Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COMPUTER-AIDED DESIGN FOR VLSI CIRCUITS

by

A.R. Newton and A. L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M86/16

26 February 1986

COMPUTER-AIDED DESIGN FOR VLSI CIRCUITS

by

A.R. Newton and A. L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M86/16

26 February 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Computer-Aided Design for VLSI Circuits

A.R. Newton and A. L. Sangiovanni-Vincentelli
Depariment of Electrical Engineering
and Computer Sciences
University of California, Berkeley, 94720

New1on & Sangiovanni DRAFT

N

1. INTRODUCTION

Computer aids have been used for both the design and verification of electronic sys-
tems for many years prior to the introduction of commercial Integrated Circuits (IGs) in
the early 1960s. Such tools have found their way into virtually every aspect of the
design of such systems, from IC process technology to the design of complex computer
architectures. However, it is the IC and the complex electronic systems the IC has made
possible that have made computer aids an indispensable part of the design of an electronic
circuit or system. Not only are computer aids necessary for both the design and
verification of integrated circuits today but, as the semiconductor processing technologies
mature, computer aids will soon also provide key proprietary advantages as semiconductor
and system design bouses vie for the promising Application-Specific IC (ASIC) market of
the next decade. We believe that the pivotal technologies in future IC CAD systems
include tools for IC synthesis, such as placement and routing. combinational and sequen-
tial logic synthesis tools, and architectural design aids, design system management tools,
including the management of design versions and alternatives in a distributed computing
environment, data dependency management, and efficient and flexible interfaces to new
tools, verifi cation tools, including physi;:al and electrical rules checking, simulation, and
formal verification techniques. In many cases, the new verification tools will take advan-
tage of new multiprocessing hardware to improve their performance or use the evolving
heuristic programming technologies, such as rule-based expert systems, to improve flexibil-
ity and to encourage the evolution of the tool. In the following sections, the state of each

of these areas is reviewed and key areas are noted.

In the remainder of this paper, the CAD tools and techniques used to support the
most common design styles are reviewed. Nowadays. the field of CAD for IC design is
very broad and it is not passible to cover all aspects of IC/CAD in a single paper. For that

reason, the paper is focussed on the techniques critical 1o both cusiom and ASIC design.

Newton & Sangiovanni " DRAFT

the directions of present research and development for these areas, and future trends. In
the following section. some basic cad and design style concepts are introduced and the
CAD requirements for ASIC development are explared from a design and marketing point
of view. Each of these requirements is then reviewed in the f ollowing sections in the
context of design management systems, verification tools. and synthesis tools. While the
area of testing also involves extensive use of CAD and is also a key technology far IC
design, it is dealt with in detail in another paper in this issue and is, therefore. not
reviewed here. With the recent rapid increase in compute power per dollar we have seen
al the engineer’s desk, the next few years promise spectacular progress in all of these

areas.

2. DESIGN METHODS AND CAD

2.1. Introduction

The use of a particular class of circuit structures is referred to as a design method., or
design style, and while the development of new algorithms and techniques for CAD con-
unues, a significant contribution to the design of VLSI circuits will continue to come from
the development of new circuit design methods. However, while the implementation of a
design method does not reguire the use of computer aids per se, the most successful design
methods will be those designed 10 take maximum advantage of the computer in both the
circuit design and verification phases. The design method must provide the structure
necessary 1c use both human and computer resources effectively. For VLSI. this structure
also provides the reduction in design complexity necessary 1o reduce design time and 1o
ensure that the circuit function can be verified and the resulting circuit can be tested. In
describing the variety of computer-aids used for IC design. a distinction is made between

those techniques used for design. or synthesis. of the IC and those technigques used for its

Newton & Sangiovanni DRAFT

verifi cation. In both of these categories, a further distinction is made between techniques
relating to the physical, or topological, aspects of the design process. such as the generation
and verification of mask layout data or the placement of components in a circuit, and
functional considerations, such as logic description, syntbesis, simulation, and test-pattern

generation.

Computer aids for design, or synthesis, at both the f unctional and physical levels, are
primarily concerned with the use of optimization 10 improve perfarmance and cost. These
design tasks may be f armulated as combinatorial optimization problems for operations such
as cel]l placement, routing, logic minimization. and logic state assignment, or as parametric
optimization problems for operaticns such as design at the electrical level. These optimiza-
tion problems are often 100 complex to solve directly. Therefcre, partitioning is of ten used
to reduce the problem to a set of simpler sub-problems. The solutions of these subprob-
lems are later combined in a separate step. Both the partitioning task and the solution of
each sub-problem generally involves the use of heuristics 10 reduce the complexity

further.

Design methods can be classified in four categories programmable arrays, standard-
cell. macro-cell, and procedural design. A VLSI circuit may consist of one large building
block or it may consist of a number of building blocks combined either manually or by a

computer program.

A programmable array is a one- Or two-dimensional array of repeated cells which
can be customized by adding or deleting geomelry from specific mask layers Since a
number of processing sieps are completed prior 1o customization. the locations of com-
ponents on those layers are independent of a particular circuit implementation. Examples
of programmable arrays include the Gate-Array(??). Weinberger Arrayl??). Sworage-Logic

Array(SLAX??). Programmable Logic Array (PLA)X??). and Read-Only Memary (ROM).

Newton & Sangiovanni DRAFT

The gate-array (also referred 1o as master-slice, or uncommitted logic array) is by far
the most common programmable array designed by computer. It is also the case that the
computer aids for gate-array design are the most advanced and the most mature. In this
approach, a two-dimensional array of replicated transistors is fabricated to a point just
prior 1o the interconnection levels. A particular circuit function is then implemented by
customizing the connections within each local group of transistars. to define its charac-
teristics as a basic cell, and by customizing the interconnections between cells in the array
to define the overall circuit. Generally a two-level interconnection scheme is used for sig-
nals and. in some approaches, a third. maore coarsely defined layer of interconnections is
provided for power and ground connections. The interconnections are implemented on a
rectilinear grid in the channels between the cells. In many cases, channels are also pro-
vided which run over the cells themselves and in some arrays. wider channels are pro-
vided in the center of the array to alleviate the congestion often found in that area if par-

ticular routing strategies are employed.

Gate-arrays are used in many technologies. in particular bipolar and CMOS. and
arrays containing many thousands of gates have been used[56.57] In the SLA approach,
each "gate” consists of a starage element (flip-flop) and a small. uncommitted PLA. This
design method has considerable potential for VLSI but effective design-aids for the syn-

thesis of Jogic functions in SLA form are not yet available.

PLAs may also be used 10 implement building blocks directly. with storage elements
in the feedback path to implement sequential logic in the classical Moore or Mealy
style[??]. The PLA consists of a number of transistor arrays which implement logic AND
and OR operations. In MOS technology. NOR arrays are used[60]. A conventional PLA
consists of 1w o arrays of cells: an input. or look-up. plane followed by an output plane. A
folded PLA may use additional planes, since rows and/or columns in the structure may

be shared by more than one circuit variable, as described later.

Newtion & Sangiovanni DRAFT

The standard cell (or polycell) approach refers to a design method where a library
of custom-designed cells is used to implement a logic function. These cells are generally
of the complexity of simple logic gates or flipflops and may be restricted to constant
height and/or width to aid packing and ease of power distribution. Nowadays, however,
state-ofthe-art standard cell systems permit cells of different height and width to be
included in the same design. This results in non-uniform routing channels between adja-
cent rows and requires a more sophisticated channel routing capability if the silicon area
is to be used to its maximum efficiency. Unlike the programmable array approach, stan-
dard cell layout involves the customization of all mask layers This additional freedom
permits variable width channels to be used While most standard cell systems only per-
mit inter-cell wiring in the channels between rows of cells or through cells via pre-
determined “feed-through” cells, some systems permit over-cell routing if additional lev-
els of interconnect are available. Standard cell systems are also used extensively in a

variety of technologies including bipolar and CMOS[??].

It 15 of ten relatively inefficient 10 implement all classes of logic functions in a single
design approach. For example. a standard cell approach is inefficient for memory circuits
such as RAM and stack. In the macro-cell. or building block. method, large circuit blocks,
customized 10 a certain type of logic function, are available in a circuit library. These
blocks are of irregular size and shape and may allow functional customization via inter-
connect., such as a PLA or ROM macro[??]. or they can be parameterized with respect 1o
topology as well[??2] With the parameterized cell. the number of inputs and outputs may
be parameters of the cell. In some systems macro cells may also be embedded in gate-array
or sltandard-cell designs. The macrocell floorplan style is evolving as the floorplan of

choice for large. ASIC designs.

All of the design methods described above may be classified as data driven. That is. a

description of the required logic function, in the form of equations or an interconnection

Newton & Sangiovanni DRAFT

list, is used as input to a software system which interprets the data and generates the final
design. Techniques have been developed over the last few years which can be classified as
procedure, or program, driven[??]. These procedural design approaches. as well as their
advantages and limitations as implemented today, are described below. Most of the ‘silicon
compiler’ companies of today. including Silcon Compilers Inc.. Seattle Silicon Technology.
and SDL. support macrocell-based floorplans, with procedurally-based module generators

as described in detail later.

2.2. The Relationship Between CAD and Design

Since the first CAD tools were applied to the IC design process, designers have com-
plained that CAD lags design. There are those who feel that such a situation is inevitable
since, once a designer finds a problem for the CAD engineer to tackle, it takes some time
for a the appropriate CAD 100l to be written, debugged. and documented. By that time,
the designer has "moved on" to new designs and, with them, new problems for CAD. In
the early days, designers were able to "work around” problems with the CAD tools at

their disposal. Today. however, the job just can’t be done without CAD.

For an ASIC design environment. a simplified designer’s view of the role of CAD is
illustrated in Fig. 1. The designer. driven by the marketing need for a circuit that meets a
particular cost. performance. and functional specification. works with sysitem. logic. and
circuit architectures to create a chip design. In that process. the CAD tools are used to
evaluate tradeoffs and aliernative designs. 1o construct specific circuit components, and to
assemble and interconnect the components to form the final chip patterns. Once the 1C
mask patlerns have been assembled, CAD 1ools are used to check the final layout and
prepare it for the automaled manufacture of masks. As the competition for designs
increases. driven by the increasing number of companies in the ASIC business and by the

high capital cost of a modern IC processing facility. there is increasing demand for

Newton & Sangiovanni DRAFT

designers to be able to differentiate their IC product from that of their competitors.
Higher performance, lower cost, mare features, or a faster time to market are all major
factars which differentiate IC products in the ASIC marketplace. In the pm different
companies have been able to provide such product differentiation through their IC fabrica- |
tion technologies the ability 1o pack more transistors on a given chip or to provide a
higher switching speed per gate drove the designs and their advantage in the marketplace.
However, the silicon planar process technology is maturing rapidly — significant gains in
performance and density are becoming increasingly expensive and many companies are
resorting to " joint ventures,” often with former competitors in the United States, Europe,
or Asia, 1o maintain their position in IC process technologies. Because of this decrease in
the relative competitive advantage obtained from process technology, semicenductor com-
panies and "silicon foundries” must empbasize other aspects of the design process if they
are to compete effectively for the ASIC market. The two avenues available are in archi-
tecture — hiring better designers and system architects than their competitors, which is

of ten difficult and is certainly expensive — and in CAD.

Unfortunately. the perspective shown in Fig.1 is simplistic and incomplete. As
illustrated in Fig. 2. the design task involves three major components: CAD programs, sup-
port for specific design styles. and support for component libraries A lack of CAD sup-
port in any of these areas may result in a significant reduction in the competitiveness of
the designers’ final product. On the other hand, a significant proprietary advantage in any

or all of these areas will maintain a companies’ position as a force in the marketplace.

The CAD tools area may be subdivided further into three areas: tools for circuit
design. or synthesis. tools for circuit verification. and tools for design data management and
for the managing the flow of the design process. This last category of 10ols is of particular
importance for it provides the foundation on which the CAD system is build. If the

design framework is inflexible and cannot adapt 1o new tools, new design styles, and

Newton & Sangiovanni DRAFT

changes in process technology. then the design system will soon become obsolete. It is also
important in maintaining a competitive advantage in the design process since an open
framewark. which support the addition of locally-developed as well as commercial tools,
can be used to provide a proprietary difference between one system and a competitar's sys-

tem. For that reason, this impartant area is reviewed in detail in the following section.

As mentioned earlier, since design verification has received a great deal of attention
in the past, most of the techniques and tools are relatively mature. The major research
issues in the verification area concern improving the performance of the tools for large
designs without sacrificing reliability of the results. The use of special-purpose hardware
and new computer architectures are playing a major role here. In addition, new algo-
rithms are being developed which exploit the properties of large circuits. such as the
repetitive use of circuit structures Many of the new techniques, while novel and requir-
ing large engineering investments to achieve their potential, are relatively easy to dupli-

cate and therefare cannot provide the foundation for a proprietary technology.

On the other hand. with a few notable exceptions, design synthesis systems for ASIC
designs are far less mature and large gains in circuit efficiency and design time are still 10
be had In addition. many of the state-of-the-art synthesis techniques involve far more
"nspiration” than "perspiration® and. as a result, can form the basis of a proprietary and
differentiating technology for ASIC design. Techniques for efficient svnthesis (svsiem
design. register-level design. logic design. placement. routing. and array compilation) will
provide a major focus for both University research and Industrial competition over the
coming years and. for that reason. they are reviewed in detail in this paper.

The second important area for differentiation is that of CAD support for design
styles. In particular, CAD support for floorplan style (gate-array. standard cell. macrocell.
elc.) and support for the design of socalled "random” logic — that portion of a design that

cannot be cast into a straightforward and efficient regular layout style. such as RAM,

Newton & Sangiovanni DRAFT

10

ROM or datapath. Since designers are finding improved circuit design styles and layout
styles continuously, it is essential that a CAD system be able to support a variety of design

styles and adapt easily to new development in these areas

Finally, all ASIC systems require a library of primitive components, whether they -
be individual transistors, logic gates, or entire subsystems These library cells may be
invariant designs, such as the traditional standard cell or gate array building blocks, the
may be parameterized cells, such as those in the libraries offered by the "silicon compiler
companies”, or they may be sophisticated. module-generator-based libraries, where
different cell topologies are generated on the fly as a function of the user’s input descrip-
tion.

If a designer is to compete in the competitive ASIC marketplace of tomorrow, he
must be able to customize his CAD design environment in all three of these areas

3. THE CAD FRAMEWORK

3.1. Design Data Management

In the 1960's, data-base management was not an issue for IC design — the entire
data-base often consisted of a box of punched cards and a hand-drawn roll of mylar that
the designer carried with him. In the early and mid 1970'. as circuit complexity
increased, proprietary and tool-dependent data formats were developed lo represent partic-
ular classes of design data. such as mask layout data(eg. [xymask][siream]) and transistor
or gate-level netlist descriptions(e.g. [tegas)Ispice]). Since most CAD programs were
developed independent of one another and had their own input formats. coupling them
together to form an integrated system for 1C design involved writling translators to and
from each program. In the worst case. for N programs, (N —1)N translatars would be
needed. as illustrated in Figure 3.1(a). However. the CAD tools were evolving and their

input formats were changing alang with them. As a result, it was often necessary to

Newton & Sangiovanni DRAFT

11

keep a family of translators for each program. with each translator corresponding to a
different version of the input data format. Maintaining such a family of translators soon
became a CAD manager’s nightmare! The number of translators can be reduced to a
worst-case of 2N by choosing a common, central format and translating to and from that
format. as shown in Figure 3.1(b). A number of def acto standard formats evolved in the
late 1970s to meet the need for a common format and different companies standardized
internally on one format for each class of data. In the mid and late 1970’s, 2 number of
public-domain standard formats were adopted and the most successful examples are the
CIF (Caltech Intermediate Form Ymé&c] for mask-level layout descriptions and SDL (Stan-
ford Design Language)sdl] for gate-level netlist descriptions. While such formats provide
a consistent way of storing the design data, there is no suppart for managing the data —
Which copy is the latest version? Has the layout been changed since the schematic
diagram was updated? If I change this cell, which cells that use it will be affected? It is
the ability to answer such queries that differentiates a true data management system from
a simple data repository.

In parallel with this work, a number of companies developed conventional database
sysiems for managing their IC design data. Often these companies were the large com-
puter or system houses who had experience with the use of database management tech-
niques for discrete digital system design. These record-oriented database management Sys-
tems (DBMS) were developed to manage IC parts inventories, part location on standard
printed circuit (PC) boards. and the connections among IC pins necessary 10 implement the
logic schematic. These lists of connections. used to guide wire-wrap or stitch-weld
machines. are generally referred w0 as netlists. While these companies found that the
application of conventional relational. network, or hierarchical database management tech-
niques was effective for structured. semi-cusiom design styles like gate-array and
standard-cell. these approaches were not successful for custom design styles or in situa-

tions where the underlying process technology and design siyle was evolving rapidly[4.5]

Newton & Sangiovanni DRAFT

12

However, the same rapid increases in camplexity that makes the use of conventional
database management techniques difficult has made the need for a unified data manage-
ment system critical, especially for full-custom or structured-custom design styles. No
longer is the entire design process the responsibility of a small, tight-knit group but rather -
teams of system designers, logic designers, circuit designers, and layout technicians must
all work together and share the vast amount of data representing an modern 1C-based sys-

tem.

The representations of IC design data, such as mask layout, schematic diagrams, docu-
mentation, simulator input and output, are quite diverse and new representations are
being developed continuously. This evalution requires a flexible data management system
which can adapt readily to mew design methods. The use of conventional database
management technology in this area bas met with limited succes{4.5] The major limita-
tions here are related to problems specific to engineering applications, while todays data
base technology bas often evolved from the business area. While specific differences
between the needs of the business world and the needs of IC designers can be used to
illustrate the problems here, simply solving these problems may not be sufficient. Rather.
a completely different approach to the problem is necessary. These systems also exhibit
low efficiency compared with the special-purpose solutions that have often been developed
in-house. The requirements of a dala managemenl system for custom design include:
access methods for storing and retrieving geometrical data, multiple versions and design
alternatives. back-out of nested transactions, support for workstation and network-based
transactions, procedural attachment. and near-optimal performance with relatively cheap
bhardware.

An analogy can be used 1o explain where conventional dalabase management fails

for custom IC design. Many researchers have noted a strong similarity between the cus-

tom IC design process and writing computer programs — mask layout is akin to a binary

»

Newton & Sangiovanni DRAFT

13

image. symbolic layout is analogous to assembly code, and gates or modules are compared
with lines of code in a high-level language. The sorts or operations the programmer per-
forms on code, the JC designer would like to be able to perform on the IC design data. In
fact, it is from such an analogy that the terms silicon compiler and silicon assembler
evolved Taking the analogy a step further, it is worth noting that programmers do not
store their code in conventional DMBS systems. Rather, they have used conventional file
systems (nowadays. of ten organized hierarchically) with tools to aid management of their
code. including source-code control systems (eg. [SOCS]) and dependency management
tools (e.g. [make]). In fact. these tools add to the programming envircnment many of the
capabilities provided by modern database management systems. Over the past few years, a
number of IC design data management systems have been developed based on this model

[squid] and have been used effectively for custom IC design.

In recent years, the notion of procedural circuit design[14-16] and the rule-based
expert system technology have emerged as key components in the design process. These
lechniques, coupled with the ever-moving boundary between entire systems. printed-
circuit boards. and chips. have broadened the requirements for an integrated design sys-
tem. What is needed to support this work is a flexible design and programming environ-
ment that allows a variety of approaches 10 design 10 coexist and permits system-level.
logic-level. and circuit-level designers, as well as CAD algorithm developers 1o work
together in a single. unified environment. The keys to such a system are common levels of
abstraction and standard interfaces among them. as well as a powerful set of synthesis
and verification 100ls which form the basis on which further research is carried out. Each
object in such a sysiem may be described by data. such as its mask layvout. by a local pro-
cedure. such as a parameterized cell, by generic synthesis tools. such as a channel router or

a placement program. or by a combination of all of these techniques.

Newton & Sangiovanni DRAFT

14

As software systems continue to grow in size and complexity, programmers have
turned to object-oriented approaches to code development and support
(eglfiavorsIsmallTalkIloops]). The next generation of workstations, with an crder of
magnitude increase in performance at the desktop for comparable price to workstations of -
today. will be a key factor in making such approaches practical and affordable outside the
research laboratory. In an analogous way, IC designers are beginning to develop and use
procedural descriptions of design components, akin 1o the objects in many of these
languages. In addition, the database management community is directing its attention to
the management of object-based descriptions of systems. From an IC design point of view,
these three technologies will converge in the next generation of data management and
programming systems for IC design. The interfaces to these systems will be indistinguish-

able from that of an object-oriented, message-based programming environment.

Unfortunately. it is unlikely that a standard, object-based data management interface
will be developed in the near future. There is still considerable research required to fully
understand the issues involved before a suitable standard can be developed. In addition.
competitive market pressures will continue to keep such interfaces proprietary. However,
there is a need to move data from one design system 1o another. The design data
represents the "life blood” of an IC design company. If a particular design tool does not
function correctly under certain conditions. or a workstation or mainframe computer fails,
the problem can generally be overcome and work can proceed. However. if the design
data were 10 be lost in the middle of a large design project, the cost could be astronomical.
Not only would the investment in design effort be lost 10 that point but such a situation
would also cost valuable time and a market window might be missed. This is one reason
why most IC design companies have resisted trusting all of their data management tasks
1o a single vendor, particularly if it is not possible to archive all of the data in a non-
proprietary format. In addition. once a company has committed their data to a particular

vendor's system, they are "locked in" 10 that vendor unless there is a way of migrating

Newton & Sangiovanni DRAFT

15

the data to another system.

Another need for data transfer arises in situations where more than one design sys-
tem or design site is involved For ASIC design, schematic capture and simulation may
take place on a low-cost, customer operated workstation. while the actual silicon imple-

mentation of the design occurs at the ASIC vendor's plant.

To meet these and other needs. standard, textual interchange formats are being
developed for IC design data. In some cases the definition has focussed on the data neces-
sary to support a particular design style. For example. the EDIF(Electronic Design Inter-
change Format Yedif]. has been developed by a broad base of semiconductar manufacturers,
CAD workstation vendors, and system houses to address the needs of ASIC-based system
development. In other cases, a broader charter is being attempted. such as the efforts to
standardize hardware description languages and behavioral descriptions of systems The
VHDL(VHSIC Hardware Description Languagevhdl] and HSL-FX[hs]fx] activities are the

most aclive in this area today.

In summary. we believe that true open access 10 design data is an essential first step
in the development of a data management framework. Such access must occur at two
levels — an object-oriented. programming interface to all data in the database, and a non-
proprietary. standard textual format which reflects as much of the semantic content of

such systems as is practical.

3.2. Representations of the Design

Throughout the IC design process. a variety of different representations or views of
the design are used. These representations may reflect a particular level of abstraction.
such as the functional specification of the circuit or its mask layout. or they may reflect
the view required for a certain application, such as the information required for simula-

tion. The choice of appropriate representations for each level of the design process is a key

Newton & Sangiovanni DRAFT

16

factor in determining the effectiveness of computer aids since it is via these representa-
tions that both the structure of the design as well as specific information relating to a par-
ticular design level are expressed The design process then involves transformations
between these representations, both for design and verification. In this section a brief .
review and classification of the most common representations is presented. This

classification is used in the later sections to relate different design aids.

While the particular set of representations used in a design depends on the particular
design approach being used, the major categaries may be defined as shown in Figure 32.
These representations fall into three majar categories behaviaral, schematic, and physical.
At the behavioral or algorithmic level, functional intent of the design is described
independent of a particular implementation. In mast cases, programming languages such
as concurrent Pascal(99] or Modula 2[modula] have been used to represent the design at
this level, as well as providing a simulation capability. Languages specifically designed for

this task have also been developed{114.116-117].

Once a functional implementation strategy has been determined, a schematic view
may be generated. At its most abstract level, this schematic view consists of a chip plan,
illustrating the loose physical placement of the major components and busses. Depending
on the complexity of the system, this description may be classified as a Processor, Memory.
Switch(PMS)}-level description[pms] which describes 2 system as an interconnection of pro-
cessors, memory modules, peripherals. and switching networks, or a Register Transfer
Level(RTL) or microinstruction-level description, defining the functional relationships
between the major components of the design. A separate representation that is used for
programmable Sysiems is an Instruction Level description that describes the instructions of

the machine.

