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FOR MIRROR MACHINES

B. K. Kang, M. A. Lieberman, and A. K. Sen'

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, CA 94720

Abstract

A novel scheme of feedback stabilization of the m=l flute mode for axisymmetric mirror

machines is proposed, which has potential for reactor extrapolation. A three region plasma model is

analyzed, consisting of a hot core surrounded by a warm transition annulus, which in turn is surrounded

by a warm halo annulus that is in contact with segmented, annular feedback plates at the two endwalls.

For plasma parameters characteristics of the TMX-U and MFTF-B devices at The Lawrence livermore

National Laboratory and the MMX device at Berkeley, the required feedback power is calculated. The

results show that stability can be achieved in the MMX and TMX-U devices with a modest feedback

gain and power. The power requirement for the near-reactor conditions of MFTF-B is more severe, but

can be reduced by a modified choice of plasma parameters.

'Department of Electrical Engineering. Columbia University, New York, NY 10027



I. Introduction

A promising configuration for fusion plasma confinement is a tandem mirror in which mirror-

quadrupole anchor cells are located at the ends of an axisymmetric, central cell solenoid [1,2]. The

non-axisymmetric magnetic fields of the anchors form a magnetic well that provides overall magnetohy-

drodynamic (MHD) stability for curvature-driven flute modes in the plasma, and magnetically confined

plasma in the anchors provides axial confinement for center cell ions in the plasma core by maintaining

a positive electrostatic potential with respect to the center cell.

To reduce energy loss in the core plasma due to neutral atom penetration, tandem mirrors incor

porate an annular, warm plasma layer called a halo plasma. The halo plasma is not axially confined by

the electrostatic potentials of the anchors and is lost to the end walls on an MHD flow timescale.

Whereas the density of the escaping core plasma near the end walls is very low due to the good axial

confinement, the density of the escaping halo plasma near the end walls is of the order of the halo

plasma density in the midplane of the device.

Although tandem mirror systems can be economically feasible fusion devices, considerable

economic advantage and reduced radial diffusion can be achieved if the anchors are also axisymmetric

mirror cells, provided overall stability of the plasma is maintained. The flute mode with azimuthal mode

number m=l is the most difficult to stabilize, because it is only weakly influenced by finite larmor

radius (FLR) effects that tend to stabilize the higher m modes [3].

Several methods have been proposed to stabilize the m=\ flute mode in axisymmetric mirror sys

tems by modifying the admittance of the sheaths that connect the confined plasma to the end walls. One

is to increase the admittance of the sheath, thus "line-tying" the plasma to the end wall. However, the

sheath provides thermal insulation for the hot core plasma by reducing electron heat conduction to the

end wall, and this insulation is degraded severely if the admittance is increased over the entire cross

section of the core to achieve stability [4]. Experimentally, stability has been achieved in a low tem

perature plasma by increasing the admittance using a thermionically emitting endplate [5,6]. Experi

ments have also been performed using a ring-shaped, emitting endplate that is in contact with only the

periphery of the plasma [7-13]. These experiments have demonstrated the stabilizing effect of "surface



line-tying." However, radial temperature gradients can lead to unacceptable heat loss to the halo

plasma.

A second method to stabilize the flute mode is to apply feedback voltages to segmented, end

plates in contact with the plasma. In principle, such "axial feedback stabilization" does not lead to

enhanced electron heat loss to the end plates. Experiments in a low temperature, multiple mirror plasma

confinement device have demonstrated the stabilization of the m=l flute mode using axial feedback to

an endplate split into four sectors [14]. For this device, the escaping core plasma density near the end

plates was of the order of the confined density in the midplane of the device, yielding a high sheath

admittance and good coupling of the feedback system to the plasma. Axial feedback stabilization of a

hot, mirror confined core plasma has been studied theoretically [15,16]. For such aplasma, the escaping

core plasma density is very low, such that the sheath admittance is low and good coupling of the feed

back voltages directly to the core plasma is difficult to achieve. Voltages have been applied to seg

mented end plates in tandem mirror devices to successfully control nonambipolar radial transport

[17,18]. This suggests that sufficiendy strong coupling can be achieved to use axial feedback stabiliza

tion in these devices.

