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1. Introduction:

The primary purpose of this paper is to propose mathematically rigorous tools for

analyzing the slow-drift instability in Model Reference Adaptive Control systems using

averaging analysis. There has been a great deal of excitement in the adaptive community

ever since Rohrs et al [18] (conference versions of this work have appeared since 1981)

announced the extreme sensitivity of stability proofs for Model Reference Adaptive Con

trol schemes to the following assumptions:

(i) Plant order known.

(ii) Relative degree of the plant known.

While their work was extremely stimulating to the field, their analysis of the insta

bility mechanism based either on an "Infinite-Gain" operator or on a "Linearized-Root

Locus type" analysis was not sufficiently rigorous or insightful. The first breakthrough in

this regard came in the work of Krause et al [9] (in very preliminary fashion) and Astrom

[l] (a conference version of his work appeared in 1984). who explained that the cause of

instability was a lack of sufficiently rich input signals to (a) allow for parameter conver

gence of the 'nominal* system; and (b) prevent drift of the parameters from a neighbor

hood of the 'true' values due to unmodeled dynamics/output disturbance. In particular.

Astrom introduced techniques of averaging to the study of the evolution of the adaptive

systems, by slowing down the parameter update law (to a time scale slower than the plant

dynamics). The following work was a outgrowth of the results of: (l) Fu et al [5], Bodson

et al [2] and Kosut [ll], used averaging to get estimates of parameter convergence for the

nominal system; and (2) Kosut et al [12]. Riedle and Kokotovic [16], studied instability

and stability boundaries for the disturbance free adaptive system. Their work led to the

conclusion that reference input signal should have energy concentrated in a frequency

range where the closed loop transfer function Hqq(p.s) (will be defined in the sequel) is

like SPR so as to assure stability.

In this paper, we take the analysis of [16] one step further. We develop general sta

bility theorems for averaging in one and two-time scale system. We use them to give a

slightly more general instability theorem for (nonlinear) averaging which take into

account output disturbance terms. Moreover, we discuss the concept of "tuned plant

parameter values" and characterize it in terms of the frequency content of the reference

input. Finally, we apply the results in detail to several specific cases of

stability/instability presented by Rohrs and others in simulation form. We would like to

emphasize that we view our contribution as largely tutorial and expository along with
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some new results.

The paper is organized in the following way: in sec2 and sec3, nonlinear version ins

tability theorems for one-time scale and two-time scale systems respectively are proposed:

in sec4. conditions for instability of the Model Reference Adaptive System is derived: in

sec5. robustness issues is discussed.
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2. Instability Theorem For One Time Scale Systems

In this section, we consider differential equations of the form:

x = €f(tjc,e) x(0) = xQ (2.1)

where x €Rn X ^0. 0<e^€o and / piecewise continuous with respect to time. For
small € . the variation of x with time is slow, as compared to the rate of time variation of

/ . The following definition will be useful in the sequel:

Definition: Average valueof a function. Convergence function.

The function f U jc .0) is said to have average value fav(x) if there exists a continu
ous, strictly decreasing function y(T): R+ -»R+ such that >CT) -»0 as T -* oo and

1 ,+rII ' f f(T*.0)dT-fav(x) II Zy(T) (2.2)

for all t. T > 0. x € Bh .

The function y(T) is called the convergence function, and the system

*av = € fav (xav) xm(0) = x o (2.3)

is called the averaged system corresponding to (2.1).

Now we will make the following assumptions: let Bh be a closed ball of radius h in
Rn .

(Al) x = 0 is an equilibrium point of system (2.1). i.e. / (r .0.0)= 0 for all t ^ 0.
f (t jc .e) is Lipschitz in x. i.e.

II fit jc1.e)-/(r^2.€)ll <Zj \\xx-x2 II (2.4)

for all t ^O.x1.x2€Bh and €<€<).

(A2) f U jc ,e) is Lipschitz in 6, linearly in x. i.e.

I I / {t jc.€!)-/ (t jc .€2) I I < l2\ \x I I I €2 -€2 I (2.5)

for all r ^ 0. x € 2?A and €lf 63 < €©.

