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ABSTRACT

We find conditions on the input signal of an output reachable possibly
unstable linear system, under which the output is persistently exciting. The
conditions are given in both frequency and in time domain versions. Inter
preting these results in the context of controllable or observable state space
realizations we obtain some interesting facts relating persistency of excita
tion of the input, state and output signals.

To illustrate the importance of our results we propose an adaptive
identification scheme with "least squares" update law for multivariate
plants with proper transfer function. We prove thai parameter conver
gence is guaranteed for any stationary piecewise uniformly continuous
input with nonzero minimum interdiscontinuity distance and at least
2n + 1 points of strong support of its spectral measure, where n is the
McMillan degree of the plant. With covariance resetting the convergence
rate is shown to be exponential. Withaut covariance resetting we prove,
that the convergence rate is as 1_/ t for sufficiently fast identifiers, and in
anv case at least as fast as 1 / Vr .
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1. Introduction

It has been a well known fact for some time, that the state trajectory of a stable con

trollable linear time invariant system realization driven by a stationary input is per

sistently exciting if the input spectrum has at least n points of support, where n is the

dimension of the realization. This has been proven for continuous time systems [1.2] as

well as for discrete time systems [3]. For discrete time systems and stationary input sig

nals the input spectrum condition has been shown to be equivalent to the. in discrete time

more commonly used, time domain concept of persistency of excitation of order n [3.4].

In this form the result has been extended to include the output function of any output

reachable system with the state trajectory of a controllable realization as a special case [5].

A somewhat unexpected difference between the continuous and the discrete time

proofs, is that in continuous time the system has to be stable, an unnecessary requirement

in the discrete time case. This observation has not surprisingly inspired attempts to prove,

that the result is valid independently of system stability in continuous time as well as in

discrete time [6]. At least one such "proof" has appeared in the literature, but we have

found it to be incorrect, and as far as we know, a correct version has yet not been pub

lished. In this paper we therefore give another proof of this fact. More specifically, we

determine input conditions, under which the output of an output reachable possibly

unstable continuous time system with proper rational transfer function is persistently

exciting. In particular these input conditions ensure that the state trajectory of a controll

able realization is persistently exciting. The input conditions are given in both frequency

domain and time domain versions. Our results are stated for general multivariable sys

tems, and take advantage of the possibility of having a controllability index lower than

the McMillan degree.

The difficulty with the proof for unstable systems is due to complications arising

from the zero-input response. In discrete time this response can be cancelled by means of



a trick involving the Cayley-Hamilton theorem. The usual way of translating results

from discrete time to continuous time by replacing the shift operator by differentiation

does not work in this case, because the differentiation operator, unlike the shift operator, is

unbounded. We have therefore utilized a generalized continuous time version of the

"Cayley-Hamilton trick", and thereby found a large class of interesting signals producing

persistently exciting outputs.

To illustrate the importance of our results, we apply them to show parameter con

vergence of an adaptive identification scheme with least squares update law. The scheme

we propose is a multi-input-single-output (MISO) version of the Narendra-scheme for

single-input-single-output (SISO) systems [7]. It applies to multivariate proper possibly

unstable plants of known McMillan degree. We prove that under appropriate but reason

able input conditions, the estimated parameters converge to the true parameters, and we

find the convergence rate for schemes with and without covariance resetting to be exponen

tial and as 1 / t respectively.

During the course of proving these results we define a few new concepts such as

"piecewise uniform continuity", "minimum interdiscontinuity distance", "strong support

of a positive semidefinite matrix valued measure", etc. and develop a collection of useful

results relating them to various other properties of functions.

We point out, that our results are not only of general interest, in that they remove

part of the difference between what is known about continuous and discrete time systems.

Our convergence proof for the adaptive identification scheme shows, that they are also of

practical importance. Here the fact that persistency of excitation can be guaranteed regard

less of stability, means that we can ensure parameter convergence, without any prior

knowledge about the pole locations of the plant. It also means, that the convergence does

not rely on the zero-input response to fade out, hence showing that the convergence rate is

not directly related to the distance of the poles of the plant to the right half plane. This

indicates some robustness of the scheme even when applied only to the class of stable



plants.

