The Design and Evaluation of
A High Performance
Smalltalk System

David Michael Ungar
February, 1986

Abstract

The Smallralk-80TM system makes it possible to write programs quickly by providing
object-oriented programming, incremental compilation, run-time type checking, use-extensible data
types and control structures, and an interactive graphical interface. However, the potential savings
in programming effort have been curtailed by poor performance in widely available computers or
high processor cost. Smalltalk-80 systems pose tough challenges for implementors: dynamic data
typing, a high-level instruction set, frequent and expensive procedure calls, and object-oriented
storage management.

The dissertation documents two results that run counter to conventional wisdom: that a
reduced instruction set computer can offer excellent performance for a system with dynamic data
typing such as Smalltalk-80, and that automaric storage reclamation need not be time-conswning.

This project was sponsored by Defense Advance Research Projects Agency (DoD) ARPA
Order No. 3803, monitored by Naval Electronic System Command under Contract No.
N00034-K-0251. It was also sponsored by Defense Advance Research Projects Agency (DoD)
ARPA Order No. 4871, monitored by Naval Electronic Systems Command under Contract No.
N00039-84-C-0089.

The Design and Evaluation
of a High Performance Smalltalk System

By

David Michael Ungar
B.S. in Electrical Engineering (Washington University, Missouri) 1976
B.S. in Applied Math & Computer Science (Washington University, Missouri) 1976
M.S. (Washington University, Missouri) 1977

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY

in
Computer Science

in the

GRADUATE DIVISION
OF THE
UNIVERSITY OF CALIFORNIA, BERKELEY

--

The Design and Evaluation
of a High Performance Smalltalk System

Copyright © 1986

David Michael Ungar

The Design and Evaluation of a High Performance Smalltalk System

Pu.D. David Michael Ungar Computer Science

Sponsors: Defense Advanced Research Projects Agency - D . A ‘Pdm;\bc‘t\

International Business Machines Corperation

Abstract

The Smalltalk-80™ system makes it possible to write programs quickly by providing
object-oriented programming, incremental compilation, run-time type checking,
user-extensible data types and control structures, and an interactive graphical interface.
However, the potential savings in programming effort have been curtailed by poor perfor-
mance in widely available computers or high processor cost. Smallalk-80 systems pose
tough challenges for implementors: dynamic data typing, a high-level instruction set, fre-

quent and expensive procedure calls, and object-oriented storage management.

To solve these problems, a group of researchers at U. C. Berkeley has designed and
built the SOAR (Smalltalk On A RISC) microprocessor. In order to determine the perfor-
mance of Smalltalk-80 on SOAR and to evaluate the importance of each of the ideas, simu-

lations of five representative benchmarks have been analyzed. The results suggest that:

. Six ideas substandally improve performance: compilation to a low-level instructios
set, multiple windows of on-chip registers, c.aching the target of a call instruction i.n the
instruction itseif, byte insert and extract instructions, instructions for arithmetic and
comparison operations on tagged integers, and our storage management algorithm,

Generation Scavenging.

. Seven features conmibute litle to performance: shadow regis;tcrs o simplify trap
recovery, hardware assistance for garbage collection, vectored traps, addressable regis-
ters, clearing multiple registers in parallel, conditional tap instrucdons, and load- and
store-multpie instructions.

. The language-specific hardware in SOAR doubles its performance over a RISC II with
the same cycle time.

. Generation Scavenging, a storage reclamation algorithm developed by the author, con-

sumes only 3% of the CPU time, in contrast to the 9% of comparable Smalltalk-80 sys-

tems.

o Despite a five-to-one handicap in basic cycle tme, the NMOS SOAR microprocessar

should run as fast an ECL Dorado minicomputer.

" The dissertation reports two results that run counter to conventonal wisdom: that a
reduced instruction set computer can offer excellent performance for a system with dynamic
data typing such as Smalltaik-80, and that automatic storage reclamation nesd not be

time-consuming.

Table of Contents

Table of Contents

Table of Figures

Table of Tables

Chapter 1: Introduction

Chapter 2: Previous Work

Section 2.1: Inroduction

Section 2.1.1: Object-Oriented Programming

Section 2.1.2: Shortening the Edit-Compile-Test-Debug Cycle

Secton 2.1.3: Graphics

Section 2.1.4: Rapid Response

Section 2.1.5: The Bad News

Secton 2.2 The Smalltalk-80 Exploratory Programming Environment -
Section 2.3: Reducing the Cost of EPEs with Software Ounly

Section 2.4: Hardware for Exploratory Programming Eavironmentsc....
Section 2.4.1: The RICE Computer '

Section 2.4.2: The Burroughs B5700 and B6700 Computers

Section 2.4.3: Scheme-79

Section 2.4.4: The Symbolics 3600 Lisp Machine

Section 2.4.5: Katana-32

Section 2.5: Reduced Insouction Set Computer (RISC) Architecaure
Section 2.5.1: IBM-801

Sectdon 2.5.2: RISCland I ...

Section 2.5.3: MIPS .

Section 2.6: Summary .

Chapter 3: The SOAR Architecture

Sectdon 3.1:
Secton 3.2:
Section 3.2.1:
Section 3.2.2:
Section 3.2.3:
Secton 3.2.4:
Section 3.3:
Secton 3.3.1:

Introducdon .

Type Checking
Tags Trap Bad Guesses
Conditional Skip Inswuctions
Two-Tone Instructons ...
Tagged Immediate Operands

Interpretation

Reduced Instuction Set

.........

.....................

..

...

Section 3.3.2:
Secton 3.4:

. Secton 3.4.1:
Section 3.4.2:
Secton 3.4.3:
Section 3.4.4:
Sectdon 3.35:
Section 35.1:
Section 3.5.2:
Section 3.5.3:
Secton 3.6:
Secton 3.6.1:
Sectdon 3.6.2:
Section 3.6.3:
Section 3.6.4:
Secton 3.7:

Chapter 4: Performance Evaluation of the SOAR Architecture

Secton 4.1:
Secton 4.2:
Secton 4.3:
Section 4.4:
Secton 4.5:

_ Evaluating Individual Feaures

SOAR Interrupts and Traps
Fast Calls ...
Multiple Overiapping On-Chip Register Windows wcocceveecuenucnsenen
Caching Call Targets In Line
Fast Shuffie: One Cycle Calls and Jumps
The Remrn Instructon: Parallel Register Initializationce.ceee.
Object-Oriented Storage Management
Automatic Storage Reclamaton
Acdvation Records as Objects
Virmual Memory
Implementanon
Special Registers
The SOAR Datapath
Pipelining in SOAR
Implementadon Statistcs
Summary

Inooducdon
Overall Performance: SOAR vs Dorado
Relative Performance of SOAR

Conclusions

Chapter 5: Noun-Disruptive High Performance Storage Reclamation

Secton 5.1:
Section 5.2:

Section 5.3:
Section 5.4:
Section 5.4.1:
Sectdon 5.4.2:
Secdon 5.5:

Secdon 5.6:
Secdon 5.6.1:
Sectdon 5.6.2:
Sectdon 5.7:
Secton 5.7.1:
Section 5.7.2:
Secton 5.8:

Secdon 5.8.1:
Secton 5.8.2:

Inooducton
The Relationship Betweea Virmal Memory and Storage Recla-
maton
Personal Computers Must Be Responsive
Virrual Memory for Advanced Persopal COMPUETS weccemeceeccnsss
Segmentaton
Demand Paging
Automatic Storage Reclamaton for Advanced Personal Com-
puters :
Reclaiming Storage by Countng References
Immediate Reference Counang
Deferred Reference Counting
Reclaiming Storage by Finding Reachable ObJects woeemeeeencneenenece
Mark and Sweep
Scavenging Live Objects ...
The Generation Scavenging Automatic Storage Reclamanon
Algorithm
Overview of Generation Scavenging Algonithm .c.ccoceecveveecnnenee

Detailed Descripton of Generation SCavengiNgoceceevecccscsns:

39
42
43
45
47
48
50
50
53

54
54
56
56
58
59

6!
61
65

328

74
74

75
76
76
76

78

-y,

/

79
81
82
83
83

85
86
87

Section 5.8.3:

Secdon 5.9:
Section 5.9.1:
Section 5.9.2:
Section §.9.2.1:
Section 5.9.2.2:
Section 5.9.2.3:
Section 5.9.2.4:
Section 5.9.3:
Secdon 5.9.4:
Secton 5.9.5:
Section 5.9.6:
Secton 5.9.7:
Secton 5.10:
Section 5.11:

Chapter 6: Scavenging Data with Intermediate Lifetimes

Section 6.1:
Secton 6.2:
Secton 6.3:
Secdon 6.4:
Secdon 6.5:
Secdon 6.6:
Sectdon 6.7:

Chapter 7: Conclusions

Comparing Generation Scavenging to Other Scavenging Algo-

rithms

Performance Evaluaﬁon of Generation SCavengingcceeeceeeeee
Evaluating Generadon Scavenging in Berkeley Smallalk

Evaluating Generation Scavenging on SOAR
SOAR Scavenge Duration
SOAR Scavenge Frequency
Net SOAR Scavenge Overhead

Generation Scavenge Trap Time

Summary of Generaton Scavenging's Performancecc.........
Performance Evaluaton of Direct Addressing on SOAR

Architectural support for Storage Management
Generadon Scavenging and Actvation Records
The Potendal Problem of Premarure Promotion
Summary of Reclamation Algorithms

Conclusions

Inoduction

The Tenuring Threshold
Analysis of a Single Scavenged Generation
Analyzing a Middle Generation
Controlling the Tenuring Thresboid
The Cost of an Offline Reorganizaton

Summary

Section 7.1: Conclusions
Section 7.2 Future Work
Secdon 7.3: Acknowledgments

Bibliography

Appendix A: Detailed Performance Evaluation of Individual Features
Secuon A.1: INTOAUCTONcoceriinnirceieiiersarssasinsesnsssesnsssesseenns

" Section A.2: Runome Type Checking
Section A.2.1: How Imporant are the Tagged Inweger Insgucdons?o.......
Section A.2.1.1: Tagged Instruction Frequency ...
Secton A.2.1.2: Cost of Omitting Tagged Arithmetic Insouctonsccccceveeueeneee.
Section A.2.2: Evaluating the Impact of Adding a Compare-and-Branch In-
sgucton ..

Section A.2.3: Evaluating Two-Tone Insguctons
Secton A.2.4: How Impormant Are Tagged Immediates? R
Secdon A.3: INIETPrEtAOON cccuceiniiineniitiirnintissacssnr st anesssssnssnsane sosesnsecsanansens

iii

1
1
101

S88XRERY

105
106
108
108
109

111
111
111
116
120
123
123
124

125
125
127
128

130

140
140
140
142
142
142

153
156
157
157

Secdon A.3.1:
Section A3 2:
- Secton A.3.3:
Section A3.4:
Secton A3S:
Secdon A3.6:
Secton A3.7:
Section A.3.8:
Section A.3.9:
Secdon A.4:

Secton A4.1:
Section A.4.2:
Secton A.4.3:
Secton A.4.4:
Secton A.4.5:
Section A.4.6:
Sectdon A.4.7:
Secdon A.S:

Secton A5.1:

Secton AS.2:
Section AS.3:
Secton A.6:

Secton A.6.1:
Secton A.6.2:

Appendix B: Raw SOAR Data

Secdon B.1:
Section B.2:
Secton B.3:

Evaluating SOAR’s Byte Facilides

Evaluasgon of the loade insogucton

Barrel Shifter

Evaluating the imporance of Multiply and Divide wweeecececccnec.

Evaluating the In1/Outl Skip Condigon

Evaluaring SOAR's Conditional Trap InSTuUCTOR ceeeeceeemmsennncens

One-Cycle Traps

Evaluating the Performance Impact of Shadow Registers wo..ccoe.

Does SOAR Really Need Vectored Traps?

Procedure Calls

Evaiuaring SOAR’s Register File Organizanon

Number of Registers per Window

Analysis of Loadm & Storem

Performance of Inline Caching

How Fast Does SOAR Shuffie?

Evaluadon of Parallel Register Initalizaton

Rewm Optons

Storage Management

Evaluaton of the Generation Scavenge Tag Checking
Hardware

Frequency of GS traps

Evaluating the Pointer to Register Support

Impiementadon
Register Forwarding

Memory Accesses

Inroduction

Insgucdon Mix Data

Execution Profile Data

iv

157
164
164
164
168
169
169
173
175
175
175
177
177
185
192
192
196
199

199
201

201

203
203
204

207
207
208
225

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9
Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 4.1:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10:
Figure 5.11:

Figure 6.1:
Figure 6.2:

Microphotograph of RISC 1

Table of Figures

NMOS SOAR chip
R-2 address word format

Scheme-79 data format
3600 dara formats

Microphotograph of RISC I

SOAR tagged data types
SOAR's immediate format

SOAR'’s insouction formats

SOAR Program Status Word

SOAR's register windows
Logical view of register file .

Caching the target address in the instruction stream
Caching the targer address in the instruction sgeam

Fast Shuffle logic
Indirect addressing

Direct addressing

Generaton tag checking in parailel with a store operation

The SOAR daapath
Pipelining in SOAR

Steps involved in a SOAR simulation
Virtual memory vs. automatc storage reclamadon

Standard reference countng

Deferred reference counting ...

BaKer SEMISPACES .cceeveemeeseeesanesnasessmsssssssarssssessnsasaass

Generaton garbage collecton

Generatdon Scavenging’s three areas for new objects
Bird's eye view of Generadon Scavenging

Predicting the duration of a scavenge .

Growing with become

Growing without become

Fast address zansianon

Effect of tenure threshold time on amount of dam tenured
Diagram of a system with a middle generationcecceeeeeeannee

15
17
18
26
27
32

36

&% ¢E

49
51
51
52
57
57
61
75
80
81

85
87
88
98
103
104
106
114
121

Tabie 1.1:
Tabie 2.1:
Table 2.2:
Table 2.3:
Tabie 2.4
Table 2.5:
Table 2.6:
Table 2.7:
Tabie 2.8:
Table 2.9:

Table 2.10:
Table 2.11:

Table 3.1:
Table 3.2:
Table 33:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:
Tabie 3.3:
Table 3.9:
Tabie 4.1:
Table 4.2:
Tabie 4.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Tabie 5.5:
Table 5.6:
Table 5.7:
Table 5.8:
Table 5.9:

Table of Tables

SOAR’s most significant features
Some exploratory programming environments

. Performance of Smalltalk-80 Compiler Benchmark

R-2 Dara tags

Burroughs 6700 dar formats
Some Scheme-79 opcodes

Performance of the Scheme benchmark
Some Symbolics 3600 data types

Some 3600 opcodes

Comparison of SOAR and Katana-32

The testActivatonReturn benchmark
TestActivatonRemrn object code

Useful immediate values
SOAR Instructon Set

Space Penalty of Compilation
SOAR traps and interrupts -

Trap reasons by instructon category
SOAR special registers

Processor Status Word fields
NMOS SOAR charactenistics

SOAR Architectural Ideas
Comparison of Performance Metics

SOAR Macro-Benchmark results, reladve to Dorado
Compiler Benchmark speed for various Smallalk-80 sysems

cesnsvsesvesccacnasasesacans

Summary of features and performance impacts
Fearures in order of performance impact

Trimming the Fat from SOAR
Tradidonal decomposition of storage management

Segmenmdon vs. Paging
Paging

Reference countng sequence on SOAR
Static cost for reference countdng on SOAR

Generadons in Generation Scavenging for BS
Performance of Generaton Scavenging in BS

Statsdcs on twelve scavenges simulated for SOAR

Space allocadon rate benchmarks on SOAR ..

esosacsscsvessssases

11
12
15
16
17
17
19

39
41
42
55
56

69
71
75
76
78

-
s

82
86
95
97
100

Table 5.10:
Table 5.11:
Table 5.12:
Table 5.13:
Table 5.14:
Table 5.15:
Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table A.1:
Table A2:
Table A.2:
Table A3:
Table A.4:
Table A.4:
Table AS:
Table A.S:
Table A.6:
Tabile A.7:
Tabie A.7:
Table A.7:
Table A.8:
Table A.9:
Tabie A9:
Table A.10:
Tabie A.11:
Table A.12:
Table A.13:
Tabile A.14:
Table A.15:
Table A.16:
Tabie A.16:
Table A.17:
Table A.17:
Table A.17:
Table A.18:
Table A.18:
Table A.19:
Table A.20:
Table A.21:
Table A.22:
Table A.23:

Extrapolated vs. Simulated Scavenging on SOAR

Generation Scavenge Store trapping overhead in SOAR
Summary of Generation Scavenging’s Performance

Performance impact of eliminating becomes
Static cost of object indirection

Summary of reclamation strategies

Results of BS tenuring experiment

Summary of tenuring proposais
Quanddies to analyze a single generation

Measurements of an offline reorganization on BS

Table of contents for Appendix A

Frequency of tagged arithmetc insguctioas, Part |

Frequency of tagged arithmetc inszructions, Part 2

Statc Occurrences of Tagged Integer Insructions In Systemee....

Frequency of integer tag traps, Part |

Frequency of integer tag traps, Part 2

Writearound for tagged instructions, Part 1

Writearound for tagged instructions, Part 2

Cost summary by instruction

Time cost of omiming tagged integer insguctons, Part |
Time cost of omitting tagged integer inszuctions, Part 2

ssonsscssasescoccanee

eesesssecscnvescscnas

Time cost of omitting tagged integer instructions. Part 3 ...ceeueeecceeeeee

Static Cost of Omitting Tagged Arith Insts in System

Upper bound on speedup with compare-and-branch, Part 1 .cccccveecenee -
Upper bound on speedup with compare-and-branch, Part .

Space savings for compare-and-branch

Projected dme cost of manipulating PSW mode bit
Space cost of mode bit in PSW

Dynamic usage and cost of tagged immediate valuesccccccccececcccnecees

Raw data for stadc analysis of tagged immediates

Impact of climinating tagged immediates ...
Codes sequences for byte operadons, Part | .

Codes sequences for byte operations, Part 2
Dynamic analysis of byte operadons, Part]

Dynamic analysis of byte operadons, Part 2
Dynamic analysis of byte operadoans, Part 3

Loadc Time Analysis, Part 1
Loadc Time Analysis, Part2 ...

Performance improvement of adding a barrel shifter

Time spent in multiply and divide rounnesccccceeeee.

Analysis of In1/Outl condition

Writearound for 0ap INSTUCHON ..cccececestisiesssessarsnenniassaans
Time cost of omitting the Tap INSTUCUON ..ccceerivsuccsrisanenes

.....................

.....................

100
101
101
104
105
109
113
117
118
123
141
143
144
145
146
147
148
149
149
150
151
152
152
154
155
155
156
156
158
159
159
159
160

_ 161

162
163
165
166
167
168
168
169
170

Table A24:
Table A25:
" Table A2S:
Tabie A.26:
Table A27:
Table A28:
Table A.28:
Table A29:
Table A.29:
Table A.30:
Tabie A31:
Table A32:
Table A.32:
Table A.32:
Table A33:
Table A34:
Table A.35:
Table A.35:
Table A3S:
Tabie A3S:
Table A36:

Table A37:.

Tabie A.38:
Table A39:
Table A.40:
Table A.41:
Table A.42:
Tabie A.43:
Tabie A.44:
Table A.44:
Table A.45:
Tabie A.46:
Table A.46:
Tabie A.46:
Table A.47:
Table A.48:
Tabie A.49:
Table A.S0:
Table AS1:
Table AS2:
Table A53:
Table AS54:
Tabie A.S5:

Raw data for stadc analysis of orap insgucdons

Trap frequencies, Part |

Trap frequencies, Part 2

Time cost of omitring shadow registers

Simulating vectored oaps

Time cost of non-vectored taps, Part 1

Time cost of non-vectored traps, Part 2

Analysis of register windows, Part |

Analysis of register windows, Part 2
Static analysis of register windows

Spill area analysis
Loadm/storern execution frequencies, Part |

Loadmy/storem execution frequencies, Part 2
Loadm/storem execution frequencies. Part 3

Time cost of omitting loadm & storem

Raw data for smtc analysis of store multiple
Inline cache performance evaluation, Part 1.

Inline cache performance evaluation, Part 2 ..

Inline cache performance evaluadon, Part 3

Inline cache performance evaluation, Part 4

Code sequences for various caches

Relative Performance of various caching schemes
Raw dara for static analysis of caching

Inline cache prologue
Space overhead for the various caching schemes

Net space impact of caching schemes
Frequency of jump and call insucdons

Cost of omitring fast shuffle
Evaluaton of parallel nilling, Part |

Evaluadon of parallel nilling, Part 2
Stadc analysis of parallel nilling

Dynamic frequency of remrn opgons, Part |
Dynamic frequency of return opdons. Part 2

Dynamic frequency of remurn opdons. Part 3
Dynamic frequency of tagged storc inszrucdons

Writearound for tagged stores

Time cost of omiming GS Tag Trap Store

Stadc frequency of tagged stores ...

Space cost of omitting @gged stores ...

Dynamic frequency of tagged store GS zaps

Time cost of eliminating pointer-to-register hardware

Time cost for eliminatung forwarding

Insorucdon vs. Data Fetches. Part 1

171
172
173
174
175
176
177
178
179
180
180
181
182
183
184
184
186
187
188
189
190
191
191
191
192
192
193
194
195
196
196
197
198
199
199
200
200
200
201
201
203
203
205

Table A.S5:
Table B.1:
Table B.2:
Table B.3:

Table B.4:
Table B.S:
Table B.6:
Tabie B.7:
Table B.8:
Table B.9:
Tabie B.10:
Table B.11:
Table B.12:
Table B.13:
Table B.14:
Table B.15:
Table B.16:

Instruction vs. Data Fetwches, Part 2
Table of contents for Appendix B
test3plus4 Micro-Benchmark Insgruction Mix
testPopStorelnstance Variable Micro-Benchmark Instructon Mix

estActivationRemrn Micro-Benchmark Insguction MixX ccccececcenennns
testClassOrganizer Macro-Benchmark Instruction MiX aewccccceeccrcccecec
testCompiler Macro-Benchmark Inszruction Mix
testDecompiler Macro-Benchmark Instruction Mix
testPrintDefiniion Macro-Benchmark Insguction Mix
testPrintHierarchy Macro-Benchmark Insoucton Mix
test3plus4 Micro-Benchmark Execution Time Profile

westActivationReturn Micro-Benchmark Execution Time Profile
testClassOrganizer Macro-Benchmark Execution Time Profile
testCompiler Macro-Benchmark Execution Time Profile ..ccceeeceeeceee.
estDecompiler Macro-Benchmark Executon Time Profileccouucneeee
westPrintDefinition Macro-Benchmark Execution Time Profile
testPrintHierarchy Macro-Benchmark Execution Time Profile

206
207
209

209
210
211
214
217
220

226
226
226
227
228

- 229

230

Chapter 1

Introduction

Moons and Junes and ferris wheels

the dizzy dancing way you feel.

As every fairy tale 'comes real

I've looked at SOAR that way. ..

I've looked at SOAR from both sides now,
from win and lose, and stll somehow

It's SOAR's soludons I recall.

I really don't know SOAR, at all.

**Both Sides Now'’,
(with apologies t) Joni Mitchell

Computer hardware technology has improved dmmaticaliy in the past decade. Com-
puters now cost less, run faster, and have more space for programs and data. This advance in
hardware has creawed a demand for larger and more complex software. Unfortunately,
software productivity has not kept pace with hardware technology, leading to a *‘software
crisis.”

The Smalltalk-80 system provides an environment that fosters rapid program develop-
ment. The system itself was developed on a large, high-speed, $100.000 personal computer.
and most commercially available microprocessors, that are much more widely available,

cannot run it even haif as fast. Regredfully, this lack of widely available high-performance

implementations has severely curtailed the system’s acceptance.

It may be possible to surmount this obstacle with a reduced instrucdon set computer
(RISC) architecture. Such processors have demonstrated excellent cost-performance for
more conventional systems. However. RISCs have an architectural style that runs counter ©
the conventional wisdom for exploratory programming environments. such as Smalltalk-80.

Instead of an instruction set that reflects the semandcs of the source language. a RISC

instruction set reflects the demands of fast instruction decoding and execution.

We have investigated whether a reduced insguction set computer can provide goed
performance for the Smailtalk-80 sysem. To this end we have analyzed the architecture of
and designed and analyzed the software algorithms for a reduced inszuction set microcom-
puter sysrem inmdcdl to run the Smalltalk-80 exploratory programming environment at full
speed. This system martches the performance of the fastest Smalltalk-30 impiementadons
date (1986), yet runs at slower clock and memory speeds. The machine is called SOAR, for
Smalltalk On A RISC. Our colleagues have built two VLSI impiementations of SOAR: an
NMOS chip (Figure 1.1) which has correctly run diagnostcs, and a CMOS chip. In addi-
don, two Muln"busm-compati’ble boards have been designed by others to host our chip in 2
Sun 68010 worksmtion [BID83, Bro84]. QOur ulimate goal is 1o demonstrate SOAR in a run-

ning Smalltalk-80 system.

We have also built Berkeley Smallalk (BS) [UnP83), 2 Smalltalk interpreter for the
MC68010 that runs on the Sun workstation. It has served as a test bed for many of our ideas
and as a source of information about the time-consuming operations required to support the

Smalltalk-80 sysem.

SOAR is a concoction of compiler technology, run-time software, architecture, and
VLSI circuit design. This dissertation focuses on SOAR's architecture and run-ame support

software: whar SOAR is, how it was designed, and why it works.

. The next chapter describes the previous work in this area. It smrts with a brief descrip-
ton of some exploratory programming eavironments (EPEs), with part:icﬁlar emphasis
on the Smalltalk-80 EPE. It contnues with a survey of architectures that supported
EPEs. Undl SOAR. these systems pushed the source-level semandcs into the

'

hardware, sacrificing either simplicity or performance. The last part of this chapter

covers previous reduced insguction set computers. which were all designed for

ar=l3TsT=T2y

"

L IR |

J N D o S S

Fe S

B

ALV

P g St

R

...n fAs% .P.U......l .m..n...v ,.b-- U

o

FEEXERIAN Lig 2Ll

i 8 ‘mm.nm-.m B & 0 N

e K :Q — .o'n) 1 .
... X .ﬂuﬂ .

.&EE ud.t ...R.m.r...n....u...zﬁ
NS . .

- NMOS SOAR chip. Courtesy of J. Pendleton and S. Kong.

s
1RX h-.m ..— i
* * .
oUE mm 3 f_
L]] =
OE 4 .lt...—. 1
1] - .
e R £ =~
3 ~
4y AR I .
YX(0F + . L
P Im _. Ws
) S48 : b hold
! L
' Vi LT L
]))] #

languages in the Algol family. SOAR is the first reduced insmrucrion ser architecture

for an exploratory programming eavironoment.

Chapter 3 enumerates the problems that Smalltalk-80 presents and the soludons in
SOAR's architecture. The cffectiveness of each solution is represented by the dme
cost of its omission, based on data gathered from simulations. Table 1.1 summarizes

these results.

Chapter 4 casts a critical eye on SOAR's architecture. Simulation resuits show that a
400 ns SOAR will match the performance of a 70 os ECL minicomputer. It will also
run at about the same speed as an MC68020 microprocessor with a 60 ns clock, 270 ns
memory, an on=chip .insu-ucdon cache, and cight times more transistors than SOAR.
To understand SOAR's speed, its architectural features are listed in order of effectve-
pess. from successes to failures. These results show that SOAR's language-specific

. features approximately double performancs.

Chapter S delves into object-oriented sworage managemeat — 3 considerable sourcs of

overhead and compiexity for many Smalltalk-80 systems. For SOAR, we have devised

1 SOAR's most significant features.
Smalltalk-80 performance challenge: ‘
SOAR feamre significance

Type Checking: :
tagged integers 26%
two-~tone insguctons 16%
Interpretation:
compiling to RISC inszucaons, ~100%
byte inservexwmact insgrucgons 33% ||
Procedure Calls: '
register windows 46%
in-line cache 33%
fast shuffie 11%
Object Oriented Storage Management:
direct pointers 20%
| generation scavenging 10% I

Generation Scavenging, a software algorithm that cuts automatc storage reclamation
overhead from 11% to 3%, reclaims circular stuctures, and provides an additonal
20% performance improvement by eliminating a level of indirection. In additon to
virtally eliminating the time cost of garbage collecton, this algorithm allows us

remove object-oriented addressing from the architecture.

Chapter 6 furnishes some proposals for coping with medium lifetime objects and an
analytical investigadon of them.

Finally, the concluding chapter presents the lessons we have learned from SOAR and

our recommendations for future designs.

The appendices supplement the performance evaluadon of SOAR’s architecture:
Appendix A conwmins a dewmiled analysis of each feature's impact on speed and

memory size, and Appendix B gives our raw performance data.

Chapter 2

Previous Work

2.1. Introduction

Exploratory pmgramining environments (EPE) are software systems that improve the
programming process by applying computing power (She83]. In an EPE, a programmer can
quickly produce either a small- to medium- size program of a prototype for a large system.
The key to this productivity is viewing programming as expioration. In other woérds, an
implementor explores aiternadve designs, making sweeping changes rapidly and immedi-
ately seeing their effects. Exploratory programming environments also help out the pro-
grammer by providing mechanisms to reuse code from libraries, and by integrating tools like
the editor, compiler, and debugger into the environment. (Wc would not count BASIC sys-

wms as EPEs.)

ECL énd Intcrli;p were two major early EPEs. ECL types were firstclass objects. and
the binding of a type to a variable could be deferred undil the first assignment to the variable
[Weg71, Weg74]. Functions could test the types of their arguments and act appropriately.
These features made it possible to write programs that could be reused with objects of differ-

ing types. although in a more cumbersome fashion than in current object-oriented langunages.

Interlisp, a dialect of LISP, facilitated programming by automatically correcting most
typing erors and by providing tools to examine the structure of large programs
[Tei69, Tei72). When personal workstatons and bitmapped graphics became available,
Teitelman was inspired by an early Smalltalk system to combine Interlisp with a
user-interface that exploited muldple windows and the mouse [Tei79). Subsequent

Smalltalk systems have incorporated some of the programming aids in Interlisp.

The Cedar programming eavironment was also designed to enhance programming pro-
- ducgvity, but bas taken a different w@ck from Smallalk and Interlisp
[DeT80, Tei84, Tei83, SZHBS, Rové4]. Smallmlk and Interlisp minimize the length of pro-
grams and reduce the Gme to change and test them. This reductdon in information from the
programmer, coupled with the elimination of a link-editing or binding phase, places many
demands op the execution of the program, which leads to the issues we address in this
dissermton. In conmast, the Cedar system relies oo 2 sgongly-typed language which makes
data types and module interfaces explicit. These features enhance the comprehensibility and
maintainability of large systems and allow the compiler to generate more efficient code. It
would seem that of the ideas presented herein, only the storage management algorithms

would be important with respect to an implementadon of Ceder.

This research centers on one EPE in particular, the Smalltalk-30 system. Although
other EPEs share some of its fatun:s. we will hcnccford: concenmate on Smallralk. Overa -
decade ago, a small band of adventurers at Xerox PARC set out to explon: how computa-
tional resources could help people master the programming process. The Smalltalk-80 sys-
wem [GoR83, Goi8l, Gol84, Kra83] is their latest achievement. We have taken a simple
architecture and added a few features, resulting in a simple machine whose improved

cost-performance could make the Smallraik-80 system availabie to many more people.

2.1.1. Object-Oriented Programming

The Smalltalk sysiems introduced object-orientsd programming. which provides
abstactions for sgucturing programs and reduces the code that must be wrnen.
Object-oriented programming in Smalltalk-80 has three important aspects:
. First there are no rype declararions in Smalltalk-80. Instead informadon is kept at run-

dme to resolve a variabie's type. A variable may mke on many different types.

. Second, a Smallmlk-80 procedure call uses the rype of the first argument 10 choose its
targer rourine. The first parameter of every subroutine has an associated type, and the
subroutines are grouped accordingly. When a Smalltalk-80 system performs a call, it
finds the routine associated with the type of the call’s first argument. As mentioned
above,thctypcisnothxowninadvanee,somisscarch must occur at runtime. This
overloaded call also makes it easier to reuse an old routine with a new type. When the
old routine uses the new type, operations defined on that type will be chosen at
ran-time. It is not even necessary to recompile the old routine. In other words, new

types can be added gracefully to the system.

. Finally, rypes can be defined as extensions of other types. To define a new type that is
similar to an old one, the programmer can give the differences, and the new type will

inherit the format and functions from the old one.

The Smalltalk-80 implementation has two more features that help its programmers.
For one thing, it runs on a computer dcdicated to one uscr.' Freedom from competing
demands lets the system provide uniform, fast response time in order to enhance produc-
tivity. The other feamre is automatic storage reclamation. Programmers of early
list-manipulation systems found it cumbersome to free unused storage explicitly. Instead,
" they found ways to let the run-time support software reclaim unused storage automadcally
[McC60, Col60]. Automatic reclamation provided a very important benefit eliminatng
errors caused by releasing storage too early. Despite its advantages, the high overhead asso-
ciated with automatic storage reclamation prevented widespread accepance. This barrier

bas been removed by faster algorithms.

2.1.2. Shortening the Edit-Compile-Test-Debug Cycle

In addidon to reducing editng dme. the Smalltalk-80 system reduces the dme for the

compile. test. and debug phases of sofrware construction. Conventional systems require a

lot of time to rebuild a large program after a change. The Smalltalk-80 system uses incre-
_ mental compiladon and dynamic linking to integrate changes rapidly. |
. Incremenzal compilarion. To reduce the work needed to incorporate 2 small textual
change, a system must avoid recompiling the whole program. Information in symbol
tables or parse trees must be maintained and reused for the porton that did not change.
Most systems supply separate compiladon on a module-by-module basis. Recompila-
tion frequently mkes ten seconds to 2 minute. The Smalltalk-80 system provides a
much finer grain of incremental compiladon and much shorwer response tmes. Magpie
is a similar EPE for PASCAL [DMS84]. It compiles after every keysuoke. In this

system, there is rarely a perceptble delay to rebuild a program.

° Dynan'u'c linking. In a system that does all linking before execution sart, the pro-
grammer must wait a while longer after recompiling a moduie while the system relinks
the module to the program's other modules. The result is that a simpie change w0 2
large program takes a long tme. ln systems like Sn;alItzIk-BO. modules are not stag-
cally bound together. Insiead, they are connected as needed, dynamically. Dynamic
linking is essental to maintain short response time for changing large programs.

. Source-level debugging. Although most programmers conszuct their programs ina
high-level language, early systems forced them to debug their programs in terms of
machine inscructions and machine data types. Modern systems make debugging easier
by presenting breakpoints, errors, and variables in terms of the HLL source code
instead of the object code. For instance, they show where execudon is suspended in
the source code and can execute a line at a tme. In such syswems, the programmer ¢an
debug much faster because he has less work to do. EPEs go even further. When
debugging, the programmer can oy the effect of a new swwement by merely typing it
in. The Smalltalk-80 sysiem will instandy compile and execute the statement in the

context of the suspended program. When the error is located. it can be corrected

10

without terminating the suspended program. It can be restarted, or gingle-st:ppcd from

the point of the error. With a system like Smalltalk-80, one can debug a program into

existence.

The Smalltalk-so.systcm represents a compromise between compiled and interpreted
systems. Programmers can produce more software when they can incorporate and test
changes faster and when they can take advantage of a powerful debugger. Most such sys-
tems are interpreters, saving much state and interpredng it at runtime. Of course, the exma
work involved imposes severe performance penaities. To run the fastest, a program must do
the least work; compilers attempt to determine as much as possibie about a program’s
bebavior statically leaving a minimum of work for runtime. The Smalltaik-80 system is a
happy medium. Enough information is compiled out to make good performance possibie,

but enough is left in to make it easier to program.

2.13. Graphics.

The Smalltakk-80 system takes advantage of bitmap display hardware and poindng
devices to support multiple windows, selecting by poindng, pop-up menus, even diagrams of
program stwucture [ShM83]. This follows the adage that ‘*A picture is worth a thousand

words.”’

2.1.4. Rapid Response

High productivity demands consistent. split-second response time [Tha81]. So, most

EPEs we know of use dedicated personal, high-performance minicomputers.

2.1.5. The Bad News

Why do exploratory computing environments remain largely experimental? They
suffer from poor cost-performance. For example. each of the EPEs in Table 2.1 requires a

powerful and cosdy minicomputer for each programmer. The research in this dissertation is

11

an amempt to reduce the hardware cost for the Smalltalk-80 exploratory programming

environment.

22. The Smailtalk-80 Exploratory Programming Environment

In 1972 Alan Kay stared a group at Xerox PARC to explore how computational
resources could help people master the programming process. The Smalltalk-80 syswem
[GoR83, Gol8 1. Gol84, Kra83] is the culmination of their efforts. A dedicated. powerful per-
sonal computer hosts this innovative sysiem. Multiple on-screen windows, pop-up menus,
and pointing distinguish Smalltalk-80"s user interface from older systems. The Smalltalk-80
language has replaced operatng on variables with sending messages to objecs,. and its
run-tme system automatically reclaims storage and finds space to allocate new objects.

‘Smallralk-80's greatest saengths and its worst weaknesses result from the same design
decision, dynamic binding of types to variables and subroutines to call insouctons.
L 'Smallélk-SO's designers have eliminated type declaradonﬁ frdm the language, thereby m;.k-
ing it easier to write and modify programs.

On the other hand, computing a variable's type or a call’s destunation on-the-fly slows
down the system, or increases the cost f.or a machine with adequate performance. The only
computer that has demonstrated universally acceptable Smalltaik-80 performance is the
Xerox Dorado [LPM81, Pie83, Deu83a). This 70 ns ECL minicomputer costs $120,000 (in
1985) and dissipates over 2 kilowatts, requiring an air-conditioned room. Smallmlk-80 sys-

®ms that run on more conventional, cheaper computers, including our own Berkeley

| Table 2.1: Some exgloratorv grozramming environmernts.

| Environment __ Language Developed at Host CPU Cost
InterLisp-D InterLisp Xerox PARC Dorado $120k
Cedar Cedar-Mesa Xerox PARC Dorado $120k -
Smalltalk-80 Smalltalk-80 Xerox PARC Dorado $120k |

| Lisp Machine ZetaLisp Symbolics Symbolics 3600 $80k

12

Smalltalk, suffer lackluster performance. For example, Table 2.2 shows the performance of
the official Smalltalk-80 compiler benchmark for several implementadons, including a simu-

lation of our machine. (See Secton 4.1 for a description of the beachmarks.)

2.3. Reducing the Cost of EPEs with Software Only

How can we make Exploratory Programming Environments more cost effecdve and
more generally available? One way is with clever software on a cheap, conventional
machine. L. Peter Deutsch and Alan Schiffman have built such 2 Smallralk-80 system for
10 Mhz Motorola 68010 microprocessor [DeS84), a conventional (and successful) general
purpose microprocessor. The 68010°s microcoded control unit implements a 32-bit,
register-based instruction set that runs at memory speed. Jumps pay a penalty to refill the
instruction pipeline, and calls must contend with register saving and restoring overhead. A
large flat address space helps support systems like Smallralk and Lisp that require large, sin-

gle address spaces.

Although the fastest 68010 inszructon is 6 Gmes slower than a Dorado microinsaruc-

tion, the Deursch-Schiffman system runs Smalltalk-80 only three times slower.* The

Table 2.2: Performance of Smalltalk-80 Compiler Benchmark.

" Machine Dorado ; Dolphin | VAX-11/780 68010 ' SOAR
‘ (Xerox) - (Xerox) (DEC) (Xerox) - (UCB)
! Year of introducton 1978 - 1978 1978 1984 1985
* Technology ECL TTL TTL NMOS NMGQOS
i Cycle dme 67 ns 180 ns 200 os 400 ns 400 ns
' Vmﬂ machxne microcode assembler -
. implementanon
- Object pointer size 16 bits 32 bits
' Reladve Performance: Dorado = 100%. larger is faster

| (100%) 11% | 8% | 40% 103%

* The sysiem has now been ported to the MC58020. in 2 SUN 3 workstation. This processor runs at 16.67 Mhz. with
wait states {SSS35]. The fastest possible mstruction runs in three clock cycles. or 180 as. The memory system can deliver 2
32-bit word in 270 ns. So, the cycle time for a simple insyuction would seem t0 range from 180 ns to 270 as. depending on
whether the instruction is cached. On this machine, the Xerox 68000 Smalltalk sysiem can execute the commpiler benchmark
80% as fast as a Dorado.

13

efficiency improvement over the Dorado arises from the following software techniques:

. Dynamic ransiarion. Instead of being interpreted. Smalltalk-80 subroudnes are
manslated into 68010 imstructions when first called. The wanslawed versions are

directly executed and then cached for later use.

. In-line caching. Each procedure cail requires a table lookup to find its @rget subrou-
tine. Even though a call couid invoke many possible margets. there is a simpie way t©
predict the target of any given call. 95% of the tme, a call will invoke the same rou-
tine it did the last time [DAmb83). Thus, after performing a lookup for a call instruc-
tion, the Deutsch-Schiffman system overwrites the call to the lookup routine with a
call to the trget routne. The next tme the call is executed, conwrol bypasses the
lookup routine and goes directly to the previous target. Of course, the other 5% of the
ﬁme, the target has changed. So, each subroutine starts with a check to cause another
lookup if necessary. In this manner, the mrgess for sub.roudne calls are cached in the

instruction stream, eliminadng costdy lookups.

. Volarile contexzs. The Smalltalk-80 language specifies that its actvation records can
be manipulated like any other objects in the sysem. Although this simplifies the
debugger, it creares more work for calls and remrns and thus burts system perfor-
mance. For example, when saving the program counter, a call must first convert it
from a pointer into a tagged integer offset. Deutsch and Schiffman have minimized the
overhead by providing muitiple’ representanons for actvaton records and automatc
conversion between them. In this manner, they. defer expensive conversions as long as
possible. Since very few actvation records are ever cxamined by the debugger. most
of these conversions are never performed at all, significandy reducing subrougne call

overhead.

14

. Deutsch-Bobrow deferred reference-counting. In additon to activaton records, a
Smalltalk-80 system allocates a new object every 80 instructions on average [Ung84].
This heavy burden can make automatc storage reclamation a system bottleneck. In
this system, Deutsch-Bobrow deferred reference-counting [DeB76] reduces storage

reclamation overhead to 9% of the total CPU time.

2.4. Hardware for Exploratory Programming Environments

In addition to innovative software, special-purpose hardware may further reduce the
cost of an EPE. In the past, researchers have closely coupled the source language semantcs
to the hardware-supported operations and data types. Although memoq-efﬁcicnt, this
approach has usually resulted in increased cost and poor performance. This section exam-
ines five computers: the RICE computer, which introduced tags. the Burroughs 5700,
Scheme-79, and Symbolics 3600 machines designed for specific high level languages, and

the Katana-32, another microprocessor for the Smalltalk-80 system.

2.4.1. The RICE Computer

The R-2 computer developed at Rice University was a tagged architecture with sub-

script address caiculation and bounds-checking hardware [Feu72}:

. A wide, 62-bit word size allowed an array’s length and initial index to accompany its

base address.

e - A rich variety of numeric types, control words, and address words were encoded in the

R-2's four tag bits. (See Table 2.3.)

The R-2 design simplified its compilers, provided a measure of protection for the operatng
system, and reduced the amount of data needed by the debugger. Althougti it did not max-
imize speed, this design fostered sharing among many users in a common address space. To

our knowledge, the RICE computer was the first to add tags to daa.

15

2 4 il 4 14 14 | 20

Length Base
Imdal Index

Present in Core
Indirect tags
Resticied access
Direct tags

Software tags (trace bits)
'‘Write lockout
Parity
Figure 2.1: R-2 address word forma:. The leagth and index of the first element accompany
the base address.

‘ Tabie 23: R-2 Data tags.

Tag Meaning

0000 mixed or ungged

000! (unassigned)

0010 (unassigned)

0011 (unassigned)

0100 real, single precision

0101 54-bit binary suing or integer
0110 doubie precision

0l11 compiex

1000 undefined for normal operatons
1001 paradon word

1010 reladve contmol word

1011 absolute conol word

1100 reladve address, unchained
1101 absolute address, unchained
1110 relatve address. chained

1111 absolute address, chained

2.42. The Burroughs B5700 and B6700 Computers

In the sixdes and early seventes, the Burroughs Corporaton inoduced the first com-
mercial computers dedicated to a high-level-language. their 5‘000 and 6000 series [Org73].
A tagged. stack-oriented architecture was chosen to host an Algol superset. Memory was at

a premium in those days, and its segmented virtual memory system enabled the BS700

16

operate with only 32,000 words éf main memory. Paradoxically, adding 3 mg bits o each
45-bit ufemory word saved memory by reducing the number of words needed. For example,
tags on dam reduced the size of instructions by permitring a single add opcode to serve all
types of numbers. Tags also helped with managing the stack and accessing dam sguctures.
Table 2.4 illustrates the 6700's data formats. A substantial quantity of hardware in these
machines was devoted to supporting stack-based, block structured computation. The 5700

and 6700 proved that comniercial computers could be designed for a high level language.

2.43. Scheme-79
Scheme—79, an early high-level language microprocessor, directly executed a dialect
of Lisp [SHI81].
K Each 32-bit word conwined one bit to aid garbage collection, seven bits of type and
opcode information, and a 24-bit pointer. (See Figure 2.2.)
. An innovative and interesting design. Scheme’79 pushed Lisp abszractions to a low

level to attain the power of interpreted execudon at lower cost. For example, many

opcodes were needed to maintin the correspondence with source-level Lisp

Table 2.4: Burroughs 6700 data formats.
Class of Operand
ETJe of Word ‘I'ag
numbers
single-precision 000
double-precision (2 words) 010
descriptor words
segment 011
dana 101
conrrol words
indirect reference word 001
stuffed indirect reference word 001
mark stack control word 011
return control word 011
top-of-stack control word 011
| program contol word 111

17

GC type darum
' i .
1 7 f 24 car
1. 7 '. 24 cdr
: i

GC type darum

Figure 22: Scheme-79 da:wa formar. Two of these words make up a list node.

primitves. (Sec Table 2.5.) As a result, microcode. microsubroudnes, and panocode
were used to fit the conrol circuizry on—chip. Scheme'79 bad good performance com-
pared to other interpreters, but not when compared to compiled Lisp. ‘This is shown in
Table 2.6, from [Pon83a). These dam suggest that a machine that is specialized for a

particular system must also exploit compilation to amain high performance.

Instead of a linear sequence of instuctions, Scheme—79 used a Lisp binary tree for pro-
gram conrrol, each node consisting of twoe words. The first word was the instucton

and the second was a pointer to the pext inszruction. The insguction format is the same

Table 2.5: Some Scheme-79 opcodes.

APPLY
CAR

LOCAL

PROCEDURE
SEQUENCE

Table 2.6: Performance of the Scheme benchmark.
VAX 11/780 Franz interpreter ! 2 min
Scheme chip (projected) l 1 min
VAX 11/780 Franz, complied (normal funcall) | 8.7 sec
VAX 11/780 Franz, compiled (local funcall) | 3 sec

18

as the datm format shown above. This non-sequential format prohibits instruction pre-

fewching and so reduces the speed of macro-insuctons.

. All dan, including the stack contents. were kept in memory as lists. In addidon the
memory reference overhead, this approach wasted dme to reclaim list space for tem-
porary values. Even with a microcoded link-reversal mark-and-sweep garbage collec-
tor [ScW67, Sta80], Sussman estimated that Scheme would spend 80% of its time in

the storage allocator.

