

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COMPUTER-AIDED DESIGN FOR VLSI CIRCUITS

by

A. R. Newton and A. L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M86/16

26 February 1986

_

COMPUTER-AIDED DESIGN FOR VLSI CIRCUITS

by

A. R. Newton and A. L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M86/16

26 February 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

-

Computer-Aided Design for VLSI Circuits

A. R. Newton and A. L. Sangiovanni-Vincentelli
Department of Electrical Engineering

and Computer Sciences
University of California.Berkeley.94720

Newton & Sangiovanni DRAFT

1. INTRODUCTION

Computer aids have been used for both the design and verification of electronic sys

tems for many years prior to the introduction of commercial Integrated Circuits (ICb) in

the early 1960s. Such tools have found their way into virtually every aspect of the

design of such systems, from IC process technology to the design of complex computer

architectures. However, it is the IC and the complex electronic systemsthe IC has made

possible that have made computer aids an indispensable part of the design of an electronic

circuit or system. Not only are computer aids necessary for both the design and

verification of integrated circuits today but. as the semiconductor processing technologies

mature, computer aids will soon also provide key proprietary advantages assemiconductor

and system design houses vie for the promising Application-Specific IC (ASIC) market of

the next decade. We believe that the pivotal technologies in future IC CAD systems

include tools for IC synthesis,such as placement and routing, combinational and sequen

tial logic synthesis tools, and architectural design aids, design system management tools.

including the management of design versions and alternatives in a distributed computing

environment, data dependency management, and efilcient and flexible interfaces to new

tools, verification tools, including physical and electrical rules checking, simulation, and

formal verification techniques. In many cases, the new verification tools will take advan

tage of new multiprocessing hardware to improve their performance or use the evolving

heuristic programming technologies, such asrule-based expert systems, to improve flexibil

ity and to encourage the evolution of the tool. In the following sections, the state of each

of these areas is reviewed and key areas are noted

In the remainder of this paper, the CAD tools and techniques used to support the

most common design styles are reviewed. Nowadays, the field of CAD for IC design is

very broad and it is not possible lo cover all aspects of IC/CAD in a single paper. For that

reason, the paper is focussed on the techniques critical to both custom and ASIC design.

Newton & Sangiovanni DRAFT

the directions of present research and development for these areas, and future trencfc. In

the following section, some basic cad and design style concepts are introduced and the

CAD requirements for ASIC development are explored from adesign and marketing point

of view. Each of these requirements is then reviewed in the following sections in the

context of design management systems, verification tools, and synthesis tools. While the

area of testing also involves extensive use of CAD and is also a key technology for IC

design, it is dealt with in detail in another paper in this issue and is. therefore, not

reviewed here. With the recent rapid increase in compute power per dollar we have seen

at the engineers desk, the next few years promise spectacular progress in all of these

areas.

2. DESIGN METHODS AND CAD

2.1. Introduction

The use of a particular class of circuit structures is referred to as adesign method, or

design style, and while the development of new algorithms and techniques for CAD con

tinues, a significant contribution to the design of VLSI circuits will continue to come from

the development of new circuit design methods. However, while the implementation of a

design method does not require the use of computer aids per se, the most successful design

methods will be those designed to take maximum advantage of the computer in both the

circuit design and verification phases. The design method must provide the struciwe

necessary to use both human and computer resources effectively. For VLSI, this structure

also provides the reduction in design complexity necessary to reduce design time and to

ensure that the circuit function can be verified and the resulting circuit can be tested. In

describing the variety of computer-aids used for IC design, a distinction is made between

those techniques used for design, or synthesis, of the IC and those techniques used for its

Newton & Sangiovanni DRAFT

verifi cation, to both of the* categories, afurther distinction is made between ttchnioj.es
relating to the physical, or topological. aspec* of the design process, such as the generation
and verification of mask layout data or the placement of components In . circuit, and
function considerations, such as logic description, syntbeas. simulation, and test-pattern

generation.

Computer aids for design, or synthesis, at both the functional and physical levels, are
primarily concerned with the use of optician to improve performance and cost. These
design tasks may be formulated as combinatorial optimization problems for operations such
as cell placement, routing, logic minimization, and logic state assignment, or as parametric
optimization problems for operations such as design at the electrled level. These optimiza
tion problems are often too complex to solve directly. Therefore, partitioning is often used
to reduce the problem to aset of simpler sub^roblems. The solutions of these subprob-
.ems are later combined in aseparate step. Both the partitioning task and the solution of
each sub-problem generally involves the use of heuristics to reduce the complexity
further.

Design methods can be classified in four categories programmable arrays, standard-
cell. macr<~ell. and procedural design. AVLSI circuit may consist of one large building
block or it may consist of anumber of building blocks combined either manually or by a

computer program.

Aprogrammable array is aone- or tw<Kiimensional array of repeated cells which
can be customized by adding or deleting geometry from specific mask layers Since a
number of processing steps are completed prior to customization, the locations of com
ponents on those layers are independent of aparticular circuit implementation. Examples
of programmable arrays include the Gate-Arrayl??]. Weinberger Arrayl??]. Storage-Logic
ArrayttLAXm Programmable Logic Array (PLAX??]. and Readonly Memory (ROM).

DRAFT
Newton & Sangiovanni

The gate-array (also referred to as master-slice, or uncommitted logic array) isby far

the most common programmable array designed by computer. It is also the case that the

computer aids for gate-array design are the most advanced and the most mature. In this

approach, a two-dimensional array of replicated transistors is fabricated to a point just

prior to the interconnection levels. A particular circuit function is then implemented by

customizing the connections within each local group of transistors, to define its charac

teristicsas a basic cell, and by customizing the interconnections between cells in the array

to define the overall circuit. Generally a two-level interconnection scheme is used for sig

nals and. in some approaches, a third, more coarsely defined layer of interconnections is

provided for power and ground connections. The interconnections are implemented on a

rectilinear grid in the channels between the cells. In many cases, channels are also pro

vided which run over the cells themselves and in some arrays, wider channels are pro

vided in the center of the array to alleviate the congestion often found in that area if par

ticular routing strategies are employed.

Gate-arrays are used in many technologies, in particular bipolar and CMOS, and

arrays containing many thousands of gates have been used[56.57]. In the SLA approach,

each "gate" consists of a storage element (flip-flop) and a small, uncommitted PLA. This

design method has considerable potential for VLSI but effective design-aids for the syn

thesis of logic functions in SLA form are not yet available.

PLAs may also be used to implement building blocks directly, with storage elements

in the feedback path to implement sequential logic in the classical Moore or .\fealy

style!??]. The PLA consists of anumber of transistor arrays which implement logic AND

and OH operations. In MOS technology. NOR arrays are used[6()]. A conventional PLA

consists of tv. o arravs oi cells: an input, or look-up. plane followed by an output plane. A

folded PLA may use additional planes, since rows and/or columns in the structure may

be shared by more than one circuit variable, as described later.

Newton & Sangiovanni DRAFT

The standard cell (or polycell) approach refers to a design method where a library

cf custom-designed cells is used to implement a logic function. These cells are generally

of the complexity of simple logic gates or flip-flops and may be restricted to constant

height and/or width to aid packing and ease of power distribution. Nowadays, however,

state-of-the-art standard cell systems permit cells of different height and width to be

included in the same design. This results in non-uniform routing channels between adja

cent rows and requiresa more sophisticated channel routing capability if the silicon area

is to be used to its maximum efficiency. Unlike the programmable array approach, stan

dard cell layout involves the customization of all mask layers. This additional freedom

permits variable width channels to be used. While most standard cell systems only per

mit inter-cell wiring in the channels between rows of cells or through cells via pre

determined "feed-through" cells, some systems permit over-cell routing if additional lev

els of interconnect are available. Standard cell systems are also used extensively in a

variety of technologies including bipolar and CMOS[??].

It isoften relatively inefficient to implement all classes of logic functions in a single

design approach. For example, a standard cell approach is inefficient for memory circuits

such as RAMand stack. In the macro-cell, or building block, method, large circuit blocks,

customized to a certain type of logic function, are available in a circuit library. These

blocks are of irregular size and shape and may allow functional customization via inter

connect, such as a PLA or ROM macro!??], or they can be parameterized with respect to

topology as well[??l With the parameterized cell, the number of inputs and outputs may

be parameters of the cell. In some systems macro cells may also beembedded in gate-array

or standard-cell designs. The macrocell floorplan style is evolving as the floorplan of

choice for large. ASIC designs.

All of the design methods described above may be classified as data driven. That is. a

description of the required logic function, in the form of equations or an interconnection

Newton & Sangiovanni DRAFT

list, is used as input to a software system which interprets the data and generates the final

design. Techniques have been developed over the last few years which can be classified as

procedure, or program, driven!7?]. These procedural design approaches, as well as their

advantages and limitations as implemented today, are described below. Most of the 'silicon

compiler' companies of today, including Silcon Compilers Inc.. Seattle Silicon Technology,

and SDL. support macrccell-based floorplans. with procedurally-based module generators

as described in detail later.

2.2. The Relationship Between CAD and Design

Since the first CAD tools were applied to the IC design process, designers have com

plained that CAD lags design. There are those who feel that such a situation is inevitable

since, once a designer finds a problem for the CAD engineer to tackle, it takes some time

for a the appropriate CAD tool to be written, debugged, and documented. By that time,

the designer has"moved on" to new designs and. with them, new problems for CAD. In

the early days, designers were able to "work around" problems with the CAD tools at

their disposal. Today, however, the job just can't be done without CAD.

For an ASIC design environment, a simplified designers view of the role of CAD is

illustrated in Fig. 1. The designer, driven by the marketing need for a circuit that meets a

particular cost, performance, and functional specification, works with system, logic, and

circuit architectures to create a chip design. In that process, the CAD tools are used to

evaluate tradeoffs and alternative designs, to construct specific circuit components, and to

assemble and interconnect the components to form the final chip patterns. Once the IC

mask patterns have been assembled. CAD tools are used to check the final layout and

prepare it for the automated manufacture of masks. As the competition for designs

increases, driven by the increasing number of companies in the ASIC business and by the

high capital cost of a modern IC processing facility, there is increasing demand for

Newton & Sangiovanni DRAFT

8

designers to be able to differentiate their IC product from that of their competitors.

Higher performance, lower cost, more features, or a faster time to market are all major

factors which differentiate IC products in the ASIC marketplace. In the past, different

companies have been able to provide such productdifferentiation through their IC fabrica

tion technologies the ability to pack more transistors on a given chip or to provide a

higher switching speed per gate drove the designs andtheir advantage in the marketplace.

However, the silicon planar process technology is maturing rapidly — significant gains in

performance and density are becoming increasingly expensive and many companies are

resorting to"joint ventures." often with former competitors in the United States. Europe,

or Asia, to maintain their position in IC process technologies. Because of this decrease in

the relative competitive advantage obtained from process technology, semiconductor com

panies and "silicon foundries" must emphasize other aspects of the design process if they

are to compete effectively for the ASIC market The two avenues available are in archi

tecture — hiring better designers and system architects than their competitors, which is

often difficult and is certainly expensive — and in CAD.

Unfortunately, the perspective shown in Fig. 1 is simplistic and incomplete. As

illustrated in Fig. 2. the design task involves three major components: CAD programs, sup

port for specific design styles, and support for component libraries. A lack of CAD sup

port in any of these areas may result in a significant reduction in the competitiveness of

the designers* final product. On the other hand, a significant proprietary advantage in any

orall of these areas will maintain a companies' position asa force in the marketplace.

The CAD tools area may be subdivided further into three areas: tools for circuit

design, or synthesis, tools for circuit verification, and tools for design data management and

for the managing the flow of the design process. This last category of tools isof particular

importance for it provides the foundation on which the CAD system is build. If the

design framework is inflexible and cannot adapt to new tools, new design styles, and

Newton & Sangiovanni DRAFT

changes in process technology, then the design system will soon become obsolete. It is also

important in maintaining a competitive advantage in the design process since an open

framework, which support the addition of locally-developed as well as commercial tools,

can be used to provide a proprietary difference between one system and a competitor's sys

tem. For that reason, this important area is reviewed in detail in the following section.

As mentioned earlier, since design verification has received a great deal of attention

in the past, most of the techniques and tools are relatively mature. The major research

issues in the verification area concern improving the performance of the tools for large

designs without sacrificing reliability of the results The use of special-purpose hardware

and new computer architectures are playing a major role here. In addition, new algo

rithms are being developed which exploit the properties of large circuits, such as the

repetitive use of circuit structures. Many of the new techniques, while novel and requir

ing large engineering investments to achieve their potential, are relatively easy to dupli

cate and therefore cannot provide the foundation for a proprietary technology.

On the other hand, with a few notable exceptions, design synthesis systems for ASIC

designs are far less mature and large gains in circuit efficiency and design time are still lo

be had In addition, many of the state-of-the-art synthesis techniques involve far more

inspiration" than "perspiration" and. as a result, can form the basis of a proprietary and

differentiating technology for ASIC design. Techniques for efficient synthesis (system

design, register-level design, logic design, placement, routing, and array compilation) will

provide a major focus for both University research and Industrial competition over the

coming years and. for that rea«»n. they are reviewed in detail in this paper.

The second important area for differentiation is that of CAD support for design

styles. In particular. CAD support for floorplan style (gale-array, standard cell, macrocell.

etc.) and support for the design of so-called "random" logic —that portion of a design that

cannot be cast into a straightforward and efficient regular layout style, such as RAM.

Newton & Sangiovanni DRAFT

10

ROM or datapath. Since designers are finding improved circuit design styles and layout

styles continuously, it is essential that a CAD system be able to support a variety of design

styles and adapt easily to new development in these areas.

Finally, all ASIC systems require a library of primitive components, whether they

be individual transistors, logic gates, or entire subsystems. These library cells may be

invariant designs, such as the traditional standard cell or £ate array building blocks, the

may be parameterized cells, such as those in the libraries offered by the "silicon compiler

companies", or they may be sophisticated, module-generator-based libraries, where

different cell topologies are generated on the fly as a function of the users input descrip

tion.

If a designer is to compete in the competitive ASIC marketplace of tomorrow, he

must be able to customize his CAD design environment in all three of these areas.

3. THE CAD FRAMEWORK

3.1. Design Data Management

In the 1960s, data-base management was not an issue for IC design — the entire

data-base often consisted of a box of punched cards and a hand-drawn roll of mylar that

the designer carried with him. In the early and mid 1970s, as circuit complexity

increased, proprietary and tool-dependent data formats were developed to represent partic

ular classes of design data, such as mask layout data(e.g. [xymask]Istream]) and transistor

or gate-level netlisi descriptions(e.g. [tegaslJspice]). Since most CAD programs were

developed independent of one another and had their own input formats, coupling them

together to form an integrated system for IC design involved writing translators to and

from each program. In the worst case, for N programs. (A7 —\)N translators would be

needed, as illustrated in Figure 3.1(a). However, the CAD tools were evolving and their

input formats were changing along with them. As a result, it was often necessary to

Newton & Sangiovanni DRAFT

11

keep a family of translators for each program, with each translator corresponding to a

different version of the input data format. Maintaining such a family of translators soon

became a CAD managers nightmare! The number of translators can be reduced to a

worst-case of 2A* bychoosing acommon, central format and translating to and from that

format as shown in Figure 3.1(b). A number of defacto standard formats evolved in the

late 1970s to meet the need for a common format and different companies standardized

internally on one format for each class of data. In the mid and late 1970s, a number of

public-domain standard formats were adopted and the most successful examples are the

CIF (Caltech Intermediate FormXm&c] for mask-level layout descriptions and SDL (Stan

ford Design LanguageJsdl] for gate-level netlisi descriptions. While such formats provide

aconsistent way of storing the design data, there is no support for managing the data —

Which copy is the latest version? Has the layout been changed since the schematic

diagram was updated? If I change this cell, which cells that use it will be affected? It is

the ability to answer such queries that differentiates atrue data management system from

a simple data repository.

In parallel with this work, a number of companies developed conventional database

systems for managing their IC design data. Often these companies were the large com

puter or system houses who had experience with the use of database management tech

niques for discrete digital system design. These record-oriented database management sys

tems (DBMS) were developed to manage IC parts inventories, part location on standard

printed circuit (PC) boards, and the connections among IC pins necessary to implement the

logic schematic. These lists of connections, used to guide wire-wrap or stitch-weld

machines, are generally referred to as netlists. While these companies found that the

application of conventional relational, network, or hierarchical database management tech

niques was effective for structured, semi-custom design styles like gate-array and

standard-cell, these approaches were not successful for custom design styles or in situa

tions where the underlying process technology and design style was evolving rapidly[4.5l

Newton &Sangiovanni DRAFT

12

However, the same rapid increases in complexity that makes the use of conventional

database management techniques difficult has made the need for aunified data manage

ment system critical, especially for full-custom or structured-custom design styles. No
longer is the entire design process the responsibility of asmall, tight-knit group but rather

teams of system designers, logic designers, circuit designers, and layout technicians must

all work together and share the vast amount of data representing an modern IC-based sys

tem.

The representations of IC design data, such as mask layout, schematic diagrams, docu

mentation, simulator input and output, are quite diverse and new representations are

being developed continuously. This evolution requires a flexible data management system

which can adapt readily to new design methods. The use of conventional database

management technology in this area has met with limited success[4,5]. The major limita

tions here are related to problems specific to engineering applications, while todays data

base technology has often evolved from the business area. While specific differences

between the needs of the business world and the needs of IC designers can be used to

illustrate the problems here, simply solving these problems may not be sufficient. Rather,

acompletely different approach to the problem is necessary. These systems also exhibit

low efficiency compared with the special-purpose solutions that have often been developed

in-house. The requirements of a data management system for custom design include:

access methods for storing and retrieving geometrical data, multiple versions and design

alternatives, back-out of nested transactions, support for workstation and network-based

transactions, procedural attachment, and near-optimal performance with relatively cheap

hardware.

An analogy can be used to explain where conventional database management fails

for custom IC design. Many researchers have noted astrong similarity between the cus

tom IC design process and writing computer programs - mask layout is akin lo abinary

DRAFTNewton & Sangiovanni "

13

image, symbolic layout is analogous to assembly code, and gates or modules are compared

with lines of code in a high-level language. The sorts or operations the programmer per

forms on code, the IC designer would like to be able to perform on the IC design data. In

fact, it is from such an analogy that the terms silicon compiler and silicon assembler

evolved Taking the analogy a step further, it is worth noting that programmers do not

store their code in conventional DMBS systems. Rather, they have used conventional file

systems (nowadays, often organized hierarchically) with tools to aid management of their

code, including source-code control systems (e.g. [SCCS]) and dependency management

tools (e.g. [make]). In fact, these tools add to the programming environment many of the

capabilities provided by modern database management systems Over the past few years, a

number of IC design data management systems have been developed based on this model

[squid] and have been used effectively for custom IC design.

In recent years, the notion of procedural circuit design[l4-l6] and the rule-based

expert system technology have emerged as key components in the design process. These

techniques, coupled with the ever-moving boundary between entire systems, printed-

circuit boards, and chips, have broadened the requirements for an integrated design sys

tem. What is needed to support this work is a flexible design and programming environ

ment that allows a variety of approaches to design to coexist and permits system-level.

logic-level, and circuit-level designers, as well as CAD algorithm developers to work

together in a single, unified environment. The keys to such a system are common levels of

abstraction and standard interfaces among them, as well as a powerful set of synthesis

and verification tools which form the basis on which further research is carried out. Kach

object in such a system may be described by data, such as its mask layout, by a local pro

cedure, such as a parameterized cell, by generic synthesis tools, such as a channel router or

a placement program, or by a combination of all of these techniques.

Newton & Sangiovanni DRAFT

14

As software systems continue to grow in size and complexity, programmers have

turned to object-oriented approaches to code development and support

(e-gJflavarelsmallTalklloopsD. The next generation of workstations, with an order of

magnitude increase in performance at the desktop far comparable price to workstations of

today, will be a key factor in making such approaches practical and affordable outside the

research laboratory. In an analogous way. IC designers are beginning to develop and use

procedural descriptions of design components, akin to the objects in many of these

languages. In addition, the database management community is directing its attention to

the management of object-based descriptions of systems. From an IC design point of view,

these three technologies will converge in the next generation of data management and

programming systems far IC design. The interfaces to these systems will be indistinguish

able from that of an object-oriented, message-based programming environment.

Unfortunately, it isunlikely that astandard, object-based data management interface

will be developed in the near future. There isstill considerable research required to fully

understand the issues involved before a suitable standard can be developed. In addition,

competitive market pressures will continue to keep such interfaces proprietary. However,

there is a need to move data from one design system to another. The design data

represents the "life blood" of an IC design company. If a particular design tool does not

function correctly under certain conditions, or aworkstation or mainframe computer fails,

the problem can generally be overcome and work can proceed. However, if the design

data were to be lost in the middle of a large design project, the cost could beastronomical.

Not only would the investment in design effort be lost lo that point but such a situation

would also cost valuable lime and a market window might be missed. This is one reason

why most IC design companies have resisted trusting all of their data management tasks

to a single vendor, particularly if it is not possible to archive all of the data in a non

proprietary format. In addilion. once a company has committed their data to a particular

vendor's system, they are "locked in" to that vendor unless there isa way of migrating

Newion & Sangiovanni DRAFT

15

the data to another system.

Another need for data transfer arises in situations where more than one design sys

tem or design site is involved. For ASIC design, schematic capture and simulation may

take place on a low-cost, customer operated workstation, while the actual silicon imple

mentation of the design occursat the ASIC vendor's plant.

To meet these and other needs, standard, textual interchange formats are being

developed for IC design data. In some cases the definition has focussed on the data neces

sary lo support a particular design style. For example, the EDIF(Electronic Design Inter

change FormatXedif], hasbeen developed by a broad base of semiconductor manufacturers.

CAD workstation vendors, and system houses to address the needs of ASIC-based system

development. In other cases, a broader charter is being attempted, such as the efforts to

standardize hardware description languages and behavioral descriptions of systems The

VHDL(VHS1C Hardware Description LanguageXvhdl] and HSL-FX[hslfx] activities are the

most active in this area today.

In summary, we believe that true open access to design data is an essential first step

in the development of a data management framework. Such access must occur at two

levels — an object-oriented, programming interface to all data in the database, and a non

proprietary, standard textual format which reflects as much of the semantic content of

such systems as is practical.

3.2. Representations of the Design

Throughout the IC design process, a variety of different representations or views of

the design are used. These representations may reflect a particular level of abstraction,

such as the functional specification of the circuit or its mask layout, or they may reflect

the view required for a certain application, such as the information required for simula

tion. The choice of appropriate representations for each level of the design process isa key

Newton & Sangiovanni DRAFT

16

factor in determining the effectiveness of computer aids since it is via these representa

tions that bah the structure of the design aswell as specific information relating to a par

ticular design level are expressed The design process then involves transformations

between these representations, both for design and verification. In this section a brief

review and classification of the most common representations is presented This

classification is used in the later sections to relate different design aids

While the particular set of representations used in adesign depends on the particular

design approach being used, the major categories may be defined as shown in Figure 32.

These representations fall into three major categories: behavioral, schematic, and physical.

At the behavioral or algorithmic level, functional intent of the design is described

independent of a particular implementation. In most cases, programming languages such

as concurrent Pascal[99] or Modula 2[modula] have been used to represent the design at

this level, as well asproviding a simulation capability. Languages specifically designed for

this task have also been developeotll4416-117].

Once a functional implementation strategy has been determined, a schematic view

may be generated At its most abstract level, this schematic view consists of a chip plan.

illustrating the loose physical placement of the major components and busses. Depending

on the complexity of the system, this description may be classified asa Processor. Memory.

Switch(P!vK)-level description[pms] which describes asystem as an interconnection of pro

cessors, memory modules, peripherals, and switching networks, or a Register Transfer

Level(RTL) or microinstruction-level description, defining the functional relationships

between the major components of the design. A separate representalion that is used for

programmable systems is an Instruction Level description lhal describes the instructions of

the machine.