The paper is organized as follows: In the following section we introduce some nota

tion. In section 3 we define a few key concepts, and develop a set of useful related propo

sitions. In section 4 we prove that the output of an output reachable system is per

sistently exciting under certain input conditions. In section 5 we then establish a few facts

governing persistency of excitation of the input, the state and the output of a state space

realization. Finally in section 6 we apply the results developed in section 4, to adaptive

identification as discussed above. In the interest of brevity some of the more procedural

proofs are omitted. These proofs are available by the author.

2. Notation

The following notation is used throughout this paper.

|rj largest integer ^r

[r\ smallest integer ^r

e, column vector with i th element = 1, and all other elements = 0

xj .•= [xl0)r • ••xu~l)TY for any Z-l times differentiable function x: R -» Cn.

Maximum and minimum are denoted by V and A respectively. A* sign indicates a

Fourier or Laplace transformed function. A * is used for complex conjugate as well as

convolution. Finally all vector- and matrix norms are 2-norms.

3. Preliminary Definitions and Propositions

To be precise about what we mean by a few concepts, which will arise in some of the

results later on. we begin this paper with some preliminary definitions. (This is necessary

since some of these concepts are not standard in the literature.)

Definition 1: Let X C R. and let (M ,p) be a metric space. We say that the function

/ : X -*M is piecewise uniformly continuous if



(i) / is piecewise continuous, i.e. 3 a countable set D C X such that / is continuous on

XxZ) and B O D is finite for every bounded set B C R

(ii) V€ >0. 38(e) >Osuch that p(/Gc2)./Gcj)) <€

V x2 € (sup [x j—6(€)} UZ> 0 (— 0* xj] ; inf {*1 + 8(e)} UZ> fl Uj.oo)). Vxj6X

We see that piecewise uniform continuity is nothing but piecewise continuity with a uni

form modulus of continuity.

Definition 2: Let f : M -+Y be a function from a metric space (M ,p) to a topological

space Y. Let DCM be the set of discontinuity points of / . We define the minimum

interdiscontinuity distance *(/ ) of / by

*(/).•= inf pU,i2) (3-D

The following two propositions show that most of the input signals of our interest will

more or less automatically be bounded with bounded derivatives.

Proposition 1: If a piecewise uniformly continuous signal u: R —» €m with minimum

interdiscontinuity distance k > 0 is stationary, i.e. has well defined autocorrelation func

tion

r0+r

.Ra(7) := lim i f u(t)uH(t +r)dt uniformly in r0 (3.2)

then it is bounded.

Proof: Suppose u is stationary. Then 37* € (O.co) such that

»n+J

T

Let

111 fu(t)uH(t)dt -^(0)11 <1 Vr0€R (3.3)



&.-= \\RU(0)\\ + 1 (3.4)

and

k := k A T (3.5)

Then

inf llu(t )ll2 <I f \\u(r )ll2<fz <1 tr f u(t)uH(t )dt (3.6)

<^ll f u(r)u«(r)rfrll<^i Vi06R

Now u has minimum interdiscontinuity distance k^k>0. so V? €R3a half open

interval lit) containing t, with endpoints t0(t ) and t0(t) + k on which u is continuous.

Since moreover u is piecewise uniformly continuous, 3B >0 independent of t such that

llu(r2)-t/(f,)li <1 Vr1.r2€/(r)with \t2-tl\ <8. Hence

llu(r)ll < inf llu(t)ll +
i€/(r)

<(mr£)r+ k +1 <oo R (37)
K 0

Proposition 2: If u: R -» Cm is bounded and u(/) is piecewise uniformly continuous with

minimum interdiscontinuity distance k >0. then i/(0\. . . ,w(/) are bounded and piecewise

uniformly continuous with minimum interdiscontinuity distance k > 0.