The Scheme-79 chip was fabricated in the MPC-79 Mult-University Muldproject
Chip-Set at A = 2.5 p (5 microa line width). It was 7500 u long and 5900 u wide. One of
the fabricated chips ran small programs and reclaimed storage. Fibonacci(20) took 100 mil-
lion cycles (@ 1600 as) with a 64KW memory that was half-full. Over two-thirds of those
cycles were speat collecting garbage. Scheme-81 is a successor to Scheme-79 with more
aggressive silicon technology (A = 1.5, 12,0001 w x 12,000 h) [BGHS82]. Its designers est-
mate Scheme-81 would run five times faster than Scheme-79. This would sdll run the

Scheme benchmark more slowly than compiled Franz Lisp on a VAX 11/780.

(2.2 32]
darta type immediate oumber
CDR code
26 28]
daca type ;I»oimer
CDR code

Figure 2.3: 3600 dara formars. There are two formats — oge for oumbers and another for
pointers.

19

2.4.4. The Symbolics 3600 Lisp Machine

The Symbolics 3600 is 2 TTL personal minicomputer for Lisp [Roa83, Moo85]. It has’

good performance, substantial complexity, and high cost — $80,000 for each programmer.

. Each word contains 36 bits: a two bit field for list compression (CDR-coding), a type
field of two bits for numbers or six bits for pointers, and either a 32-bit data field ora
28-bit pointer field. This provides a rich selection of hardware-supported types. Tabie

2.7 lists some of the 34 types implemented by the 3600’s hardware and firmware.

. Each 3600 instruction is 17 bits long, with nine bits of opcode and eight for the
operand/address. There are seven instruction formats. Table 2.8 gives a sampling of

the opcodes.

. Some of the 3600's instructions perform complex operadons. Instrucdons such as
multiply, divide, and store-array-leader may take many cycles to complete. These
Insgucdons must alsc_: bandle many different dam-types. These factors combine to

require almost a million bits of control store, about twice that of a VAX-11/780.

° Tags in the 3600 minimize the cost of dynamic rypiog. In conventonal systems, a

datum's type must be detcrmined before it is used. A 3600 insgucdon assumes a

! Table 2.7: Some Symbolics 3600 data types.
P ARRAY
BIGNUM
CLOSURE
COMPILED CODE
g COMPLEX NUMBER
COROUTINE
EXTENDED FLOATING POINT NUMBER
FLAVOR-INSTANCE
FLOAT
LEXICAL CLOSURE !
LIST
Nn_ |
RATIONAL NUMBER
SYMBOL

!
3
i
i
!

Table 2.8: Some 3600 opcodes.

Cawegory Examples

Data movement push-immed
pop-n-save
movem-local

Instance variable push-instance-variable

movem-instance-variable

instance-ref

Function calling

call-0-stack
call-n-return
funcall-1-stack

Binding and function entry

take-n-args

rake-n-optional-args-rest

Function return

return-stack
recurn-multiple

Quick funcdon call and reurn

PoPi

Branch

branch
branch-tue-else-pop

Cawxch

catch-open-stack
unwind-protect-open

Predicates

arrayp

add-stack
subtract-stack
muldply-stack
quodent-stack
remainder-stack
rot-stack

List and symbol

car

cdr

rplaca

set

symeval
property-ceil-location
package-cell-locadon

Array

array-leader
store-array-leader

Subprimiave

halt

% multiply-double
9odata-type

Yopointer
%stack-group-switch
Fogc-tag-read

20

21

likely type and proceeds, while simultaneously verifying that assumpton against the
wg. If the assumption is false, the 3600 aborts the current microcode sequence and
s@rts executing microcode for the required operadon. This saves time for operagons
on the most common types.

. An area-based automarc storage reclamation algorithm reclaims space by incremen-
mlly copying surviving objects. The Symbolics machine has paged virtual memory
and its paging hardware aids storage reclamadon by recording which pages of per-
manent objects conmin references to temporary objects. Area-based copying reclama-

tion is very efficient. (See the chapter on automatic storage reclamadon.)

° The 3600’s microcycle time varies berween 180 and 250 ns, making it one of the
fastest commercially available personal computers for an exploratory programmung

environment [Pon83b].

Although providing good performance, the 3600’s $80,000 price tag reflectsthe cost of seek-

ing hardware solutions to system probiems.

2.4.5. Katana-32

Midway through the SOAR project, we learned of the Kamna-32, also known as
Sword-32, an independent attempt by a group of researchers at Tokyo Universiry, to build 2
fast VLSI Smalltalk-80 microcomputer [SKA84, Suz84]. Unlike our RISC approach. they
have contnued with the radidonal complex instrucdon set (CISC) style of computer archi-
ecture. Table 2.9 compares the Kawna and SOAR designs. Katana's large microstore. van-
able length bytecoded instructions. and 160 registers. suggest that it is basically 2 Dorado on
a chip. Table 2.10 shows the benchmark used for their performance predictons, with Table

2.11 showing the resulting object code for both machines.

The designers of Katana-32 are relying on aggressive VLSI technology for their perfor-

mance projections. Their chip will have five dmes more transistors than SOAR, and have

Table 2.9: Comgarison of SOAR and Katana-32.
T SOAR _ Kamma-32 .

architecture RISC ! bytwecode interpreter |
number of insauctions 20 : ~46 é
instruction formats 3 i =9 i
instructon length l1word | 1-3bytes i
data path width 32bis | 32 bits !
microstore none ! 4Kw x 45 bits i
registers 80 ' 160 z
cycle time 510nsi 125nst {

—]

number of ransistors || 35,700 ___~200,000
testAcrivationR erurn micro-benchmari*

code length 72 bytes : 21 bytes
avg cycles per recursion || 141 ;49 ' i

[Table 2.10: The testActivationReturn benchmark.
["Smalltalk-30 Pidgin C

| recur: tl recur(tl) { |
i t] = 0 ifTrue:{"seif]. if (t1 = Q) retum |
| self recur: tl - 1. recur(tl - 1) {
i *self recur: tl - 1 recur(tl - 1) ;
i } '

* This one mucro-benchmark is not a fair companison. However, as far as we know, it is the oaly Kauna performance
figure avaiable.

+ 12.5 with a better compiler.

4 $10 ns 15 the measured cycle ime of working NMOS SOAR chips. including 110 as for the unexpected jump and call
delay [Pen8 Sb. PenBSaj. (See Section 3.4.3.) 125 ns 15 the projecied cycle ume for Kawana [SuzB4).

Tabie 2.11: TestActivationReturn object code.

g j

I SOAR Machine Code cycles
| %oloade (r_receiver)classOffset, ré 2
%load (r_returnAddress)0, 3 2
| Jowapl ne r3, r6 /* cache miss */ 1
! ski eqr_tl, 0 1-2
! jump? +27 1
| remw r_remurnAddress. | 2
| sub r_tl, 1,6 1
| %addt 16, 0, 5 /* synthesized move */t 1t
| %oadd r_self, 0, r6 /* synthesized move */ 1
i call recur 1
. <selector>
| sub rti, 1,1 1
| %addt 16, 0, r5 /™ synthesized move */1 1t
| Joadd r_self, 0, r6 /* synthesized move */ 1
: call recur 1
| %add 16, 0, r_retVal 1
| %otrap2 geur_retval, CONTEXT_TAG)
| remw r_reeurnAddress, 1 2
| length : 72 bytes
. min tme 9 cycles
; max tme 19 cycles
| Kamna-32 Machine Code [SKA84, Suz84] cycles |
| pushTemp: 0 3
‘ pushConstant 0 2
| sead: = 3
jumpFalse: 10 3-6
i remrnSelf 4
| pushSelf 2
. pushTemp: 0 3
i pushConsanc 1 2
| sead: - 4
i send: recur: 21
i pop 1
i pushSelf 2
- pushTemp: 0 3
- pushConstmant 1 2
* send: - 4
- send: recur: 21
. reurnTop 4
¢ length 21 bytes
| min ome 15 cycles
| max dme 83 cycles
. average ume 49 cycles

+ These nsructions could be efimnated by 8 beter compiler.

24

twice as many register on the datapath, yet a cycle will only take one third the dme. We

believe that could SOAR could also run considerably faster if implemented in that technoi-

ogy-

2.5. Reduced Instruction Set Computer (RISC) Architecture

The machines described above are more elaborate and expensive than conventional
computers. We need a machine that has high performance at low cost. One recent style of
computer architecture, the reduced insgucdon set computer (RISC), claims to meet those
demands for traditional programming systems [PaD80, PaS81,PaS82). In this style there is

a much closer coupling between architecture and implementation.
To design a RISC,

« start with a fast and simple register-based instruction set similar microcode in other
machines, then

. id;ndfy the tim.e-consuming operations in typical programs. and finally -'

o mke the bardware saved by simplifying instuction execution and dedicate it to speeding
up the time consuming operatons.

RISC designs conmrast with traditional high-level language computers that rely on long

microcode sequences to provide complex funcrions **in hardware.’’ Instead of microcode,

RISC systems rely on software to provide complicated operations. Of course, software con-

sumes memory, but we would gladly add memory to gain speed. The rest of this secton

touches on several impormnt RISCs: IBM’s 801, Berkeley’s RISC I and Il. and Stanford’s

MIPS. These reduced insouction set computers all point in the same direction, more perfor-

mance with less hardware.

2.5.1. IBM-801

The IBM-801 computer pioneered many RISC concepts [Rad82], including a simpie
Joad/store instuction set and the coupling of architecture design with compiler technology.
A sophisticated graph-coloring algorithm enabied its coxﬁpi]cr to optimize register allocanon
over a fairly small register file [Cha82). Constucted in ECL, the 801 amained excellent per-
formance. Although this work was not published immediawly, it pioneered the benefits of a

reduced insguczon set

252 RISClandIl

The RISC | and II microprocessor chips were designed and built at Berkeley to yield
high performance for the C/Unix eavironmeat [KSP83]. Figures 2.4 and 2.5 are photo-

graphs of the RISC 1 and II, respectvely.

. True to their names, these reduced insguctdon set computers have about two dozen
insgructons in their inszucton -scs, and are distinguished by the simplicity and com-
pactmess of their control circuiry — 5% to 10% of chip area. This conmasts with 50%
for more typical designs. The minimal and simpie control circuitry shortens the design

time as well as insrucdon cycle time.

. These sysiems were designed for existung compiler technology. In this wchnology,'
subroutne calls are slow because they save and restore registers. RISC I and I speed
up subroudne calls with hardware thar eliminates this source of overhead. To accom-
plish this, they spend the area saved by simplifying the congol circuiry on a large

on-chip register file, organized as overlapping windows.

In additon to providing good performance. reduced instruction set computers are easier ©
design. RISC I met the goal of functional correcmess on first silicon, and RISC II ran at full
speed on first silicon, outperforming superminicomputers using the same compiler technol-

ogy. A more complex architecture would have jeopardized these goals.

26

u N e - P _anﬂ..__ﬂbrﬁe.:ueﬁzﬁwﬁ%n.w

il
-.)_ ’ ."......—.. 3 ,.q.qun._w_ m Fasas
q. #M"-“M .ﬂ..”...“_z
B 114 2 i
e 1“ i _ 1449 1
ZHE R & ' !
- ’_-r_.. i 4] L]
- ..l“bd... i -.HM 4 ‘
—f “!- Jdt Bl ®]
- i] EE Lty
—fEpmtal sl .
_ i A -l L)
“Ll el L)
- o o et 1
> 3 _Ln.) y 4n :
i m.l.c_.. utl M .
53] m)
4 i B h
m s 4l L {
r] P
11 ! .2 31
1
{ ¥ 3
1hk \] 1
‘W, !
- | 31,3
I:] 1)
! ¥ #8007 X

R B AL LR (e e L 13 M HETERN . RLIDME)4 N

b e wene

g__m___m_m_m___g_m___s_ _amm%%____sg___ %% o

z ARl e

.‘-:. ¢ -:.: w8 Iy v

rnDﬂDﬂDnDEuEuEunDnﬁ_EuﬂD

Figure 2.4: Microphorograph of RISC 1.

A IO Yy

A | By T e e T Lo

a -
5"‘"'—"1'*""-*-1!.5' e €7 0L,
A, SIS A e L

“u

333558885580 Ess eI EsEE!

W ARERS

S

¥} 13 T4 4]
| I llﬂ

Figure 25: Microphotograph of RISC II. Quly 5% of the chip — the upper nght corner —
is dedicated to0 conmol.

‘28

2.53. MIPS

MIPS smnds for Microprocessor without Interlocked Pipelined Stages
[HIP$3, HJB82]. It refines reduced instruction set architecture by eliminating pipeline inter-
lock hardware. Instead, the MIPS project has developed effective algorithms to schedule
instructions for the pipeline satically. The results are promising:

. Instructon dependencies are handled with a one-stage delayed branch. (The instruc-
tion following a branch is always executed.) The MIPS morganiicr fills 70% of the
slots after delayed branch insguctions. Since these branches account for 20% of all
instructions, and since MIPS has one delay slot per branch instruction, there are 20
delay slots for every 100 instructons. Filling 70% of them leaves only 6 wasted slots
per 100 instrﬁctions, which is only 6% slower than the (probably unrealizaﬁle)
optimum.

. Data dependencies are also handled by reordering instructions. The performance of
code generated this way is within 3% of the code that could be run with hardwz;re pipe-
line interiocks.

. Another finding of the MIPS project is that a word-addressed machine can run most
programs faster than one with byte addressing. The problem with byte addressing is
that the extra circuitry required can slow down word references.

. MIPS demonstrates impressive performance: a simulated MIPS CPU with a 4MHz
clock runs benchmarks about five times faster than a 8Mhz 68010.

The MIPS project blends simpler control circuitry with more sophisticated optimizing com-

piler technology to achieve more performance with less hardware.

29

2.6. Summary

The Smalltalk-80 syswm provides a programming environment that boosts 3
programmer’s productdviry. It does so by exploitng the object metaphor to shoren the
edit-compile-wst-debug cycie. However Smalltalk-30, along with other exploratory pro-

gramming environmeats, runs slowly on conventonal hardware.

We have designed a reduced instuction set computer. and added feamres to it to sup-

port Smalltalk. In doing so, we have followed in the footsteps of other architecture projects:

. The RICE computer pioneered tags, as a means to congrol da manipulations.

o The Burroughs B5700 and B6700 computers suppored Algol with tagged data,
descriptors, and 2 milored insTucton set.

. Scheme-79 was the first attempt to marry Mead-Conway VLSI design with an interpre-
tve language.

. The Symbcl>lics‘3'6>00 Lisp Machine is a commercially successful computer dzdicéted to
a specific exploratory programming environment.

. IBM-80] revived interest in simple computers and highly opdmizing compilers for
non-floatdng point applicatious.

. RISC I and II at Berkeley taught us much about instrucdon sets, regisier windows, and
data path design.

. The MIPS machine at Stanford encouraged us to forego byte addressing.

SOAR combines a simple, RISC architecrure, with enough tagging to support the com-
mon cases. In the following chapters. we describe SOAR's architecture, assess the worth of
each architectural feature, explain important algorithms in its system sofrware, and propose

designs for future systems.

30

Chapter 3

The SOAR Architecture

" 3.1. Introduction

This chapter describes the SOAR architecture, contrasting SOAR with its predecessor.
RISC IL. Most innovations in SOAR compensate for sources of overhead in Smalltaik-80
systems: run-time type checking, virtual machine interpretation, elaborate and frequent pro-
cedure calls, and maintaining many small, dynamic data structures. We conclude with an
overview of the implementation, detailed in Pendleton’s doctoral dissertation [Pen85b]. A
summary of this chapter has been previously published [UBF84]. A more deniled architec-
wural dc;cription appears in [SKF83].

| Two figures-of-merit accompany each feature: execurion time. and memory space. We
gauge a feamre's significance by examining what would happen if we left it out. Thus an
omission time cost of 50% means that a job requiring 100 cycles on full SOAR would ke
100 + 50, or 150 cycles without the feamre. Likewise an omission space cost of 33% indi-
cates that the whole Smalltaik-80 system would grow by 33%, from 1.5 mB to 2.0 mB.
With these metrics, we can find the combined impact of removing two independent feamures
simply by adding the omission costs for each. These dam are the results of simulations and
assume no radical compiler changes. (The derivatdon of the numbers is explained in the next

chapter and in Appendix A.)

3.2. Type Checking

The FORTRAN smtement '] = J + K*’ denotes integer additon. and can be performed
with a single add instructon. But. since Smalltalk-80 has no type declaradons, J and K may

hold values of any type, from booleans to B-mees. Thus. every time a Smalltalk-80 system

31

evaluates **] + K, it must first check the types and then perform the appropriate operadon.
. Measurements of conventiopal Smalltalk-80 systems show that over 30% of the **+’" opera-
tions do the simplest possible operation, integer addition [Bla83c). Since a type check takes
at least as long as an add instructon, most Smalltalk-80 syswems waste 2 lot of dme checking

types for integer arithmedc.

32.1. Tags Trap Bad Guesses

The purpose of data tags in SOAR is © improve performance, not to discover program
erTors as in the R-2 and B6700. SOAR's instruction set follows other Smalltalk-80 impie-
mentadons in having only two types of tagged dam: integers and pointers [GoR83]. In
SOAR. the high-order bit of each word distinguishes these two types. For arithmedc and
comparison operatons, SOAR assumes that the operands are integers and begins the opera-
tion immediately, simulmneously checking the @gs w© confirm the guess. Most often
(>92%, Table A.4) both operands are integers and the correct result is available after one
cycle. If not, SOAR aborts the operation and taps to routines that carry out the appropriate
computaton for the dama rypes. Figure 3.1 shows the SOAR tgs. This feamre is very
important; without it, SOAR would run 26% slower and require 15% more memory (Tables
A.7 and A.8). SOAR is the only Smalltalk-80 system that overiaps these operatons. Every
other Smalltalk-80 system incurs a tme penalty for serial tag checking. It would be very
difficult for an optimizing compiler eliminate these checks in the absence of type declara-

tons.

32.2. Conditional Skip Instructions

Although condition codes have been widely used to decouple a test from a branch, they
are awkward for a Smallmlk system. Instead of condidon codes, SOAR has
compare-and-skip insgrucdons that quickly perform integer comparisons. Remember that

Smallmik has dynamic type binding. Thus, in SOAR, **i < j'* must be computed with an

32

o] PiiiiEi T iaubals omplement imeger
formar of integer data

gem | ¢ ¢ o obor b i b Dkt ittt

1 : st oiotos it 28-bit word address :

m..................
format of pointer data

Figure 3.1: SOAR wgged dawa rypes. SOAR supports two data types, 31-bit signed in-

tegers and 28-bit pointers. Pointers include a generation tag (as explained in Section 35D
SOAR words couid have contained 32 bits of data plus one bit of tag for a total of 33 bits.
The scarcity of 33-bit tape drives, disk drives, and memory boards led us to shorten our
words to a toral of 32 bits including the tag (31 bits of data).

instruction that checks the tags of i and j as it compares them. If the conditon holds, there is
a one cycle penaity for skipping an insguction. If the condidon fails, the inszruction follow-
ing the skip is executed. This is usually a jump. What if one of the operands is not an
integer? A trap to the appropriate comparison software will be taken. In a conditon code
archnecmrc, this software (e.g. the floating point compare routine) \ypuld have to set the
condition codes to reflect the result. In SOAR, all it must do is reurn to the next insguction
or the one after that, a simpier and faster operadon.

Separatng a conditional jump into 2 conditional skip and unconditional jump does not
impose a significant performance penalty. SOAR jump instructions contain the absolute
address of the target inscruction. Because no address computation is required, SOAR elim-
inates the instruction prefewch penalty for jumps (see Fast Shuffle in Secton 3.4). Thus, a
condidonal branch can be simulated in two cycles, one for the skip and one for the jump.
The only way to speed up conditional branches would be to add a ome cycie
compare-and-branch insguction to SOAR. Such an instructon would require the addidon
of a separate adder to compute the branch mrget address in parallel with the comparison
operation. Worse, it would only speed up SOAR by 3%, which would not jusafy the addi-

tonal hardware. (See Section A.2.2.)

33

32.3. Two-Tone Instructions

A ragged architecture that lacks microcode must include instrucdons that manipulate
and inspect tags. Because the Smalltalk system already relies on the compiler to ensure sys-
tem integrity, we can allow the compiler to mix insguctons that manipulate ®gs with
insouctions that are constrained by tags. Each SOAR instruction contains a bit that either
enables or disables mg checking. Unmgged mode (indicaed by 2 % in the assembly
language) mms off ail tag checking and operates on raw 32-bit dara. In unwagged mode the
tag bits arc treated as dam, and the completw insruction set can be used to manipulate this
dara. Untagged instructions also allow programs written in convendonal languages such as
C and Pascal to run on SOAR. Instead of providing two versions of cach instrucdon, we
could have defined 2 mode bit in the PSW. This would bave been very expensive, increasing

execution time by 16% and memory usage by 19% (Tables A.11 and A.12).

- 32.4. Tagged Immediate Operands

SOAR'’s immediate format has been designed to aﬁcommoda:e tagged dam. The
high-order four bits of the 12-bit field becomes the ag bits of the operand, the low order
seven bits of the immediate field form the low order seven bits of the operand, and the eighth
bit is sign-extended to fill in the bits in the middle (see Figure 3.2). Thus, any mgged value
between -128 and 127 can be represented as shown in Table 3.1. This saves time by allow-
ing the Smalltalk-80 ‘soﬁwam 1o encode some impormnt tagged values as immediate
operands. Of course, there is no such thing as a free lunch. Reserving four tag bits severely
‘currails the range of addresses and offsets from -2048~2047 to -128—-127. Howcve?, this
representation optimizes the more frequent case and improves performance by 10% (Table

A.lS).

12-bit encoded immediate operand

32-bit expanded immediate operand

Figure 3.2: SOAR’s immediate format. A 12-bit immediate format accommodates tagged
data by propagatng the four most-significant-bits and sign-extending the next one.

“Table 3.1: Useful immediate values.
Immediate Field ! Expands to Represents

from to i from to from 0
32-bit Integers

F80 FFF A FFFFFF80 FFFFEFFF | -128 -1

000 07F | 00000000 00000Q7F 0 127
31-bir Integers

780 7FF | TFFFFr80 JFFFFFFF | -128 -1

000 07F : 00000000 0000007F 0 127

Pointers to Frequently Referenced Objects :
(includes nil, true, and false) '
BOO B7F | B0000000 BOOCOO7F
Values for Tesning Tags of Pointers

800 | 80000000 assistant generation
500 i 90000000 associate generation
A00 l A0000000 full generation
BOO ; B0000000 emeritus generaton
FOO ? FO000000 activation record

3.3. Interpretation

The Smalltalk-80 system is defined by a smck-oriented virrual machine that is based on
the Dorado Smalltalk-80 impiementation [Deu83a]. Each insruction is comprised of one
three bytes and generally corresponds to a token of the source program. These insgructons

are usually called bytecodes. Bytecodes have the following advantages:

« The simple correspondence berween source and object code simplifies the compiler and

debugger.

35

+ Smalltalk can be mansported w a new machine by wrinung only the virrual machine emulia-

tor.
This approach bas drawbacks too:

» Decoding such dense insoructions takes either substantial hardware or substandal dme.
For example, the Dorado Instruction Fetch Unit consumes 20% of the CPU [Pie83], and in

Berkeley Smalllk, decoding a simple bytwecode akes twice as long as executing it.

« Some of the high-level inszuctions require many microcycles to execute. These multcy-

cle instructions must be sequenced by a dedicated control unit.

33.1. Reduced Instruction Set

Following the reduced insguction set approach, we abandoned the Smalltalk virmal
machine instruction set, and designed the SOAR inszuction set from scratch to minimize the
timc.and hardware needed to decode and execute insgucgons. SOAR inszructons therefore
resemble microinsguctons. Althéugh such an insguctdon set results in larger object cod§.
we believe that the cost of S00 KB of additional main memory is offset by an approximate
doubling in speed.

Each SOAR instruction occupies a 32-bit word, and most insgucdons take one cycle.
The only excepdons are loads, stores, and rewrns, which take two cycles. The uniform
length and duraton of instructons simplify instruction preferch. Figure 3.3 shows instruc-

don formats.

SOAR departs from RISC II by omiming byte-addressing. Instead, separate insouc-
dons insert or exmact bytes from words. Unlike systems for other languages such as C,
Smallralk-80 systems do not support scalar data types that occupy 2 single byte. (The sys-
tem sofrwarc uses bytes to pack fields into the object header.) Processors with
byte-addressing incur a Gme penalty due to the alignment logic. ‘Even if no penalry

occurred, adding byte addressing would only improve performance by 7% (Table A.17). On

36

¢calls and jumps
J[oFIe[T L1 1 rsbidmerdaiiniotae
other insguctions

store instuction

expanded immediate operand

gl |11 veenmmod [1i000[0 el

Figure 3.3: SOAR's insrrucdon formars. All instructions are tagged as integers to simplify
storage reclamation. Jumps and calls coptain bit to cnable process switches, a ooe bit op-
code, and the absolute address of the target. Other insguctons contain a bit 1o enable tag
‘checking (%), a six-bit opcode, the destunaton register (or condition specificagou for skips
and traps), a source register, and cither another source register or an immediate field. Store
insuctions need two source registers plus an immediate value. In order to avoid delays
caused by muitiplexing the source register decoders, the store instruction format moves the
high-order bits of the immediate operand to the desdnation register field.

the other hand, the byte insert and exmact insguctons are critical—without them SOAR

would be 33% slower.

SOAR follows RISC 1I in using register-based expression evaluadon instead of the
stack model defined by the Smalltalk Virrual Machine. Table 3.2 shows our instuction set.
The loadc and sl insguctions have been cloned from load and add. respectively. Loadc is

identical to load, but is used by the compiler only to load the type (class) of an object into rb.

| Table 3.2: SOAR Instruction Set.

’ opcode Instrucuon Operands Cycles Operatdon
<28:23>,
10~-17 [%)ref{w][i][r] rs, coost 2 pc « rs + const
Options as part of requrn:
[%] Disables return address
tag checking (pon-LIFO ar.)
{w] Change register window
(i} Enable Interrupts
{n] Imgalize r8, ..., rl3
50 [%]add rs. s2, rd 1 rders+s2
52 [%]sub rs, s2, rd 1 ders-s2
44 [%lxor rs, 52, rd 1 rd - r3 201 52
46 [%Jand 1S, s2, rd 1 rd s & 52
47 [%]or rs, s2, rd 1 dersis?
51 [%)siT rs, rd 1 rd « 13 + 13 (Left shift)
40 [%]stl rs, rd 1 rd ¢ r3 shift right logical 1 bit
42 [%]sma rs, rd 1 rd « r3 shift right arithmetic | bit
56 [%linsert rs, 2, rd 1 rd e 03
byt $2<1:0> of rd = r3<7:0>
54 [%]exmact 1S, s2, rd 1 rd<7:0> « byte s2<1:0> of r=:
rd<31:8> 0
34 [%]load (rs)s2, rd 2 rd = M[r3 + 52)
35 loadet (rs)s2. rd 2 rd & M(rs » 52}
36 %loadm : (rs)s2, rd 2-9 te-rs-s2 3% d
Repeat R{x] «= Mt};
2e=x-1 te=t=52
uptl x < 0.
30 [%]stwore rs2, (rs)const 2 M(rs « const] « rs2
32 Festorem rs2, (rs)const 2-9 ! e~ £ — cOnst, X « $2:
Repeat M(t] «~ R{x];
2ex-1; te=t-cons
untlx < 0.
20 [%]skp cond rs, s2 2 if cond(rs. s2) pc « pc + 2
21-27 [%]uap cond rs, 52 1-3 if cond(rs, s2) r7 « pc,
pc « Trap
04 nop do nothing
05 (internal rap) soe [Pen8Sh]
06 (internal skip) see [Pea8Sh]
60—67 (internal loadi) ' see [Pen85b)
70—-77 (internal storei) see [Pen8Sb]
00-37 [%]call addr 1 7« pe;
pc ¢ addr, cwp —cwp -]
| 40=77 [%]jump addr 1 pc & addr

+ Separatz opcode needed for rap handler.

38

If the object is a tagged integer, its type must be supplied by a tap handler. Dedicadng an
‘opcode to this function saves tme in Lﬁc trap handler. Likewise the sl inszruction aliows a
tag tap to be treated differently according to whether additon or shifting was intended.
Neither of these cloned instructions is very important. The loadc inszucdon realizes oanly a
0.5% performance improvement (Tabie A.18). We believe that the sll insgruction would not
improve performance much either. Since the compiler used for these smdies did not go ©

the troubie to generate i, we could not measure the frequency of this insguctdon.

Two glaring omissions from SOAR are a barrel shifter for single-cycle, multple-bit
shifts and support for integer multiplication and division. Although mulidple-bit shifts may
be important for driving the bimmapped display, they would speed up normal Smalltalk-80
programs by less than 0.4% (Table A.19). Likewise, instantaneous multiplicadon and divi-

sion would shave only 3% off of our benchmark times (Table A.20).

One drzwback of SOAR’s reduced instruction set is the increased ime for compilaton.
Bush has written a converter in Smallmlk that translates bytecodes o SOAR insguctons
[Bus85]. He reports that, running on a Dorado, the mean time to convert a subroudne is 50

ms., and that **Subjectdvely, the converer does not ingude on interactive system use. . .’

The extra time needed to compile to SOAR instructions does Dot seem 10 pose 3 probiem.

More significantly, SOAR's simple instrucdon set enlarges compiled code. Experi-
ence with Hilfinger’s Slapdash SOAR compiler suggests that on the average, onc bytecode
. results in one 32-bit SOAR instucton. Thus. ignoring data objects. object headers, and
literal data within subroudnes, there is a fourfold code expansion. However. bytwecodes con-
st only about one eighth of a 32-bit Smalltalk-80 image, and the net increase is only 0.5
MB over the original 1 MB. This is not an exorbimnt price to pay given curreat memory

echnology.

39

Other compiled Smalltalk-80 sysiems also pay this price. The Xerox 68010 syst=m
devotes 0.25 MB to a cache of compiled code [DeS84). Deutsch reports that one bytcode
results in six bytes of MC68010 instructions, which is worse than the factor of 4 for SOAR
[Deu8S]. This means that if it were to compile all of the code, as the SOAR system does,

the Xerox 68010 system would need 0.7 MB (Table 3.3).

Finally, our decision to abandon bytecodes will force us to rewrite the Smalltalk-80
debugger. Lee has designed a debugger for SOAR and has built a prototype in Berkeley
Smalltalk [Lee84]. He exploited the hardware organization of SOAR in the design of the

debugger to add a conditional breakpoint facility and increase execution speed during

debugging.

33.2. SOAR Interrupts and Traps

Interrupts and waps play a larger role in SOAR than in RISC IL. Unlike C, Smallualk
grew in an environment with exwnsive, sysupm;speciﬁc microcode. Since SOAR has no
microcode, unusual situations must be met with a trap to a software handler. For example,
as described above, other Smalltalk implementations check the types of arithmetic operands
sequentiaily, before performing the operaton. SOAR checks in parallel, wapping if the
operands are not simple integers. These account for about haif of the maps (Table A.25).

How valuable are conditional trap insguctions? They save time and space by replacing

a two-cycle two-instruction sequence with one single<cycle instuction. For instance, the

prologue in each subroutine uses 2 conditional trap instructon that verifies the type of its

Table 33: Space Penalty of Compilation.

l-=Sysr=rn execuuon model .code expansion rano ___memory required*
Berkeley Smallmalk bytecode interpreter 1 1.0MB
Xerox 68010 cache of compiled code 6 1.3 MB
SOAR : compiles everything 4 1.5MB
hypothetdical 68010 compiles everything -6 1.7 MB

* excluding ransient objects.

first argument. This saves a cycle over a skip and branch in the common case. Trap inszuc-
tions also support type checking in low-level primitive routines, and tag checking for
automatdic storage reclamation. However, if the zap instruction traps. it takes more tme ©
handle the map than the jump from a skip-and-jump sequence. In fact, trap instructions
account for 10% of the traps (Table A.25). Despite ail these uses, the savings from trap
instructions does not add up to much; SOAR would run only 4% slower and require only 2%
more memory without them (Tabies A.23 and A.24). The fact that Tap instructons save lit-
te time results more from the low frequency of trap instructions than from the penalty asso-
ciated with taking the traps.

The remaining source of traps also arises in RISC II. A call or reurn that exceeds the
on-chip register window capacity must trap to a routine to save or restore a set of registers.

This accounts for the remaining 40% of the traps (Table A.25).

To reduce the cost of trapping, SOAR exploits shadow registers that catch the
operands of the tnﬁping instruction. These are inexpensive in single-chip processors; they |
are just two more registers on the da busses pear the ALU. This feature is insignificant;
without it, SOAR would run only 0.04% slower and require no more memory (Table A.26).
Other features that simplify wap handling include simple inszuctions and uniform instruc-
ton size.

SOAR does not support nested interrupts or waps because they complicate the architec-
wre. The interrupt-enabie bit in the PSW (Figure 3.4) is reset upon an interrupt or wap.
Each tap handler first caprures any necessary machine suate. then re-enables interrupts.

- Most handlers need their own register window to hold this sate. The normal method to
obwmin a new register window would be to execute a call instruction bug, since a call can
cause a trap (see above), the trap handler must simulate the call (and trap). After getng a
new window and saving the machine state. the handler can re-enable interrupts (and opaon-

ally surrender its register window) with a form of the reurn insoucton.

4]

Int. Enablen :—Soﬁwm Iot
|
shadow o

; shadow
opc,;ode i ‘

d:al reg

1

Figure 3.4: SOAR Program Stamus Word. The SOAR program stams word cootains a dest-
parion register shadow field, an opcode shadow field, and emable bis for external and

software interTupts.

Whez an interrupt or Trap occurs, the insguction that is executng is aboreed before it

can change any registers. The address of the aborted instruction is saved in r7. O inter-

rupts are disabled by clearing the interrupt enable bit in the PSW. This freezes the shadow

registers, which normaily track the ALU inputs. A vector is consgucted from the trap base

register, the opcode of the aborted instruction, and the reason for the trap. Finally, control i1s

cansferred to the vectored location. Table 3.4 lists the various categories of waps, with

interrupt priority listed from highest to lowest. .

Many instructions can trap for several reasons at once. To simplify the interface to the

twap handler code, the reasons are prioritized. After handling a trap, the offending inszruc-

tion is typically reexecuted to spring any remaining Taps. Table 3.5 shows which reasons

Table 3.4: SOAR traps and interrugts.

Narne Vector _ PriClass _ Explanarion
Illegal Opcode (ILL) 0 A l<31>=1 or]<28:23> = unused
Tag Trap (TT) 1. B ' See [SKFBS].
Software Interrupt (SWT) 2 B ¢ 1€30:29> = 01 and psw<S> = |
Window Overflow (WO) 3 C i 1w call and cwp<6:4> - | = swp<6:4>
W'md_ow Underflow (WU) 4 C ¢] = ret and cwp<6:4> + | = swp<6:4>
Data Page Fault (DPF) 5 C . page fault pin asserted dunng

. data memory access
Trap Insaucdon (TT) 6 C . 1= trap insgruction & condition is que
Generadon Scavenging (GS) 7 D Sec [SKF3S].
Insucton Page Fault (IPF) 8 E page fault pin asserted during

l-fewch of pext instrucdon

lnpur/Ourput (10) 9 F VO interrupt pio asserted dunog

l-fetch of pext 1nstrucnoa

| .

42

apply to which inszuctions. If instead of vectoring. SOAR put the reason for the trap in a

special register the system would be only 3% slower (Table A.28).

When SOAR does trap, it expends two extra cycles to flush the pipeline. A one-cycle
trap, while feasible, would have significantly degraded the cycle dme [Pen85b). Since the
extra trap cycle increased the number of cycles by less than one percent, the net result was a

faster system.

3.4. Fast Calls

The Smalltalk-80 system stresses program modularity, but omits macros because they
would make it harder to incorporate changes quickly. If the user changed a macro, the sys-
t=m would have to recompile all of the modules that instantated it. This would make it
more difficult to maintin the split-second response time that is crucial to highly productive
programming. Inswad, Smalltalk-80 programs are broken up into many small subroutines.
Consequently, Smalltalk-80 systems execute a higher percentage of .call insructions than

most other systems. In additon to being frequent, calls are also expensive because:
o To aid program debugging, Smalltalk-80 initializes all local variables on each call.

« A consequence of Smalltalk-80’s power is that the destination of a call is recomputed

from the type of the first argument. with a @ble lookup each time the call is executed.

Table 3.5: Trag reasons by instruction categorv.

A B C D E
Call ILL SWI1 wO [PF
Jump oL SWI1 IPF
Remurn | ILL wUuU GS [PF
ALU ILL TT IPF
Skip ILL TT IPF
Trap ILL TT T1 IPF
Shift ILL TT IPF
Load ILL TT DPF IPF
Store oL TT DPF GS IPF
Byte ILL IPF

43

The result is that many Smallmlk implemenmdons (including Berkeley Smalltalk and
Dorado Smalltalk) spend about haif of their tme on calls and remurns [Deu8l]. SOAR

reduces the Smallaalk call/retumn overhead in several ways.

3.4.1. Muitiple Overlapping On-Chip Register Windows

SOAR. like RISC 1, opdmizes subroutne calls and remms by providing a large,
on-chip register file. The registers are divided up into overlapping windows. Instead of sav-
ing or restoring registers, calls or reurns merely switch windows (Figure 3.5). Compared o
C language subroutines, the shorter Smallralk subroutines pass fewer operands and use fewer
local variables, and so need fewer registers. For this reason. each SOAR register window
has eight registers instead of 12 for RISC L Figures 3.6 and 3.7 show the register organiza-
ton of SOAR. In addition to 56 more registers, the inclusion of register windows results in
the addidon of a register 10 select the current window (the Current Window Pointer, or cwp),
a rcgisr:r" to detect overflows by recording the last saved window (Saved Window Pointer, or
swp), more elaborate register decoders, and trapping logic [Pen85b]. Despite the cost of all
the added hardware, Smalltaik-80's predilection for procedure calls makes this feature very
imporant The cost of saving and restoring a conventional register file wouid siow the

machine down by 46%, even with load- and store-multiple insgucdons (Table A29).

Physical Registers Logical Registers

R31-A R31-B R31-C
Globals
24-A R24-B R24-C
R23-A R23-B R23-C
Specials
R16-A R16-B RI16-C
5 -
o
O .
RIS-A
HIGH-A
R8-A
R7-A RI15-B
LOW-A/HIGH-B
RO-A R8-B
R7-8 RIS-C
LOW-B/IHIGH-C
RO-8 R8-C
R7-C
LOowW-C
RO-C -

Figure 3.6: SOAR’s register windows. Like RISC 1, SOAR has many physical sets of re-

gisters that map to the logical registers seea by each subroutne.

GLOBAL

SPECIAL

HIGH

LOwW

Figure 3.7: Logical view of register file. The HIGHs hold incoming parameters and local
variables. The LOWs are for outgoing arguments. The SPECIALSs include the PSW and a
register that always conuins zero. The GLOBALs are for system software such as trap

handlers.

R31
R24
R23

R16
R1S

R8
R7

RO

45

" When the number of activations on the stack exceeds the on-<chip register capaciry,
SOAR traps to a sofrware routne that saves the contents of a set of registers in memory.
Unlike RISC II. SOAR has load- and store-multiple insouctons to speed register saving and
restoring. These instructions can transfer eight registers in nine cycles (one instucdon fewh
and eight dara accesses). Without them, the system would need eight individual instrucdons
that would consume sixteen cycles (eight instucton fewhes plus cight dam accesses).
Load- and store-muitiple are aiso helpful for garbage collection, copying dam. and opera-
Gons on bit-mapped images. These insguctions have te ability to operaz on
non-contiguous data; the increment between memory references is given by the SOURCE2
field. In reospect, these multi-cycle insguctons added some complexiry to the design, and
the bepefits — 3% of execution tme and 2% of memory — may not be worth the costs

(Tables A.33 and A34).

3.42. Caching Call Targets In Line

»A.notbcr way SOAR reduces subrc;udne overhead is by decreasing the tme taken ©
find the wmrget of a call. Once computed, the @rget’s address is cached in the insoucuon
sqeam for subsequent use, as suggested by Schiffman and Deutsch [DeS84). Figures 3.8
and 3.9 illustrate this idea. This in-line caching exacts a price for its ime savings; SOAR
must support non-recn&ant code. Since all Smalltalk processes share the same address space,
process switches must be avoided in sectons of code that modify or use the cached data
One approach would be to implement semaphores in sofrware. ‘This would be too expensive
because each Smalltalk call eXecutes a short non-reentrant section of code. The approach we

followed was to add a bit © each instruction to disable process switches.

In Smalltalk, calls and jumps are so frequent that the virtual machine can defer a pro-
cess switch untl executng the next call or jump insgucdon. The SOAR call and jump

instructons inciude a bit to specify when it is safe to switch processes [Deu82b]. This bit

46

enables a sofrware interrupr. Whea the operaung system desires a process switch, it sets a
bit in the Program Sams Word requesting the software interrupt and resumes execution of
the same process. The next time a safe jump or call is executed, the software interrupt

ransfers control to the operating system which can then safely suspend the process.

Although complicated, in-line caching pays handsome rewards. The conventional way
o cache call targets is a hash wble. But the overhead for probing into a hash table would
slow SOAR by 33% (Table A.37). The hardware penalty for in-line caching is the software
wap mechanism. If we were forced to omit this, we could use an indirect in-line cache. The
informations could be cached in a per-process data area instead of the call insguctdon. This

would slow SOAR down by 7% (Table A.37). Even with in-line caching, SOAR sill spends

BEFORE

B 4

}

“orm” | 1000 -

=]
=}
o

entry table for Strings

9 1000

M« aSuiné
call lookup

. bR

‘°print

T 000000000

Q00

calling code string print routine

Figure 3.8: Caching the warget address in the instruction stream. In this exampie. the print
routine is called with an argument that is a sting. (The argument is passed in r6.) The first
time the call instructon is executed. the call coatains the address of a lookup routne and the
word after the call contains a pointer to the name *‘print”’ The lookup routine follows the
pointers to the entry wble for strings. and finds the enay for **print.’” It then overwrites the
call inscruction with a call to that routine and replaces the word after the call with the type
of the argument (string).

47

AFTER

Sting

e
g 1000 check type

16 — aSwing | of argument |
call 1000
ldpﬁm"

00000000

000

calling code string print routne
Figure 39: Caching the targer address in the instruction stream. The next time the call is
executed, control goes directly to the suing print rougne. A prologue checks that the
currem argument’s type matches the cootents of the word foilowing the call instrucuon.
This word cootains the type that the argument had the previpus ame the call was executed.
If the rypes match, coantol falls through to the string print routine, otherwise another tabie
lookup is needed.

11% of its time in cache probes and another 12% handling misses. Further research into

computing the target of the call could yield substandal savings.

3.43. Fast Shuffle: One Cycle Calls and Jumps

Finally. the call insguction itself has been designed for rapid execudon. ln most archi-
tectures, a call requires an address compuwdon (typically the addidon of an offset to a base
register). This forces the call o @ke an exma cycle because its arget cannot be prefetched.
In SOAR. the call inscruction contains the absolute address of its destination. Furthermore, a
call (or jump) can be recognized easily by examining only one bit. This makes it possible ©
detect these insoucdons m time to send the incoming dam back to the memory as an address.
This way, a call or jump on SOAR executes at full speed requiring only one cycle. This

“*Fast Shuffle’” mechanism combines on—chip logic to detect calls and jumps with and an

48

off<chip latch to store the incoming instruction and send it back to memory. Figure 3.10
illustrates the Fast Shuffle logic. Though not spectacular, its performance impact is

significant. SOAR would use 11% more cycles without the Fast Shuffle.

Pendleton has uncovered a serious flaw in our realization of the Fast Shuffle [Pen835a].
When a jump or call inszruction follows a skip, the skip condition must be evaluated before
the chip can signal a Fast Shuffle to the memory system. If the condition holds, the memory
system must use the PC as the address of the next instruction; if the conditon fails the
memory system must use the target field from the jump or call instrucdon. In designing the
instruction set, we encoded the condition field (of skip and wap) so tighty that a PLA was
required to decode the condition and the output of the ALU. This PLA adds 110 ns to the
time needed to compute the Fast Shuffie control signal during a skip instuction. Although
the NMOS SOAR chips can execute an insguction in 400 ns, the memory system can 0ot
sart the next instruction fetch for another 100 ns. reducing the effective cycle time to about
510 ps. This overhead could be e!i@cd by fo@gohg the fast Shuffle and using delayed
branches and calls. Alternatively, the inscrucdon set could be redesigned with a condition
field that could be decoded more quickly. This problem would have been found much ear-

lier if we had simulated the whole system instead of the processor.

3.4.4. The Return Instruction: Parallel Register Initialization

The other half of the team is the reurn instruction. In SOAR. the return insorucuon
performs one compuisory and three optional funcdons, specified by the low-order three
opcode bits. The compulsory functon is a tansfer of conool. which means that the
bare-bones return instruction can be used as an indirect jump. If mg checking is enabled. the
g of the rerurn address is checked. This provides a means 0 intercept rewms when the
activation record must be saved. The first optional function enables interrupts and yields a

““rerurn from interrupt’’ instucton. The second optuonal function increments the cwp

49

SOAR chip
. o« ,daa imout e
L instlatch ¢ >€ >
A 4
I<30>
external
v laxch
address out m
fast shuffle cootol

>

Figure 3.10: Fast Shuffle logic. Whea 2 call or jump is fetched from memory, the next in-
struction is prefetched based on the external address latch instead of the PC.

(changing register windows) for remurning from a normal call.

.

The Smalltalk-80 language requires local variables to be inidalizéd to nil, so the last
optional funcdon for SOAR's remurn insqucton prepares registers 8 through 13 for a future
call by writing nil into them Instead of commencing each subroutine with an instructon
sequence to write nil into each register that will contain a local vaniabie, SOAR exploits
VLSI circuimry to initialize the registers in parallel. Although it would be more staightfor-
ward for the call instruction to perform this initalizadon. this would slow down the call.
Instead. we have placed this functonality in the reurn insgrucdon. Since the remun insguc-
don must wait an extra cycle w fewh its @rget insgucdon, the ‘‘nilling’” does not slow the
insucton down. This feature eliminates the extra tme required to inidalize the registers
after every call. Ironically, Smalltalk-80 subroutines use so few temporary variables — less
than one on the average — ;hat this feature has linle favorable impact The system would

only run 4.3% slower and use 1% more memory without it

50

3.5. Object-Oriented Storage Management

Smalltalk-80 data structures are called objects. SOAR objects average 14 words in
length and live for about 500 instructions. Smailtaik-80 objects are smaller and more vola-
tle than data suctures in most other exploratory programming environments. Smalltalk-80

systems face three challenges in managing storage for objects:

o Automatic storage reclamation — On average, 12 words of datm are freed and must be

reclaimed per 100 Smalltalk-80 virmal machine bytecodes executed.
e Virtual memory — All objects must be in the same address space.

o Object-relative addressing — Although offsets into objects are known at compile-tume,
base addresses are not. Code must be compiled to address fields relagve to dynamically

determined base addresses.

