Iteration Theorems for Deterministic
Families of Languages

Michael A. Harrison

Report No. UCB/CSD 86/271
December 1985

L

.

/

3\
Computer Science Division (EECS)
;\\&\ University of California
7] Berkeley, California 94720

)
/

Iteration Theorems for Deterministic
Families of Languages

Michael A. Harrison*
Computer Science Division

University of California
Berkeley, CA 94720

December 4, 1985

Abstract

In this paper, we consider the problem of finding iteration theo-
rems for various subfamilies of deterministic languages. Because de-
terministic languages are constrained in their generation, it is not
possible to merely “pump substrings” as in the general context free
case. We lay out, in detail, a collection of techniques for proving
theorems of this type for deterministic context free languages.

*Sponsored by the National Science Foundation under Grant MCS-8311781 and by the
Defense Advanced Research Projects Agency (DoD), Arpa Order No. 4871, monitored by
Naval Electronics Systems Command, under Contract No. N00039-84-C-0089.

1 Introduction

In research into the theory of languages, one of the most important ques-
tions is whether a given language L belongs to family X of languages. If
one is working with very rich families of languages such as context sensitive
languages, recursive sets, etc, there are powerful techniques like diagonal-
ization which can be employed. At the opposite extreme is the family R of
regular sets. For R, one can succeed without much formal machinery. Com-
pletely elementary techniques such as congruence relations, simple pumping
methods, and closure properties all work for R.

The most important of all families of formal languages is the collection C
of context free languages. The first systematic way of obtaining non-context
free languages was the “Pumping Lemma” of [4]. (This result will be stated
shortly.) The result nicely captured essential properties of derivations. The
inadequacies of the result were improved subsequently in what was called
the “Iteration Theorem.”

As the field developed, the significant applications were to deterministic
context free languages which could be parsed in linear time. Many of
the definitions of these languages were difficult to handle as they involved
quantification over infinite families of derivations. It took quite some time
to figure out systematic techniques for showing non membership in these
language classes. The purpose of this paper is to expose the techniques
used to obtain iteration theorems for various subfamilies of deterministic
context free Janguages. By focusing on the techniques involved, we hope to
be able to apply them to certain open problems in these areas.

We are now ready to state the original “pumping lemma” originally
proven in [4].

Theorem 1.1 Let G = (V,E, P, S) be a context free grammar. It is possible
to determine two natural numbers p and g such that every sentence z of L(G)
with lg(z) > p admits a decomposition of the form z = zuwvy whereu = A
or v = A, Ig{uwv) < g, and all strings z; = zu*wv*y € L(G) for all k > 1.

While this lemma was useful in proving a number of results, it could
not handle a number of cases. The set L is a concrete example.

L = {a"bc} U {a*ba"ca" | p prime, n > 0}

2

L is not context free yet the conclusion of the pumping lemma hold for
L. An additional practical difficulty with the Pumping Lemma is the large
number of cases that have to be dealt with in working with the pumping
lemma on specific languages.

This practical difficulty was eliminated by adding the concept of “posi-
tions” to the pumping lemma to give what is commonly called the Iteration
Theorem or Ogden’s lemma. In [18], Ogden credits the idea of position to
Dana Scott. We now set the stage for a careful statement of this theorem.

Definition 1.1 Let w € I*. Any sequence p = (vy,...,v,) € (Z*)" such
that w = vy -+ - v, 18 called a factorization of w. Anyintegers, 1<i< lg(w)
ts called a position in w.

Let K be a set of positions in w. Any factorization © induces a “parti-
tion” of K which we write as

Klo = (Ky,...,K.)

where for each 1,1 <i<n

K.‘ = {k €K | lg(v1 ---v,-_l) <k < lg(v1 ---v.-)}.
Note that some K; may be empty so this is not a true partition.

Example 1.1 Let w = aPb’cr.

= (a*, %, %)
and
K={p+1,...,2p}
then K} = Ky =0 and K; = K.

We can now state the iteration theorem for context free languages.

Theorem 1.2 (The Iteration Theorem) Let L be a contezt free language.
There ezists a number p(L) such that for each w € L and any set K of
positions in w, if |K| > p(L) then there is a factorization p = (vy,...,vs)
of w such that '

1. for each ¢ > 0, vivivsvivs € L.

2. if K/p = {Ki,...,Ks} then
(a) either K, K;, Ky # 0 or Ky, Ky, K5 # 0 and
(b) |K:U Ks U K| < p(L).

Part (2) implies that K5 = @ and either K; or K, = 0. Thus either
vz = A or v4 = A. Condition (2)(b), |K2 U Ks U K| < p(L), is necessary to
prohibit trivial factorizations in which w = v,v3vsv4 or w = vavsvvs.

The reader is referred to [10] for a proof. The proof of the Iteration
Theorem requires only a little extra combinatorial overhead as compared to
the proof of the Pumping Lemma. The benefits are real as the work involved
in showing sets to be non language is reduced and more importantly, new
problems can now be solved that were previously open. Note that the
example immediately following the statement of the Pumping Lemma can
be dealt with by the Iteration Theorem.

Note that the Pumping Lemma now becomes a corollary of the Itera-
tion Theorem by simply choosing K = {1,...,1g(w)}. Moreover, the result
extends to sequential forms directly.

There are two principal applications of the Iteration Theorem in the full
context free case. The most common is determining that certain sets are
not context free. There are mathematical implications such as showing the
inherent ambiguity of specific language without the algebraic machinery of
Parikh’s theorem. [19]

It is interesting to note that the idea of distinguished positions can be
generalized naturally to having both “included” and “excluded” positions.
If one does so, then the set K becomes two sets I and E of included positions
and excluded positions respectively. The corresponding theorem from [3]
follows.

Theorem 1.3 Let L be a context free language. There ezists a number
p(L) such that for each w € L and any sets I and E of positions in w, sf
|I| > (p(L))+IED then there is a factorization ¢ = (v1,v2,vs, vy, v5) of w
such that

1. for each ¢ > o, v1v%vsv g € L.
2. sfI/p=1...I) and E[/p = (E; ... E5) then

4

(a) either I, I, Iy # O and E,,E;,Eg = 0 or I, I, Iy # 0 and
Es, E(, Es = 0 and .

(b) |I; U Iyu I| < (P(L))(+|EalVIEs|uEd

Proof. The argument is not substantially different than the one in Chapter
11 of [10].
Consider the set

L ={w € {a,b}* | if w= ab? for some ¢ then ¢ is prime}

It is not difficult to see that L satisfies Ogden’s lemma but L is not
context free and does not satisfy Theorem 1.3.

2 Deterministic Languages

In [13], the family of strict deterministic grammars was introduced. The
idea is to find a family of grammars which capture the essence of the notion
of determinism in a pushdown automata. While the languages generated
by this family are on the full family of deterministic context free languages,
they do possess the right mathematical properties. This will all be clearer
after we deal with the precise definitions.

Notation. Let @ € V* and n > 0. (™Ma denotes the prefix of a of
length min{n,lg(c)}. The notation a(" is used for the suffix of a of length

min{n,lg(a)}.

Definition 2.1 Let G = (V,I, P, S) be a context free grammar and let «
be a partition of the set V of terminal and nonterminal letters of G. Such
a partition « s called strict if

1. T €, and

2. For any A,A'€ N and a,8,8' €EV* if A— aff and A' — af}' are
in Pand A= A' (mod x) then either (i) both B,5' # A and Vg =(0) g’
(mod x) or (i) = =Aand A=A

_ In most cases, the partition # will be clear from the context and we
shall write simply A = B instead of A = B (mod =), and [4] instead of
[Ale={A'€V|A'=A (modx)}. '

It is worth considering a simple example of a grammar for parenthe-
sized arithmetic expressions which use the operator symbols 4+ and *. The
“natural grammar” (cf. [10]) is not strict deterministic but the following
one is

Example 2.1 Let G; = (V,L, P,S) be a context free grammar where
L = {a,+,%}
V-2 = {S,E,N,T:,R,F,F}
x = {Z,{S}L{E},{T1, T2}, {F, F2, Fs}

The rules are:

S - (E

E - TE|T;

T, - RT,|F
T, - FT:|F
FF - (Ex|ax

F, —» (E+|a+
Fs — (E)|a)

Definition 2.2 Any grammar G = (V, L, P, S) s called strict deterministic
f there ezists a strict partition ® of V. A language L 35 called a strict
deterministic language if L = L(G) for some strict deterministic grammar

G.

From the definition, a strict deterministic grammar cannot have rule of
the following type: '
A— af
A —a
with A= A' (mod x) and 8 # A.

Definition 2.3 A set L C £* 15 prefiz-free if uv € L and w € L smply
v=A. '

Every strict deterministic language is prefix free.

Lemma 2.1 Let G = (V,Z,P,S) be a strict deterministic context free
grammar and let © be a partition of the set V. For any A,a' € V — I,
w,u€X, if A=A (mod), A=>"w, and A'="wu, thenu = A.

