SPUR: A VLSI Multiprocessor Workstation

M.D. Hill, S.J. Eggers, J.R. Larus, G.S. Taylor,

G. Adams, B.K. Bose, G.A. Gibson, P.M. Hansen, J. Keller,
S.I. Kong, C.G. Lee, D. Lee, J .M. Pendleton, S.A. Ritchie,
D.A. Wood, B.G. Zorn, P.N. Hilfinger, D.A. Hodges,
R.H. Katz, J. Ousterhout, and D.A. Patterson

Report No. UCB/CSD 86/273
December 1985

% Computer Science Division (EECS)

)\
//,4\\\\ University of California

Berkeley, California 94720

SPUR: A VLSI Multiprocessor Workstation (1]

M.D. Hill, S.J. Eggers, J.R. Larus, G.S. Taylor,
G. Adams, B.K. Bose, G.A. Gibson, P.M. Hansen, J. Keller, S.I. Kong,
C.G. Lee, D. Lee, J.M. Pendleton, S.A. Ritchie, D.A. Wood, B.G. Zorn,
P.N. Hilfinger, D.A. Hodges, R.H. Katz, J. Ousterhout, and D.A. Patterson

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720

ABSTRACT

SPUR (Symbolic Processing Using RISCs) is a workstation for
conducting parallel processing research. SPUR contains 6 to 12
high-performance homogeneous processors connected with a shared
bus. The number of processors is large enough to permit parallel
processing experiments, but small enough to allow packaging as a
personal workstation. The restricted processor count also allows us
to build powerful RISC processors, which include support for Lisp
and IEEE floating-point, at reasonable cost. This paper presents a
specification of SPUR and the results of some early architectural
experiments. SPUR features include a large virtually-tagged cache,
address translation without a translation buffer, LISP support with
datatype tags but without microcode, multiple cache consistency in
hardware, and an IEEE floating-point coprocessor without
microcode.

KEY WORDS AND PHRASES: Address Translation, Cache, Cache
Consistency, IEEE Floating-point, Lisp, Multiprocessor, RISC,
Shared-Bus, Tagged Architecture.

1. Introduction

SPUR (Symbolic Processing Using RISCs) is a multiprocessor workstation
being developed at U.C. Berkeley as a vehicle for conducting parallel processing
research. Its development is part of a multi-year effort to study hardware and
software issues in multiprocessing, in general, and parallel processing in Lisp, in
particular [2]. This paper concentrates on the initial architectural research and
development of SPUR. After the SPUR hardware and software are completed,
additional papers will present the experimental results derived from using SPURs.

[1] SPUR is sponsored by DARPA under contract order 482427-25840 by NAVALEX.
Additional computer resources provided by DARPA (order #4871) monitored by Naval
Electronic Systems Command under Contract No. N00039-84-C-0089.

[2] In this paper, we distinguish between multiprocessing and parallel processing.

-9-

Two key observations motivated the architecture of SPUR. First, although
parallel processing hardware has existed for many years, these systems have been
difficult to program. Often the architectural features of a parallel machine,
particularly the interconnection network between the processors, had to be
considered during programming [Demi82]. The complexity of managing such
details has left parallel processing a novelty, rather than the norm. Consequently,
SPUR is being designed to simplify parallel processing software by providing 2
single global memory that can be shared with uniform access times.
Implementing 2 high-performance shared memory system increases the system's
hardware complexity, but we believe the shared memory software model
facilitates the rapid development of parallel processing software and permits

implementation of other more restricted sharing paradigms (e.g., message-passing).

The second observation is that hardware is more difficult to design and
construct than is most software. Consequently, most SPUR hardware features are
simple and frequently-used primitives. Features are migrated from software into
hardware only if doing so achieves a significant performance gain for reasonable
design and manufacturing costs. The complex hardware features included either
facilitate parallel processing (e.g- hardware-based cache consistency) or make
large contributions to performance (e.g., the instruction buffer and Lisp datatype
tags).

The SPUR Processor is the third generation of RISC CPUs designed and
implemented at U.C. Berkeley. It extends the work of RISC [Patt82] and SOAR
[Ung384] with some special support for two emerging standards: Common Lisp
[Stee84] and IEEE Standard 754-1985 for Binary Floating-Point Arithmetic
[[EEES5]. Lisp and floating-point support has been designed so that software that
does not use these extensions is not penalized by their existence. Thus, the SPUR
processors are general-purpose processors with some support for Lisp and
floating-point, rather than special-purpose Lisp or floating-point processors.

The SPUR project 1s composed of SPUR workstation development work and
research efforts in integrated circuits, computer architecture, operating systems,
and programming languages. Integrated circuit researchers are examining CMOS
design styles, the effects of scaling VLSI circuits, and control and clocking issues.
Computer architecture researchers are studying multiprocessor address trace
analysis, cache consistency, virtual caches, in-cache address translation, multi-
level cache design, coprocessor interfaces, instruction delivery, Lisp hardware
support, and floating-point implementations. Operating systems researchers are
investigating network file systems, network page servers, the effects of large
physical memories on virtual memory implementations, and workload
distribution. Programming languages researchers are examining parallel garbage
collection algorithms, techniques for specifying parallel programs, and methods of
compiling parallel Lisp programs.

Multiprocessing occurs whenever two or more processors in a computer are used at the
same time. Parallel processing occurs when they are cooperating on the same job. All
parallel processing is multiprocessing, but not vice versa.

-3-

The rest of this paper presents a specification of SPUR and the results of
some early architectural experiments. Qections 2 and 3 survey the system and
processor architectures. Section 4 examines the memory system, discussing the
memory model, the instruction buffer, the cache, in-cache address translation, and
hardware support for cache consistency. Section 5 examines the CPU and
floating-point coprocessor (FPU) architectures that support general-purpose
computing, Lisp, and floating-point arithmetic. Section 6 gives the status of the
project and conclusions.

PROCESSOR PROCESSOR

. 6to12 ..
<ﬁ SPUR BUS >

1/O
SHARED / 0 00

DEVICE
MEMORY

Figure 1. SPUR Workstation System

SPUR is 3 chared-bus multiprocessor. The system supports several identical high-
performance processors on 2 modified Texas Instruments NuBUS [Tex383]. Each of
the custom Pprocessors contains a large cache to reduce the bandwidth required from
the bus and shared memory. Standard NuBUS 1/0 devices and gateways to other
busses are also attached to the SPUR Bus to complete the system.

2. System Overview

SPUR contains 6 to 12 high-performance homogeneous processors (see Figure
1). The number of processors is large enough to permit parallel processing
experiments, but small enough to allow packaging as a personal workstation. The
restricted processor count also allows us to build powerful processors, which
include support for Lisp and IEEE floating-point, at reasonable cost.

The processors are connected to each other, to standard memory, and to 1/O
devices with 2 modified commercial bus. Using a commercial bus will reduce
prototype design time by allowing the use of standard sub-systems and memory.
SPUR supports sharing between cooperating Pprocesses with a global, shared
memory. System performance is improved by placing 128K-byte caches on each
processor to reduce bus traffic and memory contention. Each of these caches is

-4-

accessed with virtual addresses, rather than physical addresses, so that address
translation is not necessary on cache hits. On cache misses, virtual addresses are
translated into physical address before accessing shared memory. The caches are
supplemented with hardware that guarantees that copies of the same memory
location in different caches always contain the same data. This enables
programmers to write software without considering the existence of cache
memory.

22
CPU FPU
40
ADDRESS BUS 32 o o
< >
38 28 . DATA BUS
O | =] CACHE
RAMS
38{ { / 32

< R .

Figure 2. SPUR Processor Board

A SPUR processor is implemented on a single board that contains three custom VLSI
chips and 200 standard chips. The three custom chips are the cache controller (CC),
the CPU, and the floating-point coprocessor (FPU). Standard chips are used to
connect functional components together (not shown), and in CACHE RAMS to hold
the state, address tags, and data of the cache. Memory addresses and data are
handled on separate busses. The address bus is 38 bits wide to accommodate global
virtual addresses. The data bus is 64 bits wide to handle floating-point data. The
FPU tracks instructions executed by the CPU with a special 22-bit connection. Some
infrequently used datapaths are not shown.