As the implementation is refined further, logic gate level and finally transistor level

schematics may be generated. While the nature of the information contained at each level

Newton & Sangiovanni DRAFT

17

is different, each mare detailed view may be considered a different level of “2ooming in"
on the implementation. With each new level of refinement more information concerned
with the detailed physical and functional implementation of the circuit is included in the
description. The final transformation consists of the generation of detailed. mask-level

geometries from a device-level schematic view.

The transition between functional and schematic descriptions, and between
schematic and mask layout, may involve the use of additional views. The two most com-
mon approaches to transforming a behavioral description to a structural, or schematic,
representation are the extraction of control-flow and/or data-flow information. The two
approaches differ in the way they derive sequencing information from the behavicral
description of the system. Over the past few years, a number of control-flow-based
languages and data-flow-based languages have been developed or adapted to meet these
needs, as described in more detail later. While CAD tools are available to help perfarm
this transformation for restricted underlying hardware architectures, it remains an area

where human creativity generally outperfarms the CAD tools.

Symbolic layout forms a bridge between a schematic view of the circuit and its
mask-level layout. A symbolic layout contains explicit connectivity information as well
as the relative placement of circuit components, such as transistors, 10 form a basic circuit
cell. cells to form a building-block, and building-blocks 10 describe the entire circuit. At
the transistor Jevel. one particular form of symbolic layout is called a stick diagram since
interconnections are represented by their centerlines and hence resemble sticks. In Figure
33. a schematic diagram. its symbolic layout. and the corresponding mask-level figures are
shown 1o illustrate the bridging role. One of the key advantages of a symbolic layout is
its ability 10 maintain explicit electrical connectivity information through to the mask
level descriptions. Not only can symbolic layout be used 1o aid the verification of the cir-

cuit. but by separating layout-sensitive cells and interconnections. computer programs can

New1ton & Sangiovanni DRAFT

18

be used to optimize the area utilization of the circuit by modifying only the noncritical

interconnections. This process is called compaction, or spacing. and is described later.
Once an appropriate set of representations for a particular design method has been

determined, important that an integrated set of computer aids. coupled with a unified ;

approach to data management, be provided to the IC designer{118]

At each level of the design process described above, these descriptions must permit
the structure of the design to be expressed in such a2 manner that it can be exploited by
the design aids. In particular, regularity and hierarchy must be exploited. For example,
regularity in the form of one- or two-dimensional arrays of similar, eg. RAM, or iterated,
e.g. ROM companents can reduce the design time since only a small number of besic cir-
cuit types need be designed by hand. The verification time is reduced also since anly cne
example of each possible spatial combination of this small number of cells need be verified
to certify the entire array. Hierarchy can aid the verification process in a similar manner.
The components of a circuit block, such as the logic gates used to implement an
arithmetic-logic unit, need only be checked in detail once. When the composition of these
cells is checked, only the relationships berween the cells need be verified. A detailed check
of the internals of the cells is not necessary. If these cells are used a number of times,
this process can provide substantial savings in computer time. Circuit structure can also
be exploited in other areas, such as simulation, circuit synthesis, and testing. as described in

the remaining sections of the paper.

3.3. User Interface

Since early CAD 1ools were developed in isolation and often for batch, punched-card
environments, diverse card-image-oriented data entry and card-image or line-printer-
oriented data output formats evolved. For mask artwork entry. a digitizing table and

puck were in common use until only a few years ago. These systems have been displaced

Newton & Sangiovanni DRAFT

19

by interactive graphicsentry stations [calmaJapplicanJcv] and significant improvements
in layout productivity were reparted using these systems. However, since these systems
Wwere very expensive costing over $130.000 per station. they were only used by experts
trained for fast layout entry and were kept busy around the clock. Noone would think of
using one of these stations to write a memo and only occasicnally are they used for enter-

ing a schematic diagram. Separate, low-cost entry stations were used for these tasks.

Over the past five years, the advent of low-cost. high-resolution bit-mapped graphics.
terminals and workstations bas altered the economics of user interface dramatically.
Low-cost artwork entry systemdkiclcaesarImagic] and schematic entry systems have
evolved 10 compete with the more expensive systems and it bas become cost-effective 10
bave such capability at each engineer’s desk. In the more advanced CAD environments,
general-purpose computing functions such as computer mail and networked file systems
are also integrated with the CAD interfaces In most cases, the user interface is similar to
that developed a1 Xerox PARC in the early 1970'dparc] and as embodied in the Apple
Macintosh and Lisa families of personal computers — separate windows for each applica-
tion, pop-up or pull-down menu-based command selection. and bit-mapped grapbics inter-
faces to most tools. In the most recently announced systems, the command syntax is also
common for all tools from schematic ediling and mask layout to testing and report

preparation. A typical screen from such a system is shown in Figure 34.

However. from a framework point of view, it important that the user interface be
exposed 1o the CAD developer for the addition of new 1ools. Ideally. in a consistent
objeci-oriented environment. the user-interface (windows. menus. menu selections. etc.)
would be treated as objects in the same environment as the data management system.
With the exception of some experimental. in-house sysiems. there are no systems available

today that provide such a uniform interface for the 100l builder or CAD system developer.

Newton & Sangiovanni DRAFT

20

4. VERIFICATION

4.1. Introduction

To shorten the design cycle and to decrease design costs, it is crucial to eliminate as
many errors as possible before manufacturing an integrated circuit. Verification compares
the design at a certain level of the hierarchy, eg. circuit, logic or structural level, with a

set of specifications identif ying passible inconsistencies between specifications and design.

Verification tools have been the first CAD tools to be developed and are probably the
most used tools for the production of integrated circuits There are several different kinds
of verification tools. We classify them as structural verifi cation tools, simulation tools,

perf ormance verifi cation tools, and logic verifi cation tools.

Structural verification is the task of verif ying that the structure of a design — the
arrangement of mask-layout shapes, the connections among those shapes or among the
components of a design — satify a particular set of rules For structural verification, the
behavior of the components of the design is not considered. only there spatial relationships

and connectivity.

Simulation has replaced bread-boarding for the functional verification of integrated
circuits since the late 1960s. Components of the design and their interconnections are
represented by mathematical models of different complexity according 1o the level of
accuracy desired and 1o the representation available for the design at a particular stage of
the design process. Then, input patterns are presented 10 the mathematical models and the
corresponding outputs are obtained by solving sets of equations. These equations can be
verv complex, such a pariial differential equations for process simulation, or rather sim-
ple. such as Boolean equations for register transfer level simulation. The outputs are then

compared 10 the expected outputs.

Newton & Sangiovanni DRAFT

21

While simulation has been used successfully for the verification of large circuits, it
cannot guarantee that certain timing specifications are me1 for all possible input combina-
tions unless all such combinations are tried - an often impractical proposition. Perfor-
mance verification techniques aim at the determination of the critical delays in a circuit

independent of the input patterns.

Logic verification tools are also input pattern independent and verify that two design
descriptions at gate or structural level and functional level are formally equivalent. In
general, these techniques are much more expensive than simulation but their use increases
the level of confidence in the design and are therefore mare and more important as the

complexity of IC design grows.

4.2. Structural Verification

Structural verification is subdivided into three areas: layour-rule checking(LRC).
where mask geometries are verified to check if they satisfy a set of spacing, sizing and
enclosure rules, electrical rule checking(ERC). where the circuit schematic is verified to
find electrical errors due 10 wrong connections of the devices, and connectivity verifi cation
systems(CVS). where a netlist description extracted from the layout is compared against
the netlist description extracied from an alternate description. such as the schematic
diagram.

For custom and structured custom design styles, structural verification has made pos-
sible a substantial reduction in the design time needed to obtain functionally correct
circuitglattin]. However, structural verification alone cannot provide a guarantee that the

design meets necessary performance specifications.

For design styles where the circuit is constructed automatically from pre-
characterized and verified cells using computer programs. such as the standard cell and

gate-array design styles, or where large areas of the chip are constructed automatically

Newton & Sangiovanni DRAFT

22

using module generators, these techniques are used more as a final verification of the out-
put of the CAD synthesis tools than as an active part of the iterative design process itself.
For example, a design rule checker may be invoked after an automatic place-and-route
system and the following symbolic spacing system have completed a layout, to verify that ‘
all the intercannections are properly spaced and that all the companents of the d.esign
have been placed o that the design rules are satisfied In our own experience with syn-
thesis tools, we have found that a verification step after the synthesis step often detects
obscure bugs that would have been very difficult to find otherwise. In addition. in Sys-
tems where the user is permitted to modify the output of the synthesis system (for
engineering changes, or "green wires", or to improve the quality of the final output), a

verification step is not only useful but essential.

4.2.1. Mask-Level Layout Verification

In some design methods, such as full custom or structured custom, the mask
geometries corresponding 1o the devices are entered manually by the designer. Physical
layout rules or design rules specify the the legal or illegal relationships among the
polygons used in the IC mask-making and fabrication process to implement the final cir-
cuit. These rules account for necessary electrical separation of different components and
signals as well as for imperfections in the mask preparation and manufacturing processes.
If a designer enters the geometries of the masks such that they satisfy all layout rules,
such as minimum spacing minimum size, and minimum enclosure constraints, then the
distortions occurring in the translation from the original drawings 1o the actual geometries

in silicon should not reduce the yield of the design significantly.

Industrial rule-sets can be very complex. especially when the shapes of geometries
are not restricted. In addition, electrical considerations may add to the complexity of the

rules. For example. capacitive coupling between lines requires that long. parallel lines be

Newton & Sangiovanni DRAFT

23

spaced more conservatively than short parallel runs. For high-perfarmance circuits, as the
sizes of components continues to decrease, the importance of parasitic effects such as capa-
citance, resistance. and inductance is increasing and adding complexity to the electrical

aspects of the rules

In the early days of ICs. layout rules were verified by hand-checking the Mylar
masks or the layout plots obtained after digitizing the design. When the number of circuit
components was small, this procedure was feasible, but as the size of IC designs increased
the time required for manual checking increased. along with the probability of missing an
errar. In the mid-1970’s. computer programs for automatically checking layout rules
began to find widespread use[ROS74]JMITC74] YAM74]. 1t is necessary that all the viola-
tions be reported by a Layout-Rule Check (LRC) program: missing even a single a rule
may affect significantly the yield and the performance of a circuit. Often, the types of
rules required to check a new technology are more advanced than the rule-specification
language can handle. For example. if the rule involves specific edges of a figure while the
rule-language only permits specification in terms of entire figures. the user must either
omit the rule. and run a risk of a missed error. or specify a more conservative rule in
terms of figures, in which case the LRC program will probably report many "false errors”
— situations the rule specifies a~ being in error which are actually not errors — as well as
any real errors that may occur. In addition. LRC programs must be flexible enough 10 deal

with different technologies (e.g. NMOS. CMOS. bipolar) and with different processes.

Because of the size of 1C designs today, a complete layout rule check requires that
millions of polygons must be inspected with several rules each. The running time of a
batch LRC program is often of the order of days on a super minicomputer or mainframe.
While early algorithms used for checking layout rules often showed O(N !$) perfor-
mance. where N is the number of figures on the layer being checked. over the past

decade researchers (e.g[BAI76JBENS0]) bave been able 10 reduce the expecied run time 10

Newton & Sangiovanni DRAFT

24

almost linear in the number of mask shapes. Once the analysis has been performed, the
errors have been reported, and the false errors have been discounted, the true errors must
be corrected. Fixing such layout rule violations is an expensive process in a batch check-
ing environment because a layout rule check must be performed every time the layout is .

modified to verify that no new errors have been introduced.

LRC programs have been developed in house by large merchant and captive semicon-
ductor companies such as INTEL{WAG75). AT&T Bell Laborateried{MITC74] Hitachi[??]
and IBM[??]. and by vendors such as Calma, NCA, Phoenix Data Systems, Metheus, ECAD
and SDA Systems. These programs can verify complex design with complicated layout
rules. Some offer the users a language with which new layout rules can be added rather
easily[SCH85). Over the past few years, in conjunction with VLSI design course{ MEA81],
several Universities have developed LRC programs which are based on the Mead and Con-
way simplified lambda-based rules. Because the design styles used often require Manhat-
tan geometries (layouts comprised of rectangles only, with their edges aligned with the X
and Y axes, akin to the organization of streets in down-town Manhattan) only and do not

consider conditional rules, these programs are relatively simple and very fast.

A number of new approaches to LRC have emerged from this activity and have
found application in industrial products as well. For example. the concept of hierarchical
[LANS3] and incremenzal [KICSOICAESOIMCCS3IOUS85] LRC have been explored over
the past few years and have been implemented in industrial systems{SCH85] In incre-
mental approaches, a background process checks the layout rules in the vicinity of each
figure as it is added to the layout. Since manual layout is a slow process relative 1o the
computing speed of a modern workstation. this is an effective way of using machine
cycles that might otherwise have been wasted. 11 also permits errors 10 be corrected and
rechecked in a tight, local loop so that the number of expensive. batch-mode checks can

be reduced or even eliminated completely. interactively. However, incremental LRC

Newton & Sangiovanni DRAFT

25

must be applied so that temparary LRC violations consciously introduced by the designer
&s an intermediate slate are not continuously reported, disturbing the editing session. This
problem is handled using one of several techniques One approach is to maintain a file of
layout rule violations, constantly updated in the background. that can be graphically
displayed at the user’s request. Another is to verify geametries only at the user's request.

avoiding checks on regions which are not completed by the designer[KICB3JCAES3]

Hierarchical LRC takes advantage of the fact that cells are often used mare than
once in a large design. Once the insides of a cell have been checked, the cell is marked as
"done” and then for each use. or instance. of the cell only the local context of the cell
need be checked In fact, it is not the hierarchical property of the design that really
accounts for the savings but rather the repetition of identical cells or collections of figures.
As ICs increase in size, the complexity of the design is often managed by increasing the
regularity[LAT79)] or repetition of cells in the circuit so that tools which exploit this fact
of ten show large performance gains. In a modern. symbolic design system, where cells are
often parameterized and many different variations can be created form the same master
cell. or where a spacing system may adjust each cell diff erently to meet external con-

Straints such as cell pitch, the advantage of hierarchical LRC is quickly lost[SHA8S].

The techniques used by LRC systems can be classified into three calegories. region-
operation-based. raster-based. and corner-based. An excellent review of these techniques

can be found in [ARNSS].

A large number of LRC systems use variations of the region-operation approach. In
this approach. layout rules are expressed as a sequence of selection operations. isolating
regions to which the rules apply. followed by a check. More complicated rules may
require dozens of operations. Boolean operations such as AN, OR. AND-NOT. and sizing
operations such as GROW and SHRINK. are implemented 1o identify the regions and to

perform the checks. Most of these LRC systems represent the regions in terms of their

Newton & Sangiovanni DRAFT

26

edges and the operations are usually specified in terms of edges Scan-line algorithms are
generally used 1o process effectively massive number of edges [BEN. LAU]

Raster-based approaches represent the design in terms of a raster grid. where each of
the raster pixels is labeled with the mask layers present in that location. The amount of -
data required by this approach is obviously very large, much larger than in the previous
approach. However, some savings can be achieved by using hierarchical starage schemes
where contiguous regions containing the same type of pixel are treated as a single data
object[??]. The verification can then be carried out with very simple algarithms. Because
of the uniform representation of the data that is provided by this approach. the raster
representation supports the use of special-purpose hardware in a straight-forward way.
Several hardware accelerators for raster-based LRC have been proposed but no one has
been used in production at this time. While this approach is certainly interesting., much

work remains to make it practical.

The corner-based approach uses pattern-directed rule application [ARN82] In this
respect. it can be considered as an implementation of a rule-based expert system. Patterns
at each corner of the geometries determine which rules to apply and which tolerances are
to be checked. Present implementations of corner-based LRC, such as Lyra and Leo
[ARNBS]. are limited to Manhattan or 45 degree angles and cannot handle wide-region
operations needed to check conditional rules without some extensions. A rule-based
approach has also been applied successfully using an edge-based represeniation in the

Magic system{TAY84).

Newton & Sangiovanni DRAFT

27

4.2.3. Extraction and Electrical Rule Checking

Once the mask patterns satisfy the physical layout rules, it is necessary to verify
that they will actually implement a working circuit. The first step in this process is to
recreate a netlist description of the circuit from the mask pattern data. This process is
called extraction. Since the only information present in the mask layout data is the rela-
tive placement of shapes on different mask layers mask-level operations must be per-
formed to recognize individual components, such as transistors, capacitors. and nets For
example. in an NMOS technology. a transistor may be formed where figures on the layers
poly and diffusion overlap one another. So a rule for recognizing a transistor might be

expressed as.
(define transistor (and poly diffusion)))

where a transistar is defined as that region where the logical and (intersection) of figures
on the poly layer and the diffusion is not empty. Of course, in real systems the rules are
significanuy more complicated with many exception conditions. Since the types of opera-
tions necessary 1o recognize components from the layout are very similar to those used for
checking the layout rules, it is not surprising that in most cases a LRC program forms the
basis of an extraction program. The extraction program also determines parameter values
for simulation. such as the sizes of the transistors extracted as well as related parasitic
capacitance values. Depending on the design styles supporied by the implementors of the
extraction tool. the program may only extract gross components such as transistors.
lumped parasitic resistance. and parasitic capacitance from interconnect to ground[FIT83),
or it may perform a very detailed extraction including interlayer and inter-figure parasitic
capacitance calculations [gummel] and even solve two-dimensional field equations where

necessary{mitClue]

Like LRC, extraction can take many hours of computer time 1o perform if and accu-

rate analysis of an entire chip is required. In addition. if coupling capacitances between

Newton & Sangiovanni DRAFT

28

parallel lines are extracted and RC-netwarks are used 10 represent interconnections, the
amount of output data generated can be massive. While many of the industrially-
developed extractors are used to obtain detailed parasitic information, those in general use
in University design systems tend 1o favor speed rather than detailed analysis In the
most common University ;:lw'gn styles for VLSI circuits, the layout rules and electrical
requirements are constrained to reduce the likelihood of parasitic components altering the
function of the circuit. Recently, the concepts of hierarchical and incremental extraction
has been developed which makes it possible to verify modifications to design interactively
without sacrificing the level of verification that is needed in quality IC designs [SCO85).

The extracted netlist provides the basis for a number of additional checks. In partic-
ular, connectivity verification, as described in the next section, and electrical rules check-
ing. Electrical rules checking programs evolved from simple implementations that
searched the extracted netlist for ridiculously large or small transistors or direct short-
circuits among the power supply lines, clock lines, and the ground line 1o programs which
check for more complex relationships. Such rules include searching a local area of a cir-
cuit to be sure transistors related 10 one another in an electrical sense all have the correct
Sizes 10 ensure correct circuit operation. In general, however, new rules were added to
these programs by adding additional "hard-wired” procedures or data structures
Recently. a new breed of electrical rule checking programs has evolved based on the use
of rule-based expert systems{critter]dialoglrubicclcv] Here, the rule-based system is used
as a convenient way of expressing the required relationships among components and sig-
nals. The fasit pattern matching facility of such systems is then used to recognize specific
arrangements of components and apply the rules 10 those arrangements. The rule-based
approach provides a convenient programming environment for adding additional, and

higher-level. checks.

Newton & Sangiovanni DRAFT

29

4.2.4. Connectivity Verification

If a transistor-level netlist description of a circuit is available. either from
manually-generated simulator input data or from a schematic entry system, the pattern of
interconnections among those components and the pattern of intercannections obtained
from the extracted netlist can be compared. This process is called connectivity verifi cation
and connectivity verification systems (CVS) bave been used over the past decade to
improve dramatically the probability of functionally-correct silicon on the first fabrica-

tion run.

Connectivity verification was first used at the board level, for comparing a logic
schematic input with a placed and routed board-level implementation of the

circuitfapples)].

In general. the comparison involves a one-to-one correspondence between the circuit
elements, such as transistors, and the nets in the two circuits, not a functional
equivalence. Each circuit is represented by a graph. where the nodes in the graph
represent either the circuit elementswombat] or the netslgeminil. and the nets or circuit
elements. respectively, are represented by the arcs in the graph. In some cases, both the
circuit elements and the nets are represented by nodes in the graph and the arcs simply
represent the connections between them. The problem of determining that the two
graphs are the same is equivalent to the graph isomorphism problem, a well known com-
binatorial optimization problem. The worst-case complexity of graph isomorphism is not
known. No algorithm has been found with running time bounded by a polynomial in the
size of the inpul. ie.. number of nodes and edges of the graph. but it has no been proven
that this problem belongs to the class of NP-complete problems. However, good heuristics
are available which can quickly detect if two graphs are isomorphic in most of the cases.
If they are not isomorphic. the programs can then isolate the subgraphs that differ in the

two netlists. This information is then provided th the user who tries 10 locate and correct

Newton & Sangiovanni DRAFT

30

the error.

There are two basic algorithms in use today for comparing two circuits signature
calculation (using element signatures as in the Wambat program [14,15] or using node sig-
natures as in the Gemini program (16]). and path tracing. Several approaches have been
described in the literature and most LRC/ERC vendors and large 1C companies bhave

developed a connectivity verifier.

- In the signature calculation approach, signatures are calculated for each element or
node in both circuits A signature is a combination of information about the element or
node and its neighbars The signature can be thought of as a hashing function. All
unique signatures in each circuit are compared and any elements or nodes with the same
signatures between circuits are marked as the same. This process is repeated until all ele-
ments are marked or no mare unique signatures can be generated. The information gained
on each iteration is fed back into the signature calculations. Almost all connectivity
verifiers can handle the straight-forward problem very efficiently with fast, heuristic
algorithms. However. most of the time in these programs is spent handling the special

cases.

There are many special cases that can degrade the performance of the basic algo-
rithms. Two such cases are terminal permuability and parallel paths. For some elements,
the terminals are logically and/or electrically equivalent and are allowed 1o permute.
The inputs 1o the basic logic gates (NAND, NOR, etc.) and the source and drain of MOSFETS are
examples of such situations. In handling terminal permutability. many connectivity
verifiers assume that they will be working with MOSFETS and "hard-wire" the fact that
sources and drains can permute; others allow the user to specifly how terminals on arbi-
trary elements can permute, but some do this very inefficiently and others do not always

work.

Newton & Sangiovanni DRAFT

31

Identical or nearly-identical paralle] paths (as in bit-slice circuits and RAMs) also
present a problem to current connectivity verifiers If the paths are identical, the algo-
rithms currently used can not distinguish between the paths and may not be able to han-
dle them. In that case, the program may make a randem binding of two elements from
the possible candidates and proceed. If it discovers later that the choice was erroneous, it
must undo the binding and choose another one. Also. if two paths have only small
differences (as in ROMs), since only local effects are taken into account. connectivity

verifiers also may not be able to distinguish between them.

= |

43. Simulation

4.3.1. Introduction

For circuits made from discrete components, dread-boards (prototype boards with
discrete components) were used extensively to check the functional correctness of the
design as well as its performance. However. this approach does not work well for
integrated designs since the parasitics on the bread-board are quite different from those on
the IC and the thermal and electrical characteristics. as well as component matching pro-
perties of the discrete components are also quite different from their IC counterparts. For
this reason. electrical circuit simulation was one of the first CAD tools 10 be developed for
IC design and has completely replaced bread-boarding for analog and digital cell design.

For large digital designs. breadboards are still used for sof tware development.

Many different forms of simulation can be used for the verification of large digial
integrated circuit designs at the various stages of the design process. They may be
classified as Belavioral (also called algorithmic or functional) simulators, Register
Transfer Level (RTL)simulators, Gate Level Logic simulators. timing simulators, circul

simulators. device simulators. and process simulators.

Newton & Sangiovanni DRAFT

32

Bebavioral simulators [S1] are used at the initial design phase to verify the algo-
rithms of the digital system 10 be implemented. Not even a general structure of the design
implementation is necessary at this stage. Behavioral simulation might be used to verify

the communication protocols in a multiprocessor design, for example.