Proof. The argument is identical to the proof of Theorem 2.2 of [13].

Definition 2.4 Let G = (V,L,P,S) be a contexzt free grammar. For each
a €V*, define L(a) = {w € Z* | a="w}.

Lemma 2.2 Let G = (V,L, P, S) be a strict deterministic grammar. For
each a € V*, L(a) ts a prefiz-free set.

Proof. Use induction on lg(a) and apply Lemma 2.1 to each variable in a.

No reduced strict deterministic grammar can be left-recursive (i.e. for
no A€ N and a € Vx,does A =* Aa). Given these facts, which are proven
in [11], the following result is not surprising.

Theorem 2.1 Any strict deterministic grammar $s equivalent to a strict
deterministic grammar sn Greibach normal form.

Certainly, the most natural way to study deterministic lJanguages might
seem to be through their automata. Indeed that has been the historic way.
The intuition that this gives is helpful but there have been problems with
this approach. Deterministic languages are less robust than context-free
languages and not every choice for a definition of a pushdown automaton
leads to the same family of languages. For deterministic pushdown au-
tomata, the question of moving on an empty pushdown store is such an
issue. Cf. [17] for an example of of an unfortunate choice. We will refer
to the definition of {10] which is the most general one. Using that defini-
tion, a general deterministic pushdown automaton can accept families of
languages in three different ways, namely

1. by final state and empty (pushdown) store, or

2. by final state and leaving any one work symbol on the pushdown, or

3. by final state and ignoring the pushdown.

We shall call these families Aj,A;, and Ag respectively. More formally,
and using the notation of [10], if A = (@, %, A,T, 6, ¢, Zo, F) is a determin-
istic pushdown automaton then

T(A, K) = {w € T° | (0,0, Zo) F (g, A,) for some g € F,a € K}
then
T,(A) = T(A,T°)
Ty(4) = T(4,T)
T:(A) = T(4,{A})
Finally, for 1+ =0,1,2

A; = {T;(A) | A is a deterministic pushdown automaton }

Thus Ay is the family of deterministic context free languages. A; is the
collection of strict deterministic context free languages. A, is an interesting
intermediate family which contains all the regular sets. More details about
these families may be found in [10] and [8]. It is true that

A, C AL CAp

and all the inclusions are proper.
For example, {A,a} is in A; — A while

L={a"t"|n>1}Ua’

is in Ay but not A,.
The relationship between A; and A, is easy to express.

Theorem 2.2 L is a strict deterministic context free language if and only
if L is a prefiz-free and is a deterministic contezt free language.

2.1 Left Parts of Trees

The key to giving a rigorous proof for deterministic iteration theorems is to
use trees, not machines. This was a problem in [18] where a deterministic
iteration theorem was first expressed but not proved rigorously. It turns
out to be easy to do with strict deterministic grammars. There are two
key concepts involved and we can now discuss the main one, namely the
left-part of a grammatical tree. We use the notation of [10]

Definition 2.5 Let T be a derivation tree of some grammar G. For any
n > 0 we define (MT, the left n-part of T (or the left part where n s
understood) as follows. Let (z;,...,7,,) be the sequence of all terminal !
nodes in T (from the left to the right), i.c., {z1,...,Zm} = A7}(T) and
y—tzg—t ...tz . Then

T = {zETIzl;‘lzn}ffnSm, and
T = Tifn>m.

We consider ()T to be a tree under the same relations > , — and
labeling A as T.

Thus, for instance, the shaded area on Figure 2.1 (including the path
to z) is the left n-part of T if z is the n** terminal node in T. Note that,
in general, (" T may not be a derivation tree.

As immediate consequences of Definition 2.5, we have

Fact 2.1 (T = (™IT if and only if T =T.
Fact 2.2 If MT = T then OOT =) T for any j < n.

Our principal result about the structure of derivation trees of a strict
deterministic grammar can be informally stated as follows. A reduced
grammar G has a strict partition x if and only if, given any V € =, then
each prefix u of any string w = uv € * generated by some symbol A € V;
uniquely determines the left partial subtree of tree T (cf. 2.1 T corresponds
to a derivation A =>"w up to the path to the terminal node (z) labeled by

INote that the A -nodes are not being indexed. We use the two partial orders presented
in [10] for defining trees.

Figure 1: The left part of a tree

the first letter of v. We allow the labels of nodes on this particular path to
be determined modulo the partition 7 (in particular, the equivalence class
containing z is ¥. In the case when v = A, the complete tree is specified
uniquely (and then it cannot be a proper subtree of any other tree with an
equivalent root label).

For the formal statement of the theorem we first introduce the “left part
property” of a set of derivation trees.

Definition 2.8 Let T C Tg, a set of derivation trees for some grammar
G = (V,L,P,S), and let x be an arbitrary partition on V, not necessarily
strict. T satisfies the left-part property with respect to « if and only sif for
anyn>0and T, T'€ T if

rt(T) = rt(T') (mod 7) and (Mir(T) =™ £r(T")

then
(n+l)T —(n+1) T (1)

and, moreover, if T v z' is the structural ssomorphism (PtUT s (n+1)T?
then for every z in ("*1T,

Mz)=XMz") f =zyfor someye (MUT
orif T =T

10

T, E .3
| | |
Fz TZ

Tree Tl Tree Tz

Figure 2: Two Trees from Grammar G,

and
A(z) = A(z') (mod 7) otherwise. 2)

Note that the condition “z—*y for some y € ("+1)T™ in (2) is equivalent
to “z is not on the rightmost path in (*+1)7T»

An example of this kind of mapping can be obtained by considering
grammar G; from Section 2. Let us consider the trees shown in Figure 2.1.
If we let n = 2, we see that rt(T}) = § = S = rt(T}) and Pfr(T}) = (a =
fr(T;). Thus ®)T; = (O)T; and the path from S to + in T is “equivalent
modulo #” to the path from S to) in Tj.

Note that the left-part property is a global property of trees in distinc-
tion to the strictness of a grammar, which is a local property of derivation
trees (being a property of their elementary subtrees).

Theorem 2.8 (The Left-Part Theorem). Let G = (V,Z,P,S) be a reduced
grammar and let 7 be a partition on V such that £ € n. Then x is strict in
G 1f and only sf the set Tg of all derivation trees of G satisfies the left-part
property uith respect to x.

Proof. (The “if” direction). Let G and 7 be as in the assumption of the
theorem and assume Tg satisfies the left-part property with respect to =.
We shall show the = is strict.

Let A, A'€ N,let A— ¢ and A' — af' be in P and assume A = A’
(mod 7). Since G is reduced we have a=>*w,, §=* wp and f' =>° wy for

11

some w,, wWs, ws € L°. Let us consider two derivation trees T, T' cor-
responding to derivations 4 = af = *w,wp and 4' = of' = *w,wy
respectively. Let n = lg(w,). Then rt(T) = A = A’ = rt(T') and
("fr(T) = (r(T'). Thus (*tUT =(*+1) T' by the left-part property of
Tg. Let z — z' be the structural isomorphism from ("7 to ("', We
distinguish two cases:

Case 1: wy # A. Let z be the (n + 1)* terminal node of T (labeled
by Ww,) and y the (Ig(a) + 1)* node among the immediate descendants
of the root in T, counted from the left (i.e., A(y) = (U8). Clearly y is in
("+1)T and by the structural isomorphism, ¢ is in (*UT', A(y') = Vg,
Then W8 =) g by (2) or by (3) (depending on whether y —* z or not).

Case 2: wg = A. Then "+IT = (T and by (2), A(z) = A(z') for all
z in ®*UT. Thus (**IT =(*+1) T', Then also (®T =" T' by Fact 2 and
using Fact 1, we conclude T = T'. Hence A= A'and ' = f = A.

(The “only if” direction). Let G be a reduced grammar with strict
partition . Let T, T' € T¢ be two derivation trees such that

rt(T) = rt(T') (mod) (3)

and
(Mfr(T) = £(T") (4)

for some n > 0. To show that (**1)T and ("7 satisfy (1), (2), and (3),
one proceeds by induction on the height h of the larger one of the two trees.
The rather straightforward details are in [11].

The following two corollaries are immediate consequences of the Left-
Part Theorem.

Corollary 2.1 Any strict deterministic grammar 18 unambiguous.

Corollary 2.2 If = s a strict partition on G then for every U € 7 the set
{weX|A=*w for some A € U} is prefiz-free.

Thus, in particular, L(G) is prefix-free, which we already know.

2.2 A Strict Deterministic Iteration Theorem

Now that we have a left part theorem for strict deterministic languages,
we are ready to prove an iteration theorem for the family. In order to

12

do this, we need the second key ingredient for proving iteration theorems.
This is a collection of (trivial) facts about cross sections of derivation trees.
Depending on the grammar class, different types of results are needed.
These little results are used, together with the isomorphism of the left part
theorem, to deduce key facts about the derivations which give more detailed
information about how and what to “pump.”