Execution time (seconds) Execution time ratio
Gabriel DEC Symbolics SPUR 8600/ 3600/
Benchmark 8600 3600 (projected) | SPUR SPUR
boyer 12.18 9.40 5.03 2.42 1.87
browse 38.69 21.43 - - -
ctak 2.32 5.04 1.55 1.50 3.25
dderiv 6.58 3.89 1.13 5.82 3.44
deriv 4.27 3.79 0.97 4.40 3.91
destru 2.10 2.18 0.46 4.57 4.74
div2 1.65 1.51 2.81 0.57 0.62
fit 9.08 3.87 9.38 0.97 0.41
file_print 1.08 2.60 - - -
file_read 2.34 4.60 - - -
frpoly(fixnum,p==15) 413 2.65 2.02 2.04 1.31
frpoly(bignum,p==10) 1.40 2.10 9.24 0.16 0.23
frpoly(flonum,p=15) 5.84 3.04 2.74 2.13 1.11
puzzle 15.53 11.04 7.11 2.18 1.55
stak 1.41 2.30 1.06 1.33 2.17
tak 0.45 0.43 0.12 3.75 3.58
takl 2.03 4.95 0.82 2.48 6.04
takr 0.81 0.43 0.24 3.38 1.79
terminal_print 0.70 4.89 - - -
traverse 46.77 41.71 25.75 1.82 1.62
triangle 99.73 116.99 92.78 1.07 1.26
geometric mean 1.82 1.69

Table 1. Gabriel Benchmark Results

This table presents Gabriel benchmarks [Gabr85] execution times for the DEC VAX
8600, Symbolics 3600 with instruction fetch unit, and a single SPUR processor. The
times for the 8600 and the 3600 are from [Gabr85]. The preliminary SPUR times are
gathered with a functional-level simulator of a single processor, assuming a 150
nanosecond cycle time, single-cycle access to a 128K-byte cache, and 15-cycle cache
miss time.

The last two columns compare SPUR with the 8600 and 3600. SPUR l1s slower for
the ratios shown in bold. The geometric mean is used to combine the ratios in a
manner that gives each benchmark equal weight. Garbage collection time is not
included for any of the machines in the table.

3. Processor Overview

A SPUR processor is implemented on a single board with about 200 standard
chips and three custom 2-micron CMOS chips: the cache controller (CC}, the
CPU, and the floating-point coprocessor (FPU) (see Figure 2).

The CC chip manages the cache. This includes handling cache accesses by
the CPU, performing address translation, accessing shared memory over the
SPUR Bus, and maintaining cache consistency.

-6-

The CPU chip is a custom VLSI chip based on the Berkeley RISC
Architecture [Patt85,Patt82]. Like the RISC II implementation [Kate83a), the
SPUR CPU uses a simple and uniform pipeline, hard-wired control, and a large
register file; it attempts to issue a new instruction every cycle. The SPUR CPU
differs from RISC II because of the addition of a 512-byte instruction buffer, a
fourth execution pipeline stage, a coprocessor interface, and support for Lisp
tagged data.

The final custom chip is the floating-point coprocessor, which supports the
full IEEE standard 754 for binary floating-point arithmetic without microcode
control. Common operations are executed by the FPU under hard-wired control.
Infrequent operations cause traps and are handled by software.

Initial results with small Lisp benchmarks show that of a single SPUR
processor is comparable to the VAX 8600 CPU and the Symbolics 3600 CPU (See
Table 1).

4. The Memory System

The SPUR memory system appears to software as flat, global, shared
memory (Section 4.1), but is implemented with a hierarchy of levels. The fastest
level, the instruction buffer, is an instruction cache on the CPU chip (Section
4.2). The second level, the cache, is a cache on the processor board for
instructions and data (Section 4.3). If information is not found in either of these
local memories, then the virtual address is translated into a physical address
(Section 4.4) and a global memory access is made via the SPUR Bus. Both the
virtual and physical addresses are transmitted on SPUR Bus transactions. Off-
the-shelf memory and I/O controllers use the physical address. Other cache
controllers use the virtual address to preserve software’s view of global, shared
memory (Section 4.5).

4.1. The Memory Model

SPUR presents software with a 256-gigabyte global virtual address space,
divided into 256 1-gigabyte segments. Every process has direct access to four
segments via a 32-bit process-specific virtual address. This address is mapped into
a 38-bit global virtual address in parallel with the first part of a cache access
(Figure 3). A process’s four segments will normally be used for system code and
data, user code, private stack, and a shared heap. Two or more processes that
want to share information must share an entire segment. Support for sharing at
the granularity of a segment is a compromise between using a single shared
virtual address space and supporting sharing of arbitrary-size objects at this level.
We rejected the former extreme because it does not permit hardware-guaranteed
isolation of unrelated jobs; we rejected the latter because it is not clear that the
benefits justify the hardware cost. The memory system, except the instruction
buffer, uses global virtual addresses instead of process-specific virtual addresses so
that information can be manipulated independent of processor and process
identifiers. For this reason, cache flushes are not necessary on a context switch or
when a process is migrated to a different processor.

PROCESS SPECIFIC VIRTUAL ADDRESS

system virtual page number offset
code }\ 2
stack
heap 18 12
8 t__l
segment # virtual page number offset
GLOBAL VIRTUAL ADDRESS

Figure 3. Virtual Memory Structure

All processes access virtual memory using a 32-bit process-specific virtual address.
This address is converted into a 38-bit global virtual address during the cache lookup.
The high-order two bits of the process-specific virtual address are used to select one of
four segments from the 256 segments (8 bits) in the global virtual address space. The
other 30 bits are used directly for the displacement within the selected 1-gigabyte
segment.

The global virtual address space limit of 256 segments was set by balancing
the projected needs of software with the cost of hardware implementation. The
segment limit does not constrain the number of light-weight processes, which use
the address space of their parent. This is important since we expect the parallel
processing Lisp system to make extensive use of light-weight processes. This limit
does, however, restrict the number of concurrently active heavy-weight processes
(e.g., UNIX shell processes) depending on the number of segments shared. The
limit ranges from 64 processes with no sharing to 253 processes with three
segments shared.

4.2. The Instruction Buffer: An On-Chip Instruction Cache

The instruction buffer is a 512-byte instruction cache on the CPU chip. Its
purpose is to reduce contention for the cache so that data references can use the
single cache port without stalling the execution pipeline (see Section 5.1.2). By
enabling instruction fetches and data references to be satisfied in parallel, the
instruction buffer creates the illusion of a second cache port. In addition, the
instruction buffer reduces effective instruction access time. This effect is not too
important in SPUR because the cache can be accessed in approximately one cycle.
Nevertheless, this effect will become come increasingly important as technological
improvements reduce cycle times faster than inter-chip communication times.

The instruction buffer caches 128 32-bit instructions in 16 direct-mapped
blocks. Each block contains eight instructions, divided into eight single-
instruction sub-blocks|Good83,Hill84] (see Figure 4). Preliminary estimates show
that the instruction buffer satisfies at least 75 percent of instruction fetches
without cache accesses [Katz85a).

CONVENTIONAL CACHE BLOCK

T T
address tag data block ...

1 i

INSTRUCTION BUFFER BLOCK

address tag wv instruction-0 wv Tt wv instruction-7

Figure 4. Cache Block with Sub-blocks

A conventional cache block (top) has three parts: the cache state bits (labeled bv for
block-valid bit), the address tag, and the cache data block. The state bits record
whether the information in the block is valid (or dirty if the cache is not instruction-
only); the address tag holds the block’s memory address; and the data area holds the
information cached. The instruction buffer’s block (bottom) is divided into eight
single-instruction sub-blocks (labeled instruction-0 to 7). Additional state bits, called
word-valid bits (labeled wv), are associated with each instruction so that only a single
instruction, instead of the entire block, must be loaded on a miss.

The instruction buffer handles misses differently than most caches. Instead of
loading an entire block on each miss, the it loads only the fetched instruction.
The advantage of fetching single-instruction sub-blocks is that a miss can be
completed more quickly. The disadvantages are that the state bits must be
extended to include a valid bit for each sub-block in the block and control must
handle both block misses (address tag does not match) and sub-block misses (tag
matches but sub-block is not valid). We believe the advantage of using sub-blocks
justifies the small increase in chip area and design time needed to implement the
feature [Hill84].