3.5.1. Automatic Storage Reclamation

SOAR suppom Gmraﬁon Scavenging to reclaim storage efficiently without requiring
costly indirection or reference counting (see Section 5.8). This algorithm is based on the
observation that most objects either die young or live forever. Thus, objects are placed into
two generations and only new objects are reclaimed. A beter method of storage reclamaton
has a strong impact on performance; most other a]éorit.hms would squander 10% to 15% of
SOAR’s time on automatic storage reclamadon instead of Generation Scavenging's 3%.
(see Chapter 5). Hence, without Generation Scavenging SOAR would take 4% w0 15% more

cycles to run the benchmarks.

Traditional sofrware and microcode impiementatons of object-oriented systems rely
on an object address table (Figure 3.11). Each field of an object contains an index into this
table. and the table engy contins the address of each object. The level of indirection sup-
plied by the table provides support for compacton. As explained in Chapter 5. Generation

Scavenging provides compaction for free. permirting SOAR to functon without an object

51

able (Figure 3.12). Without this algorithm, the extra work to follow the indirect pointers

- through the object mble wouid slow SOAR down by 20% (Secdon 5.9.4).

Generation Scavenging requires that a list be updated whenever a pointer to 2 new
object is stored in an old object When designing SOAR, we thought that stores would be
frequent enough to warrant hardware support for this check. Thus SOAR tags each pointer
with the generation of the object that it points to. While computing the memory address. the

store insTuction compares the generation @g of the dam being stored with the generaton tag

BEFORE
Object Table
Object 1 Object 2
oot address
wable index e address wabie index
table index Sl address wbie index
wable index | S address @ble index
wabie index Ny address — wble index
&l address

Figure 3.11: Indirect addressing. In traditonal Smalltalk-80 systems, each pointer is really
a tabie index. The table entry contains the target’s reference count and memory address.
This indirection required previous Smalltaik-80 systems to dedicate base registers to fre-
quenty accessed objects. The overhead to update these registers slowed each procedure
call and return.

AFTER
.+ Object 1 Object 2
address > address
address address
address address
address , address

Figure 3.12: Direcr addressing. A SOAR pointer cootain the virmal address of the target
object. This is the fastest way to follow pointers.

52

of the memory address (Figure 3.13). For 96% of the stores, list update is unnecessary and
_ the store completes without rrapping (Table A.52). Once again we rely on tags to confirm
the normal case and trap in the unusual case. Surprisingly, tagged stores are so infrequent
that hardware support saves only 1% of the time and 3% of memory over an explicit check

(Tables A.49 and A.51). This feamre does not seem tw worth the effort.

ves

value<31:28>
=1111

value<31:28>

<
addr<31:28>

rT\ -
fimsh store
store update

Figure 3.13: Generarion wag checking in parallel with a store operanon. The first check (=
1111) is for contexts and is explained in Secton 3.5.2.

53

3.52. Activation Records as Objects

Smalltalk-80 actvaton records pose a special problem. Since each call needs a new
activation record, they must be easy w create. Because local variables reside in them, at
least the current acdvadon record must be easy O access. For these reasons,
high—performancc systems for other languagss allocate activation records on a swmck, and
keep the active activation record in registers. The problem for Smalltalk-80 systems arises
because the language specifies that the format and lifeime of an actvadon record shall be
the same as any other object. In other words, a Smalltalk-80 acdvaton record must be
stored in memory with a standard object header. Worse, an activation record cannot be deal-

located until the last reference to it is deszroyed — even after conmrol returns from it

SOAR caches activadon records in an on-chip register file for speed. backed with an
overflow stack in memory. Pointers to activaton records are rare, SO SOAR’s hardware
merely detects these and causes a Tap at the appropriate ame. The first oap occurs when 2
rcfcn;ncc 1o an actvaton record is cm‘tcd. Pointers to acdvaton records have all the tag
bits set. When such a word is stored into memory, the @g check causes a Tap. At the ume
of the trap, the high order bit of the activation record’s return address is set Setting this bit
indicates that the actvation record may outive its parent. Since these records are normally
allocated and freed last-in-first-out (LIFO), we label such anomalously long-lived acdvadon
records as non-LIFO. The return instgucdon then traps if the return address has the high

order bit set — this lets software save this acdvadon record in the heap.

What if a program references an activaton record while it is sdll on the stack? First.
SOAR leaves small gaps between actvadon records when they are stored in main memory.
These gaps arc initalized with object headers to permit the stored acdvadon records t©
behave as objects. Second, SOAR's hardware provides pointer-to-register addressing. Each
load and store checks if the target address resides in the on=chip register file. If so. the chip

substmites a register access for a memory access. This mechanism makes it possible w©

access on-chip activation records as if they were in memory.

Since designing SOAR. we have come up with 3 software soludon to the
pointer-to-register pmblgm. This scheme eliminates the comparitor and complicated control
logic incurring only a 3% performance penalty (Table AS3). The key idea is to generate
illegal addresses for the unpredicmble but uncommon activadon record references, and
guarantee that the common and predictably referenced activaton records reside in memory

when needed (Section A5.3).

3.53. Virtual Memory

The SOAR system will include disk storage and thus supports virtual memory. Sec-
tion 5.4 explains our choice of demand paging over segmentation. SOAR therefore includes
a pin to request a page fault interrupt. The uniform size and lack of side-effects of SOAR’s

instructions simplify page fault recovery.

3.6. Implementation

In dhis secdqn. we give a brief description of SOAR’s implementation and microarchi-
wmcrure. This is covered in more detail in Pendleton’s dissermdon [Pen85b]. The casual
reader may want to skip this section; those interested in demils may want to read on and
Jearn about the data path required for SOAR’s instruction set. Although simpler than many
other computers, SOAR's impiementation is substandally more complex than its predeces-

sor, RISC II.

3.6.1. Special Registers

SOAR has eight special-purpose registers that simplify the insguction set and help
with interrupt handling (Tables 3.6 and 3.7). For instance, a register that always conains
zero permits the assembler to synthesize moves with add instructions. Making the program

counter available as a register provides relative addressing without adding another address-

55

ing mode. However, supporting unrestricted use of these registers would complicate SOAR.

" Three restrictions apply to these registers:

. A result written to a special regisier does not take effect undl the end of the next

insoructon. The SOAR microengine cannot forward special registers.

° A special register cannot appear as the destination of a load instuction.

« A special register cannot appear in the SOURCE2 fieid of an instrucdon.

rlé

Tablie 3.6: SOAR s

- Birs

ecial registers.

| Contents

i Word

FZETO | F2e70 . 31:0 Always = 0. For synthesizing instuctoos.
program . P< rl?7 27:0 address of pext For instruction fetching,
counter ipstruction PC-relative addressing.
l and case statement indirect
: jumap (ret). Should oot
: be modified directly. bw
i oaly with jump. call, or
i reffinw].
Shadow A | sha r19 ¢ 31:0 copy of A input The shadow registers Tack
? : o ALU or shifter insouctions executed when
Shadow B | shb ri8 ., 310 copy of B input ipteTrupts are eaabled and
i : 1o ALU or shifter freeze when interrupts are
; : disabled. Thus. a
i ' trap-handler can save
' time by reading operaad
; from the shadow registers
instead of decoding the
offending instruction.
Trap th r2l 31:10 | base address of
Base the interrupt and
trap vector el
Saved SWp r20 27:4 memory address of For pointer-to-regster
Window object header of logic. window~overflow
Pointer the most recently and -underflow trap logic.
saved register windOW | 3pd computing address of
Current cwp r22 6:4 index of on-chip current activation record.
Window fegasier set serving Cwp controis local register
Pointer as high window decoders.
Processor . psw r23 15:0 see beiow
Seaartus

¢

| Table 3.7: Processor Status Word fields.
Name Bits : Conteats Notes
shadow 4:0 | destination register For trap handlers.
destination field (bits 22:18)

of last instruction
executed with

interrupts enabled
software 5 When this bit is on For process switching.
interrupt and a call or jump
enabie . is executed with
: bit 29 on, SOAR takes
* a software gap.
interrupt 6 . Enables /O interrupts Disabied in interrupt
enable . and shadow registers. handlers
i 7 - inert Unused.
shadow 15:8 : opcode field (bits 30:23) | For wap handlers and
opcode ' of last instruction trap vector logic.
| executed with interrupts | CAVEAT: SOAR does ot
| enabled support pestod traps.
| Traps taken when
K interrupes are disabled
: will not vector to
% proper opcode.

3.62. The SOAR Datapath

56

The SOAR datapath includes a register file, ALU (and byte shifter), the program

counter, memory address register, and saved window pointer. When reading, the busses are

first precharged. then two separate registers may be read onto the busses. For wridng, a sin-

gle register is addressed, and the data are driven differentially on both busses (Figure 3.14).

3.6.3. Pipelining in SOAR

The cycle dme of SOAR has been matched to memory cycle dme. Each insguction is

one word long and most can execute in one cycle. While one insucdon executes. the next

is prefewhed from memory (Figure 3.15). As described above, jumps and calls require no

address computaton and therefore cause no delay in the pipeline. Condidonal branches are

synthesized with a skip and an unconditonal jnrnp.' This takes two cycles, which is the same

as a conditonal branch would require.

Figure 3.14: The SOAR daraparh.
ins/ext’”” is the byte insertion and exmacton logc, ‘*dst’’

**MAL'" is the memory address latch.

inszructon x-1

insgucdon x

Figure 3.15: Pipelining in SOAR. Although aun instruction takes thres cycles, SOAR can

cycle i-1

cyclei - cyclei+l

execute

wﬂé'd back;

: fitch | exceute
/ ' \ o
/ :

/ .\\
/ \
/ phil phi 2 phi 3 \
decode read ALU &
precharge reg write back

inst latch
sign exteod
ey nab~ e |
ext
PC
reg file ALU
E L

“‘sha’ and *‘shb’’ are shadow registers A and B, *‘byte
is the destnaton latch, and

execute oge instucton per cycle. Each cycle in turn coosists of three phases.

57

58

The anatomy of SOAR'’s cycle is determined by the fact that the dawapath allows two
simultaneous precharged reads or one write to the register file. Each cycle is divided into
three nonoverlapping phases. In phase one, SOAR decodes the instruction and precharges
the busses. In phase two, the source registers are read onto the busses. In phase three, the
ALU combines the two operands. Simultaneously, the result from the previous instrucdon is
stored back into its destinaton register. Thus, the result of instruction i is not acmally szored
into its destination register undl the end of instrucdon i+/. Forwarding logic hides this
delay; if instructon i+/ attempts to read the destinaton register of insgucton /. the desired
value is forwarded from a latch at the output of the ALU. This has a significant effect on
performance; if inswead of forwarding, SOAR salled the pipeline for a cycle the benchmarks

would run 15% slower (Table A.54).

Pendleton has proposed a rearrangement of the pipeline that would shorten SOAR'’s
cycle time by 25% [Pen85b]. However, the remumn insgruction would be one cyclg longer, for
a toal of three cycles per return insguction. What would be the net effect? On the average,
SOAR performs 5.4 returns per 100 cycles (Table A.47). Thus, the effect of lengthening the
return inscucton would be to execute 5.4% more cycles. Since the new cycle ime would
be 25% faster, the new time to run the benchmarks would be 1.054x75%=79% of the old time.
(See Section 4.1 for a description of the benchmarks.) Rearranging SOAR's pipeline would

substantially reduce execution tme.

3.6.4. Impiementation Statistics

Table 3.8 conmins some preliminary data for the NMOS SOAR chip. taken from
[Pen8Sb]. These chips were fabricated by MOSIS [MOSIS] and performed faster than the
simulators predicted, except for the unforeseen delay for jumps and calls described in Sec-
tion 3.4.3. The MOSIS NMOS SOAR chips can execute an insouction every 400 ns, which

must be derated to 510 ns for the jump and call delay. Pendleton has perfected the host

59

T Table 3.8: NMOS SOAR characteristics. |

[line width ag |
» size (w/ scribe lines) |
. width 10.7 mm |
heght ' 2.0 mm :
power dissipaton . ~3 wars
| supply voltage ‘ 5 volts !
| transistors 35,700
| clocks ‘
I) : 90 ns
i underlap <10ms
¢2 _ %ns |
underlap ' <25 ns i
. #3 © 1 145ns l
underiap 40ns |
processor cycle ime . <400ns |
t fast shufflc semding dme | 110 ns ;
. minimum system cycle dme 510 ns :
! actual system cycle time © 800ms
_pads &2

board for SOAR, and has successfully run the endre diagnostc suite on the SOAR chips.

The best SOAR chip testzd o date functioned perfecdy with the excepdon of a faulty bitin

one register.

- 3.7. Summary

In designing SOAR, we have anempted to find a few good ideas © supplement a basic
RISC for Smalltalk. These are listed in Table 3.9. As a result of including all these fearures,
SOAR is considerably more complicated than RISC II. The next chapter evaluates our

architecture. and idendfies its successes and failures.

Idea

Secuon |

Trom

‘ Table 3.9: SOAR Architectural Ideas. !
F ¥

31-bit arithmedc (with tag & overflow checking)
a tagged/untagged mode bit in each insuction

2

2
conditional skips 2 PDP-8 |

tagged immediate values 2 ;

compilation to low level inszuction set 3 RISCH
uniform length instructons 3 RISC Il
word-addressing w/ byte-insert and -extact 3 MIPS, PDP-10
insguctions mgged as integers 3
vectored, prioritized interrupts and Taps 3 |
shadow registers 3 :
in-line call target cache 4 i Xerox ST-68K
software trap on jumps and traps 4 i
one-cycle calls and jumps (fast shuffle) 4
factored reurn insgucton 4 l |
parallel register initialization on remm 4 , |
load- and store-multipie 4 | IBM-360 |
multiple overlapping register windows oa chip 4 + RISCHI |
noncondguous load- and store-multiple 4 ! E
generation scavenging 5 | !
trapping stores of new pointers into old objects 5 BS I
trapping stores of activation record pointers S ; BS |
trapping reurns from referenced actvation records 5 N
pointers to registers 5 i
paged virmal memory 5 Atlas, Sun |
direct object addressing 5 BS !
special registers 6 RISCII |
pipelined dam path with forwarding 6 RISCII
offline reorganization BS i
g checking of addresses for load & store i
hard-wired instructions | RISCII

Chapter 4

Performance Evaluation of the SOAR Architecture

4.1. Introduction

61

Can a reduced instruction set computer make Smalltalk-80 practcal? In this section

we evaluate SOAR’s overall performance, place it in context with other Smalltalk-80 sys-

ems, and examine features in the architecture to see which pull their weight and which are

just a waste of effort. Toward this end, we have analyzed running times and instructon

mixes of instruction-level simulations of Smalltalk-80 benchmarks (Figure 4.1).

Smallealk-30 image converter Berkeley Smailtalk SOAR compiler
image (rot) (bs) (newb2s)
(Xerox) (dmu) (dmu) (ads, pah)
Q — — —
I J
SOAR runtime system SOAR assembler SOAR simulator simulation results
(sys) (sas) {Daedaius)
(ads, dmu, pnh) (ads, dmu. pnh) (ads, dmu)

() — —

[TITTEITTAN

LLLLLLLALLL

—

4

/

Figure 4.1: Steps invoived in @ SOAR simularion. First, ror removes the object table from
the Xerox Smalltaik-80 image. We then use BS to make any modifications necessary in the
image (e.g. to eliminate some becomes). Newb2s produces a Smalltalk image for SOAR by
coaverting the BS objects to SOAR format, and runniog Hilfinger's Siapdash compiler
which translates the bytecoded programs to SOAR inscucdons. We have also coded the
Smalltalk primitive operations and storage management software in SOAR assembly
language. After this is assembled, it is fed to Daedalus. our SOAR simulator along with the
Smalltaik image. The inidals below cach system indicate its author: ads is Dain Sampies,

phn is Paul Hilfinger, and dmu is David Ungar.

62

We have inscrumented the SOARA simulator t record wo types of daa: frequencies
‘and profiles. Obtaining dama from the simulator makes it possible to measure execution
without altering the program being measured. The simulator counts the number of times it
executes each instruction, the number of cach type of wap taken, and other events. The
simulator also samples the program counter every hundred instuctions. To gather the data,
we run 2 benchmark once, reset the simulator’s counters, enable profiling, run the bench-
mark for a second iteration and then dump the raw dam w files. (Appendix B conwins our
raw frequency data.) Unix™ yslides (awk and sed) analyze the data and repon the usage

and value of particular features. (Appendix A contains these resuits.)

Xerox has defined an official set of benchmarks for the Smalllk-80 syszem [McCB83].
Some are called '‘micro-benchmarks’® because they test particular small operagons like
integer addition. The rest are called ** macro-benchmarks'’ because they test large opera-
tions like compilation, display, and exploring system orgaxiiz«m’on. These are typical
high-level activities fél; Smalltalk-80 programmers. We selected five macro-benchmarks for |
our measurements. When writing Smalllk-80 programs, we spend more tme waitng for
the compiler than for anytbing eise. For this reason, we stared with the testCompiler
benchmark. The other four benchmarks were chosen because they did not ourput t© the
display and did not require substantial modifications for SOAR. Although fast dispiay out-
put is vital for Smalltalk, it has been addressed by many others, and is outside the scope of
this dissertadon. The following descripdons of the benchmarks we chose quote from

McC383]:

testClassOrganizer
““This benchmark measures the speed of corversion between the textual and the struc-
tural representations of a class organizagon. The example chosen is class Benchmark

because its organization conains many categories.”

63

testPrintDefinition
‘“This benchmark measures how quickly a class definidon, as it appears in the system
browser, can be generated. The example chosen is an instance of class Compiler
because it has a moderate number of instance variables.”

testPrintHierarchy
*“This benchmark times the printing of a portion of the Smalltalk-80 class hierarchy.

The example chosen is class InstructionStream because it has several subclasses.”

testCompiler
““This benchmark measures the speed of the compiler on a slighdy longer than normal
method, one containing 87 tokens and compiling into 73 bytecodes.’”

testDecompiler
““This benchmark measures the speed of the Decompiler by decompiling all the

methods in class InputSensor.”

In addition, we used a few micro-benchmarks to evaluate an upper bound for the perfor-

mance impact of specific features:

testPopStorelnstVar
““This benchmark measures how quickly a value can be popped off the stack and
stored in an instance variable of the receiver. Because this value is the Smalllnteger
1, there is little reference counting overhead on the push or store. 50% of the bytes in
the biock are 16r60,* a pop of the top 'of the stack into the receiver’s first instance van-

able.”

test3plusd
*“This benchmark measures the speed of Smalllnteger addidon. Because all values
are Smalllntegers. there is little reference-counung overhead. 25% of the bytes in the

block are 16rBO.* a quick send of the message =.""

testActivationReturn

*“This very important benchmark uses a call on a doubly-recursive method to measure
the speed of method activadon and reurn. There is linle referencecountng overhead
associated with knowing when to end the recursion, but there may be a grear deal in
managing the Contexts that represent the activatons. About 12.5% of the bytwes exe-
cuted during this benchmark are 16rEQ,* a send of the method's first literal (in this
case. the Symbol recur:), and about 12.5% are rewras, split cveniy berween 16r78," 2

quick return of the receiver, and 16r7C,* a rewm of the value on the top of the stack.”

How representative are these five macro-benchmarks? Xerox rates the performance of
Smallrik-80 sysiems relative to the Dorado by taking the mean of the 13 macro-benchmarks
plus the text scanning and BitBlt micro-benchmarks [Bay84]. Table 4.1 below compares the
compiler benchmark, the median of the five macro-benchmarks used here, and the Xerox
performance rating for four other Smalh;lk-SO systems. 'I'hc data suggest that the bench-

| marks wé used slightly underestimate overall perforﬁxa:ncé. | |

We have pot considered the interaction berween the availability of hardware feamres

and the sophistcation of the optmizadons performed by the compiler. The only compiler

Table 4.1: Comparison of Performance Metrics.
i median of
? classOrganizer Xerox
. compiler compiler Performance
decompiler Raung
printDefinition
printHierarchy
Berkeley Smalltalk on Sun 2 [Bay84] 11% 11% 14%
Tekmonix 4404 [Bay84] 25% 25% 26%
Xerox PS on Sun 2 [Bay85] 31% 41% 44%
Xerox PS on Sun 3 [{Bay85] 80% 99% 109%
Xerox Dorado 100% ' 100% 100%
SOAR (simulated @ 400 ns) 103% 107% ?

* The i16r prefix denotes 2 bexadecimal oumber. For example. 16¢7C 15 124.

65

changes we have taken into account are those required to simulate the missing hardware.
For example, to compute the overhead of sofrware type checking, we counted the number of
times that hardware type checking was performed by code from the current compiler and
multipled that count by the cost of 2 software check. Itis possible that a2 Smalltalk-80 com-
piler for a machine without bardware support for type checking would reduce the overhead
with a dara-flow analysis to eliminate redundant type checking. However, such techniques
are not used in existing Smalltalk-80 compilers, which must cope with dynamic type bind-
ing. The performance measurements in this dissertation hold only for Smalltalk-80 systems

with state-of-the-art compiler technology.

42. Overall Performance: SOAR vs Dorado

Can SOAR provide acceptable performance with 2 single-ch.ip processor? The Dorado
is the only Smalltalk-80 system that everyone agrees is fast enough. If SOAR can run as fast
as a Dorado, it will cerminly provide a usable Smalltalk-80 system. (The Xerox MC68020
Smalltalk-80 system is also approaching the Dorado’s performance.) Table 4.2 compares
SOAR's performance to the Dorado on five macro-benchmarks and the procedure call
micro-benchmark. The Dorado numbers were obtined from Xerox’s Smailtalk-80
Newsletter [Bay84]. The SOAR numbers were obtained by simulatng the benchmarks for
two iterations, taking the number of cycles for the second iteradon,* and multiplying by 400
nst, our measured cycle time for the 4u chips. These data show that a 400 ns SOAR will

perform well enough to please everyone who aiready uses Smalltalk-80.

* We consider the second iteration 10 be more representative. Had we used the aumbers for the first iteration. injtial sub-
routine lookups would have slowed the benchmarks down by up to 10%.

+ Impiementauion problems with the fast shuffie (Secuoa 3.4.3) will prevent full speed operauon unless the memory cy-
cle ume can be reduced by 100 ns over the chip cycle time. Alternauvely. the fast shuffie signal can be 1gnored. and the chip
could run as 2 delaved branch architecture {PendSa).

Table 4.2: SOAR Macro-Benchmark results, relative to Dorado.

i Benchmark Cycles/iter #iter SOAR Dorado SOAR
i time tme speed |
f (secs) (secs) relative
. testActuvanonRetmurn 483654 1 0.193 0.996 515%
i estClassOrganizer 3206197 1 1.28 1207 94% |
| testCompiler 1095039 5 219 225 103% |
i wstDecompiler 2893596 1 1.16 1.243 107% |
; wstPrintDefiniton 74159 20 0.593 0.849 143%
testPrintHierarchy 117585 10 0.470 1.000 213%
. min 94%
. median 107%
! max 213%

43. Relative Performance of SOAR

In the previous section, we showed that SOAR will run as fast as a Dorado. How does

this compare to other Smalltalk-80 systems? Table 4.3 compares the performance of the

compiler benchmark on several Smalltalk-80 sysems. Both SOAR and the 68010 are

NMOS microprocessors, although the 68010 has almost twice as many transistors as SOAR:

68,000 vs. 35,700. Since Deutsch and Schiffman’s ST68K is also a compiled implementa-

tion [DeS84), it serves as the fairest architectural comparison to SOAR. Unlike the ST68K

code manslator, the current SOAR compiler generates unnecessary instructons (see Table

2.11); a better compiler would improve SOAR's performance. By creatng a custom proces-

sor, we have more than doubled performance, while halving the number of mransistors.

Table 4.3: Compiler Benchmark speed for various Smalltalk-80 systems.
Speed relative w Dorado. larger is faster.
— = =
host insgucuon executon speed
processor dme (ns) model
BS ucs 68010 400 interpreter 11%
Tek 4404 Tekoronix 68010 400 interpreter 25%
PS Xerox 68010 400 compiler 40%
PS Xerox 68020 180~ compiler 80%
Dorado Xerox Dorado 70 microcode 100%
SOAR UCB SOAR 400 compiler 103%

* The cycle time is 130 as for an instruction thai is found i the on-chip cache, and 270 ns for one that is noL

67

4.4, Evaluating Individual Features

Although SOAR's design was driven by empirical results, our experimental subject at
that time was a bytecode interpreter, not a SOAR simulator. Now that we bave a compiler,
simulator, and run-time support software for SOAR, we have been able perform an accurate
assessment its features (Table 4.4). (Appendix A contains demiled derivatons of the dat.)
Each row gives the feature’s name, the minimum, average, and maximum effect it would
have on speed were it omitted or added, and the effect it would have on total memory size.
For example, the agged integer support is described in Section 3.2. If left out of SOAR, and
if the compiler were unchanged, the macro-benchmarks we simulated would take from 14%
to 47% longer to run, with an average time penalty of 26%. The SOAR Smalltalk-80 virtual
image would grow by 15% from its 1.5 MB. Remember that (except for rearranging the
pipeline) our performance figures count cycles and neglect the interaction between architec-
ture and cycle time. For a discussion of cyc}e time effects, see Pendleton’s dissermtion
[Pen8Sb). |

* Table 4.4 above groups the features in the order that they were presented in the last
chapter. In Table 4.5, we have reordered them by average performance impact and added
Pendleton’s complexity results in order to identify winner and losers. The complexity index
combines the number of diagnostics, circuit blocks, and hand-drawn transistors required for
a feature. For example, the most complicated feamre, multipic on ~chip register windows,

has an index of 10.

The importance of register windows on SOAR stems from an important feature of the
Smalltalk-80 system, fast compilaton. Like some other exploratory programming environ-
ments. the Smalltalk-80 system achieves split-second compilaton dmes by compiling each
procedure by itself; there are no macros. interprocedural analysis, nor statc interprocedural
binding. Thus, the compiler runs fast because it has shed the burden of binding or optimiz-

ing subroutine calls. This results in a high frequency of subroutine calls. which forces

68

' Table 4.4: Summary of features and performance impacts.
" feare ' secdon in | slowdown if omimed expansion
dissertaton |, if ominted™
. best average Wworst
_ . case case
Il rype checking
tagged integers 32.1 | 14% 26% 47% 15%
two-tone insguctons 323 13% 16% 20% 19%
ragged immediates 324 7.7% 9.6% 11% 1.2%
interprerarion
compilaton 33.1 na. 100% T n.a. -33%
byt ins/ext instructons 33.1 2.6% 33% 86% 0
loade 33.1 0.05% 0.46% 1.1% 0
sll 3.3.1 0 0 0 0
trap instructions 332 32% 3.9% 5.2% 2.0%
shadow registers 332 | 0.01% 0.04% 0.12% 0
vectored uaps 332 C1.7% _2.9% 4.7% 0
fasz calls B
register windows 34.1 P 37% © 46% 62% 6.1%
loadm/storem 34.1 ¢ 05%% 3.4% 5.1% 2.0%
in-line cache 342 : 27% 33% 40% -12%
fast shuffle 343 C 9.6% 11%7T 13% 0
parailei nilling 344 3 43% 6.1% 13%
B “storage managemenr—
generaton scavenging - 35.1 © 4% 10% 15% 16%3%
direct pointers 35.1 : 15% 22% 29% 2.3%
generation tag hardware 35.1 i 0.25% 1.3% 3.0% 2.9%
inter-to-regiser 35.1 t 0.75% 3.1% 7.3% 0
implemenzarion
forwardin ~ 363 | 12% 15% 18% | 0
new feature secton in | speedup if added compacuon
dissermdon | if added™
i worst average best
~__case case
compare-and-branch 322 v 2.1% 2.6% 3.0% 1.3%
load/store byt 33.1 b 3.6% 7.0% 13% 0
barre! shifter 33.1 ©0.15% 0.37% 0.59% 0
muigply/divide 3.3.1 0.0% 3.2% 8.4% 0
one cycle Taps 33.2 - 0.33% 0.63% 1.1% 0
instantaneous call lookup 342 n.a. n.a. 23% 1.2%
rearranged pipeline [Pen85b] 3.6.3 - 20% 21% 22% Q

* The static measurements were performed on our latest image (Feb. 85). The total size of this image is 1689 kB, how-
ever this includes the old bytecoded object code. When those are subtracted out, the image si2e drops to 1409 kB. Since we do
20t vet know whether or not we will keep the bytecoded object code. we have chasen 10 use the (two sigruficant figure) average
of 1.500 kB as the image si2=. :

* Rough esumate based on discussion with L P. Deutsch companag various Smailtalk-80 implementauons.

* This row compares Generation Scavenging 1o Ballard's modified sermuspaces (see 5.7.2). Deutsch-Bobrow deferred
. reference counung (see 5.62), and immediawe reference counting (see 5.6.1). respecuvely.

T Pendleton has discovered that SOAR's implementation of this feature lengthened its cycle time by ~25%.

69

i Tabile 4.5: Features in order of performance impact.
; (Except for rearranged pipeline, excludes impact on ¢ cle ime.)

i feature slowdown expansion complexity
; if omitted if omitted [Pen85b]
r winners
| compiladon ~100% -33% 0
| register windows* 46% 6.1% 10.0
| in-line cache 33% -12% 13
| byte inservextract instructions 33% 0 4.0
| tagged integerst 26% 15% 4.6
| direct pointers$. 22% 2.3% 0
! two-tone instructions 16% 19% n.a.
: generation scavenging$- 10% 16% ' 0
i forwarding 15% 0 4.0
| fast shuffleT 11% 0 0.8
| tagged immediates?t 9.6% 1.2% 0.9
E questionable |
| parallel nilling 43% 1.3% 25
| trap instructions 3.9% 2.0% 1.7
. loadm/storem* 34% 2.0% 1.6
! pointer-to-register* 3.1% 0 44
* vectored traps 29% 0 1.4
| generation tag hardwaret 13% 2.9% 2.3
losers
' loadc 0.46% 0 0
: shadow registers 0.04% -0 3.2
Ll 0 0
. feature speedup compacton '
’ : if added if added
; winners
: call target lookup hardware <23% 1.2%
. rearranged pipeline [Pen85b] 21% 0
" load/store byte 7.0% 0
; losers

muldply/divide 3.2% 0

compare-and-branch 2.6% 1.3%

one cycle raps 0.63% 0

barrel shifter 0.37% 0

dows,

* Register windows, load- and store-mulitipie. and pointer-to-register all interact. For example, without register wimn-
load- and store-muitipie would become much more important. and pointer-io-register would be compietzly silly.
*+ Tagged imeger instructions. two-(one insurucuons, tagged immedistes, and generauon g hardware interactions must

be considered. For example, once tagged integer insgrucuoas are elimunaied, the penaity for elirminating two-tone insTucuons
becomes zero.

3.4.3.

$ The introduction of Generation Scavenging allowed us to exploit direct pointers.
1 Pendleton has discovered that SOAR's impiementation of this feature lengthened the cycle time by -25%. Ses Secuon

70

hardware to shoulder the responsibility for efficient execution of calls. This explains why
register windows are so effecdve for SOAR. Although they add the most complexiry of any

feature [Pen85b], SOAR would run 46% slower without them.

The dara suggest that we could simplify SOAR without sacrificing much performance.
If we removed all but the winning features, SOAR would only take 19% more time and 8%
more memory. Adding Pendleton's pipeline rearrangement would then result in 2 simpler
design with the same performance as the original. If we were w include more feamures, they
might be trap insuctons, loadmy/storem. and vectored traps. Such a design would be 11%

faster than SOAR, and use only 4% more memory.

Four of the features in SOAR are mistakes: paralle! nilling, pointer-to-register, genera-
ton @ag ﬁardwarc, and shadow registers.* Although fully aware of it we sﬁll fell into what
we now call the **architect’s trap’’ at least four times:

° Each mistake was a clcv& idea;

. Each made a particular operation much faster;

e Each increased design and simulation time;

. Not one significantly improved overall performance.

Another way to appreciate the worthlessness of these four features is that load/store byte
instructions would save more cycles than these four put together.

We have put these results to use by calculatng the performance of some variadons on
SOAR and comparing them to some real systems (Table 4.6). Our predictions of SOAR’s
performance are based on simulated macro-benchmark tmes and do not include virtual

memory. operatng system. and VO overhead. However, all of the Smalltalk-80 syswems we

know about tend to be compute-bound for program development For a fair comparison, we

= 1oadc and sl neither heip nor hinder. Calling them mistakes 13 100 penorauve: we wouid rather think of em 25 idle
pastimes.

71

assume a 400 ns cycle time for SOAR, RISC 11, and MC68010.

By comparing the speeds of different systems, we can gain some insight into the rea-
soans for SOAR's good performance:

. | The speed ratio of full SOAR to RISC II, 1.6 is the same as the ratio of RISC II to the
Xerox 68010 system. This indicates that the reduced instruction set architecmure
(including register windows) and the Smalltalk-specific hardware featres conmribute
equally to performance.

o Interestingly, the Deutsch-Schiffman 68010 compiled system is a bit better than the
estimate for SOAR with only the software ideas. Perhaps the optimizations in
Deutsch’s compiler account f;r the difference.

. Since the Tekmonix system neither compiles nor scaveages, its software resembles a
stripped SOAR. Thus, the similar performance of the Tek system to suipped SOAR
suggests that the stripped SOAR hardware performs as well as the MC68010.

The simplicity and high performance of eliminating;ll but the winning features and rear-

ranging SOAR's pipeline make this an appealing design.

| Table 4.6: Trimming the Fat from SOAR.
|_(Assumes 400 ns cvcle rime for SOAR. RISC I1, and 68010)
. configuration speed image size
~ winners only + rearranged pipeline 103% 108%
! full SOAR 100% 100%
' Dorado 97%
winners only 81% 108%
- RISCO 62% 126%
i full SOAR without software ideas 41% 84%
+ Xerox 68010 compiler 39%
! full SOAR without hardware ideas ~ 34%* 132%
" Tek 68010 interpreter 24%
- saipped SOAR 22% 133%

* This igure includes an additional 36% time penalty for losing bath windows and loadnvstorem.

72

4.5. Conclusions

SOAR’s hardware and software design represents an advance for object-oriented
experimental programming environments. SOAR bas almost half of the transistors of the
68010, yet runs Smalltalk-80 2.5 tmes faster. Register windows, éggcd integer instuc-
tons, direct pointers, and generation scavenging account for most of the difference. These

four ideas represent SOAR's most important contribution to EPE systems.

Our analysis of a fearure's value was based on counting cycles. Barring the pipeline
rearrangement, we ignored the effect of adding a feature on the cycie dme (see [Pen85b]).
In fact, some of the features we added to the machine must have perversely increased the
cycle time enough to offset the reducdon in cycles, thereby slowing down the sysiem. In
parscular, the hardware support for ﬁtomt:ic storage reclamanon probab.ly did not speed up
SOAR. Other examples of mistakes in SOAR are the inclusion of parallel register nilling,
logic to Support pointers o registers, and shadow registers to aid wap handling. We observe
that the inclusion of interesting features that complicate the design but do not improve the
performance of representative programs is a Trap that many architects fall prey to, including
us.*

There are four places to look for further performance gains: compiler technology (cut-
side the scope of this dissertadon), implementation technology (see [Pen85b]), opdmizadon
of the run-time support primidves (which consume about two thirds of SOAR’s ume), and
berter hardware or softrware algorithms to cache call target iook‘ups (which consume 23% of
SOAR's tme). Of these, implemenmton technology — circuit design and VLSI processing
technology — have the most dramatic impact. Since we starwed this project, the standard
VLSI technology available to universitics has improved from 4y line widths o0 3u. This one

change should reduce our cycle time from 400 as to 290 as, as important a conmribution as

« Pendleton has discovered that SOAR s implementation of the Fast Shuffle mcurs a 25% penalty when the chip 18 used
with 2 400 ns memory syszm (Section 3.4.3). This dwarfs the architectural benefit of ao 11% reducion in the number of cvcles.
In this case the cuiprit was our failure to simulate the memory svsiem aiong with chmp.

73

register windows. Another example is Pendleton’s pipeline rearrangement which couid
improve performance by 21%. This is more than the combined effect of parallel nilling, trap
instructions, loadmy/storem, pointer-to-register, vectored traps, and generation rag-checking
hardware.

A 70 ns ECL Dorado is the only existing machine that runs Smalltaik-80 fast eaough

1o satisfy everyone, and the 400 ns NMOS SOAR chips that have been fabricated should run

just as fast. Thus, SOAR will support the Smalltalk-80 system with excellent performance.

74
Chapter 5

Non-Disruptive High Performance Storage Reclamation

Throw back the little ones

and pan fry the big ones;

use tact, poise and reason

and gendy squeeze them.
Steely Dan,
*“Throw Back the Little Ones’’
[BeF74)

§.1. Introduction

. Early in the SOAR project, we realized that automatic storage reclamation could easily
become a bottleneck. We knew the overhead for allocation and frecing in Smallalk-80 sys-
tems ranged from 10% to 15% [DeS84,UnP83], that some reclamation algorithms intro-

duced annoying pauses, that some required the programmer to explicidy free circular soruc-
| tures of objects, and that most of the algorithms required microcode support. Since we
needed to atain good performance in a system without microcode we have designed, impie-

mented, and measured Generarion Scavenging, a new garbage collector that
. limits pause times to a fraction of a second,

. requires no hardware support.

. meshes well with virtual memory,

. reclaims circular sguctures, and

. uscsonlyS%ofd:eCPUdmeinSOAR.Thisislﬁst.banathirdofthcdmcof

deferred reference counting, the next best algorithm.*

* Experience with SOAR has made us realize that some of the other algorithms that are usually microcoded need not be.
Although our original reason for searching for a new algorithm proved to be unfounded. we found something that enjoys solid
advantages in performance and the ability to reclam circuiar structures.

75

This secton describes the challenge of providing automadc storage reclamadon, sur-
vcys; some popular algorithms, and presents our solution. It concludes by evaluating the per-
formance of Generation Scavenging, based on running the Smalltalk-80 benchmarks

[McC83] on BS and simulating them og SOAR. An earlier and shorter version of this

chapter appeared in [Ung84].

5§2. The Relatioaship Between Virtual Memory and Storage Reclamation

The storage manager must ensure an ample supply of virmal addresses for new objects,
and must maintain a working set of existing objects in physical memory. Tradidonally, the

functions have been separated into two parts as shown in Table 5.1 and Figure 5.1.

Sometimes the distinction between virrual memory and automatc reclamation can lead
t inefficiency or redundant functionality. For example, some garbage collecton (GC) algo-
rithms require that an object be in main memory when it is freed; this may cause exa back-
ing store operations. As another example, both compaction and virmal memory make room
for new objects by moving old ones. Thus storage reclamarion algorithms and virtual

memory smategies must be designed to accommodate each other’s needs.

'. Table 5.1: Traditional decomposition of storage management.
© name responsibility pidall

i virmal memory ferching dama from disk thrashing
: auto reclamadon | recycling address space distracting pauses to GC

primary memory . secondary storage
allocated allocated
> . .
automatic { | o —m — — virmal | o e = automatdc
reclamadon mermory reclamadon
* free free

Figure 5.1: Virrual memory vs. automaric storage reclamanon.

76

53. Personal Computers Must Be Responsive

Personal computers differ from time-sharing systems. For example, with personal
computers there are no other users to blame for distracting pauses. Yet personal machines
have time available for periodic offline tasks, for even the most fanatic hackers sleep occa-

sionally. Personal computers promise consistendy short response times which are known t©

boost productivity significantly [Tha81].

§.4. Virtual Memory for Advanced Personal Computers

Computers with fast, random access secondary storage can exploit program locality to
manage main memory for the programmer. Advanced personal computer systems manage
memory in many small chunks, or objects. The Symbolics ZLISP, Cedar-Mesa, Smalltalk-
80, and Interlisp-D systems are examples. Table 5.2 summarizes segmentation and paging,

the two virmal memory techniques.

54.1. Segn;ent.ation

A segmented virmal memory enjoys the flexibility of placing each object in physical
memory independently of the other objects. This packing efficiency can result in better use
of main memory and a reduction in time-consuming backing store operations. However,

segmenmation's performance advantage disappears when main memory becomes more pien-

Table 5.2: Segmentation vs. Paging. ,
_segmen@don paging ‘
chunk size (bytes) 16 to0 65,384 512, 1024, 2048, or 4096 |
address space subdivisions | 8 -65,384 128 - 65,384 :
tanslagon map associatve direct or associative f
space overhead disk buffers unused portons of pages
time overhead copying from buffers offline reorganizaton*
first implemented B 5000 (1961){LoK61] Adas (1962)[KEL62]
current exampie Intel iAPX-286 VAX-11

« While BS is the first paging Smalltalk sysiem o empioy offline reorganization of the virtual space [Bla83d], object
swapping systems starting with OOZE did reorganizations regularly {lng83].

dful [Sta82, Sw84]. Moreover, the variery and quantty of objects in advanced personal
co@ucr systems pose tough challenges for a segmented virtual memory. In our
Smallmlk-80 memory image. for example, the length of an object can vary from 24 bytes
(points), to 128,000 bytes (biunaps), with a mean of about 50. Suppose segmentation alone
is used. When an object is created or swapped in, a piece of main memory as large as the
object must be found to bold it. Thus, a few large bitmaps can crowd out many smaller but

more frequently referenced objectss.

When objects arc small, it takes many of them t© accomplish anything. Smallalk-80
systems already contain 32,000 to 64,000 objects, and this oumber is increasing. A seg-
mented memory with this many segments requires cither a prohibidvely large or a

content-addressable segment wable.” This large number hampers address tansladon.

5.42. Demand Paging

The simplicitf of page mble hardware and the oppormunity to bide the address ansla-
tion time make paging atractive to hardware designcrs [Den70]. Paging, however, is not a
panacea for advanced personal computers. It can squander main memory by dispersing fre-
quently referenced small objects over many pages. Blau has shown that periodic offiine
reorganizadion can prevent this disaster [Bla83d]. The daily idle dme of a personal computer

can be used o repack objects onto pages.

Many objects in advanced personal computers live only a short dme. The paging
literature conains little about smategies for such c;bjecs.' Since their lifedmes are shorter
than the time to access backing store, these objects should never be paged out. By segregat-
ing short-lived objects from permanent ones, Generation Scavenging permits them to be

locked in main memory. Table 5.3 summarizes the obstacles that advanced personal com-

. *+ The OOZE virmsal memory system for Smalltalk-76 soived this problem but incurred other costs: it was limitied 10 65K
objects, the object table required 2 hash probe for every object access. and 2 disk access was needed 10 Creale a DEW IETIPOCATY
object if its pointer was on a free list {Iog83].

78

. puters pose for a paged virtual memory, and the solutions that SOAR has adopted. BS and

the DEC VAX/Smalltalk-80 system [BaS83] use paging.

§.5. Automatic Storage Reclamation for Advanced Personal Computers

Advanced personal computers depead on efficient automatic storage reclamation. For
example, Berkeley Smalltalk allocates a new object every 80 insouctions. This is consistent
with Foderaro's results for a few voracious Lisp programs [FoF81]. Since the total size of
the sySt:m was in an equilibrium for these measurements, the reclamation rate must match
the allocation rate. The mean dynamic object size is 70 bytes long. Thus, seven bits must

be reclaimed for every inszruction executed.

Let’s examine several garbage collection algorithms and evaluate their suitability for
advanced personal computers. Where possible, we use performance figures from actual
implementations of these algorithms. The Xerox Dorado Smalltalk-80 system is closest
an advanced personal computcf; whea we try to compare results we shall normalize to that

speed. For example, the bandwidth imposed on the BS storage allocator is

70 bytes x 1 object x 9000 bvrecodes = 7800 bvres
1 object = 80 instrucrions second second

If we scale this up to the speed of the Xerox Dorado system, the storage allocation rate

exceeds 100 KB/s.

Jon L. White was one of the first researchers to exploit the overlap berween the func-
tions of virrual memory and garbage collection, and he proposed that address space reclama-

tion was obsolete in a virmual memory system [Whi80]. He pointed out that as long as

——

’ Table 5.3: Paging. |
descripdon SOAR soludon |

problem
internal fragmentation 1 object per page offline reorganizadon
address size need 64K 50 byte objects big addresses (228 words)

paging short-lived objects | page faults for dead objects segregation by age,
don’t page new ones

79

referenced objects were compacted into main memory, dead objects would be paged out to
bacidng store. This soategy may have adequate performance as far as CPU tdme and main
memory utlization, but it demands too much from the backing store in a Smalltalk-80 sys-
wm. Even if a 100 MB backing store could keep up with the 100 KB/sec allocadon

bandwidth it would fill up in less than an hour.

100MB / disk

=20 mu .
100KXB mash / second aritzes

This is unacceptabie.

There arc many automatic storage reclamation algorithms [Coh81], but they can be
divided into two families: those that mainrain refereace counts and those that traverse and
mark live objects. In the next few sections, we examine several reclamation algorithms and

discuss their suitability for advanced personal computers.

5.6. Reclaiming Storage by Counting References

Reference countng was invented in 1960 [Col60] and bhas undergone many
refinements [Knu73, Sta80). The central idea is to maintain a count of the pointers that
reference cach object. If an object’s reference count should fall to zero, the object is no

longer accessible and its space can be reclaimed (Figure 5.2).

5.6.1. Immediate Reference Counting

Immediate reference counting adjusts reference counts on every store insgructon and
reclaims an object as soon as its count drops to zero. Both the Dorado Smalltalk-80 sysiem
[GoR83] and LOOM [KaK83, Sta82, Sta84] réclaim space with this algorithm. Compacton
is handled separately and typically causes a pause of 1.3 seconds every 1 to 20 minutes on a

Sun 68010 workstagon.

| Counting references wakes tme. For each store, the old conteats of the cell must be

read so that its referent’s count can be decremented. and the new content’s refereat’s count

80

obj 1 obj 2 obj 3

Figure 5.2: Standard reference counsing. The standard refereace countiog algorithm asso-
ciates a reference count with each object. An object is reclaimed whea the count goes to
zero. Object 3 is referenced oanly by itself, and is thus garbage. Since its count is nonzero,
it cannot be reclaimed by a reference counting algorithm.
must be increased. This consumes 15% of the CPU tme [Deu83b, UnP83]. When an
object’s count diminishes to zero, the object must be scanned to decrement the counts of
everything it references. This recursive freeing consumes an addidonal 5% of execution
dme [Deu82a, UnP83]. Thus, the total overhead for reference counting is about 20%. This
substantial overhead is acceptable for personal computers, but deferred reference counting

and Generation Scavenging (discussed below) use much less.

Reference counting cannot reclaim cycles of unreachable objects. Even though the
whole cycle is unreachable, each object in it has a non-zero count. Deutsch [Deu83b]
believes that this limitatdon has burt programming style on the Xerox Smalltalk-80 system
(which employs reference counts), and Lieberman [LiH83] has also stated that circular storuc-
tures are becoming increasingly impormnt for artificial intelligence applicadons. The advan-
.tage of immediate reference countng is that it uscs the least amount of memory for tem-
porary objects — about 15 KB when running the Small:alk-SO' macro benchmarks. How-
ever, its inability to reclaim circular structures remains a serious drawback for advanced per-

sonal computers.