Once the algorithms have been verified, a potential implementation structure is
chosen. For example, a microprocessor, some memory, and a special-purpose input-output
module may be chosen to implement the handshaking protocol mentioned above. An RTL
simulator can be used to verify the design at this level. Only crude timing models may be
available, since the exact circuit parasitics and other implementation details are not yet
known. Useful information relating to congestion and hardware/firmware tradeoffs can
be obtained from this level of analysis A variety of RTL languages and associated simula-

tars have been described in the literature [29].

Depending on the design methodology and certain technology issues, a gate-level
design may be undertaken. where each of the RTL modules is further partitioned into
low-level logic building blocks, or gates A logic simulator may then be used to verify the
design at this level. Sophisticaled delay models may be introduced and testability analyses

performed.

From the gate level. transistors and associated interconnections are generated 1o
implement the design as an integrated circuit. Accurate electrical analysis can be per-
formed for small parts of this design using a circuit analysis program [1][54] or larger
blocks may be analyzed in less detail using a timing simulator [9-10][13). Once the
integrated circuit layout is complete. accurate circuit parameters, such as parasitic capaci-
tance values and transistor characteristics, may be extracted and used at the electrical
level. These analyses may then be used 10 improve the delay models at both the gate and

RTL levels 1o verify the circuit design using accurate timing data.

Newton & Sangiovanni DRAFT

33

Device simulators are used to verify whether the device characteristics correspond-

ing 10 a particular sequence of processing steps are close 10 a ideal device characteristics.

Finally, the design of a new process or the tuning of an exiting process is aided by
process simulators. where the control parameters of the process, such as furnace tempera-
ture and initial impurity doping densities, are the input variables and physical informa-

tion such as impurity profiles are the outputs of the simulator.

A number of simulators have been developed recently which span a range of these
levels in the simulation hierarchy. These simulators are called mixed level simulators
{40-42] and allow different parts of a circuit to be described at different levels of abstrac-
tion. Not only does this approach permit a smooth transition between different levels of
simulation (since the same simulator and associated input processor is used) but it allows
the designer to take advantage of the time and memory savings available from higher-

level descriptions of parts of the circuit.

Excellent tools, either developed in house by IC manufacturer or by tool vendors, are
available at all levels of the hierarchy. The parameters of ten used to judge the quality of
a simulation tool are accuracy. speed. and flexibility. By flexibility. we mean the range of
analyses supported by the program (time-domain transient, small-signal frequency-domain
analysis. liming verification. fault simulation. eic.) and the range and quality of the com-
ponent models it provides (both N and P channel MOSFETS. bipolar transistors. bi-
directional switches, built-in registers, etc.). Because of the increasing size of 1C designs.
even the fastest simulators are not able to perform simulation as extensively as desired by
today’s designers. For this reason, several hardware accelerators have been developed for
simulation and new algorithms are being explored to exploit multi-processor architectures
(see the window in page for a detailed discussion of the use of multi-processors for simu-

lation).

Newton & Sangiovanni DRAFT

34

43.2. Process and Device Simulation

The electrical characteristics of IC devices depend very strongly on the manufactur-
ing process. This process continues to become mare complex and more sophisticated and it
is often difficult to relate specific processing steps with the overall device characteristics
obtained after manufacture. "Process engineers are responsible for the design of an IC
manufacturing process. They must define a sequence of processing steps, including mask-
ing and pattern expasure, implantation, axidation, and etching, and they must specify and
control parameters for each of these steps, including time, temperatures, and implant
dosage. Their goal is to design a process which can produce reliably devices with well-

defined electrical properties in a manufacturing environment.

The design of the manufacturing process could be carried out by trial and error.
monitoring the electrical characteristics of test devices as the parameters of the process are
varied However, not only is such a process time-consuming and expensive, but with the
high cost of today’s IC manufacturing lines, it is important to design and test the process
before it is actually implemented. In addition, while a process is being implemented. it is
important that circuit designers have accurate device models so that they can develop
their first circuits in parallel with the process development phase. Process simulation is

used as a convenient tool in the design and refinement of processing sequences.

Process simulation has been a very active area of research for the past few years and
has become an indispensable tool for industry. A key aspect of process simulation is pro-

cess modeling. An excellent review of this field can be found in [DUTS1].

Two approaches have been followed to model accurately the processing of IC devices:
the analytical approach and the numerical approach. The trade-offs involved in the selec-
tion of one of the approaches are accuracy and compute time. In particular, analytical
solutions can be given under simplifying assumptions or from a functional fit from meas-

ured data. Hence, these approaches tend to be valid only over a limited range of process-

Newton & Sangiovanni DRAFT

35

ing conditions and useful for tuning an existing process more than for a complete design
of a new process. On the other hand. the complexity of computation is small and infor-
mation such as impurity profiles. can be obtained at the expense of function evaluations
which do not involve the solution of complicated nonlinear equations. At the other end
of the spectrum, numerical techniques can be used to obtain the necessary information by
solving set of nonlinear partial differential equations describing the processing steps in
detail. As such they can be very accurate, but these computational techniques are time
consuming since they involve a double discretization process: in both space and time.
FABRICS[STR]. developed at Carnegie-Mellon University. is an example of process simula-
tor using analytical models while SUPREMDUT), developed at Stanford, is an example of
a process simulator using the numerical approach. While the process simulatars developed
at Sunford focus on the oxidation. implantation. and diffusion steps, SAMPLE[NEU],
developed at Berkeley. models the pbotolithographic and etching aspects of the manufac-
turing process. Simulators currently used in industry are based on numerical techniques.

IBM and AT&T Bell Labs have been technical leaders in this field.

In general. IC fabrication processes are affected by random disturbances, such crystal
imperfections and dust. which affect greatly the yield of IC circuits. Over the past few
years, techniques for designing processes, devices and circuits 10 maximize vield have
become a necessitly to provide economically sound products Unfortunately, accurate
numerical techniques such as the ones used by SUPREM. cannot be used 1o predict yield if
a statistical cbaracterization of a process is sought since today's computers are not power-
ful enough. However. programs like FABRICS can be used to provide a statistical charac-
terizations of processes. given the improved speed with which physical information can be

generated from processing step information in this type of program.

The ultimate goal of process design is the production of devices with given electrical

characteristics. However. process simulation produces as output impurity profiles. The

Newton & Sangiovanni DRAFT

36

necessary next step is to map this physical information onto device parameters that
describe the electrical behaviar of the devices resulting from the process This step is
accomplished by programs called device simulators. Approaches to device simulation are
similar, from a mathematical point of view, to the ones used in process simulation. -
Numerical techniques inv;ﬂving the solution of partial differential equations, such as
Poisson’s Equation and the Continuity Equation, are used by programs such as SEDAN
developed at Stanford DUT] and MINIMOS developed at the University of Vienna[SEL]
Analytical techniques are used by FABRICSIINAS84], a combined process and device
simulator, to obtain device parameters for a variety of technologies and transistar models

which are used in circuit simulatars such as SPICE2[NAG75).

Recently, attention has been devoted to the use of special-purpose hardware to
reduce the cost of numerical process and device simulation. In the past. only one-
dimensional effects were modeled by these tools. Recently, two dimensional process and
device simulation has been possible. Three-dimensional effects are now been addressed 1o
represent the processing steps in their full complexity. Japanese companies, in particular,

are devoting significant resources 1o this problem.

For the analytical approach to process and device simulation, more attention is being
paid 1o the development of accurate analytical formulae and of optimization techniques
which can be used 10 design a manufacturing process to reduce the time needed 1o obtain a

satisfactory design.

Newton & Sangiovanni DRAFT

37

43.2. Circuit Simulation and Modeling

As mentioned earlier, circuil simulation was one of the earliest tools applied to the
design and verification of 1C{{??]. since “bread-boards’ prototypes of these circuits could not
adequately represent the parasitic or thermal effects necessary for prediction of circuit
performance. When accurate circuit models are available, circuit simulators provide pre-
cise electrical information. such as frequency response, time-domain waveforms, and sensi-
tivity information. about the circuit under analysis The majority of circuit simulators
currently in use contain models for a wide range of active devices, including bipolar junc-
tion transistors, MOSFETS, JFETs, MESFETs, and diodes, and hence are largely independent
of technology. For this reason, these programs must employ general algorithms for the
solution of the set of coupled, nonlinear, ordinary differential equations which describe
the integrated circuit and hence cannot exploit the épecia.l characteristics of a particular

technology.

The most used general purpose circuit simulator is SPICE, developed at the Univer-
sity of California. Berkeley. This program has been adapted for use in many IC design
companies, e.g. ADVICE used at AT&T Bell Labs, TI-SPICE used at Texas Instruments,
SLICE developed at Harris. The program ASTAP has also been widely used. ASTAP is
based on different algorithms than SPICE and has additional capabilities such as user-
defined models and statistical analysis. In addition. commercial versions of SPICE. SCEP-

TRE. and the ASPEC program are used in industry.

Without models whose accuracy is well matched to the expected accuracy of a simu-
lation. the results of the simulation may not reflect the performance of the circuit under
analysis. Recent work on modeling for MOS circuit simulation[??] has focussed on the
development of both analytic[??] and semi-empirical[??] models for MOS transistors which
predict the characteristics of the devices accurately without requiring large amounts of

computer time. With increasingly small geometries on ICs. signal delays and signal degra-

Newton & Sangiovanni DRAFT

38

dation caused by interconnect can dominate circuit operation. For this reason, explicit
models for interconnect are necessary for accurate simulation and interconnect modelling
has returned as an active area of research{??]. The parameters of such models may be pro-
vided by the designer interactively or by design programs directly, as described in Section

422.

Since circuit simulators have been with us for almost twenty years, and because the
problems they attempt to solve are very well understood, the core algorithms used in a
modern circuit simulator are generally quite robust. However, as a consequence of their
long history, most circuit simulators are batch-oriented programs and the input to the pro-
gram consists of a textual description of the transistors and their interconnections. Nowa-
days, using a CAD workstation, an interactive graphics editor is often used to capture the

schematic diagram and provide simulator input.

Circuit simulation techniques can provide accurate waveform analysis for circuits of
building-block complexity. However, as circuit size increases the time and memory
requirements of a circuit simulation become prohibitive. On an IBM 370/168 computer,
the average cost of a SPICE{16] analysis is 6ms/device/clock/timepoint. For a 10,000 device
circuit, with 3 clocks and for an analysis of 10us at 1ns steps. the computation time
would be in excess of 20 computer days! Nevertheless, the success of circuit simulation in
design evaluation has been such that designers wish to continue to simulate large circuits

at the level of accuracy provided by this type of program.

By applying node tearing techniques{82.83] 1o the interface between cells in the cir-
cuit, inactive cells can be bypassed during the equation solution phase. However. these
techniques alone provided less than an order of magnitude speed improvement. This is not
sufficient improvement in performance to permit cost effective device-level analysis of

VLSI circuits.

Newton & Sangiovanni DRAFT

39

If simulation algorithms are tailored to specific technologies or applications substan-
tial speed improvements can be achieved Many components of digital MOS or I 2L cir-
cuits can be considered unilateral in nature. This characteristic. as well as the facts that
these families are saturating and hence accumulated voltage errors are lost at the extremes
of signal swing. and that large digital circuits are relatively inactive at the gate level, are
exploited in timing simulation. Timing simulatorg84-86] can improve simulation speed by
up to two orders of magnitude while maintaining acceptable waveform accuracy. These
savings are achieved by using node decoupling techniques in conjunction with simplified

table look-up models for nonlinear devices

Where a library of cells is used during the design, or when a group of transistars is
used to implement a common functian, such as a cell or logic gate, it is often possible to
exploit the known structure of the circuit and use a simplified representation which
maintains the essential characteristics of the cell at reduced computational expense. Such
a reduced representation is called a macromodel [67-89] and macromodels are used in both

circuit and timing-level analysis.

While timing simulators are fast, they may be inaccurate for circuits containing
tight feedback loops and large floating elements. Designers have often applied these simu-
lators 1o problems which were not well suited for this type of analysis and have obtained
incorrect answers. For this reason, converged relaxation-based circuit simulatorgl.FL82,
NEW83] were developed These programs evolved from the basic ideas of timing simula-
lors guarantee an analysis as accurate as the one provided by standard circuit simulators

such as SPICE
Two basic algorithms have been used in these simulators:

(1) Waveform Relaxation, (WR) where the system of Ordinary Differential Equations
(ODEs) representing the circuil is solved by a relaxation process at the differential

equation level. ie.. the variables which are relaxed are waveforms. This approach is

Newton & Sangiovanni DRAFT

40

used in the RELAX([LE]L 82, WHI84). TOGGLE{[??) and SWANIDULSS5] programs.

Q) Iterated Timing Analysis (ITA) where the system of differential equations is first
discretized and the resulting nonlinear algebraic system of equations is solved by the
SOR-Newton iteration. This approach is wused in the wused in the .
SPLICE[KLE$2 KLE84] and MOTIS[CHES4] programs.

Both of these techniques exploit the unilateral nature of MOS devices, the inactivity
of the circuit (latency) and the fact that node voltages and branch currents of the circuit
change in time at different. sometimes very different. rates (multirate behaviar). Savings
in running time of up to two orders of magnitude have been obtained over standard cir-
cuit simulation programs such as SPICE2. However, for circuits that contain tightly-
coupled subcircuits or where many parasitic companents are involved, the relaxation-based

approaches alone may not perform as well as standard circuit simulators.

Under these conditions, relaxation must be applied with great care to maintain the
speed advantage over standard techniques. The key idea here is 10 solve the tightly cou-
pled subxircuits with standard methods while the loosely coupled connections are dealt
with relaxation[NEW79] Most relaxation-based simulators in use today provide this capa-
bility. Automatic partitioning algorithms have been developed to partition large scale cir-

cuits into collections of tightly-coupled subcircuits [SAK85, WHIS5).

These techniques alone cannot provide the speed that is needed for the detailed
electrical analysis of VLSI circuits. Special-purpose hardware and multi-processor systems
are now being used 10 provide dramatic speed improvement for circuit simulation. The
direct methods, such as the ones used by standard circuit simulators, can certainly be
parallelized but this operation is not straight-forward at either the algorithmic or the
implementation levels due 1o the sparse, irregular nature of the circuit matricies.
Relaxation-based simulation algorithms are much easier 1o parallelize. For this reason, the

first results published in this area are related to iterated liming analysis algorithms

Newton & Sangiovanni DRAFT

41

[DEU84, DEUSS] or 10 waveform-relaxation [WHI85a, SANSS, WHIS 5b).

4.3.3. Logic and Switch Simulation

When the complexity of an integrated circuit design reaches the point where electri-
cal analysis is no longer cost effective, logic simulation may be used. Rather than dealing
with voltages and currents at signal nodes discrete logic szates are used. Only simple
Boolean operations are required to obtain the output state value of a logic gate and these
are generally the maost efficient operations available on a digital computer. Rather than
modeling the circuit at the individual transistar level, in a logic simulator transistors are
grouped into logic gazes wherever possible and a gate-level model is used. As in modern,
relaxation-based simulators. asynchronous logic simulators exploit the inactivity in the cir-
cuit to improve speed by using eveni-driven and seleaive-trace lechniques. The term
eventi-driven refers to the fact that only logic gates who= input values change are pro-
cessed and the term selective-trace refers to the technique used to find the logic gates
whose inputs have changed. Rather than checking every gate at every timepoint to deter-
mine if its inputs have changed — an expensive process if most of the gates are not chang-
ing — when an output changes, a table containing pointers 1o the gates to which this out-
put is connected is used to schedule the fanout gates for processing. As a result. the pro-
gram selectively traces paths of activity through the circuit. With selective trace analysis
and the above simplifications, asynchronous logic simulators are typically 10 to 100 times

faster than the most efficient forms of electrical analysis.

However, the major objective of simulation is accuracy and simulalors must accu-
rately predict the behaviar, both normal and abnormal, of the physical circuits they
model. It is clear that the transition from the continuous electrical domain to the discrete
logic domain will result in the loss of some circuit information. It is important, therefore.
that the circuil design methodology allow such an hierarchical simplification or logic

simulators cannot be used effectively. In most cases. once a subcircuit of the design has

New1ton & Sangiovanni DRAFT

42

been verified in detail at the electrical level, a simplified gate-level model can be used for
logic simulation. However, it still may be necessary to analyze critical paths in the net-

work at the detailed electrical level.

The tradeoff between the accuracy of logic simulation, and hence the amount of
information it can produce about circuit operation, and the computer time required to per-
form the simulations, is very important. The number of logic states used in the simulator
and their meaning, the logic delay models used, even the type of scheduling algorithms
employed. are determined by the technology in which the circuits are to be implemented,
and its associated circuit characteristics, as well as the particular design methodology being

used.

It is this wide variety of factors that has resulted in the development of such a large
number of logic simulators, almost every one addressing a different set of tradeoffs Logic
simulators have been in use for the design of digital hardware since the early 1950s [33],

and it is impossible 1o address all aspects of simulator development in this brief review.

Rather than using event-driven techniques, many of the early logic simulators were
compiled simulators [32], where the logic circuit was described in a programming language
which was compiled directly to machine code and executed. Although this approach pro-
vides a very efficient mode of simulation, no compiled simulators accurately model asyn-
chronous circuits. Compiled techniques are used, however, for higher-level Register
Transfer Level (RTL) simulation and, of course, the bottom-level models in logic simula-
tors are generally compiled. Recently. compiled simulators have been developed for the
switch-level simulation of clocked. synchronous MOS circuits where the circuit is
analyzed and switches that form distinct, combinational blocks are clustered as subcircuits
and a corresponding program fragment is generated. These fragments are compiled and
form the scheduled blocks of an event-driven simulator. An equivalent speedup can be

achieved by using a gate-extraction program which recognizes specific patterns of switches

Newton & Sangiovanni DRAFT

43

and replaces then with an equivalent gate-level representation[hpref]

The earliest use of logic simulation was for the verification of combinational logic.
Since the logic was assumed to have zero delay and logic gates were assumed to implement
ideal Boolean operations such as AND, OR and COMPLEMENT., only two states were

required: a state representing true (logic 1) and a state representing f alse (logic 0) [34].

As technologies have become more complex and the logic designer continues to
exploit the features of a particular technology. such as tri-state outputs, additional states
bave been added to logic simulation. Early simulators used "unit-delay” models for gates,
where the rise and fall times of a gate were assumed to be the same and the same as for
all other gates. While this was a reasonable approximation for TTL SSI circuits, with MSI
came the need for assignable delays for different gate types With MOS design
separately-assignable rise and fall delays were added due 1o the disparity in rise and fall
delay present in NMOS circuits. In addition, the use of wired logic where even though
two swilches may try to assert different logic vales onto a net the "stronger” switch
should win, required additional strength slates 1o be added. By adding an "unknown"
state to the simulator, efficient detection of all single-input circuit bazards can also be
accomplished[eich] Modern MOS-oriented logic simulators provide at least nine static

states for describing logic.

Even the nine-siate simulator does not adequately model the interaction between
transfer gates of different geometry. or the effect of parasitic capacitance variations on the
charge sharing across a transfer gate. These effects could be represented by a finer resolu-
tion (adding more states) or 10 accurately model this behavior timing simulation can be
used. The bidirectional nature of transfer gates can be approximated by noting all the
forcing states at the nodes of an arbitrary tree of transfer gales and tracing their fanouts
through the tree, setting all affected nodes 10 the appropriate soft state unless a conflict is

detected.

Newton & Sangiovanni DRAFT

44

4.3.4. Register and Behavior

As mentioned in Section 3, there are a number of levels of description above the
logic gate level. For each of these levels there are associated simulators. While different
description languages are described as RTL, PMS, or Behavioral, it is often the case that the
distinction is blurred in actual use. While the purpose of an RTL description is to describe |
a register-level implementation of a system, RTL descriptions are often used as input to
synthesis systems where the structural information they contain may be ignored. On the
other hand, the program structure in a behavioral or algerithmic description is often used

as an initial hardware structure for implementation.

As the design representation becomes increasingly abstract, it also tends to become
increasingly domain-specific. For example, while most designers can agree on what an
AND gate is, at the system level a signal processing engineer will refer to a "sample time,"
the microcomputer designer talks of "4-phase clocks”, and the data-driven system designer
talks about “self-limed” modules If a language selects any of these notions as its abstract
representation of time. it will often not be used in the other application areas. The only
way, therefore, to build a general behavioral language and simulator is to reduce the
domain-specific notions to their lowest common denominator and to permit individual
users 10 built libraries of domain-specific objects and operators. As a result, most
behavioral-level simulators are implemented in exisling concurrent programming
languages, such as Simula[simula), Modula-2[mod2]. or concurrent Pascalfadlibl The major
exceptions are the behavioral levels of mixed-level simulators, described in the following
section. Since in the mixed simulation environment, the behavioral descriptions must
coexist with lower-level descriptions, the behaviaral language of ten inherits many of the

characteristics of the lower level (eg. logic gate level) description formats.

Register Transfer Leve) simulators may be classified by the manner in which they

deal with time and the way in which they order the evaluation of blocks In some simu-

Newton & Sangiovanni DRAFT

45

Iators, all assignments correspond to clocked. register transfers. All logic between assign-
ments is combinatianal and tbhus can be compiled on a sequential machine after a suitable
static ordering has been determined. Such an ordering can be found using breadth-first
search of the data-flow graph that represents the logic expressions. Since the logic is com-
binational, the graph must be cycle-free. This approach leads to a very fast implementa-
tion but cannot handle hazard detection or timing within a clock cycle and can only

~

represent synchronous systems.

The other approach is to implement the simulator much more like a logic simulator.
* Use a dynamic ordering, based on the next-event approach[szgenda] (event-driven selective
trace). and schedule code modules. The modules may be those specified by the user (code
block or procedure boundaries) or may be extracted from the description between explicit
delay assignment statements. If the system supports asynchronous design, specific delay

constructs must be provided and these are used to determine locations for scheduling

Register-transfer simulators are over an order od magnitude fasier than gate-level
simulators, for the same circuit, since they deal with fewer blocks and their model of

time and signals is typically a lot coarser than in the logic case.

4.3.5. Mixed-Level

For the analysis of most large IC circuits neither electrical nor logic analysis is alone
sufficient. The detailed waveform information of an electrical analysis is required for
some parts of the circuit but an electrical analysis of the entire network would require an
excessive amount of computer resources A logic-level analysis is often sufficient for parts
of the circuit and can be performed much more efficiently than an electrical analysis.
Although timing analysis is generally much more efficient than circuit analysis there are
circuits which cannot be simulated accurately using timing analysis. such as circuit blocks

containing strong bilateral coupling between nodes. For these blocks. a detailed circuit

Newton & Sangiovanni DRAFT

46

analysis may be required.

A number of mixed level or mixed mode simulators have been developed which
combine analyses at more than one conceptual level. The SABLE system developed at
Stanford[39]. the DECSIM system developed at Digital Equipment[], the MICROSIM system
developed at Intel[??]. the HILO system{??], and the SILOS system[JEN] are among the most
successful examples of mixed-level simulators that address the high-end of the design .and
allow behavioral, RTL, and gate-level descriptions to be combined. Both the Diana pro-
gram [40] and the SPLICE program [41] allow concurrent circuit, timing and logic analyses
of different parts of the circuit. The MOTIS program [9] bas also been extended to combine
timing, logic, and RTL level analyses [42] Recently, process, device and circuit simulation
have been combined into MEDUSA, a mixed level simulator developed at Aachen[ENG]

and process and device simulation have been combined into FABRICS2[STR85]

The most difficult mixed-level simulator is the one that involves electrical and logic
levels since the representations of the signals is totally different thus making the com-
bined analysis complicated. For this reason, we focus on this type of mixed-level simula-
tion.

One approach to the design of a mixed-level simulator is to combine existing circuit,
logic. and RTL simulators via data pipes such that the three forms of analysis can be per-
formed concurrently and may pass values of circuit variables, with the appropriate
transformations, between one another via the data pipes which connect them[hughes)
While this approach is useful where the circuit contains large blocks of elements 1o be
simulated at each level, such an approach would result in a very inefficient simulation if

the the different levels of modelling and analysis were coupled tightly in the circuit.

In a tabledriven simulator[NEW81, KLE84], it is the structure of the data tables
that makes for efficient simulation. Hence a common data format has been determined

[NEW81] for all types of circuit elements and circuit nodes so that a single event

Newton & Sangiovanni DRAFT

47

scheduler can be used to process them all.