In the present study, weexamine theoretically the stabilization of the flute mode in a tandem mir

ror device by applying feedback voltages to an annular endplate split into four sectors, having arbitrary

inner and outer radii The endplate is in contact with the escaping halo plasma, thus achieving ahigh

sheath admittance and good feedback coupling to the plasma. In section 2, we derive the relative dielec

tric constant for the plasma and identify the corresponding circuit elements for the feedback model. In

section 3, we represent the confined plasma using athree layer model and obtain the dispersion equa

tion and feedback equation for the system. In section 4, we apply the feedback equation to three,

representative, confined plasmas having parameters characteristic of the MFTF-B and TMX-U devices

at the Lawrence Livermore National Laboratory and the MMX device at the University of California,

Berkeley. We determine the feedback gain required for stabilization and estimate the feedback power

required to maintain stabUization in the presence of noise fluctuations in the plasma. In section 5, we

discuss the results and limitations of the theory.



2. Single Layer Dispersion Relation and Circuit Representation

We consider a plasma in the slab geometry shown in Fig. 1. The direction of the uniform mag

netic field is taken to be the z-direction and BQ = (0,03 o)- The x-axis is taken in the direction of the

density gradient with the positive direction outward firom the plasma, so that the pressure is

Po = Po(r)« The effects of the curvature of the magnetic field-line are represented by the effective

gravity g = vth/Rc, where Rc = l£IRp is the radius of curvature of the field-line, Rp is the radius of

the plasma, and lB is the mirror scale length.

2J. The Dispersion Relation

We use the two fluid equations and the Poisson's equation as follows:

dsna + naV-ua = Sa,
etc

s €°

where

W—E2^,
(1)

(2)

da _ d - rr
A = di+U' ' O)

<(> is the perturbed potential, and the subscript s represents the species s. The feedback source terms Ss

are given by [15,19]

5c =—eh*' W
Si = 0, (5)

where, lj is the half length of the confined plasma, and ye(go) is the admittance per unit area of the

external sheath. By neglecting the viscous terms of the pressure tensor, we have the momentum bal

ance equation

d3u3 — -• -•
nsm*~jZ~ = ~VP* +Qsns(E +««xB) +nsm3gs +6C. ^

The collision term $c is given by



6S = ~nemei/„(i?e - Hi),

where vei is the electron-ion collision frequency. Neglecting the flow velocity due to classical

diffusion, we have the equilibrium flow velocities

u --ft* Tan'° -
tlay namMayi (8)

where, n0 = \dno/dx\, Ts is the temperature, and ©, =qsBlms is the gyrofrequency for each

species 5. We linearize (1-7) under the assumptions that Te =T£, Q; <c IQe I, pt/R <*: 1,

liTj/1 < l2Tle I, and the perturbation is of the form ei{bf~(s*). Here pf is the ion gyroradius. The

convective derivative (3) can be written as

dt

**3 •/ * * \

= -iua,
where G), is the diamagnetic drift frequency

w. = kT- <
maCla n0 '

and 00^ is the gravitational drift frequency, defined as

- n.-

The perturbed pressure equation is given by

Pis =-J^Hk *VP«a - 7Po«V •Wi3)

Keeping only the convected plasma pressure fluctuations [the V-«k term yields negligible corrections

(see Appendix A)] in the above expression we find

1 - TTP\a = -r—UU • Vpo,

Now using (9') for the perturbed pressure, and neglecting the inertia for electrons and the collision term

for ions in Eq. (6), we have the following linearized momentum balance equations;



ike<f>i k n'Te _ _ _
~^T + 777T7ru*e +QeUle xz" UeiUle = ° nnxme uje n0 me (10)

(11)
—i^wii = 1 —u^ + 12tWij x z

77li U?i Tl0 771$

Solving (10) and (11) for the perturbed velocities, we have

ikefa
ule — meQe(l + £) (i2)

u\e~
ikveie<j>

™«^(l +£) 03)
ikedh

1* ~~ rt /, , u?"(0,(1 + Sl) (w)
ke(j>\ijJi

WT.- ^

Inserting (12-15) into the linearized continuity equations, we find the perturbed densities

(2l) - < e<t>i { ik2Vei Te efa iyeWTeefa
n0 * w-wge Te mfZw-ul Te +n0eHTu>e Te ' (16)

V' w-a£T« ^^^Ip (17)
where 6f h (Jfc2p?)