(A3) fav (0) = 0 and fov (x ) is Lipschitz in x. i.e.

I I /av(*l)-/av(*2) ' ' ^'av ' ' *1~*2 ' ' (2.6)

for all xx,x2€Bh.

(A4) Let </ (r jc )= / (r jc ,0)-/av(x ). so that d(t jc ) has zero average value. Assume

that the convergence function can be written as y(T) I\x II. and that ^

has zero average value with convergence function y(7* ).
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(A5) For some h'^h. I lxav (t ) I I < h' on the time interval considered.

Theorem: (Instability of an Unaveraged One-Time Scale System)

If: the original system (2.1) and the averaged system (2.3) satisfy assumptions (Al)-

(A5) along with the additional assumption that there exists a continuously differentiable

decrescent function v (f jc) such that

(i) v(f.O)=0.

(ii) v(^)>0 for some x arbitrarily close to the origin.

(iii) II ^U-x) , | ^ kj | {x | | for SQme kl>0

(iv) the derivativeof v (t jc) along the trajectory (2.3) satisfies

V(2.3)(*.*)^€*2l I* I I2 (2.7)

for some k 2 > 0.

Then: the unaveraged system (2.1) is unstable provided 6 < €q for some 6q > 0.

Proof: It was shown in (F.B.S. [5]) that, under assumptions (Al)-(A5), there exists a

change of coordinates

x = z + €<D6(* .z ) (2.8)

such that

ll€c^(r .2)11 3#6)llrll and \\e^'* ) II g flc) (2.9)
a*

for some |(e) € class K. Under this change of coordinates, it was shown that the system

(2.1) becomes

i = €/a,.G:) + €/>(r.z.€) (2.10)

where p (t ,z ,e) satisfies

I \ p(t.z.e) II <^(e)l \z I I (2.11)

for some ^(e) € class k. 6! > 0 and for all € < €s.

By an Instability Theorem of Lyapunov [20], the additional assumptions (i)-(iv)

guarantees that the averaged system is unstable, i.e. there exists an initial condition close

to the origin such that the state vector, starting from it. will be expelled from a nbhd of

the origin. The function v is now used to study the instability of the perturbed system

(2.10). The derivative of v(r ,z ) along the trajectory (2.10) is given by

v<2.io)(' *) = v(2.3)(f a) +^-(ep(t .z .€)) (2.12)
02
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and using inequalities (2.7). (2.11)

V<2.10)(*.*)^€*2 "Z ll2-€0(€))ti I 1*1 I2

:= €o(€)l Iz I I2 (2^3)

where oKc) =*2^<€)*,. Let €<><€, be such that o(e) >0 for all €<€o. then, again by
Lyapunov Instability Theorem, the system (2.10). and hence the unaveraged system, are
unstable.

Q.E.D.

Comment: The continuously differentiable. decrescent function v that the Theorem
requires can be found, for example, if the averaged system (2.3) has the form

xav = eAxav (2.14)

where A 6R" *» . o(A ) f] d * 0and for all A€oM ). /fe (X) * 0. In this case, the func
tion v can be chosen as

v(x)=xrPx (2.15)

whereP. (2 satisfy the Lyapunovequation

ATP+PA = Q>0 (2.16)

It was shown in [15] that at least one eigenvalue of P is > 0.
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3. Instability Theorem of Two-Time Scale System

The system of the form (2.1) studied is to be thought of as a one-time scale system

in that the entire state variable x is varying slowly in comparison with the rate of time

variation of the right hand side of the differential equation. In this section, we will study

averaging for the case when only some of the state variables are slowly varying.

Consider the system:

x = ef(tjc.y) x(0)=x0 (3.1)

y = A y + eg(tjc.y) y(0)=y0 (3.2)

where x €Rn is called the slow state, y € Rm is called the fast state. A €RmXm. Then the

averaged system of the slow state is

*at = €/av(xflV) xav(0)=x0 (3.3)

where f av is defined as in section 2.