Timing analysis and circuit analysis may be coupled directly since they both use vol-
tage and impedance to model the conditions at a node and hence an additional interface is
not required. Discrete logic simulation does require an interface to and from the electrical
analysis. This interface may be achieved by implicit signal coerdons [NEW81] That is.
whenever an electrical element is connected to a logic node. and vice versa, an automatic
signal transformation is implied. Alternately, special circuit elements may be used to per-
form the transformation[DEM8140). In either case. thresholding may be used 1o convert
voliage and impedance to logic levels while logic-electrical conversion may be used for the

reverse transfarmation.

The most successful mixed-level simulators have been the ones addressing various
levels of logic simulation, from gate-level all the way up to functional level. Mixed-level
simulators involving electrical analysis have been used 10 a lesser extent by the designer
community. One of the still unresolved problems in this type of mixed-level simulation
is the partitioning of the circuit into the various levels to achieve the degree of efficiency
and accuracy desired by the designer. In most cases. the designer is called upan this
difficult decision. Some automatic partitioning approaches have been developed and are

still under study 1o cope with this problem.

Newton & Sangiovanni DRAFT

48

4.4. Performance Verification

Digital circuit design depends critically on the delay of the signals. For asynchro-
nous designs, if the timing of the signals is not carefully considered, incorrect results may
be obtained from an otherwise functionally correct design. For synchronous designs, the
longest delay among the signals from primary inputs, or latches, to latches, or primary
outputs, the critical path, determines the period of the clock and hence the speed of the
circuit.

To optimize the perfarmance of a circuit, critical paths have to be identified and
minimized In addition, paths which are non critical may be unnecessarily fast and con-
sume extra power to no avail. This optimization is becoming a more and more difficult
task as circuit size and complexity increase, but more and more necessary because of the
competition 1o build faster and faster circuits Simulation can be used, and has been used.
to identify critical paths and to optimize circuit performance. However, detecting critical
paths may involve the simulation of several thousands transistors for large ICs. Further-
more, pathological conditions may not be detected by simulation, unless particular inputs
are fed. Timing verification is a technique which aims at the determination of critical
paths without performing simulation. This technique has played a very important role in
the design of digital integrated circuit, in particular for bipolar gate-array technologies.
The first timing verifiers were built arcund 1973 by IBM and other computer companies
for the design of large high-performance computers (see [HIT82] for a description of tim-

ing analysis techniques, their history and their relevance to computer design).

Other applications of timing verification have recently come to the attention of the
designers’ community. In particular, Ousterhout at Berkeley [OUS85) and Youppi at Stan-
ford [YOU] developed timing verifiers for nMOS and CMOS technologies where design

constructs are not limited to logic gates.

Newton & Sangiovanni DRAFT

49

Most of the CAD vendors have developed timing verifiers with various degrees
of complications and power. Both gate-level and switch-level timing verification is avail-

able.

In general. timing verification programs are partitioned into two parts a path-
analysis section and a delay modeler. Most timing verifiers represent a circuit by a node-
signal flow grapbh. The path-analysis section extracts part of the circuit systematically
using the signal flow graph and transfers it to a delay modeler that computes the delay
along the path corresponding to the part extracted Tbe nodes along the path are then
labeled with the worst case delay found so far. Note that unlike simulation. timing
verification is value-independent. This means that. for example, if a changing signal
arrives 10 a NAND gate, its effect is always propagated to the output node, regardless of
the signal states at the other input terminals. In simulation. the changing signal pro-
pagates to the output of the NAND gate, if and only if the signal states at the other input

terminals support the propagation.

There are two basic approaches to timing verification, path enumeration and critical-
path analysis.

The basic difference between the two methods is that in path enumeration C2uert Kirk

all possible paths in the circunt are checked. while in critical-path analysis, the search is pruned and only the slowest paths are
detected with techniques borrowed from the PERT critical path algorithm Path enumerauon is conceptually smple, but 1t may
suffer from rather long CPU-times due to the potenually Jarge number of possible paths Even though the complexity of imple

mentauon of critical path methods 1s higher, most of the programs in use today are based on this technique

Both strength and weakness of timing verification techniques come {rom value
independence. Since not all input combinations. whose number is exponential in the
number of the inpuls. are generated. timing verification can be much faster than simula-
tion. However. since timing verification ignores specific signal values. it may report criti-

cal paths which can never occur under real operating conditions. These paths are called

Newton & Sangiovanni DRAFT

30

false paths. False paths tend to hide the real critical paths in the circuits under test. In
this case, a mechanism called case analysis, [MCW80] has been used to exclude certain
paths that cannot occur by fixing the values of certain inputs. However, it must be used
with caution since by fixing too many input values, not only false paths but also bona

fde critical paths may be eliminated.

A very important part of timing verification is the delay estimation method used by
the delay modeler. For bipolar gate-arrays, the delay of a component is a well-
characterized quantity that can be assigned to the component independently on load condi-
tions and input waveforms. In the case of MOS circuits, the delay depends critically on
input waveform shapes, loading conditions and size and type of transistors Most MOS
timing verifiers represent the MOS transistor with an ideal switch with a resistance in
series and represent the capacitance of the transistora as well as the parasitic capacitance
along a wire with a capacitor from every node in the circuit to ground. Then the delay is
computed using approximate formulae based on the values of the resistors and capacitors.
This approach is very efficient in terms of CPU-lime, but it has several weaknesses. For
example, il assumes that there is only one direct path from a reference node (power sup-
ply or ground) to the signal-nodes of the circuit. For example, in the case of an nMOS
inverter, if the driver is on, only the driver is considered for delay time estimates, and the
load is ignored. While some of the programs based on this "RC" approach (e.g. Crystal),
incorporate information about input waveform shape and load condition in order 1o obtain

more accurate delay estimates, they use the ratio approach first suggested by Pilling and

Skalnik Pilling Skalnik The ratic approach improves the accuracy of the delay estimates significantly with small amount of
work for mast circuits, but 1t may still result in large timing erross

Recently. a new approach 10 modeling the path delay. called /logic [KIM84) has been
proposed 1o solve some of the inaccuracy problems of timing verifiers. Essentially, the Elo-

gic approach simulates the path extracted by the path analyser with a mode! of the com-

Newton & Sangiovanni DRAFT

31

ponents of the circuit somewhere in between the models used in logic simulation and cir-
cuit simulation. Because of the use of a more accurate model of the components as well as
a more accurate representation of the subcircuit responsible for the delay at a node, the
delay estimation is much more accurate. In addition, since there are several levels of accu-
racy in the Elogic models. a trade-off between speed and accuracy is offered to the user.
Flogic models have been recently added to Crystal and tested on a number of circuits
The results show that a reduction of an order of magnitude in the delay error can be

achieved at the expense of a thirty fold running time increase.

4.5. Formal Verification

In general. the functional verification step is carried out by simulating the
design with a set of input patterns which cannot guarantee that the design is correct, ie.,
that the transformation from one level of the design hierarchy to the next has not
changed its functionality. Formal verification techniques are input-independent and are
designed 1o guarantee functional equivalence between two representations of the design at

different levels.

Most of the formal verification techniques deal with behavioral, structural and logic
level representations. These techniques have greal potential for producing correct-the-
firsi-lime designs. In addition. verification is important for technology remapping. ie.. for
the transfer of a logic design from a technology (for example bipolar ECL gate arrays) 10
another (for example CMOS gate arrays). In this case. the functionality of the new imple-
mentation has to be checked against the functionality of the former. Despite the impor-
tance of formal verification, only a few of the techniques developed in the past have been

applied 10 industrial designs due 1o their complexity and computational requirements.

Most of the formal verification techniques proposed recently can be classified into

three major categories formal software verification techniques. semi-exhaustive logic

Newton & Sangiovanni DRAFT

52

simulation and logic comparison.

Formal sof tware verification technigues can be used because at the highest levels of
the-dwign hierarchy, hardware descriptions are similar to computer programs written in a
programming language. In particular, the inductive assertions approach and the symbolic -
simulation approach have been proposed for design verification. The inductive assertions
method requires a set of assertions 1o be made at the input, the output and each internal
loop of the high level description of the design. These assertions specify relationships
between variables in the description and represent a formal "definition” of the carrectness
of the design. In fact, if the design is correct, then all the assertions must be verified, in
particular the output assertions. The key problem in this approach is to state the asser-
tions correctly. At this moment, the inductive assertions approach has mostly theoretical
interest.

Symbdlic simulation replaces the calculation of the set of primary outputs given a
set of primary inputs with the calculation of the logic expression computed by the design.
ie. a formula for each of the outputs where the variables are the primary inputs. Once
this calculation has been performed, it still remains to verify that the formula is indeed
the correct one. A formal relation between primary inputs and primary outputs is some-
limes available and. in this case. the two formulae have to be verified one against the
other for equivalence. This computation can be carried out by means of rule-based sys-
tems such as MAXIMA[]. There are two major difficulties in this approach: the first is in
the actual calculation of the formula implemented by a specific collections of modules that
can be very expensive in terms of computer time, the other is the equivalence calculation,

an NP-complete problem.

Of course. if all the input patterns are exhaustively fed into the two descriptions of
the design. then the two representations are equivalent if the outputs corresponding to the

same inputs are equal. However, for large circuits this approach is out of the question.

Newton & Sangiovanni DRAFT

53

because the set of all possible inputs is 2¥ where N is the number of the inputs. Quasi-
exhaustive simulation tries to limit the number of input patterns to apply to verify
equivalence and has been used successfully in some designs. In particular, the mixed level
simulator MIXS developed by NEC [] bas a formal verification mode, where the input pat-
terns are derived so that the design is guaranteed to be equivalent to a set of functional
specifications. This approach focussed on the reduction of the number of input patterns
that have to be generated and simulated to guarantee the correctness of the design.

Several heuristics have been proposed. but their use may lead to an incorrect answer.

The most successful formal verification techniques are based on logic comparison.
These techniques have been in use at IBM for many year{SMI82] They are applied to
designs that satisfy a set of restrictive assumptions. The main assumption is that a one-
to-one correspondence between the memory elements such as flip-flops of the design at
the two levels of interest has been established. Then the problem of logic verification is
reduced to the one of verifying the equivalence of combinational logic. This assumption is
verified when Level-Scan Sensitive Design (LSSD) or scan-path techniques are used in the

design 10 make the task of testing the design easier.

Other approaches involve the automatic translation of the high-level description of
the design into a gate-level description, that can be then compareed with the "real” gate-
level design. This automatic translation can be done quickly since the quality of the syn-
thesized logic is of no concern. For example, the Fujitsu verification system uses DD1[] 1o
describe both the high-level behavioral specification and the structural level representa-
tion. The DDI representation is then mapped into a logic design that is compared with
the actual design which may have been generated automatically with an effective syn-

thesis tool or manually.

This problem is very similar 10 the testing problem. and in fact can be formulated

as a redundancy identification problem of a circuil obtained from the 1two circuits to com-

Newton & Sangiovanni DRAFT

54

pare by forcing the primary inputs to be the same and by tying the primery cutputs to
the input of a comparator (an XOR gate). If the designs implement the same logic func-
tion. then the output of the comperatar is always zero. The verification problem is
equivalent to proving that stuck-at-zero fault at the output of the XOR gate is redun-
dant. This problem can be easily shown to be NP-complete. Experience gained in cop-
ing with testing problem is instructive in this case. However, in the testing problem,
the more common situation is that the fault under test is not redundant and we want to
find a test for it as soon as possible, while in logic verification we expect the fault to be
redundant and we wish to come to that conclusion as rapidly as possible. This implies

that efficient algorithms for testing may not be efficient for logic verification.

The first logic comparison approach was developed by J.P. Roth of IBM, who proposed
to use the back-ward justification part of the D-algorithm to prove equivalence of the two
designs. The Differential Boolean Analyzer and its variations were used in the verification
of the IBM 3081 computer design, a most impressive accomplishment since the hardware
modules being verified have approximately 30,000 gates each. This approach uses the
iterative application of the Shannon expansion[SHA38] theorem to specify the set of input
patterns that have to be considered for a complete verification. The application of the
expansion is done so that a minimal set of vectors has to be identified to carry out the

verification.

While some of the results can be used 1o verify formally a design, we believe that
more research is still needed to improve the speed and the domain of applicability of the

formal verification techniques.

5. SYNTHESIS

Newton & Sangiovanni DRAFT

55

5.1. Introduction

As pointed out in the Introduction. synthesis is a crucial component of future CAD
systems. The campetitive edge of IC design will most probably come from the use of

effective synthesis tools.

A complete synthesis system should generate layout masks from a high-level algo-
rithmic, behaviaral or functional description of a VLSI system. a description of the target
technology and a description of the constraints and cost functions. The design should be

completed in reasonable time and with the quality a human designer could obtain.

Very few design-aids are available to assist the VLSI designer at the algorithmic
level. At this level, the designer describes the system by specif ying its operations or func-
tions without necessarily giving implementation details such as the "hardware” com-
ponents needed to implement the system. Design at this level involves the translation of a
required algorithmic-level specification into an architectural or register-transf er-level
implementation. The architectural representation of the design includes components such
as registers, memories, processors, which specify the high level implementation of the sys-

tem.

Once the functional partitioning of the design is completed. estimates of the layout
size. power-supply requirements. and speed of the high-level circuit blocks used 1o imple-
ment the various sub-functions are required. A chip-plan must also be constructed to
determine the relative placement of these building blocks. This chip plan is then further
refined as the design proceeds. These tasks are often performed manually, perhaps with
the help of the computer lo/perf orm book-keeping lasks such as the storage of intercon-
nection data.

Silicon compilers have been proposed 1o carry out the entire synthesis process. Since
the task is so complex, early silicon compilers assumed that a target lechnology and a

floor-plan were chosen by human designers. In this case. the difficult steps of linking the

Newton & Sangiovanni DRAFT

56

high level synthesis task to the layout problem was resolved by eliminating computer
intervention. Among the mast important contributions of the early research on silican
compilers is the development of procedural design languages. These languages are used to
write programs which, when executed, generate in a flexible and possibly technology
independent way the layout of entire chips and/or of leaf cells, ie., the basic low level
cells such as nand gates. nor gates, inverters, register cells. The work by D. Johannsen at
Caltech[JOH79] and the work on DPL[BATS0] at MIT was an example of such important
contributions. Procedural design languages can be used effectively to generate the layout
of regular structures such as ROMs, RAMs, PLAs and data paths. In particular, the use of
these languages eases the construction of parametrized and technology independent madule
generators, ie., of computer programs that generate the layout of a block such as a ROM,

RAMor PLA, given a functional representation, such as a truth table.

Working designs have been produced with silicon compilers, but the quality of the
design has always been a problem. While for a restricted class of designs, such as Digital
Signal Processors (DSP), the use of a fixed floor-plan has been successful, (e.g. the LAGER
silicon compiler developed by R. Brodersen at Berkeley[]). its use for less constrained appli-
cations results in inefficient utilization of area and poor performance. In addition, the
structure of the control logic is of ten 100 rigid and not optimized. thus yielding a slow and
large chip. J. Fox[] has illustrated the pitfalls of an existing silicon compiler. MacPiug], by
comparing a design for a telecommunications chip generated by a silicon compiler with a

design obtained with the use of a standard-cell place and route system.

The present trend is 10 break the synthesis process into stages, and 10 use tools that
optimize real estate and’or performance to go from one stage to the nextl. At first. atten-
tion has been paid to the optimal generation of regular arrays such as ROMs, RAMs and
PLAs. For example. module generators have been buill by VLS] Technologies Inc. and Sili-

con Compilers Inc. using a procedural design language. Simple routing techniques were

Newton & Sangiovanni DRAFT

57

also offered to connect the modules generated by these tools. These two companies were
the first to introduce the concept of silicon compilation and procedural design languages in
industry. While these concepts have now gained considerable attention in the industrial
community and several other companies are offering procedural design languages (eg. Sili-
con Design Laboratories and SDA) and module generatars (eg. Silicon Compilers Inc., SDA
and Seattle Silicon), a few years ago when these companies were founded traditional

designers expressed a great deal of resistance towards these new design techniques.

The SILC silican compiler under development by J. Fox at GTE and the Yorktown
Silicon Compiler (YSC) being developed at the TJ. Watson Research Center by R.
Brayton[BRA84). are two examples of systems where layout optimization and efficient
logic synthesis are introduced. While SILC addresses the problem of translating an algo-
rithmic description of the system to be designed into an architectural description, YSC
starts with an architectural description of the design leaving the task of determining the
architecture of the chip to the human designer. The Design Automation Assistant under
development at AT&T Bell LaboratoriedKOWS85] is the most recent entry in the
automatic synthesis arena. This system is based on the work done at Carnegie-Mellon
University for high-level synthesis and on the work done at Stanford for layout. One of
the most interesting aspect of this system is the use of a knowledge-based expert system 1o
carry out the translation of the behavioral leve] description into a register transfer level
description and o generate an oplimized floor-plan. Research work on silicon compilation
is also carried out at the University of Illinois with the ARSENIC silicon compiler
developed by D. Gaijki[).

The procedural design aspects of early silicon compilers has been neglected for some
time. Recently Silicon Design l.aboratories (SDL.). founded by the developers of the PLEX
system([] for automatic synthesis of micro-processor-based designs. introduced a procedural

design language for IC design which is available commerciallv[l. We believe that pro-

Newton & Sangiovanni DRAFT

58

cedural design systems and know ledge-based expert systems are crucial for the synthesis

systems of tomorrow.
In this section we review the three basic components of a synthesis system:

1- Physical synthesis or laycut. including floor-planning, partitioning, placement, -
routing and compaction; -

2- Logic synthesis, including combinational logic, sequential logic and algerithmic or
behavioral synthesis.

3- Procedural design and module generatian.

5.2. Physical Synthesis

The layout of integrated circuits consists of the placement of the devices (cells) com-
posing the design in a two dimensional finite space and of the interconnection of the pins
of these devices according to the schematic of the circuit 1o be implemented. The goal of
this process is 1o complete the placement and interconnection of the design in the smallest
possible area satisfying a set of design constraints. such as the ones posed on the position
and size of the devices, a set of technological constraints, such as the ones posed by design
rules and levels of interconnects, and a set of performance constraints, such as the ones
posed by the timing of the logic 10 be implemented. This optimization problem is very
complex. even simplified versions of it are NP-complete.’ and given the number of modules

1o be laid out. has to be decomposed in1o smaller sub-problems to be tractable.

The layout problem is traditionally subdivided into several stages that will be
reviewed in the next sections. While these stages are often common 1o the various design

styles such as gate-arrays, standard cells and macro cells, their complexity may differ.

! An NPcomplete problem belongs 1o a class of dificult combinatoria! optimizatlion problems such as the
traveling salesman problem and the coloring problem for which an algorithm whose complexity is bound by a
polynomial in the size of the input is not know and is unlikely 10 be found.

Newton & Sangiovanni DRAFT

59

Automatic layout systems were introduced first for gate-arrays and standard-cells,
since the layout problems associated with these design styles are in general simpler than
the ones associated with the macro-cell design style. Good gate-array systems developed
both in house and by vendors companies are now widely available. The Engineering
Design System of IBM was among the first complete layout systems to be developed for
gate-arrays in the late 1960s. even though the first papers describing the algorithms used
in the system were published in the early 1970s. In Japan. the first gate-array place and
route system was developed by Oki and reported in 1974. Silicon foundries such as LSI
logic offer their customers place and route systems optimized for their gate-array families.
Mentar/CADI. Tektronix/VR Systems and Daisy have good place and route systems. Daisy
has also a gate-array placement hardware acceleratar which implements the simulated
annealing algorithm.

The first publications describing the concept of gate-arrays date back to 1964, with
the papers by Rex Rice of Fairchild[RIC64] and of E. Sack of Westinghouse[SAC65]. For a
while. gate-arrays completely dominated the semicustom market. in part because of the
wide availability of CAD tools for their design. Now standard cells are capturing the
atiention of a large user community. Interestingly. the concepts of standard cells and of
gate-arrays were developed al about the same time. However. automatic placement and
routing tools for standard cells were developed earlier than the ones for gate-arravs.
Philco Ford was the first company 10 do work in the area of automatic place and route of
standard cells around 1964. This work was picked up and extended by S. Daram and his
group at Fairchild in 195 with the MOSAIC system. The cells were arranged in rows
and pins appeared on both sides of the cell. The routing was accomplished with a precur-
sor of the channel routing algorithm which recently became the most popular routing
techniques. Tairchild also developed an automatic rubylith cutter for this structure. RCA
Camden developed in 1966 the PRF (Placement. Routing and Folding) system for place-

ment and routing. In this system cells were placed back-to-back and hence had pins on

Newton & Sangiovanni DRAFT

60

one side only. This system was then taken to the Natjonal Security Agency and improved.
In the late 1960s RCA extended this approach to PR2D where a two-dimensional place-
ment algorithm was developed In the 1970-1972 time-frame the MP2D system was
developed at RCA. This system is still widely used. Bell Laboratories developed a poly-
cell (a synonym for standa;'d-cell) place and route system called LTX in 1973. The succes-
sor of this system, LTX2 was extended to gate-arrays and to limited version of macro-cell

place and route.

The growing interest in the standard cell design style has prompted a number of

companies to develop new place and route systems.

Macro cell placement and routing is particularly difficult. Japanese companies are
the clear leader in this area. NTT, NEC, Hitachi, Sharp and Sony have all good working
systems. In Europe. Siemens has been among the first companies to develop. on an experi-
mental basis, macrocell tools. However, they are not in production use. The
GAELIC/COMPEDA system was developed by the University of Edinburgh and made
available by a commercial company, but it has not found wide use. In the US, some com-
panies such as Hughes aircraft have recently developed experimental systems for the
VHSIC (Very High Speed Integrated Circuits) program of the Department of Defense. The
CICLOPS sysiem first developed by Preas and VanCleemput at Stanford has been
improved at SANDIA lats. However, 10 the best of our knowledge. no complete system is
currently in production use. Because of the importance that macro-cell system are bound

to have in the future, we expect more companies to develop such systems.

In the academic world. Japanes and US Universities have the lead in the develop-
ment of algorithms and programs for placement and routing. Recently. Universities have
placed emphasis on the development of complete place and route system for a variety of
design styles. The Pl sysiem[] for macro cell place and route from MIT, the BBL (Berkeley

Building-block Layout) system[CHES3] for macro<ell place and route, the BAGEL sys-

Newton & Sangiovanni DRAFT

61

tem[] for gate-array palce and route, and the ThunderBird, standard cell system, all
developed at the University of California. Berkeley. and the hierarchical layout system
developed at the Osaka University are a few examples. The distinguishing feature of

these sysiems is the use of new and experimental algorithms.

Most of the work done on layout has been concentrated on oplimizing area. Recently,
performances. in particular speed. have become a major concern. Coupling timing analysis
with placement and routing has been proposed to influence the layout process of gate-
arrays with speed considerations[BUR84] We expect this problem will receive more

attention in the future.

In the next sections, we will review the various stages of the layout process: floor-
planning. partitioning. placement. routing, and compaction. Since the literature on layout
methods is buge. we will limit ourselves to the basic techniques, pointing to the relevant

papers when appropriate.

S.2.1. Floor-planning

Floor-planning is the first stage in the layout of VLSI circuits. In this stage. the rela-
live positions of the modules to be laid out are determined. Timing. power and area esti-
mations are the factors guiding the relative placement. Floor-planning can be used to ver-
ify the feasibility of integrating a design onto a chip without performing the detailed lay-
out and design of all the blocks and functions. This stage is typical of the less constrained

design styles. e.g. macro-cell.

At this stage. the aspect ratio of some of the modules may still be unconstrained For
example. if the control logic is implemented with standard cells. then the number of rows
used for the modules is not necessarily fixed. Many rows will produce a block that is long
and skinny. few rows will produce a block that is short and fat. Different aspect ratios

correspond to better packing of the modules in the available area. Figure 52.3.1 shows a

New1ion & Sangiovanni DRAFT

62

particular example of a chip with blocks of fixed and variable size. As other examples,
folding and partitioning of a PLA can be used to modify the aspect ratio of the module, or
the number of bits used for row and column decoding in a RAM or ROM muslule can also
modify their aspect ratio.