As the implementation is refined further, logic gate level and finally transistor level

schematics may be generated. While the nature of the information contained at each level

Newton & Sangiovanni DRAFT

17

is different, each more detailed view may be considered a different level of "zooming in"

on the implementation. With each new level of refinement more information concerned

with the detailed physical and functional implementation of the circuit is included in the

description. The final transformation consists of the generation of detailed mask-level

geometries from a device-level schematic view.

The transition between functional and schematic descriptions, and between

schematic and mask layout, may involve the use of additional views The two most com

mon approaches to transforming a behavioral description to a structural, or schematic,

representation are the extraction of control-flow and/or data-flow information. The two

approaches differ in the way they derive sequencing information from the behavioral

description of the system. Over the past few years, a number of control-flow-based

languages and data-flow-based languages have been developed or adapted to meet these

needs, as described in more detail later. While CAD tools are available to help perform

this transformation for restricted underlying hardware architectures, it remains an area

where human creativity generally outperforms the CAD tools.

Symbolic layout forms a bridge between a schematic view of the circuit and its

mask-level layout. A symbolic layout contains explicit connectivity information as well

as the relative placement ol circuit components, such as transistors, to form a basic circuit

cell, cells to form a building-block, and building-blocks to describe the entire circuit. At

the transistor level, one particular form of symbolic layout is called a slick diagram since

interconnections are represented by their centerlines and hence resemble sticks. In Figure

33. a schematic diagram, its symbolic layout, and the corresponding mask-level figures are

shown to illustrate the bridging role. One of the key advantages of a symbolic layout is

its ability lo maintain explicit electrical connectivity information through to the mask

level descriptions. Not only can symbolic layout be used to aid the verification of the cir

cuit, but by separating layout-sensitive cells and interconnections, computer programs can

Newton & Sangiovanni DRAFT

18

be used to optimize the area utilization of the circuit by modifying only the noncritical

interconnections. This process is called compaction, orspacing, and is described later.

Once an appropriate set of representations for a particular design method has been

determined, important that an integrated set of computer aids, coupled with a unified

approach to data management, be provided to the ICdesigner[l 18J

At each level of the design process described above, these descriptions must permit

the structure of the design to be expressed in such a manner that it can be exploited by

the design aids. In particular, regularity and hierarchy must be exploited. For example,

regularity in the form of one- or two-dimensional arrays of similar, eg. RAM. or iterated.

e.g. ROM. components can reduce the design time since only a small number of basic cir

cuit types need be designed by hand The verification time is reduced also since only one

example of each possible spatial combination of this small number of cells need be verified

to certify the entire array. Hierarchy can aid the verification process in a similar manner.

The components of a circuit block, such as the logic gates used to implement an

arithmetic-logic unit, need only be checked in detail once. When the composition of these

cells is checked, only the relationshipsbetween the cells need be verified A detailed check

of the internals of the cells is not necessary. If these cells are used a number of times,

ihis process can provide substantial savings in computer time. Circuit structure can also

be exploited in other areas, such as simulation, circuit synthesis, and testing, as described in

the remaining sections of the paper.

3.3. User Interface

Since early CAD tools were developed in isolation and often for batch, punched-card

environments, diverse card-image-oriented data entry and card-image or line-printer-

oriented data output formats evolved For mask artwork entry, a digitizing table and

puck were in common use until only a few years ago. These systems have been displaced

Newton & Sangiovanni DRAFT

19

by interactive graphics-entry stations [calmalappliconicv] and significant improvements

in layout productivity were reported using these systems. However, since these systems

were very expensive costing over $130,000 per station, they were only used by experts

trained for fast layout entry and were kept busyaround the clock. Noone would think of

using one of these stations to write a memo and only occasionally are they used for enter

ing a schematic diagram. Separate, low-cost entry stations were used for these tasks

Over the past five years, the advent of low-cost, high-resolution bit-mapped graphics,

terminals and workstations has altered the economics of user interface dramatically.

Low-cost artwork entry systems{kiclcaesarlmagic] and schematic entry systems have

evolved to compete with the more expensive systems and it has become cost-effective to

have such capability at each engineer's desk. In the more advanced CAD environments,

general-purpose computing functions such as computer mail and networked file systems

are also integrated with the CAD interfaces In most cases, the user interface is similar to

that developed at Xerox PARC in the early 1970'sfparc] and as embodied in the Apple

Macintosh and Lisa families of personal computers —separate windows for each applica

tion, pop-up or pull-down menu-based command selection, and bit-mapped graphics inter

faces to most tools. In the most recently announced systems, the command syntax is also

common for all tools from schematic editing and mask layout to testing and report

preparation. A typical screen from sucfh a system isshown in Figure 3.4.

However, from a framework point of view, it important that the user interface be

exposed to the CAD developer for the addition of new tools. Ideally, in a consistent

object-oriented environment, the user-interface (windows, menus, menu selections, etc.)

would be treated as objects in the same environment as the data management system.

Wnh the exception of some experimental, in-house systems, there are no systems available

today lhat provide such a uniform interface for the tool builder or CAD system developer.

Newton & Sangiovanni DRAFT

20

4. VERIFICATION

4.1. Introduction

To shorten the design cycle and to decrease design costs it is crucial to eliminate as

many errors as possible before manufacturing an integrated circuit. Verification compares

the design at a certain level of the hierarchy. e.g. circuit, logic or structural level, with a

set of specifications identifying possible inconsistencies between specifications and design.

Verification tools have been the first CAD tools to be developed and are probably the
most used tools for the production of integrated circuits There are several different kinds

of verification tools We classify them as structural verification tools, simulation tools.
performance verifi cation tools, and logic verifi cation tools.

Structural verification is the task of verifying that the structure of adesign - the

arrangement of mask-layout shapes, the connections among those shapes or among the

components of a design - satisfy a particular set of rules For structural verification, the

behavior of the components of the design is not considered, only there spatial relationships
and connectivity.

Simulation has replaced bread-boarding for the functional verification of integrated
circuits since the late 1960s. Components of the design and their interconnections are

represented by mathematical models of different complexity according to the level of

accuracy desired and to the representation available for the design at aparticular stage of

the design process. Then, input paiterns are presented lo ihe mathematical models and the

corresponding outputs are obtained by solving sets of equations. These equations can be

verv complex, such as partial differential equations for process simulation, or rather sim

ple, such as Boolean equations for register transfer level simulation. The outputs are then
compared to the expected outputs.

Newton &Sangiovanni DRAFT

21

While simulation has been used successfully for the verification of large circuits, it

cannot guarantee that certain timing specifications are met for all possible input combina

tions unless all such combinations are tried - an often impractical proposition. Perfor

mance verification techniques aim at the determination of the critical delays in a circuit
J

independent of the input patterns.

Logic verification tools arealso input pattern independent and verify that two design

descriptions at gate or structural level and functional level are formally equivalent. In

general, these techniques are much more expensive than simulation but their use increases

the level of confidence in the design and are therefore more and more important as the

complexity of IC design grows

4.2. Structural Verification

Structural verification is subdivided into three areas: layout-rule checkingiLRC).

where mask geometries are verified to check if they satisfy a set of spacing, sizing and

enclosure rules, electrical rule checking(ERC). where the circuit schematic is verified to

find electrical errors due to wrong connections of the devices, and connectivity verification

systemsiCVS). where a netlist description extracted from the layout is compared against

the netlist description extracted from an alternate description, such as the schematic

diagram.

For custom and structured custom design styles, structural verification has made pos

sible a substantial reduction in the design time needed to obtain functionally correct

circuitsflattin]. However, structural verification alone cannot provide a guarantee that the

design meets necessary performance specifications.

For design styles where the circuit is constructed automatically from pre-

characterized and verified cells using computer programs, such as the standard cell and

gate-array design styles, or where large areas of the chip are constructed automatically

Newton & Sangiovanni DRAFT

22

using module generators, these techniques are used moreas a final verification of the out

put of the CAD synthesis tools than as an active part of the iterative design process itself.

For example, a design rule checker may be invoked after an automatic place-and-«jute

system andthe following symbolic spacing system have completed a layout, to verify that

all the interconnections are properly spaced and that all the components of the design

have been placed so that the design rules are satisfied In our own experience with syn

thesis tools, we have found that a verification step after the synthesis step often detects

obscure bugs that would have been very difficult to find otherwise. In addition, in sys

tems where the user is permitted to modify the output of the synthesis system (for

engineering changes, or "green wires", or to improve the quality of the final output), a

verification step is not only useful but essential.

4.2.1. Mask-Level Layout Verification

In some design methods, such as full custom or structured custom, the mask

geometries corresponding to the devices are entered manually by the designer. Physical

layout rules or design rules specify the the legal or illegal relationships among the

polygons used in the IC mask-making and fabrication process to implement the final cir

cuit These rules account for necessary electrical separation of different components and

signals as well as for imperfections in the mask preparation and manufacturing processes.

If a designer eniers the geometries of the masks such that they satisfy all layout rules,

such as minimum spacing minimum size, and minimum enclosure constraints, then the

distortions occurring in the translation from the original drawings to the actual geometries

in silicon should not reduce the yield of the design significantly.

Industrial rule-sets can be very complex, especially when the shapes of geometries

are not restricted. In addition, electrical considerations may add to the complexity of the

rules For example, capacitive coupling between lines requires that long, parallel lines be

Newton & Sangiovanni DRAFT

23

spaced more conservatively than short parallel runs For high-performance circuits as the

sizes of components continues to decrease, the importance of parasitic effects such as capa

citance, resistance, and inductance is increasing and adding complexity to the electrical

aspects of the rules

In the early days of ICs. layout rules were verified by hand-checking the Mylar

masks or the layout plots obtained after digitizing the design. When the number of circuit

components was small, this procedure was feasible, but as the size of IC designs increased

the time required for manual checking increased, along with the probability of missing an

error. In the mid-1970s, computer programs for automatically checking layout rules

began to find widespread use[ROS74lMTIC74lYAM74]. It is necessary that all the viola

tions be reported by a Layout-Rule Check (LRC) program: missing even a single a rule

may affect significantly the yield and the performance of a circuit. Often, the types of

rules required to check a new technology are more advanced than ihe rule-specification

language can handle. For example, if the rule involves specific edges of a figure while the

rule-language only permits specification in terms of entire figures, the user must either

omit the rule, and run a risk of a missed error, or specify a more conservative rule in

terms of figures, in which case the LRC program will probably report many "false errors"

— situations the rule specifies as being in error which are actually not errors — as well as

any real errors that may occur. In addition. LRC programsmust be flexible enough to deal

with different technologies (e.g. NMOS. CMOS, bipolar) and with different processes.

Because of the size of IC designs today, a complete layout rule check requires that

millions of polygons must be inspected with several rules each. The running time of a

batch LRC program is often of the order of days on a super minicomputer or mainframe.

While early algorithms used for checking layout rules often showed 0(A' iS) perfor

mance, where A' is the number of figures on the layer being checked, over the past

decade researchers (e.g.[BA176lBENN0]) have been able to reduce the expected run time to

Newton & Sangiovanni DRAFT

24

almost linear in the number of mask shapes. Once the analysis has been performed, the

errors have been reported, and the false errors have been discounted, the true errors must

be corrected Fixing such layout rule violations is an expensive process in a batch check

ing environment because a layout rule check must be performed every time the layout is

modified to verify that no new errors have been introduced

LRC programs have been developed in house by large merchant and captivesemicon

ductor companies such as INTEL[WAG75], AT&T Bell LaboratorieslMITC74l Hitachi[??]

and IBM[??]. and by vendors such as Calma, NCA. Phoenix Data Systems. Metheus. ECAD

and SDA Systems These programs can verify complex design with complicated layout

rules Some offer the users a language with which new layout rules can be added rather

easilv{SCH85]. Over the past few years, in conjunction with VLSI design courses[MEA8l].

several Universities have developed LRC programs which are based on the Mead and Con

way simplified lambda-based rules Because the design styles used often require Manhat

tan geometries (layouts comprised of rectangles only, with their edges aligned with the X

and Y axes, akin to the organization of streets in down-town Manhattan) only and do not

consider conditional rules, these programs are relatively simple and very fast.

A number of new approaches lo LRC have emerged from this activity and have

found application in industrial products as well. For example, the concept of hierarchical

[LANS3] and incremental [KIC80lCAE80][MCC83][OUS85] LRC have been explored over

the past few years and have been implemented in industrial systems[SCH85j In incre

mental approaches, a background process checks the layout rules in the vicinity of each

figure as it is added to the layout. Since manual layout is a slow process relative to the

computing speed of a modern workstation, this is an effective way of using machine

cycles that might otherwise have been wasted. It also permits errors to be corrected and

re-checked in a light, local loop so that the number of expensive, batch-mode checks can

be reduced or even eliminated completely, interactively. However, incremental LRC

Newton & Sangiovanni DRAFT

25

must be applied so that temporary LRC violations consciously introduced by the designer

as an intermediate slate are not continuously reported, disturbing the editing session. This

problem is handled using one of several techniques One approach is to maintain a file of

layout rule violations, constantly updated in the background, that can be graphically

displayed at the user s request. Another is to verify geometries only at the user's request,

avoiding checks on regions which are not completed by ihedesigner[KIC83lCAE83l

Hierarchical LRC takes advantage of the fact that cells are often used more than

once in a large design. Once the insides of a cell have been checked, the cell is marked as

done" and then for each use. or instance, of the cell only the local context of the cell

need be checked In fact, it is not the hierarchical property of the design that really

accounts for the savings but rather the repetition of identical cells or collections of figures

As ICs increase in size, the complexity of the design is often managed by increasing the

regularity[LAT79] or repetition of cells in the circuit so that tools which exploit this fact

often show large performance gains. In amodern, symbolic design system, where cells are

often parameterized and many different variations can be created form the same master

cell, or where a spacing system may adjust each cell differently to meet external con

straints such as cell pitch, the advantage of hierarchical LRC isquickly lost[SHA85].

The techniques used by LRC systems can be classified into three categories region-

operation-based, raster-based, and corner-based. An excellent review of these techniques

can be found in [ARN85].

A large number of LRC systems use variations of the region-operation approach. In

this approach, layout rules are expressed as a sequence of selection operations, isolating

regions to which the rules apply, followed by a check. More complicated rules may

require dozens of operations. Boolean operations such as AND. OR. AND-NOT. and sizing

operations such as GROW and SHRINK, are implemented to identify the regions and to

perform the checks Most of these LRC systems represent the regions in terms of their

Newton & Sangiovanni DRAFT

26

edges and the operations are usually specified in terms of edges Scan-line algorithms are

generally used to process effectively massive number of tdgts [BEN LAU]

Raster-based approaches represent the design in termsof a raster grid, where each of

the raster pixels is labeled with the mask layers present in that location. The amount of

data required by this approach is obviously very large, much larger than in the previous

approach. However, some savings can be achieved by using hierarchical storage schemes

where contiguous regions containing the same type of pixel are treated as a single data

object[??I The verification can then be carried out with very simple algorithms Because

of the uniform representation of the data that is provided by this approach, the raster

representation supports the use of special-purpose hardware in a straight-forward way.

Several hardware accelerators for raster-based LRC have been proposed but no one has

been used in production at this time. While this approach is certainly interesting, much

work remains to make it practical.

The corner-based approach uses pattern-directed rule application [ARN82]. In this

respect, it can be considered as an implementation of a rule-based expert system. Patterns

at each corner of the geometries determine which rules to apply and which tolerances are

to be checked. Present implementations of corner-based LRC. such as Lyra and Leo

[ARN85], are limited to Manhattan or 45 degree angles and cannot handle wide-region

operations needed to check conditional rules without some extensions. A rule-based

approach has also been applied successfully using an edge-based representation in the

Magic system{TAY84].

Newton & Sangiovanni DRAFT

27

4.2.3. Extraction and Electrical Rule Checking

Once the mask patterns satisfy the physical layout rules, it is necessary to verify

that they will actually implement a working circuit. The first step in this process is to

recreate a netlist description of the circuit from the mask pattern data. This process is

called extraction. Since the only information present in the mask layout data is the rela

tive placement of shapes on different mask layers mask-level operations must be per

formed to recognize individual components, such as transistors, capacitors, and nets. For

example, in an NMOS technology, a transistor may be formed where figures on the layers

poly and diffusion overlap one another. So a rule for recognizing a transistor might be

expressed as

(define transistor (and poly diffusion)))

where a transistor is defined as that region where the logical and (intersection) of figures

on the poly layer and ihe diffusion is not empty. Of course, in real systems the rules are

significantly more complicated with many exception conditions. Since the types of opera

tions necessary to recognize components from the layout are very similar to those used for

checking the layout rules, it is not surprising that in most cases a LRC program forms the

basis of an extraction program. The extraction program also determines parameter values

for simulation, such as ihe sizes of the transistors extracted as well as related parasitic

capacitance values. Depending on the design styles supported by the implemeniors of the

extraction tool, the program may only extract gross components such as transistors,

lumped parasitic resistance, and parasitic capacitance from interconnect to ground[FIT83].

or it may perform a very detailed extraction including interlayer and inter-figure parasitic

capacitance calculations [gummel] and even solve two-dimensional field equations where

necessaryfmitClue).

Like LRC. extraction can take many hours of computer time lo perform if and accu

rate analysis of an entire chip is required. In addition, if coupling capacitances between

Newton & Sangiovanni DRAFT

28

parallel lines are extracted and RC-networks are used to represent interconnections, the

amount of output data generated can be massive. While many of the industrially-

developed extractors are used to obtain detailed parasitic information, those in general use

in University design systems tend to favor speed rather than detailed analysis In the

most common University design styles for VLSI circuits, the layout rules and electrical

requirements are constrained to reduce the likelihood of parasitic components altering the

function of the circuit. Recently, the concepts of hierarchical and incremental extraction

has been developed which makes it possible toverify modifications to design interactively

without sacrificing the level of verification thatisneeded in quality IC designs [SC085].

The extracted netlisi provides the basis for anumber of additional checks In partic

ular, connectivity verification, as described in the next section, and electrical rules check

ing. Electrical rules checking programs evolved from simple implementations that

searched the extracted netlist for ridiculously large or small transistors or direct short-

circuits among the power supply lines, clock lines, and theground line lo programs which

check for more complex relationships. Such rules include searching a local area of a cir

cuit to be sure transistors related to one another in an electrical sense all have the correct

sizes to ensure correct circuit operation. In general, however, new rules were added to

these programs by adding additional "hard-wired" procedures or data structures

Recently, a new breed of electrical rule checking programs has evolved based on the use

of rule-based expert sysiemsfcritterldialoglrubicclcv]. Here, the rule-based system isused

as a convenient way of expressing the required relationships among components and sig

nals The fast pattern matching facility of such systems is then used to recognize specific

arrangements of components and apply the rules to those arrangements The rule-based

approach provides a convenient programming environment for adding additional, and

higher-level, checks

Newton & Sangiovanni DRAFT

29

4.2.4. Connectivity Verification

If a transistor-level netlisi description of a circuit is available, either from

manually-generated simulator input data or from a schematic entry system, the pattern of

interconnections among those components and the pattern of interconnections obtained

from the extracted netlist can be compared. This process is called connectivity verifi cation

and connectivity verification systems (CVS) have been used over the past decade to

improve dramatically the probability of functionally-correct silicon on the first fabrica

tion run.

Connectivity verification was first used at the board level, for comparing a logic

schematic input with a placed and routed board-level implementation of the

circuit[apples].

In general, the comparison involves a one-to-one correspondence between the circuit

elements, such as transistors, and the nets in the two circuits, not a functional

equivalence. Each circuit is represented by a graph, where the nodes in the graph

represent either the circuit elementslwombat] or the netsfgemini], and the nets or circuit

elements, respectively, are represented by the arcs in the graph. In some cases, both the

circuit elements and the nets are represented by nodes in the graph and the arcs simply

represent the connections between them. The problem of determining that the two

graphs are the same is equivalent to the graph isomorphism problem, a well known com

binatorial optimization problem. The worst-case complexity of graph isomorphism is not

known. No algorithm has been found with running time bounded by a polynomial in the

size of the input. i.e.. number of nodes and edges of the graph, but il has no been proven

that this problem belongs to the class of NP-complete problems. However, good heuristics

are available which can quickly detect if two graphs are isomorphic in most of the cases.

If they are nol isomorphic, the programs can then isolate the subgraphs that differ in the

two nellists. This information is then provided th the user who tries to locale and correct

Newton & Sangiovanni DRAFT

30

the error.

There are two basic algorithms in use today for comparing two circuits signature

calculation (using element signatures as in the Wombat program [14.15] or using node sig

natures as in the Gemini program [16]). and path tracing. Several approaches have been

described in the literature and most LRC/H*C vendors and large IC companies have

developed a connectivity verifier.

In the signature calculation approach, signatures are calculated for each element or

node in both circuits. A signature is a combination of information about the element or

node and its neighbors. The signature can be thought of as a hashing function. All

unique signatures in each circuit are compared and any elements or nodes with the same

signatures between circuits are marked as the same. This process is repeated until all ele

ments are marked or no more unique signatures can be generated. The information gained

on each iteration is fed back into the signature calculations. Almost all connectivity

verifiers can handle the straight-forward problem very efficiently with fast, heuristic

algorithms. However, most of the time in these programs is spent handling the special

cases

There are many special cases that can degrade the performance of the basic algo

rithms. Two such cases are terminal permutabilay and parallel paths. For some elements,

the terminals are logically and/or electrically equivalent and are allowed to permute.

The inputs to the basic logic gates (nand. NOR. etc.) and the source and drain of MOSFETS are

examples of such situations. In handling terminal permutability. many connectivity

verifiers assume that they will be working with MOSFETS and "hard-wire" the faci that

sources and drains can permute; others allow the user to specify how terminals on arbi

trary elements can permute, but some do this very inefficienily and others do nol always

work.

Newton &Sangiovanni DRAFT

31

Identical or nearly-identical parallel paths (as in bit-slice circuits and RAMs) also

present a problem to current connectivity verifiers If the paths are identical, the algo

rithms currently used can not distinguish between the paths and may not be able to han

dle them. In that case, the program may make a random binding of two elements from

the possible candidates and proceed. If it discovers later that the choice was erroneous, it

must undo the binding and choose another one. Also, if two paths have only small

differences (as in ROMs), since only local effects are taken into account, connectivity

verifiers alsomay not be able to distinguish between them.

»CV*»

43. Simulation

43.1. Introduction

For circuits made from discrete components, bread-boards (prototype boards with

discrete components) were used extensively to check the functional correctness of the

design as well as its performance. However, this approach does not work well for

integrated designs since the parasitics on the bread-board are quile different from those on

the IC and the thermal and elecirical characteristics, as well as component matching pro

perties of the discrete components are also quite differenl from their IC counterparts. For

this reason, electrical circuit simulation was one of the first CAD tools to be developed for

IC design and has completely replaced bread-boarding for analog and digital cell design.

For large digital designs, breadboards are still used for software development.

Many different forms of simulation can be used for the verification of large digital

integrated circuit designs ai the various stages of the design process. They may be

classified as Behavioral (also called algorithmic or functional) simulators. Register

Transjer Level {RTL) simulators. Gate Level Logic simulators, timing simulators, circuit

simulators, device simulators, and process simulators.

Newton & Sangiovanni DRAFT

32

Behavioral simulators [51] are used at the initial design phase to verify the algo

rithms of the digital system to be implemented. Not even a general structure of the design

implementation is necessary at this stage. Behavioral simulation might be used to verify

the communication protocols in a multiprocessor design, for example.

Once the algorithms have been verified, a potential implementation structure is

chosen. For example, a microprocessor, some memory, and a special-purpose input-output

module may be chosen to implement the handshaking protocol mentioned above. An RTL

simulator can beused to verify the design at this level. Only crude timing models may be

available, since the exact circuit parasitics and other implementation details are not yet

known. Useful information relating to congestion and hardware/firmware tradeoffs can

be obtained from this level of analysis A variety of RTL languages and associated simula

tors have been described in the literature [29].