Proof: Consider first a scalar signal u: R -» C. Since «(/) is piecewise uniformly continu

ous with minimum interdiscontinuity distance k >0, Vr<>€R3an interval lit 0) contain

ing t0 and of length k :=k A 1 such that uil) is continuous on I(i 0). Hence by Taylor's

formula

«(«) = £«,-(« o^"1 + c/(«o.t)t; Vr 6 7(i0) (3.8)

where

T=/-r(, (3.9)

z/(i)(rrt)
fl,(to)= ., i=0 1 (3.10)

a/(r0.T) ^Ms <oo Vr0€R (3.11)



By a tedious exercise in calculus one can then show that

2

K

V t, € R. j = 0, . . . ,1

where

u{*Kt0)\ <a+l)!(ly(8;2)/2(Mu +MS#) <« (3.12)
K

Mu .-=sup lw(r)l <oo (3.13)

If u is multidimensional, the proof holds for each of its components, and hence for u

itself. Finally since utl} u(/) are bounded, it follows that u(0) u(/_1) are uni

formly continuous. I

Definition 3: We say that x: R -» C is persistently exciting (p.e) if 3 constants A <oo

and a > 0 such that

r0+A

f x(t)xH(t)dt >al Vr0€R (3.14)

The next proposition shows that a non-persistently exciting signal can in general not be

made persistently exciting by filtering with a finite impulse response filter. This means

that persistency of excitation can be inferred from a filtered version of a signal, and for

some interesting filters linear combinations of derivatives of such a version.

Proposition 3: Consider two functions q: R -* C and y: R -» C. Assume that

q € L2(R) has compact support, and that q * y is persistently exciting. Then y is per

sistently exciting as well.

Proof: Let II? 11 denote the Z.2-norm of q. and let fri^l be a compact interval containing

its support. Then using the Cauchy-Schwarz inequality. V v € Cp . V r(, 6 R. V A ^0. we

have

vH f iq *y)UXq *yY*U)di v = / I/?(T)v*.v(r-TVTi2<ir (3.15)



<A sup I f*(T)v*y(r-T>fr l2<A sup \\q\\2 J \vHy{t-r)\2dr
r€[>/+A] 4, r€[,0,0-A] ^

i0-f,+A U0-r2)+(r2-fj+A)

^Allgll2 / \vHy{r)\2dT =L\\q\\2vH J y(t)>-a*(tV Tv

Since II? II < oo and 12 - 11 < otx we see that the persistency of excitation of q * y implies

that of v. I

Definition 4: Wesay that x: R -» C* is persistently exciting of order I if x is /—1 times

diflferentiable. and the vector valued function xi :-[x(0)7" • • -x(/"1)7T is persistently

exciting.

The following definition generalizes the idea of support of a measure to the class of

positive semidefinite matrix valued measures.

Definition 5: Let 5: Bl -* cmXm be a positive semi definite matrix valued measure on the

BorelsetsS1 of R.

We say that o>0 €R is a point of support of S. and write o> €supp (S ). if 5(0 ) is

positive definite V neighborhoods O of o>0.

We say that <u0 is a point ofstrong support ofS. and write o> 6 ssupp (5). if

inf fvH((o)dS(<a)vM>0 (3.16)
IIv(<d)U ?1 Vo>€ K J0

V neighborhoods O of o>0-

Remarks:

1) The definitions above make perfect sense with R and the Borel sets on R replaced by

any measurable space. This however, will not be used in the following discussion.

2) If S is one dimensional then ssupp (5) = supp (5).



3) ssupp (S) C supp (S). because

inf vHS(0)v = inf [vHdSMv2 inf /V(a>)</S(co)v(w) (3.17)
l»v|:>l i»vl- £1 «[, llv(u)!! >1 v«i>€ S J0

4) A point of support may not be a point of strong support. Consider, for example, the

case when

S(n)= [rMrHMdu> (3.18)

where r(w) € Cm . m ^2 and the functions r i(ft>) rm(a>) are linearly indepen

dent over C on every non degenerate interval. Then SiO ) is positivedefinite, but

inf [vHMdS(*>)vM (3.19)
Ilv(to)i: >\ r w€ R •{,

inf f lv"(co)P(<u)l2<fa> = 0
llv(u)l! ?1 - «€ R *0

V neighborhoods 0 of o>0, V o>0 € R.

For the class of spectral measures the notion of support is related to persistency of excita

tion according to the following proposition.

Proposition 4: Let *: R -♦ C" : t —x(t) be a stationary function with autocorrelation

Rx: R -» C" *". and spectral measure S>. Then

supp(5,) *£0=>SX (R) >0 <=>x is p.e. (3.20)

Proof: The proof, whose non-trivial part was given in [2], follows from the fact that

*0+r

i fx(t )xHd )dt - Rx (0) =Sx (R) (3.21)

uniformly in10 on R. We leave the details to the reader. I

To be able to make use of proposition 3 in the sense described above, we need the fol

lowing lemma, which proves the existence of FIR filters preserving the excitation proper

ties of a signal.