Another degree of freedom is the position of the pins of some of the modules. When
standard cells are used for control logic, the signals may leave the block on any point of
its periphery. According to their positions, the routing area may be minimized.

Because of the many degrees of freedom and of the uncertainties, the.optimization is
quite difficult. Very few tools have been developed for this task. Some such as the CAF
program(] are interactive and provide estimates for wiring length, channel congesticn, area
utilization, timing and power dissipation. Others such as the CHAMP program developed
by NI'II] and the SPIDER program developed at Honeywell[] offer automatic relative
placement and aspect ratios selection. Note that these tools are not generally available;

there is no major commercial vendor offering such an interactive system.

Recently, the introduction of simulated annealing algorithms (see window in this
page) has made it possible 1o develop algerithms where the optimization can be carried out
with all the degrees of freedom mentioned above. A system at the IBM TJ. Watson
Research Center[OTT84] and the TimberWolf package developed at Berkeley{SEC85] use
the simulated annealing algorithm to produce a floor-plan that not only gives the relative

positions of the modules, but also aspect ratios and pin positions.

Other activities in this area are carried out at Carnegie Mellon University and at GE
Research Center in Scheneciady. Because of the large number of degrees of freedom in
the optimization problem and of the many criteria 10 be followed. there has been an
interest in applying Artificial Intelligence techniques to floor-planning[KOWS8S). No work-
ing knowledge-based systems for floor-planning are available yet. but they are definitely

an interesting and fruitful research area.

Newton & Sangiovanni DRAFT

.
+ orntiL of the
S N G TN
me.a
iy
RPN
.
~ *
\; .j
ersitt
i
re o ha
PR 55]

63

5.2.2. Placement and Partitioning fiael ool -l
The placement problem involves the assignment of specific locations to build;,ng‘ CodinoLcase. T

blocks of the layout. This includes the assignment of logic gates within a 'gate-anay[6i],:"'. e m kAM -

the placement of cells in a standard cell layout[68.69] or the placement of macro cells

[71.72] While a considerable amount of theoretical work has been done in this afea’ i€ 2 of son - of

[72.73]), the most successful approaches involve the use of simple heuristics. In th&&Ns! Tz, ®aelict

approaches, either total intercannect length. estimated or exact routing requirements are'”:™: Tt: 1.2\ ie .

used by the placement algorithms as an indication of the quality of the placement. . -. ...ic¢f the aceria-

.

As for partitioning. placement algorithms may be subdivided int6 two basic’*=C for i. stast G

categories constructive placement and iterative improvement. ConstructiVe placement ~11--: ‘engi .z
algorithms build a placement from initial data such as the size and the type of the cells fo ° - he CT
be placed and the net-list. Iterative improvement algorithms start with & given initfal ioovelr

Placement, which can be given by the user. generated randomly or obtained'by construf- ¢ €= s are nnt

tive placement algorithms, and modify the layout to improve its quality. Interestingly:? rZclive ystt

most of the placement algorithms can be used in the basic design styles. gate-array, stanz-r. -asc guerithe s
dard cell and macro cell. with minor variations. v TLoe AT e o orime
The most well-known heuristics are clustering[]. force-directed [).-pdirwise inter-v 8 > si'm 11

change[l. and min—cut [lechniques. In all cases the placement problem is represented byt & 2 lope &

1 v o, o

.] PR B
modules with a given size and a connectivity matrix C = [c,,] where c,, representsthe ' T

nets connecting module i 10 module j with appropriate weights 1o model the relative o

importance of the interconnections. - u W e ont

Clustering adjoins incrementally modules 10 a subset of modules alread:'v placed. The - Tt -

modules are adjoined according 10 their size and connectivity. Critical factors for thisalge ¢! & ¢ « il e

rithm are the selection of the seed. (ie. of the first module 10 place). the selection of the .- - i e
~

next module 1o be placed and the position of the module with respect the modules already -

placed. A number of papers have been published describing a variety of schemes for each

Newton & Sangiovanni DRAFT

64

of the factors atove. Note that once the position of a module bas been assigned, it is not
changed during the remaining part of the algorithm. The LILAC system[] for macro cells
developed at Hitachi used clustering techniques for placement. These methods provide
fairly good initial placements but iterative improvement methods should be applied after-
wards to obtain tisfact&y results For example, the SHARPS system{] for macro cells
and the Oki system(] for gate arrays have followed this strategy. The running time of

these methods are in general short.

The force-directed heuristics can be used both for constructive placement and for
iterative improvement. They have found wide applications in a variety of gate arrays and
macro cell systems such as the PLINT]] system developed by GE for standard and macro
cells, the APLS2[] system developed by Hughes for standard cells, the SHARPS system
developed by Sharp for macro cells. the BAGEL system developed by the University of
California at Berkeley. the MARC system[ldeveloped by NTT . the MASTER and the
LAMBDA systems developed by NEC. and the MARS-M3 system developed by Mitsubishi.
all for gate-arrays. The basic idea is 1o represent the interactions between modules with a
set of forces

Fi; = ¢ dy (523.1)
where d,; is the distance between module i and j in general measured as the distance
between the centers of the modules. Note that (523.1) is the expression for the force
between two points connecled by a spring with constant ¢;; . The distance can be meas-
ured according to different metrics, for example the L ; metric corresponds to the Manhat-
tan distance. ie. 10 the sum of the x and y distances. An initial placement is then con-
structed by finding the locations of the modules that minimize the overall force exercised
on the modules. If no repulsive force is modeled. then all the modules end up in the same
location. However, if pads are introduced and their location is maintained fixed, then the
force exercised by the connections between the pads and the modules will avoid the com-

plete overlap of all the modules. However, some overlaps may remain. Repulsive forces

Newton & Sangiovanni DRAFT

65

have been introduced [J to avaid overlaps. The MARC system used this techn ique.

When overlaps are allowed. a feasible placement is constructed by modifying as lit-
tle as possible the placement obtained by the farce-directed technique. In the case of stan-
dard cells and gate arrays, the force-direcied placement is used to determine the relative
positions of the cells, which are then placed in rows according to the fioor-plan of the
chip.

Force-directed heuristics can also be used for iterative improvement algorithms. The
SHARPS, MASTER. LAMBDA systems used variations of force-directed relaxation to

improve layouts obtained by other methods such as min-cut and partitioning.

Pairwise interchange methods are very simple. Two modules are selected for con-
sideration and inler';hanged if the cost function. whatever this function may be, is
decreased. The key issue here is how 10 select the pair 10 be examined. A random selec-
tion is often used. An exhauslive examination of all pairs of modules is also possible.

although quite expensive.

One of the most successful technique for placement is the min-cut method, proposed
by Breuer[] for PCBs. gate-arrays and standard cells and by Lauther for macro cells. The
basic procedure is based on the recursive application of the bi-partitioning algorithm by
Kernighan and Lin [}. At first the area of the chip is subdivided into two parts either
with a vertical "cut-line” or with an horizontal "cut-line". Modules are assigned to the
two areas so that the interconnections between the modules are minimized and the area of
the modules assigned o the two parts is roughly equal. Note that in the macro—cell case. it
is very dificult 10 take into account the aspect ratio of the modules, hence only the area of
the modules is used in the partition process. Once the first partition has been applied, the
two areas are subdivided again each into two parts. This subdivision can be obtained with
either vertical or horizontal cuts. When an area is occupied only by one module, the area

is obviously not subdivided any more. When all the areas cannol be subdivided further.

Newton & Sangiovanni DRAFT

66

the process terminates.

Note that because of the different aspect ratios of the modules, the placement can be
considerably improved by rotating and mirraring the modules. In fact, the algorithm
presented by Lauther inclpds post-processing steps that improve the criginal placement.
In particular, rotations and mirroring are used to improve both area utilization and net

length. Finally, modules are shifted to eliminate as much as possible empty areas.

Recently, placement programs have been developed based on simulated annealing
[KIR83, VEC84, SEC85] The results obtained are excellent and of len better than the ones
obtained manually at the expense of computer time. Accelerators have been developed to

speed up the execution of the algarithm [SPI85]

The overall area occupied by the design is obviously dependent on the routing area.
The estimation of the wiring area is one of the most dificult parts of a placement algo-
rithm especially for the macro-cell case. Simple estimates based on the number of pins on
each side of the modules are often used to enlarge the area of a module 10 account for
routing area. In other approaches, the routing area is not taken into account and only after
global routing the routing area is inserted in the floor-plan of the chip. Local rearrange-

ments of the placement are then applied to make room for the additional area.

Partitioning, which is a fundamental component of the min-cut algorithm, is of ten
used 1o decrease the complexity of placement. This task is ceriainly useful when
thousands of objects have to be placed and the running time of the best algorithms often
increases more than linearly (usually quadratically or cubically) with the number of
objects. In this case. logic gates or functions are grouped together and assigned to blocks
with fixed or variable dimensions. Then. the placement stage determines the actual posi-
tions of the components in the blocks and of the blocks on the chip. Note that partitioning
can be and has been applied to all design styles. For example. the Engineering Design Sys-

tem of IBM uses partitioning[] as a pre-process to their gate-array placement program. In

Newton & Sangiovanni DRAFT

67

the standard cell system of Hitachil] the cells are firg Partitimned into rows withoy;

assigning them a Precise pasition inside the TOWS.

ized" in many different ways.

In general, it is convenient to decompese the routing region into rectangular regions,
called channels. The way in which the Touling region is subdivided may make the rout-

ing problem easier. This decomposition is called channel or routing region defi nirion stage.

The Touting stage where the interconnections are laid out on the chip follow's. Thiy

Stage is in general broken down into two Stages: glubal or loose routing and detailed roy;-

Newton & Sangiovanni DRAFT

68

that can route channels with pins on three sides [BRA] If the routing region has pins on
four sides, then a switch box router can be used [l In general, channel routers have the
best results in terms of the area used to complete the interconnections. Thus routing
regions with fixed pins on more than two sides should be avoided Channel definition and

the ordering with which the channels are routed bas a great impact on this issue.

Since global routing and routing region definition depend critically on the routing
strategy followed in the detailed routing stage, we review first the work in detailed rout-

ing. Then we present channel definition and ordering, and finally global routing.

5.2.4.1. Detailed Routing

Given a region with pins on its sides and, possibly, in the middle, detailed routing is
the process of implementing the actual geometries of the interconnections among the pins
specified by a net list. In the most general case, the regions may be of irregular shape
with internal obstructions. However, the most effective algorithms work on regions of
regular shape. in general rectangular or close to rectangular. with no obstructions and

with pins on two opposite sides.
The basic algorithms for detailed routing are:
1- The Lee maze router [LEE61];
2- The Hightower line expansion algorithm [HIG69);
3- The Hashimoto and Stevens channel router [HAS71).

The Lee maze router, also called the Lee-Moore algorithm or the grid expansion algo-
rithm. is applied 1o Lhe interconnection nets, one at a time, on a region where a grid has
been superimposed. The grid specifies intermediate locations which can be reached by an
interconnection while it is being built. In general. it is assumed that the interconnections
have Manhautan geometry, ie.. that they are formed only by vertical and horizontal seg-

ments. At each point of the grid, the interconnection may change direction. The grid may

Newton & Sangiovanni DRAFT

69

be built so that two intercannection running in paralle] in two adjacent grid locations do

not violate any design rules

This router has been applied to gate-array and macro-cell design. Its strengths are its
flexibility (it can be applied to irregular regions with pins distributed everywhere and
with obstacles. it can generate paths with minimum number of bends) and in the capabil-
ity of finding a solution, if one exists; its weakness, besides the running time. is the depen-
dence on net ordering. In fact, the first nets to be routed. have a large region basically
empty to use, while the last nets to be routed find the region almast full. If the nets are
chosen in the wrong order. the last nets may not be routable due to the blockages created
by the previously routed nets Several beuristics are available to speed up this algorithm

as well as to choose a good net ordering.

The Hightower algorithm is gridless in principle. It starts from both pins to be con-
nected and generates an horizontal segment and a vertical one of maximum extension
from the pins Once these four lines are generated. the orthogonal lines of maximum
expansion are generated next. If more than one orthogonal line can be found of the equal
maximum extension. the one which is closer to the opposite pin is selected. This procedure
is iterated until two lines expanded from the two pins to be connected intersect. The
actual interconnection pattern is then constructed by tracing back the lines at their inter-

section points.

Note that the algorithm can be quite fast for simple mazes with a small number of
barriers and obstructions. while it may be slow for complicated regions. because of the
many lines that can be generated before an intersection 1s found. In addition. it is not

guaranteed to produce a solution, if one exists.

The contribution of Hashimoto and Stevens with their channel router is two-fold: i)
the abstraction of a routing problem which is simpler to solve than the general problem

stated previously: ii) an algorithm 10 solve the simplified routing problem. Many exten-

Newton & Sangiovanni DRAFT

: s
. - " -

N
o R

.:
4
o ‘

IS ce
> . - o
() B
. -y
A \ .
. |
- “

.. s -
. -

63

$.2.2. Placement and Partitioning fres s - ol

' 1'.“.'7;.‘...'
The placement problem involves the assignment of specific locations to building i r

blocks of the layout This includes the assignment of logic gates within a .gate-amy[6ﬂ.:"" e kaw
the placement of cells in a standard cell layout{68.69] or the placement of macro cells

[71.72] While 2 considerable amount of theoretical work has been done in this afea i2€ } 2 Jf son -
[72.73]. the most successful approaches involve the use of simple heuristics. In th&sn:!" Fz. 2a-eli.

spproaches, either total interconnect length, estimated or exact routing requirements are':¥: Jts w2V be

used by the placement algorithms as an indication of the quality of the placement. . - -..icf the 1ceria:-

As for partitioning. placement algorithms may be subdivided intdé two basc™=C for i: s tasl
categories constructive placement and iterative improvement. ConstructiVe placement ~iI- . ‘eng
algorithms build a placement from initial data such as the size and the type of thecellsfo @ - "heCU
be placed ana the net-lisi. Iterative improvement algorithms start with #'given initfal i veli
Placement. which can be given by the user. generated randomly or obtained'by construb- i &= lculs are
tive placement algorithms. and modify the layout to improve its quality. Interestingly:? riclive ¥

most of the placement algorithms can be used in the basic design styles. gate-array, stanzar. :aun.e . gerith. .

dard cel] and macro cell. with minor variations. v Te AT e o oartime
The most well-known heuristics are clustering[]. force-direcied [].-pairwise inter-v 4 > si*m 1

change{l. and min-cut [hechniques. In all cases the placement problem is represented by™¢ & 2 lape ¢

modules with a given size and a connectivity matrix C = [¢,,] where ¢,, representsthe ©*~P!" o

nets connecling module i to module j with appropriate weights 1o model the relative bR

importance of the interconnections. - u < o or

()

Clustering adjoins incrementally modules 10 a subset of modules alreadi" placed. The 7T
modules are adjoined according 10 their size and connectivity. Critical factors for this alge- ¢V & ¢
rithm are the selection of the seed. (ie. of the first module 1o place). the selection of the .+ - it
nex1 module 10 be placed and the position of the module with respect the modules already

placed. A number of papers have been published describing a variety of schemes for each

Newton & Sangiovanni DRAFT

64

of the factors atove. Note that once the position of a module has been assigned. it is not
changed during the remaining part of the algorithm. The LILAC system[] for macro cells
developed at Hitachi used clustering techniques for placement. These metbods provide
fairly good initial placements but iterative improvement methods should be applied after-
wards to obtain ntisfacur.y results For example, the SHARPS system[] for macro cells
and the Oki system[] for gate arrays have followed this strategy. The running time of

these methods are in general short.

The force-directed heuristics can be used both for constructive placement and for
iterative improvement. They have found wide applications in a variety of gate arrays and
macro cell systems such as the PLINT{] system developed by GE for standard and macro
cells, the APLS2[] system developed by Hughes far standard cells, the SHARPS system
developed by Sharp far macro cells. the BAGEL system developed by the University of
California a1 Berkeley. the MARC system[ldeveloped by NTT . the MASTER and the
LAMBDA systems developed by NEC., and the MARS-M3 system developed by Mitsubishi.
all for gate-arrays. The basic idea is 10 represent the interactions between modules with a
set of forces

Fij =c¢; d, (523.1)
where d,; is the distance between module i and j in general measured as the distance
between the centers of the modules. Note that (523.1) is the expression for the force
between two points connecled by a spring with constant ¢;; . The distance can be meas-
ured according to different metrics, for example the L ; metric corresponds to the Manhat-
tan distance, i... 10 the sum of the x and y distances. An initial placement is then con-
structed by finding the Jocations of the modules that minimize the overall force exercised
on the modules. If no repulsive force is modeled. then all the modules end up in the same
location. However, if pads are introduced and their location is maintained fixed. then the
force exercised by the connections between the pads and the modules will avoid the com-

plete overlap of all the modules. However, some overlaps may remain. Repulsive forces

Newton & Sangiovanni DRAFT

67

the standard cell system of Hitachil] the cells are first partitioned into rows without

assigning them a precise pasition inside the rows.

Partitioning is described as the assignment of objects with a certain size and con-
nected by weighted nets. 1o partitions that have a bounded capacity so that the weight of
the nets that span partitions is minimized This problem is NP-~complete and hence many
beuristic partitioning algorithms have been proposed over the years. These algorithms are

similar in their architecture to the algorithms used in placement.

5.2.4. Routing

After the modules have been placed. the interconnections have to be completed in
the available space. If routing over the cell is not allowed by the technology or by the
design style. the area available for interconnections is the one which is not occupied by
the modules. In the gate-array and standard cell case. this area is fairly regular, it consists
of a collection of rectangular regians alternating with rows or columns of cells. In the
case of macro cell design style. the routing area is much less regular and can be "organ-
ized” in many different ways

In general. it is convenient to decompase the routing region into rectangular regions,
called channels. The way in which the routing region is subdivided may make the rout-

ing problem easier. This decomposition is called channel or routing region def nition siage.

The routing siage where the interconnections are laid out on the chip follows. This
Stage is in general broken down into two stages: global or loose routing and detailed rout-
ing. The global routing stage. sometimes called channel assignment. determines which
channels the interconnections will go through. Finally the detailed routing stage deter-
mines the actual physical Jocation of the interconnections inside Lhe routing regions. If
the region to be routed contains pins on two sides only. then effective detailed routing

tools called channel rowters can be used. Extensions 10 the basic tools can provide programs

Newton & Sangiovanni DRAFT

68

that can route channels with pins on three sides [BRA] If the routing region has pins on
four sides, then a switch box router can be used [J In general, channel routers have the
best results in terms of the area used to camplete the interconnections. Thus routing
regions with fixed pins on mare than two sides should be avoided Channel definition and

the ordering with which the channels are routed has a great impact on this issue.

Since global routing and routing region definition depend critically on the routing
strategy followed in the detailed routing stage. we review first the work in detailed rout-

ing. Then we present channel definition and ordering. and finally global routing.

5.2.4.1. Detailed Routing

Given a region with pins on its sides and. passibly. in the middle, detailed routing is
the process of implementing the actual geometries of the interconnections among the pins
specified by a net list. In the most general case, the regions may be of irregular shape
with internal obstructions. However, the most effective algorithms work on regions of
regular shape. in general rectangular or close to reclangular, with no obstructions and

with pins on two opposite sides.
The basic algorithms for detailed routing are:
1- The Lee maze router [LEE61]).
2- The Hightower line expansion algorithm [HIG69].
3- The Hashimoto and Stevens channel router [HAS71).

The Lee maze router. also called the Lee-Moore algorithm or the grid expansion algo-
rithm, is applied to the inlerconnection nets, one at a time, on a region where a grid has
been superimposed. The grid specifies intermediate locations which can be reached by an
interconnection while it is being built. In general, it is assumed thal the interconnections
have Manhattan geometry., i.e.. that they are formed only by vertical and horizontal seg-

ments. At each point of the grid, the intercannection may change direction. The grid may

Newton & Sangiovanni DRAFT

69

be built so that two interconnection running in parallel in two adjcent grid locations do

not viclate any design rules

This router has been applied to gate-array and macro-cell design. Its strengths are its
flexibility (it can be applied to irregular regions with pins distributed everywhere and
with obstacles. it can generate paths with minimum number of bends) and in tbe capabil-
ity of finding a solution, if one exists: its weakness, besides the running time, is the depen-
dence on net ordering. In fact, the first nets to be routed. have a large region basically
empty to use, while the last nets to be routed find the region almost full. If the nets are
chosen in the wrong order. the last nets may not be routable due to the blockages created
by tbe previously routed nets. Several heuristics are available to speed up this algorithm

as well as 1o choose a good net ordering.

The Hightower algorithm is gridless in principle. It starts from both pins to be con-
nected and generates an horizontal segment and a vertical one of maximum extension
from the pins Once these four lines are generated. the orthogonal lines of maximum
expansion are generated next. If more than one orthogonal line can be found of the equal
maximum extlension. the one which is closer to the opposite pin is selected. This procedure
is iterated until two lines expanded from the two pins to be connected intersect. The
actual interconnection patiern is then constructed by tracing back the lines a1 their inter-

section points.

Note that the algorithm can be quite fast for simple mazes with a small number of
barriers and obstructions. while it may be slow for complicated regions. because of the
many lines that can be generated before an intersection s found. In addition. it is not

guaranteed to produce a solution. if one exists.

The contribution of Hashimoto and Stevens with their channel router is two-fold: i)
the abstraction of a routing problem which is simpler to solve than the general problem

stated previously: ii) an algorithm to solve the simplified routing problem. Many exten-

Newtion & Sangiovanni DRAFT

70

sions and improvements have been made to the criginal algorithms, but the concept of
solving the routing problem by "carving” simple routing regions has permeated routing

packages for all design styles for many years.

The basic assumptions in the ariginal formulation of the channel routing problem by
Hashimoto and Stevens are: (i) the routing region is rectangular with no obstructions and
with pins on two opposite sides: (ii) floating pins on the other two sides of the rectarigular
region are possible. These floating pins indicate the need to extend some of the nets outside
the channel; (iii) there are only two layers available for intercannections; all the horizon-
tal segments of the nets are routed on one layer, all the vertical segments on the other
(this assumption is called the wiring model); (iv) the pins are placed on a regular grid: (v)
the channel is subdivided in rows or tracks whose spacing is such that interconnections

placed on these tracks does not violate any design rule.

Saome of these restrictions have been removed often paying with the final quality of
the solution. The goal of channel routing is to complete all the interconnections in the
minimum number of tracks. The allowable configuration of the nets is either (i) a hor-
izontal segment in one layer, which is connected 1o the top and botiom pins of the net by
vertical segments in the other layer, 1o minimize the number of change of layers or (ii) a

set of horizontal segments joined by vertical segments (doglegs).

1f we define as density of a channel the maximum number of nets which crosses any
one column of the channel, then the best we can do with a channel routing algorithm
which satisfies the assumptions above, is to route the channel with a number of tracks
equal to the density of the channel. Interestingly. most of the best channel routers avail-
able today (Yoshimura and Kuh [YOS], Rivest[RIV], Burstein[BUR) and YACRI[REE])
behave well, ie.. in most of the cases they route channels in a number of tracks which is

close to density.

Newtion & Sangiovanni DRAFT

n

When pins are placed on all four sides of the channel. then the routing problem is
called a switch-bax problem. Some of the algorithms described above can be generalized 1o

route a switch-box. even though this problem is much more difficult.

Note that all the algorithms used for detailed routing use symbolic data, for example,
a channel router places horizontal segments with no vertical dimensions and with no
information about contact sizes. In general, a post-processor is used to replace the symbolic
data with actual geometries This post-processor may be intelligent, ie.. it can change
some of the interconnections to maximize the use of the layer with better electrical

characteristics and to minimize the number of contact vias,

5.2.4.2. Routing Region Definition and Ordering

As pointed out in Section 523.1, channel routers are most effective to generate com-
pact routing. Hence. the basic goal of any routing region definition and ordering scheme is
lo decompose the routing area and decide in w hich order the regions should be routed so as
10 use channel routers as much as possible. Note that in the case of gate-arrays and
standard-cells the floor-plan is such that all the routing regions are already defined 1o be
channels with pins on opposite sides. The real problem arises for the macro-cell design

style.