Theorem 2.4 (Iteration Theorem for A;)

Let L be a strict deterministic context free language and L C £°. There
ezists a number p(L) such that for each w € L and any set K of positions
nw, if |[K| > p(L) then there is a factorization p = (v1,...,vs) of w such
that

1. vy #A;

2. for eachn,m >0, u € X",

v1v3 M vsvSvs € L if and only if viv]tvgu € L.

S. !.f K/(p = {Kl,...,Ks} then
(a) either K1,K;, K3 =0 or Ky, K, Ks =0 and
(b) le U K3 U K4| < p(L).

Corollary 2.3 For eachn >0
vivavsv v € L.

Proof. The argument mirrors the proof of Theorem 6.2.1 of [10]. Let
G = (V,L,P,S) be a strict deterministic grammar generating L. Choose
p(L) as in the proof of Theorem 6.2.1 of [10] and follow that proof. That
is, ind ¢ = (vy,...,vs) satisfying the requirements of the proof.

Property (3) follows from the iteration theorem for context free lan-
guages. To show property (1), suppose v = A. Then we would have

A3 Av,

But left recursion is impossible in a strict deterministic grammar. Thus (3)
has been satisfied.

13

To establish property (2), let m, n > 0. By the iteration theorem for
context free languages

S 3 v,07 Av]vg = v gt ™y = w vy (5)

where w; = v;v7* " v307 € T*. Assume now
S = v M ygvlu = wyu. (6)
Let T, T' be two derivation trees corresponding to (5) and (6) respectively.
Let k = lg(w;). By the left part theorem,
‘ (+1) & (k+1)
Let z be the node in T which corresponds to the indicated occurrence of A in
sentential form v v7* Av*vs. Clearly z is left of the terminal node (k+1) in
T (labeled with (Y)v,). By the left-part property (2), the corresponding node
in T' is also labeled with A. Therefore the following derivation corresponds
toT":
S vv] Au = wiu.

Since A =% v} vgv}’ for any n' > 0 we have

4 (]
v " vsviu € L for any n' > 0.

In particular, taking n' = 0 we obtain the “only if” part of property (2);
taking n = 0 in (5) and n' arbitrary we obtain the “if” direction of (2).

2.3 The Full Deterministic Case

With the strict deterministic case behind us, doing the full deterministic
case is quite easy. The trick is to use the “endmarking map”

L— L$
which makes the correspondence very clear.

Theorem 2.5 (Iteration Theorem for Ao)

Let L C X* be a deterministic context free language. There ezists a
number p'(L) such that for each w € L and any set K of positions in w, if
|K| > p'(L) then there is a factorization ¢ = (vy,...,v5) of w such that

14

1. v #A;
2. for eachn >0
Vv vsv s € L.
S. sf K/p = {K,,...,Ks} then
(a) either K1, K3, Ks =0 or Ks, K, Ks = 0 and
(b) |K:U Ky U K| < p(L).
4. if vg # A then for eachm,n>0,ue "

vv7 " "vsviu € L if and only if vivTvlu € L

Proof. Much of the previous proof and all of the proof of Iteration Theorem,
Cf. [10], still apply here. Thus 3 follows. Also 2 follows easily. To complete
the proof, let L € Ay. Then L$ € A; and is subject to the Iteration Theorem
for strict deterministic languages. Define p'(L) = p(L$) and let w € L
with a set of positions K where |K| > p'(L). Consider the factoization
w = (v1,v3,vs,vq,v) of w$ obtained from Theorem 2.4 applied to L$. Since
$ does not occupy any position from K, there are only two possibilities
where it can occur: either v3 € £+$ and vy = v} = A or v3 € £t and
vg = vs$ for some v; € °. In either event, (1) holds. Assume vz # A. We
can restrict ourselves to the second possibility. Take ¢ = (v;,v3,vs, vy, s)
as the factorization of w. The result is now simple for any n,m > 0 and
u € £* we have

v, v;‘+m

vsvgus € L if and only if vv3t™vsvug$ € L$
if and only if v,v]*vsu$ € L$
if and only if v vtvsu€ L
This satisfies (4) and completes the proof.
To illustrate the importance of the last theorem, some applications will
be given. Using the standard techniques developed for the classical iteration
theorem, it is easy to show that

L={a"t"|n>1}Uu{a"b*" |n>1)}

is not a deterministic context free language.

15

It is shown in [11] that
L = {wv” | w € {q,b}'}

is not in any finite union of deterministic context free languages.

3 A Hierarchy Result

It turns out that there exists a natural hierarchy of strict deterministic
languages. Here we approach this from the point of view of grammars.

Definition 3.1 For any strict partition * on a given contezt free grammar
G = (V,L,P,S), define
= Y:
Il =, max. i
Thus ||x|| is the cardinality of the largest non- block of 7. It is possible to
relate ||7|| to the number of states of a deterministic pushdown automaton
accepting the language generated by such a grammar. The pertinent result
from [13] is the following:

Theorem 3.1 Let L be any language and let n > 1. Then L = L(G) for
some strict deterministic grammar with partition 7 such that ||7|| = n if
and only if L = T;(A) for some deterministic pushdown automaton A with
n states.

Let us recall that every strict deterministic grammar has a unique par-
tition mp which is the minimal element in the semi-lattice of all strict par-
titions of G. Also, ||mo]| < ||7]| for any other strict partition of G. This
suggests the following definition.

Definition 3.2 Let G be a strict deterministic grammar. We define the
degree of G as the number

deg(G) = [|mol|

where 7, 15 the minimal strict partition for G. For any language L € A3
define its degree as follows:

deg(L) = min{deg(G) | G is strict deterministic and L(G) = L}.

16

The trick in obtaining an Iteration Theorem for the languages in this
hierarchy, is to consider a number of derivations at the same time. The
left part theorems focus the trees to be “similar modulo #.” By a shoe-box
argument, we can convert “equivalence” to equality.

We can now give the main result of this section.

Theorem 3.2 Let L be a strict deterministic language of degree n. There
ezists an integer p such that, for each w € L and each set K of p or more
distinguished positions in w, there is a factorszation p = (w1, wa, ws, Wy, ws)
of w such that
1. w, # A,
2. th/(p = {Kl,...Ks} then
(a) either K;,K;, Ky #0 or K3, K(, K5 # 0,
(b)) |[KaUKsU K| <p,
8. for each k,m > 0, and u € T*, wyw,**™wsw,tu € L if and only if
w;wg"‘wsu € L,

4. for each uy,...,uny1 € X, tf wywy™u; € L for eachs =1,...n+1,
where each n; > n, thereenst 1 <1 < j<n+1,1<r <ny,
1 < r' < ny, and factorizations § = (v,z,y,2) and £ = (v',2',y,2)
of u; and u;, respectively, such that

(a) for all m > 0, the following are all in L:

. g ’ '
wlwz(n. r)+mrvzymz’ wlwz(n, r')+me vlzly mzr’

wyw, (MMM and | wlwz(""_")'"""vz'y""z',
(b) none of ws,v,v' is a proper prefiz of any of ws,v,v'.

Proof. Let G = (V,Z,P,S) be a reduced strict deterministic grammar
of degree n such that L = L(G) and let 7 be a strict partition of V such
that ||7|| = n. The proof of Theorem 4.2 (in [8]) shows that there exists an
integer p such that, for each w € L and each set K of p or more distinguished
positions in w, there is a factorization p = (w;,w;, ws, wy, ws) of w such
that parts, 1, 2, and 3 hold and such that, forsome A€V - L,

17

A Dl

S wAws S ww Aw,ws D ww,wswws = w (7)
Thus, to complete the proof, we need only show that ¢ satisfies part 4 of
the theorem.

Assume that wyw,™u; € Lfort=1,...n+ 1, where u;,...up4 € Z°*,
and each n; > n. For each ¢ = 1,...,n + 1, let T be a derivation tree
corresponding to S =* wyw,;™u;. Hence, rt(T}) = S and fr(T}) = wyw,™u,.