I^mma 1: Consider a bounded signal u: R -» Cm. persistently exciting of order I and such

that u(/~l) is piecewise uniformly continuous with minimum interdiscontinuity distance

k > 0. Let [da: R -» C I a € (O.oo)} be a collection of integrable functions such that

supp (da)C R(a) := [-r (a ),r (a )] (3.22)

where

r(a) - 0 (3.23)
a—oo

and

00

IJdaMdr\ 2& >0 Vfl €(0,co) (3.24)

Then da * u is also persistently exciting of order I for a large enough.

Proof: Since u is bounded and w(/_1) is piecewise uniformly continuous with minimum

interdiscontinuity distance k >0, it follows from proposition 2 that u(0),. . . ,u(/-1) are all

bounded and piecewise uniformly continuous with minimum interdiscontinuity distance

k > 0. From this one can readily show that:

s (a) .•= sup f Ife, d -r)t^(r -o~) - u, (r W(r )ll & -» 0 (3.25)
r.<r€j?(a)

Since u is persistently exciting of order 1. 3 A < ooand a > 0 such that

fn+-i

f Uiit)ulH(t)dt >*1 (3.26)

Interchanging order of integration we have

*n+A rn+A

/ v, d )v/*d )dr = f (d0 *&)d )(<ffl *«,)"(* )<*' (3.27)
'o 'o

= Ifda(r)dr\2 f ui(t)ulH(t)dt
-oo i0

as oo r0+^

+/ fda(r) f [^(r-TWd-ffJ-fld^f)]* d'aWdrdcr
~OO —OO { ||

oc

>0a7 -(/ l</fl(r)I^T)25(a)7 - 3a/ >0 I
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Next we define what we mean by a spectral line of a vector valued stationary signal.

Although impossible to generate in practice, spectral lines yet serve as a good idealization

of what one would accomplish in trying to generate a signal whose spectral measure has

isolated points of strong support.

Definition 6s A stationary function x : R -♦ C with spectral measure Sx is said to have a

spectral line at o>0 if Sx ({o>0}) is positive definite.

Remark:

If x has a spectral line at o>0 € R. then «o is a point of strong support of Sx . because

for every neighborhood O of (Hq

ll/tainf , /v*(o>)<*S(a>)v(a>) (3.28)llv(«)ll >1 V w€R %

^ „ , *,, JPf * V" («o)5 ({CD0})V (W0) > 0
llv(ei>)ll >1 v o>€ R

A natural way to generate a signal u: R -» C". which approximately has a spectral line, at

o>0. say. would be to let u(t) = 0(r )eJtUtf. where the components <j>\,. . . ,<f>m of 0 are

square waves whose periods are distinct odd multiples of some strictly positive number.

Finally we establish the relation between the order of excitation of a stationary sig

nal and the number of points of strong support of its spectral measure. As a first step we

check the conditions under which the correlation function of the derivative of a signal can

be expressed in terms of the derivative of the correlation function of the signal itself.

Proposition 5: Consider two signals u: R -• Cm and v: R -* Cl. Assume that

(i) u and v are jointly stationary, i.e. [uT vTY is stationary,

(ii) u and v are jointly stationary,

(iii) u is bounded.
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(iv) v is piecewise uniformly continuous with minimum interdiscontinuity distance

K >0.

Then

R^M^J-R^Xr) (3.29a)

and

*,u(t) =- -£-*„,(t) (3.29b)
a t

Proof: Let D be the set of discontinuity points of v. Since v is piecewise uniformly con

tinuous. 3 functions Xi> • •• »Xm- R -*(—Ifc U/z 0 such that for f €C(A)