We now determine the plasma dielectric function (see Appendix B for further details). Poisson's

equation (2) can be rewritten as

-k2K</> =-k2<j> +j{nxi - nlc). (18)

where, K is the relative dielectric constant. Noting that

u* = u/* = -of

for 7^ =Tt =7, and that k » 1, Ico^l < I©I, and ICO* I <*: Icol for the plasma that we consider,

we identify K as



« = t~—z (2u*u>* H — (a; 4- a; )fc2e0T a;2 - uj2l *+ meft2 ^ +"V

A((i + ~) + (^r + r^hrJf + ^?)./s2eoT uj men26j n0e2/r&» «; 6jo;2

The first term represents the polarization drift effect modified by the diamagnetic drift, the second term

represents the collisional effect, the third term represents the line-tying effect through the external

sheath, and the last term represents the £ x 5*0 curvature drift effect By putting vei =0 and

ye = 0, we recover the usual noncollisional dispersion relation [3,20-21]

u2+u*(j +'ylfHD =0 (19)

where yfiwD =glRp is the ideal MHD plasma growth rate. We note that the m =1 mode is not

rigid for a diffuse boundary plasma, and the FLR term CO* CO is present even for m = 1 due to the finite

pressure gradients in the system [3,21].

22. Circuit Representation

We now identify the corresponding circuit representations of the plasma by calculating the total

external current to the dielectric medium;

dpJ% =-Jv.Jdv =f-£dv
= —i(JK€0k2AplT<t>

uj sL

where Ap is the area of the plasma cross section ,

(20)

8 = —VjJ,

c.-S*4^f (2D
v =_2f^M, (22)

eQk2AJydfr*

Ye=yeA„. (24)

The physical meaning of each of these elements is explained in Vandegrift [16]. Briefly, C0 is the

-7-



capacitance seen across the flute surface, L < 0 is the inductance driving the flute mode, YR is the

transverse collisional conductance, andYe is the line-tying admittance. The first term on the right hand

side of (20) is the admittance of the capacitance modified by a finite rotational frequency CO . These

circuit elements (21)-(24) give a convenient interpretation for the physical process of the flute instabil

ity. A random fluctuation of the plasma induces a current in the R - L - C parallel resonant circuit

resulting in a charge on the capacitor. The quality factor Q of the resonance circuit is decreased by

increasing YR and Ye. These shunted resistors try to discharge the separated charges, giving a reduced

growth rate y < y^HD • witn YR and Ye =0, the system is stable provided yMHD < ©* '4.

3. Feedback Model and Modified Dispersion Relation

Figure 2 shows the three layer model for the mirror confined plasma that we consider here.

Regions I-IV represent the core plasma, the transition plasma, the external halo plasma, and the sur

rounding vacuum region, respectively. The transition plasma (region II) couples the core plasma

(region I) to the halo plasma (region III), on which the feedback signal is applied axially through seg

mented annular feedback plates located at the end of the machine.

3.1. Flute Mode in Radially Layered Plasma

For the m = 1 flute mode, in cylindrical coordinates, we represent the perturbed potential (J>,

which vanishes at r = oo, as

<j>p = Ar cos 0,

Q
<t>t = Brcos0H—cos0,

r

<t>h = Drcos6 + —cos0, (25)
r

F
<f>v = — cos 0.

r

Enforcing the boundary conditions on (25), i.e., that (J) and the normal component of the electric

displacement D be continuous across the boundary, and assuming that the dielectric constants for the

plasma are much greater than the vacuum (Kp,Kr,KA » 1) we obtain the dispersion relation as

•8-



(*P +"«)(«« - «*)^o2 - («« ~«?)(«« +«*)-Jl

+K+««)(* +K*)i " (* ~S)(«. - «k)4 =0 (2«

where, Rp, il*,and #& are the radii of the core, transition, and halo boundaries,

respectively. The relative dielectric constants «p, «*, and «& are given by (18).

Assuming that the core temperature is much higher than the transition or halo

temperature, we have

*-nT<1 +-iI +«^nsF)' w

Here, we have neglected the curvature driven effects for the transition and halo

regions, and considered the line-tying effect only for the halo region.