There are 1wo basic requirements for a routing region to be considered a channel: (i)
all the pins on 1wo opposite sides have 10 be fixed w hile the pins on the other two sides
have 10 be floating. (ii) once a channel has been routed. only the distance between the two
sides with fixed pins may be changed. This second constraint. also called rigidity con-
straint, is introduced 1o avoid re-routing a channel which has already been routed. Note
that increasing the relative distance of the two opposite sides does not change the difficult
part of routing. In fact. the updating of the interconnections after this move amounts sim-

Ply 10 extending the vertical segments connecting the horizontal segments 1o the pins.

Newton & Sangiovanni DRAFT

72

Assuming that all the modules are rectilinear (not necessarily rectangular), the rout-
ing region can always be decomposed into rectangles. This step can be carried out quite
efficiently by using sorting techniques on geometries as commonly done in computational
geametry(]

The most rigorous approach to channel definition and ardering is followed by Dai et '
al. in [DAISS] This approach can also be used as a framework for the work of others.
Here, routing regions are represented by walls. Walls can meet orthogonally either with a
*T" shape connection or a cross connection. Cross connections can always be represented
by “T" connections and hence will not be considered further. If each routing region
represented by a wall is to be considered as a channel, the constraints introduced above,
induce an ordering relation on the walls In particular, a wall which is the ®vertical”
part of a "T" connection, corresponds 10 a channel that must be routed before the cne
which corresponds to the "horizontal” part of the junction. In fact, if we route the region
corresponding to the "horizontal” wall in the "T" connections first, we have a set of pins
whose position is not specified, on one of the sides where fixed pins are located If the
"vertical” part is routed first. then the channel router specifies, when it terminates, the
exact locatian of the previously floating pins The connections then induce a precedence
relation among channels. If such a relation is acyclicie.. there is no “conflict", then there
exists an ordering of the routing regions so that each of the channels considered in the

sequence has fixed pins on two opposite sides and floating pins on the other two sides.

Some placement algorithms have the nice property that the relation defined on the
walls is always acyclic and they even provide the routing order. One such algorithm is
the min-cut algorithm presented in Section 522. In this case. each cut corresponds 10 a
routing region and the routing regions corresponding 1o the cuts identified by the leaves of
the binary tree constructed by the algorithm, are the first 10 be routed since they have

pins on fixed positions on the two sides facing the blocks separated by the cut. After the

Newton & Sangiovanni DRAFT

73

channels carrespanding 1o the leaves of the tree have been routed. the next level cuts
identify the channels to be routed next. The routing order is then completely specified by

the binary tree.

All the placement algorithms that yield an acyclic relation on the walls are said to
generate a slicing structure [OTT] Unfortunately. not all the placement algorithms yield
a slicing structure. Indeed. in same cases. an algorithm that generates always a slicing
structure may result in wasted area, especially in the case of non rectangular blocks In
this case, other algorithms that do not yield a slicing structure may be used and a cyclic
relation among the walls may be generated Several approaches have been tried 1o solve
this problem: some modify an existing placement to create a slicing structure, others define
routing regions which are more complicated than simple channels. switch boxes, L-shaped

channels. and route these to break cycles

5.2.3.3. Global Routing

Channel routing is the most effective way of routing regions. Unfortunately the
entire routing region of a chip is not a channel. We have described ways of subdividing
the routing regions into channels. Before applying the channel routing algerithms to the
problem, nets have to be assigned to channels. Global routing assigns nets 10 routing
regions, taking into consideration net length. the congestion of the routing regions. prior-
ity of signals. and electrical characteristics. It does not specifly the route followed by the
interconnections inside the routing regions. Global routing is very important 1o obtain a
good overall Jayout. In this section. we review briefly the main approaches. The excellent

review by Sadowska and Kuh([] can be consulted for additional information.

Global routing is used in all design style: gate-arrays. standard-cells and macro—ells.

The first mention to loose routing can be found in Nan and Feuer[].

Newton & Sangiovanni DRAFT

74

There are two basic approaches to global routing: one deals with the interconnections
one at a time, in this respect similar to the Lee algorithm, the other deals with the inter-
connections all at once. Of course, the second approach does not suffer from the ordering
problem and has a better "global” view of the chip. However, the running time can some-
times be prahibitive. '

The basic problem that a global router has to solve is to distribute the nets in the
available channels so that either the density of each of the channel does not exceed a
bound (gate-arrays) or the overall size of the chip is minimized. In the latier case. the
density of the channels is a variable to be determined by the router. In all the applica-
tions of global routing. it is assumed that, because of the quality of channel routers, the
detailed routing can be completed within the density of the channels or just above den-
sity.

A net-at-a-lime approach chooses a path by using shortest path algorithms that
penalizes paths for crossing congested channels. This strategy tends to congest fewer areas
and improve the performance of the chip. The cost function associated with each " seg-

ment” crossing a particular channel is usually expressed as

b
aL+2-m

where @ ,b and ¢ are parameters 10 be tuned for the particular application, L is the

length of the channel and T is the number of available tracks. Of course, T changes for

the channels after each net has been considered by the global router.

If the nets bave only two pins, then the approach mentioned above is straight-
forward. However. if the nets have more than two pins. then many possible interconnec-
tion topologies are passible. In fact, the net list specifies only that a set of pins have 10 be
connected but it does not specify in which order they should be connected. For example.
for the four pin net shown in Figure FIGNO the interconnection can be any one of the

patterns displayed. According to the policy followed by the designer, the geometries can

Newton & Sangiovanni DRAFT

75

be restricted to be Manhattan. The problem then is to find the best topology for each of
the nets to be routed. Following a shortest path algarithm between pair of pins does not
give an optimal result in general. The complication arises from the passibility of introduc-
ing additional "pins” in the interconnection. This problem is known as the optimal
Steiner tree problem. If the set of modules and channels is modeled as an undirected
graph, whose nodes represent the modules and whose edges represent the channels, then
the problem becomes the Steiner tree problem on graphs. Unfortunately Steiner tree prob-

lems are NP-complete and heuristics are commonly used]].

The other impartant approaches deal with the nets all at once. One approach formu-
lates the global routing problem as a mathematical programming problem: a 0-1 linear pro-
gramming problem. It is well known that this problem is also NP-complete and heuristics
have to be used to solve it in a reasonable time. One of the most interesting approaches is
to use a linear programming algarithm to find approximate solutions to the 0-1 problem.

and then round the solutions to obtain a feasible solution.

Simulated Annealing has been used by Vecchi and Kirckpatrick[] to solve the
mathematical programming problem. In this case. the cost function is equal to the sum of
the squares of the congestion for each channel. ie. the number of nets crossing that chan-
nel. In this way. the algorithm penalizes congested areas. The "moves' correspond 1o

switching one net from a path to another.

Burstein [BURSS] considers the global routing problem hierarchically. The chip is
first divided into four regions and the nets are routed in these regions. Then, each of the
- regions ix subdivided into four regions and the implications of the first routing phase are
propagated 10 the next level of hierarchy. The procedure terminates when the real rout-
ing regions are considered at the appropriate level of hierarchy. Marek-Sadowska[MARSS]
considers a similar approach where the hierarchy is traversed bottom-up instead of top-

down.

Newton & Sangiovanni DRAFT

76

In the gate-array case, if the constraints on density are not met, then a rip-up and
rercute phase is added at the end of the main procedure. This process has traditionally
been carried out by human designers with the help of a symbolic graphic editor. Rule-
besed approaches have been used by Marek-Sadowska [MAR] and by Goto et al. [] to iden-

tify the nets to be ripped and the ones to be re-routed.

$.2.4. Compaction

In any design style, basic circuit cells have to be designed and verified, either for
each design as in the case of full custom, ar once for gate-array design style, where the
designers responsible for the structure of the gate-array has to design the basic cell, and
for standard-cells, where those respansible for the libraries have to design the cells. These
cells may be simple logic gates, such as nand, nor gates, and flip-flops Alternatively. they
may be cells used in regular arrays, such as the one-transistar cells used in a Programm-
able Logic Array (PLA). which do not perform a complete logic function alone. The most
commonly used aid for the physical design of a cell is a mask-level digitization and

interactive correction program.

Some programs allow direct symbolic layout entry, using either fixed-grid[33-35] or
relativegrid[36-39]) schemes. With the fixed-grid symbolic approach, the grid is designed
to ensure all basic layout rules are satisfied upon data entry. For relative-grid schemes, it
is necessary 10 modify the layout such that all layout rules are satisfied. Programs which
carry out this operation are often referred to as compactivn programs since they also

attempt to reduce the area occupied by the circuit.

Once a symbolic layoul has been entered into the computer, it may be compacied by
adjusting the size of non-critical components, such as interconnections. under the con-
straints imposed by the physical and electrical layout rules of a given technology. Hence.

this approach allows symbolic layouts to be updated more easily than physical ones as

Newton & Sangiovanni DRAFT

77

design rules or technology change. The FLOSS program[36). developed at RCA for the

compaction of circuit cells. paved the way for the development of transistor-level compac-
tion programs for ICs

It can be proved that the two-dimensional compaction problem is NP-complete. For
this reason. the algorithms used for compaction are heuristic and generally perform x and
y axis iterative compaction steps until all layout rules are satisfied and no furiher area
reduction can be achieved. Recently there have been efforts to develop algorithms that
could perform x and y axis compaction at the same time [Wong] but the results obtained

are not suitable for a practical implementation.

Local modifications to the layout can be perfarmed to allow further compaction.
These modifications generally consist of distortions 1o interconnect, such as the introduc-
tion of "jogs”. or the rotation of transistors and cellf32.37). Critical path algorithms and
force-directed heuristics are used to determine the best location for the introduction of
these layout madifications. To ensure the layout is least sensitive 10 processing tolerances.
non=critica] components must then be placed midway between constraints to maximize

yield.

The use of an hierarchical description of the circuit can be exploited o reduce the
analysis time by compacting the cells independently. The resulting compacted cells may
then be combined and compacted to form the circuit. While this may not result in an

oplimal area utilization. the primary objective of error-free layout is achieved.

Lower-bound constraints on the positions of the elements of the symbolic lavout
may not be enough to capture the constraints on the cell layout. For example. upper-
bound constraints may be necessary 10 express constraints on liming performance of the
circuit [Wong trans on cad]. The inclusion of both upper-bound and lower-bound con-

straints may lead to over-constrained problems that do not have a solution.

Newton & Sangiovanni DRAFT

~ Nil.

.
(4]

78

More complex constraints need to be addressed by future compaction programs. In
fact, high performance digital circuit layout as well as analog circuit layout may réquire
that two signal paths are of the same length. This implies that compaction algorithms

that can accommodate couplings between constraints have to be developed.

53. Logic Synthesis

The synthesis of a circuit — deciding how to partition the logic, in what form to
implement specific pieces of the logic. and what layout-style to use for implemeniation —
is still a largely manual process. For digital circuits separated into data-path and.control
circuits, the control logic partion of the chip is often the most time-consuming piece 1o
design. It is generally on the critical path for timing, and, because of limits in design time,
is often implemented in a very inefficient way. Automated syntbesis of the comtrol logic
blocks of a chip. optimized for speed and area, provides one of the major challenges facing
CAD today. In this section. the state-of-the-art for the synthesis of combinatitnal and
sequential, two-level and multi-level logic synthesis is presented. Areas which: provide
the most potential for improvement are presented and recent work in this area is

described.

5.3.1. PLA-Based Synthesis of Control Logic

Programmable Logic Arrays (PLAs) are perhaps the most popular slructur‘é"élf or the
implementation of 1wo-level logic functions. Most modern VLS] micromocei'-?orshrihclude
large PLAs to implement the datapath control, as well as a variety of smaller PLAs for
controlling other activities on the chip. Other chips, such as memory management circuits

often consist almost solely of PLAs.

Many PLA layout generators have been written based on simple translations of the

boolean equations into layout, e.g. [LANS1, GLA80] However. a Straight-forward irﬁple-

Newton & Sangiovanni DRAFT

- YSLNT)

TOET.

79

mentation of the logic entered by the designer may result in PLAs which are large and. as

a result, have poor performance in terms of speed and power.

5.3.1.1. Combinational Logic

It is clear that PLA optimization is necessary to obtain an effective implementation.
Tbe optimization steps involved in the transformation of combinational logic into the lay-

out of a PLA are:

(1) Logic-level optimization which aims at the reduction of the number of product terms

needed to implement the function.

(2) Topological optimization which aims at the elimination of unused space inside the

core of the PLA, (e.g.. folding and simple partitianing).

(3) Layout and circuit optimization. which attempts to perform optimal sizing and place-

ment of drivers, loads, core cells. and additional ground lines.

Over the past few years. a great dea) of atilention bas been paid to logic minimization of
two-level logic. When the logic function is implemented using a PLA, logic minimization
both reduces the area occupied by the PLA and improves its electrical performance. The
algorithmic complexity of complete logic minimization is very high and so approximate
Jogic minimizers are used when medium and large logic functions have 10 be minimized.
MIN][] developed by Hong et al. at the IBM TJ. Watson Research Center was the first
efficient heuristic logic minimizer to provide quality minimization. Recent research on
approximate logic minimization algorithms has produced an efficient new logic minimizer,
Espressol]l-C [BRA84 RUDSS). Espressoll-C has been found 1o be very effective in minimiz-

ing complex logic functions while consuming a reasonable amount of computer resources.

Once the logic minimization is complete. topological optimization can be performed 1o
minimize the area of the core occupied only by interconnect which does not contribute

directly 1o the implementation of the logic function. The objective of folding is 1o

Newton & Sangiovanni DRAFT

80

determine a permutation of rows and/or columns of the array which permits a maximal

set of column pairs to be implemented in the same column or row of the logic array.

The first optimized PLA synthesis system described in the literature was the
PRESTO/BLAM/PLAID{HOF81] system developed at Berkeley in 1980. This system incor-
porated the two-level logic minimizer PRESTO[BROS1], a folder, BLAM and the layout
program PLAID. The PRESTO program was later replaced by an improved optimizer, POP.
The system produced NMOS simply-folded PLAs. The interface between the logic designer
and the system was EQNTOTTICMES1], a program which accepts an arbitrary combina-
tional logic function expressed in farms of logic equations and produces a truth table for
PRESTO. A system developed at the IBM TJ. Watson Research Center, written in APL,
included similar optimization steps (folding and minimization) with in addition a parti-
tioning capability. The logic minimization MINI[HON74] was part of this system.

A mathematical formulation of the optimal folding problem was postulated and new
folding algorithms were developedHACB80] that yielded better results than the ones
obtained by the algorithms initially included in BLAM Research at Stanford culminated
in the development of a PLA synthesis system whos input is a high level functional
language, DDL [KANS1] PLA minimization was performed by SPAM and the topological
optimization was accomplished by PAPA, a program which decomposed large PLAs in

smaller ones.

Many folding algorithms were developed following the mathematical mode)
presented in [HAC80). eg. [SUW81. CHUS2, EGA82, GRAS2, HU83]. More recently. a
new folding technique called multiple folding [DEMS3] was developed which can reduce
substantially the area used by a PLA and was incorporated in the program Pleasure. The
PLA synthesis system PLASCO[BARSS] includes a folding program which can also gen-

erate multiply folded PLAs.

Newton & Sangiovanni DRAFT

81

53.1.2. PLA-based Finite-State Machines

Recently, sequential circuits have been implemented using regular arrays In particu-
lar, PLA-based Finite-State Machines (FSM) bave been used in the design of several
micro-processors and telecammunication circuits. Such circuits use a PLA to implement
the combinational part of the logic and the secondary outputs are fed back to the secon-
dary inputs of the PLA via clocked latches. For a given set of primary (external) inputs

and a required set of primary outputs, the objective is to:
(1) choose the number of secondary outputs to be fed back. via the laiches, as inputs and

(2) assign values to these outputs (logic-'1" or logic-0") for each state specified in the FSM
description
such that the total area occupied by the combinational logic and/or the critical-path delay
through the PLA are minimized. The ‘textbook’ approach to this problem. originated in
the days of discrete SSI circuits. is to choose the number of secondary variables so as 10
minimize the number of latches used. By doing so. one minimized the number of expen-
sive IC packages needed for latches. To reduce the amount of combinational logic. various
heuristic schemes were used. The most common approach was to used a ‘distance-one’
state encoding for adjacent states. Unfortunately, such a state-encoding strategy does not

work well for PLA-based FSM designs.

To solve this problem optimally for PLA-based designs. an eflicient approach 10 siate
assignment is needed. Many algorithms have been propased in the past. eg. [DOLod,
HAROG1] 10 perform oplimal state-assignment. However the resulis obuined were not satis-
factory because of the complexity of the algorithms suggested or of the poor electrical per-
formance of the Pl.LA used to implement the resulting combmnational part of the FSAL A
new approach for performing an optimal assignment of binary codex 10 the inputs of the
PLA implementing the combinational part of the FS\. has been developed in [DEMA4].

The program KISS [DEM84b] was developed 1o determine a stale-assignment based on this

Newton & Sangiovanni DRAFT

82

algorithm. The advantage of such an approach over a conventional design method is illus-
trated in Figure 2. In Figure 2(a). the criginal FSM is shown with a 5-bit, minimal-length
state vector (and three additional outputs). In a 3u P-well CMOS process. this circuit
occupied 0.75mm 2. After processing the FSM description using KISS, a 9-bit state vector
was chosen. This resulted 'in four additional output columns but reduced the overall area
to 039mm? by reciucing the number of product terms substantially, as shown in
Figure 2(b).

The KISS approach is successful, but an extension to this technique is needed to cap-
ture the full aspect of the optimal state-assignment problem. The algarithms for folding
have also to be modified if the PLA to be folded comes from the implementation of the
combinational part of a FSM, because additional constraints are created by the presence of

feedback registers. New algarithms are needed to cope with these constraints

Further work is needed to partition a large FSM into smaller machines where the
intermediate output values are encoded. Though this process may result in more stages of
logic, in many cases it is expected that the increase in clock speed that can be achieved
using the small PLAs will more than compensate for the additional clock cycles caused by
more stages. Once again, algorithms have been proposed in the past [HAR66). but the tech-
nological constraints and objectives which drive the decomposition have changed drasti-

cally so as 10 make the existing algorithms inappropriate.

Newton & Sangiovanni DRAFT

83

Newton & Sangiovanni

DRAFT

84

Figure 2. FSM Synthesis using KISS: (a) The hand-designed circuit
(b) After KISS redesign.

5.3.2. Multi-level Synthesis

As seen in the previous section. a great deal of work has been done to implement
combinational logic in optimal, two-level form using the PLA. However, some control
logic has a two-level representation which can have as many as 2" product terms, where
n is the number of primary inputs of the logic, even after minimization. In addition,
even if a two-level representation contains a reasonable number of terms, there are cases
in which a multi-level representation can be implemented in much less area and gen-
erally as a much faster circuit. In fact, a two-level logic representation can be viewed as
a special case of general multidevel representations. Hence, a general framework for con-
trol logic design should offer multi-level synthesis 1ools which are able to select a two-
level implementation wherever the two-level f orm is more effective in terms of area
and/or speed To be able to explore the design trade-offs such a system should offer a
variety of both electrical design style (e.g. Domino logic, static CMOS) and layout design
style (eg. Weinberger array WEI66). gate matrix [KRA 82] standard cells, and gate-arrays)

alternatives.

Several sysiems are being built for the design of control Jogic using multiple levels
of logic. The precursors in multi-level logic synthesis are 1wo sysiems developed at IBM:
the IBM Logic Synthesis System (LSS) [DARS4), has as larget technology a variety of
gale-arrays and has been extended 1o standard cells and 10 CMOS dynamic logic: the York-
"town Silicon Compiler [BRA84b), has Cascode Voliage Switches [ERD84] as its target tech-
nology: and the MAMBO system[HOF85) uses Domino Logic. AT&T Bell Laboratories
with the FDS system, NTT with the Angel system, NEC and Hitachi. with the POLARIS
Sysitem were all developed with standard cells and gale-arrays as tlarget technologies.

Only recently, electrical consideration have been taken into account during the synthesis

Newton & Sangiovanni DRAFT

85

process, MAMBO developed at the University of California, Berkeley is an example.
For multi-level design, there are two basic approaches to the logic optimization step:

(1) Global optimization, where the logic function is re-factared into an optimal multi-
level form witbout considering the form of the original description (e.g. the York-

town Silicon Compiler[BRA84b). part of Angel[HOS84). and FDS[DUS84]).

(2) ‘Peepbole’ optimization. where local transformations are applied to the user-specified
(or globally-optimized) logic function (eg. a part of Angel, LSS[DARS4],
MAMBO[HOFS5)).

Some global optimization algorithms were proposed in the past (e.g. [ASH57]) 10 factorize a
Boolean function, but these techniques required an exhaustive search which is prohibi-
tively expensive for the complexity of control logic designers are interested in today.
Some other algorithms suffered from the lack of understanding of the technological con-
straints associated with particular implementation of the logic. New algorithms have been
proposed by R. Brayton and co-workers [BRA84] which are effective in partitioning com-
plex logic functions and can take into consideration the technological constraints of a par-

ticular implementation.

The Logic Synthesis System of IBM [DAR84) uses a prototype expert system Lo
accomplish the mapping of combinational logic in random form (from an initial "high
level” description) into a gate array implementation. The LSS system has been very suc-
cessful and was used for the design of a number of circuits in the recently-announced
IBM3090 computer. The local transformations it uses are quite simple and relatively few
" in number. The transformations used for NAND gates are summarized in Figure 3. Such
local approaches, as used in LSS, tend to be faster than the global schemes but they are

somewhat limited in their search for a better design.

Newton & Sangiovanni DRAFT

86

Figure 3. Local transformations used by LSS for NAND structures

5.3.3. Synmthesis from High-Level Behavioral Description

The translation from a behaviaral description 1o a register transfer level description
involves architectural decisions that have great impact on the final quality of the design.
The difficulty stems from the large number of constraints, design objectives and design
configurations to consider. In addition, it is very difficult to evaluate at this stage the

_ effect of an architectural decision on the speed, power consumption and area of the chip.

A key issue in behavioral level synthesis is the selection of the language used 1o
describe the design. The language must be concise and have high level constructs to
express compactly the intent of the designer. High level programming languages such as

Modula. PL/1 and concurrent Pascal have been used to describe designs at behavioral level.

Newton & Sangiovanni DRAFT

87

Special purpose languages such as the ISPS language developed at CMU[] and the MacPitts
language[SOU83] have also been developed These languages are powerful enough to

allow the description of existing computers in anly a few pages.

ISPS is the input to the CMU Design Automation System{THO83, THO81] and the
MacPitts language is the input 10 the MacPitts silicon compiler[SOU83] The two systems
differ radically in that the CMU system does not follow the "style” of the input language
program for implementation while MacPitts implementations follow closely the style of
the input description.

In the CMU system, the ISPS input is translated into an internal, data-flow represen-
tation called Value Trace (VT). which is then used for the synthesis process. The VT
representation depends on the ISPS "programming” style of the designer, but to optimize
the final result, such dependency should be minimized. In fact, in this system it is
assumed that the goal of the designer in describing the design a1 the behavioral level is
compactness and clarity more than the optimality of the synthesized system. Thus. the
VT representation is manipulated using techniques similar to those used in optimizing
compilers{].

The next step. the mapping of the VT representation into an architectural represen-
tation. is the core of the synthesis system. Many approaches have been tried by the CMU
group. some involving algorithmic approaches such as EMUCS[THO83] and Facet[TSE83).
some involving Know ledge-Based Expert Systems such as the Design Automation Assistant
(DAAYKOWSS5] and the Sugar sysiem under development[DIRS5] (see the Expert Sysiem
Window for more details). The architectural description is still technology independent
but is selected with an eye on the technology that may be available for the design. The
components of this description are modules. e.g. registers. operators. memories, multiplexers
and buses, links and symbolic microcode that describes the conirol structure of the design.

The selection of the architecture is either accomplished with algorithmic techniques. e.g.

Newton & Sangiovanni DRAFT

-

i

88

graph thecretic algorithmsTSE83] or with a set of rules embtedded in an expert
system{KOW84]

Once the architecture has been specified, the modules have to be bound to com-
ponents available in the selected technology and the microcode bas to be implemented
either with a PLA, a microprogrammed controller or random logic. This step is accom-

plished by the module binder and the control allocator.