:= [t €R:f-</ > IA I V d €Z>}

^^)-^)B1.<(t b)) (3J0)

and

,<*),. sup Hvfe+*")-vCt) _tf(e)|| ^o (3.31)
t € CIA } fi A^0

Since v has minimum interdiscontinuity distance k > 0. the set R\C {h ) has Lebesgue

measure not greater than IhT I k. and from proposition J we know that v is bounded, say

by M< < oo. Thus

|;vd+ft)-vd) _1?(r)l|s|l 1 ?[v(T)-vd)lrfrll<2Mv (3.32)
AZ AJ *

Vr €RXC(/0

Since a is bounded, say by M„ < oo, from (3.31) and (3.32) it then follows that

II r ^„v (r)" (3.33)

=lllim^7ud)[v//(f+T+fe)-v/,(f+r)-v^d+r)]^li
4hM,

^Mus(h) + L - 0

which proves (3.29a). Equation (3.29b) then follows, because

R^(t) =RgX-r) =-j^ R?A-t) =--jL Rvu(t) I (3.34)
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,(/-!)Proposition 6: Consider a signal u with spectral measure Su. Assume u{U; uu~l} are

jointly stationary and that w(/"'1) is piecewise uniformly continuous with minimum inter

discontinuity distance k > 0. Then

cardinality ssupp CS„) ^ I => u is p.e. of order I (3.35)

Proof: Note that the fact that u^""1* is piecewise uniformly continuous with minimum

interdiscontinuity distance k >0. implies by proposition 1 that uu~l) is bounded. Hence

z/(/~2) is also (piecewise) uniformly continuous (with minimum interdiscontinuity distance

= oo). and thus by induction u{0),. . . ti*(/"l) are all bounded piecewise uniformly continu

ous with minimum interdiscontinuity distance ^*c >0. From proposition 5 it then fol

lows bv induction that

* <ott0>(O = (-1W+>>(t) i.j € {0, .. . ,Z-l}

Since u and hence Ru are bounded, this has Fourier transform

Xu«)uuM = (-ja>y(ja>yRuM
where the tempered distribution R tt is the Fourier transform of Ru. Hence

(0),(0)„(0)

iUO) =

• ^K(/-i)B(;-n(0)

dSttMKj<o)°Im •'(juiy^lm)'I

ff.«-i>B<o)(0)

For an arbitrary vector v € C*m\{0} let

V(s)^[s°Im • ••5,-1/m]v 6 C*[j] (3.39)

Since the polynomial vector V has at most Z—1 zeros, there is at least one point ojv of

strong support of Su, such that V{j<av) ^0. Now V is continuous, so 3 a neighborhood

Ov of ojx such that

-, N IIV(ywv)ll
\\V(jm)\\ > i-J— >0 Vo>€Ov

(3.36)

(3.37)

(3.38)

(3.40)
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and since o>v € ssupp (Su ),

v*J^(0)v =fvH{j<*>)dSuMy(J^ (3.41)
"* R

>fvH(jo)dSuWVVo>) >"V(^v)"" inf fv«(a.>/5B(w)v(w) >0
5 4 liv(«)i >1 v «€ R £

Thus £a(0) ispositive definite. The proposition then follows from proposition 4. I

4. Output Reachability and Persistency of Excitation

In this section we consider a continuous time possibly unstable linear system with a
A

p Xm complex proper rational transfer function H (s ) € Gg^is ). We will with abuse of
A

language but without ambiguity use the symbol H to refer to the system itself as well as

its transfer function. For the following discussion we assume that

H(s) = N(s)D-Ks) D(s)S €•"*•[*]. N(s)€ C*"[s] (4.1)
A

is a polynomial, column reduced, right coprime matrix fraction description (MFD) of H.

and that

x(t) = Ax{t) + Bu(t) (4.2a)

\Xt) = Cx(t) + DuU) (4.2b)
A

with u d ) € Cm, x d ) € Cn . y (r ) € C is a minimal state space realization of^l? . Thus

H has McMillan degree -n , and Markov parameters

(M*.Ml....tM ) ={D.CB CA^B....) (4.3)

The (minimum) relative degree of H and the maximum column degree of D . we denote by

r and fi respectively, i.e.

r .•= A reldegifi; (4.4a)
ij

/i.* V degZ>y (4.4b)
A A A A

where H ^ and Z) i} are the (i ,y ) entries of the matrices H and D respectively. Recall

that fi is independent of choice of column reduced right coprime MFD N (s )D ~lCs ). and

that in the usual case of a non-constant H (i.e. for n ^0). /i is the controllability index

of any minimal state space realization of H . More precisely
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M= min{v € N I rk[5 AB • • •Av~lB] = n\ n € K (4.5)