81

5.6.2. Deferred Reference Counting

V'D:c Deutsch-Bobrow deferred reference counting algorithm reduces the cost of main-
taining reference counts {DeB76]. Three contemporary personal computer programming
environments use this algorithm: Cedar Mesa, InterLisp-D (botk on Dorados), and an experi-
mental Smalltalk-80 system which furnished the performance measurements quoted herein
[DeS84]. The Deutsch-Bobrow algorithm diminishes the tme spent adjusting reference
counts by ignoring references from local variabies (Figure 53). These uncounted references
preciude reclamadon during program execution. To free dead objects, the system periodi-
cally stops, and reconciles the counts with the uncounted references. On a typical personal
computer the algorithm requires 25 kB more space tl;an immediate reference counting, and

averages 30 ms pauses every 500 ms.

Baden's measurements of a Smalltalk-80 system suggest that this method saves 90%
- of the reference count manipulatdon needed for immediate reference countiﬁg [Bad82).
Deferred mf&eme counting spends about 3% of the total CPU time manipulatng reference
counts, 3% for periodic reconciliation, and 5% for recursive freeing. Thus, deferred refer-

ence countng uses about half the.time of simple reference counting.

stack

obj 3
~ obj 2

_-—— |
0 i
- =D

Figure 53: Deferred reference counting. The deferred reference coundng algonithm does
not count references to objects from the execunon stack. A zero count does not easure that
an object is reclaimable; it may sall have references from the stack

82

What would be the space cost for deferred reference counting on SOAR? The most
efficient representation of a reference count on SOAR would be one word per count. Table
~ 5.4 shows the code sequence for reference counting on SOAR. Since this sequence is nine

words long, we can multiply the number of tagged stores by nine to compute the code over-
head for reference counting on SOAR (Table 5.5). This calculadon shows that a straightfor-

ward implementation of deferred reference counting would increase the image size by 16%.*

Although more efficient than immediate reference counting, deferred reference count-

ing still does not reclaim circular swuctures. This is its biggest drawback.

5.7. Reclaiming Storage by Finding Reachable Objects

Marking reclamation algorithms collect garbage by first traversing and marking reach-
able objects and then reclaiming the space filled by unmarked objects. Unlike reference

counting. these algorithms reclaim circular structures.

i

Table 5.4: Reference counting sequence on SOAR. ;
i %load (storeObj)offset, oldContents

| load (oldContents)countOffset, oldRC ~ /* tag trap handles int case */

| %sidp eg oldRC, 1

| Focall freeRoutine

| %sub oldRC, 1, oldRC

. %store oldRC, (oldContents)countOffset

' load (newContents)countOffset, newRC |
%add newRC, 1, newRC

" Gstore newRC, (newConteats)countOffset

Table 5.5: Static cost for reference counting on SOAR. |
number of tagged store insquctions 3578 '
mean object length 14 words

toal size of image 1,500 kB

reladve space cost of code 8.59%

reladve space cost of counts 7.14%

total space cost 15.73%

* The time required to manipulate reference counts on stores is the time to adjust a count, perhaps 25 cycles., times the
frequency of tagged store instructions. or 0.36% (Table A.47), diveded by the average cycles per instruction. or 1.5. This gives
an esumate of 6%. If reconciliauon adds another 2%, we obuin a total of 8%, which is consistent with Deutsch’s measure-
ments. '

83

5.7.1. Mark and Sweep

" The first marking storage reclamation algorithm, mark and sweep, was introduced in
1960 [McC60). It has many variadons [Coh81, Knu73, Sm80], and is used in contemporary
systems [FoF81]. After marking reachable objects, the mark and sweep algorithms reclaim
one object at a time, by sweeping the entire address space. Fareman has found that some
Franz Lisp' programs spend 25% to 40% of their tme mari:ing and sweeping [Fat83] and
require about 1.9 mB for dypamic objects (compared to about | mB for smadc objects).
These algorithms are inefficient because they access a large number of objects; the marking

phase inspects all live objects, and the sweeping phase modifies all dead ones.

The marking phase inspects every live object and thereby causes backing store opera-
tons.* Foderaro found that for some LISP programs, hints to the virmal memory sysem
could reduce the number of page faults for a mark and sweep from 120 w0 90 [FoF81]. Even
yvith hints, marking and sweeping with paging causes on avemgé a 4.5 second pause every

79 seconds. This is unaccepabic for an interactve personal computer.

§.7.2. Scavenging Live Objects

The costly phase of sweeping dead objects can be eliminated by moving the live
objects to a new area. 2 technique called scavenging. A scavenge is a breadth-first traversal
of reachable objects. After a scavenge. the former area is free, so that new objects can be
allocated from its base. In addition to the performance savings, a scavenging reclaimer also
compacts, obviating a separate cOmpacton pass. Scavenging algorithms must Qso update

pointers to the relocated objects.

Automatc storage reclamation algorithms that scavenge include Baker’s semispace
algorithm [Bak77], Ballard’s algdrir.hm [BaS83]), Generation Garbage Collecdon [LiH83],

and Generadon Scavenging. Baker's algorithm divides memory into two spaces and

* The sweep phasc aiso requires backing siore operations. but its sequential nature accommodates prefewching.

84

scavenges all reachable objects from one space to the other (Figure 5.4). Ballard imple-
mented this algorithm for his VAX/Smalltalk-80 system and observed that many objects
were long-lived. The addition of a separate area for these objects resulted in a substandal
performance improvement by eliminating the periodic copy of them. Ballard’s system has
600 KB for static objects, a 512 KB object tble, and two | MB semispaces for dynamic
objects. It spends only 7% qf its time :eclaiming storage, including sweeping the object
wble to reclaim entries. Since it is embedded in an interpretive system that runs
Smalitalk-80 programs a twelfth as fast as the Dorado (Table 2.2), the CPU overhead for this

algorithm may rise above 7% on a high-performance system.

Generarion Garbage Collecrion [LiH83] expioits the observadon that many young
objects die quickly and generalizes Baker’s algorithm by segregating objects into genera-
tions, each within its own space (Figure 5.5). Each generation may be scavenged without
d:sturbmg older ones, permittng younger generatons to be scavenged more often. This
reduces the time spent scavenging older, more stable objecs. At present, there are no pub-
lished performance data on this algorithm.

The scavenging algorithms above incur hidden costs because they interieave scaveng-
ing with program execution. The key idea is to avoid pauses due to scavenging by subdivid-
ing the work and sca;enging a few objects every time a new one is allc;cawd. The problem

with mixing executon with reclamation is that the program may Iy to use a pointer to an

before scavenge after scavenge

M

Figure 5.4: Baker semispaces. The Baker storage reclamation algorithm divides memory
into semispaces. When ope fills up, the live objects in it are copied to the other semispace.

Lc
<

85

geaeration 0 generagon | generaton 2
€ . = . &
£ s D] et D] S0 D

Figure 55: Generarion garbage collecton. Geaneration garbage collection is 2 generaliza-
tion of Baker semispaces. This algorithm divides memory inw many small semispaces, one
per **generaton.’” When a semispace fills up, its contents are scavenged to the next one.

object that has been scavenged to another area. This problem can be solved by checking all
loads and following the forwarding pointers, but the soludon in turn imposes additional

overhead on the running program. Thus, eliminating pauses slows execution.

Algorithms that segregate objects into generations must mainain @bles of references
from older to younger objects. These algorithms save tme by reclaiming space in younger
generations without maversing older generatons. The burden of mainwining these tables

fails on some store insgructons.

5.38. .The Generation Scavenging Automatic Storage Redarhation Algorithm

Generation Scavenging arose from our anempts find an efficient, unobwusive storage
reclamation algorithm for SOAR that did not require microcode. Our test vehicle was
Berkeley Smﬁllmlk., which originally used reference counting. Measurements of BS object
lifeimes proved that young objects die young and old objects condnue t live. We then
designed Generation Scavenging to exploit that behavior and subsdmted it for reference
counting in Bcricley Smalltalk. The result was an eight-fold reduction in the percentage of
time spent reclaiming storage — from 13% w0 15%. In addidon. the inTinsic compacton
provided by scavenging made it possible to eliminate the Object Table and its accompanying
indirecton. After eliminating the object tabic and reference coundng, BS ran 1.7 times fas-
ter than before. I.n.addiu'on to the performance improvement, since Generaton Scavenging
was not based on reference counnng, it was able 1o reclaim cycles of unreachable data souc-

wures.

86

§.8.1. Overview of Generation Scavenging Algorithm

- Each object is classified as cither new or old. Old objects reside in a region of memory
called the old area. All old objects that reference new ones are members of the remembered
set. Objects are added to this set as 2 side effect of store inszuctons. (This checking is not
required for stores into local variables because stack frames are always new.) Objects that no
longer refer to new objects are deleted from the remembered ser during scavenging. All new
objects that are referenced must be reachabie direcdy from the old objects in the remem-
bered set, or through a chain of new objects ultimately linked to the remembered ser. Thus,
a traversal in new space, starting at the remembered ser (and virtual machine registers) can
find all live new objects. Table 5.6 summarizes the characteristics of the two generadons for
Generation Scavenging.

There are three areas for new objects (Figure 5.6):

. NewSpace, a large area where new objects are created,

. PastSurvivorSpace, which holds new objects that have survived previous scavenges,

and
. FutureSurvivorSpace, which is used only during scavenging.

A scavenge moves live new objects from NewSpace and PastSurvivorSpace to FuwureSur-

vivorSpace, then interchanges Past and FutureSurvivorSpace. At this point, no live objects

Table 5.6: Generations in Generation Scavenging for BS. |
contents volatie objects permanent objects

residence new space old space

space size 200 KB* 940 KB

locadon main memory demand paged
created by insandaton tenuring
reclaimed by scavenging mark-and-sweep
reclaimed every 16 sec 3-8brs
reclamation takes | 0.16 sec 5 min

* 140 KB for New area + 2 * 28KB for survivors

87

are left in NewSpace, and it can be reused to create more objects. The scavenge incurs a
space cost of only one bit per object Its time cost is proportonal to the number of live new
objects and thus is small since only 1 in 20 objects survive a scavenge. If 2 pew object sur-
vives cnough scavenges, it moves to the old object area and is no longer subject to online
automatic reclamation. This promodon to old stamws is called renuring. Figure 5.7 depicts

both the old and new areas for Generation Scavenging.

5.82. Detailed Description of Generation Scavenging

Recall that the purpose of a scavenge is to mansport the surviving new objects from
NewSpace and PastSurvivorSpace o FumreSurvivorSpace. A one-pass breadth-first algo-
rithm copies the objects and updates pointers to them as it goes along. It starts by searching
all the old objects in the Remember?d ser for pointers to new objects, which it copies ©
FutureSurvivorSpace. Then. it updates the pointer to point to the copy instead of the origi-
nal, leaves apother pointer to the copy in the first word of the original, and sets a flag bit 10

indicate that the original has been moved. If the scaveaging algorithm eacounters a refer-

¢ o
Q -]
EVEN ¢ 7. ° | objects created here
scaveage . e s
R survivors of previous scavenge
¢ __°c] scavenge object to here
e a
e, -]
ODD 3 %, | objects created here
scavenge e 8
___ 2 | scavenge object to here
: 3 _] survivors of previous scavenge

Figure 5.6: Generarion Scavenging's three areas for new objecss. The largest area holds
pewlycreated objects (NewSpace). Two smaller arcas alternately hoid objects that have
survived previous scaveages (PastSurvivorSpace) and receive objects copied by the current
scavenge (FurureSurvivorSpace). This unbalanced division saves memory over 2 sem-
ispace algonithm.

88

c o i
. . Cg -
objects created here . c \i new objects
physical memory
scavenge objects to here S a
survivars of previous scavenge € 4 ;
o ! }
promote to here = q—) old objects
c .
- | paged virmal memory
[
|
—_—

Figure 5.7: Bird's eye view of Generarion Scavenging. After an object has survived
esough scavenges, it is promoted to the old object area. New objects are locked down in
physical memory; old objects reside in virtual memory and may be paged out

ence to the same object again, the flag bit and forwarding pointer will enable it to detect that
the object has aiready been scavenged and to update the reference. After this first pass. all
new objects referenced by old object have been scavenged. Now, the algorithm smrts
traversing FutureSurvivorSpace and scavenging any new objects referenced from there. As
more objects are copied. the end of FutureSurvivorSpace grows away from the scan, unal
finally. all live new objects have been scavenged and the scan catches up to the end. At this
point. the algorithm terminates.

In addition to preserving live objects. those objects that survive for a long dme must be

.

promoted into OldSpace. If they were not. much ame would be wasted copying and recopy-

ing the same objects back and forth. So, each object includes a count of the number of

89

scavenges it has survived. If this count should reach a cﬁnain threshold, the object gets
scavéng:d to OldSpace instead of FumureSurvivorSpace. At this point, the object must be
added on to the end of the remembered ser in case it contains any pointers to other new
objects. After completing a pass, the algorithm checks the remembered ser. If it has grown,
the new part is scanned, which may add objects to the ead of FumireSurvivorSpace. Then, if
FutureSurvivorSpace has grown, the new portion of that area must be scanned, which may
add objects wo the end of the remembered ser. The final form of the aigorithm, therefore
resembles two coroutines: one which searches the remembered ser, and another which
searches FutureSurvivorSpace for pointers to new objects. This is easily implemented in C
with two subroutines called alternately in a loop. The loop terminates when one of the sub-

routines completes without adding more objects for the other one to scan.

We now present the Generation Scavenging algorithm top-down, in pidgin C:

sguct space {
word_t *firssWord; /* start of space */ ‘
int - size; /* number of used words in space */
}H
sguct object {
int size,
age;
boolean isForwarded,
isRemembered;
union {
sguct object *contents(],
*forwardingPointer;
b
}

< struct space NewSpace, PastSurvivorSpace, FutureSurvivorSpace, OldSpace;

szruct object *RememberedSerContents{MaxRemembered];
int RememberedSetSize;

~
#*

& 8 #'% % # 8 8 ® # & & 88

#*
Ay

The main routine, generadonScavenge, first scavenges the new
objects immediately reachable from old ones. Then it scavenges
those that are transitively reachable. If thus results in

a promotion, the promotee gets remembered. and it first
scavenges objects adjacent to the promotee. then scavenges the
ones reachable from the promoted. This loop contdnues undl

no more reachable objects are left. At that point, :
PastSurvivorSpace is exchanged with FutureSurvivorSpace.

Notice that each pointer in a live object is inspected once and
only once. The previousRememberedSetSize and
previousFutureSurvivorSpaceSize variables easure that no object
is scanned twice, as well as detectng closure. If this were

not true, some pointers might get forwarded twice.

generationScavenge()

{

int previousRememberedSetSize = 0;
int previousFutureSurvivorSpaceSize =0;

while (TRUE) {
scavengeRememberedSetStarting At(previousRememberedSetSize);
if (previousFumreSquorSpaceSizc == FutureSurvivorSpace.size)
break;

previousRememberedSetSize = RememberedSetSize;
scavengeFutureSurvSpaceStaringAt(
prcviousFumreSurvivorSpace.size);
if (previousRememberedSetSize == RememberedSetSize)
break;

previousFutureSurvivorSpaceSize = FutureSurvivorSpace.size;

exchange(PastSurvivorSpace. FuureSurvivorSpace);

/‘

. scavengeRememberedSetSarung At(n) raverses objects in the remembered
set starting at the nth one. If the object does not refer 1 any new

* objects. it is removed from the set. Otherwise, its new referenss

. are scavenged.

*/

scavengeRememberedSetStarting At(dest)
int desg :
{

int source;

for (source = dest: source < RememberedSetSize; ++source)
if (scavcngcRcfmnsOf(RcmcmbcrcdSct{source])) {
RememberedSetContents{dest++] =
RememberedSetContents{source}];
}
else
resetRememberedFlag(RememberedSetContents{source]);
RememberedSetSize = dest;

}
/‘

. scavengeFutureSurvSpaceStaringAt(n) does a depth-first
traversal of the new objects startng at the one at the ath word
of FutureSurvivorSpace.

*/

scavengeFumreSurvSpaceStarungAt(n)
int n;
{

stuct object *currentObject;

while (n < FutureSurvivorSpace.size) {
scavengeReferensOf(
curreatObject = FurureSurvivorSpace.firstWord(n]);
n += sizeOfObject(currentObject))

*/

scavengeReferentsOf(anObject) inspects all the pointers in anObject.
If any are new objects, it has them moved to FutureSurvivorSpace,
and returns guth. If there are no new refereats, it reurns falsity.

For simplicity here, an object is just an array of pointers.

scavengeReferentsOf(anObject)

stuct object *anObject;
{
inti;
boolean foundNewReferrent,

/‘
®
-
=

*/

struct object *referent;

foundNewReferent = FALSE;
for (i = 0; i < anObject->size; i++) {
referreat = anObject.contents{i];
if (isNew(referrent)) {
foundNewReferrent = TRUE;
if (‘isForwarded(referrent))
copy AndForwardObject(referent);
anObject.contents(i] = referent->forwardingPointer;

}

return (foundNewReferrent);

copy AndForwardObject(obj) copies a new object either to
FurureSurvivorSpace, or if it is to be promoted, to OldSpace.
It leaves a forwarding pointer behind. ~

copyAndForwardObject(oldLocaton)
stuct object *oldLocaton;

{

struct object *newlocagon;

if (oldLocation->obj_age < MaxAge) {
++oldLocadon->obj_age:
pewLocation = copyObjectToSpace(oldl.ocadon,
FutureSurvivorSpace);
}
else
pewLocation = copyObjectToSpace(oldLocadon, OldSpace);

oldLocation->obj_forwardingPointer = newLocadon;
oldLocation->obj_forwarded == TRUE;

93

How do old objects get reclaimed? An offline reclamation program waverses and
copiés all objects in depth-first order to a file. This is a three-pass algorithm: The first pass
copies the live objects to a file and leaves forwarding pointers in the original objects. The
second pass mraverses the file and updates the pointers. The third pass rcads the file into
memory, overwriting the original area. Copying rearranges the objects into depth-first order,
which helps to reduce the number of page faulrs [Bla83b, Blag83d, Sta82, Sta84]. The whole
process takes a few minutes. If it is only required once or twice a day. it should not be 0o
disrupave.

5.83. Comparing Generation Scavenging to Other Scavenging Algorithms

Generation Scavenging most resembles Ballard's scheme [BaS83]:

. It segregates objects into young and old generations.
. It copies live objects inswcad of sweeping dead objects.
e Itreclaims old objects offine..

Generation Scavenging differs from Ballard’s Semispaces and Lieberman-Hewitt's Genera-

ton Garbage Collection [LiH83]. Unlike those algorithms, Generadon Scavenging
« conserves main memory by dividing new space into three spaces instead of two.

. is not incremental. Instead, the small pauses introduced by Geaneration Scavenging are
unnotceable in normal interactive sessions. (They are nodceable in real-ume applica-
dons such as animaton.) Incremental algorithms require cheéking on every load

instructon. and Generation Scavenging saves this ime by not being incremental.

5.9. Performance Evaluation of Generation Scavenging
How well does Generation Scaven-ging perform in Berkeley Smalltalk and SOAR? We

concentrate on four metrics:

. CPU time overhead, the CPU time spent reclaiming storage divided by the total CPU
time in the session,

e pause time, the time that the usér must waft for reclamation,

J peak main memory usage, the amount of main memory that must be .dedica:cd for tem-
porary objects, and

. backing store accesses, the number §f times that the reclamation algorithm requires

data not present in main memory.

5.9.1. Evaluating Generation Scavenging in Berkeley Smalltalk

The Smalltalk-80 macro benchmarks (McC83] consist of representative activities like
compiling and text editing. We measured the performance of Generation Scavenging in BS
while running these benchmarks. Although our workstation had 2 MB of main memory,

only about half of that was available to Berkeley Smalltalk. Table 5.7 shows the resuits.

CPU Time Cost. Our measurements of BS show that Generation Scavenging requires
only 1.5% of the total (user CPU) time. This is four times beter than its nearest compeutor,

Ballard's modified semispaces, which takes about 7%.

One reason that Generation Scavenging looks so good is that BS executes programs
more slowly than some other Smalltalk-80 sysiems. However, the next section shows that

Generation Scavenging performs well on fast Smalltalk-80 systems.

Main Memory Consumption. Although each of the three new object areas occupies
140 KB of virtual memory (420 KB toaal), only 28 KB of each survivor area gets used. The

rest serves as a reserve against pathological survival and need not be resident. Thus, the

l Table 5.7: Performance of Generation Scavenging in BS. |
toml insouctons executed . 4500 k .
amount of storage reclaimed | 3900 KB
amount of tenured storage - 9.1KB
number of checked stores ' 190k
number of remembered objects | 320
number of scavenges P32
mean length of survivors | 4.8 Kword
toaal user CPU ame | 280 secs.
toal Real time i 500 secs.
real ume scavenging '+ 1.8%
user time scavenging P 15%
time checking stores : 0.1%
max old space used . 940 KB
max new space | 140 KB
max survivor space | 28KB
roal size . 1800 KB
resident set size . 930 KB
tow] page faults 61
min pause tme* 90 ms
median pause tme* 150 ms
mean pause Gme* - 160 ms
90th %ile pause ume* 220 ms
max pause tme* ~ 330 ms
mean time berween scavenges 16 seconds

toral primary memory cost for dynamic objects is 200 KB, about 10% of the BS main
memory. If we used Baker semispaces with the same scavenging rate, each space would
need to be 140KB + 28KB, for a toml of 360 KB, almost twice as much as Generado;l
Scavenging.

Backing Store Operations. Since new objects are always created in the same area,
they can remain in main memory. Unformnately. Unix on the Sun 68010 worksmagon (Sun
Release 2.0) does not implement the system call that would lock down this area. Thus, the
ﬁrsr six scavenges caused 283 minor page faults (page reclaims), and the rest of the
scavenges caused four. With a working set of 930 KB, 60 major page faults occurred during

the benchmarks.

© excluding first six scaveages, which thrashed because Unix would ot let us lock down the new arex

96

| Pauses. Except for the page faulting during the first six scavenges (see abc;ve). the
pauses were small and mosty unobuusive, averaging 150 ms. The longest pause was only
330 ms. About 15% of the pause time was spent in the Unix kernel on unrelateed overhead.
Since people have difficulty nodcing pauses of 100 ms, this algorithm's performance meets

our requirements.

5.9.2. Evaluating Generation Scavenging on SOAR

The previous section shows that Generation Scavenging performs well in BS, requiring
fewer than 1.5% of the CPU cycles. How well will this algorithm perform on SOAR?
SOAR will run Smalltalk programs ten times faster than BS. This will result in ten dmes
more garbage created in the same amount of time, but, we would not expect Generation
Scavenging to run ten times faster on SOAR than in Berkeley Smaliltalk. If it ran at the
same speed., then the overhead for scavenging on SOAR would be en times worse, or 15%.
In fact, as we show in Section 5.9, Generation Scavenging takes only about 2% of SOAR’s

dme.

5.9.2.1. SOAR Scavenge Duration

We have written Generation Scavenging in SOAR assembly language and simulated it
in the course of running the macro benchmarks. Table 5.8 gives measurements of 12
scavenges, 9 from the decompiler benchmark, two from the printDefinition benchmark, and
one from the compiler benchmark. (See Chapter 4.1 for a descripdon of the benchmarks.)
As expected, the duration of a scavenge can be predicted from the number of words of new
objects that survive the scavenge. Figure 5.8 superimposes the observed data with a linear
regression. The regression predicts that the number of cycles for a scavenge is

24xsurviving -words +3500 with a correlaton coefficient ~ of 0.976.

The last column of Table 5.8 gives the duradon, or pause time of each scavenge.

assuming 400 ns per cycle. Despite identcal cycle imes. SOAR's mean scavenge time was

Table 5.8: Statistics on twelve scavenges simulated for SOAR.
The last column assumes a cvcle rime of 400 ns.

pame of scavenge dam cycles | scavenge
benchmark tme scavenged per dme ;
, (cycles) (words) word (ms) ;
1 decompiler i 56,832 2,477 23 23 i

2 decompiler 45,832 2,028 3 19
3 decompiler 45,491 2,022 2 18
4 decompiler 41,262 1,828 3 17 .
S decompiler 69,937 3,114 2 27 :
6 decompiler 37,449 1,692 22 15
7 decompiler v 37,157 1,693 3 16 i
8 decompiler i 30,100 1,489 20 12
9 decompiler ' 29,228 1,489 20 12 |

10 printDefinidon | 63,417 2,542 25 25
11 printDefinition ; 53,535 2,587 21 22 .
12__compiler | 60,374 2,834 21 24 !
e e ——
min P 29,000 1,500 20 12 :
25%ile | 37,000 1,700 21 15 |
median | 45,000 2,000 2 18 ;
mean {48,000 2,200 - 22 19 :

(s.d.) | (13,000) (540) (1.4) (5.0

75%ile 57,000 2,500 3 23 !
max 70,000 3,100 25 27. ;

97

98

Scavenge duradon as a functon of words scavenged.

—a 0= LNO =Rt~ HO~=N~aa. o <cHMnNnn

1 4 13 L L) 1

1000 1500 2000 2500 3000 3500
words scavenged :

Figure 5.8: Predicring the duration of a scavenge. This graph shows that scavenge dura-
tion can be predicted from the oumber of words scavenged.

19 ms, eight tmes less than BS’s 160 ms. There are several possible explanatons:

. A SOAR chip receives 32 bits from memory every cycle whereas the 68010 is limited

to 16 bits. Thus the SOAR system has twice the memory bandwidth.

e The simulated SOAR scavenging copied less data than the BS scavenges. The most

likely explanadon is activation records: BS keeps them in new space forcing each

99

scavenge to copy them. On the other hand, SOAR allocates activaton records in 3
» separate stack that gets scanned rather than copied. The numbers show that the aver-
age BS scavenge copied 4.8 Kwords whereas the average SOAR scavenge copied oaly

2.1 Kwords. This accounts for 2.3 times the work.

The above two explanatons together account for a factor of 4.6, leaving a factor of 1.8 per-
formance improvement to be explained by the next two differences (which are harder to
quandfy):

. Assembly code can be more efficient than C. Generation Scavenging is written in

assembler for SOAR and in C for BS.

. SOAR's architecture runs programs faster than the 68010’s. In partcular, the reduced
instructon set, register file, word addressing, fast shuffle, and mg checking hardware

might contribute to the performance improvement of scavenging in SOAR.

5.92.2. SOAR Scavenge Frequency

The worst SOAR scavenge took 27 ms. which is well below the threshold for an
annoying pause. However, if the time that a program could run between scavenge and the
next were 100 short, the 27 ms pause would stll be unaccepumbie. The length of this gap
between pauses is determined by the creagon rate for new objects and the by amount of
memory available to hold them. To measure this interval, we ran six benchmarks on SOAR
and measured the rate of object creadon during a (randomly chosen) pordon of each. The
data are presented in Table 5.9. With 150 KB available for newly-created objects. 2.3
seconds of computadion will be available to amortize the 27 ms scavgnging pause. The crea-

tion rate would have to grow by an order of magnitude to be a problem.

100

Table 5.9: Space allocation rate benchmarks on SOAR. i

' (Samples are complete second iterarions of each benchmark.) :
(Assumes new area size = 150KB, gle time = 400 ns.) i

benchmark duragon space growth growth | scavenge !
allocated rate rae interval |

, (cycles) (words) | (w/kec) (kwisec) | (secs) |
decompiler 2,958,219 36.886 12 31 12 |

1 printHierarchy 119,040 1.426 12 30 13 i
allimplementors | 2,257,051 18,058 8.0 20 19 .

i printDefinition 75.319 509 6.8 17 23 |
:.compiler 1,117,660 7,467 6.7 17 23
classOrganizer 2,959,728 9,905 33 8.4 46
mean — — 8.1 21 23 |
s.d. — — 34 8.6 12 !

5.92.3. Net SOAR Scavenge Overhead

Given the above data, we can calculate the pause time, gap between scavenges, and

average scavenge overbead (Table 5.10). The results that generaton scavenging is

non-disruptive; a 27 ms pause every second is hard to notice. Furthermore, scavenging uses

less than 2% of the CPU tme, allowing the computation to proceed at full speed.

5.92.4. Generation Scavenge Trap Time

Recall that the Generation Scavenging algorithm mainains a table of references from

old to new objects. SOAR taps when it creates such a reference, enabling the trap routne ©

enter the address of the referenced object in the table. Table 5.11 gives an analysis of store

trap overhead for the simulated macro benchmarks. The path length of 100 cycles for a store

trap was determined by assuming a 1 in 8 chance of window overflow, and mking the worst

“Table 5.10: Extrapolated vs. Simulated Scavenging on SOAR. |
best case average WOrst case
' pause tme 12 ms 19 ms 27 ms
* scavenge interval 4.6 secs 2.3 secs 1.2 secs
. scavenge overhead 0.3% 0.8% 23%
wapping overhead 0% 0.05% 1.0%
' total overhead 0.3% 0.9% 3.3%

101

case for the other branches. The worst case overhead to maintain the remembered setis 1 %,

with 2 median of 0.05%.

5.93. Summary of Generation Scavenging’s Performance
Table 5.12 summarizes our findings. Sec Appendix D for a more detailed description.
Generation Scavenging offers outsmanding performance:

° At 3%, its CPU overbead is three times lower than deferred reference counting, its
nearest competitor on a compiled Smalltalk-80 system: The overbead is so low that
designers of high-performance systems who formerly shunned automatic storage recla-

magion can now embrace it

[Table 5.11: Generation Scavenge Store trapping overhead in SOAR.
Benchmark Benchmark store store store
Name Cycles Taps T3p trap
, : . cycles overhead
! decompiler 2,958,219 0 0 0%
alllmplementors 2,257,051 1 100 0.004%
| classOrganizer 2,959,728 14 1,400 0.05%
| compiler 1,117,660 7 700 0.06%
| prindDefinition 75,319 1 100 0.13%
| printHierarchy 119.040 12 1,200 1.0%
. median | 0.05%
! Table 5.12: Summary of Generation Sczvengmg s Performance.
Berkeley Smalltalk OAR
i execution model interpreted compﬂcd
| source of dama measurements simulations
| processor MC68010 SOAR
! cycle time 400 ns 400 ns
! CPU tme overhead
| mean 1.5% 0.9%
| worst case n.a. 3.3%
. pause dme (scavenge duranon)
mean 160 ms 19 ms
Wworst case 330 ms 28 ms
peak main memory usage 200 KB 200 KB
backing store accesses 0.15 n.a.

102

. The short pause times for Generadon Scavenging are a good match to an exploratory
programming environment. Since people have difficulty nodcing pauses of 100 ms,

they will not be disturbed by pauses of 28 ms.

e The 200 KB of main memory needed for temporary data exceeds the space require-
ments of most older algorithms. However, given the state of the art in computer
memory hardware. 200 KB of overhead seems reasonable for 2 system with 2 MB of
main memory.

. Ideally, automatic storage reclamation should not cause any page faults. Even without
any provisions for locking new and remembered objects in main memory, BS averaged

only 1 page fault per seven scavenges.

£.9.4. Performance Evaluation of Direct Addressing on SOAR

Because Generation Scavenging includes compaction, the usual indirection through an
objeci table is unnecessary in BS and SOAR, making them the only Smalltaik-80 systems
without object tables. The indirection through such a mble is sometimes ovcripoked when
evaluating reference-counting reclamation, but it can be a bottieneck; a typical Smalltalk-80
system accesses the object table 1.2 tmes per bytecode [UnP83]. Assuming SOAR per-
forms as fast as the Dorado (300KB.c/.s), SOAR would access the object table 360,000
times per second. The absolute minimum table access would be a single load insgucton.
Assuming 400 ns per cycle, such an indirection would take two cycles. or 800 ns. At
360.000 mble accesses per second, that would be 0.29 seconds of indirection time for each
second of processing tme. Discussions with Deutsch suggest that further optimizaton pos-
sibly could halve this overhead. In other words, an object table would slow SOAR by 15%

w0 29%.

Although we eliminated the object tabie to improve performance, there is one

Smalltalk-80 primitive operation that runs much slower without it. The become: primigve

103

exchanges the identities of two objects, so that all pointers to the first object are redirected

the second, and vice versa.

A Smalltalk-80 system with an object @ble can perform a becomne quickly by exchang-
ing object table enmies (Figure 5.9). A system without an object table (such as SOAR) must
search objects and exchange poimers. Although we bave devised swategies © limit the
search, a worst case become still involves a scarch throughout virrual memory. Such a long
pause is unacceptable. We avoided this probiem by rewridng the software for Smalltalk-30
dara structures to avoid becomes. To eswblish the feasibility of this approach, we added new
Collection classes that mimic old ones without resorting to becomes (Figure 5.10), then
modified the macro-benchmarks to take advantage of our become-less classes [Wal83].
Table 5.13 presents an analysis of this change on system performance. The printDefinition

benchmark shows that this change has a negligibie effect on a benchmark that does not do

. orginal | creae copy of self © | self become: copy
set i
A/ N/
object abic| | [obj table | [obj tabie] [ob) mbic | [obj table
Sntry l SQITyY SOy eny egy J-
0 ! |
¥, | - - yrd i
ally | wlly tally aly | | wily |
| 2 ; 2 2 2 2 |
! 3 ' 3 3 3 3 |
; 5 i 5 5 s 5 |
; 7 |
|
|

Figure 5.9: Growing with become. The sequence above illusrrates how a Smallialk-80 set
employs become 1o grow. Inirially, the ser is (2, 3.5) and we artempt 10 add 7 1o it. The s§t
creares a larger copy of irseif and uses become: to replace the original set with the larger
version. '

104

i i :
l original | create new array pant iswiteh internal pointer:

NN

tally | [Ty

uu'~+—-
L,.,Nl._-

L RV AV N N

TRV R N
LR RV RV)

s
i
‘
!
|
.
|
i
i
i
!
|
!

Figure 5.10: Growing withous become. The sequence above illustrates how our modified
sets grow without resorning o become:. The contenus are stored in a separare array. To
grow. the set allocates a larger array. inidalizes i, and redirects an inzernal point to the
new array. We have replaced costly implicit indirection with explicit indirection that incurs
cost only when needed. This is in keeping with the RISC philosopky.

| Table 5.13: Performance imgact of eliminating becomes.
.{ benchmark # becomes duration duration cycles
: " © wi becomes | w/obecomes | saved
(cycles) (cycles) '
printDefinition 0 75,475 75,317 0%
compiler 7 1,383,201 1,127,658 18%
decompiler 38 4,045,641 3,006,974 26%
printHierarchy 3 165,997 119,574 28%

any becomes. But, our efforts to eliminate becomes from programs that did use them were

handsomely repaid with an 18% to 28% performance improvement.

Although we have eliminated becomes invoked by the system classes, the SOAR pro-
grammer must either shy away from this primitive, or be prepared to pay a saff performance
penalty. Forcing the user o worry about the efficiency a primitive operation runs counter to
the philosopby of exploratory programming environments in general and Smailtalk-80 in
particular. However, we believe that the become primitive is so intrinsically
expensive—fast becomes require a level of indirection that slows down many frequent

operations—that the effort to accomplish a become should not be hidden.

105

We have also estimated the impact of indirection on code size. An Object Table would
mqt;ixt an extra insucton to load or store a literal variable, and one indirection in the
method prologue (for the receiver). (Weare assuming that many indirections will be opum-
ized away, as in Deutsch and Schiffman’s syseem.) Tabie 5.14 presents our analysis under

these assumptions. The extra code for an object table would add only 2% to the size of the

system.

5.9.5. Architectural support for Storage' Management

The SOAR chip supports demand-paged virwal memory with restarable, fixed sized
insguctions and a page fault inerrupt [SKFBS5]. An off-<chip page map tanslates addresses
and mainains referenced informadon. The silicon cost for virmal memory is about 20 sup-
port chips including the page map. Figure 5.11 shows that the SOAR host board hides the

page map access time in memory access time [BID83].

‘To suppont C":eneréu'on Scavenging, all pointers include a four-bit mg. When a store
instructdion stores a new pointer into an old object. a special Tap occurs. The software trap
handler then records the reference. The tag-checking PLA has 8 inputs and one output, and
occupies about 0.1% of the totl chip area. The cost of the exza control logic to handle the
gap is harder to measure. As mentioned in Chapter 4, tagged store instructions occur so

rarely that even this small cost cannot be justfied.

[Table 5.14: Static cost of ob'!ect indirection. -
method prologues 4654

, literal variabie loads 3532 :
literal variable stores 254 '

total image size 1,500 kB
relanve cost of addiuonal code 2.25%

106

offset ioto page
RAM
SOAR
=% | page map physical page #
virtual
page #
. page offset to RAM
- 1
page # o RAM
l _
o i
access page map

1
] i

Figure 5.11: Fast address wanslarion. The SOAR system has adopted the same techuique
as the Sun 68010 workstation to perform address translaton without hurting performance.
It hides the wanslation time in the address multiplexing delay for the dynamic RAM chips.
On each memory access, the low order address bits that specify the offset ioto the page are
sent to the memory while simultaneously reading the page map. The physical page oumber
is then seat to the memory as the second piece of the address. A virmal memory with one
segment per object could not run as fast because the offset into a segment is not idendcal to
the least significant bits of the physical address. Consequendy, no portoa of the virual ad-
dress can be sent immediately to the RAM chips.

§.9.6. Generation Scavenging and Activation Records

We have simplified this chapter by deliberatcly omitting acdvation records. In this
section, we outline the problems caused by activaton records in Smalltalk-80 and our solu-
tions to them. Activation records present a problem because a Smalltalk-80 program can
manipulate them like any other object. For instance, a subroutne can obtain a pointer to its
" activation record and place it in a global variable. After the subroutne remrns. another rou-
tine can inspect the activation record via the global variable. Since SOAR activadon records
are kept in the register frame stack, extmraordinary measures are required to preserve this
information. When a Smalltalk-80 program creates a reference to an activaton record we
mark it as non-lifo. When a non-lifo activation is about to be deswoyed (i.c. when a return

instruction attempts to free it). we copy the record to the heap and adjust the references to it.

107

Thus, the steps are:

1)

2)

- Detect the creation of a non-lifo reference to an activation record, then mark the

acrivation record as non-lifo:

A nop-lifo reference can be created by storing a pointer to an activation record or by
reurning such a pointer as a result We have allocated a distinet tag for acuvation
records (context, or 1111). A tagged store insoucdon will oap when storing such a2
pointer. As for rerurns, the SOAR compiler generates a trap instructon before each
return that checks the tag and traps if needed. The trap handler sets the high-order bit
of the activadon record’s return address. This marks the activation record as non-lifo.

Meanwhile, the reference is added to 2 software table so it can be updated 12;:1'.

Detect a return from a non-lifo acrivation record, then copy it and updare ary refer-
ences 10 ir.

The retum instruction traps if the rewurn address has its high;ordcr bit set. This Tap
handler then allocates space in the new area for the activaton record, copies it, and
updates references to it At this point there is no need to tap further stores, so the

reference’s tag is changed to new.

We have extended this strategy to include blocks. Smallralk-80 blocks implement con-

wol sguctures by allowing one routine to congol execudon in another’s context Fre-

quendy, a block is created, passed down the call chain to a subroutine that repeatedly

invokes the block and then reurns. Thus, we must impose a2 minimum of overbead on this

case, while handling non-lifo references to blocks. In other words, althougﬁ a block is an

object that refers to a context, we do not mark the context as non-lifo undl the block itself

becomes non-lifo. This is accomplished with the same mechanism outlined above; using the

context tag for block objects.

108

5.9.7. The Potential Problem of Premature Promotion

Recall that Generation Scavenging is based on the assumption that the longer an object
survives the longer it will remain alive. Therefore, when an object attains a ripe old age, it is
promoted from the new generation to the old. At this point, the system assumes that the
object is immortal and ceases attempts to reclaim it. For this reason, we call the promotion
process tenuring. However, in some cases the object may die shortly thereafter and waste

space long after its useful life.

At first glance, one would expect dead tenured objects to waste backing storage, but
not main memory. They would seem to get paged out to make room for enured objects that
remain alive. However, because an object is so small relatve to the size of a page (14 vs.
1024 words), a page could easily contain just a few live objects among many dud ones.
This internal fragmentation could tie up much more main memory than is actually needed
. for the live objects. ln this manner dead tenured objects can increase the number of pages in
the working set |

How severe is this problem? We plan to reclaim dead tenured objects once a day by an
offline reclamation program. How many will build up in a day? We won't know until we
measure the lifetimes of objects over hours of elapsed time on a high-performance sysem
like the Dorado or SOAR. Chapter 6 has a more detailed discussion of this issue and stra-

wgies for coping, shouid it turn out to be a problem.

5.10. Summary of Reclamation Algorithms

Table 5.15 summarizes our results: both Deutsch-Bobrow deferred reference counting
and Generation Scavenging perform well enough for an advanced personal computer. The

advantages of Generation Scavenging over deferred reference countng are:

it reclaims circular stuctures,

it includes compacton, and

it uses less than a tenth of the total CPU dme.

5.11. Conclusions

109

The combinaton of genmeraton scavenging and paging provides high performance

automatic storage reclamation, compacton, and virrual memory. This method of storage

management has proven its worth daily im Berkeley Smalltalk, which has supported the

SOAR compiler project, architectural stdies, and text editing for portions of this chapter.

The algorithm we have presented may not accommodate objects that live for 2 medium

amount of time; they may increase the tdme overhead or cause thrashing. Measurements

must be taken on high-performance Smalltalk-80 syswems to understand the behavior of

these objects.

Table 5.15: Summary of reciamation stratgi& ‘

CPU tme main memory paging pause pause
i for dynamic VOs time interval
objects (sec) (sec)
_page it no reclamadon | ? 15 KB ~50/s
- immed ref. count 15%-20% 15KB ? 0 oo j
(compaction) 13 60 - 1200
deferred ref. count 11% 40KB ? 0.030 0.30 '
* (compacton) 1.3 60 - 1200 '
mark and sweep 25% -40% 1900 KB 90/gc 4.5 74 ‘
Ballard 7%* 2000 KB 0 0 oo
Generaton Scavenging
BS 2% 200 KB 1.2s 0.16 16
SOAR best case 0.3% 170KB 0 0.011 4.0
SOAR average 0.9% 170KB 0 0.017 2.0
SOAR worst case 3.3% 170KB 0 0.02s 1.1

» Ballard’'s Smalltalk-80 sysiem used interpreuve execuuon. Although using a VAX 11/780 it ran the compiler
macro-benchmark five umes slower than Deutsch's deferred reference counuing dynamically compiled Xerox STS8K system
[BaS83, DeS84]. Ballard's siorage reclamauon algonthm may well exceed 7% overbead on a compiied Smalltalk-80 sysiem.

110

High performance storage reclamation relies on two principles:

. Young objects die young. Therefore a reclamation algorithm should not waste ume on

old objects.

. For young objects, fatlities overwhelm survivors. Copying survivors is much cheaper
than scanning corpses.

Careful consideraton of the virmal memory system is essendal. Generation Scavenging

combines these lessons to meet sgingent performance goals: low time overhead (2% in BS,

3% in SOAR), imperceptibly short pause times (160 ms in BS, 27 ms in SOAR), and a low

page fault rate (1.2 faults/sec in BS). Meeting these goals costs 200 KB of primary memory,

but the result is worth it; a high-performance computer system with fast automatic storage

reclamadon.

111
Chapter 6

Scavenging Data with Intermediate Lifetimes

6.1. Introduction

What happens if the age of an object fails to predict its lifetime? An object that sur-
vives long enough to be promoted but succumbs shoftly thereafter will waste storage in old
space. This chapter contains a detailed descripdon of the problem. how we have artacked in
Berkeley Smalltalk, some proposals for extra generations, and an analytical model that sheds

some light on the effect of various parameters on performance.

62. The Tenuring Threshoid

When should Generation Scavenging tenure an object? Since we have observed that
young !objects are likely to die and old omes are likely to persist, our algorithm tenures an
object that lives long enough. The easiest way to measure age is to count the number of
scavenges an object survives. Thus. each object contains a byte that is initialized to zero and
is incremented on each scavenge. If an object survives for a certain number of scavenges, it
gets tenured. The problem is to choose this threshold. If it is too small, that is if Generaton
Scavenging tenures objects too soon, a large fracton of them will die shortly after receiving
tenure. Tenured garbage wastes space on backing store, and more importantly, may slow the
system with exmra page faults by mixing dead and live objects on the same page. On the
other hand. if the tenuring threshold is too high, long-lived objects will pile up in the new
area, increasing the amount of data that must be copied for each scavenge. This will
increase the pause time and the CPU overhead for storage reclamation. Thus, the tenuring
threshold must balance the increase in page faults caused by tenured garbage against the

extra pause time caused by scavenging long-lived objects. -

112

In Berkeley Smal]ﬁlk, we have included a feedback-mediated adapdve algorithm t©
set t!;e tenuring threshold. The aigorithm examines the amount of data that survived the pre-
vious scavenge and adjusts the tenuring threshold accordingly. The curreat implementaton
limits the weouring threshold © 64, where it remains most of the time. On SOAR, a‘tenuring
| threshold of 64 would mean that an object would have to survive for more than a minute ©
be tenured. Since the response time for most requests is much smaller than 2 minute, setting
the tenuring threshold to 64 would ailow Generation Scavenging to reclaim the bulk of the
garbage online.

We bave performed an experiment with BS to better understand tenuring. Since the
objects of concern are those that live for relatively long times. a typical interactve session of
several hours duraton would be ideal for characterizing tenuring behavior. Berkeley
Smallmik’s poor overall pcrfomxa.nce, 10% of a Dorado, prevented us from gathering data
from a typical in:cxa'cdve session. Lacking a Dorado or SOAR chip, we settled for a syn-
thetic workioad: ou;' u:nagc merely ran the decompiler benchmark tweaty times. 1;he inter-
val between scavenges was held fairly consmnt while varying the tenure threshold. A towl
of 20kw was allocated in the new area (plus 20kw for each survivor area). The feedback
mediated scavenge algorithm used an average of 18.7 kw before each scavenge. Table 6.1

gives our results.

Figure 6.1 shows the rclatonship berween the tenuring threshoid and the number of
byws of dam thar were wnured. As expected. the number of objects achieving tenure
decreases as the dme required to obwin tenure increases. In addition, there are two knees in
the curve — also just as expected. The first knee, at a tenure threshold of one, merely
proves that most objects die very quickly. The reason is thata threshoid of zero means that
every object gets promoted—cven though it may be only milliseconds old—but a threshold
of one means that an object that gets promoted must be older than the time berween

scavenges. Since the séavengcs occurred every 3.5 seconds, this knee shows that many

113

L Table 6.1: Results of BS tenuring experiment.
[— ;
tenure #gs’'s toal total avg. max CPUume
threshold time tenured surv. surv. overhead
+ _(#gs’s) (secs) (kw) (kw) (kw) (%)*
0 90 340 56.0 23 43 0.6%
1 83 290 17.0 29 43 0.8%
2 83 310 16.9 30 43 0.8%
3 83 300 16.7 32 45 0.9%
4 83 290 3.7 34 4.8 0.9%
5 83 300 37 34 4.6 0.9%
6 83 300 39 35 4.6 0.9%
7 83 280 3.7 35 4.7 1.0%
8 83 290 3.6 3.6 4.8 1.0%
16 83 290 29 38 49 1.0%
32 83 300 24 42 6.9 1.1%
64 83 290 20 5.1 6.4 1.4%
objects live less than 3.5 seconds.

The second knee, at 4, indicates that many objects live for more than 3x3.5 seconds but
Jess than 4x3.5 seconds. This is not surprising because each iteration of the benchmark took
- about 12 seconds. The only.obj'ecrs tenured at a threshold of 4, were those that survived for
more than one iteration. These were the text lines printed on the screen from the bench-
marks. This experiment confirms our understanding of tenuring; any object which outlives

the product of the tenuring threshold and the inter-scavenge time gets tenured.