A typical tandem mirror geometry is shown in Fig. 3. The bad curvature drive

is concentrated mainly in the plug region having characteristic length lp. For this

geometry, the average radius of curvature Re is (Z^zO/ORpZ?)* By using (27>(29).

and calculating the external current for each region, we have

y,=-cwi+^)+y*+4-, (30)UJ SJLp

yt=tco-+—)+**,, si)

Yh = sC/»o(l H )4- Yjih +Yhe, ^2)

where, Ypi Yt, and Yh are the effective admittances, and Ap, Atl and Ah are the

areas of the core, transition, and halo plasmas, respectively,



_ e0k2AplTu£ e0k2AplT^i4i
0po" n? ' YRp~ QA '

Lp _-2€ofc^Tc^ —, Cto = jj-*-,
e0k2AtlTutfi4! totfAhW*

eotfAhlTug12"*1 jn AiRh = pr-^ , and Yfce =2£ Ah-

By multiplying 4(26) by {ae0k2A^t)2, and using (30-32), we can rewrite the

dispersion relation without feedback in terms of the circuit elements as

YpYh +YtYh {m _̂ )2 (** +*)+1? {m *^)2 ^

3.2. Circuit Representation without Feedback

Now, we consider the equivalent circuit representation of the above dispersion relation in Fig. 4a.

Taking the input impedance seen at the core-transition boundary Yin = Q(resonance), we obtain

YpYh + (a +0)YtYh + (ap +/37 +a7)Ft2 +(/? +7)ytYp = 0. (34)

Comparing (33) with (34), we can recover the dispersion relation by setting

a + 0 =

0 + 7 =

Solving for a, p, y, we obtain

iffljtf + fl2)
W - -R?)2 '

_(ig+ig)(jg+jg)
(JJJ - J*2.)2 ' <36>

•R2XR2+.R2)
^^^'(i-j- 07)

(35)

a~ (u?-J5)» -/J' <38>
„_2lgg,(ig + Jg)'/»
p (.RJ-iZ2)2 ' ( }
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,.(*?+flaw+*a .
7 (Aj-fl2)2 -a (40)

(For typical parameters of MFTF-B, a 3, (3 - 5, y - 8). the form of these coupling coefficients

implies the following: i) The effective capacitance of the core plasma is decreased because charge can

cellation occurs at the boundary with the transition plasma, ii) If the halo plasma is perfectly line-tied,

i.e„ Yhe -> oo, the effective capacitance due to the transition and the halo plasma is about 2Ct < Cp.

Thus, the growth rate of the flute instability is somewhat reduced due to the increased inertia of the sys

tem. But there is no circuit element which provides L > 0 that can compensate Lp < 0 to obtain com

plete stability, iii) If we provide a positive inductance by feedback, we might have stability, iv) Note

that the system cannot be driven into instability by the form of the coupling coefficients alone, even if

a < 0 because the equivalent circuit representation has not introduced any new physics. This can be

seen by calculating the total capacitance of the system with Lp =0, (0* 's =0and Y^ = 0.

Ctat =Cp +aCt +-£-ric* >°i
0 + Y

where y = (yCt+Ch)/Ct > y.

3J. Circuit Representation with Feedback

Now we consider an equivalent circuit model with feedback. With feedback voltage applied at

the halo shaped feedback plates located at the end of the machine, the lower terminal of the line-tying

admittance is forced away firom system ground. So, we can represent the equivalent circuit model of

the system as shown in Fig. 4b, where Yx = Yh - Y^. By considering YM = 0, we obtain the disper

sion relation with feedback:

where r\ is the voltage transfer function of the feedback network. We can analyze this problem with

more general feedback theory, but for simplicity, we consider the regulator problem with et = 0 (.ei * 0

corresponds to an external driving signal). Ifwe choose the feedback transfer function ti(j) as

•11-



V(s) = G 09+ 7)K + n
sLr /3YtYhhe

(42)

the negative inductance included in Yp in (41) cancels out for G =1, and the system becomes stable.

The feedback network of (42) can be realized with two strictly proper stable networks. For simplicity,

we neglect YRp, YRt, and YRh and assume <%/ = 0. then, (42) becomes

,a) = G (P +iHsC +Y^ + sCh +Yv +Yu
^ ' s\Lp\ ftsCH +YJY*

where ejb is the feedback voltage applied at the feedback plate, and 1%is defined by

We introduce an auxiliary variable e\ to realize Ti(s) as

ex = A +
G(Xt±+Yhe)

-Hx(s)ep

with

A3G[(P + Y)Cto + CJ

Then, we have

e/6 =

= H2(s)ei

e\

(43)

(44)

(45)

and realize rj(y) with two proper stable networks Hx(s) and H2(s) which are schematically given by

Figs. 5a and 5b. (Note that Yt$ can be realized by 90° spatially rotated signals.)

