
the I/O bottleneck encountered in region-operation systems where multiple passes are made

through the mask layers and many intermediate layers are generated.

Corner-based checking differs from the traditional region-operation approach in another
important way. In corner-based systems, tolerances are checked by sector conditions at
corners: no checking is done along the length of edges; see Figure 5.2. Effectively, tolerances
are implemented in terms of point/edge comparisons rather than the edge/edge comparisons
traditionally used in region-operation systems. Point/edge checking allows for clean
partitioning of designs: checking a piece of a design independently entails checking all the

corners in that piece. Partitioning is more difficult in systems employing edge/edge
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processing, since edgss crossing piece boundaries must be treated specially. In fact in region-
operation systems, each type of operation may have to handle such edges differently. Thus
the corner-based method is particularly well suited to hierarchical and incremental checking,

where pieces of a design are checked independently.

The two innovations of the corner-based approach are a context-based rule description
mechanism and point/edge tolerance checking. Since the introduction of corner-based
checking, systems have emerged which employ each of these ideas independently. The Magic
system, recently developed at Berkeley, employs a rule description mechanism, similar to the

corner-based method but based on edges. Conversely, a recent region-operation system,

' - AN
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(a) Edge/Edge (b) Point/Edge

Figure §.2. - Comparison of Tolerance Check Methods. Traditionally, tolerance checks
on mask regions have been done by checking distances between region edges, (a). In corner-
based checking, tolerances are measured from corner points to region boundaries, (b). Such
Point/Edge checking has the advantage of very naturally splitting-up into piecewise checks:
checking a piece of a design corresponds to checking tolerances from corner-points within that
plece.
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developed at Intel, employs point/edge tolerance operations to facilitate hierarchical checking.

These systems will be considered along with the true corner-based systems in Chapter 7.

The remainder of this chapter looks at how corner-based checking works in more detail.
The c.hecking of unconditional rules, rules conditional on geometric context, and rules
conditional on nmongeometric information are considered in turn by the next three sections.v
Each section contrasts the way example rules are checked in corner-based systems with how
they would be handled in a traditional region-operation system. The final section
summarizes the chapter. Implementation issues will be taken up in Chapter 6, and actual

corner-based systems will be considered in Chapter 7.

5.2. Unconditional Rules

This section considers how unconditional spacing, width, and enclosure rules are
expressed in a corner-based system. Recall that in unconditional rules, tolerances apply to the
—layers throughout a design, regardless of context. In region-operation systems such a rule is
checked by a sequence of boolean operations followed by a tolerance check. The boolean
operations combine the mask layers to derive the regions to which the check applies, and the
tolerance operation performs the actual check. In corner-based systems the required tolerance
is checked by verifying circular sector conditions (equivalent to the halo corners in Figure 3.4)

at corners. Since combinations of layers are permitted for corners and sector conditions,

separate boolean operations are not needed.

At the beginning of this chapter, four features of the corner-based mechanism were
given. Only the first two of these are needed for unconditional rules, namely:
i. Sector conditions are attached to corners of given angles and layer combinations.

ii. Sector conditions consist of circular sectors within which layer combinations must be present
(or absent).
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The Mead-Conway implant/enhancement-gate spacing rule will be used for illustration.
This rule is shown in Figure 2.7. It requires that implant regions be spaced at least two units
from enhancement gates. Enhancement gates are formed where ever polysilicon overlaps
diffusion and implant is not present. In a region-operation system this rule would be checked

with a sequence of operations like this:

Gate = Polysilicon AND Diffusion;
EnhGate = Gate AND_NOT Implant,
Violations = SPACING|EnhGate,Implant ,2];

In the corner-based approach this rule is expressed as follows:

rule "Implant/Non-Implanted Gate Spacing”
for Implant corners_require
if corner.angle <180 then
!(Polysilicon & Diffusion & !Implant) everywhere_in
sector|edge1+90 *,edge 0—90 *2]
for (Polysilicon & Diffusion & !Implant) corners_require
if corner.angle <180 then
\Implant everywhere_ln sector[edge1+90",edge()—90 *2

The first for specifies sectors at convex (< 180 degree) implant corners; see Figure 5.3(a).
Enhancement gate regions are not permitted inside these sectors. The layer of the corners

and the angle restriction are indicated by:

- for Implant corners_require
if corner.angle <180 then - -

The condition on the sector {no enhancement gate regions) and the sector itself are specified
by:

!(Polysilicon & Diffusion & !Implant) everywhere_in
sector(edge 1+90 * edge0—90*,2

The layer combination ‘(Polysilicon & Diffusion & !Implant) defines enhancement gate
regions. Thus "(Polysilicon & Diffusion & tImplant) everywhere_In - - - ' specifies that
enhancement gate regions not be present anmywhere in the sector. The sector specification
itself has 3 parameters. The first two specify the angle of the beginning and ending edges of

the sector, relative to the edges of the corner. The final parameter gives the depth of the
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Figure 5.3. - Corner-Based Implant/Enhancement-Gate Spacing Check. Spacing
between impiant and enhancement-gate regions is checked by outward facing conditions on
convex corners of each layer that require the absence of the other layer: part (a) checks that
the Enhancement-Gate l