For any function / taking values in a vector space, we write

Z(f)^f-KiO)) (4.6)
A A

We then recall that the characteristic polynomial v of H is given by

*(*) = ZXiji = dettfk ) = det (5/-4 ) (4.7)

SO

Z(*) = Z(det2>) = oCO (4.8)

and

A A

deg# .** degx = degdetZ) = dim A = n (4.9)
A

Finally we recall that H is said to be output reachable (or output controllable ) if V 10 € R,

V y € C , 3r x >r 0 and an input u: R -* C such that x d0) = 0 =^-v (t^ = y.

With this notation we are now ready to state the key result of this paper. It essen

tially gives frequency domain input conditions under which the output of an output

reachable system is persistently exciting.

^^^ A

Theorem 1: Consider the system H above with input u and output y. Assume that:

(Cl) H is output reachable.

(C2) u is piecewise uniformly continuous with minimum interdiscontinuity distance

k >0.

(C3) u is stationary, and the strong support Oof its spectral measure Stt satisfies at least

one of the following:

(i) cardinality (1 > n —r

(ii) cardinality [ft\7*°(i4 )] >/i-r

Then y is persistently exciting.

We prove theorem J by building up a few intermediate results, from which the theorem
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follows as an easy consequence. Until then we assume that the conditions (CI) - (C3) are

satisfied. The first of these results gives the link between persistency of excitation of the

system input and its autocorrelation and spectral content. It is stated in the following

lemma.

Lemma 2: For any compact set K

I f u(t)uH(t+r)dt - R(t) (4.10)

uniformly in d o»r) on RxA".

Proof: The lemma follows from the conditions (C2) - (C3) of theorem J. The proof is

technically involved and therefore omitted. It is available on request. I

We now address the construction of an initial condition killer. By this we mean a

scalar function, which when convolved with the output y of the system H . "kills off" the

zero input response. This technique of getting around the "unpredictable" interaction

between the zero input response and the zero state response of the system, is the trick that

makes the proof of theorem 1 valid regardless of whether H is exponentially stable or not.
A

If H {s ) is exponentially stable this technique is unnecessary.

According to condition (C3) of theorem 1. we can pick I distinct frequencies

£•>!. . .. ,<i>{ 6 R such that

oj]. ... ,a>7 € ft Z >n-r (4.11a)

or

o>lf . . . ,<*>, € ft\yoG4 ) I >fi-~r (4.11b)

In either case choose a function d: R -» C 6 C" (R) with compact support supp (d ) = K

and Fourier transform d : R -» C. such that

d(~-Q>;) ^0 £ = 1 Z (4.12)

A simple choice would be:
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n+2 /

</(?):= *a rect(or) a > V -^- (4.13)
i=l i = l 27T

With <z*: R -♦ C so chosen, we define a new function q: R -» C by

-• <f«7d).-x(JL)</d) = £x,<j(i)d) (4.14)

We then have the following:

* ;=o

Fact 1:

A

(i) d is continuous,

(ii) q is continuous,

(iii) q has compact support supp (q) = K

(iv) q * eA' = 0

Proof: Property (i) follows because </ is continuous with compact support. Indeed, since

the map ifxR -» C: d .o>) ->e~;w • is continuous and K is compact, the collection

{R-*C:cu->e "•'*'* I r€J5f} is equicontinuous. Thus

li(o)-i(a>0)i < f \d(t)\ le-'* -e"y<l>o;ldr (4.15)

<(sup# -inf K) sup l<fd)i sup \e^iur -e''"*' I -» 0 Vo>0 6 R
t € 7T r € 7." u-^ug

Since d €C" (R) has compact support, (ii) and (iii) hold. Moreover using integration by

parts and the Cayley-Hamilton theorem we have

OO

(q *eA'Xt) =£*i Jdu\ryeMt'r)dr (4.16)
i =0 —oo

=LX< Jrf(r)Ai«i*<,-T,dT =x(i4Xrf *e*'X*)-0
i=(' —oo

which proves (iv). I

We call the property (iv) the killing property of q. Any continuous function with

compact support having this property is. for reasons given above, referred to as an initial
A

condition killer of H on supp (q ).