Although minimizing the amount of tenured data saves (virtual) memory space and
improves paging performance, it forces the scavenge operation 10 COpYy MOrE SUrvivors,
which takes more time. The surprise is how small this increase is. In this experiment, the
quantry of tenured daa—which is principally garbage—decreased by a factor of 23, while
the dme spent on scavenging merely doubled.

Unfortunately, we would need measurements of a fast Smallakk-80 system to com-

pletely predict the effects of tenuring. Tenuring affects objects that live for minutes or

hours. These objects are used by people. not programs. For example, the objecs that

* Based on 24 cycies ® survivor + 3500 as derived in Section 5.9.2.1.

114

Effect of teoure threshold oo amount tenured.

i

100 D IEF ILICSTTEORP IR PIELTISLRLLELRLEEE seesennamntimetastanes . |

. : : . : : . 1

| s
: |
! 1l |
|

|

]

i

]

t ,
° : : : : |
! mist survive:]1 scavenge before tedure |
bl « : : : !
!

i

—Er~ AONEBN~ NP,

1 T - T T - T T T 1 :
0 10 20 30 40 50 60 70
tenure threshold ‘

Figure 6.1 Effect of tenure threshold dme on amount of data rerured. Nodgcs the knees at
a tenure threshold of 1 and 4. :

comprise a window on a screen would have lifetimes of minutes. Because their lifedmes
depend on how people use them. we cannot exmapolar from a slow Smallalk-80 syseem

such as BS to a fast one like SOA.R_.

Although we cannot characterize the problem, we can characterize some potendal solu-

gons:

115

Two generarions with fast tenuring. This is the present configuradon. Deutsch has
estimated that data structures used by a typical window, for example a browser, con-
sume 15 KB of memory. At 20 cycles per word, that means that it would take 30 ms to
scavenge the dam for a window. Thus, assuming 150 KB of new space, every
uneenured window would add 3% to the scavenging overhead, limiting the number of
untenured windows to about 4. If the rate of window creaton is slow enough, a system
that tenures objects so fast that every window gets tenured may be practical. On the
other hand, if many windows are created and immediately destroyed (as in the case of

error message windows) it may be important to rewin a few untenured windows.

Two generations with slow tenuring. Assume we dedicate a megabyte of physical
memory to new objects. Then the system can run seven seconds between scavenges.
That means that 2 more dara can be scavenged without incurring incurring excessive
overhead. In fact, the limit becomes the scavenge's pause time, not the percentage of
overhead. SW that we accept a fifth-second paus§ every sev seconds. That is
long enocugh w scavenge seven windows. This may be a sufficient number of
untenured windows to avoid tenuring garbagé. (Interestingly, seven is roughly the size

of a human short-term memory.)

' Three generations with fast tenuring. Suppose we add a third generadion in the middle.
Some of the space for the third generation can be obtined by reducing the size of the
youngest generation from 100KB to SOKB, which miples the scavenge overhead to a
(still accepmble) 3%. A middle generadon of 300KB of physical memory can conwin
ten untenured windows (in each semispace). The tme for a scavenge of the middle
generation would be about 300 ms. This option can support about the same number of
windows as the two generation, slow tenuring one, but with slightly more space and

significandy less time overhead.

116

4. Three gener’an'ons with slow renuring. Suppose we add a large third generation, but
‘use virmal memory instead of physical. Scavenging this middle-aged generation
would then incur page faults and cause a percepdble pause, perhaps one to three
seconds. However, 30 windows could be created before filling (the 1/2 MB semispace
of) 2 one megabyte generadon. Thus, these long scavenges would be infrequent, and

accepable.

5. Four generarions. SOAR'’s mgs support four generations, so we could combine the
above schemes. The youngest gencration would be small, locked into memory, and
frequently scavenged. An object surviving two scavenges would be promoted into the
next generation. This would also be in physical memory, but larger. This generation
would hoid the newest few windows. Thus, this is impormnt if many windows are
closed immediately. The third generation, would be about a megabyte, and located in
virtual memory. Most windows and medium lifetime objects would reside here. They
could be reclaimed without a compiete norgMdon. Finally, permanent objects like
the square-root routine would reside in the oldest generation, which would be
reclaimed and reorga.niicd offline. Table 6.2 summarized these proposals. More work
is peeded to measure the behavior of these medium lifedime objects and design

appropriate two- Or three- generation parameters and reorganization algorithms.

63. Analysis of a Single Scavenged Generation

How much physical memory must be dedicated to new objects? In this secton we
present an anal)-'sis of a two-generation System where one generaton is scavenged (New)
and the other is reclaimed offline (Qld). Since the Old objects are reclaimed offline, we will
only analyze the New generaton here. Table 6.3 inooduces the relevant terms. The first
consmaint we face is to keep the scavenge pauses small enough tc; be unobousive. The daa

on scavenging duration in the previous section showed that the length of a scavenge can be

117

Table 62: Summary of tenuring proposais. ;

full

emeritus

_generation assistant | associate !
_type of memory ghg‘cal virtual ?
Proposal 1. Two generations, fast tenuring. I

. creation area (KB) | 140 4,000 ;
. gap ume (sec) 1 ? }
© survivor area (XB) 17 disk ;
. pause time (ms) 30 60 '

scavenge time (%) 3% ?

ri memo! (XB) || 170 2,000 '

e e e

Proposal 2. Two generartions, slow

tenuring.

creation area (KB) || 420 4,000
| survivor area (XB) || 170 disk

. pause time (sec) - 0.30 60

: scavenge time (%) 10% ?

; memo! (XB) || 760 2,000
. Proposal 3. Three generations, fast tenuring. |

: creation area (KB) | 140 0 4,000

' gap time (sec) 1 600 ?

. survivor area (XB) 17 150 disk
. pause time (sec) 0.030 0.30 60
scavenge tme (%) 3% 0.05% ?
i memory (KB) 170 300 1-3MB

Proposal 4. Three generarions, slow tenuring. |

creation area (KB) || 140 0 3,000

gap time (sec) 1 2,000 ?
survivor area (KB) 17 500 disk t
pause time (sec) 0.030 °10 60 l
scavenge dme (%) 3% 0.5% ? '
gﬁg memory (KB) 170 |. 00 | 05-25MB
~ Proposal 5. Four generations. |

creation area (KB) || 140 0 0 3,000
gap time (sec) 1 600 20,0007 ? i
survivor area (KB) 17 150 500 disk :
pause time (sec) 0.030 0.30 10 60 *

scavenge tme (%) 3% 0.05% 0.05%"? ?
primary memory (KB) 170 300 500 05-25MB

118

‘ Table 6.3: Quantities to analyze a single generation. B

e =
| symbol_| descriprion | wunits
i constants
| er SOAR cycle dme seconds
se scavenge effort avg. cycles per scavenged byt cycles per byte
abw allocation bandwidth: rate of new data instantiagon bytes per second
independent variables
surv size of each survivor area bytes
Eden size of new object creation area bytes
! dependent variables
| mem | toral memory used bytes
. pause | length of scavenging pause seconds
. gap | gap between scavenges seconds
i ov | fraction of CPU used for scavenging this generation fracdon {0, 1]

predicted from the amount of data surviving the scavenge.

pause = (seXct yXsurv (H
Let's test this with an example. Plugging in typical SOAR parameers cr = 400ns,

se = 5.5¢cyc byte, and surv = 8,800byres :

pause = (5.5x400ns)x8,800 = 19ms . ’ (1E)
which matches the simulated pause time of 19 ms.

Reducing the tenuring threshold will limit the quantdity of data that survives a scavenge
by promoting the oldest surviving objects. Once in Old space, they need not be scavenged.
But, as discussed in the previous secton, too much tenuring can provoke thrashing. Thus,
we recommend choosing an acceptable pause time (perhaps from 10 ms to 100 ms) and
adapdvely adjusting the teoure threshold to maintain the corresponding amount of untenured

dara.

The next step is to calculawe the amount of memory devoted to newly-created objects.

Let's assume that the rate of object allocation is fairly constant. Then

Eden
abw

gap = (2)
For example, in the growth rate experiment in the previous section, we found that the com-

piler benchmark generated 17,000 words per second. Thus, abw = 68,000byres/sec. so for

119

Eden = 150,000,

150,000
gap =7 500 2.2sec . (2E)

In other words. with 150 KB for new objects, SOAR could run for two seconds between suc-

cessive scavenges.

Althou ,ws—-ﬁ'-'f-'—-,wewilluseasi ler approximation,
‘ gh. pom— mpler app

- ov = 2% 3)
8

for our analysis. (This is a reasonable approximation because we only care about systems
with low overhead.) Continuing with our example, we can use equadon (3) to calculate the

tme overhead:

9ms
> 2rec =0.86% (3E)

ov =

Since we have expressions for the pause and gap r.jmes, we can combine (1), (2), and

(3) to express the overhead in terms of memory allocadons:

surv ov
Eden | (sexctxabw) 4)

Suppose we need to decide how much memory o allocate for Eden in SOAR:

8600 A
Eden 0.15

Eden xov = 1300KB (4E)
So, for 2% overhead, we would allocate 65 KB t Eden. This would total

2x8600 +65,000 = 82XB of main memory for New object.

For the general case we can combine
mem = Eden + 2xsurv - 3
with (4) to calculate the total memory required. Suppose we built the system as described
above, only to discover that it tenures too much garbage. The first step to cut down on

tenuring would be to boost the quantity of untenured survivors. This will increase the pause

120

time for a scavenge; equation (1) says that surv = —%:—3— Thus, 50 KB of survivors will

result in pauses that last 100 ms. The increased pause ume will drive up CPU overhead
unless we dedicate more memory to Eden. Suppose we allow CPU overhead to rise to 5% w0

economize on memory, then equaton (4) gives the size of the Eden area required.

50,000 0.05
—— N a—

0
Eden 0.15 33
50.000
Eden = 0.33 = 150,000

Equaton (5) then supplies the total memory for this generaton:
memory = 150,000 + 2x50,000 = 250,000 (5E)

6.4. Analyzing a Middle Generation

What if this is still not enough space for medium-lifetime objects? A third generaton
can be added in the middle. This resuits in a system with three generations: a generaton for
cvancséent objects (Generadon 15, a generation for medium-lived ‘obje'::s (Generadon 2),
and a generation for permanent objects (Figure 6.2). Assuming that we keep Generatdon 2 in
primary memory, how are we going to divide memory among the two scavenged genera-
tions? The equations in the previous section specify the bebavior of a single scavenged gen-
eration, so we can apply them to each of the two scavenged generagons, using subscripts ©

indicate the generation. Then, by superpositon from (4):

(se (xct Xabw \)surv, (se ;Xctxabw)surv 4
-
Eden Eden,

(6)

OV SOV +0OVy =

For example, assume that cach window uses 15 KB of data, and that we want © be able ©

support ten windows without tenuring. Then surv, = 150KB. If we open one window per

minute, abw ;=15 % = 250bytes /sec. (Se and ct are the same for both generadons.) Thus.

1300 74
Ed!nl . Ed‘ﬂz

ov =av,+ov2=

(6E)

121

Generation 1 Generation 2 " Generation 3
** Assistant’* ** Associate’’ **Emeritus’’
Surv Surv
Surv Og\ \\
h N
\\ s N
Eden \ urv % N
\, b]
X Eden
age <1 min I1minSage<1hr 1 hr S age ,
intermediate resuits window data system code & data
created by programs created by user created by Xerox

Figure 62: Diagram of a sysiem with a middle generarion. Objects are created in the Eden
area of the Assistant generation. If an objects lives through several scaveages in the Assis-
tant survivor areas, it gets promoted into the Associate Eden area If it then survives
scavenges between the Associate survivor areas, the object receives teoure into the Emer-
itus area, where it is exempt from online reclamation. Ideally, the parameters would be set
to keep shon-lived objects represeating intermediate resuits in Generation 1,
medium-lifetime objects used by windows in Generadon 2, and long-lived objects like the
square root routine in the Old generation.

Now, let’s minimize the total ime overhead given a fixed amount of memory to divide

among the two Edens. From (6), substturtng Eden, = Eden — Eden, and differendadng with

respect to Eden ;:
dov) __ (se xct \xabw)surv, (se FXCT yxXabw surv 5 7
(d Eden,) Eden 2 (Eden—Eden) (
. d (ov) .
tung ——————o- =4, ’
Seting d Eden) 0, and solving for Eden ;, we get
Eden 1 s 1 and Eden 2 1
Eden 1 V(se 9XCT Jxabw J)surv , Eden | *f(-se 1XCT | Xabw Jsury (8)
-+ e —————————————

B) -
V(se | xct xabw)surv N(se yxct pxabw J)surv ,

122

Continuing with our example,

Eden | _ 1 Eden, 1

= ——— = 81% and = 19%
Eden V4 Eden |, VT30 = (8E)
~¥1300 V74

Given an optimal split, we can plug (8) into (5) w find the minimum amount of over-

head for a given amount of memory:

' 2
ovxEden = [‘f(?c | XCT [Xabw |)surv , + (:ezx:rzxabwz):wvz] (9
For our example,
—_— 2
ovxEden = [vlsoow’ﬁ] = 2000 (9E)

So, for 2% overhead, 100 KB of Eden would be needed. Adding in the survivor areas, 420
KB of physical memory would be used for scavenging. What about those long pauses for
Generation 27 From = (1), pause,=150.000xsexct =300ms. From (),

= Eden, _ 0.19x100KB _ ..
P25 o, 250

. Thus, by adding a middle generation, we have made

it possible to scavenge more untenured data by increasing the gap between long scavenges.
This lets us keep 160 KB of untenured data in 420 KB of main memory at a ime cost of

2.0%.

We may decide that minimizing the total CPU overhead is not as importmnt as reducing
the frequency of long pauses. In that case, we can abandon (8) and use (1) and (2). Suppose
we can only tolerate a 300 ms pause onmce every 3 minutes. Then, using (2)
Eden , = 180x250 = 45X3) Assuining we use the same amouﬁt of memory as above, that

leaves 55 KB for Eden,. This results in a 0.81 second gap for Generaton 1. With these

parameters the total overhead is —li-» 300

=" Tao000 = 25% Of course, this is worse than the

optimal overhead of 2.0%. -

123

6.5. Controlling the Ten'uring Threshold

Objects must be tenured to avoid excessive pauses caused by scavenging too much
data. The problem is to set the tenure threshold given the survivors from the past generation.
We propose that a scavenge also maintain a abie giving the toml amount of surviving data
for each age. Such a table could then be used to predict the amount of data that would be
promoted for any given tenure threshold. Building this table would add about 10% to the

scavenge time.

6.6. The Cost of an Offline Reorganization

To better understand the time required by an offline reorganization, we measured one
on BS, on a diskless Sun 68010 workstadon. Table 6.4 gives the results: this reorganization
software is slow; 1100 memory cycles are expended in user mode on each word. Address
space limirations of early Suns forced us to reorganize the old objects by copying them to a
file, and modifying them in d!e'ﬁlé. Thus, every time a word is.rcad from old space, a file
read subroutine is called. Current Suns and SOAR have 16 MB of #ddress space, more than
enough to hoid a copy of the 1 MB to 2 MB of old space. Replacing file read/write sofrware
with virtual memory hardware should result in a large speed up, and a sub-minute reorgani-

zadon seems feasible.

(Table 6.4: Measurements of an offline reorganization on BS.
“user Gme | 116.7
system time ; 46.1 sec
real time ‘ 179 sec
idle ame : 16 sec
CPU utilization | 90.9%
reads ! 464
writes | 492
page faults | 14
inital old size | 245,036 words
final old size f 231,207 words
bandwidth 480 ps/word
16-bit cycles/word 1200

124

6.7. Summary

Objects that live long enough to be promoted but die shortdy thercafter can present a
problem for Generation Scavenging. To study this phenomonon, we would need dam from
sessions on high-performance systems using Generaton Scavenging. Since we do not have
the capability to perform these experiments, we bave merely explored some solutions that
can be adopted if necessary. The simplest swategy would be to tenuring threshold at 2 good
compromise between time and space efficiency. If that did not suffice it might be necessary

to add one or two more generations.

125

Chapter 7

Conclusions

7.1. Conclusions

We have presented and evaluated the hardware and software design of Smallualk On A
RISC (SOAR). We undertook this effort to see how well the reduced instruction set com-
puter style of system design would work for a software environment heretofore supported
only by complicated virmal machines. It has worked very well indeed. A combination of
hardware and software strategies has allowed us to build a single-chip NMOS microproces-
sor that will matwh the performance of an ECL minicomputer, despite 2 5:1 cycle time han- .
dicap. With about half of the wransistors of the MC68010 microprocessor, 3 400 as SOAR
will run the Smalltalk-80 system 2.5 times faster than the 400 ns MC68010. With only one
fifth of the transistors .of the MC68020, and with a handicap of about a factor of two in cycle
time, SOAR will outrun the MC68020. RISCs pay off for experimental programming
environments.

SOAR's performance comes at a price; namely, memory space. A bytecoded 32-bit
Smalltalk-80 image occupies a megabyte of memory. Generation Scavenging adds 200 Kb
to this, and compiling to a simple instmc:ion set costs another 500 Kb. With current

hardware technology, the extra 700 Kb is a small price to pay for high speed.

The most important hardware features are register windows and tagged integer insouc-
tions. These two feamres nearly double SOAR's performance by reducing the cost of sub-
routine calls and typechecked integer operations. Other important hardware feamres
include byte inservextract instructions, two-tone insguctons. forwarding, one cycle jumps

and calls, and tagged immediate data. In the realm of software, our storage management

126

sategies (discussed below), direct pointers. in-line caching, and compiling to a simple
instruction set are essential. In addition to permiting fast instruction decoding, the simpli-

city of the base architecture enables us to add the language-specific exmnsions.

On the other hand, despite our best intentons. we inciuded several superfluous feamres
in SOAR, including hardware support for storage reclamation, pointers to registers, parallel
nilling, and shadow registers to aid trap handling. These are archirect’s raps because they
increase design time and potendally increase the cycle time without appreciabie reducing the
number of cycles. These traps are baited with speedups for specific operations, and sprung
when real programs fail to perform the optimized operations.

We belicve that the kcy to good performance is a willingness to migrate functonality
from one level of abstraction to another, viewing the system as a whole rather than as a coi-
lection of layers. During the design process, we moved functions freely up and down the
implementation hierarchy from software to silicoﬁ o achieve good performance with
xmmmal hardware. For example, instad of inn:rprctzu'o'n, we have chosen to burden the
software with compiling and debugging a simple instruction set that can be executed
quickly. Also, we have replaced microcoded instructons for infrequent operations with
sofrware wap handlers. Our system was designed with an implementaton technology in

mind; this is the opposite of separating the architecture from the hardware impiementation.

We have developed an algorithm for automarc storage reclamaton. Generation
Scavenging, that permits SOAR to be the first full-speed Smalltalk-80 system without an
object table. We have shown that, unlike many competing algorithms. Generadon Scaveng-
ing requires no hardware support In addidon. this algorithm reduces the dme spent on
sworage reclamadon to 3% of the CPU dme. This is three times bemer than other
Smalimik-80 sysems with comparable performance. Finally, unlike tadiuonal
reference-countdng algorithms, Generation Scavenging can reclaim circular souctures of

dead objects. Automatic storage reclamation is no longer an impormant source of overhead.

127

SOAR represents a substantial improvement in cost-performance over previous
Smalltalk-80 systems. We recommend that anyone faced with the sk of building a com-
puter for an exploratory programming environment consider compiladon to a reduced

insgucton set

72. Future Work

At this date SOAR has been fabricated and, running at 800 ns., has successfully com-
pleted all of its diagnostics [Pen85b]. An unfore.seen critical path to memory needed by the
fast shuffle hardware has increased its cycle time from 400 ns to 510 as. Samples has ported
the Smallalk-80 system to the SOAR simulator; the system starts up and displays its win-
dows on the screen. Our goal is o run the Smallalk-80 system on SOAR. We will then
measure the performance of the system to find any flaws lurking in our performance data.
One of the most interesting remaining tasks is to construct a debugger for SOAR that pro-
vides all the functonality of the current Smalltalk-80 bywcoéc debugger. A Smallalk-80
system @g on SOAR with complete, source-level' debugging facilities would demon-
strate that the primitive level of the instructon set can be hidden from the user. Finalily,
Pendleton has proposed reimplementing a swripped-down SOAR with an opdmized pipeline

in a more advanced VLSI technology to yield a very fast Smalltalk-80 system.

One aspect of Generation Scavenging remains in dire need of exploradon: objects with
an intermediate life span. If promoted too soon. they waste disk space and can degrade vir-
tmal memory performance. If promoted too late. they waste the CPU dme needed to repeat-

':edly scavenge them. Adding a third, middle generadon is a possibiliry. Further research
will require measurcments of high-performance Smalltalk-80 systems with real users to

obtain realisdc actuarial dama.

128

73. Acknowiedgments
" Many have contributed to SOAR's success:

Many students at Berkeley contributed to studies that helped determine SOAR’s architec-
wmre: Scott Baden, John Blakken, Wayne Cirin, Tom Conroy, Bruce D’ Ambrosio, Robert
Hagmann, Edward Pelegri-Llopart, Carl Ponder, Richard Probst, Harry Rubin, Swart

Sechrest, Tim Sippcl, and Paul Strauss.

We were formnate to have first-rate CAD tools on band built by Gordon Hamachi, Bob
Mayo, George Taylor, Walter Scot, Ken Keller, Deirdre Ryan, Richard Rudell, John
Foderaro. and Jim Larus, on teams led by John Ousterhout, Richard Newton, and Alberto
Sangiovanni-Vinceatelli. Pete Foley originally designed our dampath and control, which

Joan Pendleton later redesigned and built

David Hodges led the hardware efforts. Joan Pendleton is responsibie for NMQOS implemen-
radon, assxstcd by Shin Kong with contrlbutionsm‘by Arde Chang, Mike Klein, and Mike
Remillard. :I"he CMOS chip, completed by Chris Marino, sarted as a group effort with B.
K. Bose, Mark Hofmann, Grace Mah, H. Marausch, Peter Moore, B. Schallenberger, Dave
Wallace, and John Zapisek. Our two circuit boards were designed and tested by Will
Brown, Frank Dunlap. Richard Blomseth and Helen Davis on workstations donated by the
Valid Logic corporagon.

Paul Hilfinger led the software effort and built our first compiler, while Dain Samples. Ricki
Blau and Bill Bush provided our simulator and systcn; software, assembler and diagnosucs.

and compiler. Dain also gets special thanks for wriang our internal reference manuals.

Adele Goldberg, Ted Kaehler, Glenn Krasner. and Dan Ingalls of the Systems Concepts
Group at Xerox PARC gave us a lot of assistance in understanding Smalltalk. Peter
Deutsch. of that group. deserves special recognition for serving as our liaison with Xerox,

and spending a lot of dme and effort helping us undersand Smalltalk sysiems. He and Alan

129

Schiffman of Fairchild have built the fastest Smalltaik-80 system on 3 commercial micropro-

cessor. and we learned a lot from them. A

We also thank MOSIS and Xerox, including Ed McCreight, J. Chen, and B. Pugh fof fabri-
cating SOAR, and Paul Losleben and V. Tyree at DARPA for funding the project. This pro-
ject was sponsored by Defense Advance Research Projects Agency (DoD) ARPA Order No.
3803, monitored by Naval Electronic System Command under Contract No. N00O034-K-
0251. It was also sponsored by Defense Advance Research Projects Agency (DoD) ARPA
Order No. 4871, monitored by Naval Electronic Systems Command under Contract No.
N00Q39-84-C-0089. The University of California, the state of California, and IBM provided
me with indispensable financial support

Please join me in acknowledging the efforts of the people who read through this document
and smoothed the way for you: Susan Graham and John Addison. the official readers. Ricki
Blay, although not an official reader, also took the time for a careful proofreading, for which
1 am very grateful. . o

1 wouid also like to thank John Hennessy, Bob White, the Center for Integrated Systems, the
Computer Systems Laboratory, and the Deparmment of Elecwical Engineering at Sanford
University for providing me with the support, dme, and facilides needed to complete this
disseraton.

Then, there is the man who decided to take a RISC with Smailalk and led the whole project
(and me). challenged us to pull it off, challenged me to write it up, and went over this docu-

ment with a fine-tooth comb, David Panerson.

Finally, let me thank my wi'fe. Nina, and my parents for their love and moral support

[AKW]

[Bad82]

[Bak77]

[BaS83]

[Bay84]

[Bay85]

[BeF74]

[(BGH82]

[Bla83a]

130
Bibliography

A Aixo, B. W. Kernighan and P. Weinberger, Awk —~ A Pantern Scanning and
Processing Language, Bell Laboratories, Murray Hill, NJ.

S. Baden, “‘High Performance Storage Reclamation in an Object-Based
Memory System.’” Master’s Report, Co@uw Science Division, Department of
E.E.C.S, University of California, Berkeley, CA, June 9, 1982.

H. G. Baker, ‘‘List Processing in Real Time on a Serial Computer,”” A.L
Working Paper 139, MIT-AI Lab, Boston, MA, April, 1977.

S. Ballard and S. Shirron, ‘*‘The Design and Implementation of
VAX/Smalltalk-80,"" in Smaliltalk-80: Bits of History, Words of Advice, G.
Krasner (editor), Addison Wesley, 1983, 127-150.

“Dorado Benchmarks,'’ Smalltaik-80 Newslerter, Palo Alto, CA, September

1984, 18.

““New Implementations Unveiled,”” Smailtalk-80 Newslerter, Palo Alto, CA,

October 1985.

W. Becker and D. Fagen, ‘‘Throw Back the Little Ones,’’ in Throw Back the
Lirtle Ones, Steely Dan, © American Broadcasting Music, Inc. (ASCAP), Los
Angeles, CA, 1974.

J. Bauli, E. Goodhue, C. Hanson, H. Shrobe, R. M. Stallman and G. J.
Sussman, ‘‘The Scheme-81 Architecture-System and Chip,”’ Proceedings of

the 1982 Conference on Advanced Research in VLSI, Cambridge, MA, 1982.

J. Blakken. ‘‘Register Windows for SOAR,'’ in Smalltalk on a RISC:

Archirectural Invesrigations. D. A. Pamerson (editor), Computer Science

[Bla83b]

(Bla83c]

[Bla83d]

 [BID83]

[(Bro84)

[Bus85]

{Cha82)

131

Division, University of California, Berkeley, CA, April 1983, 126-140.

Proceedings of CS292R.

R. Blau, ‘‘Paging on an Object-Oriented Personal Computer for Smallualk,™
M.S. report and C.S. Division Technical Report, Computer Science Division,

Deparmment of E.E.C.S, University of California, Berkeley, CA, June, 1983.

R. Blau, ‘“Tags and Traps for the SOAR Architecture,”” in Smallralk on a RISC:
Architectural Investigarions. D. A. Pamerson (editor), Computer Science
Division, University of California. Berkeley, CA, April 1983, 24-4].

Proceedings of CS292R.

R. Blau, *‘Paging on an Object-Oriented Personal Computer,’” Proceedings of
the ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, Minneapolis, MN, August, 1983.

R. Blomseth and H. Davis, ‘*The Orion Project -- A Home for SOAR,”
Smalltalk omn a RISC: Architectural Investigarions, D. Paterson (editor),
Computer Science Division, Deptartment of E.E.C.S., University of California,
Berkeley, CA, April, 1983, 64-109.

E. W. Brown, ‘‘A Virmal Memory CPU Board with a Large Cache,'’ Master's

Report. Computer Science Division, Deparment of E.E.C.S, University of

California, Berkeley, CA, 1984.

B. Bush. **Smalltalk-80 to SOAR Code,’” to be published as a Master’s thesis.
Computer Science Division, Deparmment of E.E.C.S, University of California,

Berkeley, CA, 198S.

G. J. Chaidn. ‘‘Register Allocaton and Spilling Via Graph Coloring,”
Proceedings of the ACM SIGPLAN Norices'82 Svmposium on Compiler

Construction, 1982. SIGPLAN Notices Nodces #17.

[Coh81]

[Col60]

[DAmb83]

[DeB76]

[Den70]

[DeS84]

[DeT80]

[Deusdl]

[Deu82a]

[Deu82b]

132

J. Cohen, *‘Garbage collection of Linked Data Stuctures,”” ACM Computing

Surveys 13, 3 (September 1981), 341-367.

G. E. Collins, **A Method for Overlapping and Erasure of Lists,” Comm. of the

ACM 3, 12 (December 1960), 655-657.

B. D’Ambrosio, **Smailtalk-80 Language Measurements — Dynamic Use of
Compiled Methods,” in Smalltalk on a RISC: Architectural Investigations, D.
A. Pamerson (editor), Computer Science Division, University of California,

Berkeley, CA, April 1983, 110-125. Proceedings of CS292R.

L. P. Deutsch and D. G. Bobrow, **An Efficient Incremental Automatic Garbage

Collector,”” Comm. of the ACM 19, 9 (September 1976), 522-526.

P. J. Denning, **Virtual Memory,"* Compuring Surveys 2, 3 (September, 1970),
153-189.

L. P. Deusch and A. M. Schiffman, ‘‘Efficient Implementadon of the
Smalltalk-80 System.” Proceedings of the 11th Annual ACM SIGACT News-
SIGPLAN Norices Symposium on the Principles of Programming Languages,
Salt Lake City, Utah, January, 1984.

L. P. Deuch and E. A. Taft, editors. ‘‘Requirements for an Experimental
Programming Environment,’* CSL-80-10, Xerox PARC, Palo Alw, California,
1980.

L. P. Deutsch. Measurements of the Dorado Smaltalk-80 System, Berkeley

Computer Systems Seminar, Fall. 1981.

L. P. Deutsch. Storage Reclamation, Berkeley Smalltalk Seminar, February S,

1982.

L. P. Deutsch, An Upper Bound for Smalltalk-80 Execudon oo a Motorola

68000 CPU, Private communications, 1982.

[Deu83a]

[Deu83b]

[Deuss)

[DMS84}

(Fat83]

[Fea72)

[FoF81]

[Gol81]

[Gol84)

[GoR83]

133

L. P. Deutsch. The Dorado Smailraik-80 Implementarion: Hardware
Architecture’s Impact on Sofrware Architecrure, Addison Wesley, September,

1983.

L. P. Deursch, Storage Management, Privats communicagons, 1983.

L. P. Deutsch, The Xerox 68000 Smalltalk-80 System, Private communicagons,
1985.

N. M. Detisle, D. E. Mencosy and M. D. Schwarz, *'Viewing a Programming
Environment as a Single Tool,”" ACM Sofrware Eng. Notes/SIGPLAN Norices
Sofrware [Engineering Symposium on Practical Sofrware Developmenr

Environmenss, Pigsburgh, PA, April, 1984.

R. Fateman, Garbage Collection Overhead, Privae communcaton. August

- 1983.

E. A. Feustel, *“The Rice Reséarch Computer—A mgged architecture,’” AFIPS
40 (Spring, 1972), 369-377. AFIPS Press.

]. K. Foderaro and R. J. Fateman, '‘Cbharacterizadon of VAX Macsyma.”’
Proceedings of the 1981 ACM Symposium on Symbolic and Algebraic

Computarion, Berkeley, CA, 1981, 14-19.

A. Goldberg, *‘Ingoducing the Smallalk-80 System,’’ Byre 6, 8 (August 1981),
14-35.
A. Goldberg, Smalltalk-80. The Interacrive Programming Environmen,

Addison-Wesley Publising Company. Reading, MA. 1984.

A.]. Goldberg and D. Robson, Smallralk-80: The Language and lIts

Implementarion, Addison-Wesley Publising Company, Reading, MA, 1983.

[HIB82]

(HIP&3]

{Ing83]

[KaK83]

(KEL62]

(Kau73]

(Kra83)

[KSP83]

[Leesd]

134

J. Heanessy, N. Jouppi, F. Baskett, A. Swong, T. Gross, C. Rowen and J. Gill,

**The MIPS Machine,’* Proc. Compcon, February 1982.

J. L. Heanessy, N. P. Jouppi; S. Przybylski, C. Rowen and T. Gross, ‘‘Design of
a High Performance VLSI Processor,”” Third CalTech Conference on Very

Large Scale Integration, 1983.

D. H. H. Ingalls, ‘“The Evolution of the Smallalk Virmal Machine,”’ in
Smalltalk-80: Bits of History, Words of Advice, G. Krasner (editor), Addison

Wesley, 1983, 9-28.

T. Kaehler and G. Krasner, “LOOM-Large Object-Oriented Memory for
Smalltalk-80 Systems,”* in Smallalk-80: Bits of History, Words of Advice, G.

Krasner (editor), Addison-Wesley, Reading, MA, 1983, 249.

T. Kilbumn, D. B. G. Edwards, M. J. Lanigan and F. H. Sumner, *‘One-Level
Storage System,” IRE Transacrions 2, EC-11 {April 1962), 223-235. Also in
Computer Structures: f’rinciples and Examples, Dauniel P. Siewiorek, C. Gordon

Bell, and Allen Newell (editors). McGraw-Hill. New York, NY, 1982. 135-142.

D. Knuth, The Arr of Computer Programming, Volume 1, Addison-Wesley,

Reading, MA, 1973.

G. Krasner, ed., Smallialk-80: Bits of History, Words of Advice, Addison

Wesley, September, 1983.

M. G. H. Katevenis, R. W. Sherburne, D. A. Patterson and C. H. Séquin, “‘The
RISC O Micro-Architecture,” in VLSI '83, F. Anceau and E. J. Aas (editor),

Elsevier Science Publishers (IFIP), North-Holland, 1983. 349-359.

’
P. K. Lee, **The Design of a Debugger for SOAR."" Master’s thesis, Computer
Science Division, Department of E.E.C.S. University of California, Berkeley.

CA. September 1984.

[Liki83)

[LoK61]

[LPM81]

McCéQ]

[McC83]

[MeCS3]

[Moo85]

[MOSIS]

(Org73]

135

H. Lieberman and C. Hewin, ‘A Real-Time Garbage Collector Based oo the

Lifetimes of Objects,”” Comm. of the ACM 26, 6 (June 1983), 419-429.

W. Lonergan and P. King, *‘Design of the B 5500 Sysem.” Datamarion 7, 5
(May 1961), 28-32. Also in Compuwter Strucrures: Principles and Examples,
Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell (editors), McGraw-Hill,

New York, NY, 1982, 129-134.

B. P. Lampson, K. A. Pier, G. A. McDaniel, S. M. Omswin and D. W. Clark.
*“The Dorado: A High Performance Personal Computer,”” CSL-81-1, Xerox

PARC, Palo Alw, California, January 1981.

J. McCartby, ‘‘Recursive Functions of Symbolic Expressions and Their

Computation by Machine, L' Comvn. of the ACM 3 (1960), 184-195.

K. McCall, **The Smalltalk-80 Benchmarks,'" in Smallzalk 80: Bits of History,

. Words of Advice, G. Krasner (editor), Addison-Wesley, Reading, MA, 1983,

151-173.
R. Meyers and D. Casseres, *‘An MC68000-Based Smalltalk-80 System,” in
Small:alk-80: Bits of History, Words of Advice, G. Krasner (editor), Addison

Wesley, 1983, 153-174.

D. A. Moon, ‘‘Architecture of the Symbolics 3600, Twelfth Annual
International Symposium on Compurer Archirecrure, Boston, MA, June, 1985.

76-83.

MOSIS (MOS Implementation System) User's Manual, USC Informadon

Sciences Institute, Marina Del Rey, CA.

E. 1. Organick. Compurer Svsrem Organizan'on.' The B5700/B6700 Series,

Academic Press, New York, NY, 1973.

[PaD80]

[PaS81]

[PasS82]

[Pen85a]

[Pen8Sb]

[Pie83]

[Pon83a]

[Pon83b]

136

D. A. Pamerson and D. R. Ditzel, *“The Case for the Reduced Insoruction Set

Computer,’* Computer Architecture News 8, 6 (15 October 1980), 25-33.

D. A. Pauerson and C. H. Séquin, *'RISC I: A Reduced Instruction Set VLSI
Computer,” Proc. Eighth International Symposium on Computer Architecrure,

Minneapolis, Minnesota, May 1981, 443-457.

D. A. Panerson and C. H. Séquin, ‘A VLSI RISC,” Compuwter IS5, 9

(September 1982), 8-21.

J. Pendlewon, *‘Getting SOAR Off the Ground,” Private communcation,
Computer Scieace Division, Department of E.E.C.S, University of California,

Berkeley, CA, October, 1985.

]. Pendleton, ‘‘A Design Methodology for VLSI Processors,’”” Ph.D.
dissertation, Department of E.E.C.S, University of California, Berkeley, CA,

September, 1985.

K. A. Pier, **A Retrospective on the Dorado, A High-Performance Personal
Computer,”” Proc. Tenth Annual Symposiwm on Computer Architecture,

Stockhom, Sweden, June, 1983, 252-269.

C. Ponder, *‘... but will RISC run LISP?? (a feasibility stndy),"'chort No.
UCB/CSD 83/122, Computer Science Division, Department of E.E.C.S,

University of California. Berkeley, CA. August, 1983.

C. Ponder. Performance Evaluarion of the Symbolics 3600, Computer Science
Division, Deparmment of E.E.C.S, University of California, Berkeley, CA,
Spring, 1983. Informal report for CS 292R, High Level Language Computer

Architecture.

[Rad82]

[Roa83]

[Rovg4]

[ScW6T]

[She83]

[SHI81]

[ShM83]

[SKAg84]

[SKF35]

137

G. Radin, ‘“The 801 Minicomputer,”’ Proc. Symposiwn on Architectural
Support for Programming Languages and Operaring Systems, Palo Alto,

California, March 1-3, 1982, 39-47.
C. B. Roads. 3600 Technical Summary, Symbolics, Inc., Cambridge, MA, 1983.

P. Rovner, ‘*On Adding Garbage Collection and Runtime Types to 2 Songly-
Typed, Stadcally-Checked, Concurrent Language,” CS1-84-7, Xerox PARC,

Palo Alto, California. 1984.

H. Schorr and W. M. Waite, **An Efficient Machine-Independant Procedure for
Garbage Collection in Various List Soucwres,” Communicarions of the ACM

10, 8 (August, 1967), 501-506.

B. Sheil, ‘‘Environmens for Exploratory Programming,”” Daramarion,

February, 1983.

G. J. Sussman, J. Holloway, G. L. S. Jr. and A. Bell, **Scheme-79-Lisp on a

Chip.’" Computer 14, 7 (July, 1981), 10-21.

B. A. Sheil and L. Masinter, **Papers on Interlisp-D.’’ Xerox technical report,

C1S-5, Palo Alto, CA, 1983.

N. Suzuki, K. Kubota and T. Aoki, '‘Sword 32: A Bytecode Emulating
Microprocessor for Object-Oriented Languages,” Proceedings of the
International Conference on Fifth Generarion Computer Systerms 1984, Nov.

1984, 389-307.

A. D. Samples, M. Klein and P. Foley, *SOAR Architecture,”” Technical
Report UCB/CS/85/226, Computer Science Division, Deparunent of EE.CS,
University of California, Berkeley, CA, March 1985. Unpublished, earlier
version published as “*Preliminary SOAR Architecrure, chir.: & Foley,”’ m

Smalltalk on a RISC: Architectural-Investigations. Proceedings of CS 292R..

[SSS85]

[Sta80]

[Sxa82)

[Sta84)

[Suz84]

(SZH8S]

[Tei69]

[Tei72)

[Tei79]

[Tei83)

138

;S'un-3 Architecrure: A Sun Technical Report, Sun Microsystems, Inc.,
September, 198S. preliminary edition.

T. A. Standish, Data Structrure Techniques, Addison-Wesley, Reading, MA,
1980.

J. W. Smmos, ‘A Large Object-Oriented Virtual M?mq: Grouping Strategies.

Measurements, and Performance,”” Xerox technical report, SCG-82-2, Xerox,

‘Palo Alto Research Center, Palo Alto, CA, May 1982.

J. W. Stamos, *‘Static Grouping of Small Objects to Enhance Performance of a
Paged Virtmal Memory,'' ACM Transactions on Computer Systems 2, 3 (May

1984), 155-180.

N. Suzuki, *‘Developing 32-Bit Smalltalk Processor With the Execution Rate of

1,400,000 Bytecode/Sec.,’” Unpublished, 1984. Translated from Japanese.
D. C. Swinehart, P. T. Zellweger and R. B. Hagmann, ““The Structure of -
Cedar,"”” Proceedings of the ACM SIGPLAN Notices 85 Symposiwn on
Language Issues in Programming Environmens, Seattle, Washington, June,
198s.

W. Teitelman, ‘*“Toward a 'Programming Laboratory,”” in [nrernarional Joint
Conference on Artificial Intelligence, D. Walker (editor), May, 1969.

W. Teitelman, ‘‘Automated Programming—the Programmer’s Assismat,’”

Proceedings of the Fall Joint Computer Converence, May 1972,

W. Teitelman, **A Display Oriented Programmer’s Assistant,”” Inrernarional

Journal of Man-Machine Studies 11 (1979), 157-187.

W. Teitelman, **The Cedar Programming Environment: A Midterm Report and

Examination,’’ CSL-83-11, Xerox PARC, Palo Alto, California, 1983.

[Tei84]
[Tha81]

[UBF34]

[Ung84]

[UnP83]

[Wal83]

[(Weg71]

[Weg74]

[Whi80]

139

W. Teitelman, **A Tour Through Cedar,”” JEEE Sofrware 1, 2 (April 1984), 44-

73.

A. . Thadhani, *Interactive User Productivity,”” IBM Systems Journal 20, 4

(1981), 407-421.

D. Ungar, R. Blau, P. Foley, D. Samples and D. Panerson, ** Architecture of
SOAR: Smallmlk on a RISC."” Eleventh Annual International Symposium on

Computer Architecrure, Ann Arbor, ML June. 1984, 188-197.

D. Ungar, ‘‘Generation Scavenging: A Non-Disrupdve High Performance
Storage Reclamation Algorithm,’” ACM Sofrware Eng. Nores/SIGPLAN Notices
Sofrware Engineering Symposiwm on Practical Sofrware Development

Environments, Pinsburgh, PA, April 1984, 157-167.

D. M. Ungar and D. A. Pauerson, ‘‘Berkeley Smallalk: Who Knows Where the
Time Goes?,” in Smalltalk-80: Bits of Hiszory, Wbrd of Advice, G. Krasner

(editor), Addison Wesley, 1983, 189-206.

D. Wallace, ‘*Making Smalltalk less Becoming: Removing Primitive Becomes
from Smallwalk-80,"" in Smalltalk on a RISC: Architectural Investigations, D. A.
Panerson (editor), Computer Science Division, University of California,

Berkeley, CA, April 1983, 213-222. Proceedings of CS292R.

B. Wegbreit, '“The ECL Programming System."" Procedings of the I Sth AFIPS

Fall Joint Compurer Conference, 1971, 253-262.
B. Wegbreit, **The Treatmment of Daa Types in EL1,"”" Communicarions of the
ACM 17,5 (May 1974), 251-264.

J. L. White, **Address’Memory Management For A Gigandc LISP Environment
or, GC Considered Harmful.”" Conference Record of the 1980 LISP Conference,

Redwood Estates, CA, 1980, 119-127.

140
Appendix A

Detailed Performance Evaluation of Individual Features

A.l. Introduction

This appendix contains detiled evélua&ons of the effectiveness of most of the features
in SOAR and a few proposed additions to SOAR. The raw data, insgruction mixes, and exe-
cution time profiles on which these calculadons are based are in Appendix B. To guide you
through this section, we have reprinted part of the table of contents in Table A.1. There are
two kinds of subroutines in SOAR: subroutines writeen by Xerox in Smalltalk, and subrou-
tines written by us in assembler for runtime support. Since these are written in two different
languages, dacy may have different instruction mixes. For this reason, our tables of dynamic
data have three columns: one for the routines written in Smalltalk (ST), one for the routines
written in assembler (system), and one that ignores the distinction (both). Since system code
consumes two-thirds of the time, the averages (used in the other chapters) tend to be dom-
inated by the behavior of the sysiem code. If this code were optimized, the numbers for
Smallralk code would become more important for overall performance. For static measure-
ments, the Smalltalk routines dwarf the assembler routnes, and we usually omit the assem-

bler ones.

A2. Runtime Type Checking

Runtime type checking distnguishes Smallalk-80 systems from those designed for
conventional languages. SOAR supports this with 2 @g bit for integers and tagged integer

arithmedc and comparison insguctions.

Sectdon A.l: |

Secton A2:
Secton A.2.1:

Section A2.1.1:
Section A2.1.2:

Section A.2.2:

Secton A.2.3:
Section A.2.4:
Secton A3:

Secnon A3.1:
Section A.32:
. Section A33:
Secton A.3.4:

Secdon A3S:
Secdon A.3.6:

Secdon A.3.7:

Secdon A3.8:

Secton A.3.9:
Secton A.4:

Secton A4.1:
Sectdon A.42:
Secton A.4.3:
Secton A.4.4:
Section A.4.5:
Secton A.4.6:
Section A.4.7:
Section A.S:

Secuon AS.1:

Secton A52:
Secdon A53:
Secdon A.6:

Secdon A.6.1:
Secuon A.6.2:

Inzoductdon
Runtime Type Checking
How lmportant are the Tagged Integer Instucdons?

Tagged Insoucton Frequency
Cost of Omiting Tagged Anthmetic Insguctons

Evaluatng the Impact of Adding a
Compare-and-Branch Insgucton

Evaluatnng Two-Tone Instructons
How lmpormant Are Tagged Immediates? wevcececeecae
Interprematon
Evaluatng SOAR's Byte Facilides
Evaluation of the loadc insgucdon
Barrel Shifter
Evaluating the impormance of Multiply and Divide

Evaluating the In1/Outl Skip Condition ..o eecerseees
Evaluadng SOAR’s Condidonal Trap Insguction

One-Cycle Traps .
Evaluating the Performance Impact of Shadow Re-
gisters
Does SOAR Really Need Vectored Traps? ceecceseesae
Procedure Calls
Evaluating SOAR °s Register File Organizadon
Number of Registers per Window
Analysis of Loadm & Storem
Performance of Inline Caching
How Fast Does SOAR Shuffle?
Evaluation of Paralle! Register Inigalizaton ...ccceeen..
Return Opdons
Storage Management

Evaluadon of the Generatdon Scavenge Tag Check-
ing Hardware

Frequency of GS traps
Evaluating the Pointer to Register Suppont .ccveeeeewe..
Implementadon
Register Forwarding
Memory Accesses

)

Table A.1: Table of conrents for Appendix A.

140
140

142
142
142

153
156
157
157

157

164
164

164
168

169
169

173
175
175
175
177
177
185
192
192
196
199

199
201
201
203
203
204

142

A.2.1. How Important are the Tagged Integer Instructions?

To support tagged integers, SOAR includes tagged versions of the arithmetic and com-
parison instuctions. To assess their importance, we first measure their frequency of use,
then calculate the performance degradadon that would be caused by replacing them by

equivalent software instructions.