The module binder selects technology dependent cells stared in a library to imple-
ment the modules specified by the synthesis tools. The control allocator determines the
control signals that drive the data path. The output of the control allocator is either a
PLA-format such as the one used by the Berkeley PLA tools or a micro-programmed-style
output for an AM2910 microenginelKOW85).

The MacPitts input description is compiled into a data path and control by replacing
the language constructs with hardware. The control part is expressed as a finite-siate
machine and implemented with a Weiberger array. The data path is synthesized using
basic one-bit units called organelles. Operations which are specified in the input as mutu-
ally exclusive are implemented in parallel. ie., hardware is generated for all the opera-
tions which can be done in parallel, while operations which are not mutually exclusive
are implemented using as much as possible hardware already implemented for other
operations. It is clear that if the input description specifies more operations as mutually
exclusive. the execution of the operations is faster but more silicon is used. Thus, the user

has some control over the hardware generated by the silicon compiler. As pointed out

- before. the fixed floor-plan and design style for the control unit has resulied in silicon

implementations that are not as compact and efficient as human designs.

Newton & Sangiovanni DRAFT

89

5.3.4. Procedural Design and Module Generation

In recent years, the notion of procedural circuit design|ref] has emerged as a key
component in the design process. The use of procedure. rather than just graphics (or data).
for describing IC designs was pioneered at Caltech [ref] and applied later at MIT in the
DPL projectiref] These efforts, and others, have inspired a large number of projects at
University and Industrial sites for in-house use. The term silicon compiler is often associ-
ated with procedural design? and a number of new companies are advertising silicon com-
pilers. Unfortunately. the maprity of systems offered so far do not offer the general user
a procedural design capability. Rather, they can be characterized as cell-based systems
where the circuit building-blocks are parameterized cells. These cells can be assembled in
a variety of ways, depending on the design style the “compiler” is using.

True procedural design. where the IC designer can write programs which., when
executed. produce layout is still of key importance to the productivity of the custom IC
designer. Silicon Design Lats offers a procedural Design system based on their L’
languagelref]. which is an evolution of the 1" language. developed at AT&T Bell

Laboratoriedref].

Many of the early procedural design systems had limited success for a number of

reasons:

® The relationship between graphics and procedure was not exploited sufficiently.
Graphics and procedure are generally treated as disjoint descriptions of the design.
The graphical mask layout was the result of the procedure, rather than an active

part of it.

® Verifying the correctness of a procedurally generated design is generally performed

al the mask layout level. At thal point. no correspondence between the actlive

2 The 1erm was first used at Caltech 1o describe the early procedural design work there.

Newton & Sangiovanni DRAFT

90

procedure which created an object and its geometrical layout is maintained. As a

result, debugging the design is very difficult.

® Often the designs produced by the early systems did not achieve high density. high

performance, or meet power requirements.

Another way of reducing the potential for errors, as well as ensuring the technology-
parameterization necessary at the lowest level of design, is to have the procedural design
system generate symbolic layout rather than detailed geometry. A spacing programlref),
or constraint-solver[ref]. can then be used to guarantee a layout-rule-correct design and to

convert the symbolic layout to mask artwork.

6. SUMMARY

As described in this paper, computer aids have been used for both the design and
verification of electronic systems for many years priar to the introduction of commercial
ICs in the early 1960s. These tools have found their way into virtually every aspect of
the design of such systems, from IC process technology to the design of complex computer
architectures. Today, it would not be possible to design a complex IC without CAD tools
‘and we believe soon these tools: for data management. verification. and synthesis; will be
as significant than the underlying semiconductor technology in differentiating products in

the marketplace.

The use of CAD in IC design is now a very broad and very deep subject. While it
was not possible to go into detail in this paper, we have indicated the history of CAD for
IC design. the state-of-the-art. and the present directions for future work. CAD is now a
large industry and is growing rapidly. It has become a relatively sophisticated industry
and is staying abreast of developments in computer science as well as computer architec-
ture and IC design. As a result, the JC CAD industry is setting a direction for other CAD

industries, including mechanical and board-level CAD.

Newton & Sangiovanni DRAFT

Newton & Sangiovanni

8. REFERENCES
TO BE PROVIDED LATER

91

DRAFT

-

92

WINDOW: An Historical Perspective of CAD for ICs

Since the advent of the first IC, the evolution of computer aids for IC design has
occurred in an aed hoc manner. In most cases, computer programs have been written to
solve specific problems as they have arisen and very few truly integrated Computer-Aided
Design (CAD) systems exist for the design of ICs. Most CAD systems currently in use for
the design of complete ICs consist of a loose collection of programs. requiring a large col-
lection of data formats and often requiring manual intervention to move from cne pro-

gram or computer system to another.

The first digital ICs were available commercially in the early 1960’s and, in retros-
pect. it is surprising how little the computer was used in the design of IC's prior to 1980.
Early circuits were sufficiently small that mask patterns could be drawn by hand on
rubylith. and then photographically reduced to generate the IC masks directly. However,
for the verification of the function of the circuit, simulators proved quite useful. Hence
initial work in the mid-1960's focussed on the development of device analysig{??] and cir-
cuit analysis??] techniques. These circuit simulators were originally developed for the
analysis of nonlinear, temperature, and radiation effects in discrete circuits and it was not
until the early 1970’ that circuit simulators suitable for 1C analysis became generally

available[??].

As the complexity of the circuits increased, industry turned 1o the computer to store
integraled circuit mask layout data: the arrangements of polygons that would be used to
define transistors and interconnect on the final chip; and 10 produce the masks required for
manufacture. Systems for layout digitization. where the Jayout is first drawn by hand on
sheets of Mylar and then entered into the computer using a tablet and a puck. and interac-
live correction of the layout data. found extensive use by the early 1970s. However. it

was not until the mid-1970's that programs for checking the physical layout rules for the

Newton & Sangiovanni DRAFT

93

circuit (LRC) began to find widespread use[??] These programs process the geometric
descriptions of the layout and check to make sure that layout rules. such as minimum
spacing between adjacent polygons or required enclosure of one polygon by another, are

met.

By 1975 it had become clear that computer-aids were a necessity in the design of
complex integrated circuits, both for physical and for functional design and verification.
Until then, the layout of an IC and its transistor-level schematic diagram bad been quite
separate. In the late 1970's. computer programs became available for such tasks as extrac-
tion of transistor-level schematics from IC artwork data[??} recognizing transistors and
interconnect from patterns in the artwork data, connectivity verification(??}: comparing
the transistars and their connections expressed in a schematic diagram with the connec-
tions extracted from the artwork data, and even extraction of gate-level netlists from the
transistor list{??] These programs were loosely-coupled and were often incompatible with
one another. All of the early tools were developed with a "batch” computing environ-
ment in mind. None of the tools address the problem of design data management (other
than for the data they deal with directly) and tools from different vendors typically use
different input and output formats. The task of coordinating the tools and integrating
them into a particular design flow fell largely to the IC house: largely to the central. or
corporate. CAD group; and this task has traditionally been responsible for a lot of their
headaches. In fact. the only fully integrated CAD systems that are in general use today
for the design of complex ICs are those for some highly-specialized design approaches. such

as the standard cell and gate array design styles.

Prior 10. and in parallel with. the development of computer-aids for IC design. a
great deal of work has been ongoing to aid the digital svsiem designer, particularly as
applied to printed circuit board design using standard components. In particular, algo-

rithms and programs for the optimal placement and routing of cell??], logic simulation

Newton & Sangiovanni DRAFT

94

techniques{??]. and test grading[??] bave resulted in sophisticated design packages.

As the complexity of 1Cs and 1C-based systems increased, these two worlds began to
merge in the late 1970s and early 1980s. In addition, the IC industry saw the introduc-
!.ion of the first personal workstation-based interactive mask layout and schematic entry
systems. The rapid drop in price/performance provided by these systems bas had a
dramatic effect on the IC design community, as well as causing a great deal of confusion!
The additional advantages of predictable respanse time, communication among designers,
improved user interface to the CAD tools, and the wide range of possible
price/performance options has accelerated the acceptance of these systems. But the
advent of the workstation had not been without its drawbacks. Early systems were often
clumsy to use and did not live up to many of their claims Over the past few years, how-
ever, workstation-based CAD systems have improved dramatically and are now available
on machines from a standard personal computer 1o advanced. color-display workstations
with the power of a superminicomputer of just a few years ago. There is no question that
workstations for CAD are here to stay. With such rapid improvements in hardware. it
has been difficult to keep the CAD tools portable enough to keep up. Workstation-based
CAD vendors have either committed their systems to a particular manufacturer or have
chosen a portable operating system. such as UNIX, in which to develop their tools. In that
way. provided UNIX is available on the new hardware, the job of porting their software
has been made considerably easier. Other techniques that have been used to ease portabil-
ity while minimizing loss in efficiency include the use of portable programming environ-
~ ments such as Mainsail{??] and Lisp[??}.

With the advent of low-cost. high-resolution graphics, another portability issue has
emerged — that of user interface. Early implementations of window-managed user inter-
faces have involved customization of the code down to the assembly language level. In

some cases, hardware manufacturers have provided efficient interfaces that have a com-

Newton & Sangiovanni DRAFT

95

mon program-level interface to a variety of display devices However, the interface is
of ten proprietary or, if defined in terms of a graphics standard such as CORE or GKS, the
interface is often too slow or inadequate for a window-managed environment. Recent
University developments, such as MIT Project Athena and the CMU Spice project. may

provide the basis for future portability in this area.

Newton & Sangiovanni DRAFT

96

WINDOW: Managing CAD Development

Far many years, most companies have worked with a central, or corporate, CAD
group supparting the entire company, or business unit, CAD needs. Occasionally, the CAD
is distributed and a CAD team is responsible for all CAD aspects of a single design project.
In either case, a major dilemma is always the "buy versus build” decision. Most companies
would buy if they could and only build what they have to but it is a common problem to
find a too! that isn't "quite right” or to buy the tool only to find it does not perform as
advertised.

Since the late 1960's, all large IC companies and most small companies have relied on
the central CAD group to supply CAD support for a large number of design teams It was
often felt that since the computers themselves were expensive, often corporate-level
resources. the group which supports design aids on such a facility should also be central-
ized. The group would support common tools, such as circuit simulators and layout-rule
checking programs, for the entire company. They would also develop new and innovative
tools to support the particular design styles favored by their designers. Unfortunately,
this often lead 10 a "computer center” style of relationship between the IC design teams
and the central CAD group. On the one hand, the designers felt that by having access to
the CAD code themselves, with "just a few minor changes™ a 100l might do the job they
wanted. On the other hand. the central CAD group was well aware that if they released
the source to each design group. they would be asked — no, they would be expected — 10

' support the resulting variani tools, tools they had no part in creating.

There have been many battles between a design team and the central CAD group.
In recent years. design groups have of ten taken matters into their own hands by forming
small. CAD support teams for each design under way. These teams are responsible for

bringing together the appropriate CAD technology for the design method in use and for

Newton & Sangiovanni DRAFT

97

building a CAD system to support the design. This generally involves obtaining tools
from the central CAD group. buying some tools, and. generally as a last resort, building
some tools of their own. While this approach often leads to a satisfactory solution for the
design in progress, unless the design framework is managed carefully, it often leads to a
CAD system of tools which is difficult to support and therefore cannot be used in other,
similar design projects.

In many ways, the relationship described above is a no-win situation from both sides.
On the other hand. a central CAD group has a very important role in a company which
has a number of on-going. state-of-the-art design activities. It is certainly the best place to
support common, basic tools such as circuit simulators, layout-rule checkers. and mask pat-
tern generation software. It can also play an important role in the dissemination of infor-
mation about new tools or a new use of an old tool. When one design team completes a
successful design project. the central CAD group can often follow up on the use of CAD
tools in that project and make the successes and pitfalls of the design style available 1o
other. new IC design projects. Today. such information is often lost. rediscovered with

each new design. or carried to the next project by the senior designers in the team.

Perhaps the most important role a central CAD group can play is the maintenance of
the design f ramework, described in detail in Section 2. In its simplest terms. this involves
the specification and support of standard interfaces between tools. Even today. these inter-
faces are often textual or binary interchange formats.” such as the Calma GDS2 format
for geometric data or the Spice2 input format for netlist data. Often there are many, occa-
sionally synonymous. formats in use within a large organization — again resulting in a
nightmare for the central CAD group. New formats. such as EDIF[??]} and the VHDL[??].

promise 1o reduce the complexity of this problem.

However. a circuit design framework can be far more powerful. It can include both

common data management tools which support interactive design styles, as well as a com-

Newton & Sangiovanni DRAFT

98

mon user interface. Such design frameworks are just beginning to be developed. as
described in Section 3.

In the late 1970s and early 1980s, a number of new companies were formed, often
l.wy frustrated designers who saw the opportunity that low-cost computers provided, to 7
address these problems. These companies focussed on data management, integrated user
interface, and a selection of supported tools. Often they focussed their efforts on a partic-
ular segment of the market. logic schematic entry and associated logic-level tools proved
to be the most successful as they addressed both custom and semi-custom IC designers and
board designers alike, therefare providing a much larger market to sustain growth. In
contrast o earlier offerings, these systems provided interactive, graphical entry of the
design data and they promised an interface to 2 wide variety of tools, as well as the abil-

ity to store and retrieve design data.

These companies have been joined by many others and the systems have broadened
in terms of the design data they can deal with. At the 22nd Design Automation Confer-
ence in June. 1985, over fifty companies were offering CAD systems which ran on
machines from personal computers to high-end mainframes. The systems showed a
correspondingly broad range of capabilities. However, while the popular press promises
the designer a "personal, integrated workstation,” such an environment is still not cost-
effective. The more useful workstations today are still relatively expensive — too expen-
sive to provide a worslalion per designer. A recent survey of designers and CAD
managers indicated that on average an engineering workstation is being used to support
75 engineers. two years from now, the anticipated average is 2.5 engineers per worksta-
tion. Bringing the cost of these workstsions down is an important challenge 10 the wors-
tation vendor. In many cases the design systems run on proprietary hardware, where a
full range of cost/performance and multi-user systems is not available, or use proprietary

networking technology, making it difficult to integrate such systems smoothly into a com-

Newton & Sangiovanni DRAFT

99

plete office environment. Most engineers continue 1o require a computer terminal or PC
with which to perform their work. Another interesting aspect of the survey was that
while engineers felt that improving the quality of schematic entry is most important to
enhancing their productivity and that document preparation tools (for writing reports.
élecu-mic mail, preparing presentations) was of least importance. they also agreed that
while on average they spent 3 hours/week entering schematics, they spent a full 2

days/week using document preparation tools!

While the central CAD group plays an important role in the design process, care
must be taken to avoid the CAD rool under development becoming the focus of the group.
rather than a successful chip on first silicon being the ultimate goal of the CAD group as
well as the design group. Often. a central team is more concerned with squeezing the last
microsecond out of a logic simulation, rather than making the designer interface easier 1o
use or offering the analysis options of most use during the design. Management plays the
most important role here. by allocating some chip design responsibility to the CAD group.
For example. by assigning a specific CAD individual to the task of supporting interactive
routing aids for a specific. custom IC designer. a synergistic effect is achieved The designer
is pleased with the support be or she is receiving, while the CAD engineer sees the direct
benefit of his or her work. The resulting tools designed in this way are generally far

more useful than those designed from an initial "specification.”

Newton & Sangiovanni DRAFT

100

WINDOW: Simulated Annealing

Simulated annealing is a relatively new approach to combinatorial oplimization prob-
lems. The results that have been obtained on a number of layout problems, from parti-
tioning. to gate-array placement, from floor-planning to global routing. have been so

interesting that a fairly detailed explanation is warranted here.

Heuristic algerithms are used to solve NP-complete problems approximately, ie. to
find "good” solutions which are “close” to the optimum. These algorithms explore a
discrete space of admissible configurations, S . in a deterministic fashion. Starting from an
initial configuration j o, a sequence of configurations is selected and compared until a satis-
factary one is found. The rules according to which a configuration is generated and the
lermination criteria. specify the algorithm. Often the search terminates at a local
minimum, jie. with a configuration ; such that if we denote by ¢ (j) the cost of j and
by S (j) the set of configurations that can be generated from j by the algorithm in one
step. ¢ (})X (j)Vjes (}). The local minimum reached can be quite far apart from
the global minimum measuring their distance with the difference in cost. This is often

due to the fact that heuristic algorithms are "greedy”, ie.. only moves which reduce

"maximally” the cost are accepted.

To avoid this behavior., randomizing algorithms can be devised which generate the
next configuration randomly. The configuration is recorded as a new temporary solution
if its cost is lower than the present temporary solution. The algorithm terminates after a
certain number of moves. Randomizing algorithms perform well if the number of
optimal solutions is fairly high. since the probability of stopping at an optimum is propor-
tional 1o the ratio between the number of optimal configurations and the number of total
configurations. Note that randomizing algorithms can "climb hills", ie., they allow moves

that generate configurations of higher cost than the present one are accepled.

Newton & Sangiovanni DRAFT

101

Simulated annealing as proposed by Kirckpatrick et al. [KIR83]. allows " hill climb-
ing" moves but these moves are accepted according 10 a certain criterion which takes the
cost into consideration and not blindly as randomizing algorithms. The controlling
mechanism is based on the observation that combinatorial optimization problems with a
large configuration space exhibit properties similar to physical processes with many
degrees of freedom.

In particular, bringing a fluid into a low energy state such as growing a crystal, bas
been considered in [KIR83] similar to the process of finding an optimum solution of a com-
binatorial optimization problem. Annealing is a well-known process to grow crystals. It
consists in melting the fluid and then lowering the temperature slowly until the crystal
is formed The rate of decrease of temperature has 1o be very low around the freezing
temperature. The Metropolis Monte Carlo method can be used to simulate the annealing
process. It has been proposed as an effective method for finding global minima of combina-
torial optimization problems. This method when applied to combinatarial optimization
generates moves randomly and checks whether the cost of the new configuration satisfies
an acceplance criterion based on temperature. If the cost decreases. the move is accepted 1f

the cost increases. then a random number between zero and one is generated and compared
, = Ac, . . , .
with f (A, T)= exp(——T—) where Ac,, is the change in cost obtained by moving

from configuration ¢ to j and T is temperature. the controlling parameter. If the ran-
dom number is larger than f . the move is accepled. otherwise the move is discarded.
Note that the higher the temperature is. the more likely it is that a "hill climbing” move
is accepled. Note also that "hill climbing” moves are less and less probable as the tempera-
ture is decreased. A cerlain number of moves are generated and checked before a decrease
in temperature is allowed. The initial tlemperature. the number of moves generated at each
temperature and the rate of decrease of temperature are all important parameters that

affect the speed of the algorithm and the quality of the final configuration. Experimental

Newton & Sangiovanni DRAFT

102

results, eg. [KIR82, VBC83, SEC84, OTT84), show that Simulated Annealing produces
very good results when compared to other techniques for the solution of combinatorial
optimization problems such as those arising from the layout of integrated circuits, at the
expense of large computer time (a 1500 standard cell placement problem can take as
much as 24 hours of a VAX 11/780 [SEC84).

A mathematical analysis of the algorithm is very important to understand the essen-
tial features which make the algorithm work well and to suggest techniques for control-
ling its operation. Markov chains can be used as a mathematical model of Simulated
Annealing. It has been proved that under certain assumptions on the number of moves
generated by the algorithm at each temperature, Simulated Annealing produces asymptoti-

cally the optimum solution of combinatorial optimization problems with probability one.

Newton & Sangiovanni DRAFT

103

WINDOW: Heuristic Programming

Over the past two decades. many algorizhmic-based tools have been developed for
the analysis of ICs. For example. the simulators. layout-rule checkers. connectivity
verifiers described in tbe text are all part of a broad-based IC design system. However,
many of these tools must process a large number of ‘special-cases which are exceptions 10
the basic algorithm. It is often the processing of the special cases that dominates the run
time, such as for connectivity verification described in Section 4. In other situations, 2
simple algorithm may not be known for a particular problem but a collection of simple
peuristics may be used. such as for checking for more complex electrical rule violations in
the design or for selecting a structure from a behavioral specification in the synthesis pro-

cess. These problems are amenable to the relatively new field of heuristic programming.

Over the past few years, 2 number of both synthesis and verification tools have
been developed which rely on the use of such an approach in the form of Expert Systems.
In general, it is our conjecture that if a satisfactory algorithmic solution 1o a problem is
known it should be used. When such a solution is not known. or where a problem has
many "special cases’ which dominate the run time of the algorithm. the problem is 2 good
candidate for an cxpenfyslem-based approach. For many JC/CAD problems. a mela-system.
involving the use of an expert system controlling the application of powerful. algorithmic

tools. will probably provide the best solution.

Typical rule-based systems (eg. [11)) are composed of three parts: the working
memory. the rules. and the rule interpreter. The working memory. for most of the CAD
applications described here, is the description of the circuit. The rulesare condition-action
pairs. where the conditions are patlerns 10 match against the working memory Or eXpres
sions 10 evaluation. and the aclions are operations 10 perform (inpuvoutput. calculations

and changes lo the data) if the conditions are satisfied. The rule interpreter determines

Newton & Sangiovanni DRAFT

104

which rule to fire based on the rules and the working memory contents, how the rule
interpreter determines which rule to fire is known as conflict-resolution. A number of
key areas where heuristic programming approaches have been applied successfully to

CAD problems to date are outlined below:

@ Connectivity Verification: As described in Section 4. connectivity verification is the pro-
cess of comparing two circuit descriptions to make sure that they are the same and if they
are not the same then to discover where they differ. Almost all connectivity verifiers can
pandle the straightforward problem very efficiently with fast. heuristic algorithms.

However, most of the time in these programs is spent handling the special cases.

There are many special cases that can degrade the performance of the basic algo-
rithms. Two such cases are terminal permutability and parallel paths. For some elements.
the terminals are logically and/ar electrically eguivalent and are allowed to permule.
The inputs 1o the basic logic gates (NAND, NOR, etc.) and the source and drain of MOSFETS are
examples of such situations. In handling terminal permutability. many connectivity
verifiers assume that they will be working With MOSFETS and *hard-wire" the fact that
sources and drains can permute, others allow the user to specify how terminals on arbi-
trary elements can permute. but some do this very inefficiently and others do not always

work.

ldentical and almost identical parallel paths (as in bit-slice circuits and RAMs) also
present 2 problem to current connectivity verifiers. 1f they are identical, the algorithms
currently used can not distinguish between the paths and may nol process them. Also. if
two paths have only small differences (as in ROMs). since only local effecis are taken into

account, connectivity verifiers also may not be able to distinguish between them.

A connectivity verification technique using a rule-based sysiem has been developed
that handles the above special cases without the performance penalty seen in existing

algorithmic sysiems. Whereas standard conneclivily verifiers process circuits locally

Newton & Sangiovanni DRAFT

105

(looking at individual elements and nodes. and their immediate neighbors). in the rule-
besed approach the circuit is processed in 2 global manner (collections of elements and
nodes). The designer's bierarchy from the schematic is used to build patierns that match
equivalent groups of elements in the layout. These patierns are rules for a rule-based sys-

tem, with the circuit description being the data.

In the context of connectivity verification the conditions are patterns that match col-
lections of elements (the subcircuit) and the actions are the removal of the individual ele-
ments from the working memary and the addition to the working memory of a subcircuit

element.

e Advanced Electrical Rules Checking: A peer-group review is one of the major check-
points of the VLSI design process. During this phase. a designer will have his work
reviewed by other members of the project team. This review is usually performed by one
or more experienced designers who study the schematics and layouts of a design. their
mission being to " flush out bugs” that may have been overlooked by the original engineer
and to provide feedback 10 him on his work. To date. this is an area where no effective
algorithmic approach has been found short of complete simulation at the circuit level.

Even then. the design critic may find errors that circuit simulators cannot detect.

The ilems turned up during this review cycle take many forms. In some cases they
are very simple problems. Perhaps a new designer may not understand the implications
of a design rule or needs some guidance as 10 the more practical ways of implementing 2
logic function. In other cases. extremely subtle problems are found which can elude even
the most careful worst case simulations. Charge coupling. MOS capacitor inversion time
constants. charge sharing on dynamic buses. voltage sw ings on bootstrapped nodes. and
problems due 10 clock undershoot. overshoot. overlap and shew are some examples of the

latter.