Depending on the design methodology and certain technology issues, a gate-level

design may be undertaken, where each of the RTL modules is further partitioned into

low-level logic building blocks, or gates A logic simulator may then be used to verify the

design at this level. Sophisticated delay models may be introduced and tesubility analyses

performed.

From the gate level, transistors and associated interconnections are generated to

implement the design as an integrated circuit. Accurate electrical analysis can be per

formed for small parts of this design using a circuit analysis program [l]j54] or larger

blocks may be analyzed in less detail using a timing simulator [9-10]Jl3]. Once the

integrated circuit layout is complete, accurate circuit parameters, such as parasitic capaci

tance values and transistor characteristics, may be extracted and used ai the electrical

level. These analyses may then beused to improve the delay models ai both the gate and

RTL levels to verify the circuit design using accurate timing data.

Newton & Sangiovanni DRAFT

33

Device simulators are used to verify whether the device characteristics correspond

ing to a particular sequence of processing steps are close to a ideal device characteristics.

Finally, the design of a new process or the tuning of an exiting process is aided by

process simulators, where the control parameters of the process, such as furnace tempera

ture and initial impurity doping densities, are the input variables and physical informa

tion such as impurity profiles are the outputs of the simulator.

A number of simulators have been developed recently which span a range of these

levels in the simulation hierarchy. These simulators are called mixed level simulators

[40-42] and allow different parts of a circuit to be described at different levels of abstrac

tion. Not only does this approach permit a smooth transition between different levels of

simulation (since the same simulator and associated input processor is used) but it allows

the designer to take advantage of the time and memory savings available from higher-

level descriptions of parts of the circuit.

Excellent tools, either developed in house by IC manufacturer or by tool vendors, are

available at all levels of the hierarchy. The parameters often used to judge the qualiiy of

a simulation tool are accuracy, speed, and flexibility. By flexibility, we mean the range of

analyses supported by the program (time-domain transient, small-signal frequency-domain

analysis, liming verification, fault simulation, etc.) and the range and qualiiy of the com

ponent models it provides (both N and P channel MOSFETS. bipolar transistors, bi

directional switches, built-in registers, etc.). Because of the increasing size of IC designs,

even the fastest simulators are not able to perform simulation as extensively as desired by

todays designers For this reason, several hardware accelerators have been developed for

simulation and new algorithms are being explored lo exploit mu hi -processor architectures

(see the window in page for a detailed discussion of the use of multi-processors for simu

lation).

Newton & Sangiovanni DRAFT

34

43.2. Process and Device Simulation

The electrical characteristics of IC devices depend very strongly on the manufactur

ing process. This process continues to become more complex and more sophisticated and it

is often difficult to relate specific processing steps with the overall device characteristics

obtained after manufacture. Process engineers are responsible for the design of an IC

manufacturing process. They must define a sequence of processing steps, including mask

ing and pattern exposure, implantation, oxidation, and etching, and they must specify and

control parameters for each of these steps, including time, temperatures, and implant

dosage. Their goal is to design a process which can produce reliably devices with well-

defined electrical properties in a manufacturing environment.

The design of the manufacturing process could be carried out by trial and error,

monitoring the electrical characteristics of test devices as the parameters of the process are

varied However, not only is such a process time-consuming and expensive, but with the

high cost of today s IC manufacturing lines, it is important to design and test the process

before it is actually implemented. In addition, while a process is being implemented, it is

important that circuit designers have accurate device models so that they can develop

their first circuits in parallel with the process development phase. Process simulation is

used as a convenient tool in the design and refinement of processing sequences

Process simulation hasbeen a very active area of research for the past few years and

has become an indispensable tool for industry. A key aspect of process simulation is pro

cess modeling. An excellent review of this field can be found in [DUTSl].

Two approaches have been followed to model accurately the processing of ICdevices

the analytical approach and the numerical approach. The trade-offs involved in the selec

tion of one of the approaches are accuracy and compute time. In particular, analytical

solutions can be given under simplifying assumptions or from a functional fit from meas

ured data. Hence, these approaches tend to be valid only over a limited range of process-

Newton & Sangiovanni DRAFT

35

ing conditions and useful for tuning an existing process more than for a complete design

of a new process. On the other hand, the complexity of computation is small and infor

mation such as impurity profiles, can be obtained at the expense of function evaluations

which do not involve the solution of complicated nonlinear equations. At the other end

of the spectrum, numerical techniques can be used toobtain the necessary information by

solving set of nonlinear partial differential equations describing the processing steps in

detail. As such they can be very accurate, but these computational techniques are time

consuming since they involve a double discretization process: in both space and time.

FABRICSfSTR], developed at Carnegie-Mellon University, is an example of process simula

tor using analytical models while SUPREMfDUT]. developed at Stanford, isan example of

a process simulator using the numerical approach. While the process simulators developed

at Stanford focus on the oxidation, implantation, and diffusion steps. SAMPLE[NEU],

developed at Berkeley, models the photolithographic and etching aspects of the manufac

turing process. Simulators currently used in industry are based on numerical techniques.

IBM and AT&T Bell Labs have been technical leaders in this field.

In general. IC fabrication processes are affected by random disturbances, such crystal

imperfections and dust, which affect greatly the yield of IC circuits Over the past few

years, techniques for designing processes, devices and circuits to maximize yield have

become a necessity to provide economically sound products Unfortunately, accurate

numerical techniques such as the ones used by SUPREM cannot be used to predict yield if

a statistical characterization of a process is soughi since today's computers are nol power

ful enough. However, programs like FABRICS can be used to provide a statistical charac

terizations of processes, given the improved speed with which physical information can be

generated from processing step information in this type of program.

The ultimate goal of process design is the production of devices with given electrical

characteristics However, process simulation produces as outpui impurhy profiles. The

Newton & Sangiovanni DRAFT

36

necessary next step is to map this physical information onto device parameters that

describe the electrical behavior of the devices resulting from the process. This step is

accomplished by programs called device simulators. Approaches to device simulation are

similar, from a mathematical point of view, to the ones used in process simulation.

Numerical techniques involving the solution of partial differentia] equations, such as

Poisson s Equation and the Continuity Equation, are used by programs such as SEDAN

developed at StanfordfDUT] and MIMMOS developed at the University of Vienna[SELl

Analytical techniques are used by FABRICSII[NAS84]. a combined process and device

simulator, to obtain device parameters for a variety of technologies and transistar models

which are used in circuit simulators such as SPICE2[NAG75l

Recently, attention has been devoted to the use of special-purpose hardware to

reduce the cost of numerical process and device simulation. In the past, only one-

dimensional effects were modeled by these tools. Recently, two dimensional process and

device simulation has been possible. Three-dimensional effects are now been addressed to

represent the processing steps in their full complexity. Japanese companies, in particular,

are devoting significant resources to this problem.

For the analytical approach to process and device simulation, moreattention is being

paid to the development of accurate analytical formulae and of optimization techniques

which can be used to design a manufacturing process to reduce the lime needed to obtain a

satisfactory design.

Newton & Sangiovanni DRAFT

37

43.2. Circuit Simulation and Modeling

As mentioned earlier, circuit simulation was one of the earliest tools applied to the

design and verification of ICs[??l since *bread-boards' prototypes of these circuitscould not

adequately represent the parasitic or thermal effects necessary for prediction of circuit

performance. When accurate circuit models are available, circuit simulators provide pre

cise electrical information, such as frequency response, time-domain waveforms, and sensi

tivity information, about the circuit under analysis The majority of circuit simulators

currently in use contain models for a wide range of active devices including bipolar junc

tion transistors. MOSFETs JFETs. MESFETs and diodes, and hence are largely independent

of technology. For this reason, these programs must employ general algorithms for the

solution of the set of coupled, nonlinear, ordinary differential equations which describe

the integrated circuit and hence cannot exploit the special characteristics of a particular

technology.

The most used general purpose circuit simulator is SPICE, developed at the Univer

sity of California. Berkeley. This program has been adapted for use in many IC design

companies, e.g. ADVICE used at AT&T Bell Labs. T1-SP1CE used at Texas Instruments.

SLICE developed at Harris The program ASTAP has also been widely used. ASTAP is

based on different algorithms than SPICE and has additional capabilities such as user-

defined models and statistical analysis In addition, commercial versions of SPICE. SCEP

TRE, and the ASPEC program are used in industry.

Without models whose accuracy is well matched to the expected accuracy of a simu

lation, the results of the simulation may not reflect the performance of the circuit under

analysis. Recent work on modeling for MOS circuit simulation!??] has focussed on the

developmenl of both analytic!?9]and semi-empirical[??] models for MOS transistors which

predict the characteristics of the devices accurately without requiring large amounts of

computer time. With increasingly small geometries on ICs. signal delays and signal degra-

Newton & Sangiovanni DRAFT

38

datbn caused by interconnect can dominate circuit operation. For this reason, explicit

models for interconnect are necessary for accurate simulation and interconnect modelling

has returned asan active area of research!??]. The parameters of such models may be pro

vided by the designer interactively or by design programs directly, as described in Section

All.

Since circuit simulators have been with us for almost twenty years, and because the

problems they attempt to solve are very well understood, the core algorithms used in a

modern circuit simulator are generally quite robust. However, as a consequence of their

long history, most circuit simulators arebatch-oriented programs and the input to the pro

gram consists of a textual description of the transistors and their interconnections. Nowa

days, using a CAD workstation, an interactive graphics editor is often used to capture the

schematic diagram and provide simulator input

Circuit simulation techniques can provide accurate waveform analysis for circuits of

building-block complexity. However, as circuit size increases the time and memory

requirements of a circuit simulation become prohibitive. On an IBM 370/168 computer,

the average cost of a SPICE[l6] analysis is6ms/device/clock/timepoint. Fora 10.000 device

circuit, with 3 clocks and for an analysis of lOus at Ins steps, the computation time

would be in excess of 20 computer days! Nevertheless, the success of circuil simulation in

design evaluation has been such that designerswish to continue to simulate large circuits

at the level of accuracy provided by this type of program.

By applying node tearing techniques{82.83] to the interface between cells in the cir

cuit, inactive cells can be bypassed during the equation solution phase. However, these

techniques alone provided less than an order of magnitude speed improvement. This is not

sufficient improvement in performance to permit cost effective device-level analysis of

VLSI circuits

Newton & Sangiovanni DRAFT

39

If simulation algorithms are tailored to specific technologies or applications substan

tial speed improvements can be achieved Many components of digital MOS or / 2L cir

cuits can be considered unilateral in nature. This characteristic, as well as the facts that

these families are saturating and hence accumulated voltage errors are lost at the extremes

of signal swing, and thai large digital circuits are relatively inactive at the gate level, are

exploited in tuning simulation. Timing snsulalors[84-86] can improve simulation speed by

up to two orders of magnitude while maintaining acceptable waveform accuracy. These

savings are achieved by using node decoupling techniques in conjunction with simplified

table look-up models for nonlinear devices

Where a library of cells is used during the design, or when a group of transistors is

used to implement a common function, such as a cell or logic gate, it is often possible to

exploit the known structure of the circuit and use a simplified representation which

maintains the essential characteristics of the cell at reduced computational expense. Such

a reduced representation is called a macromodel [87-89] and macromodels are used in both

circuit and timing-level analysis.

While liming simulators are fast, they may be inaccurate for circuits containing

tight feedback loops and large floating elements. Designers have often applied these simu

lators to problems which were nol well suited for this type of analysis and have obtained

incorrect answers For this reason, converged relaxation-based circuit simulators[l.EL82.

NEW83] were developed. These programs evolved from the basic ideas of timing simula

tors guarantee an analysis as accurate as the one provided by standard circuit simulators

such as SPICE

Two basic algorithms have been used in these simulators:

(l) Waveform Relaxation. (WR) where the system of Ordinary Differential Equations

(ODEs) representing the circuit is solved by a relaxation process at the differential

equation level, ie.. the variables which are relaxed are waveforms. This approach is

Newton & Sangiovanni DRAFT

40

used in the RHAX[LEL82.WHI84]. TOGGLEf??] and SWAtfDUL85] programs

(2) Iterated Timing Analysis OTA) where the system of differential equations is first

discretized and the resulting nonlinear algebraic system of equations is solved by the

SOR-Newton iteration. This approach is used in the used in the

SPLICE[KLE82XLE84] and MOTIS[CHE84] programs

Both of these techniques exploit the unilateral nature of MOS devices, the inactivity

of the circuit {latency) and the fact that node voltages and branch currents of the circuit

change in time at different, sometimes very different, rates {multirate behavior). Savings

in running time of up to two orders of magnitude have been obtained over standard cir

cuit simulation programs such as SPICE2. However, for circuits that contain tightly-

coupled subcircuits or where many parasitic components are involved, the relaxation-based

approaches alone may not perform as well as standard circuit simulators

Under these conditions, relaxation must be applied with great care to maintain the

speed advantage over standard techniques The key idea here is to solve the tightly cou

pled subcircuits with standard methods while the loosely coupled connections are dealt

with relaxation[NEW79l Most relaxation-based simulators in use today provide this capa

bility. Automatic partitioning algorithms have been developed to partition large scale cir

cuits into collections of tightly-coupled subcircuits [SAK85. WHI85].

These techniques alone cannot provide the speed that is needed for the detailed

electrical analysis of VLSI circuits Special-purpose hardware and multi-processor systems

are now being used to provide dramatic speed improvement for circuil simulation. The

direct methods, such as the ones used by standard circuit simulators, can certainly be

parallelized but this operation is not straighl-forward at either the algorithmic or the

implementation levels due to the sparse, irregular nature of the circuit matricies

Relaxation-based simulation algorithms are much easier to parallelize. For this reason, the

first results published in this area are related to iterated timing analysis algorithms

Newton & Sangiovanni DRAFT

41

[DEU84. DEU85] or to waveform-relaxation [WH185a. SAN85. WHI85b].

43.3. Logic and Switch Simulation

When the complexity of an integrated circuit design reaches the point where electri

cal analysis is no longer cost effective, logic simulation may be used Rather than dealing

with voltages and currents at signal nodes discrete logic states are used. Only simple

Boolean operations are required to obtain the output state value of a logic gate and these

are generally the most efficient operations available on a digital computer. Rather than

modeling the circuit at the individual transistor level, in a logic simulator transistors are

grouped into logic gates wherever possible and a gale-level model is used. As in modern,

relaxation-based simulators, asynchronous logic simulators exploit the inactivity in the cir

cuit to improve speed by using event-driven and selective-trace techniques The term

event-driven refers to the fact thai only logic gates whose input values change are pro

cessed and the term seleciive-trace refers to the technique used to find the logic gates

whose inputs have changed. Rather than checking every gate at every timepoint to deter

mine if its inputs have changed — an expensive process if most of the gates are not chang

ing — when an outpul changes a table containing pointers to the gales to which this out

put is connected is used to schedule the fanout gates for processing. As a result, the pro

gram selectively traces paths of activity through the circuit. With selective trace analysis

and the above simplificaiions. asynchronous logic simulators are typically 10 to 100 times

faster than the most efficient forms of electrical analysis.

However, ihe major objective of simulation is accuracy and simulators must accu

rately predict the behavior, both normal and abnormal, of the physical circuits they

model. It is clear that the transition from the continuous electrical domain to the discrete

logic domain will result in the loss of some circuit information. It is important, therefore,

thai the circuit design methodology allow such an hierarchical simplification or logic

simulators cannot be used effectively. In most cases, once a subcircuii of the design has

Newton & Sangiovanni DRAFT

42

been verified in detail at the electrical level, a simplified gate-level model can be used for

logic simulation. However, it still may be necessary to analyze critical paths in the net

work at the detailed electrical level.

The tradeoff between the accuracy of logic simulation, and hence the amount of

information it can produce about circuit operation, and the computer time required to per

form the simulations, is very important The number of logic states used in the simulator

and their meaning, the logic delay models used, even the type of scheduling algorithms

employed, are determined by the technology in which the circuits are to be implemented,

and its associated circuitcharacteristics aswell asthe particular design methodology being

used.

It is this wide variety of factors that hasresulted in the development of such a large

number of logic simulators, almost every one addressing a different set of tradeoffs Logic

simulators have been in use for the design of digital hardware since the early 1950s [33],

and it is impossible to addressall aspectsof simulator development in this brief review.

Rather than using event-driven techniques, many of the early logic simulators were

compiled simulators [32], where the logic circuit was described in a programming language

which was compiled directly to machine code and executed. Although this approach pro

vides a very efficient mode of simulation, no compiled simulators accurately model asyn

chronous circuits. Compiled techniques are used, however, for higher-level Register

Transfer Level (RTL) simulation and. of course, the bottom-level models in logic simula

tors are generally compiled. Recently, compiled simulators have been developed for the

switch-level simulation of clocked, synchronous MOS circuits where the circuit is

analyzed and switches that form distinct, combinational blocks are clustered as subcircuits

and a corresponding program fragment is generated. These fragments are compiled and

form the scheduled blocks of an event-driven simulator. An equivalent speedup can be

achieved by using a gate-extraction program which recognizes specific patterns of switches

Newton & Sangiovanni DRAFT

43

and replaces then with an equivalent gate-level representationfhpref].

The earliest use of logic simulation was for the verification of combinational logic.

Since the logic was assumed to have zero delay and logic gates were assumed to implement

ideal Boolean operations such as AND. OR and COMPLEMENT, only two states were

required: a state representing true (logic 1) and a slate representing false (logic 0) [34].

As technologies have become more complex and the logic designer continues to

exploit the features of a particular technology, such as tri-state outputs, additional states

have been added to logic simulation. Early simulators used "unit-delay" models for gates,

where the rise and fall times of a gate were assumed to be the same and the same as for

all other gates While this was a reasonable approximation for TTL SSI circuits, with MSI

came the need for assignable delays for different gate types With MOS design

separately-assignable rise and fall delays were added due to the disparity in rise and fall

delay present in NMOS circuits. In addition, the use of wired logic where even though

two switches may try to assert different logic vales onto a nei the "stronger" switch

should win. required additional strength slates to be added. By adding an "unknown"

slate to the simulator, efficient detection of all single-inpul circuit hazards can also be

accomplishedfeich]. Modern MOS-oriented logic simulators provide at least nine static

states for describing logic.

Even the nine-state simulator does not adequately model the interaction between

transfer gates of different geometry, or the effect of parasitic capacitance variations on the

charge sharing across a transfer gate. These effects could be represented by a finer resolu

tion (adding more states) or to accurately model this behavior timing simulation can be

used. The bidireclional nature of iransfer gates can be approximated by noting all the

forcing states at the nodes of an arbitrary tree of iransfer gates and tracing their fanouts

through the tree, setting all affected nodes to the appropriate soft state unless a conflict is

detected.

Newton & Sangiovanni DRAFT

44

43.4. Register and Behavior

As mentioned in Section 3. there are a number of levels of description above the

logic gate level. For each of these levels there are associated simulators. While different

description languages are described as RTL. PMS.or Behavioral, it is often the case that the

distinction is blurred in actual use. While the purpose of an RTL description is to describe

a register-level implementation of a system. RTL descriptions are often used as input to

synthesis systems where the structural information they contain may be ignored. On the

other hand, the program structure in a behavioral or algorithmic description is often used

as an initial hardware structure for implementation.

As the design representation becomes increasingly abstract, it also tends to become

increasingly domain-specific. For example, while most designers can agree on what an

AND gate is, at the system level a signal processing engineer will refer to a "sample time."

the microcomputer designer talks of "4-phase clocks". and the data-driven system designer

talks about "self-timed" modules If a language selects any of these notions as its abstract

representation of time, it will often not be used in the other application areas The only

way, therefore, to build a general behavioral language and simulator is to reduce the

domain-specific notions to their lowest common denominator and to permit individual

users to buili libraries of domain-specific objects and operators As a result, most

behavioral-level simulators are implemented in existing concurrent programming

languages, such as Simula[simula], Modula-2[mod2], or concurrent Pascal[adlibl The major

exceptions are the behavioral levels of mixed-level simulators, described in the following

section. Since in the mixed simulation environment, the behavioral descriptions must

coexist with lower-level descriptions, the behavioral language often inherits many of the

characteristics of the lower level (e.g. logic gate level) description formats.

Register Transfer Level simulators may be classified by the manner in which they

deal with time and the way in which they order the evaluation of blocks In some simu-

Newton & Sangiovanni DRAFT

45

lators, all assignments correspond to clocked, register transfers All logic between assign

ments is combinational and thus can be compiled on a sequential machine after a suitable

static ordering has been determined. Such an ordering can be found using breadth-first

search of the data-flow graph that represents the logic expressions Since the logic is com

binational, the graph must be cycle-free. This approach leads to a very fast implementa

tion but cannot handle hazard detection or timing within a clock cycle and can only

represent synchronous systems.

The other approach is to implement the simulator much more like a logic simulator.

Use a dynamic ordering, based on the next-event approach[szgenda] (event-driven selective

trace), and schedule code modules The modules may be those specified by the user (code

block or procedure boundaries) or may be extracted from the description between explicit

delay assignment statements If the system supports asynchronous design, specific delay

constructs must be provided and these are used to determine locations for scheduling

Register-transfer simulators are over an order od magnitude faster than gate-level

simulators, for the same circuit, since they deal with fewer blocks and their model of

time and signals is typically a lot coarser than in the logic case.

4.3.5. Mixed-Level

For the analysis of most large IC circuits neither electrical nor logic analysis is alone

sufficient. The detailed waveform information of an electrical analysis is required for

some parts of the circuil bul an electrical analysis of the entire network would require an

excessive amounl of computer resources A logic-level analysis is often sufficient for parts

of the circuit and can be performed much more efficiently than an electrical analysis.

Although liming analysis is generally much more efficient than circuit analysis there are

circuits which cannot be simulated accurately using liming analysis, such as circuit blocks

containing strong bilateral coupling between nodes. For these blocks, a detailed circuit

Newton & Sangiovanni DRAFT

46

analysis may be required.

A number of mixed level or mixed mode simulators have been developed which

combine analyses at more than one conceptual level. The SABLE system developed at

Stanford[39], the DBCSIM system developed at Digital EquipmentQ, the MICROSIM system

developed at Intel[7?l the HILO system!??], and the SILOS system[JEN] are among the most

successful examples of mixed-level simulators that address the high-end of the design and

allow behavioral. RTL. and gate-level descriptions to be combined Both the Diana pro

gram [40] and the SPLICE program [41] allow concurrent circuit, timing and logic analyses

of different partsof the circuit.The MOTIS program [9] hasalso been extended to combine

timing, logic, and RTL level analyses [42l Recently, process, device and circuit simulation

have been combined into MEDUSA, a mixed level simulator developed at Aachen[ENG]

and process and device simulation have been combined into FABRICS2[STR85l

The most difficult mixed-level simulator is the one that involves electrical and logic

levels since the representations of the signals is totally different thus making the com

bined analysis complicated. For this reason, we focus on this type of mixed-level simula

tion.

One approach to the design of a mixed-level simulator is to combine existing circuit,

logic, and RTL simulators via data pipes such that the three forms of analysis can be per

formed concurrently and may pass values of circuit variables, with the appropriate

transformations, between one another via the data pipes which connect them[hughes].

While this approach is useful where the circuil contains large blocks of elements to be

simulated at each level, such an approach would result in a very inefficient simulation if

the the different levels of modelling and analysis were coupled tightly in the circuit.

In a table-driven simulator[NEW81, KLE84], it is the structure of the data tables

that makes for efficient simulation. Hence a common data formal has been determined

[NEW81] for all types of circuit elements and circuil nodes so thai a single event

Newton & Sangiovanni DRAFT

47

scheduler can be used to process them all.

Timing analysis and circuit analysis may be coupled directly since they both use vol

tage and impedance to model the conditions at a node and hence an additional interface is

not required. Discrete logic simulation does require an interface to and from the electrical

analysis This interface may be achieved by implicit signal coercions [NEW811 That is.

whenever an electrical element is connected to a logic node, and vice versa, an automatic

signal transformation is implied. Alternately, special circuit elements may be used to per

form the transformation[DEM8140]. In either case, thresholding may be used to convert

voltage and impedance to logic levels while logic-electrical conversion may be used for the

reverse transformation.