A.2.1.1. Tagged Instruction Frequency

Table A.2 lists the frequency of each tagged integer instruction for several bench-
marks. Zero rows have been omined. Table A.2 above shows, for compiled Smalltalk-80
code, one out of every 8 insmuctions executed exploits SOAR’s integer tag-checking
hardware. Overall, the ratio is about 1 out of every 11 instrucdons. Interestngly, tagged
skips oumumber tagged arithmedc in compiled code. |

Another way to measure frequency is to count the static number of each kind of tagged
instruction. Table A.3 shows that ncarly 1 out of every 11 instructions is a tagged infegcr
instruction. This is slightly lower than the dynamic frequency of 1 in 8.

How often does SOAR detect an integer tag trap? As Table A.4 shows, these Taps are

quite rare; less than 4 in 1,000 tagged instructions trap.

A2.1.2. Cost of Omitting Tagged Arithmetic Instructions

How much slower would SOAR be without integer tag checking hardware? Table A.5
shows the sequences that would be needed without it under the assumption that no compiler
optimization is performed. (The fcasibﬂity of such optimizadon in the absence of type
declarations has yet to be demonstrated.) Table A.6 summarizes these data with cost figures.

The next step is to combine this cost dar with the frequency data. Table A.7 lists the

time cost of omiming each rype of tagged inszucton from SOAR. The benchmarks would

take from 20% to 32% more tme without integer tag checking hardware in SOAR.

143

Tabile A2: Frequency of tagged arithmetic instructions, Part 1.
ST system both
test3plusd
all insts 65.14% 34.86% 100%
add 33.07% 0.00% 21.54%
wapl 0.00% 6.17% 2.15%
loadc 335% 0.06% 2.20%
total 36.42% 6.25% 25.89%
testAcrivanionReturn
all insts 9721% 2.79% 100%
sub 9.46% 0.00% 9.20%
skip 9.46% 0.00% 9.20%
loadc 9.46% 0.00% 9.20%
oal 28.40% 0.00% 27.61%
restClassOrganizer
all insts 41.06% 58.94% 100%
add 1.19% 1.19% 1.19%
sub 0.34% 1.73% 1.15%
sl 0.00% 0.59% 0.35%
skip 226% 131% 1.70%
wap!l 0.00% 2.49% 1.47%
load . 0.00% 0.81% 0.81%
loade 723% 0.10% 3.03%
total 11.03% 8.79% 9.71%
testCompiler

all insts 33.42% 66.58% 100%
add 1.26% 0.89% 1.01%
sub 0.45% 1.17% 0.93%
sl 0.00% 029% 0.19%
skip 1.94% 0.87% 1.23%
mapl 0.00% 1.56% 1.04%
load 0.00% 1.02% 0.68%
loadc 7.30% 0.26% 2.60%
otal 10.92% 6.07% 7.69%

Table A.2: Frequency of tagged arithmetic instructions, Part 2.
ST stem both
testDecompiler
all insts - 32.19% 67.81% 100%
add 1.83% 1.00% 1.27%
sub 0.47% 1.17% 0.93%
and 0.09% 0.00% 0.03%
sl 0.00% 0.10% 0.07%
sra 0.00% 0.16% 0.11%
skip 252% 0.62% 1.23%
mapl 0.00% 1.56% 1.06%
load 0.00% 1.12% 0.76%
loade 721% 0.28% 2.51%
total 12.08% 6.00% 7.95%
testPrintDefinition
all insts 38.01% 61.99% 100%
add 226% 1.37% 1.71%
sub 0.08% 2.69% 1.70%
skip 431% 0.02% 1.65%
trapl 0.00% . 3.68% 2.28%
load 0.00% 2.56% 1.59%
loade 797% 0.11% 3.10%
total 14.65% . 10.44% 12.04% -
" testPrintHierarchy
all insts 26.25% 73.75% 100%
add 2.10% 0.26% 0.73%
sub 023% 0.84% 0.68%
skip 251% 0.05% 0.70%
mapl 0.00% 2.17% 1.60%
load 0.00% 1.45% 1.07%
loade 7.62% 0.19% 2.14%
total 12.46% 4.98% 6.94%
Average of macro-benchmarks
all insts 34.19% 65.81% 100%
add 1.73% 0.94% 1.18%
sub 031% 1.52% 1.08%
and 0.02% 0.00% 0.01%
sll 0.00% 0.20% 0.12%
sra 0.00% 0.03% 0.02%
skip 2.71% 057% 1.30%
wapl 0.00% 2.29% 1.49%
load 0.00% 1.39% 0.98%
loade 7.47% 0.19% 2.68%
i total 12.23% 7.26% 8.87%

=Table A3: Static Occurrences of Tagged Integer Instructions In System.

op immediate? count code code + data .
add yes 1066 0.63% 0.25% :
add no 1132 0.67% 0.26% i
sub yes 658 0.39% 0.15% ;
sub Bo 868 051% 0.20% -
and yes - 60 0.04% 0.01% ;
and no 132 0.08% 0.03% ;
or yes 2 0.00% 0.00% :
or no 22 0.01% 0.01%

skip no 2668 158% 0.62% .
loadc yes 9254 5.49% 2.15%
toal 15862 9.41% 3.6

145

TTable A.4: Frequency of integer tag traps, Part 1.
% of insts that tag oa

ST system both
rest3plus4 ;
instructons 65.14% 34.86% 100% i
{
total 0.00% 0.00% 0.00% |
, testActivarionRerurn i
instructions 9721% 2.79% 100% !
total 0.00% . 0.00% 0.00% |
testClassOrganizer :
instructions 41.06% 58.94% 100% ?
skip 18.75% 0.00% 10.29% |
loadc 25.39% 0.00% 24.90% |
total 2.26% 0.00% 0.93%
testCompiler ;
instructions 33.42% 66.58% 100% ;
skip 12.04% 0.02% 6.34% |
loadc 1541% 1.38% 14.52% i
total 1.36% 0.00% 0.46% l
restDecompiler :
insoructions 32.19% 67.831% 100% !
skip ' 4.99% 0.00% 3.28% !
loade 17.06% 0.16% 15.76%
total 1.35% 0.00% 0.44%
testPrintDefinition
instructions 38.01% 61.99% 100%
skip 22.33% 0.00% 2.21%
loadc 1.03% 0.00% 1.01%
total 0.08% 0.00% 0.03%

146

Table A.4: Freguency of integer tag traps, Part 2. i

% of insts that @mg Tap !

ST system both |

testPrintHierarchy i

insguctons 2625% 73.75% 100%

skip 220% 0.00% 2.07% |

loade 4.47% 0.00% 4.17% |
total 040% 0.00% 0.10%

avg of all macro-benchmarks
insguctons 34.19% 65.81% 100%

skip 12.06% 0.00% 8.84% |
loadc 12.67% 031% 12.07%
total 1.09% 0% 0.39%

147

"Table A.5: Writearound for t.ag_ged instructions, Part 1.

i add & sub

%ora bt (omit for immediate)
Kskipims & 1<<31

{ jump emor

%add/%sub a, b, ¢

%xora, b,

%and t. 1 << 31,t

%skipoet, 0; (are signs equal?)
jamp ok: (oo! is OK)

-1 %xora et

%and t. 1 << 31,t)

%skip eq t, 03 (overflow?)

eTor ‘
and & or & xor ‘

%or 3, b, 5 (ui only)
%skip ltu a, 1<<31

i jump emror

'! %and/ %o %xor

: sll
Rskip Itu a, 1 <<31
jump error
%sli a. b,
: %xorab,t
i %and t 1 << 31.t :
%skipeqt, 0; - (overflow?)
%w
srl
%skip it a2, 1 << 31
Jump exror
%sd 2. b
sra
%skiplm a, 1<<31
jump error
| %sraab
%skip lta. 1 << 30
i\ %orb,]1<<30,b

148

T Tabie AS: Writearound for tagged instructions, Part 2.

_siip & Tap

[%orab.t (omit for 1mmediate)

t Fskip Ity a, 1 <<31

| jump egor

l %sll 2, @; {for 31-bit signed comparison only)
%sll b, tby; (for 31-bit signed comparison only)

| %skip/%map cond . tb .

e it S-S Smt S e

i load imm & loadc

Sskip Itu a. 1 << 31

l
l jump etror
!

%load / Tloade (a). ¢

NN, B | I

W

i load reg .
| %xora.b.t |
| %skipgeat, 1<<31 |
| jump eror {
%load (a)b. € |
Table A.6: Cost summary by instruction. l
op saanc dynamic
(words) (cycles)

add 7-10 5-10*

sub 7-10 5-10*

and 23 2-3

or 2-3 2-3

xor 2-3 2-3

sil 6 6

sri 2 2

sra 4 4

skip 3-5 3-5

Tap 3-5 3-5

load 2-3 2-3

loadc 2 2

* The wide variauon is caused by be overfiow check. which is faster for operands with opposite signs.

149

Table A.7: Time cost of omitting tagged integer instructions, Part 1.

ST system both
| est3plus4
i all cycles 59.51% 40.43% 100%
. add 150.06%-300.12% 0.00% 89.40%-178.80%
: trapl 0.00% 13.26%-22.11% 5.36%-8.94%
loadc 6.06% 0.10% 3.65%-3.65%
. toaal 150.06%-330.12% 13.36%-221% 94.76%-187.74%
| Performance relative to full SOAR (<100% is slower) 51%-35%
‘ testActivarionReturn
" all cycles 95.91% 4.09% 100%
sub 35.30%-70.65% 0.00% 33.87%~67.75%
: skip 21.19%-35.31% 0.00% 20.32%-33.87%
! Joade 14.13% 0.00% 1355%
i towl 70.62%-120.08% 0.00% 67.74%-115.17%
ﬁ! Performance relative to full SOAR (<100% is slower) 60%-46%
testClassOrganizer
all cycles 42.56% 57.44% 100%
add 3.99%-7.98% 4.27%-8.54% 4.15%-8.30%
: sub 1.13%-2.26% 6.19%-12.38% 4.04%-8.08%
L sll 0.00% 2.59% 1.49%
. skip 461%-7.68% = 2.830%-4.67% 3.57%-5.95%
| rapl , 0.00% 5.40%-8.98% - 3.10%-5.16%
| load : 0.00% 1.98%-2.98% 1.14%-1.71%
| loadc 9.80% 0.14% 4.25%-4.25%
' total 19.54%-27.72% 23.38%-40.20% 21.74%-34.95%
"Performance relative to full SOAR (<100% is slower) 82%-74%
testCompiler
i all cycles 34.07% 65.93% 100%
"add 4.18%-8.35% 3.05%-6.11% 3.445-6.87%
sub 1.52%-3.05% 4.06%-8.12% 3.20%-6.39%
and 0.03%-0.03% 0.00%-0.00% 0.01%-0.01%
- sll 0.00% 1.17% 0.77%
sta 0.00% 0.02% 0.01%
skip 3.909-6.49% 1.82%-3.02% 2.52%-4.20%
mapl 0.00% 3.22%-5.37% 2.129%-3.54% |
load 0.00% 1.41%-2.12% 0.93%-1.40%
loadc 9.77% 0.35% 3.56%-3.56%
. toaal 19.35%-27.65% 15.10%-26.28% 16.55%-26.74%

Performance reladve to full SOAR (<100% is slower) 86%-79%

150

Table A.7: Time cost of omitting tagged integer instructions, Part 2.

ST system both

" testDecompiler
all cycles 3238% 67.62% 100%
add 6.29%-12.58% 3.42%-6.85% 4.35%-8.70%
sub 1.55%-3.09% 4.00%-8.00% 3.209%-6.41%
and 0.09%-0.15% 0.00% 0.03%-0.05%
sil 0.00% 0.40% 0.27%
sra 0.00% 0.43% 0.29%
skip 5.13%-8.52% 1.29%-2.13% 2.53%-421%
mapl 0.00% 3.22%-5.37% 2.18%-3.63%
load 0.00% 1.54%-2.29% 1.04%-1.55%
loade 9.82% 0.40% 3.44%-3.44%
total T 22.86%-34.16% 14.68%-25.88% 17.34%-28.56%
Performance reladve to full SOAR (<100% is slower) 85%-78%

testPrintDepinition
all cycles 38.09% 61.91% 100%
add 8.30%-16.61% 5.01%-10.02% 6.26%-12.53%
sub 0.25%-0.50% 9.89%9-19.78% 6.229-12.44%
skip 9.45%-15.78% 0.03%-0.05% 3.62%-6.04%
tapl 0.00% 8.09%-13.49% 5.019%-8.35%
load 0.00% 3.78%-5.65% 2.34%-3.50%
loade 11.66% 0.16% 4.55%455%
total - - 29.69%-44.55% 26.95%-49.16% 27.99%-47.40%
Performance reladve to full SOAR (<100% is slower) 78%-68%

testPrintHierarchy
all cycles 25.90% 74.10% 100%
add 7.42%-14.85% 0.89%-1.78% 2.58%-5.16%
sub 0.82%-1.65% 2.95%-5.89% 2.40%-4.79%
and 0.04% 0.00% 0.01%
sll 0.00% 0.03% 0.02%
skip 5.37%-8.96% 0.12%-0.20% 1.48%-2.47%
tapl 0.00% 4.56%~7.60% 3.38%-5.63%
load 0.00% 2.049-3.06% 1.519%-2.27%
loadc 10.89% 0.27% 3.02%-3.02%
total 24.52%-36.34% 10.849-18.81% 14.38%-23.36%

Performance reladve to full SOAR (<100% is slower)

87%-81%

151

152

r_'l'able A.7: Time cost of omitting tagged integer instructions, Part 3.
ST sem both
average of macro-benchmarks
all cycles 34.60% 65.40% 100%
add 6.04%-12.07% 3.33%-6.65% 4.15%-831%
sub 1.05%-2.11% 5.42%-10.84% 3.819%-7.62%
and 0.03%-0.04% 0.00% 0.01%-0.02%
sll 0.00% 0.84% 051%
sra 0.00% 0.09% 0.06%
skip 5.69%-9.49% 121%-2.01% 2.74%-4.57%
trapl 0% . 4.9%-8.16% 3.16%-526%
load 0.00% 2.15%-3.22% 1.39%-2.09%
loade 10.39% 0.26% 3.76%
total 23.19%-34.09% 18.19%-32.08% 19.61%-32.21%
Performance relative to full SOAR (<100% is slower) 84%-76%

Of course, eliminating tag checking hardware from SOAR would also incur a space
cost for the extra checking instructons. Table A.8 combines the smatc cost data with the
statc frequency dama to compute the code expansion resulting from omitting data tag check-
ing hardware in SOAR. Again, we can ignore the system code because it is so small. The

data show that 38% more instructions would be needed — about 15% of the total image.

Table A.8: Static Cost of Omitting Tagged Arith Insts in System.
(3502 insgruction words)
(493 data words)
(3995 toral words in sys)
(168,581 SOAR words of compiled code & literals)
(4,600 Smallmik subroutines)
=(430.000 SOAR words total image)
op ___immediate? cost %code %code + dar
add - yes 71462 4.42% 1.74%
add no ' 11320 6.72% 2.64%
sub yes = 4606 2.73% 1.07%
sub no ' 8680 5.15% 2.02%
and yes . 120 0.07% 0.03%
and no 396 0.23% 0.09%
or yes . 4 0.00% 0.00%
or no 66 0.04% 0.02%
skip yes 0 0% 0%
skip no | 13340 7.91% 3.10%
| loadc yes | 18508 10.98% 4.30%

total . 64502 38.26% 15.00%

153

By moving the tag check into hardware we have increased the cost for a mg excepton.
SOAR must take a rap to handle one. The data show that only 0.39% of mgged inszructons
rap, and that only 12.5% of the inswuctons are mgged. Thus. a @g trap occurs once for
every 2000 inswuctons. Since the tag map bandier prologue is about 25 instructons long,

this represeat a dme cost of about 1.25%.

To-summarize, SOAR without hardware supporn for integer tag checking and with the
same code generation strategy would run 24% slower and require about 150 KB more

memory.

A2.2. Evaluating the Impact of Adding a Compare-and-Branch Instruction

Instead of condition codes, SOAR uses conditonal skip instructions. This simplifies
handling comparisons of data that are not integers. The tag trap handler need not set condi-
tion codes, but can merely rerurn to the appropriate locagon. As a result, a condigonal jump
n.SOAR wkes two cycles. one for the sk:p inszruction and another for the jurnp. This is as
fast as it can be without an additional adder to compute jump addresses. If we had such a
device how much faster could SOAR run? To bound the number of times a condidonal
jump insruction would be used we can count skips. We can find a more accurate figure by
counting only those skips that skip over uncondidonal jumps. Table A.9 present these dam.
The table shows that the most that could be hoped for is an 8% improvement. Counting oaly
those skips that follow jumps results in a time savings of 2.6%. The large disparity impiies

that there are many places where the conditionally executed code is only a single instruction.

For a smtc analysis, we counted the number of condidonal jump sequences produced

by the compiler (Table A.10). The table shows that little space would be saved.

153

By moving the tag check into hardware we have increased the cost for a mg excepton.
SOAR must take a rap to handle one. The data show that only 0.39% of mgged inszructons
rap, and that only 12.5% of the inswuctons are mgged. Thus. a @g trap occurs once for
every 2000 inswuctons. Since the tag map bandier prologue is about 25 instructons long,

this represeat a dme cost of about 1.25%.

To-summarize, SOAR without hardware supporn for integer tag checking and with the
same code generation strategy would run 24% slower and require about 150 KB more

memory.

A2.2. Evaluating the Impact of Adding a Compare-and-Branch Instruction

Instead of condition codes, SOAR uses conditonal skip instructions. This simplifies
handling comparisons of data that are not integers. The tag trap handler need not set condi-
tion codes, but can merely rerurn to the appropriate locagon. As a result, a condigonal jump
n.SOAR wkes two cycles. one for the sk:p inszruction and another for the jurnp. This is as
fast as it can be without an additional adder to compute jump addresses. If we had such a
device how much faster could SOAR run? To bound the number of times a condidonal
jump insruction would be used we can count skips. We can find a more accurate figure by
counting only those skips that skip over uncondidonal jumps. Table A.9 present these dam.
The table shows that the most that could be hoped for is an 8% improvement. Counting oaly
those skips that follow jumps results in a time savings of 2.6%. The large disparity impiies

that there are many places where the conditionally executed code is only a single instruction.

For a smtc analysis, we counted the number of condidonal jump sequences produced

by the compiler (Table A.10). The table shows that little space would be saved.

" Table A.9: U_E_ger bound on sgeedug with comgare-and-branch. Part 1. |

ST system both |

: testClassOrganizer

. insguctions 41.06% 58.94% 100%

: cycles 42.56% 57.44% 100%

. untagged skip’s per instructon 1.57% 12.39% 7.95%

- tagged skip’s per instruction 2.27% 1.30% 1.70%

+ total skip’s per instruction 3.84% 13.69% 9.65%

" skip-jumps per insgruction 1.06% 5.49% 3.67%
untagged skip's per cycle 1.06% 8.91% 5.57%
tagged skip's per cycie 1.53% 0.93% 1.19%

. total skip’s per cycle 2.60% 9.84% 6.76%

5 skip-jumps per cycle 0.85% 4.43% 2.95%

. tesrCompiler

' instructions 33.42% 66.58% 100%

- cycles 34.07% 65.93% 100%

" unmgged skip’s per inszructon 1.50% 15.57% 10.87%

| tagged skip’s per instructon 1.93% 0.88% 1.23%

~ toral skip’s per instruction 3.44% 16.44% 12.10%

! skip-jumps per instruction 1.37% 5.78% 4.30%

. untagged skip’s per cycle 1.01% 10.74% 7.42%

| tagged skip's per cycle 1.30% 0.60% 0.84%

: towl skip's percycle 2.30% 11.34% 8.26%

- skip-f r cycle 0.92% 3.98% 2.94%

: testDecompiler

' instructions 32.19% 67.81% 100%

. cycles 32.38% 67.62% 100%

' untagged skip's per instruction 0.72% 17.56% 12.14%

- tagged skip’s per instruction 251% 0.62% 1.23%

" towl skip’s per inszuction 3.23% 18.18% 13.37%
skip-jumps per instruction 1.29% 4.63% 3.56%
unaagged skip's per cycle 0.49% 12.07% 8.32%
tagged skip’s per cycle 1.71% 0.43% 0.84%
total skip’s percycle 2.20% 12.50% 9.16%
skip-jumps per cycie 0.88% 3.18% 2.44%

154

“Table A.9: Upper bound on speedup with compare-and-branch, Part 2. |

ST system both !

; testPrintDefinirion 5

| insguctons 38.01% 61.99% 100% ;

| cycles 38.09% 61.91% 100% '
| unmgged skip's per insucton 1.38% 9.26% 6.26% |

: tagged skip’s per instructon 4.32% 0.01% 1.65%

i toml skip’s per instruction 5.69% 9.27% 791% |

 skip-jumps per insgruction 1.45% 3.81% 291% |

| untagged skip's per cycle 1.01% 6.79% 4.58%

. tagged skip's per cycle 3.15% 0.01% 121%

i ol skip’s per cycle 4.16% 6.80% 5.79% |

jumps per cycle 1.06% 2.79% 2.13% |
testPrintHierarchy |

~ instrucdons 26.25% 73.75% 100%

cycles 25.90% 74.10% 100% :

. untagged skip's per inszruction 1.20% 14.73% 11.18% |

, tagged skip's per insguction 251% 0.06% 0.70%

' total skip’s per inszuction 3.71% 14.78% 11.88%

: skip-jumps per inszuction 1.67% 3.90% 332% |

I unmagged skip's per cycle 0.86% 10.33% 7.87% |
: tagged skip’s.per cycle 1.79% 0.04% .049%

'; toaal skip’s per cycie 2.65% 10.37% 8.37% |

| i

' skip-jumps per cycle 1.19% 2.74% 2.34%

; average of macro-benchmarks

| insoructons 34.19% 65.81% 100.00%

i cycles 34.60% 65.40% 100.00%

. untagged skip's per insguction 1.27% 13.90% 9.68%

| tagged skip's per inszucdon 2.71% 0.57% 1.30%

. toral skip's per insgucton 3.98% 14.47% 10.98%
skip-jumps per instucton 1.37% 4.72% 3.55%

. untagged skip’s per cycle 0.89% 9.77% 6.75%
tagged skip's per cycle 1.90% 0.40% 0.91%
toal skip’s per cycle 2.78% 10.17% 7.67%
skip-jumps per cycle 0.98% 3.42% 2.56%

| Table A.10: Sgace savings for comgare-and-branch.

condinonal jumps 4734
image size 1,500 Kb
space savings for compare-and-branch 1.26%

155

156

‘A2.3. Evaluating Two-Tone Instructions

SOAR has two modes of cxccutio;'l: tagged and untagged. Rather than putring a mode
bit in the PSW and spending a cycle to switch modes when needed, we put a mode bit in
cach instructon. Table A.11 shows how much slower SOAR would run if it took extra time
w0 switch modz-s. The table shows that SOAR would be 16% slower without two-tone

insTuctons.

To compute the code expansion, we insgumented the compiler. Table A.12 analyzes
these data. The table shows that the image would be 19% larger without two-tone instruc-

tons.

__Table A.11: Projected time cost of manipulating PSW mode bit. |
ST system both

estClassOrganizer

cycles 42.56% 57.44% 100%
_cost of mode-setting insguctions 17.86% 19.30% 18.69% |
i testCompiler

| cycles M.07% 6393% 100%

| cost of mode-setting insoucdens 18.52% 12.68% 14.67% |
! reerﬂer

| cycles 32.38% 67.62% 100%

| cost of mede-setting instuctions 19.87% 11.92% 14.50%

i testPrintDefinition

| cycles 38.09% 6191% 100%

| cost of mode-serting insmucdons 20.53% 20.35% 20.42%

j restPrintHierarchy |

; cycles 2590% 74.10% 100%

| cost of mode-setting insouctons 21.74% 9.93% 12.99% |

- average of macro-benchmarks f
cycies 34.60% 63.40% 100.00% |
cost of mode-seting insoucdons 15.70% 14.84% 16.25% |

Table A.12: Space cost of mode bit in PSW.]

number of exua instucdons to change PSW mode bit 70739
image size 1.50C kB
reiatve cost of PSW mode bit 18.87%

157

A2.4. How Important Are Tagged Immediates?

SOAR's tagged immediate format crams tagged values such as nil, true, and false into
a rwelve-bit immediate ‘field. Without this fearure, a twoycle load inszuction would be
needed to get a tagged value. Table A.13 analyzes the performance impact of this fearure.
For each benchmark, it gives the breakdown of cycles spent in Smalltalk vs. system code,
then proceeds to give the percenmge of immediates used requiring the tagged format, and
finaily, the dime cost of omirting this feamre. These dam suggest that SOAR would be 10%

slower without this feature.

To analyze the impact of tagged immediates on the size of the compiled image, we
mstrumented our compiler (Table A.14). As expected, non-negative integers dominate
immediate values. Pointer immediates arc also frequent. Interestngly. boolean masks (all
zeroes with a one in one of the top four bits, or tag values) provide a use for tagged immedi-
_ ates more often than pointers.

The next step is to count thc- number of immediates that would be unrepresenmbie
without tagged immediates and determine the amount of further expansion in the image
(T aﬁle A.15). Tagged immediates don't save much space; the image would only be 1.2%

larger without them.

AJ3. Interpretation

This secton concerns feamres of SOAR's instruction set and trap system.

AJ3.1. Evaluating SOAR'’s Byte Facilities

We pcrférm two comparisons: the speedup possible with load/store byte instructons,
and the slowdown had we not provided the insert and extract inszucdons. Table A.16 gives
the important insgucton sequences: LoadByte and storeByte are slighdy faster than extract

and insert, which in turn are much faster than relying on one bit shifts.

(Table A.13: Dynamic usage and cost of tagged immediate values. |

(All figures in percentages.) ;
ST system both |
testAcrivarionRerurn |
cycles 95.91% 4.09% 100% |
tagged imms/all imms 9.09% 14.35% 9.29% ’
tagged imm cost/all cycles 7.06% 10.57% 7.21%
testClassOrganizer |
cycles 42.56% 57.44% 100% !
I
tagged imms/all imms 14.96% 14.83% 14.86% '
ed imm costall cycles 6.59% 11.35% 9.32% !
testCompiler [
cycles 34.07% 65.93% 100% ;
|
tagged imms/all imms 15.08% 15.89% 15.69% ‘
tagged imm cosv/all cycles 7.20% 11.94% 10.33%
testDecompiler |
cycles - 3238% 67.62% 100% ’
tagged imms/all imms 12.74% 16.77% 15.85% |
, gged imm cosv/all _gzcles 6.12% 13.01% 10.78% |
' " testPrintDefinition L
cycles 38.09% 61.91% 100% ;
tagged imms/all imms 12.63% 10.29% 10.88% |
tagged imm cost/all cycles 5.90% 8.75% 7.66% I
restPrintHierarchy |
cycles 25.90% 74.10% 100% |
tagged imms/all imms 1133% 15.30% 14.61%
tagged imm cosv/all cycles 5.29% 11.74% 10.07%
average of macro-benchmarks
cycles 34.60% 65.40% 100.00%
tagged imms/all imms 13.35% 14.62% 14.38%

i

tagged imm cosvall cycles 6.22% 11.36% 9.63%

158

159

[Table A.14: Raw data for static analysis of tagged immediates.

immediawe value count OK in OK w/o tagged :
SOAR immediates
non-negative integers 35106 yes yes i
negative 31-bit iniegers 7968 yes yes* |
boolean masks 2984 yes no P
pointers 2433 yes no i
invalid} pointers 8507 no no 5
invalid? integers 868 no yes* !
toal SOAR image size 1500 kB o

Tabie A.15: Im
cost for pointers

net cost
relagve cost

savings for integers 868 immediates

|

act of eliminating tagged immediates.
5417 immediates

4549 immediates

Table A.16: Codes sequences for byte operations, Part 1.

(Byte 0 is least significant byte. byte 3 is most significant.)
————————
Loading a byte from memory

load byte insgucton (addidon w SOAR)

: loadByte (base)offset + bymeNo, dest
. ume 2 cycles
: extract byte instruction (current SOAR)
" load (base)offset, dest

exmact dest, byt=No, dest

time 3 cycles

no special instructions (simplificarion ro SOAR)

. load (base)offset, dest
: st dest, dest ' (0 to 24 of these)
. load pcRel(mask), maskReg (omit for byt= 3)
. and dest, maskReg, dest (omit for byte 3)
. mask: OxfTf
' byte 0 time 5 cycles

byt | dme 13 cycles
; byte 2 dme 21 cycles

byte 3 ame 26 cycles
_avg. tme 16 cycles

* In order 10 be conservauve, we mssume that the negative imrmediates could be represented without tagged immediates
by either changing the opcode (0 subwact instead of add or, for offsets. by using the full 32-bit representauca. We further as-
sume that the niegers which are 100 big for our current scheme would fit in four more buts.

* These vaiues do not fit n SOAR's tagged inmediate formal.

160

Table A.16: Codes sequences for byte operations, Part 2.
(Byte 0 is least significant byte, byte 3 is most significant.)
Storing a byte in memory
store byte instruction (addition to SOAR)
storeByte source, (base)offset + byteNo
time 2 cycles
insert byte instruction (current SOAR)
load (base)offset, dest
load (base)offset, rl
load pcRel(mask), maskReg
and rl, maskReg, rl
insert source, byteNo, r2
or ri,r2. rl
store rl, (base)offset
time 9 cycles
no special instructions (simplification of SOAR)
load (base)offset., rl
load pcRel(mask), maskReg
and rl, maskReg, rl
sl source. source
xor maskReg, -1, maskReg (omit for byte 3)
and source. maskReg, source (omit for byte 3)
or rl, source, rl
store ri, (base)offset
byte Odme 10cycles
byte 1 dme 18 cycles
byte 2tme 26 cycles
byte 3tdme 32cycles
avg. time 22 cycles

Next in Table A.17 we gather frequency data on insert and extract insguctons, and
muldply by the various costs to evaluate the performance impact of these other two schemes.
As shown in the last section of Table A.17. the average time savings for adding load/store
byte insguctions would be 7%, while the average dme penalty for taking away the byte
inservextract instructons would be 33%. Byte insertextract instructions seem to be a good

compromise berween functionality and efficiency.

'; Table A.17: Dynamic analysis of bvte operations, Part 1.
E———— —r

tesrClassOrganizer

. steps 41.06% 58.94% 100%
. cycles 4256% 5744% 100%
| insert per inst 0 097% 0.57%
| exmact per inst 0 354% 2.09%
| insert + extract per inst 0 451% 2.66%
| insert per cycle 0 0.70% 0.40%
| extract per cycle 0 2.54% 1.46%
| insert + extract per cycle 0 324% 1.86%
* store byte savings 0 4.87% 2.80%
! Joad byte savings 0 2.54% 1.46%
: load & store byte savings 0 741% 4.26%
| min insert omission cost 0 0.70% 0.40%
. min exmract omission cost 0 5.09% 2.92%
. min inservextract omission cost 0 5.78% 3.32%
. avg insert omission cost 0 "~ 9.04% 5.19%
- avg exgact omission cost 0 33.07% 18.99%
: avg insert/extract omission cost 0 42.11% 24.19%
' max insert omission cost 0 16.00% 9.19%
| max extract omission cost 0 58.50% 33.60%
! max inservexmact omission cost 0 74 .50% 42.79%
g testCompiler
| steps 33.42% 6658% 100%
i cycles 3407% 6593% 100%
' insert per inst 0 0.75% 0.50%
© extract per inst 0 2.62% 1.75%
. insert + exwact per inst 0 3.37% 2.24%
. insert per cycle 0 052% 0.34%
: exmract per cycle 0 1.81% 1.19%
| insert + extract per cycle 0 2.32% 1.53%
© store byte savings 0 3.61% 2.38%
- load byte savings 0 1.81% 1.19%
__load & store byte savings 0 5.41% 3.57%

min insert omission cost 0 052% 0.34%

min exmract omission cost 0 3.62% 2.38%
- min inservexgact omission cost 0 4.13% . 272%
. avg insert omission cost 0 6.70% 441%
© avg exgact omission cost 0 2351% 15.50%
. avg inservextract omission cost 0 30.20% 19.91%

max insert omission cost 0 11.85% 7.81%
' max extract omission cost 0 41.59% 27.42%
. max inservexwact omission cost 0 53.43% 35.23%

161

l “Table A.17: Dvnamic analysis of bvte ogerations, Part 2.

testDecompiler

steps 32.19% 67.81% 100%
cycles 32.38% 67.62% 100%
insert per inst 0 1.12% 0.76%
extract per inst 0 2.77% 1.88% -
insert + extract per inst 0 3.89% 2.64% |
insert per cycle 0 0.77% 0.52% |
extract per cycle 0 1.91% 1.29%
insert + exmact per cycle 0 2.67% 1.81% :
store byte savings 0 5.37% 3.63%
load byte savings 0 1.91% 1.29% -
load & store byte savings 0 7.28% 4.92% :
mip insert omission cost 0 0.77% 052% |
min extract omission cost 0 3.81% 2.58% |
min insert/extract omission cost 0 4.58% 3.10% |
avg insert omission cost 0 9.97% 6.74% ’
avg extract omission cost 0 24.78% 16.76%
avg inservextract omission cost 0 34.75% 23.50%
max insert omission cost 0 17.65% 11.93%
max extract omission cost 0 43.84% 29.65%

‘| max insert/extract omission cost 0 61.49% 41.58%

tes:PrintDefinition K

steps ' 38.01% 61.99% 100%
cycles 38.09% 61.91% 100%
insert per inst 0 2.23% 138%
extract per inst 0 6.03% 3.74%
insert + extract per inst 0 8.26% 5.12% °
insert per cycle 0 1.63% 101%
extract per cycle 0 4.42% 2.74% |
insert + extract per cycie 0 6.06% 3.75%
store byte savings 0 11.44% 7.08%
load byte savings 0 4.42% 2.74%
load & store byte savings 0 15.86% 9.82%
min insert omission cost 0 1.63% 1.01%
min exgact ormission cost 0 8.85% 5.48%
min inservexmact omission cost 0 10.48% 6.49%
avg insert omission cost 0 21.24% 13.15%
avg exmract omission cost 0 57.51% 35.60%
avg inservexmract omission cost 0 78.75% 48.75%
max insert omission cost 0 37.57% 23.26%
max exract omission cost 0 101.75% 62.99%
max inservexmract omission cost 0 139.32% 86.25%

162

Table A.17: Dvnamic analysis of bvte operations, Part 3.

testPrintHierarchy

steps 26.25% 73.75% 100%
cycles 25.90% 74.10% 100%
insert per inst 0 2.84% 2.09%
extract per inst - 0 4.20% 3.10%
insert + extract per inst 0 7.04% 5.19% :
insert per cycle 0 1.95% 1.47%
exmact per cycle 0 2.95% 2.18%
insert + extract per cycle 0 4.94% 3.66%
store byt savings 0 13.93% 10.32% i
load byte savings 0 . 2.95% 2.18% |
load & store byte savings 0 16.88% 1251%
min insert omission ¢ost 0 1.99% 1.47%
min exmact omission cost 0 5.89% 4.37%
min inservextract omission cost 0 7.88% 5.84%
. !
avg insert omission cost 0 25.87% 19.17% |
avg exmact omission cost 0 38.30% 28.38% |
avg inservexmract omission cost 0 64.17% 4755%
max insert omission cost 0 45.77% 33.92% !
max extract Omission cost 0 67.76% 5021% |
max insert/exmact omission cost 0 113.54% 84.13% !
» average of macro-benchmarks i
Steps ‘ 34.19% 65.819% 100.00% |
cycles 34.60% 65.40% 100.00% |
insert per inst 0.00% 1.58% 1.06% |
extract per inst 0.00% 3.83% 251% !
insert + extract per inst 0.00% 541% 357% .
insert per cycle 0.00% 1.12% 0.75% |
exmact per cycle 0.00% 2.73% 1.77% |
insert + extract per cycle 0.00% 3.85% 2.52% |
store byte savings 0.00% 7.84% 524% |
load byte savings 0.00% 2.73% 1.77% |
load & store byte savings 0.00% 10.57% 7.02% |
min insert omission cost 0.00% 1.12% 0.75% :
min extract omission cost 0.00% 5.45% 3.55% :
min insertyexgact omission ¢ost 0.00% 6.57% = 429%
avg insert omission cost 0.00% 14.56% 9.73%
avg exmract omission cost 0.00% 35.43% 23.05%
avg inservexmact omission cost 0.00% 50.00% 32.78%
max exmact Omission cost 0.00% 62.69% 40.77%
max insert omission cost 0.00% 25.77% 17.22%
max inservexmact omission cost 0.00% 88.46% 58.00%

|
i
|
P
i
|
|
i
H
|
|
]

163

164

AJ3.2. Evaluation of the loadc instruction

Is loadc pecessary? Loadc is a load insoucton with a different opcode that is only
used to obtain the class (data type) of an object. If the object is an integer, the resulting Tap
can be handled faster because the reason for the trap as well as the destination register are
fixed by convention. However, the trap handler for the ordinary load insgucdon could dis-
cover an attempt to access the class field by merely testng for an offset of zero. It would
take only two more cycles to test the offset value (in a shadow register) and branch. Table
A.18 conmins an analysis of this performance impact based on the frequency of loadc traps.
The table shows that SOAR could funcﬁon quite well without loadc. At worst, SOAR

would be only 1% slower without it.

AJ3.3. Barrel Shifter

Many VLSI processors have included a barrel shifter to perform mult-bit shifts in a
single cycle. SOAR lacks this feature. Although undisputably important for BitBLT, we
thought that muldple-bit shifts would not be needed for Smalltalk-80 code per se. To
confirm this, we insoqumented our simulator to detect consecutive cascaded shift operadons
and total the second through last This reflects the savings a barrel shifter would realize.

Table A.19 has this data. These data show that a barrel shifter would not help out SOAR.

A3.4. Evaluating the\impon.ance of Multiply and Divide

SOAR provides no help for multiplication or division. Is this a mistake? The only
place Smalltalk-80 uses these operations is runtime support routines for integers. We ran the
benchmarks and sampled the program counter to generate execution profiles. Table A.20
shows the results for the multiply and divide routines. The able shows that the average ame
spent in these roudnes is 3.2%. Extra hardware for these operadons wouid have had litle

performance impact.

‘o

Tabie A.18: Loadc Time Analysis, Part 1.

(All numbers are in percents.)

benchmark __ Smalltaik sysiem bocg=
testActivarionRerurn
steps 9721% 2.79% 100%
cycles 95.91% 4.09% 100%
loadc per inst 9.47% 0.01% 920%
loade per cycle 7.06% 0.01% 6.77%
loadc traps per loade 0% 0% 0%
cost of omitting loadc 0% 0% 0%
tesrClassOrganizer
steps 41.06% 58.94% 100%
cycles 42.56% 57.44% 100%
loadc per inst 7.24% 0.10% 3.03%
loadc per cycle 4.90% 0.07% 2.13%
loadc taps per loadc 25.39% 0% 24.90%
cost of omitting loade 2.49% 0% 1.06%
testCompiler
steps 33.42% 66.58% 100%
cycles 34.07% 65.93% 100%
loadc per inst 729% 0.25% 2.60%
loadc per cycle 4.89% 0.17% 1.78%
loade traps per loadc 15.41% 1.38% 14.52%
cost of omitring loadc 1.51% 0.00% 052%
testDecompiler
steps 32.19% 67.81% 100%
cycles 32.38% 67.62% 100%
loadc per inst 720% 0.29% 251%
loadc per cycle 491% 0.20% 1.72%
loadc traps per loadc 17.06% 0.16% 15.76%
cost of omirang loade 1.67% 0.00% 0.54%
testPrintDefinirion
steps 38.01% 61.99% 100%
cycles 38.09% 6191% 100%
loadc per inst 7.98% 0.11% - 3.10%
loadc per cycie 5.83% 0.08% 227%
loadc traps per loade 1.03% 0% 1.01%
cost of omiting loadc 0.12% 0% 0.05% |
testPrintHierarchy i
steps 26.25% 73.75% 100%
cycles 25.90% 74.10% 100%
loadc per inst 7.62% 0.19% 2.14%
loadc per cycle 5.44% 0.13% 151%
loadc maps per loadc 4.47% 0% 4.17%
cost of omitung loadc 0.49% 0% 0.13%

165

Table A.18: Loadc Time Analysis, Part 2.
(All numbers are in percents.)

" benchmark smalltalk system bot£=

; average of macro-benchmarks

| steps 34.19% 65.81% 100.00%

i cycles 34.60% 65.40% 100.00%
loadc per inst 7.47% 0.19% 2.68%

! loadc per cycle 5.19% 0.13% 1.88%

| joadc raps perloade. 12.67% 031% 12.07%
cost of omitting loadc 1.26% 0.00% 0.46%

i

- Table A.19: Performance improvement of adding a barrel shifter. -

i ST system both |
'; testClassOrganizer ?
! cycles 42.56% 57.44% 100% |
| savings on sil’s 0 0 0 '
| savings on sti’s 0 0.69% 040% .
| savings on sTa’s 0 0 0 l
: I
' torl savings 0 0.69% 0.40% |
: testCompiler |
. eycles 34.07% 65.93% 100% i
~ savings on sil’s 0 0.00% 0.00% |
i savings on sti's 0 0.26% 0.17%
. savings on sra’s 0 0.00% 0.00% i
' tomal savings 0 027% 0.18% |
2 testDecompiler I
. cycles 32.38% 67.62% 100% |
. savings on sil’s 0 0 0 §
. savings on sti’s 0 0.23% 0.15% |
. savings on sra’s 0 0 0 !
. total savings 0 0.23% 0.15% |
i testPrintDefinirion %=,
¢ cycles 38.09% - 61.91% 100%
I savings on sil's 0 0 0
! savings on sti’s 0 0.95% 05%%
| savings oo sra’s 0 0 0

: |
| toml savings 0 0.95% 059%
; testPrintHierarchy Z
! cycles 25.90% 74.10% 100% i
-~ savings oa sll’s 0 0 0 :
' savings on sri’s 0 0.74% 055%
savings on sra’s 0 0 0 ,
t
towl savings . 0 0.74% 0.55% |
average of macro-benchmarks ;

cycles 34.60% 65.40% 100.00%
savings on sli’s 0.00% 0.00% 0.00%
savings on sra’s 0.00% 0.00% 0.00%
savings on srl’s 0.00% 057% 037%
1
toral savings 0.00% 0.58% 037%

167

168

I Table A.20: Time sgent in multiglz and divide routines. |
benchmark " muldply divide ol |
testClassOrganizer 3.2% 52% 8.4%
testCompiler 1.7% 3.0% 4.7%
testDecompiler 0.9% 2.1% 3.0%
testPrintDefinition 0.0% 0.0% 0.0%
testPrintHierarchy 0.0% 0.0% 0.0%
average 12% 2.1% 3.2%

A.3.5. Evaluating the In1/Outl Skip Coadition

Table A.2! presents an analysis of the cost of omitting this conditon from SOAR'’s
instuction set. We assume that the cost of simulating this operation is two cycles: one t©

decrement each operand. This is an insignificant feature.

Table A21: Analysis of In1/Outl condition.
ST system both

i testClassOrganizer

instructons 41.06% 58.94% 100%
| gycles 4256% 57.44% _100%

inl/out] uses per inst 0% 0% 0%

cost of omitting inl/outl % 0% 0% 0%

testCompiler

instructions 33.42% 66.58% 100%

cycles 34.07% 65.93% 100%

inl/out! uses per inst 0% 0.00% 0.00%

i cost of omitting inl/outl % 0% 0.00% 0.00%

restDecompiler

' instructons 32.19% 67.81% 100%

| cycles 32.38% 67.62% 100%

! inl/outl uses per inst 0% 0.04% 0.03% | -
' cost of omitting inl/outl % 0% 0.03% 0.02%
: testPrintDefinition

- insgrucdons 38.01% 61.99% 100%

' cycles 38.09% 61.91% 100%

. inl/outl uses per inst 0% 0% 0%

. cost of omitdng inl/outl % 0% 0% 0%

' restPrintHierarchy

. instructions 26.25% 73.75% 100%

. cycles 25.90% 74.10% 100%

. inl/outl uses per inst 0% 0.00% 0.00%

© cost of omitring inl/outl % 0% 0.00% 0.00%

165

A3.6. Evaluating SOAR's Conditional Trap Instruction

Conditional oap insguctions can save .onc cycle for a comparison whose outcome can
be predicted. Our SOAR sofrware exploits the gap inszucton verify the in-line pro-
cedure call cache, to check the tags of remm values. and to test the types of arguments to
primitive routnes. Table A.22 shows the sequence that would be required without this
instruction. Table A.23 shows the trap inszucton dynamic frequency, and the time cost for
omittng this fearure from SOAR. Since the overhead is one cycie per wap insoucdon, the

difference berween the two numbers arises becausc the average insguction duraton is 1.5

_cycles. The dam show that SOAR would be 4% slower without this feature.

To analyze the impact of eliminating trap instuctons on the size of the compiled
image, we insmumented our compiler to count rap insgructions. Then assuming that each
such instucton would become two inszuctions — a skip followed by a call — we can cal-

culate the total impact (Table A24). Trap insouctons improve image size even less than

~ execution speed, and our image wouid only be 2% larger without them.

A3.7. One-Cycle Traps

At one point in the design of SOAR, we decided to extend the Tap operation rather
than lengthen the cycle dme [Pen85b]. This resulted in rwo-<ycle oaps inswzad of one<ycle
waps. How many cycles did this decision cost us? Table A.25 presents our dawa. The result
of adding the exwa cycle to the Tap operation was to require fewer than one percent more

cycles. This was a good decision.

Table A.22: Writearound for trap instruction.
skip

call

Exma Cost | cycle

170

~ Table A23: Time cost of omitting the trap instruction.

(All numbers are percentages.)
ST sys . _both
testAcrivarionRerurn
instructions 97.21% 2.79% 100%
cycles 95.91% 4.09% 100%
trap instructions per inszructon 14.20% 0.02% 13.80%
cost w/o trap insgruction 10.59% 0.01% 10.16% '
tesrClassOrganizer
insguctons 41.06% 58.94% 100%
cycles 4256% 57.44% 100%
trap instuctions per instruction 9.53% 3.53% 5.99%
cost w/o Tap insgucton 6.44% 2.54% 4.20% .
testCompiler
inszuctions 33.42% 66.58% 100%
cycles 34.07% 6593% 100%
trap instructions per instructon 9.38% 2.35% 4.70%
COst W/0 insgucton 6.28% 1.62% 3.21%
testDecompiler

insguctons 32.19% 67.81% 100%

| cycles - L 3238% 67.62% 100%

trap instructions per instruction 9.31% 251% 4.70%

cost w/o trap instuction 6.35% 1.73% 3.22%
testPrimtDefinirion

instucdons 38.01% 61.9% 100%
cycles 38.09% 6191% 100%
. '| trap instructions per insgucton 9.35% 5.64% 7.05%
cost w/o trap insgucton 6.83% 4.13% 5.16%
testPrintHierarchy
insaucdons 26.25% 73.75% 100%
cycles 25.90% 74.10% 100%
trap insgucgons per instrucdon 9.07% 4.22% 5.49%
[cost w/0o u'ag=i.nsauc:ion 6.48% 2.96% 3.87%
average of macro-benchmarks
insoructions 34.19% 65.81% 100.00%
cycles 34.60% 65.40% 100.00%

trap inszuctions per instruction 9.33% 3.65% 5.59%
cost w/o trap insgucton 6.48% 2.60% 3.93%

171

Table A.23: Raw data for static analysis of trap instructions.
total number of trap mnsguctons 7638

ol SOAR image size 1500 kB
reladve size 1mpact 2.04% |

Table A.25:

Trap frequencies, Part 1.
ST system both
classOrganizer

cycles

42.56% S57.4% 100%

TT’s per cycle
WO’s per cycie
WU’s per cycle
TT’s per cycle

1.53% 0.00% 0.65%
0.53% 0.05% 023% .
0.43% 0.13% 0.18%

0.05% 0.00% 0.02% -

i

total raps percycle _2.54% _ 0.18% 1.08%

compiler

cycles

307% 65.93% 100%

TT s per cycle
WQO’s per cycle
WU'’s per cycle
TTI's per cycle
GS’s per cycle

total ra cle

091% 0.00% 031% .
0.56% 0.09% 0.19%
051% 0.12% 0.17% !
024% 0.01% 0.08% !
0.00% 0.02% 0.00% .