We now consider the sensitivity of the system stability in realizing the feedback transfer function

rj(.y). The circuit of Fig. 4b can be redrawn as Fig. 4c. Here the negative inductance Lp is separated

•12-



firom the rest of the circuit Y4 which is a passive network, and the feedback effect is represented by an

equivalent feedback admittance Yfb. The passive network Y4 and the feedback admittance Yfb are

given by

= J(?)OTS_
* yh + (/3 +7)yt' (46)

1 , _v , (Yh + jYt)/3Yt
(47)K, =y' +^i+ay«+yA +03+7)yt-

For the system to be stable, we require that Yfb cancel the negative inductance Lp. The time delay

effects in the feedback network can be represented by introducing a constant phase shift 8 in the com

plex gain G, i.e., G = IG IelB. Then, for stability the feedback admittance should be

G \G\co80 \G\sin0
Yfb ~ s\Lp\ ~ s\Lp\ + u,\Lp\

and we need

(48)

for the system stability. The condition (48) for stability does not seriously restrict the choice of i\(s).

It can also be shown that the other mismatches of the parameters in T[(s) do not yield any serious res

trictions in designing T[(s). For example, a mismatch in Y = Yt>Yh or Y^ requires the feedback gain

to be G > 1 + IAY/YI. Thus, the feedback realization (42) gives quite robust stability for G > 1.

In the next section, we examine the behaviorof the roots of the dispersion-relation (41) which are

obtained by setting the numerator to zero:

s3 (l'^Ch. +(/3 +7)Cto)(C,. +(a +p)C«,) - ^C2,^)
+s2 (l'^c^+(a+/?)cto)((/?+7)(y*+y»)+Yht+Yhe +y«.)

+ L'^Co + (/J +7)Cto)((a + /3)(Yt0 + y«) + YRp + Yr*)

- 202L'pCto(Yt4, +y«))

•13-



+s ((G - 1)00+7)Cto +Cho) - /32(1^ +Ym)2L'p
+ l;((«+pyx*+y») + yRp+y+)

+ (c?-i)((/3+7)(n*+rjn)+i^+ *i.+yi»)

= 0

(49)

4. The Results of Feedback

We apply the results of the previous section to parameters and geometry characteristic of the

TMX-U, the MFTF-B and the MMX experiments. The typical parameters and corresponding values of

the circuit elements are given in Table 1 and Table 2, respectively.

4.1 Solution of the Dispersion Relation with Feedback

We assume that the density is constant with radius except in the transition region where it

decreases with a constant slope. (Thus (0* exists only in the transition region.) For the line-tying

admittance, we use the Kunkel and Guillory model [19] for Y^ i.e.,

e 4 Qjgf (50)

where \De is the electron Debye length, and vt/a is the ion thermal velocity. Particle simulation results

for the sheath characteristic show that this linear model for the sheath impedance gives a good descrip

tion of the coupling of the halo plasma to the feedback plate, provided the voltage across the sheath is

less than approximately 40% of the thermal plasma potential [22]. By putting the numerical values for

the circuit elements into (49), and solving for the roots of the polynomial with G as a parameter, we

obtain Figs. 6-8, the root loci of (49) for MMX, TMX-U, and MFTF-B, respectively. Note Re(y) < 0

(roots in the left half plane) for stability. We choose the MMX experiment (Fig. 6) to describe the

behavior of the roots. Without feedback, G = 0, we have three roots; root 1 at (-5.74 x 105, 1.98

x 105), root 2 at (6.04 x 104, 4.38 x 103), root 3 at (-4.00 x 105, 2.90 x 104). Root 2 is the flute

unstable root that must be stabilized by feedback. Root 3 is the stable conjugate root of 2. The stable

-14-



root 1arises from the RheCeff time constant of the system, which can easily be seen firom the high fre

quency limit of (49). It is clear that for G £ 1.0, the flute mode is stabilized. Similar behavior is

seen for TMX-U and MFTF-B.