To validate the following derivation, we make the following assumptions:

(Bl) The functions / and g are piecewise continuous functions of time and continuous
functions of x and y. Moreover. / (t .0.0) = 0. g (t .0.0) = 0 for all t ^ 0 and for

some/3./4./5./6 ^ 0.

I1/ U jcx.yi)-f U jc2.y2)\ I </3l Ixj-xzl I +/4l iyi-y2i I (3.4)

I \g(tjc1.y1)-gUjc2.y2)\ I </5l lx!-x2l I +Z6I \yi-y2\ I (3.5)

for all t ^ 0. x1(x2 €5A . yx.y2 €Bh . Also assume that / (f jc .0) has continuous

and bounded partial derivatives with respect to x for all t ^0 and x €Bh .

(B2) fav (0). and fav has continuous and bounded partial derivatives with respect to x
for all x € Bh so that for some lav ^ 0

I I /av(*l)-/av(*2) I I </flv I Ixj-Xzl I (3.6)

for all xlfx2 €5A.

(B3) Let d(r jc ) = f Ujc .0) —fav (x ) satisfy the assumption (A4) in section 2.

(B4) A is Hurwitz.

(B5) For some h < h . I lxav U ) I I < h' on the time interval considered.

The Theorem stated in the following concerns the instability of the system (3.1).

(3.2). It provides a sufficient condition under which the instability of the averaged system
(3.3) can imply that of the original system (3.1). (3.2).
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Theorem: (Instability of an Unaveraged Two-Time Scale System)

If: the original system (3.1). (3.2) and the averaged system (3.3) satisfy the assumptions
(B1)-(B5) along with the assumption that there exists a continuously differentiable.
decrescent function v(t jc) such that

(i) v(f.O)=0.

(ii) v(t jc) > 0for some x arbitrarily close to the origin.

(iii) M*^L£l|| <*3||xll forsome*3>0.
(iv) The derivative ofv(r jc)along the trajectory (3.3) satisfies

vo*)(tx)>€k4 llxll2 (3.7)

for some k 4 > 0.

Then: the unaveraged system (3.1). (3.2) is unstable provided €< €q for some €q > 0.

Proof: With the assumptions (i)-(iv) in effect. Lyapunov Instability Theorem shows that
the averaged system (3.3) is unstable. To study the instability of the system (3.1). (3.2).
we need to construct another decrescent function v:

v(tjc.y)= v(t jc)-k5yTPy (3.8)

where P satisfies

Ar P+PA = -Q < 0 (3.9)

and^j/ <Q <?2^.?i.?2> 0.

In (F.B.S. [5]). it was shown that, under assumptions (B1)-(B5). there exists achange
of coordinates

x = z +€o>€(r ,z) (3.10)

such that the original system (3.1). (3.2) is transformed into

2 = €/av C? ) + €Pi(t J .€) + €p2(t J ,y .€)

y = A y +eg(tjc(z).y) (3 n)

where p^t .z .e) and p2(t jz ,y ,e) satisfy

I \pt(t js.€)\\ <£(e)*6 I \z I I (3.12)

and

I \p2{t*.y&)\ I <*7 I Iv I I (3.13)

for some g(e) 6 class k and kb.kn > 0.
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Clearly. v(r jr .y) > 0 for some {z ,y) arbitrarily close to the origin ( i.e. let y = 0

and use assumption (ii) ). Now, the differentiation of v (t jz ,y) with respect to time along
the trajectories of the perturbed system (3.11) can be shown to be bounded below by

using the assumption (iv) and the previous results similar to the derivation in (F.B.S). i.e.

v(3.ii)(^.y)= V(3.n)(tj:) + ksyrQy-2eksyrPg(tj.y)

l

>«(*4"«€)*3*6-l^!Ll-e^sifc^j) I\Z II2
2
T 2

+(ksq2-2€ksltf2-i-JJL-<?kslsp2) I\y II2

:= €a(e) I \z I \2+ q(e) I \y I I2 (3.14)

During the derivation above, we use the fact that

IIJill ^l+£(e)<2 (3.15)
Qx

Note that ~ot(e)-*kA and q(e)-*ksq2 as €-»0. Then, using a Lyapunov Instability
Theorem as before, we prove that the perturbed system (3.11) is unstable. Hence one can

easily prove that the original system (3.1) is unstable from (F.B.S. [5]).