The most successful mixed-level simulators have been the ones addressing various

levels of logic simulation, from gate-level all the way up to functional level. Mixed-level

simulators involving electrical analysis have been used to a lesser extent by the designer

community. One of the still unresolved problems in this type of mixed-level simulation

is ihe partitioning of the circuil into the various levels to achieve the degree of efficiency

and accuracy desired by the designer. In most cases, the designer is called upon this

difficult decision. Some automatic partitioning approaches have been developed and are

still under study to cope with this problem.

Newton & Sangiovanni DRAFT

48

4A. Performance Verification

Digital circuit design depends critically on the delay of the signals. Far asynchro

nous designs, if the timing of the signals is not carefully considered, incorrect results may

be obtained from an otherwise functionally correct design. For synchronous designs, the

longest delay among the signals from primary inputs, or latches, to latches, or primary

outputs, the critical path, determines the period of the clock and hence the speed of the

circuit.

To optimize the performance of a circuit, critical paths have to be identified and

minimized. In addition, paths which are non critical may be unnecessarily fast and con

sume extra power to no avail. This optimization is becoming a more and more difficult

task as circuit size and complexity increase, but mare and more necessary because of the

competition to build faster and faster circuits Simulation can be used, and has been used,

to identify critical paths and to optimize circuit performance. However, detecting critical

paths may involve the simulation of several thousands transistors for large Ids. Further

more, pathological conditions may not be detected by simulation, unless particular inputs

are fed. Timing verification is a technique which aims at the determination of critical

paths without performing simulation. This technique has played a very important role in

the design of digital integrated circuit, in particular for bipolar gate-array technologies

The first timing verifiers were built around 1973 by IBM and other computer companies

for the design of large high-performance computers (see [HIT82] for a description of tim

ing analysis techniques, their history and their relevance to computer design).

Other applications of liming verification have recently come to the attention of the

designers' communily. In particular. Ousterhout at Berkeley [OUS85] and Youppi at Stan

ford [YOU] developed liming verifiers for nMOS and CMOS technologies where design

constructs are nol limited to logic gates

Newton & Sangiovanni DRAFT

49

Most of the CAD vendors have developed timing verifiers with various degrees

of complications and power. Both gate-level and switch-level timing verification is avail

able.

In general, timing verification programs are partitioned into two parts a path-

analysis section and a delay modeler. Most timing verifiers represent a circuit by a node-

signal flow graph. The path-analysis section extracts part of the circuit systematically

using the signal flow graph and transfers it to a delay modeler that computes the delay

along the path corresponding to the part extracted. The nodes along the path are then

labeled with the worst case delay found so far. Note that unlike simulation, timing

verification is value-independent. This means that, for example, if a changing signal

arrives to a NAND gate, its effect is always propagated to the output node, regardless of

the signal states at the other input terminals In simulation, the changing signal pro

pagates to the output of the NAND gate, if and only if the signal states al the other input

terminals support the propagation.

There are two basic approaches to liming verification, path enumeration and criiical-

path analysis.

The basic difference between the two methods is that in path enumeration CJauert K,rk

alJ passible paths in the circuit are checked, while in critical-path analysis, the search is pruned and only the slowest paths are

detected with techniques borrowed from the PERT critical path algorithm Path enumeration is conceptually simple, but it may

suffer from rather long CPlMimes due to the potentially large number of possible paths Even though the complexity of implf

mentation of critical path methods is higher, most of the programs in use today are basedon this technique

Both strength and weakness of timing verification techniques come from value-

independence. Since nol all input combinations, whose number is exponential in the

number of ihe inputs, are generated, timing verification can be much faster than simula

tion. However, since timing verification ignores specific signal values, it may repori criti

cal paths which can never occur under real operating conditions. These paths are called

Newton & Sangiovanni DRAFT

50

false paths. False paths tend to hide the real critical paths in the circuits under test. In

this case, a mechanism called case analysis, [MCW80] has been used to exclude certain

paths that cannot occur by fixing the values of certain inputs. However, it must be used

with caution since by fixing too many input values, not only false paths but also bona

fide critical paths may be eliminated.

A very important part of timing verification is the delay estimation method used by

the delay modeler. For bipolar gate-arrays the delay of a component is a well-

characterized quantity that can be assignedto the component independently on load condi

tions and input waveforms In the case of MOS circuits, the delay depends critically on

input waveform shapes, loading conditions and size and type of transistors Most MOS

timing verifiers represent the MOS transistor with an ideal switch with a resistance in

series and represent the capacitance of the transistora as well as the parasitic capacitance

along a wire with a capacitor from every node in the circuit to ground. Then the delay is

computed using approximate formulae based on the values of the resistors and capacitors.

This approach is very efficient in terms of CPU-time, but it has several weaknesses For

example, it assumes that there is only one direct path from a reference node (power sup

ply or ground) to the signal-nodes of the circuit. For example, in the case of an nMOS

inverter, if the driver is on, only the driver is considered for delay time estimates, and the

load is ignored. While some of the programs based on this "RC approach (e.g. Crystal),

incorporate information about input waveform shape and load condition in order to oblain

more accurate delay estimates, they use the ratio approach first suggested by Pilling and

Skalnik PlllinS Skalnik The ratio approach improves theaccuracy of thedelay estimates significantly with small amount of

work for most circuits, but it may still result in large timing errors

Recently, a new approach to modeling the path delay, called Llogic [KIMS4] has been

proposed to solve some of the inaccuracy problems of liming verifiers Essentially, the Elo-

gic approach simulates the path extracted by the path analyser with a model of the com-

i

Newton & Sangiovanni DRAFT

51

ponents of the circuit somewhere in between the models used in logic simulation and cir

cuit simulation. Because of the use of a more accurate model of the components as well as

a more accurate representation of the subcircuit responsible for the delay at a node, the

delay estimation is much more accurate. In addition, since there are several levels of accu

racy in the Elogic models, a trade-off between speed and accuracy is offered to the user.

Bogie models have been recently added to Crystal and tested on a number of circuits

The results show that a reduction of an order of magnitude in the delay error can be

achieved at the expense of a thirty fold running time increase.

4.5. Formal Verification

In general, the functional verification step is carried out by simulating the

design with a set of input patterns which cannot guarantee that the design is correct. i.e..

thai the transformation from one level of the design hierarchy to the next has not

changed its functionality. Formal verification techniques are input-independent and are

designed to guarantee functional equivalence between two representations of the design at

differenl levels

Most of the formal verification techniques deal with behavioral, structural and logic

level representations. These techniques have great potential for producing correct-the-

first-time designs. In addition, verification is important for technology remapping. i.e.. for

the transfer of a logic design from a technology (for example bipolar ECL gate arrays) 10

another (for example CMOS gate arrays). In this case, the functionality of the new imple

mentation has to be checked againsl the functionality of the former. Despite the impor

tance of formal verification, only a few of the techniques developed in the past have been

applied to industrial designs due to their complexity and computational requirements.

Most of ihe formal verification techniques proposed recently can be classified inlo

three major categories formal software verification techniques, semi-exhaustive logic

Newton & Sangiovanni DRAFT

52

simulation and logiccomparison.

Formal software verification techniques can be used because at thehighest levels of

thedesign hierarchy, hardware descriptions are similar tocomputer programs written in a

programming language. In particular, the inductive assertions approach and the symbolic

simulation approach have been proposed for design verification. The inductive assertions

method requires a set of assertions to be made at the input, the output and each internal

loop of the high level description of the design. These assertions specify relationships

between variables in the description and represent a formal "definition" of the correctness

of the design. In fact, if the design is correct, then all the assertions must be verified, in

particular the output assertions. The key problem in this approach is to state the asser

tions correctly. At this moment, the inductive assertions approach has mostly theoretical

interest.

Symbolic simulation replaces the calculation of the set of primary outputs given a

set of primary inputs with the calculation of the logic expression computed by the design.

ie.. a formula for each of the outputs where the variables are the primary inputs. Once

this calculation has been performed, it still remains to verify that the formula is indeed

the correct one. A formal relation between primary inputs and primary outputs is some

times available and. in this case, the two formulae have to be verified one against the

other for equivalence. This computation can be carried out by means of rule-based sys

tems such as MAXIMAD. There are two major difficulties in this approach: the first is in

the actual calculation of the formula implemented by a specific colleclions of modules that

can be very expensive in terms of computer time, the other is the equivalence calculation,

an NP-complete problem.

Of course, if all the input patterns are exhaustively fed into the two descriptions of

the design, then the two representations are equivalent if the outputs corresponding to the

same inputs are equal. However, for large circuits this approach is oui of the question.

Newton & Sangiovanni DRAFT

53

because the set of all passible inputs is 2N where N is the number of the inputs Quasi-

exhaustive simulation tries to limit the number of input patterns to apply to verify

equivalence and has been used successfully in some designs In particular, the mixed level

simulator MDCS developed by NEC Qhasa formal verification mode, where the input pat

terns are derived so that the design is guaranteed to be equivalent to a set of functional

specifications. This approach focussed on the reduction of the number of input patterns

that have to be generated and simulated to guarantee the correctness of the design.

Several heuristics have been proposed, but their use may lead to an incorrect answer.

The most successful formal verification techniques are based on logic comparison.

These techniques have been in use at IBM for many years[SMI82]. They are applied to

designs that satisfy a set of restrictive assumptions. The main assumption is that a one-

to-one correspondence between the memory elements such as flip-flops of the design at

the two levels of interest has been established. Then the problem of logic verification is

reduced to the one of verifying the equivalence of combinational logic. This assumption is

verified when Level-Scan Sensitive Design (LSSD) or scan-path techniques are used in the

design to make the task of testing the design easier.

Other approaches involve the automatic translation of the high-level description of

the design into a gate-level description, that can be then compareed with the "real" gate-

level design. This automatic translation can be done quickly since the quality of the syn

thesized logic is of no concern. For example, the Fujitsu verification system uses DDL[] to

describe both the high-level behavioral specificalion and the structural level representa

tion. The DDI representation is then mapped inlo a logic design that is compared w ith

the actual design which may have been generated automatically with an effective syn

thesis tool or manually.

This problem is very similar to the testing problem, and in fact can be formulated

as a redundancy identification problem of a circuit obtained from the two circuits to corn-

New ton & Sangiovanni DRAFT

54

pare by forcing the primary inputs to be the same and by tying the primary outputs to

the input of a comparator (an XOR gate). If the designs implement the same logic func

tion, then the output of the comparator is always zera The verification problem is

equivalent to proving that stuck-at-zero fault at the output of the XOR gate is redun

dant. This problem can be easily shown to be NP-complete. Experience gained in cop

ing with testing problem is instructive in this case. However, in the testing problem,

the more common situation is that the fault under test is not redundant and we want to

find a test for it as soon as possible, while in logic verification we expect the fault to be

redundant and we wish to come to that conclusion as rapidly as possible. This implies

that efficient algorithms for testing may not be efficient for logic verification.

The first logic comparison approach was developed by J.P. Roth of IBM who proposed

to use the back-ward justification part of the D-algorithm to prove equivalence of the two

designs. The Differential Boolean Analyzer and its variations were used in the verification

of the IBM 3081 computer design, a most impressive accomplishment since the hardware

modules being verified have approximately 30.000 gates each. This approach uses the

iterative application of the Shannon expansion[SHA38] theorem to specify the set of input

patterns that have to be considered for a complete verification. The application of the

expansion is done so that a minimal set of vectors has to be identified to carry out the

verification.

While some of the results can be used lo verify formally a design, we believe that

more research is still needed to improve the speed and the domain of applicability of the

formal verification techniques

5. SYNTHESIS

Newton & Sangiovanni DRAFT

55

5.1. Introduction

As pointed out in the Introduction, synthesis is a crucial component of future CAD

systems The competitive edge of IC design will most probably come from the use of

effective synthesis tools

A complete synthesis system should generate layout masks from a high-level algo

rithmic, behavioral or functional description of a VLSI system, a description of the target

technology and a description of the constraints and cost functions. The design should be

completed in reasonable timeand with the quality a human designer could obtain.

Very few design-aids are available to assist the VLSI designer at the algorithmic

level. At this level, the designer describes thesystem by specifying its operations or func

tions without necessarily giving implementation details such as the "hardware" com

ponents needed to implement the system. Design at this level involves the translation of a

required algorithmic-level specification inlo an architectural or register-transfer-level

implementation. The architectural representation of the design includes components such

as registers, memories, processors, which specify the high level implementation of the sys

tem.

Once the functional partitioning of the design is completed, estimates of the layoui

size, power-supply requirements, and speed of the high-level circuit blocks used to imple

ment the various sub-functions are required. A chip-plan must also be constructed to

determine the relative placement of these building blocks. This chip plan is then further

refined as the design proceeds. These tasks are often performed manually, perhaps with

the help of the computer lo perform book-keeping tasks such as the storage of intercon

nection data.

Silicon compilers have been proposed tocarry out the eniire synthesis process Since

the task is so complex, early silicon compilers assumed that a target technology and a

floor-plan were chosen by human designers. In this case, the difficult steps of linking the

Newton & Sangiovanni DRAFT

56

high level synthesis task to the layout problem was resolved by eliminating computer

intervention. Among the most important contributions of the early research on silicon

compilers is the development of procedural design languages. These languages are used to

write programs which, when executed, generate in a flexible and possibly technology

independent way the layout of entire chips and/or of leaf cells, ie.. the basic low level

cellssuch as nand gates nor gates, inverters, register cells The work by D. Johannsen at

Caltech[JOH79] and the work on DPL[BAT80] at MIT was an example of such important

contributions Procedural design languages can be used effectively to generate the layout

of regular structures such as ROMs. RAMs. PLAs and data paths. In particular, the use of

these languages eases the construction of parametrized and technology independent module

generators, U.. of computer programs that generate the layout of a block such as a ROM.

RAM or PLA. given a functional representation, such asa truth table.

Working designs have been produced with silicon compilers, but the quality of the

design has always been a problem. While for a restricted class of designs, such asDigital

Signal Processors (DSP), the use of a fixed floor-plan has been successful, (e.g. the LAGER

silicon compiler developed by R. Brodersen at BerkeleyD). its use for less constrained appli

cations results in inefficient utilization of area and poor performance. In addition, the

structure of the control logic is often loo rigid and not optimized, thus yielding a slow and

large chip. J. FoxD has illustrated the pitfalls ofan existing silicon compiler. MacPitlsfl. by

comparing a design for a telecommunications chip generated by a silicon compiler with a

design obtained with the use of a standard-cell place and routesystem.

The present trend is to break the synthesis process into stages, and to use tools that

optimize real estate and/or performance lo go from one stage to the next. At first, atten

tion has been paid to the optimal generation of regular arrays such as ROMs. RAMs and

PLAs For example, module generators have been built by VLSI Technologies Inc. and Sili

con Compilers Inc. using a procedural design language. Simple routing techniques were

Newton & Sangiovanni DRAFT

57

also offered to connect the modules generated by these tools. These two companies were

the first to introduce the concept of silicon compilation and procedural design languages in

industry. While these concepts have now gained considerable attention in the industrial

community and several other companies are offering procedural design languages (e.g. Sili

con Design Laboratories and SDA) and module generators (e.g. Silicon Compilers Inc., SDA

and Seattle Silicon), a few years ago when these companies were founded, traditional

designers expressed a great deal of resistance towards these new design techniques.

The SILC silicon compiler under development by J. Fox at GTE and the York town

Silicon Compiler (YSC) being developed at the TJ. Watson Research Center by R.

Brayton[BRA84], are two examples of systems where layout optimization and efficient

logic synthesis are introduced While SHjC addresses the problem of translating an algo

rithmic description of the system to be designed into an architectural description. YSC

starts with an architectural description of the design leaving the task of determining the

architecture of the chip to the human designer. The Design Automation Assistant under

developmenl at AT&T Bell Laboratories[KOW85] is the most recent entry in the

automatic synthesis arena. This system is based on the work done at Carnegie-Mellon

University for high-level synthesis and on the work done at Stanford for layout. One of

the most interesting aspect of this system is the use of a knowledge-based expert system to

carry out the translation of the behavioral level description into a register transfer level

description and to generate an optimized floor-plan. Research work on silicon compilation

is also carried out at the University of Illinois with the ARSENIC silicon compiler

developed by D. Gaijskif]

The procedural design aspects of early silicon compilers has been neglected for some

lime. Recently Silicon Design laboratories (SDL), founded by the developers of the PLEX

system[) for automatic synlhesis of micro-processor-based designs, introduced a procedural

design language for IC design which is available commercial lyQ. We believe that pro-

Newton & Sangiovanni DRAFT

58

cedural design systems and knowledge-based expert systems are crucial for the synthesis

systems of tomorrow.

In this section we review the three basic components of a synthesissystem:

1- Physical synthesis or layout, including floor-planning, partitioning, placement,

routing and compaction;

2- Logic synthesis including combinational logic, sequential logic and algorithmic or

behavioral synthesis

3- Procedural design and module generation.

5.2. Physical Synthesis

The layout of integrated circuits consistsof the placement of the devices (cells) com

posing the design in a two dimensional finite space and of the interconnection of the pins

of these devices according lo the schematic of the circuit to be implemented. The goal of

this process is to complete the placement and interconnection of the design in the smallest

passible area satisfying a set of design constraints, such as the ones posed on the position

and size of the devices, a set of technological constraints, such as the ones posed by design

rules and levels of interconnects, and a set of performance constraints, such as the ones

posed by the timing of the logic to be implemented. This optimization problem is very

complex, even simplified versions of it are NP-complete.1 and given the number of modules

to be laid out. has to be decomposed into smaller sub-problems to be tractable.

The layout problem is traditionally subdivided into several stages that will be

reviewed in the next sections. While these stages are oflen common to the various design

styles such as gate-arrays, standard cells and macro cells, their complexity may differ.

An NP-complete problem belongs to a class of difficult combinatorial optimization problems such as the
traveling salesman problem and the coloring problem foT which an algorithm whose complexity is bound by a
polynomial in the size of the input is not know and is unlikely to be found.

Newton & Sangiovanni DRAFT

59

Automatic layout systems were introduced first for gate-arrays and standard-cells,

since the layout problems associated with these design styles are in general simpler than

the ones associated with the macro-cell design style. Good gate-array systems developed

both in house and by vendors companies are now widely available. The Engineering

Design System of IBM was among the first complete layout systems to be developed for

gale-arrays in the late 1960s, even though the first papers describing the algorithms used

in the system were published in the early 1970s. In Japan, the first gate-array place and

route system was developed by Oki and reported in 1974. Silicon foundries such as LSI

logic offer their customers place and route systems optimized for their gate-array families.

Mentar/CADl. Tektronix/VR Systems and Daisy have good place and route systems Daisy

has also a gate-array placement hardware accelerator which implements the simulated

annealing algorithm.

The first publications describing the concept of gate-arrays date back to 1964. with

the papers by Rex Rice of Fairchild[RIC64] and of E. Sack of Weslinghouse[SAC65]. For a

while, gate-arrays completely dominated the semi-custom market, in part because of the

wide availability of CAD tools for their design. Now standard cells are capturing the

attention of a large user community. Interestingly, the concepts of standard cells and of

gate-arrays were developed ai about the same time. However, automaiic placement and

routing tools for standard cells were developed earlier than the ones for gate-arrays.

Philco Ford was the first company to do work in the area of automatic place and route of

standard cells around 1964. This work was picked up and extended by S. Daram and his

group at Fairchild in 1%5 with the MOSAIC system. The cells were arranged in rows

and pins appeared on both sides of the cell. The routing was accomplished with a precur

sor of the channel routing algorithm which recently became the most popular routing

techniques Fairchild alsodeveloped an automatic rubylith cutter for this structure. RCA

Camden developed in 1966 the PRF (Placement. Routing and Folding) system for place

ment and routing. In this system cells were placed back-io-back and hence had pins on

Newton & Sangiovanni DRAFT

60

one side only. This system was then taken to the National Security Agency and improved.

In the late 1960s RCA extended this approach to PR2D where atwo-dimensional place
ment algorithm was developed In the 1970-1972 time-frame the MP2D system was

developed at RCA. This system is still widely used. Bell Laboratories developed apoly-
cell (a synonym for standard-cell) place and route system called LTX in 1973. The succes

sor of this system. LTX2 was extended to gate-arrays and to limited version of macro-cell

place and route.

The growing interest in the standard cell design style has prompted a number of

companies to develop new place and route systems

Macro cell placement and routing is particularly difficult. Japanese companies are

the clear leader in this area. NTT. NEC. Hitachi. Sharp and Sony have all good working

systems. In Europe. Siemens has been among the first companies to develop, on an experi

mental basis, macro-cell tools. However, they are not in production use. The

GAEUC/COMPEDA system was developed by the University of Edinburgh and made

available by a commercial company, but it has not found wide use. In theUS. some com

panies such as Hughes aircraft have recently developed experimental systems for the

VHSIC (Very High Speed Integrated Circuits) program of the Department of Defense. The

C1CLOPS system first developed by Preas and VanCleemput ai Stanford has been

improved at SAND1A labs. However, to the best of our knowledge, no complete system is

currently in production use. Because of the importance that macro-cell system are bound

tohave in the future, we expeci more companies to develop such systems

In the academic world. Japanese and US Universities have ihe lead in the develop
ment of algorithms and programs for placement and routing. Recently. Universities have

placed emphasis on the development of complete place and route system for avariety of

design styles. The PI system[] for macro cell place and route from MIT. the BBL (Berkeley

Building-block Layout) system[CHE83] for macrc-cell place and route, the BAGEL sys-

Newton &Sangiovanni DRAFT

61

temD for gate-array palce and route, and the ThunderBird. standard cell system, all

developed at the University of California. Berkeley, and the hierarchical layout system

developed at the Osaka University are a few examples The distinguishing feature of

these systems is the use of new and experimental algorithms

Most of the work done on layout has been concentrated on optimizing area. Recently,

performances, in particular speed, have become a major concern. Coupling timing analysis

with placement and routing has been proposed to influence the layout process of gate-

arrays with speed considerations[BUR84l We expect this problem will receive more

attention in the future.

In the next sections, we will review the various stages of the layout process floor-

planning, partitioning, placement, routing, and compaction. Since the literature on layout

methods is huge, we will limit ourselves to the basic techniques, pointing to the relevant

papers when appropriate.

5.2.1. Floor-planning

Floor-planning is the first stage in the layout of VLSI circuits In this stage, the rela

tive positions of the modules to be laid out are determined. Timing, power and area esti

mations are the factors guiding the relative placement. Floor-planning can be used to ver

ify the feasibility of integrating adesign onto achip without performing the detailed lay

out and design of all the blocks and functions. This stage is typical of the less constrained

design styles, e.g. macro-cell.

At this stage, the aspect ratio of some of the modules may still be unconstrained For

example, if the control logic is implemented with standard cells, then the number of rows

used for the modules is nol necessarily fixed. Many rows will produce a block that is long

and skinny, few rows will produce a block thai is short and Jai. Different aspect ratios

correspond to better packing of the modules in the available area. Figure 523.1 shows a

Newton & Sangiovanni DRAFT

62

particular example of a chip with blocks of fixed and variable size. As other examples. w-

folding and partitioning of a PLA can be used to modify the aspect ratio of the module, or ? :•„ ii. of the .

the number of bits used for row and column decoding in a RAM or ROM module can also : '« O . r.io:.

modify their aspect ratio

Another degree of freedom is the position of the pins of some of the modules. When rp J

standard cells are used for control logic, the signals may leave the block on any point of *

its periphery. According to their positions, the routing area may be minimized. »..:/•: c...

Because of the many degreesof freedom and of the uncertainties, theopiimizalion is

quite difficult. Very few tools have been developed for this task. Some such as the CAF *• : r- -

programD are interactive and provide estimates for wiring length, channel congestion, area

utilization, timing and power dissipation. Others such as the CHAMP program developed

by NTTD and the SPIDER program developed at HoneywellD offer automatic relative

placement and aspect ratios selection. Note that these tools are not generally available; . :

there is no major commercial vendor offering such an interactive system.