From (7) we obtain the derivation

S =* wlA!D5 $ wlszw4w5 5 wlw;szws $ cen (8)

=t wwr Awlws S wwPFwswiws (9)

for each . Let T; be a derivation tree corresponding to (9). For j =
0,...,n;, let zj- be the node of T; labeled by A in the cross-section (CS)
of T; labeled by wlngw{ws. Clearly z} b*zi bt ... p* zf,',. Let k; =
Ig(w,wy’). and let i ,, be the leaf of T; which is labeled by the (k; + 1)
st symbol in w,wiwswiiws (such a node exists since Ky # @). Then, for
i=1,...,n+1,rt(T;) =rt(T!) = S and B fr(T;) = EMr(T}) = wyw,™.
Therefore, by Theorem 2.3, there exist maps hj,...hn4+3 such that, for
t1=1,...n+41,
1. [+ = BT under h;

2. A(z) = A(hi(z)) for all z € W+UT; such that z >+ y holds for some

3. A(z) = A(hi(z)) (mod =) for all z € I&+1UT;,

Since wg contains a distinguished position, it is nonempty; hence yi..ﬂ
is labeled by the first symbol in ws, so z;,. B* 3} ,;. Thus,

Zg Dzl > .- Dxu.. Dyk,'i-l

8O Zf,y...,ZTh, € [5+1T;. Let 2f = hi(z}) fori=1,...,n+1,5=0,...,n.
By (a), 2 bt 2l bt --- bt 2. By (¢), A(z%) = A(2,) (mod x) fori =
1,...,n+ 1. Since ||7|| = n, and A(z},,) = A for all 1, there exist 7, j, where
1 <i<j<n+l,suchthat A(z}) = A(zf",) For the remainder of this
proof, i and j are fixed at these values. Let B = A(z;,) = A(2]).

18

-t n-t T s s 3 -1 - (a [
LIS S u, Weug ", wn, wl wy wgl e Wy Wy

Figure 3: Derivation Trees T;,T;, T}, and T}

Also, for ¢ = 0,...,n;, A(2;) = A(z}) = A s0 each A(2{) is in the same
equivalence class as A. Since ||7|| = n, there are at most n elements in this
equivalence class, 8o since n; > n, there exist 0 < s < t < n, such that
A(2})) = A(zf). By a symmetrical argument, there exist 0 < &' < t' < n;
such that A(z}}) = A(z};). We fix the values s,t, &', and ¢' for the remainder
of the proof. Let C = A(2!) = A(z{) and D = A(z;',) = A(z}). The trees
T;,T;, T}, and T now appear as in Figure 3.

Let 11,72, ns be the cross sections of T; in which only zi, zi, 27, respec-
tively, are internal nodes. Then

A(m) = wwiAwlws

A(n2) = wiwiAwiws, t=8s+r, and

19

Alns) = wwy Awfiws

by definition of z}, z{, zi . Similarly, let 71, M2, Ns be the cross sections of
T, in which only 2;, 2}, 2} , Tespectively, are internal nodes.

We have already seen that z$, zi, zi, € [5+1T; Hence, by (b), each node
to the left of z (respectively 2{, 2}) in 5] (respectively n2:Ms). Therefore,
for some z,y,z € £*, we have

A(my) = ww,;Cz
A(n2) = wiwiCyz and
A(ns) = wiwlBzyz.
Let v be the frontier of the tree rooted at 2. andletr =t —¢ (hence
1<r<n;). From r);, n;, n; we obtain the following derivation:
S 3 w,wiCz 3 wwiw]Cyz =+

wiwiwjw™ () By, ot wiwiwiw™~(yzyz (10)
Thus, £ = (v,z,y,2) is a factorization of u;. Also, from (10) we see that
wyw(Ttmrypama e L

for all m > 0, which satisfies part of 4(a).

The arguments of the last two paragraphs apply if we use 13' instead
of T;. Hence, there exist 1 < 7 < ny,v,2y,2' € T such that ¢ =
(v',2,y, ?) is a factorization of u; and

S wwi D2 =% wywl w) Dy'? =>+ (11)
wlw;'w;'w"i ‘("*’")Bz'y’z' =+ (12)
wlw;'w;' w"i ‘(""‘")v'z'y'z’ (13)

Again, from (13) we have that
w,wgn""'”"‘"v':’y'"‘z’ €L
for all m > 0.

20

By substituting the last part of (13), i.e., B=>*¢', into (10), we see that

(n;—r)+mr
2

ww vzy™z € L

for all m > 0.
Similarly, by substituting B =* v into (13), it is clear that

Jo. ! [}
ww My ty'md e L

for all m > 0. Thus, 4(a) holds.

Since A=>'ws, B=>'v, B=>*v',and A= B (mod 7), none of wy,v,v'
is a proper prefix of any of ws,v,v’, by Lemma 2.2. This establishes 4(ii),
completing the proof of Theorem 3.2.

Definition 3.3 For n > 1, let L, denote the contezt-free language
{a™b*a™b* |1 < m,1 < k < n}.

In [7], a hierarchy of strict deterministic languages by degree is estab-
lished by proving that, for n > 1, L, is not a strict deterministic language of
degree n—1 (or less). The proof there is quite complicated but elementary.
Using Theorem 3.2, we give a short proof of the same result.

Theorem 3.3 For alln > 1, L,, 1s not strict deterministic of degree n—1.

Proof. Assume for the sake of contradiction that L, is strict deterministic
of degree n—1. Let p be the constant of Theorem 3.2. Let w = aPb™aPb" and
let the leftmost block of p a’s be distinguished. By invoking Theorem 3.2,
we obtain a factorization ¢ = (w;,ws, ws, wy, ws) of w such that parts (1)
through (4) hold. In order to satisfy (1), (2), and (3), we must have w, = a’,
wy = a', wy € a?~**)pra*, wy = af, and ws € a*b", for some s, > 1.
Now let
u; = ap-(c+t) b|' ap+(n—z)¢ b

for 1 < ¢ < n. Clearly wywi ™ lu; € L for 1 < 1 < n, so by part (4) of the
theorem, there exist 1 < § < j < n,1 < r, ¢ < n—1, and factorizations
¢ = (v,z,y,2) and ¢ = (v',2',¢',#) of u; and u; respectively, such that
(42) and (4b) hold. Since v is a prefix of u; and v' is a prefix of u;, and,

21

by (4b) neither v nor ¢' is a proper prefix of ws, it must be the case that
v €a® — (s +t)b'a* and v' € a? ()W a*.

Observe that, by (4a), w,wg"-l—')”"vzy"'z € L for all m > 0. Since
w, # A and r > 1, this implies that y € a*. Similarly, we must have y’ € a*.
Thus, neither v nor v' can include the entire block of p + (n — 2)t a’s in u;

or u;, respectively. By 4(a), with m =1, w,wh v'zyz € L. However, since

w wh l'zyz € a*ta*t’ and i # j, this is impossible. Therefore, L, is not

strict deterministic of degree n — 1.

4 The LL Languages

Our next definition combines some special notations which are commonly
used in studying parsing. First we give a classical definition.

Definition 4.1 A contezt free grammar G = (V,I,P,S) s LL(k) if for
any A€ N;w,z,y € L*; 7,8, € V*; and any two derivations

S=L$wA'1=L>wﬁ'1=L'>wz

J
S%qu:fwﬂq%wy

Jor which
() g = o

we necessarily have B = f'. A language is LL(k) sf st is generated by some
LL(k) grammar.

The following easy theorem is little more than a restatement of the
previous definition.

Theorem 4.1 Let G = (V, L, P,S) be a reduced context free grammar. G is

an LL(k) grammar if and only if for any A € N;w,z,y € T 9,08,8 €V

and any two dersvations

S:%wA'y-—zwﬁq%wz
] L]
S='L$wA'1=L>w,B1=L>wy

22

W

for which
Bz =8 o

we necessarsly have = f'.

We shall now state three easy but useful properties of LL grammars.

Theorem 4.2 Let G = (V,L,P,S) be an LL(k) grammar. Then G s
unambiguous.

Theorem 4.3 Let G = (V,I, P, S) be a reduced LL(k) grammar. Then G
has no left recurssve variables.

The folldwing result asserts that we may, in fact, ignore ~.

Theorem 4.4 Let G = (V,L, P, S) be a context free grammar. G 15 an
LL(k) grammar if and only if for each w,z,y € L*; A€ N; B,B',7,7 € V?,
and any two derivations

S=;>wA’1=L>wﬂ'7=;>wz

’ !
S%wA'y ?wﬂ'y':;?wy
if Bz =) ¢ then = B'.

4.1 An LL Left Part Theorem

In order to work with the LL languages, it is essential to find a “left part
theorem.” This turns out to be possible but the concepts change in an
interesting way.

Definition 4.2 Let T be a grammatical tree, and let m = lg(fr(T)). Let
(y1,---+Ym) be a left-to-right sequence of all terminal nodes in T'. For any
n, 1 <n < m, define the tree

T = {z€T|z< By}
U {z€T| there exists b€ T such that b > yn , B0* 2}
Also, let 03T be the empty tree, and let PBIT =T ifn>m. Wealso call
{"}T g left n-part.

23

Figure 4: A tree T and (4T

{"}T contains all nodes in [*T, and in addition contains all immediate
descendants of nodes on the path from rt(T) to Vn: Figure 4.1 shows a
grammatical tree T and 41T

The first preliminary result is analogous to a result about LR grammars
from [8].

Theorem 4.5 (The Eztended LL(k) Theorem) Let G = (V, L, P, S) be an
LL(k) grammar. For any A€ N; w,z,y € °; and p€eV: f
S =1 wAy =} wz
S =3 wy
kg = (B
then
S =T wAy =21 wy.

Proof. The argument is an easy proof by contradiction which is omitted.