17

Now define a map X: R -» CpXm by

X(cr) := fq(r)CeAl°-T)BdT +q(<r)D <r<0 (4.17a)
—oo

oo

:= - fq(r)CeMQ-T)BdT +?(cr)Z) a ZO (4.17b)

and let X: R -* CpXm denote its Fourier transform. Some of the properties of these func

tions are summarized below:

Fact 2:

(i) X has compact support,

(ii) X is continuous.

A

(iii) X is continuous.

(iv) The rows of X are linearly independent over C on —ft

Proof: From (4.17) we see that supp (X ) is contained in the compact set

Kx ;= [inf K .0]U[0.sup K ] (4.18)

Hence (i) is true. Since q is continuous with compact support, and the map

(o~.t) —eA{<r~T) is continuously differentiable. by the bounded convergence theorem

X(c) —q(a)D is differentiable and hence continuous when restricted to either a <0 or

c ^ 0. Moreover by the killing property of q

lim [X (cr) - q (&)D) - [X (0) - q (0)Z> ] (4.19)
ffTO

= lim [q(T)CeA{a-T)BdT+ fq(r)Ce-ArBdT
"T04o V

= C(* * eA'){0)B =0

Thus X(o~) —q (&)D is continuous on R. and (ii) follows from the continuity of q. Con

dition (iii) then follows from (i) and (ii). Finally by changing order of integration (per

missible because q is continuous and has compact support), and again using the killing

property of q. for to € R\— jaiA ) we obtain

X (to) =H (jm)q (o>) =H(yto)*0to)<? (u>) =N(yto) adj£ (/to)<f (to) (4.20)
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A A A A

Since X(to), A7 (7 to). adjZXy'to) and d (o>) are all continuous functions of to on R. we con

clude that

X(/to) = /V(yto) adjZ) (/to)<f (to) V to € R (4.21)
A>

(even though H(j(a) is not well defined for to €— jo\A)). From (4.12) we then have

that

rk[X(-to!) • • • X(-to/)J (4.22)

= rk [N (—/toj) adjD (—)(*>{) • • • N (—/to,) adj D i—jto,)]

Assume for a moment that (4.11a) is satisfied. Since the system H is output reach-
A AAA

able, the rows of H and hence those of N adj D —Hj( are linearly independent over C.

Thus V v € C\{0}. 3y € {1, . . . ,m\ such that vHN(5) adjD(j>; is a nonzero poly

nomial. Since

N(s)aa}D(s)=H(s)x(s>) Vj€ C\o(A ) (4.23)

we have that

degv*/V &djDej ^n-r <l (4.24)
Therefore V v € C\{0}. 3to, € {toj ,to,} such that

vHN (—/tov ) adj2? (—;tov) 5* 0 (4.25)

This shows that

[/J(—ytoi)adj-5(—y'toj) •••/V(—>,) adji(—M)] (4.26)
has full rank. From (4.22) it then follows that the rows of X are linearly independent

over C on {—to! —to*} C —ft

If (4.11a) is not satisfied. (4.1 lb) must be. in which case

detadj^(—y'to,) ^0 i = 1 Z (4.27)
Hence (4.22) reduces to

rk [X (-to2) • • • X (-to* )] = rk [N (—yto,) • • • N (->* )] (4.28)
AAA A

Since the rows of H = N D~l are linearly independent over C, so are those, of N . Thus

Vv € CNJO}. Sj € {1 m} such that vHN(s)e, is a nonzero polynomial. Since

N(s) = H(s)D(s) we have that
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degv^/Ve, </i-r <Z (4.29)

By analogy with the previous case, from (4.28) it therefore follows that the rows of X are

linearly independent over C on—ft This completes the proof of (iv). I

Remarks:

1) Only (iv). which follows from (C3). depends on the conditions of theorem 1.

2) The jump from n—r +1 to n—r +1 in the required number of points of strong sup

port of the input spectrum taking place if these points are restricted to be outside the

set j o\A ) may seem a bit strange. There however exist output reachable multi input

systems with jm <n and finite sets ft= {tolf . . . ,to„ } such that
*> A A A

d (-toj) = • • • - d (-to„) = 1. but [X(-toj) • • • X(-to„ )] does not have full rank.