Mixed-Time Scale System:

In adaptive control, a frequently encountered Two-Time Scale system has the follow
ing form:

x = Gf'(tjc.y') (3.16)

y'= A y'+ h(t jc) + eg(t jc,y) (3.17)

As shown in (F.B.S. [5]). the system (3.16). (3.17) can be transformed into the system
(3.1). (3.2) through theuse of the coordinate change

y = y'-v'Ujc) (3.18)

where v'(r jc ) is defined to be

v\tjc)= JeA{t^h(Tjc)dT (3.19)
0

The averaged system of (3.16). (3.17) will exist if the following limits exist uniformly in
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t and x. i.e.

1 t+rfay (x )= lim -= ff Xrjc .vXtjc ))dr (3.20)
/-»» l «j

The Theorem above.is applicable to this case with one more condition:

(B6) hit .0)= 0 for all* £0and \\&LlL*l\\ ^k for all t >0.x €5„ and some
Qx

finite positive &.

This new assumption implies that v'(r ,0) = 0 and

\\22J**l\\Zk' (3.22)
o*

for all t ^ 0. x € Bh and some k' > 0.

4. Application to Model Reference Adaptive Control in The Presence of Unmodelled

Dynamics and Output Disturbances

We apply the averaging result of section 3 to the Model Reference Adaptive Control

System for the relative degree one case where the plant has unmodelled dynamics as well

as output disturbance. Before we proceed further, we intend to concretize the tuned model

concept of the reference [10].

In the sequel, we will assume that the plant has stable multiplicative unmodelled
dynamics which are described by

/» = />'(l+JL) (4.1)

where p* is the nominal plant transfer function and L is a stable (perturbation) transfer
function. If the adjustable parameters are frozen, then the adaptive system is merely a

LTl system which is characterized by model transfer function M and the closed loop
plant transfer function H6(p.s). For the Narendra-Valavani Scheme [14], it was shown
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that there exists a ff € R2" such that

It(fip'j)= Mis)

We now introduce some useful notation:

npCr)

p

T V* = [co .<lt .d0- .£r)

and

(4.2)

(4.3)

(4.4)

Ct(s)=s"^ + c1's"^+ ••• +c„Y (4.5)

D'(J)=5"-1 +</1^''-2+ ... +^+^0* «„,(,) (4.6)

Here c_*7 stands for [c,' cn _,* ] while rf_*r stands for [d ,* </„ _j' ].

Using this notation, we express H6ip.s) in terms of the model transfer function

Mis) and the true parameters:

c0Heip.s)= Mis)-Z
Co

where

1+Ljs)
1-AU)

(4.7)

A(j)=I(5)
</p(j)-rfw(f ) +*,^4^£)+^(l+XCs))^£> (4.8)' npis) dmU) p dmis)

and

ACCO= Cis)-C'is) A£U) = Z)Cy)-Z)*(s)

Suppose that L satisfies

I l+Lij.ai) I </

IZ.(ycu) I < Tl . . . I
3 \dpija>)-dmij<i>) |

for all <d . then there exists a subset 7r(0* ) contained in R2n . such that

lA/^r • m ^ 1 !rf«(yw)np(ya») J
IAC(ya>)l <—I—. . i . k—I

3 | kpdpijdi) |

,AA/. x, . 1 !<*,7.0'<«>) |
lAZKyaOl <-=-rl—= I

3/ I kp |

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

for all 0) €R and the closed loop plant transfer function H&p .s ) remains stable whenever

0 €niff ) i viff )y±0 since ff € iriff ) ). Moreover, the difference between the two
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outputs ye and y^ (= yM), namely e&t). can be evaluated through the difference of
transfer functions, i.e.

where

Thus

H&pj)-Htipj)= Mis)Eis) (4.14)