222% 024% 0.76%

decompiler

cycles

3238% 67.62% 100%

TT’s per cycle
WO’s per cycle
WU's per cycle
TT’s per cycle

0.92% 000% 030%
0.34% 008% O0.11%
0.37% 007% 0.2%
0.34% 000% 0.1%

ol gaps per cycle 1.98% 0.15% 0.64%
printDefinirion

cycles

38.09% 6191% 100%

TT's per cycle
WOQ’s per cycle
WU’s per cycle
TT's per cycle
GS’s per cycle

total oaps cycle

0.76% 0.00% 0.29%
0.04% 0.02% 0.01%
0.05% 0.02% 0.02%
0.04% 0.00% 0.02%
0.01% 0.00% 0.00%

0.90% 0.03% 0.34%
printkierarchy

cycles

25.90% 74.10% 100%

TT’s per cycle
WOQO’s per.cycle
WU'’s per cycle
TI's per cycle
GS’s per cycle

total raps per cycle

0.28% 0.00% 0.07%
0.38% 0.03% 0.10%
0.27% 0.07% 0.07%
0.28% 0.00% 0.07%
0.08% 0.00% 0.02%

1.29% 0.10% 0.33%

172

173

; Table A.25: Trap frequencies, Part 2.
ST system both
average of macro-benchmarks

cycles 0.00% 0.00% 100.00% '
TT s per cycle 0.88% 0.00% 0.32% |
WOQO’s per cycle 0.37% 0.05% 0.13% :
WU’s per cycle 0.33% 0.08% 0.11% |
TT's per cycle 0.19% 0.00% 0.06% !
GS’s per cycle 0.02% 0.00% 0.00%

|
toal maps percycle 1.79% 0.14% 0.63% |

A3.8. Evaluating the Performance Impact of Shadow Registers

To ascertain the dme cost of omitting shadow registers from SOAR, we measured the
frequencies of the various types of traps, estimated the added cost of handling each type
without shadow registers, and multplied the r-&o together. One trap we could not measure
was the page fault rap. Handling a page fauit takes so long though. that the few cycles
saved by shadow registers will not make much difference. The traps we did include were:
integer tag traps (TT) on ALU and load/store insguctions, register window overfows (WO)
on call insuctions, register window underflows (WU) on return insguctions, oraps cause by
conditonal trap instructdons (TT), and Generation Scavenge traps (GS) on store inszrucgons.
Of these, only tag and Generaton Scavenge trap handlers profit from the shadow registers.
Table A.26 summarizes our results. These data seem to suggest that shadow registers do not

significantly improve performance. The maximum improvement is 0.12%.

Table A26: Time cost of omitting shadow registers.

(All figures in percents.)
ST svsiem both
testAcrivanionReturn

cycles 95.91% 4.09% 100%
shadow cost for GS % = 0% 0%
shadow cost for TT 0% 0% 0%
shadow cost for both 0% 0% 0%

testClassOrganizer
cycles 42.56% 57.44% 100%
shadow cost for GS 0.00% 0% 0.00%
shadow cost for TT 0.12% 0% 0.05%
shadow cost for both 0.12% 0% 0.05%

testCompiler ’
cycles 3407% 65.93% 100%
shadow cost for GS 0.00% 0.01% 0.00%
shadow cost for TT 0.07% 0% 0.02%
shadow cost for both 0.07% 0.01% 0.03%
testDecompiler

cycles 32.38% 67.62% 100%
shadow cost for GS 0% 0% 0%
shadow cost for TT 0.04% 0% 0.01%
shadow cost for both 0.04% 0% 0.01%

testPrintDefinirion
cycles 38.09% 6191% 100%
shadow cost for GS 0.00% 0% 0.00%
shadow cost for TT 0.30% 0% 0.12%
shadow cost for both 0.30% 0% 0.12%

testPrintHierarchy
cycles 25.90% 74.10% 100%
shadow cost for GS 0.02% 0% 0.01%
shadow cost for TT 0.02% 0% 0.00%
shadow cost for both 0.04% 0% 0.01%

average of macro-benchmarks

cycles 34.60% 6540% 100.00%
shadow cost for GS 0.00% 0.00% 0.00%
shadow cost for TT 0.11% 0.00% 0.04%
shadow cost for both 0.11% 0.00% 0.04%

174

175.

A3.9. Does SOAR Really Need Vectored Traps?

Suppose the reason for a rap appeared in the PSW register. Then, the instructons i
Table A.27 would simulate the effect of vectored maps. As the table shows, the cost would

be four more cycles per rap.

We can then estimate the overall performance impact by counting the number of zraps
that occur (Table A28). Since this would presumably allow us to shorten our maps by a
cycie, the table also lists the cost of the exma gap cycle in the current SOAR system. The

mble indicates that the new effect of non-vectored traps would be a 2.2% percent Gme

penalty.

A.4. Procedure Calls

Next we examine SOAR’s features that help procedure calls.

A.4.1. Evaluating SOAR’s Register File Organization

Unlike other RISCs, the chips designed at Berkeley feamre multiple overlapping
on-chip register windows. These reduce the amount of saving and restoring for calls and
recurns. If this fearure were left out of SOAR, then each call would have to save the registers
it needed, and each rerurn would have to restore the saved registers. To measure this
hypothetical cost, assuming no compiler optimizadon. we counted the number of non-nil
registers before each return inswrucdon. This count of modified registers was then doubled to

account for both the saving and restoring cost Finally, we added two cycles per reurn ©

rl Table A27: Simulating vectored traps. ;

%o jump
| Feexmact psw, 2. r_temp
| Foret
E_(jumv table)
Exma Cost 4 cycles

176

| Table A28: Time cost of non-vectored traps, Part 1.

Smalltalk System both
testActivarionRerurn
insguctions 97.21% 279% 100%
time 95.91% 4.09% 100%
traps per instruction 0.30% 0.02% 0.29%
cost of extra rap cycle/all cycles 0.22% 0.01% 0.21%
cost of nonvectored traps/all cycles 0.89% 0.04% 0.85%
testClassOrganizer :
insguctions 41.06% 58.94% 100%
tme 42.56% 57.44% 100%
traps per insguction 3.75% 0.25% 1.69%
cost of extra rap cycle/all cycles 2.54% 0.18% 1.18%
cost of nonvectored traps/all cycles 10.14% 0.72% 4.73%
testCompiler
instructons 33.42% 66.58% 100%
tdme 34.07% 65.93% 100%
traps per instruction 331% 0.35% 1.34%
cost of extra trap cycle/all cycles 2.22% 0.24% 0.92%
cost of nonvectored traps/all cycles 8.88% 0.97% 3.66% |
*) restDecompiler
insguctions 32.19% 67.81% 100%
time 32.38% 67.62% 100%
traps per insquction 2.90% 0.22% 1.08%
cost of extra trap cycle/all cycles 1.98% 0.15% 0.74%
cost of nonvectored traps/all cycles 7.90% 0.59% 2.96% |
testPrintDefinirion
instructions 38.01% 61.99% 100%
time 38.09% 61.91% 100%
Taps per instruction 1.23% 0.05% 0.50%
cost of extra trap cycle/all cycles 0.90% 0.03% 0.36%
cost of nonvectored traps/all cycles 3.60% 0.14% 1.46%
] testPrintHierarchy
insguctons 26.25% 73.75% 100%
tme 25.90% 74.10% 100%
traps per instrucgon 1.81% 0.15% 0.58%
cost of extra rap cycle/all cycles 1.29% 0.10% 0.41%
cost of nonvectored traps/all cycles 5.16% 0.42% 1.65%

177

_ Table A28: Time cost of non-veciored traps, Part 2.
Smallaik System both
average of macro-benchmarks
instructons 34.19% 65.81% 100.00%
tme 34.60% 65.40% 100.00%
traps per insgucton 2.60% 0.20% 1.04%
cost of extra trap cycle/all cycles 1.79% 0.14% 0.72%
cost of nonvectored raps/all cycles 7.14% 057% 2.89%

account for the exma cycle of the loadm and storem insguctgons. Table A.29 presents these
data. SOAR's muldple register windows are the most significant architectural feature on the

chip: The benchmarks would take 70% more time without them.

How much would the image expand without register windows? The cost would be two
insguctons upon entering a subroutine (2 subtract to adjust a smck pointer and a storem to
save registers), and two instructons for each return from the routne (a loadm to restore the

registers and an add to restore the sp). Table A.30 gives our analysis.

A.4.2. Number of Registers per Window.

With only eight registers, SOAR's windows are much smaller than RISC II's. Meas-
urements of Berkeley Smalltalk suggested that this would be sufficient. To verify this we
instrumented our system and ran some benchmarks. When more registers are needed for a
subroutine, it allocates a spill area in main memory. Thus, we merely counted the number of
spill objects allocated and divided by the total number of calls. Also, we measured how
many words were spilled to determine how many more registers were needed. Table A31
presents these dam. These data show that SOAR’s winAows are large enough for

Smalltalk-80 programs; more than 97% of the subroutines called fit into a window.

A.4.3. Analysis of Loadm & Storem

The first step in evaluating the impact of the load- and store- muldple insguctons 1s to

measure their frequency. Since the time to simulate one of these insgucdons depends on the

N

Table A29: Analysis of register windows, Part 1.

ST s both -
testAcrivationR erurn ;
instructons 97.21% 2.79% 100%
cycles 95.91% 4.09% 100%
retw’s* / all insts 9.62% 0.06% 9.35%
retw’s* / cycles 7.17% 0.03% 6.88%
avg regs used / retw* 3.98 5.17 498
cost of saving & restoring regs/all cycles 71.52% 0.37% 82.38% ’,
cost of WO/U 4% |
net cost of no reg file 78.38% |
vs full SOAR 56.06% |
restClassOrganizer |
instructions 41.06% 58.94% 100% |
cycles 4256% 57.44% 100% |
retw's* / all insts 9.78% 4.62% 6.74% i
retw’s* / cycles 6.61% 3.32% 4.72% |
avg regs used / retw* 3.53 5.00 s.12 |
cost of saving & restoring regs/all cycles 59.90% 39.85% 57.83% !
cost of WO/U 9.80% .
net cost of no reg file 48.03%

vs full SOAR 67.55% '
. testCompiler

instructions 33.42% 66.58% 100%

cycles 34.07% 6593% 100%

recw’s* / all insts 9.64% 3.82% 5.77% |
retw's* / cycles 6.46% 2.64% 3.94% ,
avg regs used / retw* 3.62 5.26 535 !
cost of saving & restoring reg/all cycles 59.75% 33.00% 49.99%
cost of WO/U 9.50% |
net cost of no reg file 40.49% !
perf vs full SOAR 71.18%

178

Table A29: Analysis of register windows, Part 2.

ST sys both
P
testDecompiler i
insguctions 32.19% 67.81% 100% |
cycles 3238% 67.62% 100%

reew’s” / all insts 8.76% 3.62% §.27% |
retw's* / cycles 5.97% 2.49% 3.62% |
avg regs used / retw* 3.78 5.42 554 |
cost of saving & restoring regs/all cycles 57.11% 31.93% 47.31% |
cost of WO/U 4 6.40% |
net cost of no reg file 40.91% '
perf vs full SOAR 70.97%
testPrintDefinition |
insguctons 38.01% 61.99% 100% :
cycles 38.09% 61919 100% z
rerw’s* / all insts 8.19% 5.52% 6.53% |
retw’'s* / cycies 5.98% 4.04% 4.78% |
avg regs used / retw* 3.69 5.27 552 |

cost of saving & restoring regs/all cycles 56.17% 50.69% 62.35%

cost of WO/U 0.50%

net cost of no reg file 61.85%
rf vs full SOAR 61.79% |
insguctions ' 2625% 713.75% 100%
cycles ’ : 25.90% 74.10% 100% |
recw’s* / all insts 8.68% 2.79% 4.33% |
resw’s* / cycles - 6.20% 1.95% 3.05% i
avg regs used / rerw* 4.01 5.98 594 |
cost of saving & restoring regs/all cycles 62.11% 27.27% 42.40% !
cost of WO/U 5.10% |
net cost of no reg file 37.30% |
rf vs full SOAR - 72.83%
%‘ average of macro-benchmarks B
instructions 34.19% 65.81% 100.00% .
cycles 34.60% 65.40% 100.00% '
recw’'s* / all insts 9.01% 4.07% 5.73% |
retw’s* / cycles 6.24% 2.89% 4.02% |
avg regs used / retw® 3.73 539 549
cost of saving & restoring regs/all cycles 59.01% 36.55% 51.98% :
cost of WO/U 6.26%
net cost of no reg file 45.72%
perf vs full SOAR 68.86% -

* includes all return nstrucuions that change register windows: refw, retiw, reinw, reunwk -— tagged or untagged.

179

180

l Table A30: Static analysis of regster windows.
routine enTy poinats 4654
routine exit points 6795
image size 1500 kB
reladve cost 6.11%

Table A31: Spill area analysis.
testCompiler
total number of cycles -~1,100,000
total number of Smalltalk calls ~18,000
number of calls using spill area 430
total size of spill areas actually needed 883
avg. words of spill area used 2.1
fraction of calls needing spill areas 2.3%
mean number of cycles per spill allocation 2,600
testDecompiler

total number of cycles ~2,900,000
total number of Smalltalk calls ~46,000
aumber of cails using spill area 1085
toaal size of spill areas actually needed 2807
avg. words of spill area used : : 2.6
fracton of calls needing spill areas 2.4%
mean number of cycies per spill allocadon 2,700

number of registers actually accessed, we also gathered those data (Table A.32). The loadm

and storem instructions rarely occur, only one in 130 instructions.

Table A.33 shows the performance consequences of eliminated this seldom-used
feature. As expected from the frequency dama, these instructions bave minimal impact

SOAR would be only 3% slower without them.

How much larger would the compiled image grow if we eliminated loadm and storem?
Originally, these instructions were intended only for the system code. In that case there
would be no significant statc impact. However, our current strategy for spill areas requires
a routine that allocates a spill area to inidalize it We therefore insocumented our compiler to
count the number of words initalized this way (Table A.34). (We also subtracted out the
number of rem instructions used solely to write nil into several registers prior to the storem.)

Omitting these insouctions would increase the size of the system by only 2%.

Table A32: Loadmy/storem execution frequencies, Part 1. |

mean Storem regs

ST SYS both |
 lesiAcrivanionRemurn |
insgucdons 97.21% 2.79% 100%
loadms per instuction 0.00% 5.19% 0.14%
loadms w/ 8 regs 0.00% 100.00% 100.00%
mean loadm regs 0 8 8
storems per inszucton 0.00% 5.19% 0.14%
storems w/ 8 regs 0.00% 100.00% 100.00%
mean Sorem regs 0 8 8 |
testClassOrganizer ,
insguctons 41.06% 58.94% 100% |
loadms per insgucton 0.00% 0.62% 0.36%
loadms w/ 8 regs 0.00% 100.00% 100.00% |
mean loadm regs 0 8 8 |
storems per instructdon 0.74% 0.65% 0.69%
storems w/ 5 regs 0.00% 0.13% 0.07%
storems w/ 6 regs 0.00% 0.00% 0.00% :
storems w/ 7 regs ~100.00% 5.06% 46.89% |
storems w/ 8 regs 0.00% 94.81% 53.04% |
mean storem regs 7 7.95 753 |
testCompiler !
insguctons 33.42% 66.58% 100% i
loadms per insguctdon 0.00% 0.67% - 045%
loadms w/ 7 regs 0.00% 17.70% 17.70%
loadms w/ 8 regs 0.00% 82.30% 82.30%
mean loadm regs 0 7.82 7.82
storems per insgucton. 0.75% 0.65% 0.69%
storems w/ 4 regs 0.05% 0.00% 0.02%
storems w/ 5 regs 0.85% 0.12% 0.39%
storems w/ 6 regs 2.72% 0.00% 1.00%
storems w/ 7 regs 96.38% 15.54% 4521% .
storems w/ 8 regs 0.00% 84.33% 53.38% |
6.95 7.84 752

181

Table A32: Loadm/storem execution frequencies, Part 2. |

ST SYS both
testDecompiler %
insguctons 32.19% 6781% 100% |
loadms per insgucnon 0.00% 0.35% 0.24% |
loadms w/ 8 regs 0.00% 100.00% 100.00% |
mean loadm regs _ 0 8 8 '
storems per insguction 0.73% 051% 058%
storems w/ 4 regs 0.62% 0.00% 0.25%
storems w/ 5 regs - 0.00% 0.00% 0.00%
storems w/ 6 regs 0.62% 0.00% 0.25% |
storems w/ 7 regs 98.76% 31.02% 58.35%
storems w/ 8 regs 0.00% 68.98% 41.15%
mean storem re 6.98 7.69 7.40
testPrintDefinition g
instructions 38.01% 6199% 100% |
loadms per inscruction 0.00% 0.06% 0.04% |
loadms w/ 8 regs 0.00% 100.00% 100.00% !
mean lcadm regs 0 8.00 8.00 !
storems per instruction 0.00% 0.14% 0.09% |
storems w/ 5 regs 0.00% 2.13% 2.13% |
storems w/ 6 regs 0.00% 0.00% 0.00% ;
storems w/ 7 regs 0.00% 55.32% 55.32% |
storems w/ 8 regs 0.00% 42.55% 42.55% |
mean storem re - 0 7.38 - 738 !
testPrintHierarchy |
insructions 26.25% 73.75% 100%
loadms per instruction 0.00% 027% 020% °
loadms w/ 7 regs 0.00% 1437% 1437%
loadms w/ 8 regs - 0.00% 85.63% 85.63% .
mean loadm regs 0 7.86 7.86
storems per instucaon 0.24% 0.43% 0.38% !
storems w/ 5 regs 0.00% 4.53% 3.79% .
storems w/ 6 regs 0.00% 0.00% 0.00% '
storems w/ 7 regs 100.00% 4151% 51.10%
storems w/ 8 regs 0.00% 53.96% 45.11% |
mean storem regs 7 7.45 738 |

182

Table A32: Loadm/storem execution frequencies, Part 3.
__ ST SYS both
avg of macros B

insgructons 34.19% 65.81% 100%
loadms per inszucton 0% 0.39% 0.26%
loadms w/ 7 regs 0% 6.41% 6.41% .
loadms w/ 8 regs 0% 93.59% 935%%
mean loadm regs 0 7.94 794
storems per instruction 0.49% 0.48% 0.49%
storems w/ 4 regs 0.13% 0% 0.05%
storems w/ 5 regs 0.17% 1.38% 1.28%
storems w/ 6 regs 0.67% 0% 025%
storems w/ 7 regs 79.03% 29.69% 5137%
storems w/ 8 regs 0% 68.93% 47.05% -
mean Storem regs 559 7.66 7.44

g3

Table A.33: Time cost of omitting loadm & storem.
(All costs in percents.)
benchmark ST SYS both
testActivationRenurn
cycles 95.91% 4.09% 100%
loadm cost/all cycles 0% 18.23% 0.75%
storem cost/all cycles 0% 18.23% 0.75%
total cost 0% 36.47% 1.49%
testClassOrganizer
cycles 4256% S744% 100%
loadm cost 0% 3.11% 1.79%
storem cost 2.99% 3.26% 3.14%
total cost 2.99% 6.37% 4.93%
testCompiler
cycles 34.07% 6593% 100%
loadm cost % @ 315% 2.08%
storem cost 3.01% 3.08% 3.06%
toeal cost 3.01% 6.24% 5.14%
restDecompiler
cycles 32.38% 67.62% 100%
loadm cost 0% 1.71% 1.15%
storem cost 2.98% 2.37% 2.57%
total cost) 2.98% 4.07% 3.72%
testPrintDefinition
cycles 38.09% 6191% 100%
loadm cost 0% 0.30% 0.19%
storem cost 0% 0.65% 0.40%
total cost 0% 0.96% 0.59%
testPrintHierarchy
cycles 2590% 74.10% 100%
joadm cost 0% 131% 0.97%
storem cost 1.02% 1.96% 1.72%
total cost 1.02% 3.28% 2.69%
macro avg.
cycles 3460% 6540% 100%
loadm cost 0% 1.92% 1.24%
storem cost 2% 2.26% 2.18%
total cost 2% 4.18% 341%
| Table A.34: Raw data for static analysis of store multigle. |
descripaon count
cost for storem 7363 words
total SOAR image size 1500 kB

l relatve stadc cost 1.96%]

185

A.4.4. Performance of Inline Caching

" First, we measured the cost of SOAR's in-line cache. In other words, if no procedure
lookups were needed, how much faster could SOAR run? To evaluate SOAR's in-line
cache, we counted the occurrences of the cache probe conditional Tap insgucdon. That gave
us the number of probes. Then, since the prologue takes five cycles, we can easily get the
probe time. For the misses, we added two components: the miss oap handler time, obtained
by muitiplying the number of misses (Tap instructon traps) by the oap handler path length,
and the lookup time, obmined direcdy from an execudon profile. Table A.35 summarizes
these data, which show that in-line caching takes a lot of tme; 23% of SOAR's ome is spent
testing the cache and handling misses. Without any caching at all, the probe time would
decrease to zero, but the miss time would increase by a factor of 1/3.53%=28. In other words,
what takes 100 seconds wi:h>in-linc caching would take 100-10.88+12.46x28=438 seconds.

SOAR would be four times slower with no cache at all.

Next, \;IC compared the 23% cbst for the in-line cache with other caching schemes.
One of these was the hash mble cache found in interpretive Smallalk-80 systems. The other
scheme was an in-line indirect cache. Each call would jump through a per-process area with
each process’s cache enmies. Table A.36 shows the code sequences needed for these two
types of cache. The hash mble cache is the most expensive scheme, requiring 23 cycles for a
cache probe. SOAR's in-line cache requires a prologue of only 5 cycles. The indirect
scheme adds a cycle for the indirect call and one for an indirect load in the prologue for a

ol of 7.

Assuming that the cache miss cost is independent of the caching scheme. we can use
the cache probe frequency data to calculate the costs of these caching schemes (Table A37).
The bottom line in the table gives the average speed of the various schemes. SOAR would

run only 75% as fast as it does now with a convendonal hash table cache. In other words,

the work that requires 100 cycies would take 133 with a conventonal cache.

Table A35: Inline cache performance evaluation, Part 1:.
description 8T system both
testAcrivanonReturn
instructions i 97.21% 2.79% 100%
cycles i 95.91% 4.09% 100%
probes per inst 1 9.47% 0.01% 9.20%
probes per cycle ¢ 7.06% 0.01% 6.77%
loadc traps per probe : 0% 0% 0%
misses per probe i 0% 0% 0%
probe insts per inst : 28.40% 0.03% 27.61%
loadc trapH insts per inst ¢ 0% 0-0% 0-0%
probe & wapH insts perinst _ ; 28.40% 0.03-0.03% | 27.61-27.61%
probe cycles per cycle i 35.32% 0.03% 33.87%
loadc trapH cycles per cycle i 0% 0-0% 0-0%
miss trapH cycles per cycle i 0% 0% 0%
probe & trapH cycles per cycle || 35.32% 0.03-0.03% | 33.87-33.87%
total miss time ; 0%
total cache time i! 33.87-33.87%
testClassOrganizer
instructions | 41.06% 58.94% 100%
cycles Il 42.56% 57.44% 100%
probes per inst | 7.24% 0.05% 3.00%
- probes per cycle. I 4.90% 0.04% 2.10% | .

loadc traps per probe i 25.39% 0-0% 25.15-25.15%
misses per probe 0.96% 0% 0.95%
probe insts per inst 4 21.73% 0.15% 9.01%
loadc trapH insts per inst : 5.52% 0-0% 2.27-2.27%
probe & trapH inswm perinst ! 27.24% 0.15-0.15% | 1 127-11.27%
probe cycles per cycle . 24.48% 0.18% 1052%
loadc trapH cycles per cycle 8.70% 0-0% 3.70-3.70%
miss trapH cycles per cycle 0.14% 0% 0.06%
probe & wapH cycles per cyclc , 33.18% 0.18-0.18% 14.22-14.22%
total miss tme 2.66%
total cache tme 16.88-16.88%

186

Table A.35: Inline cache pe

rformance evaluation, Part 2.

descripton ST system | both
tesrCompiler
insgucuons i 33.42% 66.58% 100%
cycies 0 34.07% 65.93% 100%
probes per st L 7.29% 0.18% 255%
probes per cycle i 4.89% 0.12% 1.75%
loadc traps per probe I 1541% - 0-1.94% | 14.70-14.79%
misses per probe i 4.81% 0% 4.59%
probe insts per inst 1 21.87% 053% 7.66%
loadc rapH insts per inst L 3.37% 0-0.01% 1.13-1.13%
probe & wapH insts perinst + 25.24% 0.53-034% 8.79-8.80%
probe cycies per cycle n 24.43% 0.61% 8.73%
| loadc rapH cycles per cycle 5.27% 0-0.02% 1.80-1.81%
miss trapH cycles per cycle 0.71% 0% 0.24%
probe & trapH cycles per cycle || 29.70% 0.61-0.63% | 1052-10.53%
total miss time 15.14%
total cache dme ; 25.66-25.67%
testDecompiler .
msTructons 32.19% 67.81% 100%
cycles 32.38% 67.62% 100%
probes per inst o 7.20% 024% 2.48%
probes per cycle P 491% 0.16% 1.70%
loadc waps per probe 4 17.06% 0-0.19% | 15.95-15.96%
misses per probe i 7.00% 0% L. 654%
probe insts per inst i 21.59% - 0.72% 7.44%
loadc rapH insts per inst i 3.68% 0-0.00% 1.19-1.19%
probe & wapH insts perinst | 25.28% 0.72-0.72% , 8.62-8.62%
probe cycles per cycle y 24.53% 0.82% 8.50%
loadc omapH cycles percycle : 5.86% 0-0.00% 1.90-1.90%
miss trapH cycles per cycle 1 1.03% 0% 0.33%
probe & rapH cycles percycle 30.39% 0.82-0.82% 10.40-10.40%
total miss time 3 24.03%
total cache ome I 34.43-34.43%

187

Table A.35: Inline cache performance evaluation, Part 3.
descripgon i ST system both
testPrintDefinition
instructions i 38.01% 61.99% 100%
cycles i 38.09% 61.91% 100%
probes per inst i 7.98% 0.04% 3.06%
probes per cycle I 5.83% 0.03% 224%
loadc traps per probe i 1.03% 0-0% 1.02-1.02%
misses per probe | 0.73% 0% 0.72%
probe insts per inst i 23.95% 0.12% 9.18%
loadc trapH insts per inst t 025% . 0-0% 0.09-0.09%
probe & trapH insts perinst | 24.20% 0.12-0.12% 927-9.27%
probe cycles per cycle i 29.17% 0.15% 1121%
loadc mapH cyclespercycle | 0.42% 0-0% 0.16-0.16%
miss trapH cycles per cycle | 0.13% 0% 0.05%
probe & trapH cycles per cycle { 29.59% 0.15-0.15% | 11.37-11.37%
wtal miss dme ! 1.95%
total cache time i 13.31-13.31%
testPrintHierarchy

instructions i 26.25% 13.75% 100%
cycles ' 25.90% 74.10% 100%
probes per inst 7.62% 0.16% 2.12%
probes per cycle 5.44% 0.11% 1.49%
loadc traps per probe 447% 0-0% 4.224.2%
misses per probe . 5.13% 0% 4.84%
probe inss per inst " 22.86% 0.48% 6.36%
loadc trapH insts per inst . 1.02% 0-0% 0.27-0.27%
probe & trapH insts perinst - 23.88% 0.48-0.48% 6.62-6.62%
probe cycles per cycle 27.20% 0.56% 7.46%
loadc mapH cycles percycle © 1.70% 0-0% 0.44-0.44%
miss trapH cycles per cycle 0.84% 0% 0.22%
probe & wapH cycles per cycle 28.90% 0.56-0.56% 7.90-7.90%
total miss dme H 18.52%
total cache time i 26.42-26.42%

188

Table A35: Inline cache performance evaluation, Part 4.

descripdon P ST _ sysem | both
average of macro-benchmarks
insgucdons | 34.19% 65.81% 100.00%
cycles L 34.60% 65.40% 100%
probes per inst P 7.47% 0.13% 2.64%
probes per cycle i 5.19% 0.09% 1.86%
loadc traps per probe | 12.67% 0.00-0.43% | 12.21-12.23%
misses per probe i 3.73% 0.00% 353%
probe insts per inst b 22.40% 0.40% 7.93%
loadc tapH insts per inst L 2T7% 0.00% 0.99%
probe & tapH inss perinst || 25.17% 0.40% 8.91-8.92%
probe cycles per cycle | 25.96% 0.46% 9.28%
loadc rapH cycles percycle || 4.39% 0.00% 1.60%
probe & wapH cycles per cycle | 30.35% 0.46-0.47% 10.88%
| total miss time | | 12.46%
total cache dme : 23.34%

189

Table A36: Code sequences for various caches.

Time cost 5 cycles

: Hash-table Cache

i loade (r14)classOffset, r6%

t %load (r15)0, r5; sel

i 9pxor r5, 16, rd%

| %load pcRel(mask), r3%

| %and 3, r4, r4%

| %sla 74, v4%

§ %sla rd, r4% i

| %load pcRel(base), 13% ;

! %add r3, 4, r4%

| %load (rd)cacheClass, r3% !
- %otrap3 ne r3, r4% |
. %load (rd)cacheSel, r3% i

! %trap3 ne r3, rd%

" %load (rd)cacheTarget, r3%

- Goret -3, 0% !
Time cost 23 cycles !

Indirect Inline Cache !

- <indirect call> 5
loade (r14)classOffset. r6% |
%load (r15)0, r5% *
%load (r5)rCacheBase, r5; uses global OR mappmg

. %otrap3 ne 13, r6% .

. Time cost: 7 cycles + | cycle for indirect call

[SOAR Inline Cache

i loade (r14)classOffset, r6%

' %load (r15)0, r5%

i Yotrap3 ne r5, r6%

190

191

Table A37: Relative Performance of various caching schemes.

_; (SOAR = 100%, faster is berter.) l

; no hash indi SOAR zero ume
E cache wable inline cache resolution !
| testAcuvanonReturn 15123% 45.06% 83.04% 100% 151.23% |
~ testClassOrganizer 28.13% 1253% 91.86% 100% 12023%
! estCompiler 25.05% 76.10% 93.03% 100% 134.11% |
| testDecompiler 2335% 7657% 9328% 100% 151.74% |
. testPrintDefinition 2858% 7126% 91.67% 100% 11530%

| testPrintHierarchy 22.14% 78.82% 94.19% 100% 13551% i
_average 2545% 75.06% 92.81% 100% 13138% !

Next we examine the space impact of these caching stmategies. Table A.38 presents the
raw data we have collected from the compiler. The toml space taken by SOAR'’s in-line
caching scheme is the sum of the number of exxra words needed to hold the last class for the
sends (measured by the number of cache slots), and the space consumed by the method pro-
logues. The number of prologues is the same as the oumber of cache probes. Tabie A39
fllustrates this pmlogue.' Table A.40 below shows the amounts of overbead at the call site
and at the method prologue for the various caching schcmé. Finally, we can combine this
data to show the impact that each scheme would bave (Table A.41). Thus, the hash wble

cache would save 1.24% of the image space

| Table A.38: Raw data for static analysis of caching. -

call sites 22025 .
cache probes 4654 l
image size 1500 kB
Table A39: Inline cache proiogue.
<selector> peeded to handle misses
%loadc (r14)0,r0 get receiver’s class
%load (r15)0, rl get last class for send
otrapl ne r0, rl verify cache
total lcngth 4 words

192

Table A.40: Sgace overhead for the various caching schemes.

call site overhead prologue overhead

no lookups 0 0
in-line cache 1 4
indirect in-line cache 3 4
hash tabie 1 0
[Table A.41: Net space impact of caching schemes.

no lookups 2.71% savings

in-line cache 0

indirect in-line cache 2.94% cost

hash table 1.24% savings

A.4.5. How Fast Does SOAR Shuffle?

SOAR is a nimble processor; jumps and branches only take one cycle. To undersand
the significance of this feature, we can examine the frequency of jumps and calls (Table
A.42). As the table shows, jumps and calls are popular instructions; one insguction in 10 is
a jump and one in 17 is a call. Given the frequency data, we can add the exma cycle SOAR
would require without a fast shuffle (Table A.43). Th?se dam show that SOAR would be

11% slower without the fast shuffle mechanism.

A.4.6. Evaluation of Parallel Register Initialization

If the return insgruction could write nil into six registers at once, each routine would
have to write nil into its temporary variable registers sequc‘ntially. Using {Bla83a] page 139.
Benchmark column, one can compute an average of 1.19 arguments and temporanes per
call. excluding the receiver. Since the average number of arguments per call is 0.88
[MeC83] (pp 185, Fig. 10.3) we assume that the average number of temporaries per call is
berween zero and one. This gives the number of exa= cycles required per call. To measure
the number of cails requiring nilling, we used the number of return instructions that changed
the window. This way, we also included reurns from interrupts. Table A.44 presents our

measurement of the extra time that serial instead of parallel nilling would take. assuming no

Table A.42: Frequency of jump and call instructions.

ST system both
testAcrivarionRerurn
mnsguctons 97.21% 2.79% 100%
jumps 5.03% 10.50% 5.18%
calls 9.62% 0.08% 9.35%
jumps & calls 14.65% 10.58% 14.53%
testClassOrganizer
instrucgons 41.06% 58.94% 100%
jumps 15.10% 8.96% 11.48%
calls 1451% 1.14% 6.63%
jomps & calls 29.62% 10.10% 18.11%
tesrCompiler
instructons 33.42% 66.58% 100%
jumps 1425% 8.95% 10.72%
calls 13.74% 1.89% 5.85%
jumps & calls 27.99% 10.84% 16.57%

%

testDecompiler

insouctons 32.19% 67.81% 100%
jumps 1291% 8.66% 10.03%
calls ' 13.23% 1.88% 5.54%
jumps & calls 26.14% 10.55% 15.57%
testPrintDepinirion
insgucdons 38.01% 61.99% 100%
jumps 12.84% 551% 8.30%
calls 13.50% 1.89% 6.30%
jumps & calls 26.34% 7.40% 14.60%
testPrintHierarchy
insguctons 26.25% 73.75% 100%
jumps 12.41% 7.85% 9.04%
calls 13.73% 1.23% 4.51%

average of macros

!'umg & calls 26.14% 9.07% 13.55%

insguctons 34.19% 65.81% 100%
jumps 13.50% 71.99% 991%
calls . : 13.74% 1.61% . 5.77%

jumps & calls 2725% 9.59% 15.68%

193

194

Table A.43: Cost of omitting fast shuffle.
ST system both
testActivagonReturn
cycles 95.91% 4.09% 100%
jump cost 3.75% 527% 3.82%
call cost 7.17% 0.04% 6.38%
total cost 10.93% 5.31% 10.70%
testClassOrganizer
cycles 4256% 57.44% 100%
jump cost "'1021% 6.44% 8.05%
call cost 981% 0.82% 4.65%
ol cost 20.02% 7.26% 12.69%
restCompiler
cycles 3407% 65.93% 100%
jump cost 9.55% 6.18% 7.32%
call cost 9.21% 1.30% 4.00%
total cost 18.76% 7.48% 11.32%
testDecompiler
cycles 3238% 67.62% 100%
jump cost 8.80% 5.96% 6.88%
call cost 9.02% 1.30% 3.80%
total cost 17.82% 7.25% 10.67%
sestPrintDefinition
cycles : 38.09% 6191% 100%
jump cost 9.38% 4.04% 6.07%
call cost 9.87% 1.38% 4.61%
total cost 19.25% 5.42% 10.69%
. testPrintHierarchy
cycles 2590% 74.10% 100%
jump cost 8.86% 5.50% 6.37%
call cost 9.80% 0.86% 3.18%
total cost 18.66% 6.36% 9.55%
average of macro benchmarks
cycles 3460% 6540% 100%
call cost 9.54% 1.13% 4.05%
jump cost 9.36% 5.62% 6.94%
ol cost 18.90% 6.75% 10.98%

changes in compiler soaegy. The dam show that SOAR would run 4% slower without
parallel nilling.

To analyze the impact of parallel nilling on the size of the compiled image. we.dnstru-
mented our compiler (Table A.45). To do this, we kept a running total of the number of

temporary variables that would be kept in registers. Assuming that each variabie would

195

Table A.44: Evaluation of parallel nilling, Part 1. !
: ST system both)
testAcrivarionRerurn 1
insuctons 9721% 2.79% 100%
cycles 95.91% 4.09% 1009% |
avg. regs containing pointers per rerw® n.a. 2 n.a. 5
avg temp vars 0-1 na. - a.a. l
retw’'sda per inst 9.62% 0.06% 9.35% |
rerw’sa per cycle ‘ 7.17% 0.03% 6.88% |
cost of nilling 0%-7.18% 0.06% 0.00%-6.88%
tesrClassOrganizer ;
insguctdons 41.06% 58.94% 100% |
cycles 4256% 51.44% 100% |
avg. regs CONMAINIng POinLers per retw™ n.a. 1.60 n.a. :
avg temp vars 0-1 na. na '
retw’sda per inst 9.78% 4.62% 6.74%
retw’sda per cycle 6.61% 3.32% 4.72% |
cost of nilling 0%-6.62% 5.32% 3.05%-5.82%
testCompiler i
instructons 33.42% 66.58% 100%
cycles 3407% 65.93% 100%
avg. regs conmining pointers per retw* n.a. 1.78 n.a. :
avg temp vars 01~ na. . n.a. ;
rerw’sda per inst 9.64% 3.82% 5.77% |
rerw’sda per cycle - 6.46% 2.64% 3.94% |
cost of nilling 0%-6.46% 470% 3.10%-5.30%
testDecompiler ;
insouctons 3219% 67.81% 100%
cycles 3238% 67.62% 100%
avg. regs containing pointers per retw* aa. 1.84 n.a. :
avg temp vars 0-1 n.a. n.a. }
retw'sda per inst 8.76% 3.62% 527%
retw’s¢a per cycle 597% 2.49% 3.62% .
cost of nilling 0%-5.97% 4.59% 3.10%-5.04%
testPrintDefinition '
inszuctons 3801% 61.99% 100%
cycles 38.09% 6191% 100%
avg. regs conraining pointers per retw” n.a. 1.53 n.a.
avg temp vars _ 0-1 n.a. n.a. ‘
recw’s@a per inst 8.19% 5.52% 653%
retw’sda per cycle 5.98% 4.04% 4.78%
cost of nilling 0%-5.99% 6.209% 3.84%-6.12% °

196

Table A.d44: Evaluation of parallel nilling, Part 2.
: ST system both
testPrintHierdrchy
instructions 26.25% 73.75% 100%
cycles 25.90% 74.10% 100%
avg. regs containing pointers per retw* na. 2.26 n.a.
avg temp vars 0-1 n.a. n.a.
retw’sda per inst 8.68% 2.79% 4.33%
retw’sda per cycle 6.20% 1.95% 3.05%
cost of nillin: 0%-6.20% 4.42% 3.28%-4.89%
average of macro-benchmarks

instructions : 34.19% 65.81% 100.00%
cycles 34.60% 65.40% 100.00%
avg. regs containing pointers per reew™® n.a. 1.80 n.a.
avg temp vars 0-1 " na. na.
retw’sda per inst 9.01% 4.07% 5.73%
retw’sga per cycle 6.24% 2.89% 4.02%
cost of milling 0.00%-6.25% 5.05% 3.27%-5.44%

require an additional insgrucdon to nill it, we can then compute the space overhead nilling
would require without hardware support The table shows that our image would be 1.29%

larger if SOAR lacked this feature.

A.4.7. Return Opﬁom

The inclusion of three optional operations in SOAR's return instruction add some com-
plexity to the architecture. Which of the possible combinations are really used? Table A.46
shows our dynamic frequency data‘. As expected, the normal remurn, remw was used n&riy
three quarters of the time. Although seven out of the eight possibie versions were acmally

used, only ret, reti, rerw, and remw are essential, the rest could be omitted. The other 10%

Table A.45: Static analvsis of parallel nilling.
nilling cost for temporary variables 2348
nilling cost for spill initializadon 2472
=£3t21 SOAR image size 1500 kB
reladve static cost to nil temps 0.63%
reladve static cost to nil spill ob;j. 0.66%
total stauc cost for serial nilling 1.29%

* includes all return insuctions that change regisier windows: retw. reiw, retaw, retinw — tagged or untagged.

l Table A.46: Dynamic frequency of return options, Part 1.}

testAcrivanionRerurn
returns per instructon 9.78%
rewurns per cycle 7.20%
%red’s per return 1.48%
%rem’s per rewurn 1.48%
%recaw's per remurm 0.01%
remw’s per return 95.54%
eretw’s returmn 1.48%
testClassOrganizer
returns per insgucnon 8.03%
returns per cycle 6.46%
%ret’s per return 4.72%
%red’s per return 12.59%
%rem’s per return 5.90%
rem’s per return 0.03%
Sretw’s per return 2.26%
recw’s per return 0.48%
%remw’s per return 11.92%
remw's per return 58.20%
%retiw's per rerurn ' 3.90%
testCompiler -
requrns per insguction 8.18%
‘returns per cycle : 5.59%
Jeret’s per return 391%
Gored's per remurn 11.78%
%retn’s per rewrn 9.24%
rem'’s per return 0.13%
%retw’s per remrn 1.58%
rerw's per return 0.53%
Y%remw’s per remurn 16.07%
remw'’s per retura ' 52.16%
%retiw’s per reurn 4.48%
Joretinw's per return 0.12%

197

Table A.46: Dynamic frequency of return options, Part 2.
testDecompiler

%eretinw 's per return 0.06%

returns per instruction 7.38%
returns per cycle 5.06%
%ret's per return 4.73%
%red’s per return 11.37%
%rem's per requrn 8.77%
rem’s per return 0.36%
%retw's per return 0.55%
retw’s per return 0.02%
%remw's per return 13.33%
remw’s per returm 57.61%
%retiw's per retum 3.26%
testPrintDefinition
returns per insguction 7.84%
returns per cycle 5.74%
%ret’s per returmn 8.45%
%ret’s per return 5.87%
%retn'’s per retum 1.90%
%retw’s per return 4.74%
%remw’s per returmn 11.48%
remw'’s per reurn 67.08%
Foretiw’s per retum 0.47%
‘ testPrintHierarchy '
returns per instruction 5.68% '
returns per cycle 4.00%
%ret’s per returmn 5.29%
%reti’s per return 7.18%
%rem’s per return 7.76%
rem'’s per return 0.17%
%oretw’s per rewurn 1.02%
%remw'’s per return 12.84%
remw’s per return 62.64%
FGoredw’s per return 3.04%

198

199

Table A.46: Dynamic frequency of return options, Part 3.
average of macro-benchmarks
requrns per instruction 7.42%
returns per cycle 537%
%eret’s per reurmn 5.42%
%red’s per rewurn 9.76%
%rem’s per requrn 6.71%
rem’s per remurn 0.14%
%retw’s per reurn 2.03%
reew’s per requrn | 021%
%redw’s per reurn 3.03%
Joremw’s per requrn 13.13%
remw’s per return 59.54%
%reunw’s per retum 0.04%

of the returns would just require an exma cycle or two to synthesize. Since a return only
occurs about one in tweaty cycles, the effect would be w0 add a cycle or two every 200

cycles. This would degrade performance less than 1%.

A.S. Storage Management

This section conmins an evaluation of SOAR’s features to help manage storage.

A.S.1. Evaluation of the Generation Scavenge Tag Checking Hardware
The first step in understanding the performance impact of eliminagng tagged store
insgructions from SOAR is an execution frequency measurement (Table A.47). At 0.36%,

tagged stores are quite rare.

Table A.47: Dynamic frequency of tagged store instructions.
(Given as percentage of rotal instrucrions execured.)
 insmucton split |~ r=gged store frequency '
- benchmark . ST stem | ST system both '
. westPopStoreinstVar . 81.28% 18.72% |, 28.47% 0% 23.14%
testClassOrganizer 41.06% 58.94% || 051% 0.08% 0.26% .

testCompiler 3342% - 66.58% || 120% 0.71% 0.87%
testDecompiler 32.19% 67.81% | 0.84% 0.35% 051%

testPrintDefinition 38.01% 61.99% | 0.18% 0.00% 0.07%
estPrintHierarchy . 26.25% 73.75% | 0.27% 0.05% 0.11%
avg macros 34.19% 6581% | 0.6% 0.24% 0.36% -

200

The second step is to examine the cost of doing the check in software (Table A.48): simulat-
ing this feature takes four cycles. The number of tagged stores executed per cycle can then
be multipﬁed by the simulation cost (Table A.49). The result of this calculation is that the
worst-case macro-benchmark would run only 3% slower without this feature.

Next we examine the space cost of eliminating the generaton tag checking ha.rdwa.ré.
Table A.50 gives the static frequency of these store insTructions. As expected from the rarity

of execution, tagged stores account for very litle of the code, or about 2%.

Finally, we multply the 3 word space penalty by the statc frequency (Table A.51)

compute that the Smalltalk-80 image would grow by only 3% if agged stores were removed

from SOAR.

Table A.48: Writearound for tagged stores.

Jostore (a)j, b

%and a. Oxf<<28, ta

%and b, Oxf << 28, tb

%orap It t@a, th; trap if a younger

% eq . Oxf; if a is a context

dynamic cost 4 cycles

static cost 4 words
_ Table A.49: Time cost of omitting GS Tag Trap Store. f
: (% of roral cvcles) f
i all cycles i store cost cycles E
- benchmark ST system | ST system both

esPonStoreinstvar | 83.37% 16.63% | 10.59% 0% 58.85% |
é#=—_———_—_————————_—mst€lasscrgamur it T aam . 174% 033% 093%

; testCompiler - 34.07% 65.93% | 399% 243% 2.96%
- testDecompiler 3238% 67.62% | 287% 1.24% 1.76%
testPrintDefinition || 38.09% 6191% | 0.66% 0% 0.25%
testPrintHierarchy || 25.90% 74.10% | 0.93% 0.18% 0.38%
macro avg 34.6% 654% | 204% 0.84% 126%

‘ Table A.50: Static freguencv of tagged stores. |

count pordon pordon of
of stores of code code+data
3578 2.12% 0.95%

201

(Tabile A.51: Sgace cost of omitting zagoged stores.

count poruon pordon of
of stores of code code+dana
3578 6.16% 2.85%

A.5.2. Frequency of GS traps

One last interesting measurement is the cost of the Generation Scavenging trap. Table
A.52 gives the frequency of store taps. These dau indicate that only 3.9% of the tagged
stores trap. Since the path length for the store ap handler is 40 cycles (including the code

to remember the object). the time spent handling these Taps is

0 cveles x3.9% rraps x0.36% téggedsu.;res x linsrrucrion =0.37%.
rap taggedsiore inszrucrion 1.5cycles

The dme for store traps is insignificant.