The instruction buffer miss ratio is reduced using prefetching from the cache
to create the illusion that the entire 32-byte block is loaded on a miss. For
example, near the end of a miss to the third instruction in a block, the prefetcher
attempts to prefetch instructions 4, 5, 6, 7, 0, 1, and 2. Unless prefetches are
blocked by data references, instructions 4 through 7 will be loaded into the
instruction buffer before they will be accessed by the execution unit. If the
execution unit fetches an instruction that misses in another block, the prefetcher
begin prefetching in that block even if the old block is not completely loaded.
The prefetcher never hurts performance because it never replaces instructions
already in the instruction buffer or interferes with data references or instruction
fetch misses.

4.3. The Cache

A 128K-byte cache for instructions and data is present on every processor
board to reduce SPUR Bus traffic. For a fixed transfer size, bus traffic can be
reduced by increasing a cache’s size or complexity (e.g., associativity) [Smit82].
Memory chip technology makes it possible to build larger, unsophisticated caches

-9-

with fewer packages than smaller, more complex ones. Consequently, the SPUR
cache is larger than the caches in most mainframes, but is simple. It is direct-
mapped, does not permit unaligned accesses, and uses 32-byte blocks to transfer
and cache information. It does not prefetch blocks from memory, because
prefetching increases the bus traffic. Simulation results find cache miss ratios
under 2 percent (see column Ideal of Table 2) [Katz85a].

The cache in SPUR associates virtual address tags, rather than physical
address tags, with blocks of data. A virtually-tagged cache is accessed directly,
without address translation. In contrast, physically-tagged caches require that
address translation be done before or in parallel with the first part of a cache
lookup. Unfortunately, many schemes that permit parallel address translation
limit the size of the cache [3]. Consequently as cache sizes increase, we believe
virtually-tagged caches will have shorter accesses times than physically-tagged
caches. In addition, virtually-tagged caches permit address translation to be done
more slowly than a cache access since translation need not be done on every cache
access. SPUR exploits this freedom by eliminating the traditional translation
buffer (Section 4.4).

Most commercial computers use physically-tagged caches, rather than
virtually-tagged caches. This is because current commercial architectures include
three features that make the implementation of virtual-tagged caches difficult.
The rest of this section explains how the use of a single, segmented virtual address
space and a dual-address bus allows SPUR to avoid the problems commercial
implementors have encountered.

The first problem is handling the virtual address space changes associated
with most context switches. A virtual address space change means that virtual
addresses now refer to new locations. A virtual-tagged cache must guarantee that
references to the new virtual address space are not accidentally satisfied by data
from the old locations. Address space changes can be handled in a virtually-
tagged cache by attaching address space identifiers to cached data or by flushing
old data on every context switch. The former method increases cache complexity,
and the latter reduces performance for large caches. SPUR avoids the problems
of virtual address space changes by using a global virtual address space that does
not change after a context switch.

The second problem for implementors of virtually-tagged caches is that of
correctly handling synonyms (aliases). Synonyms are multiple virtual addresses
that map to the same physical address. They present a problem when the same
physical location is read into a virtually-tagged cache twice with two different
virtual addresses, and one off the copies is modified. To preserve the
programmer’s model of memory, the virtually-tagged cache must guarantee that a

[3] At present, many machines overlap address translation with physical cache lookup
by starting the cache lookup with address bits within the page offset, because these bits
do not change in address translation. This only works if the cache size divided by its
associativity is equal to or smaller than the page size. As cache sizes increase, systems
will have to do address translation before the cache lookup unless they constrain the
mapping of virtual pages to physical page frames or use virtual address tags.

-10 -

read with the other virtual address gets the new value. This problem is hard to
solve in a single virtually-tagged cache, and even harder to solve in a
multiprocessor system with many such caches. SPUR avoids this problem by
disallowing synonyms. Instead, two or more processes share information by
putting it in a shared segment at the same displacement (i.e. the same global
virtual address). Software resolves the location of static, shared information at
load-time, and uses operating systems calls that allocate new storage to establish
the location of dynamic, shared information.

The third problem with virtually-tagged caches is updating data in the cache
that is being written by an I/O device using a physical address. In the long run,
the problem of mapping physical I/O addresses back into virtual addresses can be
avoided by having I/O devices and memory use virtual addresses. We rejected
this approach in SPUR, because we wanted to use off-the-shelf, physically-
addressed memory boards. Instead, the SPUR Bus associates a virtual and a
physical address with most bus transactions. The virtual address is used by other
cache controllers for maintaining cache consistency (Section 4.5). The physical
address is used by memory and I/O controllers. The reverse mapping problem is
solved by not permitting an I/O buffer to be cached while it is being written by
an I/O device. The operating system can guarantee this by putting the buffer on
a non-cacheable page or by flushing the buffer from all caches before I/O begins.
The latter does not imply a complete cache flush since the cache supports flushing
of individual blocks.

4.4. Address Translation without a Translation Buffer

The mapping of virtual addresses to physical addresses is usually maintained
in a structure called a page table. The appropriate page table entry (PTE) is
referenced during the address translation process. Most computers use a special-
purpose cache for PTEs, called the translation buffer, to reduce address
translation time. Translation buffers are important in systems with physically-
tagged caches, which require address translation on every reference. Fast address
translation is less important with SPUR's virtually-tagged cache, because address
translation is necessary only on cache misses. Consequently, rather than using a
translation buffer, the SPUR address translation mechanism always uses cache
accesses to reference PTEs [Wood86]. The performance of SPUR in-cache
translation is, at least, comparable to that with fixed-size translation buffers, and
in-cache translation has two advantages. First, it saves the design and
implementation costs of a translation buffer. Second, it keeps PTEs consistent
(translation buffer consistency) by storing PTEs in a cache that keeps data
consistent.

When data is referenced that is not in the cache, address translation is done
by the cache controller as follows [4]. First, a page table base register and the
virtual address of the data are used to construct the virtual address of the PTE.
Second, the PTE is read from the cache. Third, the physical page address in the
PTE and the page offset from the original virtual address are combined to form
the physical address of the data. Fourth, a SPUR bus access for the data is made
with both the virtual and physical addresses. Last, the data is loaded into the
cache and passed on to the CPU.

[4] In this discussion, data refers to instructions and data, in contrast to address

.11 -

On rare occasions, the PTE reference will also miss in the cache. Since
SPUR places the first level of page tables in pageable virtual memory, 2 second
translation effort is necessary to service the first-level PTE miss. The second level
of page tables is also in virtual memory, and thus may be found in the cache.
This level, however, is in non-pageable virtual memory at known locations. The
physical addresses of second-level PTEs are computed by the cache controller to
end the address translation process if the cache access for the second-level PTE
misses. SPUR uses the two-level paging mechanism to reduce the physical
memory dedicated to PTEs from 956M bytes to 956K bytes.

In-cache address translation works well for the traces shown in Table 2.
Translation performance with in-cache translation 1s comparable to that achieved
with translation buffers. In addition, other results show that the presence of PTEs
in the cache does not significantly affect cache performance for data (non—PTE)
references. The data miss ratio for VAXIMA increased by only 0.00004 from
0.01844 to 0.01848 The increase for MVS was larger than with VAXIMA, but still
not significant. The increase was 0.00142 (from 0.01677 to 0.01819).

4.5. Cache Consistency Hardware

The difficulty of maintaining the shared memory model in multiprocessor
systems that cache shared, writable data is referred to as the cache consistency or
cache coherency problem. Inconsistencies arise when two or more processors have
copies of the same shared memory location in their private caches, and one
processor modifies the location but fails to communicate the change to the other
processors. Cache consistency algorithms prevent the old data, called stale data,
from being used. The two approaches traditionally used are (1) to update main
memory and cause cache invalidations on each write or (2) to use software assists.
The first approach, called write-through with invalidation, generates bus traffic
proportional to the number of writes, which is not feasible in 2 system with
several high-performance processors [Cens78]. The second approach requires
software to identify that data is potentially shared and makes use of noncacheable
pages Of write-through with invalidation to keep that data consistent. This
generates more bus traffic than our approach for unrestricted sharing, because bus
transactions are generated on many references to shared pages even if most of the
data is not in simultaneous use. Other researchers are currently investigating how
to improve the effectiveness of the software approach by using synchronization
primitives to delay the invalidation of stale data [Stan85]. The principle weakness
of the software approach is that it may require extra effort from the programmer,

thereby potentially discouraging the development of parallel processing software.