Recently, the introduction of simulated annealing algorithms (see window in this

page) has made it possible to develop algorithms where the optimization can be carried out

with all the degrees of freedom mentioned above. A system at the IBM TJ. Watson •. »' 7

Research Center[OTT84] and the TimberWolf package developed at Berkeley[SEC85] use

the simulated annealing algorithm to produce a floor-plan that not only gives the relative

positions of the modules, but also aspect ratios and pin positions.

Other activities in this area are carried out at Carnegie Mellon University and at GE ?r>~v:

Research Center in Schenectady. Because of the large number of degrees of freedom in .- >i

the optimization problem and of the many criteria lo be followed, there has been an ; rc hd

interest in applying Artificial Intelligence techniques to floor-planning[KOW85]. No work- •*•'• S5|.

ing knowledge-based systems for floor-planning are available yet. but they are definitely <«•>..,

an interesting and fruitful research area.

Newton & Sangiovanni DRAFT

63

5.2.2. Placement and Partitioning fii'— -•- * a. •x.

The placement problem involves the assignment of specific locations to building • -i •

blocks of the layout This includes the assignment of logic gates within a gate-array[6f]. " '-*-•*•*•

the placement of cells in a standard cell layout[6869] or the placement of macro cells

[71.721 While a considerable amount of theoretical work has been done in this afta^ u)e * "*• •>' 90n °-

[72.73], the most successful approaches involve the use of simple heuristics In th«seni:! ira-- *a 'e *"; * L

approaches, either total interconnect length, estimated or exact routing requirements arer':1-n- -rt-' **-2V r-**

used by the placement algorithmsas an indication of the quality of the placement. - •, i cf th' icerur

As for partitioning, placement algorithms may be subdivided into two basic'.1*c '°7 '• s las* ^

categories: constructive placement and iterative improvement. Constructive placement "- "L enr* •>'*

algorithms build a placement from initial data such as the size and the type of the ceils fo *he CY

be placed and the net-list. Iterative improvement algorithms start with a^given inftfal '*" • vel'-'

placement, which can be given by the user, generated randomly or obtained'by construe"- • e>~ lc'^s arc no:

tive placement algorithms, and modify the layout to improve its quality. Interestingly:h *' r?ctivesystt

most of the placement algorithms can be used in the basic design styles. gate^array*sianr-n._.iii,;C -t-rith- •>

dard cell and macro cell, with minor variations. <: m< x' 't* -n".irr' *.

The most well-known heuristics are clustering[]. force-directed [].* pah-wise inter-v ^ *. sJ'%m l l

changeD. and min-cut [Jtechniques. In all cases the placement problem is represented byv'c' -s" - ?^rc *:*

modules with a given size and a connectivity matrix C = [ctJ] where ctJ represents the :"T* J r ' '"

nets connecting module i to module j with appropriate weights to model the relative "* •

importance of the interconnections. - u \ Jr ,-. \

Clustering adjoins incrementally modules to a subset of modules already placed. The • r=^ '•*

modules are adjoined according to their size and connectivity. Critical factors for thisalgo1 <' a : '*'' ei

rithm are the selection of the seed. (ie. of the first module to place), the selection of the .• " '"' 'n-

next module to be placed and the position of the module with respect the modules already ^

placed. A number of papers have been published describing a variety of schemes for each

Newton & Sangiovanni DRAFT

64

of the factors above. Note that once the position of a module has been assigned, it is not

changed during the remaining pariof the algorithm. The LILAC systemD for macro cells

developed at Hitachi used clustering techniques for placement. These methods provide

fairly good initial placements but iterative improvement methods should beapplied after

wards to obtain satisfactory results For example, the SHARPS systemD for macro cells

and the Oki systemD for gate arrays have followed this strategy. The running time of

these methods are in general short.

The force-directed heuristics can be used both for constructive placement and for

iterative improvement. They have found wide applications in a variety of gate arrays and

macro cell systems such as the PUNTQ system developed by GE for standard and macro

cells, the APLS2D system developed by Hughes for standard cells, the SHARPS system

developed by Sharp for macro cells the BAGEL system developed by the University of

California at Berkeley, the MARC systemDdeveloped by NTT . the MASTER and the

LAMBDA systems developed by NEC. and the MARS-M3 system developed by Mitsubishi,

all for gate-arrays The basic idea is to represent the interactions between modules with a

set of forces

Fij - cu dij (523.1)

where dtJ is the distance between module i and j in general measured as the distance

between the centers of the modules Note that (523.1) is the expression for the force

between two points connected by a spring with constant ctj . The distance can be meas

ured according to different metrics, for example the L 1metric corresponds to the Manhat

tan distance. i.e.. to the sum of the x and y distances. An initial placement is then con

structed by finding the locations of the modules that minimize the overall force exercised

on the modules If no repulsive force is modeled, then all the modulesend up in the same

location. However, if pads are introduced and their location is maintained fixed, then the

force exercised by the connections between the pads and the modules will avoid the com

plete overlap of all the modules. However, some overlaps may remain. Repulsive forces

Newton & Sangiovanni DRAFT

65

have been introduced Dtoavoid overlaps The MARC system used this technique.

When overlaps are allowed, a feasible placement is constructed by modifying as lit

tle as possible the placement obtained by the force-directed technique. In the case of stan

dard cells and gate arrays the force-directed placement is used to determine the relative

positions of the cells, which are then placed in rows according to the floor-plan of the

chip.

Force-directed heuristics can also be used for iterative improvement algorithms The

SHARPS. MASTER. LAMBDA systems used variations of force-directed relaxation to

improve layouts obtained by other methodssuch as min-cul and partitioning.

Pairwise interchange methods are very simple. Two modules are selected for con

sideration and interchanged if the cost function, whatever this function may be. is

decreased. The key issue here is how lo select the pair to be examined. A random selec

tion is often used. An exhaustive examination of all pairs of modules is also possible,

although quite expensive.

One of the most successful technique for placement is the min-cut method, proposed

by BreuerD for PCBs. gate-arrays and standard cellsand by Lauther for macro cells. The

basic procedure is based on the recursive application of the bi-partitioning algorithm by

Kernighan and Lin 0- At first the area of the chip is subdivided into two parts either

with a vertical "cut-line" or with an horizontal "cut-line". Modules are assigned to the

two areas so that the interconnections between the modules are minimized and the area of

the modules assigned to the two parts is roughly equal. Note that in the macro-cell case, it

is very difficult to take into account the aspect ratio of the modules, hence only the area of

the modules is used in the partition process. Once the first partition has been applied, the

two areas are subdivided again each into two parts. This subdivision can be obtained with

either vertical or horizontal cuts. When an area is occupied only by one module, the area

is obviously not subdivided any more. When all the areas cannot be subdivided further.

Newton & Sangiovanni DRAFT

66

the process terminates

Note that because of the different aspect ratios of the modules, the placement can be

considerably improved by rotating and mirroring the modules In fact, the algorithm

presented by Lauther includes post-processing steps that improve the original placement.

In particular, rotations and mirroring are used to improve both area utilization and net

length. Finally, modules are shifted to eliminate as much as possible empty areas

Recently, placement programs have been developed based on simulated annealing
[KIR83. VEC84. SEC851 The results obtained are excellent and often better than the ones
obtained manually at the expense of computer time. Accelerators have been developed to
speed up the execution of the algorithm [SPI851

The overall area occupied by the design is obviously dependent on the routing area.
The estimation of the wiring area is one of the most difficult parts of aplacement algo
rithm especially for the macro-cell case. Simple estimates based on the number of pins on
each side of the modules are often used to enlarge the area of a module to account for

routing area. In other approaches, the routing area is not taken into account and only after

global routing the routing area is inserted in the floor-plan of the chip. Local rearrange
ments of the placement are then applied tomake room for the additional area.

Partitioning, which is a fundamental component of the min^cut algorithm, is often

used to decrease the complexity of placement. This task is certainly useful when

thousands of objects have to be placed and the running time of ihe best algorithms often

increases more than linearly (usually quadratically or cubically) with the number of

objects In this case, logic gates or functions are grouped together and assigned to blocks

with fixed or variable dimensions Then, the placement stage determines the actual posi
tions of the components in the blocks and of the blocks on the chip. Note thai partitioning
can be and has been applied to all design styles. For example, the Engineering Design Sys
tem of IBM uses partitioningf] as apre-process to their gate-array placement program. In

Newton &Sangiovanni DRAFT

67

the standi «„ vstem rf ^^ ^ ^

•«. ~g^ w ^ pr^ over the _ ^
sUn1lari„U1e,rarcbiucturetoU,ealgoriUlnisusedinplacement

5.2.4. Routing

»«-.-»«,™»» ^ „,.,_;^:
design style, the area availahi. <• •area available for interconnections is the one which «„„,„ . „

' CO,,eCUOn °f —'" •*« —, -th rows or columns 0f cells In T
case of macro ce., design style, the routing area is much ,

general, it „convenient to decomp^ lhe Toaling „.„ ^

The routing stage where the interconnections are laid out on the chip fo,W< Tlm
«age is in general broken down into two stages,/*, ,fa, Th, ,k., ««S« «***«• looie and rfJ e**« rout,g stage. .mefmes calJed ^
re ihe im—- -—-„y the«„_g ^ d:-- - actua, Phy,a, locat. 0f ,he ,__,_ ^ _ J
:irr •—*• -- - - -—-Jrou,;tools caJJed channel routers can K» »c^ ncan be used. Exu.nsK.ns to the bas,c tools can prov.de programs

Newton &Sangiovanni
DRAFT

68

that can route channels with pins on three sides [BRA] If the routing region has pins on

four sides, then a switch box router can be used D- In general, channel routers have the

best results in terms of the area used to complete the interconnections Thus routing

regions with fixed pins on more than two sides should be avoided. Channel definition and

the ordering with which the channels are routed hasa great impacton this issue.

Since global routing and routing region definition depend critically on the routing

strategy followed in the detailed routing stage, we review first the work in detailed rout

ing. Then we present channel definition and ordering, and finally global routing.

5.2.4.1. Detailed Routing

Given a region with pins on its sides and. possibly, in the middle, detailed routing is

the process of implementing the actual geometries of the interconnections among the pins

specified by a net list. In the most general case, the regions may be of irregular shape

with internal obstructions. However, the most effective algorithms work on regions of

regular shape, in general rectangular or close to rectangular, with no obstructions and

with pins on two opposite sides.

The basic algorithms for detailed routing are:

1- The Lee ma2e router [LEE61];

2- The Hightower line expansion algorithm [HIG69];

3- The Hashimoto and Stevens channel router [HAS71].

The Lee maze router, also called the Lee-Moore algorithm or the grid expansion algo

rithm, is applied to the interconnection nets, one at a time, on a region where a grid has

been superimposed. The grid specifies intermediate locations which can be reached by an

interconnection while it is being built. In general, it is assumed that the interconnections

have Manhattan geometry. U.. that they are formed only by vertical and horizontal seg

ments Al each point of the grid, the interconnection may change direction. The grid may

Newton & Sangiovanni DRAFT

69

be built so that two interconnection running in parallel in two adjacent grid locations do

nol violate any design rules

This router has been applied to gate-array and macro-cell design. Its strengths are its

flexibility (it can be applied to irregular regions with pins distributed everywhere and

with obstacles, it can generate paths with minimum number of bends)and in the capabil

ity of finding a solution, if one exists: its weakness, besides the running time, is the depen

dence on net ordering. In fact, the first nets to be routed, have a large region basically

empty to use. while the last nets to be routed find the region almost full. If the nets are

chosen in the wrong order, the last nets may not be routable due to the blockages created

by the previously routed nets Several heuristics are available to speed up this algorithm

as well as to choose a good net ordering.

The Hightower algorithm is gridless in principle. It starts from both pins to be con

nected and generates an horizontal segment and a vertical one of maximum extension

from the pins Once these four lines are generated, the orthogonal lines of maximum

expansion are generated next. If more than one orthogonal line can be found of the equal

maximum extension, the one which is closer to the opposite pin is selected. This procedure

is iterated until two lines expanded from the two pins to be connected intersect. The

actual interconnection pattern is then constructed by tracing back the lines at their inter

section points.

Note that the algorithm can be quite fast for simple mazes with a small number of

barriers and obstructions, while it may be slow for complicated regions, because of the

many lines that can be generated before an intersection is found. In addition, it is not

guaranteed lo produce a solution, if one exists.

The contribution of Hashimoto and Stevens with their channel router is two-fold: i)

the abstraction of a routing problem which is simpler to solve than the general problem

stated previously: ii) an algorithm to solve the simplified routing problem. Many exten-

Newton & Sangiovanni DRAFT

./

63

5.2.2. Placement and Partitioning fit*— \i.- * • v.. •..

The placement problem involves the assignment of specific locations to building " nd,? "^SP*
blocks of the layout This includes the assignment of logic gates within a gate-arrayfofl." ng ~ **"V

the placement of cells in a standard cell layout[68.69] or the placement of macro cells

[71.72]. While a considerable amount of theoretical work has been done in this area* ine 1 **•• •>' s015

[72.73], the most successful approaches involve the use of simple heuristics. In thfeeni:? ra- *a 'e X; •=

approaches, either total interconnect length, estimated or exact routing requirements are'V:Tn- stj x-zy **

used by the placement algorithms asan indication of the quality of the placement. . - ••. ..,•» cf th' iceria:-

As for partitioning, placement algorithms may be subdivided into two base*''*:C J"07 ': s la<51

categories constructive placement and iterative improvement. Constructive placement •*»-•: 'enrv

algorithms build a placement from initial data such asthe size and the type df the ceils fo : • "• "he CT

be placed and the net-list. Iterative improvement algorithms start with a^iven initial *•" • v*l •••!.' •

placement, which can be given by the user, generated randomly or obtainedby construS- ' *•* lcJs arc n

tive placement algorithms, and modify the layout to improve its quality. Interestingly::n •' r'clive £>"

most of the placement algorithms can be used in the basic design styles. gate^array,siaj*rij._-<ijljic ^.rith .

dard cell and macrocell, with minor variations. ,: •.,« A

The most well-known heuristics are clustering[]. force-directed Q.-pah-wise inter-v'

changeQ. and min-cut [techniques. In all cases the placement problem is represented by''"

modules with a given size and a connectivity matrix C = [ctJ] where ctJ represents the •

nets connecting module i to module j with appropriate weights to model the relative

importance of the interconnections. - u -

Clustering adjoins incrementally modules loa subset of modules already' placed. The • r^

modules are adjoined according to their size and connectivity. Critical factors for this algo- cr ^ :

rithm are the selection of the seed. (ie. of the first module to place), the selection of the • "

next module lo be placed and the position of the module with respect the modules already

placed. A number of papers have been published describing a variety of schemes for each

Newton & Sangiovanni DRAFT

r». . ">r *.irr'

A 2» Si ••m :.\

» ?1.•T* *'

•Pi- .1
T

.

ir' r.

Ml . i

64

of the factors above. Note that once the position of a module has been assigned, it is not

changed during the remaining part of the algorithm. The LILAC systemD for macro cells

developed at Hitachi used clustering techniques for placement. These methods provide

fairly good initial placementsbut iterative improvement methods should be applied after

wards to obtain satisfactory results For example, the SHARPS systemQ far macro cells

and the Oki systemD for gate arrays have followed this strategy. The running time of

these methods are in general short.

The farce-directed heuristics can be used both for constructive placement and for

iterative improvement. They have found wide applications in a variety of gate arrays and

macro cell systems such as the PLINTQ system developed by GE for standard and macro

cells, the APLS2D system developed by Hughes far standard cells, the SHARPS system

developed by Sharp for macro cells the BAGEL system developed by the University of

California at Berkeley, the MARC systemDdeveloped by NTT . the MASTER and the

LAMBDA systems developed by NEC. and the MARS-M3 system developed by Mitsubishi,

all for gate-arrays The basic idea is to represent the interactions between modules with a

set of forces

Fij « Cij du {513.1)

where dtJ is the distance between module i and j in general measured as the distance

between the centers of the modules Note that (523.1) is the expression for the force

between two points connected by a spring with constant cti . The distance can be meas

ured according to different metrics, for example the L s metric corresponds to the Manhat

tan distance. i.e.. to the sum of the x and y distances. An initial placement is then con

structed by finding the locations of the modules that minimize the overall force exercised

on the modules If no repulsive force is modeled, then all the modules end up in the same

location. However, if pads are introduced and their location is maintained fixed, then the

force exercised by the connections between the pads and the modules will avoid the com

plete overlap of all the modules. However, some overlaps may remain. Repulsive forces

Newton & Sangiovanni DRAFT

67

the standard cell system of HitachiD the cells are first partitioned into rows without

assigning them a precise position inside the rows

Partitioning is described as the assignment of objects with a certain size and con

nected by weighted nets, to partitions that have abounded capacity so that the weight of

the nets that span partitions is minimized. This problem is NP-complete and hence many

heuristic partitioning algorithms have been proposed over the years These algorithms are

similar in their architecture tothe algorithms used in placement.

5.2.4. Routing

After the modules have been placed, the interconnections have to be completed in

the available space. If routing over the cell is not allowed by the technology or by the

design style, the area available for interconnections is the one which is not occupied by

the modules In the gate-array and standard cell case, this area is fairly regular, it consists

of a collection of rectangular regions alternating with rows or columns of cells. In the

case of macro cell design style, the routing area is much less regular and can be "organ
ized" in many different ways

In general, it is convenient to decompose the routing region into rectangular regions,

called channels. The way in which the routing region is subdivided may make the rout

ing problem easier. This decomposition is called channel or routing region defi nit ion stage.

The routing stage where the interconnections are laid out on the chip follows. This

stage is in general broken down into two stages: global or loose routing and detailed rout

ing The global routing stage, sometimes called channel assignment, determines which

channels the interconnections will go through. Finally the detailed routing stage deter

mines the actual physical location of the interconnections ins>dt» the routing regions. If

the region to be routed contains pins on two sides only, then effective detailed routing

tools called channel routers can be used. Extensions to the basic tools can provide programs

Newton &Sangiovanni DRAFT

68

that can route channels with pins on three sides [BRA] If the routing region has pins on

four sides, then a switch box router can be used Q. In general, channel routers have the

best results in terms of the area used to complete the interconnections. Thus routing

regions with fixed pins on more than two sides should be avoided Channel definition and

the ordering with which the channels are routed hasa great impact on this issue.

Since global routing and routing region definition depend critically on the routing

strategy followed in the detailed routing stage, we review first the work in detailed rout

ing. Then we present channel definition and ordering, and finally global routing.

5.2.4.1. Detailed Routing

Given a region with pins on its sides and. possibly, in the middle, detailed routing is

the process of implementing the actual geometries of the interconnections among the pins

specified by a net list. In the most general case, the regions may be of irregular shape

with internal obstructions. However, the most effective algorithms work on regions of

regular shape, in general rectangular or close to rectangular, with no obstructions and

with pins on two opposite sides.

The basic algorithms for detailed routing are:

1- The Lee ma2e router [LEE61];

2- The Hightower line expansion algorithm [HIG69];

3- The Hashimoto and Stevens channel router [HAS71].

The Lee maze router, also called the Lee-Moore algorithm or the grid expansion algo

rithm, is applied to the interconnection nets, one at a time, on a region where a grid has

been superimposed. The grid specifies intermediate locations which can be reached by an

interconnection while it is being built. In general, it is assumed that the interconnections

have Manhattan geometry. i.e.. that they are formed only by vertical and horizontal seg

ments. At each point of the grid, the interconnection may change direction. The grid may

Newton & Sangiovanni DRAFT

69

be built so that two interconnection running in parallel in two adjacent grid locations do

not violate any design rules

This router has been applied to gate-array and macro-cell design. Its strengths are its

flexibility (it can be applied to irregular regions with pins distributed everywhere and

with obstacles, it can generate paths with minimum number of bends) and in the capabil

ity of finding a solution, if one exists: its weakness, besides the running time, is the depen

dence on net ordering. In fact, the first nets to be routed, have a large region basically

empty to use. while the last nets to be routed find the region almost full. If the nets are

chosen in the wrong order, the last nets may not be routable due to the blockages created

by the previously routed nets Several heuristics are available to speed up this algorithm

as well as to choose a good net ordering.

The Hightower algorithm is gridless in principle. It starts from both pins to be con

nected and generates an horizontal segment and a vertical one of maximum extension

from the pins Once these four lines are generated, the orthogonal lines of maximum

expansion are generated next. If more than one orthogonal line can be found of the equal

maximum extension, the one which is closer to the opposite pin is selected. This procedure

is iterated until two lines expanded from the two pins to be connected intersect. The

actual interconnection pattern is then constructed by tracing back the lines al their inter

section points.

Note that the algorithm can be quite fast for simple mazes with a .small number of

barriers and obstructions, while it may be slow for complicated regions, because of the

many lines that can be generated before an intersection is found. In addition, it is noi

guaranteed to produce a solution, if one exists.

The contribution of Hashimoto and Stevens with their channel router is two-fold: i)

the abstraction of a routing problem which is simpler to solve than the general problem

stated previously: ii) an algorithm to solve the simplified routing problem. Many exten-

Newton & Sangiovanni DRAFT

70

sons and improvements have been made to the original algorithms, but the concept of

solving the routing problem by "carving" simple routing regions has permeated routing

packages for all design styles for many years.

The basic assumptions in the original formulation of the channel routing problem by

Hashimoto and Stevens are: (i) the routing region is rectangular with no obstructions and

with pins on two opposite sides: (ii) floating pinson the other two sides of the rectangular

region are possible.These floating pins indicate the need to extend some of the nets outside

the channel: (iii) there are only two layers available for interconnections: all the horizon

tal segments of the nets are routed on one layer, all the vertical segments on the other

(this assumption is called the wiring model): (iv) the pins are placed on a regular grid: (v)

the channel is subdivided in rows or tracks whose spacing is such that interconnections

placed on these tracks does not violate any design rule.

Some of these restrictions have been removed often paying with the final quality of

the solution. The goal of channel routing is to complete all the interconnections in the

minimum number of tracks The allowable configuration of the nets is either (i) a hor

izontal segment in one layer, which is connected to the top and bottom pins of the net by

vertical segments in the other layer, to minimize the number of change of layers or (ii) a

set of horizontal segments joined by vertical segments (doglegs).

If we define as density of a channel the maximum number of nets which crosses any

one column of the channel, then the best we can do with a channel routing algorithm

which satisfies the assumptions above, is to route the channel with a number of tracks

equal to the density of the channel. Interestingly, most of the best channel routers avail

able today (Yoshimura and Kuh [YOS]. Rivest(RIV). BursteinfBUR] and YACR[REE])

behave well. i.e.. in most of the cases they route channels in a number of tracks which is

close to density.

Newton & Sangiovanni DRAFT

71

When pins are placed on all four sides of the channel, then the routing problem is

called a switch-box problem. Some of thealgorithms described above can be generalized to

route a switch-box, even though this problem is much more difficult.

Note that all the algorithms used for detailed routing use symbolic data, for example.

a channel router places horizontal segments with no vertical dimensions and with no

information about contact sizes In general, a post-processor isused toreplace the symbolic

data with actual geometries This post-processor may be intelligent. i.e.. it can change

some of the interconnections to maximize the use of the layer with better electrical

characteristics and to minimize the number of contact vias.

5.2.4.2. Routing Region Definition and Ordering

As pointed out in Section 523.1. channel routers are most effective to generate com

pact routing. Hence, the basic goal of any routing region definition and ordering scheme is

to decompose the routing area and decide in which order the regions should be routed so as

to use channel routers as much as possible. Note that in the case of gate-arrays and

standard-cells the floor-plan is such that all the routing regions are already defined to be

channels with pins on opposite sides. The real problem arises for the macro-cell design
style.