Two interesting limiting cases are At -* 0, G -» 0 i.e., the "surface line-tying" model [7-13],

and Rt -» Rh » Rp. For the case ofAt -» 0 and G -» 0, we obtain the voltage transfer ratio for

the circuit in Fig. 4a,

eh Yp + (a + /3)Yt
2B$R<(B* + R*y/*Yt

(Rt-Jty^ + RKRi + RDYt

-(l+f|)'/2 as JU-.lt,, i.e., A<^0 ™
tf Yhe ~~> °°»me core plasma is shorted out by the perfect line-tying, and the system is stabilized.

In the other limiting case ofRt -> R^ » Rp, we obtain

jJ^KttiZ+«*K*K+"p)*2 =o; (52)
i.e., Kt + Kp = 0 , which is physically equivalent to the case of a core plasma surrounded by an

infinite external plasma. For Kr =.ic^ = 1, we have a system consisting of a core plasma only.

4.2. Feedback Power Requirement

We now consider the feedback power necessary to stabilize the m = 1 flute mode. The level of

this required power will clearly determine the viability of this stabilization scheme. There will always

be some wideband plasma noise in which the coherent flute mode will be embedded in any machine.

The sensors will detect both the noise and the coherent fluctuation, and the feedback signal will be

composed of processed versions of these. The required feedback power will therefore be proportional

to the noise power in the plasma.

We use circuit simulation codes; e.g., SPICE, to determine the required feedback power for the

circuit of Fig. 5a, which is schematically redrawn in Fig. 9 with the circuit elements explicitly shown.

We first choose a thermal noise source en associated with the cross field core resistance Rcore

and later we rescale the results to account for a more realistic, nonthermal flucttiation level. For

•15-



thermal fluctuations, the fluctuation voltage spectrum is given by

(BW)112

where,

en =(4KTRcoreBW)iavolXs , (54)

Reore = 1^/jp . KT is the temperature of the core in joules, en is the rms thermal fluctuation voltage,

and BW is the band-width of the feedback system. For each machine that we consider, the normalized

real power spectra of the core plasma and feedback circuit to the thermal fluctuation with G = 1.5 are

plotted in Fig. 10 for MMX, Fig. 11 for TMX-U, and Fig. 12 for MFTB-B. In these figures,

i le, I2 Remand/>*. =•*• •- •*Pp =— \ep I2 Re [Yp] and P^e =— \ehe^ Yhe- N°te that the fluctuation power spectrum in the

core is centeredat Jmhd» even though we use a thermal spectrum for e„(C0). The feedback power has

a roughly constant spectrum for CO £ Jmhd ^d then is sharply decreasing. The sharp peak in the

MFTF-B spectrum is due to the low collisionality of the core and transition plasma. Given the core

plasma voltage spectrum for eR(co), we can estimate the rms plasma centroid radial displacement of the

core from the formula for the E x B drift motion. The estimated rms plasma displacement for the

thermal noise is / -biv / „ /. ,\ \2 \ ll2

'5.56 x 10"10 [m] for MMX

2.45 x 10-11 [m] for TMX - U-llr...l,._™nr tt (55)

4.10 x 10"12 [m] for MFTF - B
Here, we have chosen the band-width of the feedback system to be 108 rad/sec. Since ep(co) falls shar

ply for CO > Ya////j, the results are not sensitive to the choice of bandwidth provided BW » Yjw/d.

The power supplied by the feedback system is calculated from the standard formula

fBWPfb =jo ^(^)ep(o;) •Pfb(u>)dw , (56)

where //&(C0) is the complex conjugate of the current flowing at the output port of the feedback system.
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The real and reactive powers are given by

Re [P/b] -1.38 x 10-11 [W] for MMX

5.94 x 10~16 [W] for TMX - U

3.71 x Iff"11 [W] for MFTF - B

Im [Pfb] -9.47 x 10"14 [W] for MMX
(57)

3.92 x 10-16 [W] for TMX - U

3.26 x 10"10 [W] for MFTF - B

Of course, the m = 1 flutelike fluctuations in real devices are not at thermal levels. We therefore res

cale the rms plasma centroid displacement 5^, to a reasonable level that can be detected and controlled

by a practical feedback system. We choose %r„JRp =1%. Since Pfb «= J;2^, we obtain, using

(55) and (57). the result Re[/>/&J _ ^ [W] for ^

4.0 [W] forTMX-U

20. [MW] for MFTF-B

fotf/*] ~ 1.2xl0~3 \W] for MMX (58)

2.6 [W] for TMX-U

170 [MW] for MFTF-B

These numerical results may be compared with a rough estimation of required reactive feedback power

for a single layer model, calculated from the perturbed plasma energy 5W,, for a given perturbed dis

placement £, that is discharged in the time interval of l/y^HD- F°r a uniform plasma pressure P0

within radius Rp, the perturbed energy is given by

^. =i/(f*)'[v(p+£)]as
with

P(r)=P0, r<Rj,;

0-. r > Rp .