The cache consistency algorithm used in SPUR, called Berkeley Ownership,
is based on the concept of ownership of cache blocks [Katz85b]. The
responsibility for maintaining consistency 1s distributed among the caches. 1f a
cache owns 2 block, then there are no copies of the block in any other caches.
The owner may update the cached entry locally without broadcasting its actions.

If a cache does mot own 2 block, it must first obtain ownership before it can

—————
translation information, i.e., PTEs.

-12 -

Aggregate Miss Ratio with Identical Caches
but Alternative Address Translation Mechanisms
metric: (cache misses + translation misses) / references.
Trace SPUR Cache plus translation via:
r
Ideal | SPUR In-Cache | VAX-11/780 TB | IBM 3033 TLB
0.00610 0.00775 0.00614
LISZT | 0.00584 (1.000) (1.270) (1.006)
0.01875 0.02432 0.02001
VAXIMA i 0.01844 (1.000) (1.297) (1.067)
0.01981 0.02208 0.01769
MVS 0.01677 (1.000) (1.115) (0.893)
Table 2. In-Cache Address Translation vs. Translation Buffers

This table compares SPUR in-cache translation with translation using translation
buffers. The metric used, the aggregate miss ratio, is the number of cache misses plus
the nmumber of translation misses divided by the number of processor references.
Smaller values of this metric predict better performance if the cost of cache and
translation misses are comparable (as they are in SPUR). Numbers in parentheses give
the magnitude of the aggregate miss ratio relative to the SPUR in-cache aggregate
miss ratio. Three comparisons are made; the first two are application programs
running on a VAX-11 under UNIX 4.2 BSD. LISZT is an address trace of the Franz
Lisp compiler compiling a portion of itself; VAXIMA is a trace of an algebraic system
executing a representative repertoire of commands; the final trace, MVS, is a series of
system calls executed by the MVS operating system on an Amdahl 470 machine.

This table assumes that each of the translation mechanisms are invoked only after
misses of the SPUR cache, which is 128K-bytes large, has 32-byte blocks, and is
direct-mapped. The first alternative, Ideal, sets the aggregate miss ratio to the cache
miss ratio and assumes translation is dome without cost. The second alternative,
SPUR in-cache, uses the cache to hold PTEs for 4K-byte pages. The third and fourth
alternatives use translation buffers to do translation. The third uses half of the VAX-
11/780 Translation Buffer (128 entries, 512-byte pages, and 2-way set-associative)
because the VAX-11 restricts process and system entries to different halves of the
buffer. The fourth uses the IBM 3033 Translation Lookaside Buffer (128 entries, 4K-
byte pages, 2-way set-associative). In all but one case (in bold), SPUR in-cache
translation performs slightly better than systems that included expensive translation
buffer hardware.

update the block. Ownership is obtained by a broadcast to other caches, causing
them to invalidate their copies of the block. In addition to the local update
privilege, ownership carries the obligation to update main memory on block
replacement (copy-back) and the responsibility of overriding main memory if
another cache requests the block.

SPUR implements Berkeley Ownership with standard memory, a dual-
address bus, and snooping caches. The bus is used for broadcasting ownership
requests and transferring cache blocks. Most bus transactions begin with a type
field (e.g., read, read-for-ownership) and a block address (both virtual and
physical), and end with a data transfer [Gibs85]. Each processor cache controller

- 13-

is supplemented with hardware, called the snoop, that monitors the bus for
transactions involving blocks that it has cached. The snoop compares the virtual
addresses of all bus transactions with a second copy of the cache’s address tags. If
a match occurs, the snoop may have to invalidate its copy of the block, or
override main memory and provide the data to complete the bus transaction.
The latter action only occurs for blocks that have been modified and are
simultaneously shared by processes on more than one processor. While we have
little data on sharing, we expect this to occur on a small fraction of all
transactions.

Berkeley Ownership, implemented with snooping caches, serves the goals of
SPUR in several ways. First, it preserves the shared memory model. This model
facilitates parallel processing experiments by providing a simple and flexible
mechanism for sharing data between processes. Second, it is implemented in
hardware. This simplifies parallel processing software by relieving programmers
of the responsibility of understanding shared caches. Third, the Berkeley
Ownership protocol has good multiprocessor performance because it can be
restricted to generate extra bus transactions only when two or more processors are
simultaneously accessing writable shared data [5]. Other methods generate bus
transactions after shared data has been modified even if no processes on other
processors are trying to access the same data. Fourth, our protocol yields good
uniprocessor performance. When no inter-processor sharing can occur, no
consistency-preserving bus transactions will be made. Fifth, the algorithm is not
too difficult to implement. It requires an additional state machine in the cache
controller, two additional state bits for each 32-byte cache block, a second copy of
all cache state bits and address tags, and a change to the system bus to permit
snooping. It does not require centralized control or any memory board
modifications.

5. The CPU and Floating-Point Coprocessor

The SPUR CPU design evolved from the RISC II design [Kate83a]. Like
RISC I, SPUR has a large register file with multiple, overlapping register
windows to speed up procedure calls and a streamlined instruction set. For
several reasons, the instruction set is well-suited for a high-performance VLSI
implementation without microcode. First, the instructions are easy to decode
because of their fixed size and few formats. Second, computational instructions
operate exclusively on registers, while memory can be accessed only with load and
store instructions. Register-to-register instructions execute quickly and
deterministically, because they cannot generate cache misses or page faults once
they begin execution. Third, the instructions perform simple operations that are
implemented in a short, uniform pipeline. Every instruction uses a particular
resource in the same pipeline stage. For example, all SPUR instructions use the
ALU to combine operands or calculate an effective address in the second stage of

[5] For example, our protocol allows semaphores to be cached. No bus traffic is needed
to modify a semaphore if only one process happens to be using the semaphore for some
period of time, or if all the processes using the semaphore are on the same processor.

-14-

the pipeline. This simplifies the hardware by predetermining the scheduling of
resources.

The differences between SPUR and RISC I are products of technological
improvements and the new goals of supporting Lisp and floating-point.
Technological improvements in the past few years have increased the number and
speed of transistors possible on a VLSI chip. In SPUR, the additional transistors
are used in an on-chip instruction cache, for tagging Lisp data, and in a low-
overhead interface to a floating-point coprocessor.

This section describes the CPU and FPU of the SPUR in three parts: the
general-purpose features, architectural support for Lisp, and the floating-point
implementation.

5.1. General-Purpose Features

5.1.1. The Register State

The SPUR register state, shown in Figure 6, includes 32 general-purpose
registers. Like the RISC II chip, the SPUR CPU contains several copies of the
general-purpose register set (not shown in Figure 6) so that these registers do not
have to be saved in memory and restored on most procedure calls and returns. In
addition, the register windows for a caller and a callee overlap by six registers so
that most arguments and returned values can be passed in-place in registers
instead of in memory. For both reasons, overlapped register windows reduce the
time required for procedure calls and returns. The cost of the multiple register
sets is primarily a significant amount of chip area and, to a lesser extent, slower
register access time and increased process switching overhead.

5.1.2. The Execution Pipeline

The SPUR execution pipeline is one stage longer than the three-stage RISC Il
pipeline (see Figure 7). RISC II could issue a register-to-register instruction every
cycle. Resources were used efficiently: in every cycle two registers were read, one
was written, the ALU was utilized, and the path to memory was used to fetch an
instruction. Unfortunately this arrangement left no memory bandwidth for data
references. Consequently, loads and stores had to stall the pipeline one cycle to
use the path to memory. Thus, RISC Il did a memory reference per cycle rather
than completing an instruction per cycle.

SPUR uses a four-stage pipeline to attempt to issue and complete an
instruction every cycle. The new pipeline stage allows memory referencing
instructions to make cache accesses and forces register-to-register instructions to
delay their register write for one stage. Thus, all instructions modify the general-
purpose register file in the fourth pipeline stage, thereby avoiding write conflicts.
Internal forwarding is done by the hardware so that the result of a register-to-
register instruction can be used by the next instruction even though that result
has not yet been written into the register file.