There are two basic requirements for a routing region tobe considered a channel: (i)

all the pins on two opposite sides have to be fixed while the pins on the other two sides

have to be floating, (ii) once a channel has been routed, only the distance between the two

sides with fixed pins may be changed. This second constraint, also called rigidity con

straint, is introduced to avoid re-routing a channel which has already been routed. Note

that increasing the relative distance of the two opposite sides does not change the difficult

part of routing. In fact, the updating of the interconnections after this move amounts sim

ply to extending the vertical segments connecting the horizontal segments to the pins.

Newton &Sangiovanni DRAFT

72

Assuming that all the modules are rectilinear (not necessarily rectangular), the rout

ing region can always be decomposed into rectangles. This step can be carried out quite

efficiently by using sorting techniques on geometries as commonly done in computational

geometryO.

The most rigorous approach to channel definition and ordering is followed by Dai et

al. in [DAI85]. This approach can also be used as a framework for the work of others

Here,routing regionsare represented by walls. Walls can meet orthogonally either with a

"T shape connection or a cross connection. Cross connections can always be represented

by "T* connections and hence will not be considered further. If each routing region

represented by a wall is to be considered as a channel, the constraints introduced above,

induce an ordering relation on the walls In particular, a wall which is the "vertical"

part of a "T* connection, corresponds to a channel that must be routed before the one

which corresponds to the "horizontal" partof the junction. In fact, if we route the region

corresponding to the "horizontal" wall in the "T" connections first, we have a set of pins

whose position is not specified, on one of the sides where fixed pins are located If the

"vertical" part is routed first, then the channel router specifies when it terminates, the

exact location of the previously floating pins The connections then induce a precedence

relation among channels. If such a relation is acyclicje.. there is no "conflict", then there

exists an ordering of the routing regions so that each of the channels considered in the

sequence has fixed pins on two opposite sides and floating pins on the other two sides.

Some placement algorithms have the nice property that the relation defined on the

walls is always acyclic and they even provide the routing order. One such algorithm is

the min-cut algorithm presented in Section 522. In this case, each cut corresponds to a

routing region and the routing regions corresponding to the cuts identified by the leaves of

the binary tree constructed by the algorithm, are the first to be routed since they have

pins on fixed positions on the two sides facing the blocks separated by the cut. After the

Newton & Sangiovanni DRAFT

73

channels corresponding to the leaves of the tree have been routed, the next level cuts

identify the channels to be routed next. The routing order isthen completely specified by

the binary tree.

All the placement algorithms that yield an acyclic relation on the walls are said to

generate a slicing structure [OTTl Unfortunately, not all the placement algorithms yield

a slicing structure. Indeed, in some cases, an algorithm that generates always a slicing

structure may result in wasted area, especially in the case of non rectangular blocks In

this case, other algorithms that do not yield a slicing structure may be used and a cyclic

relation among the walls may be generated. Several approaches have been tried to solve

this problem: some modifyan existing placement to create a slicing structure, others define

routing regions which are more complicated than simple channels, switch boxes. L-shaped

channels, and route these to break cycles

5.2.33. Global Routing

Channel routing is the most effective way of routing regions. Unfortunately the

entire routing region of a chip is not a channel. We have described ways of subdividing

the routing regions into channels. Before applying the channel routing algorithms to the

problem, nets have to be assigned to channels. Global routing assigns nets to routing

regions, taking into consideration net length, the congestion of the routing regions, prior

ity of signals, and electrical characteristics. It does not specify the route followed by the

interconnections inside the routing regions. Global routing is very important to obtain a

good overall layout. In this section, we review briefly the main approaches. The excellent

review by Sadowska and Kuh[]can be consulted for additional information.

Global routing is used in all design style: gate-arrays, standard-cells and macro-cells.

The first mention to loo.se routing can be found in Nan and Feuer[].

Newton & Sangiovanni DRAFT

74

Thereare two basic approaches to global routing: onedeals with the interconnections

one at a time, in this respect similar to the Leealgorithm, the other deals with the inter

connections all at once. Of course, the second approach does not suffer from the ordering

problem and has a better "global" view of the chip. However, the running time can some

times be prohibitive.

The basic problem that a global router has to solve is to distribute the nets in the

available channels so that either the density of each of the channel does not exceed a

bound (gate-arrays) or the overall size of the chip is minimized In the latter case, the

density of the channels is a variable to be determined by the router. In all the applica

tions of global routing, it is assumed that, because of the quality of channel routers the

detailed routing can be completed within the density of the channels or just above den

sity.

A net-at-anime approach chooses a path by using shortest path algorithms that

penalizes paths for crossing congested channels. This strategy tends tocongest fewer areas

and improve the performance of the chip. The cost function associated with each "seg

ment" crossing a particular channel isusually expressed as

where a ,b and c are parameters to be tuned for the particular application. L is the

length of the channel and T is the number of available tracks. Of course. T changes for

the channels after each net has been considered by the global router.

If the nets have only two pins, then the approach mentioned above is straight

forward. However, if the nets have more than two pins, then many possible interconnec

tion topologies are possible. In fact, the net list specifies only that a set of pins have to be

connected but it does notspecify in which order they should be connected. For example,

for the four pin net shown in Figure FIGNO the interconnection can be any one of the

patterns displayed. According to the policy followed by the designer, the geometries can

Newton & Sangiovanni DRAFT

75

be restricted to be Manhattan. The problem then is to find the best topology for each of

the nets to be routed. Following a shortest path algorithm between pair of pins does not

give an optimal result in general. The complication arises from the possibility of introduc

ing additional "pins" in the interconnection. This problem is known as the optimal

Steiner tree problem. If the set of modules and channels is modeled as an undirected

graph, whose nodes represent the modules and whose edges represent the channels, then

the problem becomes the Steiner tree problem on graphs Unfortunately Steiner tree prob

lems are NP-complete and heuristics are commonly used[].

The other important approaches deal with the nets all at once. One approach formu

lates the global routing problem as a mathematical programming problem:a 0-1 linear pro

gramming problem. It is well known that this problem is also NP-complete and heuristics

have to be used to solve it in a reasonable time. One of the most interesting approaches is

to use a linear programming algorithm to find approximate solutions to the 0-1 problem,

and then round the solutions to obtain a feasible solution.

Simulated Annealing has been used by Vecchi and Kirckpatrick[] to solve the

mathematical programming problem. In this case, the cost function is equal to the sum of

the squares of the congestion for each channel, ie. the number of nets crossing that chan

nel. In this way. the algorithm penalizes congested areas. The "moves" correspond to

switching one net from a path to another.

Burslein [BUR85] considers the global routing problem hierarchically. The chip is

first divided into four regions and the nets are routed in these regions. Then, each of the

regions is subdivided into four regions and the implications of the first routing phase are

propagated to the next level of hierarchy. The procedure terminates when the real rout

ing regions are considered at the appropriate level of hierarchy. Marek-Sadowska[MAR85]

considers a similar approach where the hierarchy is traversed bottom-up instead of top-

down.

Newton & Sangiovanni DRAFT

76

In the gate-array case, if the constraints on density are not met. then a rip-up and

reroute phase is added at the end of the main procedure. This process has traditionally

been carried out by human designers with the help of a symbolic graphic editor. Rule-

based approaches have been used by Marek-Sadowska [MAR] and byGoto et al. Dto iden

tify the nets to be ripped and the ones to be re-routed.

5.2.4. Compaction

In any design style, basic circuit cells have to be designed and verified, either for

each design as in the case of full custom, or once for gate-array design style, where the

designers responsible for the structure of the gate-array has to design the basic cell, and

far standard-cells,where those responsible for the librarieshave to design the cells These

cells may be simple logic gales such as nand. nor gates, and flip-flops Alternatively, they

may be cells used in regular arrays, such as the one-transistor cells used in a Programm

able Logic Array (PLA). which do not perform a complete logic function alone. The most

commonly used aid for the physical design of a cell is a mask-level digitization and

interactive correction program.

Some programs allow direct symbolic layout entry, using either fixed-grid[33-35] or

relative-grid[36-39] schemes With the fixed-grid symbolic approach, the grid is designed

to ensure all basic layout rules are satisfied upon data entry. For relative-grid schemes, it

is necessary to modify the layout such that all layout rules are satisfied. Programs which

carry out this operation are often referred to as compaction programs since they also

attempt to reduce the area occupied by the circuit.

Once a symbolic layout has been entered into the computer, it may be compacted by

adjusting the size of non-critical components, such as interconnections, under the con

straints imposed by the physical and electrical layout rules of a given technology. Hence,

this approach allows symbolic layouts to be updated more easily than physical ones as

Newton & Sangiovanni DRAFT

77

design rules or technology change. The FLOSS program[36]. developed at RCA for the

compaction of circuit cells, paved the way for the development of transistor-level compac

tion programs for ICs

It can be proved that the two-dimensional compaction problem is NP-complete. For

this reason, the algorithms used for compaction are heuristic and generally perform x and

y axis iterative compaction steps until all layout rules are satisfied and no further area

reduction can be achieved. Recently there have been efforts to develop algorithms that

could perform x and y axis compaction at the same time [Wong] but the results obtained

are not suitable for a practical implementation.

Local modifications to the layout can be performed to allow further compaction.

These modifications generally consist of distortions to interconnect, such as the introduc

tion of "jogs", or the rotation of transistors and cells[3237]. Critical path algorithms and

force-directed heuristics are used to determine the best location for the introduction of

these layout modifications. To ensure the layout is least sensitive to processing tolerances,

non-critical components must then be placed midway between constraints to maximize

yield.

The use of an hierarchical description of the circuit can be exploited to reduce the

analysis time by compacting the cells independently. The resulting compacted cells may

then be combined and compacted to form the circuit. While this may not result in an

optimal area utilization, the primary objective of error-free layout is achieved.

Lower-bound constraints on the positions of the elements of the symbolic layout

may not be enough to capture the constraints on the cell layout. For example, upper-

bound constraints may be netessary to express constraints on timing performance of the

circuit [Wong trans on cad]. The inclusion of both upper-bound and lower-bound con

straints may lead to over-constrained problems that do not have a solution.

Newton & Sangiovanni DRAFT

Si i.

78

More complex constraints need to be addressed by future compaction programs. In
fact, high performance digital circuit layout as well as analog circuit layout mayrequire
that two signal paths are of the same length. This implies that compaction algorithms
that can accommodate couplings between constraints have to be developed

h

S3. Logic Synthesis

The synthesis of acircuit - deciding how to partition the logic, in what form to
implement specific pieces of the logic, and what layout-style to use for implementation -
is still alargely manual process For digital circuits separated into data-path and control
circuits, the control logic portion of the chip is often the most time-consuming piece to
design. It is generally on the critical path for timing, and. because of limits in design time.
is often implemented in avery inefficient way. Automated synthesis of the control logic
blocks of achip, optimized for speed and area, provides one of the major challenges facing
CAD today. In this section, the state-of-the-art for the synthesis of combinational and
sequential, two-level and multi-level logic synthesis is presented Areas which provide
the most potential for improvement are presented and recent work in this area is
described

5.3.1. PLA-Based Synthesis of Control Logic

Programmable Logic Arrays (PLAs) are perhaps the most popular structures'for the
implementation of two-level logic functions. Most modern VLSI microprocessors include
large PLAs to implement the datapath control, as well as avariety of smaller PLAs for
controlling other activities on the chip. Other chips, such as memory management circuits
often consist almost solely of PLAs.

Many PLA layout generators have been written based on simple translations of the
boolean equations into layout. e.g. [LAN81. GLA80J However, astraight-forward imple-

Newton &Sangiovanni DRAFT

iC

rr.jrc e;

79

mentation of the logic entered by the designer may result in PLAs which are large and. as

a result, have poor performance in terms of speed and power.

53.1.1. Combinational Logic

It is clear that PLA optimization is necessary to obtain an effective implementation.

The optimization steps involved in the transformation of combinational logic into the lay

out of a PLA are:

(1) Logic-level optimization which aims at the reduction of the number of product terms

needed to implement the function.

(2) Topological optimization which aims at the elimination of unused space inside the

coreof the PLA. (e.g.. folding and simple partitioning).

(3) Layout and circuit optimization, which attempts to perform optimal sizing and place

ment of drivers, loads, core cells, and additional ground lines.

Over the past few years, a great deal of attention has been paid to logic minimization of

two-level logic. When the logic function is implemented using a PLA. logic minimization

both reduces the area occupied by the PLA and improves its electrical performance. The

algorithmic complexity of complete logic minimization is very high and so approximate

logic minimizers are used when medium and large logic functions have to be minimized.

MlNlD developed by Hong et al. at the IBM TJ. Watson Research Center was the first

efficient heuristic logic minimizer to provide quality minimization. Recent research on

approximate logic minimization algorithms has produced an efficient new logic minim ixer.

Espressoll-C [BRA84.RUD85]. Espres»U-C has been found to be very effective in minimiz

ing complex logic functions while consuming a reasonable amount of computer resources.

Once the logic minimization is complete, topological optimization can be performed to

minimize the area of the core occupied only by interconnect which does not contribute

directly to the implementation of the logic function. The objective of folding is to

Newton & Sangiovanni DRAFT

80

determine a permutation of rows and/or columns of the array which permits a maximal

set of column pairs to be implemented in the same column or row of the logic array.

The first optimized PLA synthesis system described in the literature was the

PRESTO/BLAM/PLAID[HOF8l] system developed at Berkeley in 1980. This system incor

porated the two-level logic minimizer PRESTO[BR08l]. a folder. BLAM and the layout

program PLAID. The PRESTO program was later replaced by an improved optimizer. POP.

The system produced NMOS simply-folded PLAs The interface between the logic designer

and the system was EQNT0TT[CME8l]. a program which accepts an arbitrary combina

tional logic function expressed in forms of logic equations and produces a truth table for

PRESTO. A system developed at the IBM TJ. Watson Research Center, written in APL.

included similar optimization steps (folding and minimization) with in addition a parti

tioning capability. The logic minimization MINI[HON74] was part of this system.

A mathematical formulation of the optimal folding problem was postulated and new

folding algorithms were developecfHAC80] that yielded better results than the ones

obtained by the algorithms initially included in BLAM. Research at Stanford culminated

in the development of a PLA synthesis system whose input is a high level functional

language. DDL [KANSll PLA minimization was performed by SPAM and the topological

optimization was accomplished by PAPA, a program which decomposed large PLAs in

smaller ones.

Many folding algorithms were developed following the mathematical model

presented in [HAC80]. e.g. [SUW81. CHU82. EGA82. GRA82. HU83]. More recently, a

new folding technique called multiple folding [DEM83] was developed which can reduce

substantially the area used by a PLA and was incorporated in the program Pleasure. The

PLA synthesis system PLASCX)[BAR85] includes a folding program which can also gen

erate multiply folded PLAs

Newton & Sangiovanni DRAFT

81

53.1.2. PLA-based Finite-State Machines

Recently, sequential circuits have been implemented using regular arrays In particu

lar. PLA-based Finite-State Machines (FSM) have been used in the design of several

micro-processors and telecommunication circuits Such circuits use a PLA to implement

the combinational part of the logic and the secondary outputs are fed back to the secon

dary inputs of the PLA via clocked latches For a given set of primary (external) inputs

and a required set of primary outputs, the objective is to:

(1) choose the number of secondary outputs to be fed back,via the latches,as inputs and

(2) assign values to these outputs (logic-'l* or logic-'O') for each state specified in the FSM

description

such that the total area occupied by the combinational logic and/or the critical-path delay

through the PLA are minimized. The 'textbook' approach to this problem, originated in

the days of discrete SSI circuits, is to choose the number of secondary variables so as to

minimize the number of latches used. By doing so. one minimized the number of expen

sive 1C packages needed for latches. To reduce the amount of combinational logic, various-

heuristic schemes were used. The most common approach was to used a 'distance-one'

state encoding for adjacent states. Unfortunately, such a state-encoding strategy does not

work well for PLA-based FSM designs.

To solve this problem optimally for PLA-based designs, an eflicient approach to state

assignment is needed. Many algorithms have been proposed in the past, e.g. (DOL64.

HAR61] to perform optimal stale-assignment. However the results obtained were not satis

factory because of the complexity of the algorithms suggested or of the poor electrical per

formance of the PLA used to implement the resulting combinational part of the FSM A

new approach for performing an optimal assignment of binary codes to the inputs of the

PLA implementing the combinational part of the FSM has been developed in [DEMN4].

The program KISS [DEM84b] was developed to determine a state-assignment based on this

Newton & Sangiovanni DRAFT

82

algorithm. The advantage of such an approach over a conventional design method is illus

trated in Figure 2. In Figure 2(a), the original FSM is shown with a 5-bit.minimal-length

state vector (and three additional outputs). In a 3/i P-well CMOS process, this circuit

occupied 0.75mm 2. After processing the FSM description using KISS, a 9-bit state vector

was chosen. This resulted in four additional output columns but reduced the overall area

to 039mm2 by reducing the number of product terms substantially, as shown in

Figure 2(b).

The KISS approach is successful, but an extension to this technique is needed to cap

ture the full aspect of the optimal state-assignment problem. The algorithms for folding

have also to be modified if the PLA to be folded comes from the implementation of the

combinational part of a FSM because additional constraints are created by the presence of

feedback registers New algorithms are needed to cope with these constraints

Further work is needed to partition a large FSM into smaller machines where the

intermediate output values are encoded. Though this process may result in more stages of

logic, in many cases it is expected that the increase in clock speed that can be achieved

using the small PLAs will more than compensate for the additional clock cycles caused by

more stages. Once again, algorithms have been proposed in the past [HAR66], but the tech

nological constraints and objectives which drive the decomposition have changed drasti

cally so as to make the existing algorithms inappropriate.

Newton & Sangiovanni DRAFT

83

Newton & Sangiovanni DRAFT

Figure 2. FSM Synthesis using KISS: (a) The hand^designed circuit
(b) After KISS redesign.

84

53.2. Multi-level Synthesis

As seen in the previous section, agreat deal of work has been done to implement
combinational logic in optimal, two-level form using the PLA. However, some control

logic has atwo-level representation which can have as many as 2" product terms, where
n is the number of primary inputs of the logic, even after minimization. In addition,
even if a two-level representation contains a reasonable number of terms, there are cases

in which amulti-level representation can be implemented in much less area and gen
erally as a much faster circuit. In fact, atwo-level logic representation can be viewed as

aspecial case of general multi-level representations. Hence, ageneral framework for con

trol logic design should offer multi-level synthesis tools which are able to select a two-
level implementation wherever the two-level form is more effective in terms of area
and/or speed To be able to explore the design tradeoffs such a system should offer a
variety of both electrical design style (e.g. Domino logic, static CMOS) and layout design
style (e.g. Weinberger arrays[WH66]. gate matrix [KRA821 standard cells, and gateways)
alternatives.

Several systems are being built for the design of control logic using multiple levels
of logic. The precursors in multi-level logic synthesis are two systems developed at IBM
the IBM Logic Synthesis System (LSS) [DAR84]. has as target technology a variety of
gate-arrays and has been extended to standard cells and to CMOS dynamic logic: the York-

town Silicon Compiler [BRA84b]. has Cascode Voltage Switches [ERDS4] as its target tech
nology: and the MAMBO system[HOF85] uses Domino Logic. AT&T Bell laboratories
with the FDS system. NTT with the Angel system. NEC and Hitachi, with the POLARIS
system were all developed with standard cells and gate-arrays as target technologies.
Only recently, electrical consideration have been taken into account during the synthesis

Newton & Sangiovanni ^ 4T^T,
DRAFT

85

process. MAMBO developed at the University of California. Berkeley is an example.

For multi-level design, there are two basic approaches to the logic optimization step:

(1) Global optimization, where the logic function is re-factored into an optimal multi

level form without considering the form of the original description (e.g. the York-

town Silicon Compiler[BRA84b]. part of Angel[HOS84]. and FDS[DUS84]).

(2) "Peephole* optimization, where local transformations are applied to the user-specified

(or globally-optimized) logic function (e.g. a part of Angel. LSS[DAR84],

MAMBO[HOF85]).

Some global optimization algorithms were proposed in the past (e.g. [ASH57]) to factorize a

Boolean function, but these techniques required an exhaustive search which is prohibi

tively expensive for the complexity of control logic designers are interested in today.

Some other algorithms suffered from the lack of understanding of the technological con

straints associated with particular implementation of the logic. New algorithms have been

proposed by R. Brayton and co-workers [BRA84] which are effective in partitioning com

plex logic functions and can take into consideration the technological constraints of a par

ticular implementation.

The Logic Synthesis System of IBM [DAR84] uses a prototype expert system to

accomplish the mapping of combinational logic in random form (from an initial "high

level" description) into a gate array implementation. The LSS system has been very suc

cessful and was used for the design of a number of circuits in the recently-announced

IBM3090 computer. The local transformations it uses are quite simple and relatively feu

in number. The transformations used for NAND gates are summarized in Figure 3. Such

local approaches, as used in LSS. tend to be faster than the global schemes but they are

somewhat limited in their search for a belter design.

Newton & Sangiovanni DRAFT

86

Figure 3. Local transformations used by LSS for NAND structures

5.3.3. Synthesis from High-Level Behavioral Description

The translation from a behavioral description to a register transfer level description

involves architectural decisions that have great impact on the final quality of the design.

The difficulty stems from the large number of constraints, design objectives and design

configurations to consider. In addition, it is very difficult to evaluate at this stage the

effect of an architectural decision on the speed, power consumption and area of the chip.

A key issue in behavioral level synthesis is the selection of the language used to

describe the design. The language must be concise and have high level constructs to

express compactly the intent of the designer. High level programming languages such as

Modula. PL/1 and concurrent Pascal have been used to describe designs at behavioral level.

Newton & Sangiovanni DRAFT

87

Special purpose languages such as the ISPS language developed at CMUD and the MacPitts

language[SOU83] have also been developed These languages are powerful enough to

allow the description of existing computersin only a few pages

ISPS is the input to the CMU Design Automation System[TH083. TH081] and the

MacPitts language is the input to the MacPitts silicon compiler[SOU83], The two systems

differ radically in that the CMU system does not follow the "style" of the input language

program for implementation while MacPitts implementations follow closely the style of

the input description.

In the CMU system, the ISPS input is translated into an internal, data-flow represen

tation called Value Trace (VT). which is then used for the synthesis process The VT

representation depends on the ISPS "programming" style of the designer, but to optimize

the final result, such dependency should be minimized. In fact, in this system it is

assumed that the goal of the designer in describing the design al the behavioral level is

compactness and clarity more than the optimality of the synthesized system. Thus, the

VT representation is manipulated using techniques similar to those used in optimizing

compilersQ

The next step, the mapping of the VT representation into an architectural represen

tation, is the core of the synthesis system. Many approaches have been tried by the CMl*

group, some involving algorithmic approaches such as EMUCS[THOS3] and Facet[TSE83].

some involving Knowledge-Based Expert Systems such as the Design Automation Assistant

(DAAXKOW85] and the Sugar system under development[DIRS5] (see the Expert System

Window for more details). The architectural description is still technology independent

but is selected with an eye on the technology that may be available for the design. The

components of this descripiion are modules, e.g. registers, operators, memories, multiplexers

and buses, links and symbolic microcode that describes the control structure of the design.

The selection of the architecture is either accomplished with algorithmic techniques, e.g.

Newton & Sangiovanni DRAFf

88

graph theoretic algorithms[TSE83l or with a set of rules embedded in an expert

system[KOW84l

Once the architecture has been specified, the modules have to be bound to com

ponents available in the selected technology and the microcode has to be implemented

either with a PLA, a microprogrammed controller or random logic. This step is accom

plished by the module binder and the control allocator.

The module binder selects technology dependent cells stored in a library to imple

ment the modules specified by the synthesis tools The control allocator determines the

control signals that drive the data path. The output of the control allocator is either a

PLA-format such as the one used by the Berkeley PLA tools or a mfcro-programmed-style

output for an AM2910 microengine[KOW85].