Using following relations;

-17-
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dS-V = 2Triprdr— >
or

dr \2fjio)
*t

**

B2 B2 2P
vac

floRc fJL0Rc Re

Rp tp
we obtain the perturbed energy from (59) as

6W3 « P0V(2/i
(60)

where V is the volume of plasma in the plug. Assuming that the perturbed energy §WS is discharged

in the time interval VyMHD *we have the power required to stabilize the system

P *>1mhdSW. * 2*- " 'i(kyPV£
oc

as pi/2

- 6.8 xHT4^] for MMX

2.1 [IF] forTMX-U

5j [MW] for MFTF-B

These simple estimates of the power requirement for a single layer model (Eq. (61)) agree well with

our intuition that the larger experiment requires more feedback power to stabilize. For MMX and

TMX-U, the estimated reactive powers from (58) and (61) give a reasonable agreement For the low

temperature, highly resistive MMX plasma, the real power greatly exceeds the reactive power. How

ever, the three layer model predicts approximately 30 times larger reactive power for MFIP-B than that

predicted from a single layer model because of poor coupling between the core and the halo plasma;

namely, pcoCto <z Y^ for MFTF-B. For the three layer model with large Y^ (poor coupling) and

Cp » Ct,Ch, the feedback power scales with

Pfb Kvo-i etfj* ct— • m
So, by increasing the mirror curvature scale length lB and/or putting the inner radius of the feedback

plate close to the core plasma and/or decreasing the minimum detectable distance £, we can reduce the

required power to be handled by a practical feedback system. For example, by increasing lR from lm

to 3m for MFTF-B while keeping other parameters the same as before, the required feedback power is

reduced to Re[P/b] = 0.74 MW, lm[Pfb] = 6.4 MW, which is of order of the power that maintains

the halo plasma. -18-

(61)



5. Discussion and Conclusions

The three layer model analysis of axisymmetric mirror machines shows that we can stabilize the

m = 1 flute unstable core plasma by applying proper feedback signals on segmented, annular feedback

plates at the end walls. The signals are applied to the feedback plates through the line-tying admittance

of the halo plasma sheath. The feedback signals bring appropriate charges to the surface of the core

plasma, so as to annul the charges separated by the rigid flute mode and stabilize it The model ignores

finite - p effects and employs sharp boundaries. By increasing the gain G, we have shown that our

feedback model can give quite robust stability over the variation of the plasma parameters. However,

the plasma parameters change significantly in the initial plasma build-up stage, so that increasing G is

impractical. Adaptive identification and tracking of the feedback parameters are essential in the initial

plasma build-up stage.

Ther is an advantage to using active feedback on an end ring in contact with the halo plasma, as

opposed to modifying the line-tying admittance by employing an emitting end ring. The three layer

active feedback model predicts that the flute mode can be suppressed at the core - transition boundary,

while the surface line-tying model predicts flute stability only if the ring is in contact with a substantial

part of the core plasma. Thus, using an active feedback system with a proper choice of feedback

transfer function, we can obtain absolute stability with sufficiently large inner radius of the feedback

plates that the plasma end loss heat flux and the radiation or neutron damage on the feedback plates can

be held to acceptable levels. The power required by the feedback system to maintain stability for the

MMX and TMX-U is modest For a near reactor grade plasma such as MFIP-B, the required feedback

power level can bereduced to an acceptable level by increasing the curvature scale length lB.
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Appendix A

With the compressionalpart of the perturbed pressure (the second term of (9))

included in Eq. (9), the linearized momentum balance equations become

1 2 U\e U\ey+ 2 u\eX+ UeUu XZ- UeiUie = 0 (A.1)
me <jjen0me uen0me ujen0me

. _ iked>i k n'Ti , ik2jn0Ti v m k'yn'Ti v „ ^ _ A , A_v
rrii (jji nQ rrii u)in0mi 0JiTiomi