In practice, SPUR will not be able to execute one instruction every cycle,

principally because of instruction buffer and cache misses. On simulations with
the Gabriel benchmarks (see Table 1), SPUR executed an instruction every 1.59

- 15 -

GENERAL-PURPOSE REGISTERS
(one window)

register # tag data

0 ; FLOATING-POINT REGISTERS
10 globals type tag
9 aign bit rounding
10 : 6 input | exponent fraction bits
15 1inputs 0 N : :
16
10 locals
25
26 ik :
14 HH H H
t
gy L Ooutputs 3 1 17 bits 64 bits 2 bits
8 bits 32 bits 15 FP PSW
0 32 bits
SPECIAL
7 REGISTERS
32 bits

Figure 6. SPUR Registers

SPUR's registers are divided into three groups: general-purpose, special, and fioating-
point. The general-purpose registers are organized into fixed-sized overlapping
windows so that the output registers of one window become the input registers of the
next window after a procedure call. Only one 32-register window is visible at a time.
The entire general-purpose register file contains eight windows (not shown) for a total
of 138 registers. The general-purpose registers are 40 bits wide, consisting of an eight-
bit tag and 32 bits of data. The special registers include the user and kernel processor
status words, register window pointers, and several program counters. The foating-
point registers are 87 bits wide to accommodate SPUR’s representation of IEEE
extended-precision numbers. The representation includes a 3-bit type tag to simplify
detection of infrequent floating-point types (e.g., Not-a-Number). The 15 floating-
point registers and the floating-point processor status word (a special register) are
implemented on the FPU chip rather than on the CPU chip to improve operand access
time for floating-point instructions. Multiple windows of these registers was not
implemented, because of insufficient FPU chip area.

cycles with instruction buffer and cache miss ratios of 14 and 1 percent. Larger
programs are likely to have more cycles per instruction, because of poorer locality
of reference. Even if the instruction buffer and cache miss ratio double, however,
SPUR still executes an instruction every 2.06 cycles.

5.1.3. The Instruction Set

This section focuses on a few important decisions in the SPUR instruction
set. See [Tayl85] for the complete design. All instructions are four bytes long,
and use fixed positions for the opcode and register specifiers to simplify decoding.

-16 -

RISCI | prich |Read Add | — Write

(3 stages) 1 . ,

SPUR Null or .
(4 stages) I-feltch Read' Add Cache Access - !Wnte

Figure 7. RISC II and SPUR Pipelines

RISC 1 used a three-stage pipeline (top) that required the pipeline to stall one cycle on
every data memory reference so that precisely one memory reference (instruction fetch
or data access) was done every cycle. The first stage fetched the next instruction from
memory; the second read two registers and performed an ALU operation; and the final
stage wrote the result into a register. SPUR uses a four-stage pipeline (bottom) so
that an instruction can be issued every cycle. Memory-accessing instructions use the
additional stage to do a cache access.

Register-to-register instructions do nothing in the additional stage. All instructions
write the register file in the fourth stage to guarantee that no two instructions try to
write at the same time.

Most instructions use either two source registers and one destination register or a
source register, an immediate constant, and a destination register. Table 3 lists
the basic instruction set, not including instructions for Lisp and floating-point.

Memory accesses are made with loads and stores. The effective address for a
load is either the sum of two registers or the sum of a register and an immediate
displacement. SPUR uses a delayed load that requires software to not use the
incoming data in the next instruction executed. Cache misses on data reference
stall the entire pipeline, and thus are not visible to software. The effective
address for a store is always a register plus immediate displacement so that a
two-port register file suffices (one register for the address and one for the data). A
store stalls the execution pipeline for one cycle, because less-common cache writes
take longer than cache reads. Cache reads access cache data in parallel with
examining cache address tags. Cache writes begin in a similar fashion, but cannot
write into a cache block until after the address tag has been examined. Initially
stores did not stall the pipeline, because the cycle time was set to the cache write
time. We were able to improve performance by reducing the cycle time, thus
forcing the less frequent cache writes to take two cycles. SPUR supports
synchronization with a test-and-set instruction implemented in the cache. Under
the best of conditions it does not require any bus transactions. To simplify the
cache interface, SPUR does not have load or store instructions that manipulate
individual bytes. A load-byte instruction would increase the cache access time,
and a store-byte instruction would increase cache complexity. Instead, byte insert
and extract instructions assist in loading and storing individual bytes.

- 17 -

Instruction Operands Action Cycles

LOAD/STORE

load_32 dest, srel, ri dest +— M[srel + ri] 1

load_external dest, srcl, ri dest +— external state 1

test_and_set dest, srel, ri dest + M [srcl + ril; M [srel + ri]<00> 1 2

store_32 src2, srel, imm src2 —+ M [srcl + imm) 2

store_external src2, srcl, imm src2 — external state 1

COMPUTE

add, subtract dest, srel, ri dest «— srcl op ri 1

add(no traps) dest, srel, ri dest « srcl + ri 1

and, or, xor dest, srel, ri dest « srcl op ri 1

sll, srl, sra dest, srcl, ri dest + srcl op ri<01:00> 1

extract dest, srcl, ri dest <07:00> +— one byte from srcl selected by ri 1

insert dest, srcl, ri dest «— ri<07:00> inserted into one byte of srcl 1

BRANCH/JUMP

cmp_branch_delayed cond, srel, rei, offset if (src1 cond rci) pe +— pe + signed word offset 1

cmp_branch_likely cond, srcl, rci, offset if (srcl cond rei) pe «— pc + signed word offset 1
else change next instruction into no-op

jump address pe + word address (in same segemnt} 1

jump_register srel, i pc +—srcl 4 ri 1

CALL/RETURN

call, call_kernel address increment current window pointer; 1
save pc¢; pc +— word address

return, return_trap,

return_kernel srcl, ri pc — srcl +ri 1
decrement current window pointer

ACCESS SPECIALS

read_special dest, srcl dest + special register srcl 1

write_special dest, srcl, ri special register dest + srel + ri 1

read_kernel_psw dest dest + kernel psw 1

write_kernel_psw srel, ri kernel psw « srel + ri 1

bit register specificers.
immediate constant.

Table 3. Basic SPUR Instructions

This table lists the basic SPUR instruction set. The column cycles is the minimum
number of cycles consumed by an instruction. Many instructions operate on two
sources (srcl and ri) and write a result into a destination (dest). Srcl and dest are 5-

Ri is either a 5-bit register specifier or a 14-bit signed
Rei stands for a 5-bit register specifier or a 5-bit unsigned

immediate constant. Pc stands for the program counter. The action column describes
what happens in the data portion of the destination and source registers. Exceptional
conditions and Lisp tag manipulation are described in the SPUR Instruction Set
Architecture [Tayl85).

SPUR adopted the delayed branch from RISC II. The execution of a branch
instruction on most pipelined processors requires that the branch target be fetched
and the execution pipeline flushed, before the target instruction is executed. A
branch instruction on SPUR allows -- in fact, requires -- the next sequential
instruction to be executed while the branch target is fetched. A delayed branch
saves program execution time if a useful instruction can be scheduled in this delay
slot. Gross found this could be done on 63 percent of delayed branches
dynamically encountered in the traces studied [Gros83]. Gross also found that
delayed branches did not significantly increase code size since 87 percent of the
statically examined delayed slots contained useful instructions.

- 18 -

SPUR also includes a canceling compare and branch instruction, which
dynamically turns the instruction in the delay slot into a no-op if the branch is
not taken. The technique is also being used in the Lawrence Livermore S-1 AAP
[LLNL84]. This variant of the delayed branch makes it easier to schedule a useful
instruction in the delay slot. The natural use of this instruction is at the bottom
of a loop, with the branch target set to the loop’s second instruction and the delay
slot filled with a copy of the loop’s first instruction.

An arbitrary shift instruction was not included, because most shifting done in
high-level language programs is for effective address computation in arrays and
records [Kate83b]. SPUR provides shift instructions only to shift one bit right,
and one, two, and three bits left. Shift operations are not needed for integer
multiplication or division since these operations are done with the FPU.

5.2. Supporting Lisp

The Lisp programming language has some features that are difficult to
implement efficiently on conventional computers. These include frequent function
calls and returns, polymorphic operations, and automatic garbage collection.
Most machines designed to run Lisp use a stack-based architecture with extensive
microcode support (e.g., Symbolics 3600 [Moon85] , Lambda [LMI83] , and the
Xerox D-Machines [Burt80]). Our approach emphasizes a simple, regular
instruction set, overlapping register windows, and tagged data. Table 4 lists the
instructions tailored for Lisp.