Now let us begin to motivate the kind of left part theorem which is
needed for the LL grammars. Let G be an LL(k) grammar and suppose
that wz and wy are in L(G) with Bz =¥ y_ Let T%* and T denote
the derivation trees. One essential part of this notion is that the portion
of these trees which are filled in at the time that the last symbol of w is
exposed in the leftmost derivation of wz and wy will be the same.

Let us state the full result.

Theorem 4.8 (The LL(k) Left Part Theorem) A reduced context free gram-
mar G = (V,I, P, S) is LL(k) if and only if the following conditions hold
for alln >0: If T and T' are grammatical trees over G such that

24

e x —ete-y, o x ey, ——]

Figure 5: Example of the LL Left Part Theorem

1. rt(T) = rt(T")

2. ("+Rfr(T) = (*+o)fr(T)
then {n+l}T = {"+1}T'.

Before dealing with the proof, let us examine Figure 4.1. The left
{lg(z) + 1}-parts of these trees for ry, and zyz are shaded. These left
parts have been filled in when all of z((!)y,) and z((Vy,) were exposed. If
the grammar is LL(k) and (¥)y; = (*)y, then these leftparts are identical.

The detailed proof of this theorem is in [5], but we will discuss it briefly.
The forward direction is a straightforward and tedious induction. The
reverse direction, usually done by contradiction, involves a careful analysis

of the leftmost sections of derivation trees. It is these properties which can
be used with the LL(k) property to derive a contradiction.

4.2 The First LL Iteration Theorem

The following notation is convenient for repeated concatenation.

Definition 4.3 Let u; € £*,1 <1 <, for some alphabet .. Then
M (w) = wiuz- - v,y v,

We are now ready to proceéd to our first Iteration Theorem for the LL
languages.

25

Theorem 4.7 Let L be an LL(k) language. There ezists an snteger p such
that, for each w € L and each set K of p or more distingusshed positions
in w, there is a factorization p = (w, w;, ws, wy, ws) of w such that

1. wy #A,
2 if K/p ={Ky,...Ks} then
(a) either Ky, K3, Ky #0 or K3, K(, K5 #0 ,
(b) IKyUKsU K <p,
8. (a) Let n = lg(wyw,) and let w' € L such that ("tHw = (n+E)y!
Then there is a factorization (w;,w,,ws,w,,ws) of w such that
. wyw"ws (1%, vi)ws
5. wywy " wg([I7, wi)ws
i, wiw,"ws (I, u)wg
. wawy"wy (I, u)wg
are all in L for all n > 0 and for all strings [I7-,(ui) n which
u; = wq oru.-=w; Jor anyi,1 <1 <n.
(b) Moreover if TI7,(%W:) s a concatenation of words T; € {wy, w}

such that

II (ws) = f{l(v.-)

then u; =4; for alli,1 <3 <n.

Proof.Let G = (V, I, P, S) be an arbitrary reduced LL(k) grammar gener-
ating L. The standard methods establish the existence of an integer p such
that for any string w in L in which p or more positions K are distinguished,
there is a factorization ¢ = (w;, ws, ws, wy, ws) of w such that (2) holds and
for some variable A € N for which A =% w; Aw, we have

] [1
S = w Aws = wywi Awjws > wywjwswiws

for all non-negative integers r. Since no LL(k) grammar is left recursive
(1) holds. To complete our proof we must show that ¢ satisfies (3) as well.

We shall just sketch the intuitive idea of the remainder of the proof.
The reader is referred to [5] for the details.

26

Figure 6: Derivation trees for w and w'

The actual idea is to use the second left part theorem as shown in
Figure 4.2. '

In these trees for w and w', the left (Ig(w,w;) + 1) parts are shaded.
Since G is LL(k) and since

(k+lg(wiwa)) (wlwzwsw‘ws) —(k+1g(wiw3)) k(wxwzw;w:w;)

the respective left parts are isomorphic. Note that the two nodes labeled
A in {"*1}T must appear in the same position in {"+1}7T",

The isomorphism between {"*1}T and {**1}T forces a correspondence
between certain of the strings by an argument similar to that used in the
strict deterministic case. But a straightforward application of the LL(k)
condition derives the restriction on the concatenation. That is, it is easy
to see from T that we have derivations.

S =! wAp (14)
A =>; wAa (15)
a =] we (17)
B =, ws (18)

27

and from T' the derivations

5 = wAp (19)
A =>; nga (20)
A = wy (21)
a = w (22)
B = w (23)

for some terminal strings w}, w} and wg such that wyw,wywiwg = w. By
suitably combining these derivations we can obtain any of the strings spec-
ified in (32). For example, to obtain strings of the form

wywzwsIl_, (ui)ws

we begin with (9), followed by r applications of (10), followed by (11),
followed by a suitable mixture of (12) and (17), and finish with (13).

Next we establish (3b). If wy = w{, then (3b) follows trivially. There-
fore, assume that wy # w}, so that (12) and (17) are distinct leftmost
derivations, neither of which is a prefix of the other. For the sake of sim-
plicity we restrict our attention now to strings of type (i). Let R be the

set
{(9)}{(10)}"{(11)}{(12) + (11)}"{(13)}

Notice that a string in R uniquely specifies the leftmost derivation of a type
(i) word in L. In particular, let m;, 1 <4 <r, be defined by

A = (12) ifu.- = wWy¢
g = (17) ifu.- = w;

Then given a string of type (¢), which determines a sequence =;,

{@H o)} {1}, {=:}{(13)}

is a leftmost derivation of the word. If there exist two catenations

n,"_:] (ui) and m:l (u—’)

28

Figure 7: The Motivation for The Second LL Iteration Theorem.

and corresponding sequences 7; and 7; such that

l-[:=1 (ul') = rI::l(u'—i)

and for which u; # ¥, for some ¢ in the range 1 < < r, so that =n; # 7,
then there are two distinct strings in R, representing two distinct leftmost
derivations of the same string in L. But then G is an ambiguous grammar,
which cannot be the case since G is LL(k). Hence (3b) follows for a string
of type (7).

We can extend (3b) to strings of type (st), (s5¢) and (iv) by analogous
arguments. The details are omitted.

4.3 The Second LL Iteration Theorem

The intuition behind our second LL iteration theorem is different. (Refer
to Figure 4.3. Suppose that uv and uvy, lg(v) = k, are strings in'some lan-
guage L generated by a A-free LL(k) grammar G. Leftmost derivations of
uv and uvy must proceed identically at least until all of u has been exposed;
That is the meaning of the Extended LL(k) Theorem. After exposing the
rightmost terminal of u in a leftmost derivation of either uv of uvy there
can be no more than k variables remaining in the left sentential form since
G is A-free and lg(v) = k. Judicious use of this fact, together with the
Left Part Theorem and the argument of the First Iteration Theorem, is
sufficient for our purposes.
We will need the following result from [21].

29

Theorem 4.8 Given an LL(k) grammar G = (V, L, P,S) we can construct
an LL(k+1) grammar G' = (V', I, P!, 8') such that L(G') = L(G) and G' 15
A-free unless A € L(G), sn which case P' contains the single A-rule S' — A
and S' does not appear in the right-hand side of any rule in P'.

Proof. Using the arguments found in {22], pages 236-241 , we may obtain
a A-free LL(k + 1) grammar G" = (V",X, P",S") generating L(G) — {A}.
If A ¢ L(G) then set G' = G".

Suppose, however, that L(G) contains A. Then we form a new grammar
G' whose start symbol is S’ and whose rules are the rules of G" together
with S’ — S" | A, where S’ is a new variable not in V" — L. It is trivial to
prove that G' is also LL(k + 1) and generates exactly L(G).

We are now in a position to state the second LL Iteration Theorem.

Theorem 4.9 (The Second LL Iteration Theorem) Let L be an LL(k — 1)
language, k > 1. There ezists an integer p such that for any two distinct
strings = and zy in L, if lIg(z) > k and p or more positions in y are
distinguished, then there is a factorization ¢ = (wy,w;, ws, Wy, ws) of zy
such that (1) - (8) of the First LL Iteration Theorem hold and lg(w;) >
1g(z) — k.

Proof. In view of Theorem 4.5 we may assume that L is generated by
some LL(k) grammar G = (V, L, P,S) which is A-free, except possibly for
an S — A rule, in which case S does not appear in any right-hand side.

For any variable A let G4 = (V,I, P, A) be the context free grammar
obtained from G by changing the start symbol to A, let p4 be the constant
obtained from the First LL Iteration Theorem for the language L(G4)
(which is also LL(k) — see Theorem 1.8 of [5]), and let

p = max{p,|A€V -T}
p = kp'+1

Suppose that z and zy are strings belonging to L, where lg(z) 2 kand por
more positions are distinguished in y. Let us write z = uv, where lg(u)=n
and lg(v) = k, and let T and T" be derivation trees for uv and uvy. (See

30

Figure 4.3) Let ? n = leaves({"*1}T) and n' = leaves({"+1}T").