Eis)= -^Lis) +i^+Ms)) (4.15)
co c0

w CO

fst9idv)= f\\Mijv)Eijv)\\2Sridv) (4.17)
-co ^ao

where Se$id v) denotes the spectral density function ofe&t ). Due to the fact that

\xmLijv)=0 (4.18)

. one can show that, given p>0 and frequency range of the reference inputs, e.g. [-w0. «J.
there exists areference input with appropriate support at frequency within that range such
that

CO CO

fSeeijv)^pfsridv) (4.19)
-OS -oo

and with 96iriff )( i.e. H&p .s )remains stable ). The collection of such 9. corresponding
to such reference input, will then be called the tuned parameter set as defined in Kosut &
Johnson.

Let 9() be chosen, such that (4.19) is satisfied, as atuned value, then H^ip j) will be
defined as the tuned plant transfer function (Riedle &Kokotovic [16]). This will replace
the role of the model in the following way: we rewrite the output error e,(r ) by

*i(r ):= ~e1it) +eBoit) +dit ) (4.20)

where

~eiit)=ypit)-y66it) (4.21)

and d it ) is an output disturbance.

By applying Narendra-Valavani Scheme to this tuned system, the equations describ
ing the system can be shown to be:

e = iA9(h+b<f?Q )e +bW\<f> (422)

0= -eiW6ohr +ie6o +d)Q)e -eQehTe-eie^ +d)^^ (4.23)
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where W^ is the regressor signal plus the output disturbance term. i.e.

iVflb=[r(r).V<1>r.y^.V<2>rF+[0.0.1.0r</

:=Weo +ld (4.24)

and

<f>=9-90 9€iriff) (4.25)

Assume that id +e^) is relatively small compared with the regressor signals, e.g. d

is chosen to be so and conditions described in (4.19) are satisfied, then the local stability of

the system (4.22). (4.23) around its zero solution is determined by the linearized system

e = A9oe+bW\4> (4.26)

4>=-*iW%hT)e (4.27)

Now that the system described above has the same form as described in (3.16).

(3.17). the averaging result may be applied. If the matrix R^ defined by

1 s+rR&0= -hjn ± J W%it )Wr9oit )dt (4.28)

.where

W6Qit )=fhTeA6°lt^bW6QiT)dt (4.29)
o

contains eigenvalues with positive real parts and if for all eigenvalues A€gQ?a).

Rei\)^0. then the original system (4.22). (4.23) is unstable. This result matches that

obtained by Riedle & Kokotovic if one applies a stationary reference input rit ).
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5. Robustness and Persistent Excitation:

In this section, we are interested in examining cases where the systems described in
(4.22). (4.23) and (4.26). (4.27) are unstable, in the event that the input has only finitely
many spectral lines. Recall that, when the reference input has more than In spectral lines
(is rich enough), ityields exponential stability for the ideal system [3].

When rit ). reference input, has finitely many spectral lines, the matrix R^ in equa
tion (4.28) can be written as:

1 *

C0 i=l
nijvt)n ijvt )H6nip Jvf) II (5.1)

where nis ) is the transfer function matrix of tf"eo from the input r (/ ) and dit ) and r, is
the magnitude of the input spectral line at frequency v, i Here we use r, to represent both
magnitudes of r it) and d it) ).

Since H6(tip.s) may no longer be SPR for high frequency inputs, the phase of
H^ip .s )may be less than -90° at those frequencies. The following theorem will provide
asufficient condition under which the input with such frequencies can destroy the stability
of the system. For the sake of simplicity, we put down the following definitions which
will be frequently used:

Definition: Good Signals, Bad Signals.

A stationary signal is said to be good if its spectral support C
{v I-90° <LHBQip,jv) <+900}. Astationary signal is called bad if the spectral sup
port c {v I l_HeQip.jv) > +90°or LH%ip.jv)< -90°}.

Theorem: Suppose the unforced linearized system described by (4.26). (4.27) is not per
sistently excited by good signals, then a bad signal with either small enough or large mag
nitude will result in the instability of the adaptive system.