Fast function calls and returns are particularly important for Lisp, because
Lisp programs are constructed out of many, small functions. SPUR provides fast
function calls and returns through the overlapping register window mechanism.
Studies have shown that this mechanism, which was developed for C, is effective
at speeding up Lisp calls and returns [Pond83]. The complicated argument
options allowed by Common Lisp (e.g., default and keyword parameters) are
handled by software rather than by special-purpose instructions or microcode.
This approach increases the size of functions that use these options, but ensures
that simple function calls execute rapidly.

5.2.1. Tagged Architecture

Lisp uses polymorphic functions with operands whose type is not known until
run-time. A polymorphic function operates on arguments of more than one
datatype. For example, the addition operator (+) is a polymorphic operator in
most high-level languages because it is defined to operate on both integers and
floating-point numbers. Lisp complicates the implementation of polymorphic
operations, because it associates the type of data with the data values instead of
the program variables. For example, a variable is not an integer variable, known
at compile-time, but rather a variable that may contain an integer at run-time.
When a Lisp function is evaluated, the types of operands must be determined
before the appropriate routine is executed.

SPUR handles polymorphic operations by manipulating the 6-bit datatype

tags of operands in parallel with operating on the 32-bit data values (see Figure
8). Type checking in SPUR assumes that most arithmetic operands are integers.

-19 -

Instruction Operands Action Cycles
load_40 dest, srel, ri dest + M [srcl + ri] 1
car, cdr dest, srcl, ri dest «= M [srel + ri} 1
store_40 sre2, srcl, imm src2 — M[srel + imm) 2
read_tag dest, srci dest <07:00> +— srcl tag 1
write_tag dest, ri dest tag « ri<07:00> 1
tag_cmp_branch_delayed cond, srcl, tag_imm, offset if (src1<tag> cond tag_imm) 1

pe + pc + signed word offset
tag_cmp_branch_likely cond, srcl, tag_imm, offset if (srcl <tag> cond tag_imm)
pc + pc + signed word offset
else change next instruction into no-op
compare_and_trap cond, srel, rei if (srcl cond rci) trap 1
tag_compare_and_trap cond, srel, tag_imm if (srcl cond rei) trap 1

-

Table 4. SPUR Lisp Instructions

This table lists Lisp instructions. The column cycles is the minimum number of cycles
consumed by an instruction. Load_40 and store_40 move tagged words into and out
of registers. Car and cdr are special forms of load_40 that check for a proper list
element. Read_tag and write_tag move a tag to and from the data part of a register.
Compare_and_branch_delayed and compare_and_branch_likely, presented in Table 3,
compare the tags and values of two Lisp data items. In addition,
tag_compare_and_branch_delayed and tag_compare_and_branch_likely are available
to determine the value of a tag (by comparing it with an immediate constant).
Compare_and_trap and Tag_compare_and_trap are used to test for error conditions.

Similar approachs have been used on several other machines [Road83,Unga84].
For example, a polymorphic add operation is implemented with an add instruction
that begins by adding the 32-bit operands as if they were integers and, in parallel,
checking the datatype tags to verify that they are integers. If both operands are
integers, then the instruction finishes by writing the sum into the result register.
Otherwise, the register write is suppressed and the instruction traps to software
that determines the types of the operands and performs the appropriate form of
addition.

The power of SPUR to manipulate datatype tags is increased by several
instructions that allow conditional traps and branches based on tag values (see
Table 4). The conditional traps allow efficient checking of error conditions.
Explicit tag comparison instructions are used to implement polymorphic
operations in the more complicated cases that are not handled by the hardware.

Datatype tags also assist list manipulation, which is fundamental in Lisp. A
list is a sequence of elements (e.g., (a b ¢)). The Lisp functions that manipulate
lists are called CAR and CDR. CAR returns the first element of a list (e.g., a),
and CDR returns the rest of the list (e.g., (b ¢)). CAR and CDR can be
implemented with load instructions since lists are stored as linked-lists in main
memory. However, the semantics of Common Lisp strongly encourage that an
exception be generated if the argument of CAR or CDR is not a list.
Conventional architectures must execute one or more instructions to check this
condition even though the arguments of all CARs and CDRs in a correct
program are lists. SPUR provides a czr (car or cdr) instruction, which checks the

-920-

! I
type gen data
tag num,

6 bits 2 bits 32 bits

Figure 8. Lisp Tagged Data

SPUR augments Lisp data words with an eight-bit tag that includes a six-bit datatype
tag and two-bit generation number. Lisp integers and characters are represented as
immediate data. All other types of Lisp objects are referenced by typed pointers.
Some of the tag values are used by the hardware to do tag checks in parallel with data
operations. Other tag values are interpreted only by software. The generation
number is used to implement a generation scavenging garbage collection algorithm.

datatype tag in parallel with the load. A trap is generated if the type of either
operand is inappropriate. This is an ideal use of parallel tag checking because it
allows SPUR to execute CAR and CDR at the same speed as a load and still be
able to generate exceptions on errors.

SPUR also uses part of the tag field to assist in garbage collection. Lisp
encourages programmers to dynamically create and use data structures in
memory. Automatic garbage collection reclaims structures that are no longer in
use. This feature relieves the Lisp programmer of the responsibility of explicitly
discarding obsolete structures, a task that leads to subtle bugs and complicated
programming. SPUR stores a 2-bit generation number in the tag to assist a
generation scavenging garbage collection algorithm [Unga84]. The algorithm
exploits a property of dynamic data: new data structures are likely to become
garbage soon and old data structures are likely to stay in use. Therefore, most
garbage collection activity focuses on the new data. The generation number
records the number of garbage collections that an item has survived and hence its
age.

5.2.2. Poor Data Density

The SPUR architecture has been designed with more emphasis on speed and
simplicity than concern for code or data density. The prototype implementation
has particularly poor Lisp data density because of a decision not to build a
complete 40-bit system.

The CPU manipulates 40-bit data (8-bit tag and 32-bit data). That data
must often be loaded from and stored to the cache and the rest of the memory
system. There are three approaches for doing this: (1) build the whole system
with 40-bit words, (2) allow unaligned cache accesses, or (3) place 40-bit words in
aligned 64-bit words. A 40-bit-word memory system was rejected, because it
would preclude the use of many off-the-shelf sub-systems, which would
substantially delay completion of the hardware. It would also have complicated
non-Lisp software in such areas as string manipulation and file transfer with non-
SPUR machines. Permitting unaligned cache accesses was rejected because of the

-91-

complexity it would add to the cache. An unaligned access can cross a cache block
boundary, possibly forcing the cache to handle two cache misses, including
address translation. Consequently, we chose to store 40-bit Lisp words in aligned
64-bit words. The other 24 bits are wasted for tagged Lisp data, but not for
instructions, data for other languages, or some Lisp data within structures. At
worst, this storage strategy uses 60 percent more Lisp data memory than the first
two schemes, but it allows us to explore ideas more quickly by simplifying the
prototype.

5.3. Floating-Point Support

SPUR implements the IEEE 754 binary floating-point standard [IEEE85] with
a mixture of hardware and software. Floating-point instructions are executed on
the floating-point coprocessor chip (FPU). The FPU hardware is optimized to
execute common floating-point operations quickly. Effective use of the FPU
depends on a low-overhead floating-point interface and support for concurrent
execution of floating-point and CPU instructions. The SPUR FPU is the first
implementation of IEEE floating-point that does not use any microcoded control.

5.3.1. The Floating-Point Coprocessor

Floating-point instructions are either register-to-register instructions or loads
and stores (see Table 5). The register-to-register instructions include add,
subtract, multiply, divide, and two types of compares that are similar to their
integer counterparts. Except for multiply (7 cycles) and divide (19 cycles), a new
floating-point instruction can be issued every four cycles.

Data is transferred between the FPU and the cache with floating-point load
and store instructions. Floating-point load instructions convert all single (32 bits)
and double (64 bits) precision numbers to extended precision to simplify the
computational instructions. A convert instruction must be executed before a store
to perform the inverse operation.