Solving (A.1) and (A.2) for the perturbed velocities, we have

ikedh

meQe(l+ *)

y ikueie<t>i
ufe~

mJ]j(l + £)(l-7£)
ike<t>\

wf.c-
«" mrfl,a-g)

"" "mft(l-fl(l+7£)
i&c*

Then, the perturbed density equations become

{n0)e lj - wj Te +me«2 (a, _wj)(i - 7g) Te +n0e2JTa,e Te l ' '

{n0h-uj +oj*g T{ °> +^)(l+7^) T« K' >

Substituting (A.3) and (A.4) into (18) and assuming Te « Ti « T, « » 1 ,

|c*7* | <§; |cj|, and |u;*| -C |a>|, we have the same relative dielectric constant k as given

in (18*) .



Appendix B

Since the plasma that we consider is nonhomogeneous, using a spatially uniform

dielectric tensor i(k, uj) to describe the ra = 1 flute mode is inappropriate. How

ever, by modeling the plasma with a series of layers and using the boundary

condition that the normal component of the electric displacememt D is continuous

across the boundary, we can effectively describe the nonhomogeneous plasma. In

stead of using the dielectric tensor e(k,uj), we use the dielectric response function

K(k,uj)^ denned by
_ Pert

k(k,uj)

where pea* is an externally injected test charge density, and

V •E = putle, , (B.1)

which yields

k • i(k, uj) •k
€oK- fc* *

For a multi-layer plasma, k(£, uj) is constant in each region, and we can rewrite the

Poisson's equation (B.l) as

V • (kE) = pert/e.

Then, we have

e0k2n<t> = pext {B>2)

which is the same form as the Poisson's equation in a dielectric medium with di

electric constant e0n. For a quasi-neutral plasma

Pext ~ Ptot ~~ Ppol

and, from (B.l) and (B.2), we have

e0k2K,(j> = €0k2<t> - e(nu - nle)



Equivalently, we can treat each plasma layer as a dielectric medium with dielectric

constant « for a low frequency flute analysis. Then, using the quasi-neutrality

condition in each region and the uniqueness of the charge density at the boundary

since there is no free charges, the boundary condition for Eq. (25) becomes,

h • {kE} = 0

where, h is a unit normal vector to the boundary, and {kE} denotes the increment

in kE across the boundary.
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Figure 2. Three layer model for the mirror confined plasma
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Figure 10. Normalized thermal power spectrum of MMX (a) for the core
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Table 1. Typical parameters for TMX-U, MFTF-B, and MMX.

parameter TMX-U MFTF-B MMX

lB[m] 1 1 0.36

lp[m] 3 5 3.75

It \wi\ 7 12.8 3.75

Rp [cm] 20 30 2

Rr [cm] 25 45 3

Rh [cm] 30 60 4

rip [m~3] 1018 1020 1019

rk/rip 1 0.1 0.66

rih/rip 1 0.1 0.11

Tp[eV] 100 104 10

Tt[eV] 15 50 10

Th[eV] 15 50 10

B [Tesla] 1 1 0.13



Table 2. Equivalent circuit elements for TMX-U, MFTF-B, and MMX.

TMX-U MFTF-B MMX

Cpo[F] 3.86 x 10~8 6.7 x 10"6 1.67 x 10"5

Cu,[F\ 2.07 x 10"8 8.4 x 10"7 9.62 x lO""6

CnoiF] 2.53 x 10-8 1.18 x lO"6 2.24 x 10"6

LP[H\ -1.65 x lO"3 -1.00 x 10~7 -2.89 x 10"6

Yjip [mho] 3.39 x lO"5 6.3 x lO"4 3.4

Ym [mho] 2.92 x lO"3 5.2 x lO"2 4.44

Yjui [mho] 3.51 x 10~3 6.8 x 10-4 0.16

Yhe [mho] 8.74 274 0.3

ojj [rad/sec] 0 0 0

ojjj [rad/sec] 2.6 x 103 1.0 x 104 2.0 x 105

ujjjj [rad/sec] 0 0 0

a -7.33 -2.7 -2.7

P 15.43 4.8 4.8

7 15.45 8.2 8.2
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