Newton & Sangiovanni DRAFT

106

A number of circuit design critic programs have been developed over the past few
years to perform these checkdrefs]. CRITTER[4] and the p1aLoGlS] systems which perform a
design verification and review function; and the SCHEMA System {6] which is intended t0

act in the capacity of & complete design assistant, not limited to design verification alone.

® Routing:

As presented in Section 5231, detailed routing is quite complicated if the region to
route bas pins on four side (two-dimensional routing problem). In addition. most of the
available detailed routers are constrained to route vertical connections and horizontal con-
nections on two different layers 10 simplif y the structure of the algorithms. Many objec-
tive functions are used to evaluate the quality of the results by designers. For example,
tbe number of vias used 10 complete the routing can be important to improve the reliabil-
jty of the chip and net length is important to optimize the speed of the chip. Thus, the
detailed routing problem in two-dimensions seems to be a natural application of expert
sysiems. WEAVER [JOO85] is a know ledge-based system for detailed routing developed at
CMU. The performance of the system is quite impressive in terms of the quality of the
§inal solution, even though its running time is quite larger than the one required by stan-
dard algorithms. We believe that this sysitem represents an important first step in the
application of heuristic programming in the placement and routing area, however we
pelieve that global routing. floor-planning and macro-cell placement should be a better
test-bed for know ledge-based expert systems. since satisfactory solutions are already avail-

able with standard algorithmic techniques in the case of detailed routing.

Another important application of expert sysiems 10 routing is the system developed
by S. Goto et al. at NEC. This system rips and re-roules nets to provide 100% completion
on gate-array problems. This approach is quite interesting. because the algorithms used 10
roule gate-arrays rarely provide 100% interconnection completion and several hours if not

days of designer time are needed 10 complete the interconnections left out by the

Newton & Sangiovanni DRAFT

107

algorithms. The NEC expert system uses a sel of rules obtained by capturing the designer
expertise in performing the rip and re-route operations. In addition. the expert system can

call on algorithms to evaluate the application of a particular rule.

@ Multi-Level Logic Synthesis:

As we pointed out in Section 532. one of the first systems for automatic optimiza-
tion of multi-level logic. LSS of IBM., could be considered a prototypical rule-based system.
Recently. a full-fledged rule-based expert system. Socrates. bas been developed at GE
Microelectronics Center 10 optimize combinational logic for a specific targel technology
[DEG85] The sysiem starts with a description of the logic 10 optimize and performs a
series of algorithmic steps 10 produce a starting point to which a rule-based expert-system
. applies a series of local transfarmations. The know ledge-base can be easily enriched by
the user through a rule generation module that automatically encodes new rules and
inserts them in the know ledge base. A control module directs the application of the rules
10 the data. In particular, the module determines in which sequence the transformations

are 10 be applied based on evaluations of the effectiveness of the transformation.

@ Behavioral Synthesis:

A Rule-Based Expert System has been built at CMU by Kowalski to translate
eflectively a behavioral representation of a design into a structural representatian. The
rule base has been built by successive approximations asking designers 10 crilicize designs
that were obtained with the 1ool. The first rule set used contained 70 rulessTHOS83). the

latest version of the lool contains more than 500 ruleDIRSS].

The conclusion of the CMU researchers has been that while the algorithmic
approach can be more effective if the cost function is well specified. the expert system
approach offers more flexibility and a betler environment to capture the often difficult to

express intent of the designer.

Newion & Sangiovanni DRAFT

108

WINDOW: Multiprocessors for CAD

As we approach the fundamental performance limits of uniprocessors, it is clear that
only new, multiprocessor computer architectures can offer the large performance improve-
ments needed to solve the complex problems of our time. Throughout the world. a great
deal of research is in progress on the development of new. often unconventional, computer

architectures for both symbolic and numerical processing (38]

However, such machines will not be able to exploit the parallelism available in
problems unless new algarithms are developed that are well suited to a multiprocessor
environment. In the past, it has often been assumed that advanced compiler technology
would be sufficient to translate a conventional computer algorithm for optimal use on 2
special-purpose machine. In the case of circuit simulation, even the most advanced com-
piler technology. used in conjunction with a number of computer consultants. has shown
poor speedup on pipelined machines (about 12%-15% hardware utilization on the Cray 1
[9D.

There are several compute-intensive problems that face CAD of VLSI circuits today.
In some cases. such as logic simulation[} and design-rule checking[]. new special-purpose
machines have been designed to fully exploit the characteristics of the problem 1o be
solved. In others. such as circuit simulation). existing general purpose parallel processors
have been used to speed up the simulation time[]. A careful analysis of the economic
trade-offs has 1o be made to decide whether 1o build a special-purpose machine or to use

existing multi-processors.

It is clear that the cost of the processors would be much lower for the case of
general-purpose multi-processors. while the performance of special-purpose machines
could be orders of magnitude better. A "mixed" approach could probably offer the advan-

tages of both strategies In this case, the interconnection network and the basic sof tware

Newton & Sangiovanni DRAFT

109

ghould be the ones offered by the general-purpose environment, while the particular
compute-intensive tasks 1o be carried out by the single processors could be sped up by tbe
design of special-purpose acceleratars board 1o be used as co-processors for the processors of
the general-purpose system.

Several approaches have been followed in the past few years lo develop CAD
acceleratars. An excellent review of the field can be found in [1 Here we will mention

only a few relevant projects

Logic simulation was the first application of hardware acceleratars 10 1C CAD. The
firt working prototype proposed for this task was the Boeing Computer Simulator]]
However. the first machine actually used in the design of digital system Was the Logic
Simulation Machine (LSM){] developed jointly by IBM T. J. Watson Research Center and
IEM Los Gatos. The Yorkiown Simulation Engine (YSE) developed by the IBM TJ. Wat-
son Research Center has similar architecture but better performance. NEC developed a
bardware logic simulator. HAL [A Wire-Routing Machine has been proposed and imple-
mented by a group of researchers at 1BM TJ. Watson Research Center. An interesting
architecture resembling the MIT connection machine, was designed by NTT to speed up a

variety of CAD algorithms{]

In the vendors arena, Zycad has developed a fast. but expensive. special-purpose
machine for logic simulation and is investigating special-purpose machines for circuit
simulation. Daisy and Valid Logic Systems have developed a cheaper. bul slower. logic
simulation engine . The architecture developed for this task by Daisy has also been used 10
speed up the simulated annealing algorithm applied to the problem of optimally placing
gate-arrays. Shiva multi-systems is offering hardware accelerators for circuit simulation

by extending the capabilities of a commercial multiprocessor. the Sequent Balance

8000(ref].

Newton & Sangiovanni DRAFT

110

In academia, several researchers have proposed new architectures and corresponding
CAD algorithms. A special purpose machine for design rule checking was proposed by
MIT{L. A Virtual Bit Map Processor was designed at Stanford to provide bardware support
for operations involving bit map represematims[l Similar techniques have been used in 0.
to support physical design.

Systolic machines have been proposed by Kung at Carnegie-Mellon University for a
variety of numerical algorithms, from the solution of linear algebraic equations to the
computation of Fast Fourier Transforms, and the fast implementation of simulated anneal-

ing for printed circuit board placement.

Other architectures bave been proposed for the solution of linear system of algebraic
equations and in particular for sparse matrices]. However, no working prototype has
been built because of the complexity of these machines. Algorithms for existing multi-
processors are also being studied]. Other numerical problems have been investigated. for
example research has been carried out on parallel solution of partial differential equations

at Maryland [rheiboldt]

Paralle] algorithms have been investigated for combinatorial optimization problems
in a number of computer science departments {rom the theoretical point of view.[] These
projects have a direct impact on CAD because many of the optimization problems involved
in the development of effective tools are combinatorial. In addition. the methodology
developed in this research 10 evaluate parallel algorithms can be used as a guideline for

the development of new paralle] algorithms.

We can classify the new research areas opened by the feasibility of designing
special-purpase processors as well as by the availability of general-purpose multi-
processors, into three areas: development of new algorithms for existing multi-processor
architectures. for example [0 and []. development of new architectures for existing algo

rithms. for example [} and []. and development of new algorithms and new architectures,

Newton & Sangiovanni DRAFT

1

for example[]. It is important 1o note that when using non-conventional architectures.
existing algorithms which are considered less efficient when using conventional uni-
processors, may become much faster. Far example, in the case of the LSM{ and YSH{].
event driven algorithms widely recognized as the most efficient algarithms for logic simu-

lation on a uniprocessor, have not been used to exploit the particular architecture of the

special purpose machine.

Newton & Sangiovanni DRAFT

MARKET ING

DESIGNER
ARCHITECTURE cAaD

PROCESS TECHNOLOGY

F‘ﬂ-’l SM'I;LQ,'LJ V'-@(«) oz AS1C
Ik?mmhﬂs Tas K .

.M\QO\s\ —\.\.(.\..vh.c PP YE

o1y 221552) D pryretaq 29 “Z .mﬁ
£3o1ouyod],

§10}8JI2U3Y , 8£81Iy,,
orIjauxeIed [013U0) 5[00],
01}81S uedrioold YIomauIed
sarreIqr] | °141s usisad avo

2IN}093IYIIY

IoudiIsa(

Sunexten/ uoryeo1 ddy

103

WINDOW: Heuristic Programming

Over the past two decades. many algorizhmic-based tools bave been developed for
the analysis of ICs. For example, the simulators, layout-rule checkers, connectivity
verifiers described in the text are all part of a broad-based IC design system. However,
many of these tools must process a large number of ‘special-cases’ which are exceptions to
the basic algorithm. It is often the processing of the special cases that dominates the run
time, such as for connectivity verification described in Section 4. In other situations, a
simple algorithm may not be known for a particular problem but a collection of simple
beuristics may be used. such as for checking for mare complex electrical rule violations in
the design or for selecting a structure from a behavioral specification in the synthesis pro-

cess. These problems are amenable to the relatively new field of heuristic programming.

Over the past few years., a number of both synthesis and verification tools have
been developed which rely on the use of such an approach in the form of Expert Systems.
In general, it is our conjecture that if a satisfactory algorithmic solution 1o a problem is
known it should be used. When such a solution is not known. or where a problem has
many "special cases” which dominate the run time of the algorithm, the problem is a good
candidate for an expert-sysiem-based approach. For many IC/CAD problems. a meta-system.
involving the use of an expert system controlling the application of powerful. algorithmic

tools, will probably provide the best solution.

Typical rule-based systems (e.g. [11]) are composed of three paris: the working
memory. the rules. and the rule interpreter. The working memory. for most of the CAD
applications described here, is the description of the circuit. The rules are condition-action
pairs. where the conditions are patlerns 10 mawh against the working memory or expres-
sions 10 evaluation. and the actions are operations 1o perform (input’output, calculations

and changes 10 the daw) if the conditions are satisfied. The rule interpreter determinex

Newton & Sangiovanni DRAFT

104

which rule to fire based on the rules and the working memary conients; how the rule
interpreter determines which rule to fire is known as conflict-resolution. A number of
key areas where heuristic programming approaches have been applied successfully to

CAD problems to date are outlined below:

® Connectivity Verifi cation: As described in Section 4, connectivity verification is the pro-
cess of comparing two circuit descriptions to make sure that they are the same and if they
are not the same then to discover where they differ. Almost all connectivity verifiers can
handle the straightforward problem very efficiently with fast, heuristic algorithms.

However, most of the time in these programs is spent handling the special cases.

There are many special cases that can degrade the performance of the basic algo-
rithms. Two such cases are terminal permutabiliry and parallel paths. For some elements,
the terminals are logically and/er electrically equivalent and are allowed to permute.
The inputs 1o the basic Jogic gates (NAND, NOR, etc.) and the source and drain of MOSFETS are
examples of such situations. In handling terminal permutability, many connectivity
verifiers assume that they will be working with MOSFETS and "hard-wire" the fact that
sources and drains can permute; others allow the user to specify how terminals on arbi-
trary elements can permute. but some do this very inefficiently and others do not always

work.

ldentical and almost identical parallel paths (as in bit-slice circuits and RAMs) also
present a problem 1o current connectivity verifiers. If they are identical. the algorithms
currently used can not distinguish between the paths and may not process them. Also. if
two paths have only small differences (as in ROMs), since only local effects are taken into

account. connectivily verifiers also may not be able 1o distinguish between them.

A connectivity verification technique using a rule-based system has been developed
that handles the above special cases without the performance penalty seen in existing

algorithmic systems. Whereas standard conneclivily verifiers process circuits locally

Newton & Sangiovanni DRAFT

105

(looking at individual elements and nodes, and their immediate neighbors), in the rule-
based approach the circuit is processed in a global manner (collections of elements and
nodes). The designer’s hierarchy from the schemati is used 1o build patierns that match
equivalent groups of elements in the layout. These patterns are rules for a rule-based sys-

tem, with the circuit description being the data

In the context of connectivity verification the conditions are patterns that match col-
lections of elements (the subcircuit) and the actions are the removal of the individual ele-
ments from the working memary and the addition to the working memory of a subcircuit

element.

® Advanced Electrical Rules Checking: A peer-group review is one of the major check-
points of the VLS! design process. During this phase, a designer will have his work
reviewed by other members of the project team. This review is usually performed by one
or more experienced designers who study the schematics and layouts of a design. their
mission being 10 "flush out bugs” that may have been overlooked by the original engineer
and to provide feedback to him on his work. To date, this is an area where no effective
algorithmic approach has been found short of complete simulation at the circuit level.

Even then. the design critic may find errors that circuit simulators cannot detect.

The items turned up during this review cycle take many forms. In some cases thev
are very simple problems. Perhaps a new designer may not understand the implications
of a design rule or needs some guidance as 1o the more practical ways of implementing a
logic function. In other cases. extremely subtle problems are found which can elude even
the most careful worst case simulations. Charge coupling. MOS capacitor inversion time
conslants. charge sharing on dyvnamic buses. vollage sw ings on bootstrapped nodes. and
problems due o cloch undershool. overshool, overlap and shew are some examples of the

latter.

Newton & Sangiovanni DRAFT

106

A number of circuit design critic programs have been developed over the past few
years to perform these checkdrefs] CRITTER[4] and the DIALOGIS] systems which perform a
design verification and review function; and the SCHEMA System [6] which is intended to

act in the capacity of a complete design assistant, not limited to design verification alone.

® Rouwting:

As presented in Section 52.3.1. detailed routing is quite complicated if the region to
route has pins on four side (two-dimensional routing problem). In addition, most of the
available detailed routers are constrained to route vertical connections and horizontal con-
nections on two different layers to simplify the structure of the algarithms. Many objec-
tive functions are used to evaluate the quality of the results by designers. For example,
the number of vias used to complete the routing can be important 1o improve the reliabil-
ity of the chip and net length is important to optimize the speed of the chip. Thus, the
detailed routing problem in two-dimensions seems to be a natural application of expert
systems. WEAVER [JOOB8S5] is a know ledge-based system for detailed routing developed at
CMU. The performance of the system is quite impressive in terms of the quality of the
final solution, even though its running time is quite larger than the one required by stan-
dard algorithms. We believe that this system represents an important first step in the
application of heuristic programming in the placement and routing area, however we
believe that global routing. floor-planning and macro-cell placement should be a better
lesi-bed for knowledge-based expert systems, since satisfactory solutions are already avail-

able with siandard algorithmic techniques in the case of detailed routing.

Another important application of expert systems to routing is the system developed
by S. Goto et al. at NEC. This system rips and re-routes nets to provide 100% completion
on gale-array problems. This approach is quite interesting, because the algorithms used 1o
roule gate-arrays rarely provide 100% interconnection completion and several hours if not

days of designer time are needed 10 complete the interconnections left out by the

Newton & Sangiovanni DRAFT

107

algorithms. The NEC expert system uses a set of rules obtained by capturing the designer
expertise in performing the rip and re-route operations. In addition. the expert system can

call on algaorithms to evaluate the application of a particular rule.

©® Multi-Level Logic Synthesis:

As we pointed out in Section 532, one of the first systems for automatic oplimiza-
tion of multi-level logic. LSS of IBM. could be considered a prototypical rule-based system.
Recently. a full-fledged rule-based expert system. Socrates, has been developed at GE
Microelectronics Center to optimize combinational logic for a specific largel technology
[DEG85] The system starts with a description of the logic to optimize and performs a
series of algarithmic steps to produce a starting point to which a rule-based expert-system
. applies a series of local transformations. The knowledge-base can be easily enriched by
the user through a rule generation module that automatically encodes new rules and
inserts them in the knowledge base. A control module directs the application of the rules
to the data. In particular, the module determines in which sequence the transformations

are to be applied based on evaluations of the eflectiveness of the transformation.

® Behavioral Synihesis:

A Rule-Based Expert System has been built at CMU by Kowalshi 1o translate
effectively a behavioral representation of a design into a structural representation. The
rule base has been buill by successive approximations asking designers 10 crilicize designs
that were obtained with the tool. The first rule set used contained 70 rulesTHOS3). the

latest version of the 100! contains more than 5(X) rule DIRSS].

The conclusion of the CMLU' researchers has been that while the algorithmic
approach can be more eflective if the cost function is well specified. the experl system
approach offers more flexibility and a betier environment 10 capture the often difficult 10

express intent of the designer.

Newton & Sangiovanni DRAFT

108

WINDOW: Multiprocessors for CAD

As we approach the fundamental performance limits of uniprocessors, it is clear that
only new, multiprocessor computer architectures can offer the large performance improve-
ments needed to solve the complex problems of our time. Throughout the world. a great
deal of research is in progress on the development of new, often unconventional, computer

architectures for both symbolic and numerical processing [38)

However, such machines will not be able to exploit the parallelism availabl.e in
problems unless new algarithms are developed that are well suited to a multiprocessor
environment. In the past, it has often been assumed that advanced compiler technology
would be sufficient to translate a conventional computer algorithm for optimal use on a
special-purpose machine. In the case of circuit simulation, even the most advanced com-
piler technology. used in conjunction with a number of computer consultants, has shown
poor speedup on pipelined machines (about 12%-15% hardware utilization on the Cray 1
[9.

There are several compute-intensive problems that face CAD of VLSI circuits today.
In some cases. such as logic simulation[] and design-rule checking[]. new special-purpose
machines have been designed to fully exploit the characteristics of the problem to be
solved. In others. such as circuit simulation]]. existing general purpose parallel processors
have been used to speed up the simulation time[]. A careful analysis of the economic
trade-ofls has 1o be made to decide whether 10 build a special-purpose machine or to use

existing multi-processors.

It is clear that the cost of the processors would be much lower for the case of
general-purpose multi-processors, while the performance of special-purpose machines
could be orders of magnitude better. A “mixed" approach could probably offer the advan-

tages of both strategies In this case. the interconnection network and the basic sofiware

Newton & Sangiovanni DRAFT

109

should be the ones offered by the general-purpose environment. while the particular
compute-intensive tasks to be carried out by the single processors could be sped up by the
design of special-purpose acceleratars board to be used as co-processors for the processors of

the general-purpose system.

Several approaches have been followed in the past few years to develop CAD
acceleratars. An excellent review of the field can be found in [] Here we will mention

only a few relevant projects

Logic simulation was the first application of bardware acceleratars to IC CAD. The
first working prototype proposed for this task was the Boeing Camputer Simulator().
However, the first machine actually used in the design of digital system was the Logic
Simulation Machine (LSM){] developed jointly by IBM T. J. Watson Research Center and
IBM Los Gatos. The Yorktown Simulation Engine (YSE) developed by the IBM TJ. Wat-
son Research Center bas similar architecture but better performance. NEC developed a
bardware logic simulator, HAL []. A Wire-Routing Machine has been propased and imple-
mented by a group of researchers at IBM TJ. Watson Research Center. An interesting
architecture resembling the MIT connection machine. was designed by NTT 1o speed up a

variety of CAD algorithms{].

In the vendors’ arena. Zycad has developed a fast, but expensive. special-purpose
machine for logic simulation and is investigating special-purpose machines for circuit
simulation. Daisy and Valid Logic Sysiems have developed a cheaper. but slower. logic
simulation engine . The architecture developed for this task by Daisy has also been used 1o
speed up the simulated annealing algorithm applied 1o the problem of optimally placing
gate-arrays. Shiva multi-systems is offering hardware accelerators for circuit simulation

by exiending the capabilities of a commercial multiprocessor. the Sequent Balance

8000[ref].

Newion & Sangiovanni DRAFT

110

In academia, several researchers have propased new architectures and correspanding
CAD algarithms. A special purpose machine for design rule checking was proposed by
MIT{] A Virtual Bit Map Processor was designed at Stanford to provide bardware support
for operations involving bit map representations[] Similar techniques have been used in []
to suppart physical design.

Systolic machines have been proposed by Kung at Carnegie-Mellon University for a
variety of numerical algorithms, from the solution of linear algebraic equations to the
computation of Fast Fourier Transforms, and the fast implementation of simulated anneal-

ing for printed circuit board placement.

Other architectures have been proposed for the solution of linear system of algebraic
equations and in particular for sparse matriced]. However. no working prototype has
been built because of the complexity of these machines. Algorithms for existing multi-
processors are also being studied]. Other numerical problems have been investigated. for
example research has been carried out on paralle] solution of partial differential equations

at Maryland [rheiboldi]

Parallel algorithms have been investigaled for combinatorial optimization problems
in a2 number of computer science departments from the theoretical point of view.[] These
projects have a direct impact on CAD because many of the optimization problems involved
in the development of eflective tools are combinatorial. In addition. the methodology
developed in this research to evaluate paralle] algorithms can be used as a guideliné for

the development of new parallel algorithms.

We can classify the new research areas opened by the feasibility of designing
special-purpose processors as well as by the availability of general-purpose mulii-
processors, into three areas: development of new algorithms for existing multi-processor
architectures. for example [] and []. development of new architectures for existing algo-

rithms, for example [] and []. and development of new algorithms and new architectures.

Newton & Sangiovanni DRAFT

111

for example[]. It is important to note that when using non-conventional architectures.
existing algorithms which are considered less efficient when using conventional uni-
processors, may become much faster. For example. in the case of the LSM] and YSEH].
event driven algorithms widely recognized as the most efficient algarithms for logic simu-

lation on a uniprocessor, have not been used to exploit the particular architecture of the

special purpose machine.

Newton & Sangiovanni DRAFT

MARKET ING

|

DESIGNER

ARCHITECTURE cCAD

/

PROCESS TECHNOLOGY

Fio. b, Suphbed View or asxic
Ik?@uhﬁs Tac k.

Application/Marketing

Designer
Architecture
CAD Design Style Libraries
Framework Floorplan Static
Tools Control Parametric
""Arrays'’ Generators
Technology

Fig 2. Mevre Detasled Claossiéication

A sy M.oe . s A, - .a' TOD(S.

Fig. 3:1() “Tvomsledovs cumons N tools
'PC , (=1... '\I.

Pz F3
Ox\@i/o
7Y
7A@, P

Fiso €1(6) Tramslotors ambag N 40dls Using
COMOV\ 4{«&)“) C,

BEHAVIORAL
CONTROL AND DATA FLOUW

REGISTER TRANSFER
LOGIC

CIRCUIT
SYMBOL IC LAYOUT

fe-3-2 Lewds oF PYISVEN MSG;L,‘J\};.-

ENABLE

DIOFLAG

BusFLAG

1

""""———_—zﬁjﬂ |

11

*Ffﬁ

cwx 0

=

DIOYES (=

Rom L —

"uguregs(cw The fina! loyout of the

lotch—driver block generoled with CAB3AGE.

Rule—based Approach

LSS
. Local, "peephole" transformations

5.3.1.2

8

Ty

kg

.. |

'&mzmsymmm, KISS: (a) The
(0 ASter KISS recengn

band-designed circuit

3

P'ﬁ 2.4 W:/j be CSereon <iot

(colov) of staly ~of- the ~a-t
wovKstaN o,

	Copyright notice1986
	ERL-86-16 (1 of 4)
	ERL-86-16 (2 of 4)
	ERL-86-16 (3 of 4)
	ERL-86-16 (4 of 4)