Before we prove the Theorem, we state aLemma whose proof is in the Appendix.
Lemma: Given a block diagonal matrix of the form:

A = P

aor0 0 0
0 °iri *iri
0 -*iri ajrj

•ooo

0
0
0

r, > 0. i = 0.1 . . k
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where /» €^2nX(2*+1). k <n. and P= Uq.Uj.V!. ••• .a, .Vjt I. uf.v, 6J?2". is of full
column rank. Further, a, 5*0. t = 0.1.2. •• • Jc. If there exists an <z; > 0 . y 5*0. then
there exist £0. £, > 0. £0 < £i- such that crU ) f] C£ 5* 0 and for all X€<r(A ). Re (X) 5* 0
when either r, < £0 or r; ^ |1#

Proof of Theorem:

In (5.1). denote nijvk ) and B^ip,jvk ) by the following:

ni j vk ) = uk + jvk and Help J vk )=ak + jbL (5.2)

where uk ,vk €R-n and ak ,bk €R.. .Note that a sinusoidal input with frequency p. in fact,

will yield two spectral lines v and —v in the frequency spectrum. Hence. Rh in (5.1) can

be rewritten, in terms of uk ,vk ,ak ,bk as:

) - 2

a>, a/+ v, v/) +6>, v/-v,*/)^b0= —a0r02uitu0T _

/=!
4- (3.3)

Grouping Uj. . vx into P. i.e.

P - [f/o.wj.v,. • • ,tt4 ,vt ] (5.4)

i* is of full column rank from [19]. Substitution of P into equation (5.3) yields the fol
lowing expression:

R%=P

a/o -.

0

axrx:
2

b^i

0

2

i5.5)

2^
** rk2

akn

By assumption that there exists a bad signal which yields an a} < 0. y 5* 0 in the matrix
of equation (5.5). Consequently, the Lemma shows that ffUfl)flC^0and for all

X€<riR$o), Reik)^Q for sufficiently large or small r} . Therefore, applying Theorem in
section 4. the results then follows.

Q.E.D.
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Comments

(i) This Theorem points out the importance of sufficiently rich good signals for main
taining the stability of the adaptive system in the presence of unmodeled dynam
ics and output disturbances.

(ii) The Theorem does not guarantee that, the system will become unstable for any
magnitude of bad signal. However, heuristically speaking, the closer the phase of
H^ip.jv) is to -180° (when v is the frequency of a bad signal), the wider will
be the dynamic range of the bad signal giving rise to instability in the system
(4.22). (4.23).

(iii) Unstable behavior of the system (4.22). (4.23) will arise even in the presence of
persistent excitation of good signals if the magnitude of the bad signal is
sufficiently large, due to the fact that

£X, = triR6o)= -aoro2 llu0||2-£
;=i

«r2^-( IIU;M2+ ||V,||2) i5.6)

where £ X, is the sum of all the eigenvalues of Re .

(iv) On the other hand, in the paper by Bodson et al [2], one can directly obtain the
conclusion that dominantly rich good signals can guarantee that the parameter
will stay in the nbhd of the tuned parameter value 90 provided that the initial
guess is close enough to 90 by visualizing the system (4.22). (4.23).

Beside the instability which appears in the Gradient Type adaptation algorithm, the
Least Squares Type algorithm also possess the similar property. The following Corollary
will be stated with proof in the Appendix 2.

Corollary: If all conditions in the Theorem are satisfied with the adaptation law changed
to Least Squares Type with forgetting factor plus the total spectral lines due to either input
or output disturbance are more than In. then abad signal with sufficiently small magni
tude will result in the instability of the adaptive system.

The possible slow drift of the parameters to the extent that the closed loop plant
transfer function becomes unstable results from the fact that the quadratic term of equa
tion (4.23) is of the form

-eQehre=: -e[O.Fr1it).ihre)2.FT2it)Y (5.7)

where Fxit ) and F2it ) are internal signal from the filter block. Note that there is a
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constant sign term —e(Are)2 which corresponds to the rate change of parameter d0.
Hence, if Ad0 starts from a negative value and drifts away from the origin, then dQ could

drift to minus infinity provided other parameters don't retard its drift. Eventually, when

d0 drifts to a critical value, the closed loop transfer function becomes unstable which

causes the system to fall apart. On the other hand, if these conditions don't hold, then the

system parameters could drift to the region where oscillations occurs.