Since ("*¥)z =(n+¥) (zy) = z, it follows from the Left Part Theorem
that {(»+1}T ={n+1} T whence n and 5’ are isomorphic and A(n) = A(n').
It follows from Theorem 2.17 that n and n' are left canonical cross sections
of T and T, respectively. Consequently we may write

S-—-;t»u'y = A(n)=;'>uv
S =L‘.»u1 = A(n') =;>uvy

for some v in V* (fact 2.8 of [5]). Since lg(v) = k > 1 these derivations
involve no A-rules. It follows that lg(4) < k since Ig(v) = k and v=>" Lv.
Now write
n=X1X;---X, (s<k)

Let (21, 2s,-++,2,) be the factorization of vy such that X;=>* .2 for each
t, 1 < ¢ < s. Suppose that there are p' or fewer distinguished positions
in each 2. Then there are at most sp' < kp' < tp distinguished positions
in vy, which is not the case. Hence some particular 2 contains more than
p' > px, distinguished positions. Now the string z; belongs to the language
L(Gx,), which (as we noted above) is an LL(k) language. Also, we have
distinguished px, or more positions in this string. It follows from the First
Iteration Theorem that there is a factorization (01,020s,04,05) of % such
that (1) — (2) of Theorem 4.7 hold with respect to L(Gx,) and for some
variable B we have B =% 03 Bo, and

X;= 0,Bos = 0,0;Bojos = 010303005
in Gx,. From this it follows that the factorization
(uzl °*°2_101,02,03,04,05%41""" Z.) = (wn Wy, Ws, Wy, ws)

satisfies (1) —(2) with respect to L. Since u is necessarily a prefix of w it
is clear that lg(w;) > lg(z) — k. If we let

n= lg(uzl oe 2-'-10102)

and consider any string w' in L such that (*+¥)y’ =("*#) w_ the argument
used to deduce (3) in Theorem 4.7 may be used to deduce property (3)
here, and the proof is complete.

3]f T is a subset of a tree T with leaves zj,...,Zx in left to right order, i.e.
£, -~z then we write leaves(T') = (21,...,2x)-

31

4.4 Some Applications of LL Iteration Theorems

Of course, our iteration theorems have the natural applications of show-
ing specific languages which are not LL. For example one can show that
(Ct. [5])

Li={a"b* |n>1}U{a"c" |n > 1}

is LR but not LL. The proof is a standard factorization argument. Another
example is
Ly = {a™0b" | n > 1} U {a"1b*" | n > 1}

which is alsoin LR — LL.

The Second Iteration Theorem is by its very nature not applicable to
LL languages which are prefix-free. Thus Theorem 4.9 could not be used
to prove any that any of L;, L, orLs are not LL. It is not known , however,
whether there are languages which satisfy the First Iteration Theorem but
which the Second Iteration Theorem can show are not LL, nor is it known
whether one can always establish that a language fails to be LL via Theo-
rem 4.7 when that is the case.

It is shown in {5] that

Ly = {a™" | m > n > 0}

is not an LL language. Ls abstracts the fatal difficulty, insofar as LL(k)
grammars are concerned, with the infamous dangling-ELSE introduced by
the original ALGOL report [16] and eliminated in the revised report [17}).
Constructs such as

IF <bexp> THEN IF <bexp> THEN <stmt> ELSE <stmt>

in which the ELSE-clause might plausibly belong to either IF-THEN are
allowed in PL/I [21] and Pascal [12]. The ambiguity is customarily resolved
by associating an ELSE with the last previous unmatched THEN. It is
claimed without proof in [1] that such constructs are not LL; applying the
argument of Theorem 5.6 of [5] allows us to establish this rigorously. A
direct proof such as ours is necessary since the family of LL languages is
not closed under homomorphisms or gsm mappings.

Theorem 4.10 The dangling IF-THEN-ELSE construct does not appear
in any LL language.

32

Since this construct is, however, easily handled by a recursive descent
compiler operating without backup, it follows that the LL(k) languages
form a proper subset of the family of languages which can be compiled by
this technique, and are therefore not a perfect model of this family.

Another application is quite interesting. Using the Left Part Theorem
yields a rigorous and natural proof of the following theorem.

Theorem 4.11 Every reduced LL(k) grammar ss LR(k),k > 0.

We refer the reader to [5] for a direct proof. The literature has some
interesting but not rigorous proofs, eg. [2]. Brosgol [6] obtained a rigorous
proof via LR(k) grammar theory by embedding A-rules in the grammar,
and Soisalon-Soininen has reportedly also obtained a rigorous proof [22].

5 Simple Languages

The simple languages, originally defined in [15], are important because this
family is the first nontrivial class of languages for which the equivalence
problem was known to be decidable. ‘

We will need the following basic definitions.

Definition 5.1 A contezt free grammar G = (V, L, P, S) in Gresbach nor-
mal form is said to be a simple grammar if for all A€ N, a € L, and a,
pev:,
A—aaand A—aff in P
simply a = B. A simple language 1s a language generated by an s-grammar.
For example,
S — aSA|b

A — a

is a simple grammar which generates the set L(G) = {a"ba” | n > 0}. On -

the other hand,
S — aAd|aBe
A — aAb|b
B — aBc|e

33

is not a simple grammar. The language generated is
L={a"t"d|n >1}U{a"c"e|n>1}.

It can be shown that L is not a simple language, although it is a realtime
strict deterministic language. [12]
The following result gives some elementary facts about simple languages.

Theorem 5.1 Let L C X*. The following statements are equivalent.

1. L s ssmple.
2. L 15 strict deterministic of degree one.

8. L is accepted as T;(A) for some realtime deterministic pushdown au-
tomaton with one state or L = {A}

4. L is accepted as T3(B) for some deterministic pushdown automaton
with one state.

It has been shown that the family of simple deterministic languages
coincides with the family of strict deterministic languages of degree 1 (ex-
cept for {A}, which is not simple deterministic). Hence, Theorem 3.2 (with
n = 1) can be used to show that a language is not simple deterministic.
However, using the special properties of the simple deterministic languages,
a stronger and more concise iteration theorem was established in [14]. We
sketch the proof here as it illustrates the importance of our left-part results.
We build on Theorem 4.6.

Theorem 5.2 Let G = (V,X,P,S) be a reduced context-free grammar in
Gresbach normal form. Then G is simple if and only sf

(x) for any n > 0 and any grammatical trees T and T' over G,
if 1t(T) = rt(T") and if Wir(T) =) fr(T') then "NT =0} T,

Proof. Suppose that G is simple deterministic. Every simple deterministic
grammar is LL(1) [13], so by Theorem 4.6, for any n > 0 and any gram-
matical trees T,T", if rt(T) = rt(T") and (*+Vfr(T) =("+1) fr(T'), then
{n+1} —{n+1} T'_ Since {O}T =1} T for any T,T", we can replace n + 1 by
n to get (+). '

34

Conversely, suppose that () holds. Then, for any n > 0 and any
grammatical trees T,T", if rt(T) = rt(7') and (**Vfr(T) =(n+1) £r(T7),
then {»t1}7 ={r+1} T' Hence, by Theorem 4.6, G is LL(1). By [21] G is
simple deterministic, since G is LL(1) and in Greibach normal form.

We now prove an iteration theorem for simple deterministic languages.

Theorem 5.3 Let L be a simple deterministic language. There exists an
integer p such that, for each w € L and each set K of p or more distin-
guished positions in w, there is a factorization p = (w1, wa, ws, wy, ws) of
w such that
1. ws # A,
2. lfK/(P = {Kl,...Ks} then
(a) esther Kl, Kz,Ks # a or Ks, K4, Ks # 0 ’
(b) IKiUKsU K| <p,
S. for each u € T°, if wywau € L, then there exmists a Jactorszation
£€= (wl,wz,w;,w;,w;) of wywyu such that
(a) for each n > 0, for each uy,...,un € {wq, w,}, the following are

allin L :

n
wiwws (I, wi)ws wyws"wy ([T ui)ws
=1

n
wywg"ws ([T wi)ws and wyw;"wy(J] w)ws
=1
b) ws (respectively we,ws) is not a proper prefiz of w, (respectively
] [s
w,,wg) and vice -versa.

Our proof is similar to the proof of Theorem 4.6. Let G = (V,Z,P,S) be
a reduced simple deterministic grammar such that L = L(G). Thus, as we
noted in Section 2, G is strict deterministic. The proof of Theorem 2.4 in
[11] shows that there exists an integer p such that, for each w € L and each
set K of p or more distinguished positions in w, there is a factorization
p = (wy, ws, ws, wy,ws) of wsuch that (1) and (2) of the theorem hold, and
such that, for some A€V - L, '

S 3w Awg 3 wyws Awws B wywawswws —w. (24)

35

We must now show that ¢ satisfies part 3 of the theorem. Let T be a
derivation tree corresponding to (1). Let z (respectively. y) be the node
of T labeled by A in the cross section of T labeled by w; Aw; (respectively.
wywy Aw,ws). Clearly z >* y.