The FPU contains fifteen 87-bit floating-point registers organized as a single
register set (see Figure 6). There is no analog to the overlapping windows used
for the general-purpose registers, because of insufficient FPU chip area to
implement more registers. Furthermore, more research is needed to determine
how to use overlapping windows for floating-point registers. The floating-point
register set is independent of the general-purpose register set for four reasons: to
reduce access time for floating-point operands, to allow more freedom in setting
the width of floating-point registers, to permit concurrent execution of integer and
floating-point operations, and to permit implementation of a separate FPU chip.

SPUR divides the floating-point standard into two parts: one part is
implemented by a set of instructions (see Table 5) with hard-wired control, and
the other part is implemented by software trap handlers. The standard defines six
types of floating-point numbers: Zzeros, normalized numbers, denormalized
pumbers, infinities, and two types of Not-a-Number symbols. The FPU
manipulates normalized numbers and zeros entirely in hardware. The other four
less common types require software assistance.

-929-

Instruction Operands Action Cycles
load_single dest, srel, 1i FPU dest «— (convert to extended) M [srel + ri] 1
load_double dest, srel, ri FPU dest « (convert to extended) M [srcl + ri] 1
load_extendedl dest, srcl, ri FPU dest + M [srel + ri} 1
load_extended2 dest, srel, ri FPU dest +— M [srel + ri] 1
load_integer dest, srcl, ri FPU dest<63:32> « M [srcl + ri] 1
store_single src2, srel, i FPU src2 — M [srel + i 2
store_double src2, srel, i FPU src2 — M [srel + i 2
store_extended1 sre2, srel, i FPU src2 — M [srcl + i] 2
store_extended? src2, srel, i FPU src2 — M [srel + i] 2
store_integer src2, srel, i FPU src2 — M [srcl + i] 2
from_fpu dest, src2 CPU dest +— FPU src2<63:32> 1
to_fpu dest, src2 FPU dest <83:32> +- CPU src2 1
fadd, fsub dest, srcl, src2 FPU dest +— FPU srel op FPU src2 4
fmul dest, srcl, src2 FPU dest « FPU srcl * FPU src2 7
fdiv dest, srel, sre2 FPU dest «— FPU srcl / FPU src2 19
fp_cmp_branch_delayed cond, srcl, src2, offset if (FPU srel cond FPU src2) 4

pe + pc + signed word offset
fp_cmp_branch_likely cond, srel, sre2, offset if (FPU srcl cond FPU src2) 4

pc + pc + signed word offset

else change next instruction into no-op

fnegate dest, srcl FPU dest +— FPU srcl with opposite sign 4
fabs dest, srel FPU dest + FPU srcl with positive sign 4
fmov dest, srcl FPU dest «— FPU srcl 4
int_to_extended dest, srcl FPU dest + (convert to extended) FPU src1<83:32> 4
extended_to_int dest, srcl FPU dest<83:32> + (convert to integer) FPU srcl 4
extended_to_single dest, srcl FPU dest + (convert to single) FPU srcl 4
extended_to_double dest, srcl FPU dest + (convert to double) FPU srcl 4
sync CPU waits until FPU is not busy 1

Table 5. SPUR Floating-Point Instructions

This table lists SPUR floating-point instructions. The column cycles is the minimum
number of cycles consumed by an instruction in normal operating mode. If the FPU
and CPU are operated concurrently, then a CPU instruction can begin one cycle after
an FPU instruction has started (see Section 5.3.2). There are floating-point load and
store instructions for each floating-point format and for integers. Extended-precision
numbers require two different loads and two different stores to move the first 64 bits
and the last 64 bits. Loads do implicit conversion to extended-precision, but stores
merely copy bits. Store_single, store_double, and store_integer must be preceded by
the corresponding convert instruction. The to_cpu and from_cpu instructions transfer
integers directly between the integer and floating-point register sets so that the FPU
can be effectively used for integer multiply and divide. Most floating-point operations
execute in four cycles using the add/subtract hardware. Multiply and divide use
additional special-purpose hardware. The sync instruction is used when the CPU and
FPU are executing instructions in parallel and the CPU must wait until the FPU is not
busy.

The FPU manipulates single (32 bits), double (64 bits), and extended-
precision numbers (at least 79 bits) in a common 87-bit format to reduce
hardware complexity. SPUR enlarges the minimum extended-precision format in
four ways. First, a 3-bit tag is included to identify the type of a number. This
tag reduces the time needed by a load instruction to convert numbers to
extended-precision by allowing the load to handle exponents for all types of

-923-

numbers in a uniform fashion. In addition, the hardware for computational
instructions can determine whether software assistance Is necessary by examining
three bits rather than the entire pumber. Second, SPUR expands the exponent by
two bits so that trap handlers can adjust denormalized operands. This enables
SPUR to multiply and divide denormalized numbers using hardware designed for
normalized operands. Third, two rounding bits are added so that SPUR can
mimic rounding from an infinitely-precise result to a precision shorter than
extended. This feature is necessary to correctly handle a denormalized number
produced by an underflow exception. Fourth, one bit is used to hold the most
significant fraction bit in explicit form.

5.3.2. The Floating-Point Coprocessor Interface

The FPU is sufficiently fast that the performance of floating-point operations
is sensitive to the overhead associated with starting floating-point operations and
the overhead of transferring floating-point operands to and from the FPU.
Consequently, 28 CPU pins are used to implement a low-overhead interface
between the CPU and the FPU. Unfortunately, the close coupling of the two
chips may make it difficult to use the SPUR FPU without the SPUR CPU.

To reduce the overhead of starting floating-point operations, the FPU tracks
all CPU instructions using 22 pins dedicated to carrying opcode, register
specifiers, and other control information to the FPU (and possibly other
coprocessors). Some commercial floating-point coprocessors track instructions by
monitoring CPU instruction fetches to memory [Inte85]. However, this will not
work in SPUR because the CPU fetches most instructions from the on-chip
instruction buffer.

The SPUR floating-point interface reduces operand overhead three ways.
First, the floating-point registers reside on the FPU. Since all floating-point
computation instructions operate with operands in these registers, intermediate
results can be efficiently used.

Second, floating-point load and store instructions transfer data directly
between the FPU and the cache. In contrast, many commercially-available
interfaces require floating-point data to be transferred through the CPU [Cass84].
The following sequence occurs when a floating-point load instruction is issued by
the CPU: the FPU recognizes the floating-point load instruction and saves the
destination register specifier; the CPU calculates the effective memory address and
sends the address to the cache; the cache sends the data to both the FPU and the
CPU; the FPU reads the data and loads it into the appropriate floating-point
register; the CPU ignores the data, but recognizes that the load is complete.

Third, the datapath between the FPU and the memory system is 64 bits
wide. This allows load and store instructions to move single and double-precision
pumbers with a single transfer and extended-precision numbers with two
transfers. Commercial FPU interfaces have only recently become 32 bits wide
[Cassg4]. SPUR’s wide FPU interface reduces the probability that operand
movement will limit floating-point throughput, which can easily occur for double-
precision computations.

-94-

The coprocessor interface also allows concurrent CPU and FPU operation.
Subject to some software constraints, the CPU can continue executing general-
purpose instructions, Lisp instructions, and floating-point loads and stores, while
the FPU is busy. Overlapping operand movement/index calculations with
floating-point operations can halve the execution time of many inner loops of
floating-point intensive programs [Hans85). However, software must restrict the
interaction between concurrently executed instructions by reordering instructions
or by inserting sync instructions. For example, a sync instruction must be
inserted between a floating-point operation and an instruction that stores the
result in memory if the store could issue before the operation completes.

6. Status and Conclusions

The implementation of SPUR is in progress. As of November 1985 most of
the custom components have been described at the register-transfer level with a
variant of the ISP language and simulated with a software package called N.2
[Ordy83]. The processor board has been designed, simulated with N.2, but not
yet implemented. The layouts of the CPU and FPU chips are near completion.
Both use four-phase non-overlapping clocks with goal of a 150 nanosecond cycle
time. All datapaths and much of the control have been implemented. The CC
chip control has been specified, but little of the simple datapath has been
implemented. We expect to have working components by late-1986, and a
working system in 1987.