We illustrate the results on Rohrs' examples. In his 1st example, the simulation was

generated using a nominally 1st order plant with a pair of complex but highly damped
poles, described by

»a)=T7TlT(^ +3202/+229)[u(O] (5.8)

and a reference model

*,(<>- (iJ3)KO] (5.9)

In Rohrs' 2nd example, he used the same nominal plant but with less-well damped unmo-
deled dynamics at a somewhat lower frequency, namely:

100(t \ — iv/w

100)
Mr)] (5.10)

The following table summarize the simulation for different examples with several
different reference inputs and/or output disturbances.

Example 1.

Case: Tuned Value 90 r(t) d(t) e.v. of R&0 Fig-

1 0.51 .-0.01 2+0.5*sin(16.1*t) 0 -15.68 .0.0085 2

2 0.51 . -0.01 2 0.5*sin(l6.1*t) -15.68 . 0.0075 3

3 0.51 . -0.01 2+0.3*sin(8*t) 0 -15.68 . 0.0075 4

4 1.28 .-5.11 0.3+3*sin(8*t) 0 -0.556 ±0.663j 5
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Example 2.

Case: Tuned Value 90 r(t) d(t) e.v. of R^ Fig.

1 0.51 . -0.01 2+0.1*sin(10*t) 0 -15.69 . 0.00013 6

2 0.51 . -0.01 2 0.02*sin(l0*t) -15.69 . 0.00005 7

3 1.50 . -1.00 0 3 00.000 . -6.000 8

Remarks for Example 1:

(l) The instability behavior of the adaptive system in the first three cases can be
predicted in light of the fact that one eigenvalue of Rd is positive.

In the cases where the output disturbance d = 0. the quadratic term in equation
(5.7) is simply

(2)

(3)

(4)

—€(2 ehTe = -€ 0

ihTe)2 (5.11)

which explains the drift of the parameters d0. and hence c0. as shown in Fig 2 and
Fig 4.

In case 2. the bad signal resides in the output disturbance term rather than in the

reference input term, which yields the similar destabilizing effect since the regres
sor signal W^ contains the output disturbance.

Cases 3 and 4 show the contrast between stability and instability of the adaptive
system. The sinusoid, sini&t). which appear in both cases is a bad signal in case 3

whereas a good signal in case 4 since the tuned values 90 are different. This simu

lation result serves as counterexamples to Rohrs et al [18] and Chen & Cook [4].

Remarks for Example 2:

(1) The simulation shown in case 2 counteract the claim by Chen &Cook in the fact
that the slow drift instability occurs regardless of the relatively small magnitude
of the output disturbance. Due to long time elapse for this simulation, we simply

choose the ratio between magnitudes of good and bad signals to be 100.

In case 3. the system is driven by zero reference input along with the constant

output disturbance. The slow drift of parameters when d is large enough become

obvious if one rewrite the expression of (4.23) in this case as:

(2)
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o

ihTe)2

presuming all the stable initial conditions are zero.

0

d2
(5.12)

The last example, still using the same plant and model, illustrates the instability of

the Least Squares Type algorithm. Due to the similarity to the previous examples using a

Gradient Type algorithm, only a single result is provided here and is shown in Fig. 9.
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6. Concluding Remarks:

In this paper, we presented instability theorems for averaging analysis of one and

two time scale systems. These techniques were then applied to the model reference adap

tive control system of relative degree one using either Gradient or Lease Squares type

adaptation algorithms to explain the slow drift instability due to unmodeled dynamics

and output disturbance existing in the slow adaptation case. The importance of persistent

excitation of good signals was well stressed, which was not directly shown in the previous
work [1]. [8], [16]. [17], [18].

The remedy to this kind of instability can be either changing the adaptive lawas sug
gested in [7] or making the reference input dominantly rich in the right frequence content.
On the other hand, this analysis also facilitates one to see that certain extent of robustness

of such system may still be achieved.
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Appendix 1.