Suppose that wyw,u € L for some u € I°*. Let T' be a derivation tree
corresponding to S =>* wywyu. Thus, rt(T") = S and fr(T') = wyw,u. Let
k = lg(w w;). Since rt(T) = rt(T') = S and ®fr(T) =4 fr(T") = wyw,,
we have by Theorem 5.2 that {¥}T ={*¥} T', Let h be the isomorphism that
maps nodes of ¥1T to nodes of ¥} 7.

Let y (respectively. yi+1) denote the leaf of T labeled by the k** (re-
spectively. (k + 1)**) symbol in w = wywswsw,ws. Since w; # A by part
1 of the theorem, and ws # A by part 2, y; is labeled by the last symbol
of w;, and y;,; is labeled by the first symbol of ws. By the definition of z
and y, we have that z b*y; and y b>° yi41.

Since yi and yi4; are leaves of T, we have that y;, —% y;41. Suppose
that there exists a leaf y' € T such that y, —~*y' —* y441. Since G is in
Greibach normal form, y' is labeled by some a € X. But then y,,; cannot
be labeled by the (k+1)* symbol in w, which is a contradiction. Therefore,
Yk “ Y41

By the definition of <, there exist 2;,2; € T such that

[] *
w(PRz Nz D L)yesr -

Let z be the parent of z; and 2; (see Figure 5). Sincey b>* yi41, €ithery b* 2
or z; >*y. Suppose that y B* 2. Then y b* 2; b* yi, which is impossible
since both y; and y appear in the cross section of T labeled by w;w; Aw,ws.
Thus, it must be the case that 2; >*y.

Suppose that z; # y. Let 2’ be the leftmost immediate descendant of
23. Since G is in Greibach normal form, 2’ is labeled by some a € L. Since
23 D'y and z; # y, we have that z' p*y. However, 2’ # y since A(y) = A4,
and z' has no descendants, so it is not possible that 2/ >*y, which is a
contradiction. Hence, z; = y. Since z; b*y; and z; Ny, y € (#IT.

Since z b°yi, z €¥} T. Thus, both z and y are in {:}T, 80 we have

that

- A=A(z) = Mh(z)) and 4 = A(y) = Ak(y)) -
Let n and 8 be left cross sections of T in which the leftmost internal nodes
are z and y, respectively. Such left cross sections must exist by Lemma 3.4

36

Figure 8: The Derivation tree T.

of [14]. From the definition of z and y, we see that

A(n) = w;Af and
A(O) = wlszaﬁ

for some a, B EV".

Since z and y are internal nodes of T that belong to {37,y and 6 are
left cross sections of (#!T (Lemma 3.6 of [14]). But 1T ={ T, 50 h(n)
and h(9) are left cross sections of {¥}T", hence by Lemma 3.7 of [14], h(n)
and h(f) are left cross sections of T". Since 1T ={* T,

A(h(n)) = A(n)=w1ApB and
A(h(9)) = A(0) = wiwiAaf.

Applying Lemma 3.5 of [14] to n and 6, we have
S 3w AB S wywiAaf = wywawswws (25)

(where A =" ws, a =* wy, and § =>* w;, by the definition of a ad B). Next,
we apply Lemma 3.5 of [14] to h(n) and k(6) to get

S w, AR wiwiAaf = wiwau.

Let w}, wy, wg € * be such that u = wiwjwy, A=>"wy, a=>"wy, and
B =* w§. (See Figure 5)

37

T

Figure 9: Derivation trees T and T".

Setting § = (w;,ws, w}, wi, wg), we have that ¢ is a factorization of
wywyu. Let n be any nonnegative integer. From (25) , we obtain the
derivation

S wAf S wiwdaf = wiwidd®fS .- D wwlda"b.
A terminal string may now be derived by continuing with either
A= ws or A wyj,
then n applications of any combination of
a= w, and a= v,
completing the derivation with either
B = ws or B = wi.

Clearly any of the strings in part 3(i) of the theorem may be obtained in
this manner, so ¢ satisfies 3(i).

Since G is strict deterministic, by Lemma 2.2 each of L(A), L(a) and
L(B) is a prefix-free set. Thus, since wy, wy € L(A), ws is not a proper
prefix of wy and vice-versa. Similarly, w, (respectively. ws) is not a proper
prefix of w) (respectively. wg), and vice-versa. Therefore, £ satisfies part
3(ii), and the theorem is proved.

38

Theorem 5.3 resembles Theorem 4.7 for LL(k) languages in the case that
k = 1. This is understandable, since every simple deterministic language
is LL(1). There are two differences between the theorems, however. First,
condition 3 in Theorem 5.3 requires only a string wiwau € L, while The-
orem 4.7 requires that we have a string wyw,u € L such that Wy =(1) gy,
Second, part 3(ii) in Theorem 5.3 is stronger than the corresponding con-
dition in Beatty’s theorem. In fact, part 3(ii) is very useful in practice, as
we see in the following example.

Theorem 5.4 The language Ly = {a"(bdUbUc)"$ | n > 1} (where (,),
and U are metasymbols, U denoting alternation) is not ssimple deterministic.

We omit the proof which is rather technical and is available in [14].
The language L, above is a variation on the LL(k) language

{a"(b*d+b+cc)* |n>1}

(where k is any fixed value greater than or equal to 1) which cannot be
generated by an LL(k) grammar without A-rules, cf. [20] Since the class of
simple deterministic languages is equal to the class of language generated
by LL(1) grammars without A-rules [12], their result shows that

{a"(bd + b+ cc)* |n > 1}

is not a simple deterministic language. This also follows trivially from the
observation that
{a"(bd + b+ cc)* |n > 1}

is not prefix-free. Thus, the added $ is essential in Theorem 6.4. Note also
that each of the alternates (bd, b, and ¢) in L, is necessary for L, to be
nonsimple. An interesting exercise is to verify that the languages

{a"(bd + 8)"$ | n > 1},
{a"(bd +¢)*$ | n 2 1},

. and

{a"(b+¢)*$ |n > 1}

are all simple deterministic.

39

We have noted earlier that every simple deterministic language is both
LL(1) and strict deterministic (hence prefix-free). The language L, is
LL(1), since it is generated by the following LL(1) grammar:

S — aDAS,
D — aDA|A,
A — bBj|e,
B — d|A.

Hence, L, is a prefix-free LL(1) language which is not simple deterministic.
A simple theorem follows immediately.

Theorem 5.5 The class of simple deterministic languages 38 properly in-
cluded in the class of prefiz-free LL(1) languages.

6 Precedence Languages

The family of precedence language [23] plays an important role in the theory
of parsing. Although the family is rather old, rigorous proofs that certain
deterministic context free languages are not precedence languages have been
obtained only recently [16]. Fischer [7] gave an intuitive argument but it
was based on properties of a precedence parser but the parser had never
been formally defined. It is possible to sketch the ideas of an iteration
theorem for such a family here.
First we need the ideas of precedence relations.

Definition 6.1 Let G = (V, XL, P, S) be a contezt free grammar and define
the relations <-, =, and > on V as follows:

X <Y iftheress A— aXBf in P such that B 2 y~q (26)
X=Y ifthereis A—aXYBinP (27)
X>a ifa€L,A— aBYBisin bLB>~X andY S>ab (28)
The idea of precedence parsing is to scan a string from left to right,

computing precedence relations between pairs of adjacent characters as we
go. When the sequence

40

C=ree= D>

is found, a phrase has been detected. In order for this to work, we need to
have a grammar which satisfies the following properties.

Definition 6.2 A contezt free grammar G = (V,I,P,S) 38 said to be a
simple precedence grammar if

1. G 18 reduced,

2. G 18 A-free,

G is snvertible,’

)

<, =, and > are pasrwise disjoint, and

bl

the dersvation S =% S s tmpossible.

This is not the standard definition as given in [23] or [2]. Instead we
use the equivalent definition of [24] which is simpler and cleaner.

There are several tricks to getting an iteration theorem for precedence
languages. Since the parsing is to work as previously described, the left-to-
right scan corresponds to a right-most derivations just as in the LR case
[10]. This motivates the following definition:

Definition 6.3 Let G = (V,X,P,S) be a contezt free grammar and w €
T*. Let p be the constant of the Pumping Lemma. A G-factorization ¢ =
(v1y--.,vs) of w is defined to satisfy the following properties.

1. There enists A€V — L, a;,a; € V* such that

S = oAy
A = ayAq,
A = v

a; =p va

ay =>;l U1

3A context free grammar G = (V,I, P,S) is invertible if A - aand B~ ain P
implies A = B. : ‘

41

2. For every ¢ >0, vivivsvivs € L
3. lg(vausvy) < p and lg(vav) > 0.

These are just the conclusions of the usual Pumping Lemma with the
refinement about the rightmost derivations noted.