SPUR is a multiprocessor research vehicle, but we have not, as yet, been able
to run multiprocessing experiments. Nevertheless, we have some preliminary
results. First, selected architectural changes can significantly ease implementation
and, at the same time, improve performance. For example, disallowing synonyms
enabled us to build virtually-tagged caches without complex reverse-translation
mechanisms. Virtually-tagged caches improved performance by reducing cache
access time and permitting slow address translation. Second, in-cache address
translation keep PTEs consistent and offers performance comparable to a
translation buffer at less cost. Third, cache consistency can be maintained in
hardware at reasonable cost and without any modifications to main memory
boards. Fourth, LISP can be supported without a stack-based architecture and
without a microcoded implementation. However, datatype tags or some other
direct support of LISP’s dynamically-typed data are advantageous. Fifth, IEEE
standard floating-point can be implemented without microcoded control if
software handles the less common cases. Sixth, floating-point coprocessor
interfaces can be designed to significantly reduce operand-movement overhead by
putting the floating-point registers on the floating-point coprocessor and loading
these registers directly from a cache using a 64-bit datapath.

The goal of the first phase of the SPUR Project is to design and implement
one or two working prototypes. We hope to complete this goal by the end of
1987. If the prototypes meet our expectations, we hope to find partners to help us
transfer SPUR from academia to industry.

-95-

7. Acknowledgements

The SPUR project is a cooperative project that benefits from contribution of
many people within the Berkeley community besides the authors of this paper.
The implementation of the CPU, FPU, and CC was begun by class members of
CS 2921 taught in Spring, 1985 by Randy Katz. Members of this class who
assisted included: Chien Chen, Li-fan Pei, Rick Rudell, Trudy Stetzler, Sinohe
Villalpando, Albert Wang, Don Webber, and Tom Wisdom. The implementation
of three VLSI chips would not have been possible without computer-aided design
software developed by Gordon Hamachi, Bob Mayo, John Ousterhout, Walter
Scott, and George Taylor. The architecture of SPUR has been strongly affected
by interactions with the SPUR operating systems group consisting of Andrew
Cherenson, Fred Douglis, John Ousterhout, Mike Nelson, and Brent Welch.

We would also like to thank Sue Dentinger, Gregg Foster, Jim Goodman,
Robert Henry, Louis Monier, Prabhakar Ragde, Jim Smith, and Chuck Thacker
for their suggestions that improved the quality of this paper.

SPUR was first presented at the 1985 Asilomar Microcomputer Workshop by
the first four authors of this paper. SPUR is sponsored by DARPA under
contract order 482427-25840 by NAVALEX.

References

Burt&0.
R.R. Burton, R.M. Kaplan, L.M. Masinter, B.A. Sheil, A. Bell, D.G. Bobrow,
L.P. Deutsch, and W.S. Haugeland, Papers on Interlisp-D, September 1980.
Xerox PARC Technical Report SSL-80-4

Cass84.
Barbara A. Cassel, MC68020 82-Bit Microprocessor User’s Manual,
Prentice-Hall, Englewood Cliffs, NJ, 1984.

Cens78.
Lucien M. Censier and Paul Feautrier, “A New Solution to Coherence
Problems in Multicache Systems,” IEEE Transactions on Computers, vol.
C-27, no. 12, pp. 1112-1118, December 1978.

Demi82.
J. Deminet, “Experience with Multiprocessor Algorithms,” IEEE Trans. on
Computers, vol. C-31, no. 4, April 1982.

Gabr85.
R.P. Gabriel, Performance and FEvaluation of Lisp Systems, MIT Press,
1985.

Gibs85.
G. Gibson, “SPURBUS Specification,” Proc. of CS292:: Implementation of
VLSI Systems, R.H. Katz, Ed., University of California, Berkeley, September
1985. Computer Science Division Technical Report UCB/CSD 86/259

Good8&3.
J.R. Goodman, “Using Cache Memory to Reduce Processor-Memory Traffic,”
Proc. Tenth International Symposium on Computer Architecture, pp. 124

-96 -

131, Stockholm, Sweden, June 1983.

Gros83.
T. Gross, Code Optimization of Pipeline Constraints, August 1983. Ph.D.

Thesis, Stanford University

Hans85.
P.M. Hansen, Coprocessor Architectures for VLSI, University of California,
Berkeley, May 1985. Unpublished Thesis Research Proposal

Hillg4.
M.D. Hill and A.J. Smith, ‘“Experimental Evaluation of On-Chip
Microprocessor Cache Memories,” Proc. Eleventh International Symposium
on Computer Architecture, Ann Arbor, MI, June 1984.

IEEESS.
IEEE, IEEE Standard 754-1985 for Binary Floating-Point Arithmetic, 1985.
Order number CN953

Inte85.
Intel, in Microsystem Components Handbook, Volume I, pp. 3.175-3.197,
Santa Clara, CA, 1985. 8087 Numeric Data Coprocessor

Kate83a.
M.G.H. Katevenis, R.W. Sherburne, D.A. Patterson, and C.H. Séquin, ‘“The
RISC I Micro-Architecture,” Proc. VLSI 83 Conference, Trondheim,
Norway, August 1983.

Kate83b.
M.G.H. Katevenis, Reduced Instruction Set Computer Architectures for
VLSI, October 1983. Ph.D. Thesis, U.C. Berkeley

Katz85a.
R.H. Katz, S.J. Eggers, G.A. Gibson, P.M. Hansen, M.D. Hill, JM.
Pendleton, S.A. Ritchie, G.S. Taylor, D.A. Wood, and D.A. Patterson,
Memory Hierarchy Aspects of a Multiprocessor RISC: Cache and Bus
Analyses, University of California, Berkeley, January 1985. Computer
Science Division Technical Report UCB/CSD 85/221

Katz85b.
R.H. Katz, S.J. Eggers, D.A. Wood, C.L. Perkins, and R.G. Sheldon,
“Implementing a Cache Consistency Protocol,” Proc. Twelfth International
Symposium on Computer Architecture, Boston, June 1985.

LLNLg&4.
LLNL, S-1 AAP Review, November 1984. Physics Briefing 85-606

LMI&3.
LMI, The Lambda System: Technical Summary, 1983. LISP Machines, Inc.

Moon85.
D.A. Moon, “Architecture of the Symbolics 3600,” Proc. Twelfth Symposium
on Computer Architecture, Boston, MA, June 1985.

Ordy83.
G.M. Ordy and C.W. Rose, “The N.2 System,” Proc. of 20th ACM/IEEE
Design Automation Con ference, pp. 520-526, 1983.

-927 -

Patt82.
D.A. Patterson and C.H. Séquin, “A VLSI RISC,” Computer, vol. 15, no. 9,

pp. 8-21, September 1982.

Patt85.
D.A. Patterson, “Reduced Instruction Set Computers,” Comm. ACM, pp. 8-

21, January 1985.

Pond83.
C. Ponder, But will RISC run LISP? (a feasibility study), University of
California, Berkeley, April 1983. Unpublished Masters Report

Road83.
C.B. Roads, 8600 Technical Summary, Cambridge, MA, 1983. Symbolics,

Inc.

Smit82.
A.J. Smith, “Cache Memories,” Computing Surveys, vol. 14, no. 3, pp. 473 -

530, September, 1982.

Stan85.
Stanford, Biannual Research Summary, DARPA VLSI Contracts,

November 1984 - March 1985. Stanford CSL & ICL

Stee84.
G.L. Steele, Common LISP: The Language, Digital Press, Burlington, MA

01803, 1984.

Tayl&5.
G. Taylor, “SPUR Instruction Set Architecture,” Proc. of CS292:
Implementation of VLSI Systems, R.H. Katz, Ed., University of California,
Berkeley, September 1985. Computer Science Division Technical Report

UCB/CSD 86/259

Texa83.
Texas-Instruments, NuBUS Speci fication, 1983. TI-2242825-0001

Unga84.
D. Ungar, R. Blau, P. Foley, D. Samples, and D. Patterson, ‘““Architecture of
SOAR: Smalltalk on a RISC,” Proc. Eleventh International Symposium on
Computer Architecture, pp. 188-197, June 1984.

Wood86.
D.A. Wood, S.J. Eggers, G. Gibson, M.D. Hill, J. Pendleton, S.A. Ritchie,
R.H. Katz, and D.A. Patterson, “An In-Cache Address Translation
Mechanism,” Submitted to Thirteenth International Symposium on
Computer Architecture, Tokyo, Japan, June 1986.