Proof of Lemma:

Without loss of generality we. assume ak > 0and decompose A into two parts:

A = PoBqPI +PlBPP\

:= A 0 + rk A

where

Po- [wo.ki.vl • •• .ttu-i).vtt_i,] Px= [Uk ,vk ]

and

OcTo

/?o =

0 0

0 airi *iri
0 -bir1 alrl

<*t -in -i bk _,rx _,
~~bk -irk_| ak ^rL H

Define

Ait)= A0+t Ap

Clearly. A{) is a singular matrix. To show 0 is a semisimple eigenvalue of A0. it suffices to
show that: for all m > 0 and some x €R2n such that A% x = 0. then A0x = 0.

Since

A? = PoBoiPToPo)Bo ' • • BoiplPo)BoPl (a.5)

and B(>APlP{>) are all nonsingular matrices. Ag1 x = 0 if and only if AQx = 0. which
shows the proof. Moreover, all the (right) eigenvectors of A0 associated with 0 eigenvalue
coincide with the left eigenvectors of A0 associated with the same eigenvalue. Conse
quently, the orthogonal projection denoted by PAq associated with the 0 eigenvalue is sym
metric.

In (a. 4). when t is small, the perturbed 0 eigenvalue of A0 can be approximated to
the 1st order of t by: (Kato [13] )

\it)^t a t >0 (a.6)

where <r is the nonzero eigenvalue of the matrix PAqAp PAq. From the fact that the real
part of PAoAp PAq is positive semidefinite and ak > 0. one can show that

ReiXit )) = f Reicr) >0 (a.7)

Since (a. 6) holds for small t. hence there exists £0 > 0such that aiA it ))DC^.^ 0for all

t >0

Br =
Ok h

-bk ak

(a.l)

(a.2)

(a.3)

(a.4)
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0 < t < |o.

On the other hand, for all eigenvalues X, it) €aiA it))

ZX/(0=rrU(r))

k-i

= I
i = 0

OyTy ( llu, II2+ IIV, II2) + t ak i II^IP + IIvl1!2) (a.8)

which shows that aiA it )) n C^ ^0 provided t is large enough, i.e. there exists & > 0.

Finally, suppose there exists an eigenvalue X€oC40) where ReiX) = 0. then the per
turbed Xit ) satisfies RciXit )) 9*0 for t small or large enough ([13]). This completes the
proof.

Q.E.D.

Appendix 2.

Proof of Corollary:

For Least Squares Type Algorithm with forgetting factor, the equations describing the
system can be shown to be:

e = iAeo +btf Q)e+b\VTbo<t> (a>8)

0= -e?"*i]Xr6ohr +ieQo +d)Q)e -eF^Qeh7e -€p"JLie^d)W% (a.9)

f = -ea^ +em WT* +u *„ + € ^90iQe )T + iQe W\ +iQe )iQe )r (a.10)

Consider the nbhd of (e .0) = (0.0). we can approximate the system by:

e = A$oe+b]Zrr9o4> (all)

0= -€/m W%hTe -iP+ie% +d)W,Q (a.12)

P= -eaP+eWatfrrl (a.13)

Now. P is simply a time varying function independent of e and 0 and is a bounded, posi
tive definite matrix for all time t if PiO) = FiO) = /. Then, assume €issufficiently small,
we can apply the averaging results to thesystem described above, i.e. the averaged system
lor the slow variable <f> is



where

and

where
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<fcv = €RiO)<f>av (a#14)

r+r

R(0) =- lim * f Pjit )WeQit )W%it )dt (a.15)
T -»oo •* j

Pav = -6a7>av+€reo (a.l6)

1 s+r
** = lim T / ^ >*V' »* (a.17)

Since /»„, - _ IT% as r -oo. tf (0) then will converge to a£"^/?v where by assump
tion !TB{i is positive definite. Using results in the Lemma. one can show that: by small per
turbation theory, for all sufficiently small r} in Theorem of section 5. aiA ) f)CZ*B
Hence the similar results follows.

Q.E.D.
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