The MacPitts input description is compiled into a data path and control by replacing

the language constructs with hardware. The control part is expressed as a finite-state

machine and implemented with a Weiberger array. The data path is synthesized using

basic one-bit units called organelles. Operations which are specified in the input as mutu

ally exclusive are implemented in parallel, ie.. hardware is generated for all the opera

tions which can be done in parallel, while operations which are not mutually exclusive

are implemented using as much as possible hardware already implemented for other

operations. It is clear that if the input description specifies more operations as mutually

exclusive, the execution of the operations is faster but more silicon is used. Thus, the user

has some control over the hardware generated by the silicon compiler. As pointed out

before, the fixed floor-plan and design style for the control unit has resulted in silicon

implementations that are not as compact and efficient as human designs.

Newton & Sangiovanni DRAFT

89

53.4. Procedural Design and Module Generation

In recent years, the notion of procedural circuit design[ref] has emerged as a key

component in the design process. The use of procedure, rather than just graphics (or data).

for describing IC designs was pioneered at Caltech [ref] and applied later at MIT in the

DPL project[refI These efforts, and others have inspired a large number of projects at

University and Industrial sites for in-house use. The term silicon compiler is often associ

ated with procedural design2 and a number of new companies are advertising silicon com

pilers. Unfortunately, the majority of systems offered so far do not offer the general user

a procedural design capability. Rather, they can be characterized as cell-based systems

where the circuit building-blocks are parameterized cells. These cells can be assembled in

a variety of ways, depending on the design style the "compiler" is using.

True procedural design, where the IC designer can write programs which, when

executed, produce layout is still of key importance to the productivity of the custom IC

designer. Silicon Design Labs offers a procedural Design system based on their 'L'

language[ref]. which is an evolution of the T language, developed al AT&T Bell

Laboratoriesjref].

Many of the early procedural design systems had limited success for a number of

reasons:

The relationship between graphics and procedure was not exploited sufficiently.

Graphics and procedure are generally treated as disjoint descriptions of the design.

The graphical mask layout was the result of the procedure, rather than an active

part of it.

Verifying the correctness of a procedurally generated design is generally performed

at the mask layout level. Al thai point, no correspondence between the active

3The term was first used al Caltech to describe the early procedural design wotK theie.

Newton & Sangiovanni DRAFT

90

procedure which created an object and its geometrical layout is maintained. As a

result, debugging the design is very difficult.

• Often the designs produced by the early systems did not achieve high density, high

performance, or meet power requirements.

Another way of reducing the potential for errors, as well as ensuring the technology-

parameterization necessary at the lowest level of design, is to have the procedural design

system generate symbolic layout rather than detailed geometry. A spacing program[ref].

or constraint-solver[refl can then be used to guarantee a layout-rule-correct design and to

convert the symbolic layout to mask artwork.

6. SUMMARY

As described in this paper, computer aids have been used for both the design and

verification of electronic systems for many years prior to the introduction of commercial

ICs in the early 1960s. These tools have found their way into virtually every aspect of

the design of such systems, from IC processtechnology to the design of complex computer

architectures. Today, it would not be possible to design a complex IC without CAD tools

and we believe soon these tools: for data management, verification, and synthesis: will be

as significant than the underlying semiconductor technology in differentiating products in

the marketplace.

The use of CAD in IC design is now a very broad and very deep subject. While it

was not possible to go into detail in this paper, we have indicated the history of CAD for

IC design, the state-of-the-art. and the present directions for future work. CAD is now a

large industry and is growing rapidly. It has become a relatively sophisticated industry

and is staying abreast of developments in computer science as well as computer architec

ture and IC design. As a result, the IC CAD industry is setting a direction for other CAD

industries, including mechanical and board-level CAD.

Newton & Sangiovanni DRAFT

8. REFERENCES

TO BE PROVIDED LATER

91

DRAFT
Newton & Sangiovanni

92

WINDOW: An Historical Perspective of CAD for ICs

Since the advent of the first IC. the evolution of computer aids for IC design has

occurred in an ad hoc manner. In most cases, computer programs have been written to

solve specific problems as they have arisen and veryfew truly integrated Computer-Aided

Design (CAD) systems exist for the design of ICs. Most CAD systems currently in use for

the design of complete ICs consist of a loose collection of programs, requiring a large col

lection of data formats and often requiring manual intervention to move from one pro

gram or computer system to another.

The first digital ICs were available commercially in the early 1960s and. in retros

pect, it is surprising how little the computer was used in the design of ICs prior to 1980.

Early circuits were sufficiently small that mask patterns could be drawn by hand on

rubylith. and then photographically reduced to generate the ICmasks directly. However,

for the verification of the junction of the circuit, simulators proved quite useful. Hence

initial work in the mid-1960s focussed on the development of device analysis!??] and cir

cuit analysis!??] techniques. These circuit simulators were originally developed for the

analysis of nonlinear, temperature, and radiation effects in discrete circuits and it was not

until the early 1970s that circuit simulators suitable for IC analysis became generally

available!??].

As the complexity of the circuits increased, industry turned to the computer to store

integrated circuit mask layout data: the arrangements of polygons that would be used to

define transistors and interconnect on the final chip: and toproduce the masks required for

manufacture. Systems for layout digitization, where the layout isfirst drawn by hand on

sheets of Mylar and then entered into the computer using a tablet and a puck, and interac

tive correction of the layout data, found extensive use by the early 1970s. However, il

was not until the mid-1970s that programs for checking the physical layout rules for the

Newton & Sangiovanni DRAFT

93

circuit (LRC) began to find widespread use[??l These programs process the geometric

descriptions of the layout and check to make sure that layout rules, such as minimum

spacing between adjacent polygons or required enclosure of one polygon by another, are

met.

By 1975 it had become clear that computer-aids were a necessity in the design of

complex integrated circuits, both for physical and for functional design and verification.

Until then, the layout of an IC and its transistor-level schematic diagram had been quite

separate. In the late 1970s, computer programs became available for such tasks as extrac

tion of transistor-level schematics from IC artwork data[??J recognizing transistors and

interconnect from patterns in the artwork data, connectivity verification[??]: comparing

the transistors and their connections expressed in a schematic diagram with the connec

tions extracted from the artwork data, and even extraction of gate-level netlists from the

transistor list[??l These programs were loosely-coupled and were often incompatible with

one another. All of the early tools were developed with a "batch" computing environ

ment in mind. None of the tools address the problem of design data management (other

than for the data they deal with directly) and tools from different vendors typically use

different input and output formats. The task of coordinating the tools and integrating

them into a particular design flow fell largely to the IC house: largely to the central, or

corporate. CAD group: and this task has traditionally been responsible for a lot of their

headaches. In fact, the only fully integrated CAD systems that are in general use today

for the design of complex ICs are those for some highly-specialized design approaches, such

as the standard cell and gate array design styles.

Prior to. and in parallel with, the development of computer-aids for IC design, a

great deal of work has been ongoing to aid the digital system designer, particularly as

applied to printed circuit board design using standard components. In particular, algo

rithms and programs for the optimal placement and routing of cells[??]. logic simulation

Newton & Sangiovanni DRAFT

94

techniquesl??]. and test grading[??] have resulted in sophisticated design packages.

As the complexity of ICs and IC-based systems increased, these two worlds began to

merge in the late 1970s and early 1980s. In addition, the IC industry saw the introduc

tion of the first personal workstation-based interactive mask layout and schematic entry

systems. The rapid drop in price/performance provided by these systems has had a

dramatic effect on the IC design community, as well as causing a great deal of confusion!

The additional advantages of predictable response time, communication among designers,

improved user interface to the CAD tools, and the wide range of possible

price/performance options has accelerated the acceptance of these systems. But the

advent of the workstation had not been without its drawbacks. Early systems were often

clumsy to use and did not live up tomany of their claims. Over the past few years, how

ever,workstation-based CAD systems have improved dramatically and are now available

on machines from a standard personal computer to advanced, color-display workstations

with the power of asuperminicomputer of just a few years ago. There isno question that

workstations for CAD are here to stay. With such rapid improvements in hardware, it

has been difficult to keep the CAD tools portable enough to keep up. Workstation-based

CAD vendors have either committed their systems to a particular manufacturer or have

chosen a portable operating system, such as UNIX, in which to develop their tools. In that

way. provided UNIX is available on the new hardware, the job of porting their software

has been made considerably easier. Other techniques that have been used to ease portabil

ity while minimizing loss in efficiency include the use of portable programming environ

ments such as Mainsail[??] and Lisp!??].

With the advent of low-cost, high-resolution graphics, another portability issue has

emerged — that of user interface. Larly implementations of window-managed user inter

faces have involved customization of the code down to the assembly language level. In

some cases, hardware manufacturers have provided efficient interfaces that have a com-

Newton &Sangiovanni DRAFT

95

mon program-level interface to a variety of display devices However, the interface is

often proprietary or. if defined in terms of a graphics standard such as CORE or GKS. the

interface is often too slow or inadequate for a window-managed environment. Recent

University developments, such as MT Project Athena and the CMU Spice project, may

provide the basis for future portability in this area.

Newton & Sangiovanni DRAFT

96

WINDOW: Managing CAD Development

Far many years, most companies have worked with a central, or corporate. CAD

group supporting the entire company, or business unit. CAD needs. Occasionally, the CAD

is distributed and a CAD team is responsible for all CAD aspects of a single design project.

In either case,a major dilemma is always the "buy versus build" decision. Most companies

would buy if they could and only build what they have to but it is a common problem to

find a tool that isn't "quite right" or to buy the tool only to find it does not perform as

advertised.

Since the late 1960s, all large IC companies and most small companies have relied on

the central CAD group to supply CAD support for a large number of design teams It was

often felt that since the computers themselves were expensive, often corporate-level

resources, the group which supports design aids on such a facility should also be central

ized. The group would support common tools, such as circuit simulators and layout-rule

checking programs, for the entire company. They would also develop new and innovative

tools to support the particular design styles favored by their designers Unfortunately,

this often lead to a "computer center" style of relationship between the IC design teams

and the central CAD group. On the one hand, the designers felt thai by having access to

the CAD code themselves, with "just a few minor changes" a tool might do the job they

wanted. On the other hand, the central CAD group was well aware that if they released

the source to each design group, they would be asked — no. they would be expected — to

support the resulting variant tools, tools they had no pan in creating.

There have been many battles between a design team and the central CAD group.

In recent years, design groups have often taken matters into their own hands by forming

small. CAD support teams for each design under way. These teams are responsible for

bringing together the appropriate CAD technology for the design method in use and for

Newton & Sangiovanni DRAFT

97

building a CAD system to support the design. This generally involves obtaining tools

from the central CAD group, buying some tools, and. generally as a last resort, building

some tools of their own. While this approach often leads to a satisfactory solution for the

design in progress, unless the design framework is managed carefully, it often leads to a

CAD system of tools which is difficult to support and therefore cannot be used in other,

similar design projects

In many ways, the relationship described above is a no-win situation from both sides.

On the other hand, a central CAD group has a very important role in a company which

has a number of on-going, state-of-the-art design activities. It is certainly the best place to

support common, basic tools such as circuit simulators, layout-rule checkers, and mask pat

tern generation software. It can also play an important role in the dissemination of infor

mation about new tools or a new use of an old tool. When one design team completes a

successful design project, the central CAD group can often follow up on the use of CAD

tools in that project and make the successes and pitfalls of the design style available to

other, new IC design projects Today, such information is often lost, rediscovered with

each new design, or carried to the next project by the senior designers in the team.

Perhaps the most important role a central CAD group can play is the maintenance of

the design framework, described in detail in Section 2. In its simplest terms, this involves

the specification and support of standard interfaces between tools. Even today, these inter

faces are often textual or binary interchange formats!' such as the Calma GDS2 format

for geometric data or the Spice2 input format for netlist data. Often there are many, occa

sionally synonymous, formats in use within a large organization — again resulting in a

nightmare for the central CAD group. New formats, such as EDIFl??] and the VHDL[??].

promise to reduce the complexity of this problem.

However, a circuit design framework can be far more powerful. It can include both

common data management tools which support interactive design styles, as well as a corn-

Newton & Sangiovanni DRAFT

98

mon user interface. Such design frameworks are just beginning to be developed, as

described in Section 3.

In the late 1970s and early 1980s, a number of new companies were formed, often

by frustrated designers who saw the opportunity that low-cost computers provided, to

address these problems These companies focussed on data management, integrated user

interface, and a selection of supported tools. Often they focussed their efforts on a partic

ular segment of the market Logic schematic entry and associated logic-level tools proved

to be the most successful as they addressed both custom and semi-custom IC designers and

board designers alike, therefore providing a much larger market to sustain growth. In

contrast to earlier offerings, these systems provided interactive, graphical entry of the

design data and they promised an interface to a wide variety of tools, as well as the abil

ity to store and retrieve design data.

These companies have been joined by many others and the systems have broadened

in terms of the design data they can deal with. At the 22nd Design Automation Confer

ence in June. 1985, over fifty companies were offering CAD systems which ran on

machines from personal computers to high-end mainframes The systems showed a

correspondingly broad range of capabilities However, while the popular press promises

the designer a "personal, integrated workstation." such an environment is still not cost-

effective. The more useful workstations today are still relatively expensive — too expen

sive to provide a worstation per designer. A recent survey of designers and CAD

managers indicated that on average an engineering workstation is being used to support

15 engineers: two years from now. the anticipated average is 25 engineers per worksta

tion. Bringing the cost of these workstsions down is an important challenge to the wors

tation vendor. In many cases the design systems run on proprietary hardware, where a

full range of cost/performance and multi-user systems is not available, or use proprietary

networking technology, making it difficult to integrate such systems smoothly into a corn-

New ton & Sangiovanni DRAFT

99

plete office environment. Most engineers continue to require a computer terminal or PC

with which to perform their work. Another interesting aspect of the survey was that

while engineers felt that improving the quality of schematic entry is most important to

enhancing their productivity and that document preparation tools (for writing reports,

electronic mail, preparing presentations) was of least importance, they also agreed that

while on average they spent 3 hours/week entering schematics they spent a full 2

days/week using document preparation tools*

While the central CAD group plays an important role in the design process, care

must be taken to avoid the CAD tool under development becoming the focus of the group,

rather than a successful chip on first silicon being the ultimate goal of the CAD group as

well as the design group. Often, a central team is more concerned with squeezing the last

microsecond out of a logic simulation, rather than making the designer interface easier to

use or offering the analysis options of most use during the design. Management plays the

most important role here, by allocating some chip design responsibility to the CAD group.

For example, by assigning a specific CAD individual to the task of supporting interactive

routing aids for a specific, custom IC designer, a synergistic effect is achieved The designer

is pleased with the support he or she is receiving, while the CAD engineer sees the direct

benefit of his or her work. The resulting tools designed in this way are generally far

more useful than those designed from an initial "specification."

Newton & Sangiovanni DRAFT

100

WINDOW: Simulated Annealing

Simulated annealing is a relatively new approach tocombinatorial optimization prob

lems The results that have been obtained on a number of layout problems from parti

tioning, to gate-array placement, from floor-planning to global routing, have been so

interesting that a fairly detailedexplanation is warranted here.

Heuristic algorithms are used to solve NP-complete problems approximately, i*. to

find "good" solutions which are "close" to the optimum. These algorithms explore a

discrete space of admissible configurations. S . in adeterministic fashion. Starting from an

initial configuration /0. a sequence of configurations is selected and compared until a satis

factory one is found. The rules according to which a configuration is generated and the

termination criteria, specify the algorithm. Often the search terminates at a local

minimum. i.e. with a configuration j such that if we denote by c (j) the cost of j and

by S{j) the set of configurations that can be generated from j by the algorithm in one

step, c(j)^c (j). Vj €5 (;). The local minimum reached can be quite far apart from

the global minimum measuring their distance with the difference in cost. This is often

due to the fact that heuristic algorithms are "greedy". U.. only moves which reduce

maximally" the cost are accepted.

To avoid this behavior, randomizing algorithms can be devised which generate the

next configuration randomly. The configuration is recorded as a new temporary solution

if its cost is lower than the present temporary solution. The algorithm terminates after a

certain number of moves. Randomizing algorithms perform well if the number of

optimal solutions is fairly high, since the probability of stopping at an optimum is propor
tional to the ratio between the number of optimal configurations and the number of total

configurations. Note that randomizing algorithms can "climb hills", i*.. they allow moves

that generate configurations of higher cost than the present one are accepted.

Newton &Sangiovanni DRAFT

101

Simulated annealing as proposed by Kirckpatrick et al. [KIR83]. allows "hill climb

ing" moves but these moves are accepted according to a certain criterion which takes the

cost into consideration and not blindly as randomizing algorithms The controlling

mechanism is based on the observation that combinatorial optimization problems with a

large configuration space exhibit properties similar to physical processes with many

degrees of freedom.

In particular, bringing a fluid into a low energy state such as growing a crystal, has

been considered in [KIR83] similar to the process of finding an optimum solution of a com

binatorial optimization problem. Annealing is a well-known process to grow crystals It

consists in melting the fluid and then lowering the temperature slowly until the crystal

is formed. The rate of decrease of temperature has to be very low around the freezing

temperature. The Metropolis Monte Carlo method can be used to simulate the annealing

process. It has been proposed as an effective method for finding global minima of combina

torial optimization problems This method when applied to combinatorial optimization

generates moves randomly and checks whether the cost of the new configuration satisfies

an acceptance criterion based on temperature. If the cost decreases, the move is accepted If

the cost increases, then a random number between zero and one is generated and compared

— Acwith / (hctJ T)= exp(7^-) where LctJ is the change in cost obtained by moving

from configuration i to j and T is temperature, the controlling parameter. If the ran

dom number is larger than / . the move is accepted, otherwise the move is discarded.

Note that the higher the temperature is. the more likely it is that a "hill climbing" move

is accepted. Note also that "hill climbing" moves are less and less probable as the tempera

ture is decreased. A certain number of moves are generated and checked before a decrease

in temperature is allowed The initial temperature, the number of moves generated al each

temperature and the rate of decrease of temperature are all important parameters that

affect the speed of the algorithm and the quality of the final configuration. Experimental

Newton & Sangiovanni DRAFT

102

results e.g. [KIR82. VBC83. SEC84. OTT841 show that Simulated Annealing produces

very good results when compared to other techniques for the solution of combinatorial

optimization problems such as those arising from the layout of integrated circuits, at the

expense of large computer time (a 1.500 standard cell placement problem can take as

much as 24 hours of a VAX 11/780 [SEC84D.

A mathematical analysis of the algorithm isvery important to understand the essen

tial features which make the algorithm work well and tosuggest techniques for control

ling its operation. Markov chains can be used as a mathematical model of Simulated

Annealing. It has been proved that under certain assumptions on the number of moves

generated by the algorithm at each temperature. Simulated Annealing produces asymptoti

cally the optimum solution of combinatorial optimization problems with probability one.

Newton &Sangiovanni DRAFT

103

WINDOW: Heuristic Programming

Over the past two decades, .any «**•**- «* *" been developed for
the analysis of K* - e^ple. tbe gators, layout^ checkers, connective
verffiers described in tbe « are a!, part of abroadW ,C de*n *- However.
mny of tbe, tools „Ust P-ess alarge num*r of "specialW wh,h are excepts to
lhe ^ algoritbm. Uis often tbe pressing of tbe special cases tbat donates tbe run
ttae. sucb as for connectivity verify de*ribed in Section 4. ,n otber
,mple algorithm „ay not *.own for âticular problem but acollection of ample

lhe design or for selecting astructure from abehavioral speculation in tbe syntbests pro-
ki. to the relatively new field of heuristic programming,cess These problems are amenable to the relauveiy n

Over tbe past few years, anumber of «h synthes* and verification tools bave

,n genera,, it is our con3ecture tbat if asatisfactory a,gorithmic •*«*. »aprobiem ,s
Known Hsbould be used. When sucb asolution is not Known, or wbere aPr*lem has

candidate for an e^stem-b^d «*-*• «* «» ™° ^ ' m^m;
invo,v,ng tbe u* of an e*,n .stem controU.ng tbe app,icat,on of powerfu, a.goritbm.c
tools, will probably provide the best solution.

TvTica, rule-based systems (e.g. [ll]) are corned of three rerts: the work.ng
memor'y. the rules, and the rule interpreter. Tbe working memory. for m<* of the CA1>
^cations de,r,bed here, is the description of the crcu,, The rules are condition-act.cn
pa,,, where the conditions are patterns to match aga.st the working memory or e>rres-
^ lo eva.uat.on. and the act.ons are operations to perform Unpuvoutpu, ca.culat.ons
and changes to the data, Uthe condit.ons are ati.,ed. The rule interpreter determ.es

DRAFT

ISfewton & Sangiovanni

104

a **.• workinc memory contents; how tbe rulewhich rule to fire based on the rules and the working mem y
.. v i. *« fire is known as conflict-resolution. A number oiinterpreter determines which rule to fire is known

.^roaches have been applied successfully tokcy areas where heuristic programming approaches nave oee pp
CAD problems to date are outlined below:

.*-—***-«*-—"•— '•—aM* —— fcU-^
ce, of comparing twoccuit descriptions to make sure tbat they are tbe sameandtf they
are not tbe ^ tben to discover where tbey differ. Alm^t al. connectivity verifiers can
^e tbe straightforward problem very efficiently with fast, beurfctic algorithm,
However, most of tbe time in these programs is spent handling tbe special case,

There are many s^ial ca*s tbat can degrade tbe ^ormance of the *sic algo
us TwosucbcasesarerenW^^andp^^. For some elements.
O, terminals are locally and/or electrically equivalent and are allowed to permute.
The inputs to the *sic lc*ic gates <*».«.-) and the source and drain of MOS^s are
espies of sucb situations. In handling terminal permutability. many connective
verifiers a*ume that they will be working with MOSPHTS and "hard-wire" the fact that
purees and drains can permute: others allow tbe user to specify how terminals on ar„-
lrary elements can permute, but some do this very inefficiently and others do not always
work.

Idenlica, and almcst identical paral.e. paths (as in bit«,ice circuits and RAMs) also
present aproblem to current connectivity verifier, If they are identical, the algorithms
currently used can not distinguish between the paths and may no, process them. Also. ,f
two paths have only small differences (as in ROM,), since only .oca, effects are taken into
account, connectivity verifiers also may not be ab,e to distinguish between them.

Aconnectivity verification technique using arule-based system has been deve.oped
that handles tbe above special cases without the performance penalty seen in exisung
a.gorithmic systems. Whereas standard connectivity verifiers prcce* circuits M

DRAFT

Newton & Sangiovanni

105

a „,wv<: and their immediate neighbors), in the rule-(looking at individual elements and nodes, and their
« broach the circuit „pr«e»ed in ag.o*. manner (co.,ecti„s of elements an
.oaes, The designers hierarchy from the *hemat* is u*d to build patterns tbat match
bivalent groups of elements in tbe layout. These patterns are rules for aru.e^d sys-
ton with the circuit description being the data.

ln the context of connectivity verification the conditio are patterns tbat match col-
lecti0ns of elements (the subcircuit) and the actions are tbe removal of tbe ind.vidual e.e-

element.

. lancet Electrical Ktes Checking: Apeer^roup review is one of tbe major check-
p^nts of tbe v., design p-es, Durmg «* phase, ade^gner will have his work
reviewed by other members of the project team This review is usual.y performed by one
. more e^rienced designers who study the schematics and .ayouis of adesign, the.r
^on being to "fiush out bugs that may have been overbed by the orig,a, engineer

algorithmic approach has *en found short of complete simulate at the circuit .eve,.
Even then, the design critic may find errors that circuit simulators cannot detect.

are very simp.e Prob,m, Perhaps anew designer may not understand the imp.,a,ons
„adesign ru.e or needs some guidance as to the more practica, ways of indenting a
logic funct.on. .n other «_extreme* subt.e prob.ems are found which can e.ude even
the most carefu, worst case simu.ation, Charge couP.ing. MOS cantor inversion tune
constant, charge sharing on dynamic buses, vo.tage swings on b«,tstrapped nodes, and
prob.ems due to Cock undershoot, overshot, over.an and skew are »me examp.es of the
latter.