AS3. Evaluating the Pointer to Register Support

The poim:r-t.o-rcgisz:r' circuitry includes a comparator and a significant amount of con-
trol complexity [Peng5b). How well could SOAR get along without it? There are two cases
to analyze:
thisContext

In Smalltalk-80, a routine can request a pointer to its activation record by accessing the

Table A.52: Dynamic frequency of tagged store GS traps.
(Given as percentage of ST, system, both tagged stores executed.)
benchmark ST system both
testPopStorelnstVar 0% 0% 0%
testClassOrganizer 0.30% 0% 0.24%
testCompiler 0.24% 4.83% 2.71%
testDecompiler 0% 0% 0%
testPrintDefinidon 2.63% 0% . 2.63%
testPrintHierarchy 21.05% 0% 13.79%
avg macros 4.834% 0.97% 3.87%

202

pseudo-variable thisContexr. In this case. the compiler must give out an illegal
(unmapped) address. When the program tries to use this address, the page fault
handler can then ensure the acdvation record resides in memory and not on-chip, then

complete the operadon. Fortunately. this case mostly occurs in the debugger, where a
speed penalty is more acceptabie.

biockCopy
A Smalltalk-80 block permits execution of a-piece of code in one procedure to be con-
trolled by another procedure. We implement this feature with a distinct activaton
record that contains a pointer to the defining actvation record. Thus, the code in a
block can access the data in its home activation record with loads and stores. If we
eliminate the pointer-to-register circuiry from SOAR, we merely need to flush a
biock’s home actvation record out to memory when entering the biock. This may
involve flushing extra register windows until we reach the desired one. On the other
hand, the desired window may already be in memory. We ran the benchmarks and
simulated the cost of this scheme. Every time control entered a block, we cognted the
number of windows that would have to be flushed. The first column of Table A.53
give the number of block invocations. and the second gives the average number of
windows flushed per invocation. We have assumed an 18 cycle cost to flush a win-
dow; nine cycles to save it, and ano:h;:r nine to restore it This estimate is probably
low since it omits the cost of handling the extra raps. The third column, which is the
cycles spent flushing windows per invocadon, is just 18 dmes the second. The next
two columns give the frequency of block invocatons per cycle in compiled Smalltalk
code, and the cost of simulating pointer-to-register per cycle in compiled Smallualk
code. Finally, the last two columns give the same data. but relative to the total ume,
not just the time executing compiled code. These data show that SOAR would be only

3% slower without the pointer-to-register feature.

203

Table A.53: Time cost of eliminating pointer-to-register hardware.

benchmark block windows/ ¢ycles/ | values/ cost values’ cost
invoks invok invok | STcycle STeycle cycle cycle
classOrganizer 4023 0.92 16.6 i 029% 4.89% - 0.13% 2.08%
compiler 906 050 9.0 | 024% 220% 0.08% 0.75%
decompiler 2785 1.40 252 030% 7.49% 0.10% 2.43%
printDefinition 149 2.02 364 053% 192% @ 020% 7.31%
printHierarchy 152 1.30 234 | 050% 11.68% = 0.13% 3.02%
average 1603 1.23 2.1 | 037% 9.09% 0.13% 3.12%

A.6. Implementation

We have examined two implemenmton-related issues: eliminating register forwarding

and the reladve propordons of data- and insoruction-fewches.

A.6.1. Register Forwarding

How imporzant is the register forwarding in SOAR's datapath? To geta crude idea, we

measured how often our simulated insgucdons used a forwarded value and assessed a

penalty of one cycle. Table A.54 shows the results of this measuremeat Forwarding is

i Table A_54: Time cost for eliminating forwarding.

1 testClassOrganizer

» cycles 4256% 57.44% 100%

' extra time for pipeline bubbies 9.72% 14.02% 12.19% |

. testCompiler |

i cycles 34.07% 65.93% 100%

i extra time for pipeline bubbles 10.26% 14.67% 13.17%

testDecompiler

- ¢ycles 32.38% 67.62% 100%

. extra time for pipeline bubbles 10.66% 16.88% 14.86%
- testPrintDefininion

. cycles 38.09% 6191% 100%

. extra time for pipeline bubbles 9.81% 21.31% 16.93%

I restPrintHierarchy

i cycles 25.90% 74.109% 100%

! extra time for pipeline bubbles 10.39% 21 22% 18.4&1

: average of macro-benchmarks

| cycles 34.60% 65.40% 100.00%

. exwmra time for pipeline bubbles 10.17% 17.62% 15.11%

204

important; SOAR would run 15% slower without it. It is possible though, that there might
be 2 way to approach the speed of automatic forwarding without the complexity of detecting
forwarding at runtime. Two interesting approaches are special instruction scheduling or

access to the forwarded value in a special register [Pen85b]. (See Section 2.5.3: MIPS.)

A.6.2. Memory Accesses

In this section, we examine the proportion of memory references for instructions and

data. There are three different types of SOAR memory references:

I-fewches

These are normal instuction fetches. derived from the simulator’s instrucdon count.

D-fetches
These are data references, computed from the number of load, store, loadc, loadm. and
storem insoructions. (We weighted each loadm and storem by the number of words

.accessed.)

I-flushes
I-flushes represent instructions fetched but not executed. Examples include skipped
insguctons and instructions after rerurns. These are the cycles left over when the

above two are subtracted from the total number of cycles.

Table A.55 presenss our analysis. The rarity of I-flushes, 9%, supports our suspicion that

keeping SOAR s pipeline short keeps its utilization high.

Table AS5: Instruction vs. Data Fetches, Part 1. ‘
ST svstem both |

estOplus4

all insoruction references 65.14% 34.86% 100%

all data references 32.08% 67.92% 100%

all data ~ inszucton references 61.15% 38.85% 100%

I-fetches per cycle 90.73% 71.56% 82.98%

I-flushes per cycle 3.15% 9.33% 5.65%

D-fexches cycle 6.12% 19.11% 11.37%
testAcuvanonReturn

all insgucnon references 97.21% 2.79% 100%

all data references 88.17% 11.83% 100%

all data + insguction references 95.65% 435% 100%

I-fetches per cycle 74.61% 50.20% 73.61%

l-flushes per cycle 11.26% 5.32% 11.02%

D-ferches cle 14.13% 44 48% 15.37%
testClassOrganizer

all insoucton refereaces 41.06% 58.94% 100%

alt data references 40.60% 59.40% 100%

all dama + instruction references 4097% 59.03% 100%

- l-ferches per cycle - 79.74% 80.80% 80.37%
I-flushes per cycie 1.44% 0%* - 0.46%
D-fexches cle 18.82% 19.43% 19.18%

testCompiler
all insouction references 33.42% 66.58% 100%
all dama references 33.88% 66.12% 100% -
all damz + insguction references 33.53% 66.47% 100%
I-fetches per cycle 67.02% 68.98% 68.31%
l-flushes per cycle 13.31% 11.19% 11.91%
D-ferches per cycle 19.67% 19.83% 19.78%

* Our simulator computed a value of 024% for this enTy. clear evidence that our INSrUClion COunts are wexact

205

Table A.S5: Instruction vs. Data Fetches, Part 2.

ST stem both

testDecompiler

all instructon references 32.19% 67.81% 100%

all data references 33.27% .66.73% 100%

all data + instruction references 32.42% 67.58% 100%

I-fewches per cycle - 68.17% 68.76% 68.57%

I-flushes per cycle 1257% 12.75% 12.69%

D-fetches per gcle 19.26% 18.50% 18.74%
testPrintDefinidon

all instruction references 38.01% 61.9% 100%

all daaa references 36.82% 63.18% 100%

all daga + instruction references 37.78% 62.22% 100%

1-fetches per cycle 73.08% 73.33% 73.23%

1-fBushes per cycle 10.32% 9.14% 9.59%

D-fetches per gcle 16.61% 17.53% 17.18%
testPrintHierarchy

all instruction references 26.25% 73.75% 100%

all data references 23.28% 76.72% 100%

all dara + insgruction references 25.62% 74.38% . 100%

I-fewches per cycle 7139% 70.11% 70.44%

I-flushes per cycle . . 11.66% 10.36% 10.70%

D-fetches c_zcle ‘ 16.95% 19.53% 13.86%

| average of ma.ro-benchmarks .

all instucton references 34.199% 65.81% 100.00%

all data references 33.57% 66.43% 100.00%

all data + inswruction references 34.06% 65.94% 100.00%

I-ferches per cycle 71.88% 72.40% 72.18%

I-flushes per cycle 9.86% 8.64% 9.07%

D-fetches per cycle 18.26% 18.96% 18.75%

Appendix B

Raw SOAR Data

B.1. Introduction

207

This appendix contains the raw data we gathered and used for the caiculations in

Appendix A. The first section contains inszuction mixes for the second iteration of several

benchmarks. These were run in an image that was modified to eliminate almost all

occurrences of the become primitive, as outlined in Chapter 5. The second secton contins

execution time profiles for the same runs. To guide the reader through this section, we have

reprinted part of the table of contents in Table B.1.

Tabie B.1:
“Tabie B.2:
Table B.3:

Table B.4:
Table B.S:
Table B.6:
Table B.7:
Table B.8:
Tabie B.9:
Table B.10:
Table B.11:

Table B.12:
Table B.13:
Tabie B.14:
Table B.15:
Table B.16:

Table of conteats for Appendix B
test3pius4 Micro-Benchmark lasoucton Mix
testPopStorelnstance Variable Micro-Benchmark Instoucuon Mix

testActvatonReturn Micro-Benchmark Insguction Mixcccooececes -
testClassOrganizer Macro-Beachmark Instruction Mix .occceceeeee.ee. -
testCompiler Macro-Beachmark Instruction Mix

testDecompiler Macro-Benchmark Iostruction Mix .oececeecocccececcnnna.

testPrintDefinicon Macro-Benchmark Instruction Mix ..oo.neneeeeaneee
testPrintHierarchy Macro-Benchmark Insgucton Mixcccoeeveecenneee
test3pius4 Micro-Benchmark Execution Time Profile .coee.eioeececccenae
testActivadonReturn Micro-Beachmark Execudion Time Profile

..... .

testClassOrganizer Macro-Benchmark Execution Time Profile
testCompiler Macro-Benchmark Execution Time Profilecceeeee
testDezompiler Macro-Benchmark Execution Time Profile
testPrintDefinition Macro-Benchmark Execution Time Profile -
testPrintHierarchy Macro-Benchmark Execution Time Profile

Table B.1: Table of contents for Appendix B.

209

210
211
214
217
220
223
226

226
226
227
228
229
230

208

.2. Instruction Mix Data
This section contains our insguction mix dam. A few definidons are in order:
steps: the number of insguctons executed.
cycles: the number of SOAR cycles executed. This is a measure of execudon tme.
ST: the code that was written in Smalltalk and compiled.
system: the runtime system Support primitves writien in assembier language.
Ccodes: simulator operations, mostly print statements used for zacing.
T1: wrap insgucton raps.
TT. rag waps.
GS: Generadon Scavenging traps.
WO: register window overflow traps.
| WU.: register window underflow traps. 77 tag Taps.

loadmystorem [1-8]: the number of loadm or storem inszuctions that accessed a given

number of registers.
rer*w’s: retarn insgructions of any type that changed windows.

nonNil8-14: At every ret*w, the simulator counts the number of registers between r8

and r14 that contain something other than nil. This figure is the toal for the run.

int8-14: the accumulated ttal of registers between r8 and rl4 that conwmin integers

when a ret*w is execured.

taggedlmm: the immediate value could not have been represented without SOAR’s

tagged immediate feawre.

untaggedlmm: the immediate value could have been represented without SOAR'’s

tagged immediate fearture.

. coWWs: the number of times a jump immediately followed a skip.

F| Table B2: test3plusd Micro-Benchmark Instruction Mix.

ST system both |
Steps 4642 .
Cycles 3332 2261 5593
Ccodes 3) 3
%nop 1 0 1
%ret 0 100 100 :
%rem 1 0 1
Feremw 100 3 103
remw 1 102 103
% skip 0 115 115
trapl 0 100 100
%trap3 101 1 102 |
% store 0 20 20
%load 103 411 514 .
loade 101 1 102
%and 0 4 !
%or 0 3 3!
%add 1406 429 1835 !
add 1000 0 1000 |
%sub] 107 107 |
%extract 0 I 1]
%insert 0 3 3|
: 0!
% jump 102 107 209 |
Jjump 2 4 6:
%call 0 4 4,
call 102 103 205 |

209

‘ Table B.3: testPogStorelnstanceVaﬁable Micro-Benchmark Instruction Mix.
ST system both

Steps 8642
Cycles 11332 2261 13593
Ccodes 3 0 3.
%nop 1 0 1
Soret 0 100 100
Jorem i 0 1
Goremw 100 3 103
remw 1 102 103
%eskip 0 115 115 .
trap! 0 100 100
%trap3 101 1 102
store 0 20 20
store 2000 0 2000
%load 2103 411 2514 .
loadc 101 1 102
Goand 0 4 4

210

Table B3: testPopStorelnstanceVariable Micro-Benchmark Instruction Mix. .

P —
ST sysiem both
%or 0 3 3.
- %add 2406 429 2835 |
osub 0 107 107
Goextract 0 1 1
%insert 0 3 3
%jump 102 107 209 t
jump 2 4 6 |
%ocall 0 4 4.
call 102 103 205 ¢

| Table B.4: testActivationReturn Micro-Benchmark Instruction Mix.

ST system both
Steps 356067
Cycles 463922 19772 483654
wO 515 0 515
wU 513 2 515
Ccodes 3 0 3
S%nop 1 515 516
%oret 0 , 1 1
Srem 1 515 516
Fremw 2 3 5
remw . 33280 5 ' 33285
%red 0 515 515
Foretdw 0 515 515
%skip 0 1049 1049
skip 32767 0 32767
trapl 0 1 1
%trapl 16383 0 16383
%rap3 4 32769 1 32770
Fostore 0 20 20
%storem 0 515 515
%load 32771 534 33305
loade 32765) 32770
%loadm 0 515 515
%and 0 4 4
%or : 0 3 3
%add 81926 2607 84533
9sub 0 _ 1552 1552
sub 32766 0 32766
FoexTact 0 1 1
%insert 0 3 3
%jump 1033 523 1556
jump 16385 519 16504
Focall 0 4 4
call 33285 4 33289

"Table B.4: testActivationReturn Micro-Benchmark Instruction Mix.

ST system both
WO 0? 515 0 515
WU remw 513 2 515
loadm 8 0 515 515
storem 8 0 515 515
ret*w’s 33284 6 33290
ponNil8-14 99341 25 99366
int8-14 33285 13 33298
eq %skip 0 528 528
eq skip 32767 0 32767
ne %oskip 0 518 518
pe trapi 0 1 1
ne %ouap3 32769 1 32770
la/in0 %skip 0 1 1
gewout0 %ouap2 16383 0 16383
leu %skip -0 1 1
| gt %skip 0 1 1
untaggedlmm %oret 0 1 1
untaggedimm %rem 1 515 516
untaggedlmm %remw 1 3 4
untaggedimm remw 32768 3 3271
untaggedlmm %ret 0 515 515
untaggedlmm %retiw. 0 515 515
untaggedlmm %skip - 0 518 518
untaggedlmm skip 32767 0 32767
untaggedlmm %load 32770 12 32782
untaggedImm loadc 32769 1 32770
untaggedlmm %loadm 0 515 515
untaggedlmm %and 0 2 2
untaggedimm %add 7 2081 2088
untaggedlmm %sub 0 1551 1551
untaggedlmm sub ‘32766 0 32766
untaggedlmm %extract 0 1 1
untaggedimm %insert 0 3 3
taggedImm %skip 0 1 1
aggedlmm % wrap2 16383 0 16383
taggedimm %load 1 522 523
taggedIlmm %and 0 1 1
taggedlmm %or 0 2 2
taggedlmm %add 0 519 519
Table B.5: testClassOrganizer Macro-Benchmark Instruction Mix.
ST sysiem both ;
Steps 1953882 :
Cycles 1156735 1638604 2795339
Ccodes 1482 0 1482
TT 15025 0 15025
WO 6088 949 7037

Table B.5: testClassOrganizer Macro-Benchmark Instruction Mix.
ST syseem both
wuU 4692 2345 7037 |
TI 641 9 650 .
GS 25 0 25 ¢
%onop 1 9857 9858 |
Joret 5 8516 8521
Foretw 0 4073 4073 !
retw 0 870 870 |
Ferem 2051 8599 10650
rem 0 47 47 |
Goremw 7429 14080 21509 |
remw 19660 85371 105031 |
Yoret 0 22728 22728 |
Foredw 0 7037 7037 !
Foretinw 0 9 9
Foskip 11154 136263 147417 |
skip 18607 11737 30344
%crapl 0 12466 12466 '
aapl 0 31372 31372
%trap2 13507 412 13919
%wap3 57631 653 58284
Fotrapd 1318 12 1330
Fostore 9821 23075 32896 |
store 4697 1177 5874
%storem 5320 7483 12803 |
%load 108290 160134 268424 |
load 0 17044 17044 |
loadc 57631 1326 58957
%loadm 0 7037 7037 |
Fosri 0 43097 43097 .
%oxor 0 12044 12044 -
%and 5 36562 36567 '
oor 1318 9919 11237 -
%add 218244 229098 447342
add 10076 12235 22311
%sll 0 18023 18023
sll 0 5756 5756
%osub 1318 41742 43060 -
sub 2357 21503 23860
Joextract 0 44618 44618
%insert 0 12721 12721 -
Fojump 85710 34846 120556 -
jump 31288 62388 93676
%ocall 0 8578 8578 °
call 114110 6343 120453
TT skip 3893 0 3893
TT loadc 11132 0 11132 .
WO 0? 6088 949 7037
WU retw 0 489

489

212

'I Table B.5: testClassO__n:ganizer Macro-Benchmark Instruction Mix. :

ST sysem both |
WU remw 4692 1856 6548 |
TI apl 0 9 9i
T1 trap3 641 0 641 |
GS remw 11 0 11
GS store 14 0 14
loadm 8 0 7037 7037 :
storem 5 0 11 11
storem 7 5320 435 5755 |
storem 8 0 7037 7037 |
ret*w’s 75521 55960 131481 |
nonNil8-14 192227 224667 416894 |
int8-14 68182 131169 199351 |
always %skip 3404 3 3407 |
It %oskip 0 8671 8671 |
It skip 276 5123 5399
ge %oskip 0 8526 8526 |
ge skip 14 144 158 |
ge trapl 0 262 262 [
eq %skip 779 36799 43978 |
eq skip 6013 442 6455 |
eq %otapl 0 190 190 |
eq trapl 0 1461 1461 ;
eq Jotrap4 1318 12 1330 |
ne %skip 571 58466 59037 |
ne %trapl 0 7612 7612
ne apl 0 3982 3982 !
ne %orap3 57631 653 53284 |
le %skip 0 17063 17063 |
le skip 7952 242 8194 !
gt %skip 0 101 101 '
gt skip 459 5786 6245
gt %otrapl 0 136 136 ;
gt oap! 0 131 131 |
Itw/inQ %skip 0 747 747 |
gewout0 %skip 0 3928 3928 |
gewout0 %uapl 0 4528 4528 -
gewoutO tapl 0 25536 25536
gewoutQ %aap2 13507 412 13919
leu %skip 0 1168 1168
| g %skip 0 791 791 .
untaggedlmm %ret 0 4623 4623
untaggedlmm %retw 0 39 39 .
untaggedImm retw 0 522 522
untaggedImm %rem 2051 8599 10650 :
untaggedimm rem 0 47 47
untaggedlmm %retw 6180 13938 20118
untaggedImm remw 16217 83657 99874
untaggedlmm %oret 0 22728 22728

213

Table B.5: testClassOrganizer Macro-Benchmark Instruction Mix.

ST syszm both
untaggedimm Foreuw 0 7037 7037 -
untaggedimm Frednw 0 9 9
untaggedlmm %skip 0 26794 26794 |
untaggedlmm skip 4916 87 5003 |
untaggedlmm %urap! 0 144 144
untaggedlmm %load 102730 90070 192800 .
untaggedlmm load 0 17044 17044
untaggedlmm loade 57631 1326 58957
untaggedlmm %loadm 0 7037 7037
untaggedlmm Foxor 0 3015 3015
untaggedlmm %and 0 29187 29187 .
unraggedlmm %or 0 5 5i
untaggedlmm %add 20011 152781 172792 |
untaggedlmm add 9405 2 9427 |
untaggedimm %sub 1318 35799 37117 |
untaggedlmm sub 669 16489 17158 |
untaggedimm %extract 0 26380 26380 |
untaggedlmm %insert 0 2199 2199 |
aggedlmm %skip 3857 21610 25467
mggedlmm %trapl 0 4528 4528
uggedlmm %trap2 13507 412 13919 !
rggedlmm %ouaps 1318 12 1330 ;
aggedlmm %load 5560 . 42117 47677 |
taggedlmm %and 5 - 2130 2135 |
raggedlmm Feor 1318 1680 2998 |
taggedlmm %add 8955 18331 27286 |
sri barrel shifter savings 0 12612 12612
forwarding cost 111047 250701 361748
two-tone savings 209716 308810 518526 ;
condJumps 9821 72666 82487 .

"Table B.6: testCompiler Macro-Benchmark Instruction Mix.
ST system both

; Steps 743753
- Cycles 370941 717817 1088758
- Ceodes 1557 0 1557
TT 3372 18 3390
WO 2088 641 2729
wU 1889 840 2729
TI 872 75 947
GS 11 168 179
0 1 1

%nop I 13688 13689
%oret 10 2368 2378
Forerw 0 960 960
retw 0 320 320
Gorem 1212 4410 5622
rem 0 81 81

214

215

. Table B.6: testComgiler Macfo-Benchinark Instruction Mix. [

| ST system both
| %remw 2422 7362 9784
. remw 8528 23221 31749
. %ored 0 7170 7170
| Gretiw 0 2729 2729
| Goretinw 0 75 75
| %skip 3737 77074 80811
t ski 4810 4342 9152
| %trapl 0 2763 2763
| gapl 0 7701 7701
! Gptrap2 4735 259 4954
| %trap3 18122 878 19000
| Fotrapd 450 19 469
: Fostore 1880 16253 18133
| store 2973 3476 6449
! %storem 1876 3236 5112
| %load 36937 65008 101945
| load 0 5087 5087
i loade 18121 1235 19356
| %ioadm 0 3316 3316
| @sri 0 9388 9388
| %sra 0 50 50
| sra 0 24 24
| 9oxor 0 1304 1304
| ®and 11 13067 13078
| and 30 4 34
| Sor 451 4818 5269
| %add 66485 106045 172530
' add 3094 4385 7479
| sl 0 5159 5159
L sll 0 1406 1406
| %sub 450 20291 20741
. sub 1124 5830 6954
| %extract 0 12979 12979
| %insert 0 3697 3697
. %jump 26002 24280 50282
. jump 9420 20049 29469
- %call 0 6801 6801
* call 34157 2548 36705
- TT skip 579 1 580
: TT loadc 2793 17 2810
WO 0? 2088 641 2729
- WU retw 0 146 146
. WU remw 1889 694 2583
: T1 mapl 0 75 75

T1 map3 872 0 872

GS remw 4 0 4

GS store 7 168 175

loadm 7 0 587 587

. Table B.6: tatComgiler Macro-Benchmark Instruction Mix.

| ST sysiem both
loadm 8 0 2729 2729
| storem 4 1 0 1
storem 5 16 4 20 |
storem 6 51 0 51
storem 7 1808 503 2311
storem 8 0 2729 2729
ret*w’s 23962 18922 42834
| nonNil8-14 62890 80599 143489
i int8-14 23225 46848 70073
| always oskip 944 1 945
i It %oskip 0 11216 11216
i It skip 304 1101 1405
i ge %oskip 0 2640 2640
ge skip 187 102 289
ge trapl 0 110 110
eq %oskip 2715 17376 20091
eq skip 1528 1285 2813
eq %aapl 0 190 190
| eq trapl 0 358 358
eq %owaps 450 19 469
ne %skip 78 35782 35860
ne skip 2 254 256
pe %uapl 0 1556 1556
ne trapl 0 906 906
| ne %taap3 18122 878 19000
| le %oskip 0 5343 5343
i le skip 1465 76 1545
' gt %oskip 0 68 68
i gt skip 741 1523 2264
| gt Jotrapl 0 65 65
| gt oapl 0 55 55
| n/in0 %oskip 0 905 905
| gew/outO %eskip 0 1818 1818
, gewoutQ %otrapl 0 952 952
| gew/out0 trapl 0 6261 6261
. gewout0 %otrap2 4735 259 4994
: leu %skip 0 1077 1077
. gru %oskip 0 848 848
- outl wapl 0 11 11
. untaggedlmm oret 0 1788 1788
. unraggedimm %retw 0 360 360
- untaggedlmm retw 0 194 194
; untaggedlmm %retn 1212 4410 5622
untaggedimm rem 0 81 81
untaggedimm %remw 2116 7324 9440
' untaggedlmm remw 6945 22565 29510
untaggedlmm %red 0 7170 7170
untaggedlmm %retw d 2729 2729

216

Benchmark Instruction Mix.

i ST system both
: untaggedlmm %retinw 0 75 75
| untaggedlmm %skip 0 9993 9993
. untaggedlmm skip 1658 485 2143
i untaggedlmm %trapl 0 74 74
untaggedimm %load 33942 47159 81101
untaggedimm load 0 5087 5087
untaggedimm loadc 18121 1235 19356
untaggedlmm %loadm 0 3316 3316
untaggedImm %xor 0 447 447
untaggedlmm %and 0 6924 6924
untaggedimm and 17 4 21
untaggedimm %or 1 147 148
untaggedlmm %add 8059 70090 78149
untaggedimm add 2189 120 2309
untaggedimm %sub 450 17456 17906
| untaggedimm sub 542 4359 4901
i untaggedlmm %extract 0 10833 10833
! untaggedlmm %insert 0 2423 2423
' taggedImm %skip 1058 17170 18228
* aggedlmm %uapl 0 952 952
. taggedlmm %trap2 4735 259 4994
. aggedImm %trap4 450 19 469
. taggedlmm %load 2995 11425 14420
! aggedlmm %and 1 2306 2317
| maggedlmm %or 450 1995 2445
' mggedlmm %add 3662 8732 12394
! sl barrel shifter savings 0 3 3
. srl barrel shifter savings 0 1900 1900
; sra barrel shifter savings 0 24 24
i forwarding cost 38049 105324 143373
| two-tone savings 68706 91028 159734
| condJumps 3416 . 28601 32017

l Table B.7:_testDecompiler Macro-Benchmark Instruction Mix. |

ST system both
Steps 1983995
Cycles 936933 1956663 - 2893596
Ccodes 6016 0 6016
TT 8641 6 8647
wO 3225 1548 4773
wu 3433 1340 4773
Tl 3217 6 3223
%enop 1 6185 6186
Foret 31 6890 6921
Goretw 0 798 798
remw 0 25 25
%rem 4049 8783 12832
rem 0 534 534

217

| Table B.7: testDecomgiler Macro-Benchmark Instruction Mix. I

ST system both

Joremw 3975 15526 19501
remw 21194 63099 84293

%red 0 16637 16637
Joretw 0 4773 4773
Yoretnw 0 6 6
%oskip 4601 236206 240807
skip 15999 8356 24355

%trapl 0 8682 8682
wapl 0 21010 21010

Fotrap2 12417 788 13205
%uap3 45568 3212 49180
% trap4 1088 82 1170
%store 7926 50609 58535
store 5378 4826 10201

Jostorem 4680 6919 11599
%load 88555 196228 284783
load 0 14998 14998

loade 45962 3836 49798

%loadm 0 4773 4773
Posrl 0 17159 17159
sra 0 2120 2120

%xor 0 6329 6329
%and 31 36239 36270
-and 500 0 500
%or 1088 10335 - 11423
%add 186538 309908 496446
add 11775 13398 25173

Fesll 0 7956 7956
sil 0 1306 1306

%sub 1088 46540 48028
sub 2890 15654 18544

Pextract 0 37296 37296
FHinsert 0 15013 15013
%jump 60263 64066 124329
jump 22167 52476 74643

%call 0 17876 17876
call 84494 7471 91965

TT skip 798 0 798
TT loadc 7843 6 7849
WO 0? 3225 1548 4773
WU retw 0 1 1
WU remw 3433 1339 4772
T1 wapl 0 6 6
TI map3 3217 0 3217
loadm 8 0 4773 4773
storem 4 29 0 29
storem 6 29 0 29

218

| T p Mix.

able B.7: testDecompiler Macro-Benchmark Instruction

' ST system both
storem 7 4622 2146 6768
storem 8 0 4773 4773
ret*w’s 55944 48679 104623
nonNil8-14 155632 215034 370666
int8-14 56499 125311 181810
always %skip 1726 - 61 1787
1t %oskip 0 44547 44547
1t skip 797 1852 2649
ge %skip 0 4500 4500
ge skip 1095 135 1230
ge wapl 0 168 168
eq %oskip 2683 40869 43552
eq skip 5332 734 6066
eq %tapl 0 1022 1022
eq trapl 0. 921 921
eq %trap4 1088 82 1170
ne Joskip 192 123615 123807
ne skip 0 88 88
ne %uapl 0 5499 5499
ne trapl 0 2875 2875
ne %trap3 45968 3212 49180
le %skip 0 10193 10193
le skip - 6112 142 6254
gt skip 1865 5405 7270
gt %trapl 0 115 115
gt trapl 0 84 84
low/in0 %oskip 0 2961 2961
geuw/out) %skip 0 1015 1015
gewoutO %otrap! 0 2046 2046
gewoutO rapl 0 16384 16384
gewoutQ Jotrap2 12417 788 13205
leu %skip 0 5107 5107
gt %skip 0 3338 3338
out] trapl 0 578 578
untaggedlmm %ret 0 6092 6092
untaggedimm retw 0 24 24
untaggedlmm %rem 4049 8783 12832
untaggedlmm rem 0 534 534
untaggedimm %eremw 3521 15496 19017
untaggedImm remw 18215 61790 80005
untaggedlmm %red 0 16637 16637
untaggedimm %retiw 0 4773 4773
untaggedlmm %oretnw 0 6 6
untaggedlmm %skip 0 28251 28251
untaggedImm skip 6564 0 6564
untaggedlmm %trapl 0 379 379
untaggedlmm %load 82930 153764 236694
untaggedlmm load -0 14998 14998
untaggedlmm loadc 45962 3836 49798

219

Eable B.7: testDecompiler

Macro-Benchmark Instruction Mix.

ST system both

unmaggedlmm %loadm 0 4773 4773
untaggedlmm %xor 0 2070 2070
untaggedlmm %and 0 14346 14346
untaggedImm and 267 0 267
untaggedimm %or 0 31 31
untaggedlmm %add 24298 199945 224243
untaggedlmm add 8025 2309 10334
- untaggedImm %esub 1088 40446 41534
untaggedlmm sub 1370 12298 13668
unmaggedlmm %exmract 0 30917 30917
untaggedlmm %insert 0 8883 8883
taggedImm %skip 1333 61155 62488
taggedImm %uapl 0 2046 2046
taggedimm %trap2 12417 788 13205
taggedlmm %rapd 1088 82 1170
taggedlmm %load 5625 28232 33857
raggedlmm %and 31 6249 6280
taggedlmm %or 1088 5019 6107
taggedlmm %add 7078 23687 30765
srl barrel shifter savings 0 4473 4473
forwarding cost 99921 330197 430118
two-tone savings 186209 233311 419520
| condJumps 8268 62319 70587

l Table B.8: testPrintDefinition Macro-Benchmark Instruction Mix

ST syszm both

Seps 54310
Cycles 28249 45910 74159
Ccodes 77 0 77
TT 216 0 216
WO 11 9 20
WU 13 7 20
TI 12 0 12
GS 2 0 2
Fonop 1 23 24
%ret 0 360 360
Forecw 0 202 202
%orem 38 43 81
Foremw 165 324 489
remw 368 2489 2857

%ored 0 250 250
Goredw 0 20 20
%oskip 284 3116 3400
skip 891 5 896

otrap!l 0 644 644
map! 0. 1238 1238

Forap2 282 2 284
Gorapl 1648 14 1662

220

Table B.8: testPrintDefinition Macro-Benchmark Instruction Mix.
ST system both |

% store 148 1066 1214
store 38 0 38
' ostorem 0 47 47
%load 2857 5571 8428
load 0 866 866
loade 1648 38 1686
%loadm 0 20 20
%srl 0 868 868
%xor 0 621 621
%and 0 1238 1238
and 1 0 1
%or 0 292 292
%add 6277 6745 13022
add 469 460 929
%Hsll 0 199 199
F%sub 0 726 726
sub 14 908 922
Fexract 0 2031 2031
%insert 0 750 750
%jump 1650 923 2573
jump 1000 932 1932
%call 0 362 362
call 2787 273 3060
TT skip 199 0 199
TT loadc 17 0 17
w0 0? 11 9 20
WU remw 13 7 20
T1 trap3 12 0 12
GS remw 1 0 1
GS store 1 0 |
loadm 8 0 20 20
storem 5 0 1 1
storem 7 0 26 26
storem 8 0 20 20
ret*w’s 1690 1857 3547 |
nonNil8-14 4554 7923 12477 |
int8-14 . 1387 ‘5077 6464
always %skip 11 0 11
1t Feskip 0 58 58
ge skip 0 4 4
ge Tapl 0 4 4
eq %skip 273 1379 1652
eq skip 17 0 17
eq %trapl 0 12 12
ne %skip 0 1107 1107
ne skip 0 1 1
ne %wap! 0 428 428 |

221

Table B.3: testPrintDefinition Macro-Beachmark Instruction Mix.

ST system both
ne map! 0 149 149
ne %trap3 1648 14 1662
le %skip 0 227 227
le skip 417 0 417
gt %eskip C) 1
gt skip 258 0 258
gt %etrapl 0 2 2
gt gapl 0 2 2
ln/in0 %skip 0 39 39
gewout) %skip 0 199 199
gewour0 %ouapl 0 202 202
gew/out rapl 0 1083 1083
gewout) %oap2 282 2 284
leu %skip 0 64 64
| g %eskip 0 42 42
untaggedlmm %ret 0 161 161
untaggedlmm %retw 0 3 3
untaggedlmm %rem 38 43 81
untaggedlmm %remw 160 324 484
upntaggedImm remw 360 2482 2842
untaggedlmm %red 0 250 250
untaggedimm %redw 0 20 20
untaggedlmm %skip 0 992 992
untaggedImm skip 26 -0 26
untaggedlmm %trapl 0 - 4 : 4
untaggedImm %load 2725 667 6392
untaggedlmm load 0 866 866
untaggedImm loade 1648 38 1686
untaggedlmm %loadm 0 20 20
untaggedlmm %xor 0 217 217
untaggedlmm %and 0 910 910
unraggedImm %add 329 4601 4930
untaggedlmm add 469 0 469
untaggedImm %sub 0 693 693
untaggedimm sub 8 679 687
untaggedimm %exmact 0 1423 1423
untaggedimm %insert 0 114 114
taggedlmm %skip 7 531 538
aggedimm %uapl 0 202 202
gedImm %orap2 282 2 284
taggedlmm %load 132 972 1104
taggedlmm %and 0 55 55
tagged'mm %or 0 53 53
| taggedlmm %add 412 193 605
srl barrel shifter savings 0 434 434
forwarding cost 2770 9784 12554
two-tone savings 5800 9344 15144
condJumps 299 1281 1580

| Table B.9: testPrintHierafchv Macro-Benchmark Instruction Mix.

ST system both
Steps 82833
Cycles 30458 87127 117585
Ccodes 193 0 193
TT 86 0 86
wO _ 117 26 143
wuU 81 62 143
T1 8s 3 88
GS 24 0 24
%nop 1 169 170
Foret 0 249 249
GBretw 0 48 ’ 48
%rem 109 256 365
rem 0 8 8
FHremw 208 396 604
remw 618 2329 2947
%oretd 0 338 338
Foretiw 0 143 143
FHoretinw 0 3 3
%skip 261 8996 9257
skip 545 35 580
%trapl 0 1148 1148
wapl 0 1324 1324
%aap 303 6 309
%aap3 . 1657 98 1755
%tapd 13 0 13
%o store 176 2595 2771
store 57 30 87
%storem 52 265 317
%load 2908 10094 13002
load 0 890 890
loadc 1657 117 1774
%loadm 0 167 167
%osri 0 1308 1308
Foxor 0 1782 1782
%and 0 1955 1955
and 4 0 4
%or 13 643 656
%add 6770 12942 19712
add 452 155 607
Fsll 0 22 22
sl 0 3 3
%sub 13 2218 2231
sub 50 513 5€3
Goextract 0 2567 2567
%insert 0 1734 1734
%ojump 1870 2509 4379
jump 828 2284 3112
Fcall 0 547 547

Tabie B.9: testPrintHierarchy Macro-Benchmark Instruction Mix.

ST system both
call 2986 202 3188
TT skip 12 0 12
TT loade 74 0 74
WO 0? 117 26 143
WU remaw 81 62 143
T1 gapl 0 3 3
TI oap3 8s 0 85
GS remw 12 0 12
GS swre 12 0 12
loadm 7 0 24 24
loadm 8 0 143 143
storem S 0 12 12
storem 7 52 110 162
storem 8 0 143 143
rec*w's 1888 1702 3590
ponNilg-14 5682 8475 14157
int8-14 1344 4622 5966
always %skip 45 0 45
It %skip 0 1362 1362
It skip 7 11 18
ge Joskip 0 9 9
ge skip 5 4 9
ge trapl 0 8 8
eq %skip 216 1552 1768
eq skip 51 4 55
eq %trapl 0 24 24
eq tapl 0 4 4
eq %oaapd 13 0 13
ne Joskip 0 5543 5543
ne skip 0 2 2
ne %utapl 0 750 750
ne trapl 0 152 152
ne %uap3 1657 98 1755
le %skip 0 108 108
le skip 377 0 377
gt Joskip 0 12 12
gt skip 93 14 107 -
gt %ouapl 0 4 4
gt wapl 0 4 4
ln/in0 oskip 0 108 108
gewout0 %skip 0 12 12
gewoutO %uapl o 370 370
gewout0 Tapl 0 1154 1154
gewout) %aap2 303 6 309
leu %skip 0 182 182
gru %oskip 0 108 108
out! gapl 0 2 2
untaggedlmm %eret 0 237 237

224

’ Table B.9: testPrintHierarchv Macro-Benchmark Instruction Mix. |
ST system both |
untaggedlmm %oretw 0 36 36
untaggedImm %rem 109 256 365
untaggedlmm retn 0 8 8
untaggedImm %eremw 200 390 590
untaggedlmm remw 545 273 2818
untaggedlmm %red 0 338 338
untaggedlmm %retiw 0 143 143
untaggedlmm %retinw 0 3 3
untaggedlmm %skip 0 1983 1983
untaggedlmm skip 81 0 81
untaggedlmm %aapl 0 8 8
untaggedImm %load 2504 7300 9804
untaggedlmm load 0 890 890
untagged!mm loadc 1657 117 1774
untaggedimm %loadm 0 167 167
unaggedimm %xor 0 370 370
untaggedlmm %and 0 887 887
untaggedlmm %add 728 9243 9971
untaggedimm add 441 1 442
untaggedimm %sub 13 2067 2080
untaggedlmm sub 23 - 417 440
untaggedlmm %extract 0 891 891
untaggedlmm %insert 0 288 288
taggedimm %skip 3s : 1752 1787
taggedlmm %trap! 0 370 370
taggedlmm %trap2 303 6 309
taggedlmm %trap4 13 0 13
taggedImm %ioad 404 1882 2286
taggedIlmm %and 0 24] 241
taggedimm %or 13 195 208
| taggedimm %add 37 669 706
srl barrel shifter savings 0 647 647
forwarding cost 3166 18485 21651
two-tone savings 6621 8649 15270
condJumps 363 2385 2748

B.3. Execution Profile Data

The data in this secton were derived by modifying the simulator to sample its PC
every 100 cycles. and using an awk [AKW] program to merge the samples with assembler’s
symbol table. Inswumenting the simulator instead of the SOAR program enables us to
profile the program without altering its behavior. All times listed in this appendix are given

as a percentage of the total time. For an explanation of the primitive numbers, see the

226

Sroallalk-80 book by Goldberg and Robson [GoR83]. The more obscure labels can only be

understood by reading our code.

. Table B.10: test3plus4 Micro-Benchmark Execution Time Profile. 'ﬁ
57.1% Smallalk :

17.9% BCValuePrm2 f
- 16.1% start i
|

7.1% Prim_81
1.8% BebavNew .
0% other '

Table B.11: testActivationReturn Micro-Benchmark Execution Time Profile.

55.9% Smallmlk
22% WindowOverflowTrapH
| 1.8% WindowUnderflowTrapH
l 0.1% other

Tabie B.12: testClassOrganizer Macro-Benchmark Execution Time Profile. |
41.3% Smalitalk

56% WindowOverflowTrapH '
§2% SIQuoPmm
438% SuingAtPrm
48% Prim_60
4.7% WSNextPutPrm
42% WindowUnderflowTrapH
32% SIMulPm
25% SuingReplaceFromToWithStartingPrm
2.1% lookupMethodInClass
2% Prim_62
1.9% SkipTagTrapH
"19% RSNextPrm
1.7% SISISIPrm
1.6% LoadcTagTrapH
1.6% BehavNew
1.4% BCValuePrm2
09% SYS_word_fill
0.8% SkipOnTrue
0.8% SILTPrm
0.7% SkipTagTrapS
0.7% Prim_61
0.7% Prim_110
0.6% SkipTagTrapH!done
05% -blockCopy
0.4% lockup
0.4% Prim_81
0.4% PSAtEndPrm
0.3% blockArrowReturn
0.3% FailPm

02%
0.2%
02%

2%
02%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%

Table B.12: testClasOganizer Macro-Bénchmark Execution Time Profile.

other
insert!04!sel!here
insert!03!sellhere
allocSpace
Prim_75
methodBlockCopy
cacheMissLookup

. Table B.13: testComgiler Macro-Benchmark Execution Time Profile. l

33.8% Smailualk
132% lookupMethodInClass
55% WindowOverflowTrapH
47% Prim_60
| 47% BehavNew
. 4% WindowUnderflowTrapH
3% SIQuoPrm
! 22% SYS_word_fill
b 2% WSNextPutPrm
: 1.7% SIMulPrm
‘ 1.7% RSNextPrm
15% SuingAtPrm
15% Prim_62
15% Prim 61
13% lookup
13% gsRegion
12% Prim_89
1.1% copyWords
1.19% allocSpace
1.1% SISISIPrm
1% blockCopy
0.9% LoadcTagTrapH
09% BCValuePrm2
0.8% StingReplaceFromToWithStartungPrm
0.8% SkipTagTrapH
0.7% SkipOnTrue
05% gsStoreGSTrapH
05% gsAnOop
04% other
04% gsAnObject
0.4% cacheMissLookup
04% blockArrowRetmumn
0.3% SkipTagTrapS
03% SILTPrm

227

v

“Table B.13: testCompiler Macro-Benchmark Execution Time Profile.

03% Pnm_8l
03% Prim_71
03% Prim_70
0.3% Prm_l110
02% methodBlockCopy
02% insert!O4!sellhere
02% getWordSize
02% eqNewNewBecome
02% argumentCount
02% SkipTagTrapH!done
02% SkipOnFaise
02% Prm_111
' 02% PSAtEndPrm
. 0.1% insert!03!sellhere
. 0.1% gsSurvivors
i 0.1% gsStoreGSTrapS
© 0.1% gsRemembered
 0.1% SVTrace
i 0.1% Prim_83
0.19%9 Prim_75
0.1% FailPrm

‘ Tabie B.14: testDecomgiler Macro-Benchmark Execution Time Profile. |

32.1% Smallalk .
212% lookupMethodInClass

7% ° BehavNew

38% Prim_60

3.7% WindowOverflowTrapH

3.7% WSNextPutPrm

35% SYS_word_fill

3.1% Prim_6l

2.7% WindowUnderflowTrapH

2.1% SIQuoPrm

2% lookup

13% SuingReplaceFromToWithStartingPrm

13% SuingAtPrm

1.3% Prim_62

1.1% allocSpace

1.1% SISISIPrm

1.1% BCVaiuePrm2

1% blockCopy

09% SIMulPrm

0.8% LoadcTagTrapH

05% cacheMissLookup

05% SkipOnTrue

05% Prim_71

05% Prim_70

049% TryRight

0.3% other

0.39% SkipTagTrapH

!
I B
!
t
4

228

| Table B.14: testDecomgiler Macro-Benchmark Execution Time Profile. I

03% Prim_81

02% methodBlockCopy
02% SVTrace

02% SILTPm

02% SIEQPm

02% Prim_l111

0.1% insert!03!sellhere
0.1% egNewNewBecome
0.1% SkipTagTrapS
0.1% SkipTagTrapH!done
0.1% SkipOnFalse

0.1% Prim_75

0.1% Prim_74

0.1% Prim_73

0.1% Prim_68

0.1% Prim_110

0.1% FailPrm

TTable B.15: testPrintDefinition Macro-Benchmark Execution Time Profile. '

\ T33% Smallmlk
13.3% WSNextPutPrm
'11.1% Prim_60
i 5.1% SwingAtPrm _
. 49% StringReplaceFromToWithStartingPrm
| 44% SkipTagTrapH .
. 3.8% BehavNew '
i 35% Prim_62
L 2% BCValuePrm2
: 1.8% SkipTagTrapH!done
1 15% lookupMethodInClass
i 15% SkipTagTrapS
 15% SYS_word_fill
t 13% SISISIPrm
. 1.1% blockCopy
. 0.8% Prim_81
© 0.7% insert!04!sellhere
| 07% allocSpace
. 05% WindowUnderflowTrapH
! 0.5% SuingAtPutPrm
' 0.4% lookup
. 0.4% insert!03!sellhere
. 03% SkipOnTrue
03% Prim_70
0.1% swart
0.1% StoreGSTrapH
0.1% SkipOnFalse
0.1% RemrnGSTrapS
0.1% Prim_T1
0% other

229

Tabile B.15: testPrintDefinition Macro-Benchmark Execution Time Profile. !

!
!

t Table B.16: testPrintHierarchy Macro-Benchmark Execution Time Profile.

23.9%
17.7%
16.6%
10.4%
6%
42%
1%
3%
2%
2%
15%
13%
13%
1%
0.9%
0.8%
0.6%
0.6%
04%
0.4%
03%
03%
03%
0.2%
0.2%
02%
02%
0.2%
0.2%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0%

Smallraik
WSNextPutPrm
lookupMethodInClass
SaingReplaceFromToWithStartingPrm
BehavNew

SuingAtPrm
WindowOverflowTrapH
SYS_word_fill
WindowUnderflowTrapH
Prim_60

BCValuePrm2

lookup

blockCopy

cacheMissLookup
Prim_71

sart

allocSpacs
SIMulPrm
SwreGSTrapH
SkipTagTrapS
ReaurnGSTrapH
Prim_70
Prim_110
LoadcTagTrapH
methodBlockCopy
insert!04!seilhere
SaingAtPutPrm
SVTrace

Prim_74

Prim_73
Prim_l111
FailPrm

other

230