In order to prove an iteration theorem for this family, one needs two
additional results. The first is analogous to a technique used in the LR case.

Cf. the Extended LR (k) Theorem in [10]. The proofs of these lemmas will
be omitted.

Lemma 6.1 (The Eztended Simple Precedence Lemma) Let G = (V, I, P, S)
be a simple precedence grammar sn which the following derivations ezist:

$58=>; $abuw$=3$afus (29)
$S¢$=>: $a'Bu'$ (30)

such that w,w' € L*; B e Vt; a,dd € V*; 6 € V*, and n > 0. if (a)
My =0 ', (b) o) = (o’)V), and (c) o has only <- and = between any
two adjacent characters, then derivation (80) is of the form

S '—'} $a'6uw'$ =".'> a'ﬁAw'S.

the next lemma shows one of the techniques used so successfully, namely
interleaving.

Lemma 6.2 Let G = (V,Z, P, S) be a simple precedence grammar and let
Q;, 0z, al'a az' € V.’ a, a eV "2: v;, V3, Vs, Y4, Us, v'lx v;, v;: vz, v's € X
Suppose v;, vy € z* for some z € T and following two G-derivations ezist:

5 =2 $a1av5$,a=} agav4,a=:>vs,a1=}vl,a3=r$v, (31)
5=>: $ay'a'vy$,a’ % aj'a'vy,a’ =:> vy, ay' % v/, o) -—.} v, (32)
Then, for every k > O there exists z € LF, where 1)z =) z, such that

5 > $aj030)28 > $a;aivyz$

Now we are ready for the main result.

42

Theorem 6.1 (The Iteration Theorem For Simple Precedence Languages.)
Let L be a simple precedence language and let v and v' be two strings in L
having G-factorizations (vi,vs,vs,vq,vs) and (v],v},vy, vy, vg), respectively
which satisfy the following conditions:

1. v;,v} € z* for some z € L*, and

2. there exist r > 0 and z € T+ with Mz = Myjy! and vvj(vy) vyvjz €

L.

Then for each m > 0, vyv}(vy)™viv;"2 € L.

When v, v' and the factorizations are fixed, we can write

w(r,m, z) = v,v](vy)™ vy (v) ™2

in these terms, the theorem states that w(r,l,2) in L implies w(r,m,z2) in
L for each m > 0.

Proof. Assume that the G-factorizations for v and v' induce the follow-
ing derivations:

5 >y SoudvsS, A3 cdv,AD v o003 (33)
S >R S A'YS, A'Z AV Aoy ay) (39)

Consider the following two derivations:

5 -—;} $ayafvavsvylus$ =;? vivivsvitlug$ (35)
S =;t? vyvlvy vhvl2$ (36)

Note that (35) follows from derivation (33) while (36) follows from as-
sumption (ii). Now apply Lemma 6.1 to derivations (35) and (36) with
a=c =A, B =uv]d=a0]w= v v, v = vyviviviz and we
conclude that derivation (36) is of the form:

S % $a; afvyvg v z$ =;!? v1vjvh viv) 28 (37)

On the other hand we can apply Lemma 6.2 to (33) and (34) and obtain
the derivation
5 % $ajajayz$ =‘-’t> $ajajvyz$ (38)

43

for some z; € £+, Wz, =(1) z. Now we can apply Lemma 6.1 to derivation
(38) and (37) choosing B to be v}, § = o}, w = 2z, w' = vyvyviz, and
a = o = a;0a}. Thus, derivation (37) can be written:

S =;> $ajajahvyvyvgz$ =;t? a;avyvavavyz$ (39)
Next consider the following derivation:
s =;? $a)oy A'vug$ % $a) ahvyvgvivivg$ (40)

This follows from derivation (34).

Appealing to Lemma 6.1 again, with derivations (40) and (39), we can
choose § to be vjviv, § = A', a = ala}, @ = eyajal, w = vivgand w' = 2.
It follows that derivation (39) is of the form:

$S8% % $aafayA'z$ -—;? $a)afayvavgvz$

But A'=>}%v;A'v, from the derivation in (34). It follows that for every
m2>0
§S$ =;t? $aj050,A'z8 % $vyvjvy(vy) vy (vy) ™28

Hence for every m > 0
vvi(vy) ™ v (v)) "z € L

This complete the proof.
The set L defined below is an example of a language which is not a
simple precedence language.

L={a0"1" |n > 1}u{50"1?" | n >1}

Other examples of a much more general nature can be found in [16].

7 Conclusions

We have sketched the proofs of the major iteration theorems known for
the important subfamilies of the deterministic context free languages. Our
major techniques were the discovery of the left part theorems, properties
of cross sections, and interlacing subderivations. Of course, the shoe box

44

principle is used in several different ways and is, together with elementary
facts about trees, the basic combinational technique.

While these results are interesting, there still remain open problems.

Perhaps the most elusive open problem is to get an iteration theorem for
extended precedence languages. [9]

References

[1]

(2]

3]

[4]

(5]

le]

7]

[8)

Alfred V. Aho and Jeffrey D. Ullman. Deterministic parsing of am-
biguous grammars. Communications of the ACM, 18:441-452, 1975.

Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Trans-
lating, and Compiling. Prentice-Hall Publishing Company, Englewood
Cliffs, NJ, 1972 and 1973. Volumes I and II.

Christopher Bader and Arnaldo Moura. A generalization of Og-
den’s lemma. Journal of the Association for Computing Machinery,
29(2):404-407, April 1982.

Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of
simple phrase structure grammars. Zestschrift fir Phonetik, Sprach-
wissenschaft und Kommunikationsforschung, 14:143-172, 1961. Also
available in Language and Information, Addison Wesley Publishing
Company, Reading Mass., 1964.

John C. Beatty. Two iteration theorems for LL(k) languages. Theo-
retical Computer Science, 12:193-228, 1980.

Benjamin M. Brosgol. Deterministic Translation Grammars. PhD
thesis, Harvard University, Cambridge, Mass., 1974.

Michael J. Fischer. Some properties of precedence languages. In Proc.
of 1st ACM Symp. on Theory of Computing, pages 181-190, acm, acm,
New York, NY, 1969.

Matthew M. Geller and Michael A. Harrison. On LR(k) grammars
and languages. Theoretical Computer Science, 4(3):245-276, 1977.

45

T

[9] Susan L. Graham. Extended precedence languages, bounded right
context languages and deterministic languages. In IEEE Conference
Record of the 11th Annual Symposium on Switching and Automata
Theory, pages 175-180, IEEE, IEEE, 1970.

[10] Michael A. Harrison. Introduction to Formal Language Theory. Addi-
son Wesley Publishing Company, Reading, Mass., 1978.

[11] Michael A. Harrison and Ivan M. Havel. On the parsing of determin-
istic languages. Journal of the Association for Computing Machinery,
21:525-548, 1974.

[12] Michael A. Harrison and Ivan M. Havel. Real-time strict deterministic
languages. SIAM Journal of Computing, 1:333-349, 1972.

[13] Michael A. Harrison and Ivan M. Havel. Strict deterministic gram-
mars. Journal of Computer and System Science, 7:237-277, 1973.

[14) Kimberly N. King. Iteration theorems for families of strict determin-
istic languages. Theoretical Computer Science, 10:317-333, 1980.

[15] A. J. Korenjak and J. E. Hopcroft. Simple deterministic languages.
In IEEE Conf. Record of 7th Annual Symposium on Switching and
Automata Theory, pages 34—46, IEEE Computer Society, IEEE, 1966.

[16] Yael Krevner and Amiram Yehudai. An iteration theorem for sim-
ple precedence languages. Journal of the Association for Computing
Machinery, 30:820-833, 1983.

[17] Harry R. Lewis and Christos H. Papadimitriou. Elements of the The-
ory of Computation. Prentice Hall, Englewood Cliffs, New Jersey,
1981.

[18] William Ogden. Intercalation Theorems for Pushdown Store and Stack
Languages. PhD thesis, Stanford University, Stanford, California,
1968.

[19] Rohit J. Parikh. On context free languages. Journal of the Association
for Computing Machinery, 13:570-581, 1966.

46

[20] Daniel J. Rosenkrantz and Richard E. Stearns. Properties of deter-
ministic top-down grammars. Information and Control, 17:226-256,
1970. ‘

[21] Daniel J. Rosenkrantz and Richard E. Stearns. Properties of deter-
ministic top-down grammars. Information and Control, 17:226-256,
17.

[22] E. Soisalon-Soinen. Characterization of LL(k) languages by restricted
LR(k) grammars. PhD thesis, University of Helsinki, 1979.

[23] Niklaus Wirth and Helmut Weber. Euler-a generalization of ALGOL
and its formal definition. Communications of the ACM, 9:13-23, 1966.
Part 1.

[24] Amiram Yehudai. A new definition of simple precedence grammars.
BIT, 19:282-284, 1979.

47