DRAFT

Newton & Sangiovanni

A number of cvrcwt design critic programs_*,—-««*-* C^^dtbe^msy^swblcbperforma

• f. comriete design assistant, not limited to design verification alone,
actin the capacity « a complete aesgn ««»»

• Routing:

As presented in Sect!-, 523.. detailed routing is quite complicated if tbe region to
„»* has pins on four side (twc^imensional routing Pr*lem). maddition. m«t of the
liable detaUed routers are constrained to route vertical connect^ and borstal con
nections on two different iayers to simplify the suture of tbe afgorithm, Many *;«-
*, functions are used to evaluate tbe quality of the results by defers. For example.
U,e number of vias used to complete tbe routing can be important to improve the reliabtl-
ity 0f the chip and net length is important to optimize the speed of the chip. Thus, tbe
aeuiled routmg problem in two^imensions seems to be anatural application of expert
sterns wnv. UOOS5] is aknowledge^ system for detailed routing developed at
CMU The performance of the system is quite impressive in terms of the quality of the
final solution, even though its running time is quite larger than the one required by stan-
aard algorithm, We believe that this system reprints an important first step ,n the
application of heuristic programming in the placement and routing area, however we
Wieve that globa, routing, fioor-p.anning and macro-eel. placement should be abetter
^-hed for knowledges expert system, since satisfactory so.uticns are already ava.,-
able with standard a.gorithmic techniques in the case of detailed routing.

Another important application of expert systems to routing is the system developed

on gate-array problem, This approach is quite interesting, because the algorithms used to
route gate-arrays rarely provide 1<0* interconnection comp.etion and .vera, hours tf not
.ays of designer time are needed to complete the interconnections left out by the

DRAFT

Newton & Sangiovanni

106

have been developed over the past few

107

.^ithm, The NEC expert system uses aset of rules obtained by capturing the designer
expert* in performing the rip and re-route operatic In addition, the expert system can
call on algorithms to evaluate the application of aparticular rule.

• Multi-Level Logic Synthesis:

A, we pointed out in Section 53a. one of the first systems for automatic optimiza
tion of multi-level .ogic. LSS of IBM could be considered aprototypical rule^sed system.
Recently, afull-fledged rule^ased expert sysem. Socrates, has been developed at GE
Microelectronics Center to optimize combinational logic for aspecific target technology
[DEG851 The system starts with adescription of the logic to optimize and performs a
series of algorithmic steps to produce astarting point to which arule^ased expert^stem
applies aseries of local transformation, The knowledge^ can be easily enriched by
lhe user through arule general module that automatically encodes new rules and
inserts them in the knowledge b-e. Acontrol module directs the application of the rules
to the data. In particular, the module determines in which sequence the transformations
are to be applied based on eva.uations of the effectiveness of the transformation.

• Behavioral Synthesis:

ARu.e-Ba*d Expert System has been bui.t at CMU by Kowa.ski to translate
effectives abehavioral representation of adesign into astructura. representation. The
ru.e ba* has been bui.t by successive approximates asking designers to critic* designs
that were obtained with the tec.. The first ru.e set used conta.ned 70 rutatlUOHl the
latest version of the tool contains more than 500 rule*>lR8Sl

The conclusion of the CMU researchers has been that whi.e the a.gor.thmic
approach can be more effective if the cost function is we., shifted, the expert syaem
approach offers more flexibUity and abetter environment to capture the often difficu.t to
express intent of the designer.

DRAFT
Newton & Sangiovanni

108

WINDOW: Multiprocessors for CAD

As we approach the fundamental performance limits of uniprocessors, it is clear that
only new. multiprocessor computer architectures can offer the large performance improve
ments needed to solve the complex problems of our time. Throughout the world, a great

deal of research is in progress on the development of new. often unconventional, computer

architectures for both symbolic and numerical processing [38l

However, such machines will not be able to exploit the parallelism available in

problems unless new algorithms are developed that are well suited to a multiprocessor
environment. In the past, it has often been assumed that advanced compiler technology

would be sufficient to translate a conventional computer algorithm for optimal use on a

special-purpose machine. In the case of circuit simulation, even the most advanced com
piler technology, used in conjunction with anumber of computer consultants, has shown

poor speedup on pipelined machines (about 12%-15% hardware utilization on the Cray 1

[9]).

There are several compute-intensive problems that face CAD of VLSI circuits today.

In some cases, such as logic simulation[] and design-rule checkingD. new special-purpose

machines have been designed to fully exploit the characteristics of the problem to be

solved. In others, such as circuit simulation^ existing general purpose parallel processors

have been used to speed up the simulation timeD- A careful analysis of the economic

trade-offs has to be made to decide whether to build a special-purpose machine or to use

existing multi-processors.

h is clear that the cost of the processors would be much lower for the case of

general-purpose multi-processors, while the performance of special-purpose machines
could be orders of magnitude better. A"mixed" approach could probably offer the advan

tages of both strategies. In this case, the interconnection network and the basic software

Newton &Sangiovanni DRAFT

109

*ould * the ones offered by the general-pur^ environ, while the particular
eo^ntenave tasks to be carried out by the ,ngle process cou.d ^ up* the
aesign of special-purpose acceptors *ard to be u*d - co.rcce.ors for the proce^ of
the general-purpose system.

Several approaches have been followed in the past few years to develop CAD
aerator, An excellent review of the field can be found in QHere we will mention
only a few relevant projects

^c simulation was the first application of hardware accelerators to IC CAD. The
first working protcype prop-d for th, task was the Boeing Computer Simula^.
However, the first machine actually used in the design of digital system was the Log.c
Simulation Machine (LSM* developed jointly by IBM T. J. Wats*, Research Center and
JBM L* Gato, The Yorktown Simulation Engine (VSE) developed by tbe IBM TJ. Wat-
„ Research Center has simi.ar architecture but better performance. NEC deve.oped a
hardware .ogic simu.ator. HAL 11 Atouting Machine has been proposed and tmp.e-
mented by agroup of researchers at IBM TJ. Watson Research Center. An interests
architecture resemb.ing the M.T connection machine, was designed by NTT to speed up a
variety of CAD algorithms!].

,n the vendors arena. Zycad has developed afas,, but expensive, specia.-purro.
machine for logic simu.ation and is investigating specia.-purpose machines for circuu
simulation. Daisy and Va.id Logic Systems have deve.oped acheaper, but s,owe, .eg,
simu.at.on engine .The architecture deve.oped for this task by Da,,, has a.so been used to
speed up the simu.ated annea.ing a.gorithm aPr,ed to the prob.em of opt.ma.ly r.ac.n£
gate.rrav, Shiva mu.ti^stents is offering hardware acce.erators for circuit simu.at.on
by extending the capacities of acommercia, muit.proce.sor. the Seouent Ba.ance
SOOOlrefl

DRAFF

Newton & Sangiovanni

no

to .cademia. several researchers have proposed new architectures and corresponding
CAD algorithm, Aspecial purpose machine for design rule checking was proposed by
MTTfJ AVirtual Bit Map Processor was designed at Stanford to provide hardware support
for operatic involving bit map representation!]. Similar techniques have been used in 0
to support physical design.

Systolic machines have been propped by Kung at Carnegie-Mellon University for a
variety of numerical algorithm, from the solution of linear algebraic equations to tbe
computation of Fast Fourier Transforms, and the fast implementation of simulated anneal-
ing for printed circuit board placement.

Other architectures have been proposed for the solution of linear system of algebraic
equations and in particular for sparse matrices! However, no working prototype has
been bui.t because of the complexity of these machines. Algorithms for existing multi
processors are also being studiedO- Other numerical problems have been investigated, for
example research has been carried out on parallel solution of partial differential equations
at Maryland [rheiboldt].

Parallel algorithms have been investigated for combinatorial optimization problems
in anumber of computer science departments from the theoretical point of view.0 These
projects have adirect impact on CAD because many of the optimization problems invo.ved
in the development of effective tools are combinatorial. In addition, the methodology
developed in this research to evaluate paralle. algorithms can be used as aguide.ine for
the development ofnew parallel algorithm,

We can clarify the new research areas opened by the feasibility of designing
special-purpo* processors as well as by the availability of general-purpose multi
process, into three areas: deve.opment of new algorithms for existing multi-proce^r
architectures, for example Dand 0. deve.opment of new architectures for existing algo
rithm, for example [] and [1. and deve.opment of new a.gorithms and new architecture,

DRAFT
Newton & Sangiovanni

Ill

for example!! It is important to note that when using non^onventional architecture,
existing algorithms which are considered .ess efficient when using convents. uni
processor, may become much faster. For examp.e. in the am of the LSM3 and Wfl.
event driven algorithms widely recognized asthe most efficient algorithms for logic simu-
..tic* on auniprocessor, have not been used to exploit the particular architecture of the
special purpose machine.

DRAFT
Newton & Sangiovanni

MARKETING

1
DESIGNER

ARCHITECTURE CAD

PROCESS TECHNOLOGV

A
pp

lic
at

io
n/

M
ar

ke
tin

g

C
A

D

F
ra

m
e
w

o
rk

T
o

o
ls

F1
9.

2.

D
e
si

g
n

e
r

A
r
c
h

it
e
c
tu

r
e

D
es

2g
n_

St
yl

e
F

lo
o

rp
la

n
C

o
n

tr
o

l

"A
rr

a
y
s"

T
e
c
h

n
o

lo
g

y

L
ib

r
a

r
ie

s

S
ta

ti
c

P
a

ra
m

e
tr

ic
G

e
n

e
r
a

to
r
s

.a
y

1•
o

-7
C.

'*
1.

*
.**

T
o

o
f^

.

1
*

103

WINDOW: Heuristic Programming

Over the past two decades, many algorithmic-based tools have been developed for

the analysis of ICs. For example, the simulators, layout-rule checkers, connectivity

verifiers described in the text are all part of a broad-based)C design system. However,

many of these tools must process a large number of 'special-cases' which are exceptions to

the basic algorithm. It is often the processing of the special cases that dominates the run

time, such as for connectivity verification described in Section 4. In other situations, a

simple algorithm may not be known for a particular problem but a collection of simple

heuristics may be used, such as for checking for more complex electrical rule violations in

the design or for selecting a structure from a behavioral specification in the synthesis pro

cess. These problems are amenable to the relatively new field of heuristic programming.

Over the past few years, a number of both synthesis and verification tools have

been developed which rely on the use of such an approach in the form of Expert Systems

In general, it is our conjecture that if a satisfactory algorithmic solution to a problem is

known it should be used. "When such a solution is not known, or where a problem has

many "special cases" which dominate the run lime of the algorithm, the problem is a good

candidate for an expert-system-based approach. For many ic/CAD problems, a meta-system.

involving the use of an expert system controlling the application of powerful, algorithmic

tools, will probably provide the best solution.

Typical rule-based systems (e.g. [ll]) are composed of three parts: the working

memory, the rules, and the rule interpreter. The working memory, for most of the CAD

applications described here, is the description of the circuit. The rules are condition-action

pairs, where the conditions are patterns to match against the working memory or expres

sions to evaluation, and the actions are operations to perform (input*output, calculations

and changes to the data) if the conditions are satisfied. The rule interpreter determines

Newton & Sangiovanni DRAFT

104

which rule to fire based on the rules and the working memory contents: how the rule

interpreter determines which rule to fire is known as conflict-resolution. A number of

key areas where heuristic reexamining approaches have been applied successfully to

CAD problems to date are outlined below:

• Connectivity Verification: Asdescribed in Section 4. connectivity verification is the pro

cess of comparing two circuit descriptions to make sure that they are the same and if they

are not the same then to discover where they differ. Almost all connectivity verifiers can

handle the straightforward problem very efficiently with fast, heuristic algorithms.

However, most of the time in these programs is spent handling the special cases.

There are many special cases that can degrade the performance of the basic algo

rithms. Two such cases are terminal permutabHUy and parallel paths. For some elements,

the terminals are logically and/or electrically equivalent and are allowed to permute.

The inputs tothe basic logic gates (nand. ndr. etc.) and the source and drain ofMOSFETS are

examples of such situations. In handling terminal permutability. many connectivity

verifiers assume that they will be working with MOSFETS and "hard-wire" the fact that

sources and drains can permute: others allow the user to specify how terminals on arbi

trary elements can permute, but some do this very inefficiently and others do not always
work.

Identical and almost identical parallel paths (as in bit-slice circuits and RAMs) also

present a problem to current connectivity verifiers. If they are identical, the algorithms

currently used can not distinguish between the paths and may not process them. Also, if

two paths have only small differences (as in ROMs), since only local effects are taken into

account, connectivity verifiers also may not be able to distinguish between them.

A connectivity verification technique using arule-based system has been developed

that handles the above special cases without the performance penalty seen in existing

algorithmic systems. Whereas standard connectivity verifiers process circuits locally

Newton &Sangiovanni DRAFT

105

(looking at individual elements and nodes, and their immediate neighbors), in the rule-

based approach the circuit is processed in a global manner (collections of elements and

nodes). The designer's hierarchy from the schematic is used to build patterns that match

equivalent groups of elements in the layout. These patterns are rules for a rule-based sys

tem, with the circuit description being the data.

In the context of connectivity verification the conditions are patterns that match col

lections of elements (the subcircuil) and the actions are the removal of the individual ele

ments from the working memory and the addition to the working memory of a subcircuit

element.

• Advanced Electrical Rules Checking: A peer-group review is one of the major check

points of tbe VLSI design process. During this phase, a designer will have his work

reviewed by other members of the project team. This review is usually performed by one

or more experienced designers who study the schematics and layouts of a design, their

mission being to"flush out bugs" that may have been overlooked by the original engineer

and to provide feedback to him on his work. To dale, this is an area where no effective

algorithmic approach has been found short of complete simulation at the circuit level.

Even then, the design critic may find errors that circuit simulators cannot detect.

The items turned up during this review cycle take many forms. In some cases ihey

are very simple problems. Perhaps a new designer may not understand the implications

of a design rule or needs some guidance as to the more practical ways of implementing a

logic function. In other causes, extremely subtle problems are found which can elude even

the most careful worst case simulations. Charge coupling. MOS capacitor inversion time

constants, charge sharing on dynamic buses, voltage su ings on bootstrapped nodes, and

problems due to clock undershoot, overshoot, overlap and skew are some examples of the

latter.

Newton & Sangiovanni DRAFT

106

A number of circuit design critic programs have been developed over the past few

years to perform these checksfrefs]. CRITTER[4] and the DIAL0G[5] systems which perform a

design verification and review function: and the SCHEMA System [6] which is intended to

act in the capacity of a complete design assistant, not limited to design verification alone.

• Routing:

As presented in Section 523.1. detailed routing isquite complicated if the region to

route has pins on four side (two-dimensional routing problem). In addition, most of the

available detailed routers are constrained to route vertical connections and horizontal con

nections on two different layers to simplify the structure of the algorithms. Many objec

tive functions are used to evaluate the quality of the results by designers. For example.

the number of viasused to complete the routing can be important to improve the reliabil

ity of the chip and net length is important to optimize the speed of the chip. Thus, the

detailed routing problem in two-dimensions seems to be a natural application of expert

systems, weaver [J0085] is a knowledge-based system for detailed routing developed at

CMU. The performance of the system is quite impressive in terms of the quality of the

final solution, even though itsrunning time isquite larger than the one required by stan

dard algorithms. We believe that this system represents an important first step in the

application of heuristic programming in the placement and routing area, however we

believe that global routing, floor-planning and macro-cell placement should be a better

lest-bed for knowledge-based expert systems, since satisfactory solutions are already avail

able with standard algorithmic techniques in the case of detailed rouiing.

Another important application of expert systems to routing is the system developed

by S. Goto el al. at NEC. This system rips and re-rouies nets lo provide 100% completion

on gate-array problems. This approach is quite interesting, because the algorithms used to

route gate-arrays rarely provide 1007c interconnection completion and several hours if not

days of designer time are needed lo complete the interconnections left out by the

Newton & Sangiovanni DRAFT

107

algorithms. The NEC expert system uses a set of rules obtained by capturing the designer

expertise in performing tbe rip and re-route operations. In addition, the expert system can

call on algorithms to evaluate the application of a particular rule.

• Multi-Level Logic Synthesis:

As we pointed out in Section 532. one of the first systems for automatic optimiza

tion of multi-level logic. LSS of IBM could be considered a prototypical rule-based system.

Recently, a full-fledged rule-based expert system. Socrates, has been developed at GE

Microelectronics Center to optimize combinational logic for a specific target technology

{DEG85). The system starts with a description of the logic to optimize and performs a

series of algorithmic steps to produce a starting point lo which a rule-based expert-system

. applies a series of local transformations. The knowledge-base can be easily enriched by

the user through a rule generation module that automatically encodes new rules and

inserts them in ihe knowledge base. A control module directs the application of the rules

to the data. In particular, the module determines in which sequence the transformations

are to be applied based on evaluations of the effectiveness of the transformation.

• Behavioral Synthesis:

A Rule-Based Expert System has been built at CMU by Kowalski to translate

effectively a behavioral representation of a design into a structural representation. The

rule base has been built by successive approximations asking designers to criticize designs

lhat were obtained with the tool. The first rule set used contained 70 rules|THOS3). the

latest version of the tool coniains more than 5(X) rules[DIR85].

The conclusion of the CMU researchers has been that while the algorithmic

approach can be more effective if the cost function is well specified, the expert system

approach offers more flexibility and a belter environment to capture the often difficult to

express intent of the designer.

Newton & Sangiovanni DRAFT

108

WINDOW: Multiprocessors for CAD

As we approach the fundamental performance limits of uniprocessors, it isclear that

only new. multiprocessor computer architectures can offer the large performance improve

ments needed tosolve the complex problems of our time. Throughout the world, a great

deal of research is in progress on the development of new. often unconventional, computer

architectures for both symbolic and numerical processing [38].

However, such machines will not be able to exploit the parallelism available in

problems unless new algorithms are developed that are well suited to a multiprocessor

environment. In the past, it has often been assumed that advanced compiler technology

would be sufficient to translate a conventional computer algorithm for optimal use on a

special-purpose machine. In the case of circuit simulation, even the most advanced com

piler technology, used in conjunction with a number of computer consultants, has shown

poor speedup on pipelined machines (about 12%-15% hardware utilization on the Cray 1
[9]).

There are several compute-intensive problems that face CAD of VLSI circuits today.

In some cases, such as logic amulation[] and design-rule checkingf]. new special-purpose
machines have been designed to fully exploil the characteristics of the problem to be

solved. In others, such as circuit simulation!], existing general purpose parallel processors

have been used lo speed up the simulation timeG- A careful analysis of the economic

tradeoffs has to be made to decide whether to build a special-purpose machine or to use
existing multi-processors.

It is clear that the cost of the processors would be much lower for the case of

general-purpose multi-processors, while the performance of special-purpose machines

could be orders of magnitude better. A"mixed" approach could probably offer the advan

tages of both strategies. In this case, the interconnection network and the basic software

Newton &Sangiovanni DRAFT

109

should be the ones offered by the general-purpose environment, while the particular

compute-intensive tasks to be carried out by the single processors could be sped up by tbe

design of special-purpose accelerators board to be used as co-processors for the processors of

the general-purpose system.

Several approaches have been followed in the past few years to develop CAD

accelerators. An excellent review of the field can be found in Q. Here we will mention

only a few relevant projects

Logic simulation was the first application of hardware accelerators to IC CAD. The

first working prototype proposed for this task was the Boeing Computer Simulator!].

However, the first machine actually used in the design of digital system was the Logic

Simulation Machine (LSM)Q developed jointly by IBM T. J. Watson Research Center and

IBM Los Gatos. The Yorktown Simulation Engine (YSE) developed by the IRM TJ. Wat

son Research Center has similar architecture but belter performance. NEC developed a

hardware logic simulator. HAL []• A Wire-Routing Machine has been proposed and imple

mented by a group of researchers al IBM TJ. Watson Research Center. An interesting

architecture resembling ihe MIT connection machine, was designed by NTT to speed up a

variety of CAD algorithms!].

In the vendors' arena. Zycad has developed a fast, but expensive, special-purpose

machine for logic simulation and is investigating special-purpose machines for circuit

simulation. Daisy and Valid Logic Systems have developed a cheaper, but slower, logic

simulation engine . The architecture developed for this task by Daisy has also been used to

speed up the simulated annealing algorithm applied to the problem of optimally placing

gate-arrays. Shiva multi-systems is offering hardware accelerators for circuit simulation

by extending the capabilities of a commercial multiprocessor, the Sequent Balance

SOOOfref].

Newton & Sangiovanni DRAFf

110

In academia. several researchers have proposed new architectures and corresponding

CAD algorithms. A special purpose machine for design rule checking was proposed by

MTTD- A Virtual Bit Map Processor was designed at Stanford to provide hardware support

for operations involving bit maprepresenutionsU Similar techniques have been used in D

to support physical design.

Systolic machines have been proposed by Kung at Carnegie-Nfellon University for a

variety of numerical algorithms, from the solution of linear algebraic equations to tbe

computation of Fast Fourier Transforms, and the fast implementation of simulated anneal

ing for printed circuit board placement.

Other architectures have been proposed for the solution of linear systemof algebraic

equations and in particular for sparse matricesO- However, no working prototype has

been built because of the complexity of these machines. Algorithms for existing multi

processors are also being studiedO- Other numerical problems have been investigated, for

example research has been carried out on parallel solution of partial differential equations

at Maryland [rheiboldt].

Parallel algorithms have been investigated for combinatorial optimization problems

in a number of computer science departments from the theoretical point of view.[] These

projects have a direct impact on CAD because many of the optimization problems involved

in the development of effective tools are combinatorial. In addition, the methodology

developed in this research to evaluate parallel algorithms can be used as a guideline for

the development of new parallel algorithms.

We can classify the new research areas opened by the feasibility of designing

special-purpose processors as well as by the availability of general-purpose multi

processors, into three areas: development of new algorithms for existing multi-processor

architectures, for example 0 and Q. development of new architectures for existing algo

rithms, for example [] and []. and development of new algorithms and new architectures.

Newton & Sangiovanni DRAFT

Ill

for example!]- It is important to note that when using non-conventional architectures,

existing algorithms which are considered less efficient when using conventional uni

processors, may become much faster. For example, in the case of tbe LSNd and YSEfl.

event driven algorithms widely recognized as the most efficient algorithms for logic simu

lation on a uniprocessor, have not been used to exploit the particular architecture of the

special purpose machine.

Newton & Sangiovanni DRAFT

MARKETING

1
DESIGNER

ARCHITECTURE CAD

PROCESS TECHNOLOGV

Application/Marketing

Designer

Architecture

CAD

Framework

Tools

Design Style

Floorplan
Control

"Arrays"

Libraries

Static

Parametric

Generators

Technology
.

%3-Zfr.J

fc> (t I... k/.

V

BEHAVIORAL

CONTROL AND DATA FLOU

REGISTER TRANSFER

LOGIC

CIRCUIT

SYMBOLIC LAYOUT

MASK LAYOUT

fc.?>2, L*»*t\ *P -topics 3te$c«^e~

^5?>^
KT^

~%. Sfi^" ScJbuz^UiMc ax4c%Yu~*

i-—s-
„ -Let.

T£"

&

«t-5#
ir^s

IS—'
•B-

55 rfcT rF*-

i—#
05

E&-E

B4 E—' B

•8-fcf B

fins-a ^gHa

Rgure$£(£ The symbolic loyout plan of the complete lotrh-^riv***- w»

nguregjlQ" "'"") The f,no1 ,oyOUl °f the
lotch-driver block generoted with CUBAGE.

R
u

le
-b

a
se

d
A

p
p

ro
a
c
h

L
S

S

Local,
"peephole"

transform
ations

m
il:

•"•*

H
tm

l:
*

-\j

rnrn^
|=V"~"'*

KTH7A:

-urn*
I

r\U
fV

-bfV
-*

+

.
.

.
•

K11TC
|

5
.3

.2
F

lo
.

3

5.3.1.2

IV Alter KISS n^MtnT^^ CSICUI1

	Copyright notice1986
	ERL-86-16 (1 of 4)
	ERL-86-16 (2 of 4)
	ERL-86-16 (3 of 4)
	ERL-86-16 (4 of 4)