Consider for example the minimal realization

A = diag(—y'to! —y'toB_j.l - ja>„ ) (4.30a)

B = C = Z> = /„ (4.30b)

Then

«?[£(-»,)•• •*(-«,,)] =0 I (4.31)

Next let T) denote the function T) .•= q * y: R -» Cp. We then have the following.

Fact 3: 3 constants A < ooand a > 0 such that

/ T)(r )Tf d )dt >aAI Vto6R (4.32)

i.e. T) is persistently exciting.

Proof: Using the killing property of q. and changing order of integration, (permissible

since q is continuous and has compact support.) it is straight forward to show that

T) = X * u (4.33)

Then by another straight forward calculation
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1 J J){tyt)H{t)dt =/ fxw\ f u(t-<r)uH(t-T)dt XH(r)d<TdT (4.34)

X WRU (cr-T )X* (t )d cr<f r

/ft+A

- / f II*.(o-r)-l f u(t-o-)uH(t-T)dt\\XMXH(7)d(rdT

Since X: R -» C *" is bounded, lemma 2 implies that the last integral above tends to 0

uniformly in 10on R as A -»oa Therefore using the convolution theorem we have

fn+A

i / 7)d )t)h d)<fr ^-*f [x MRU (o—r )X* Mdadr (4.35)
' o . -Sjc *x

oo

= /x(-toV5tt(to)Xw(-to)
— oo

uniformly inr0onR. Let v € C\{0}. Since the rows of X are linearly independent

over C on —ft 3a>v € ft such that vHX(-oiv) ^0. Since moreover X is continuous. 3 a

neighborhood Ov of o>v such that

A

IIX"(-to)vll >'gJ'(^v)y" >0 Vto€0, (4.36)
Since tov is a point of strong support of Stt, it follows, just as in proposition 6 that

oo

v* /x(-to)</Su(to)X"(-to)v >0 (4.37)
— oc

This shows that the right hand side of (4.35) is positive definite. The fact then follows

from the uniform convergence of the left hand side in the same equation. I

From proposition 3 and fact 3 it now follows that y is persistently exciting. This com

pletes the proof of theorem J.

Remarks:

1) For single input systems D is scalar. Hence

fi = degZ) =degdetzS =n (4.38)
which means that the two subconditions (i) and (ii) of (C3) in theorem J are

equivalent.
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2) For multi input systems neither of these two conditions implies the other. Consider

for example a system with minimal state space realization

A =

Then

-10 0

0 y'to0 0

0 0 —;to0

11

B = 1 0

1 0

C =/3 D = 0 tot, ;*0 (4.39)

ft = {0,—to0.to0} => (i) is satisfied while (ii) is not satisfied.

whereas for toj I {0.—to0,to0}

ft= {—toj.toj} =^ (ii) is satisfied while (i) is not satisfied.

3) The output reachability condition (Cl) is necessary, to guarantee that y is per

sistently exciting for all initial conditions. This is obvious since the zero state

response takes values only in the space R [D CB CAB • • •CAn~lB], which is equal

to V iff H is output reachable.

4) The input conditions (C2) - (C3) are not necessary, as can easily be verified by sim

ple first order SISO examples such as

A=B=C=Q. D=l. u{t) = t (4.40a)

A = 2? = C = 0. Z) = 1, ud) = random telegraph signal (4.40b)
1A=B=C=1. D=0, u(r) =rectd-y) (4.40c)

5) Note that it is not true in general, that the required number of points of strong sup

port in condition (C3) can be reduced, if the system possesses unstable modes. For

example in the case of a strictly proper first order system, only n —r +1 = 1 point of

strong support is required. However, for every input u with compact support T, 3

an initial state

x(0) =-/Ce^rBu(rVr (4.41)
T

such that the output y is not persistently exciting, even if the single mode of the sys

tem is unstable. Thus an attempt to compensate for a point of strong support of the

input spectral measure, by exciting an unstable mode with an input of finite duration
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might fail.

6) Note that because XH(<o)v varies over Ov. the strong support assumption is neces

sary in the proof above.

The rest of this section is devoted to another version of theorem 1 for which the

input conditions are expressed in the time domain rather than the frequency domain. It

does neither follow from nor imply, theorem 1. and the proof is considerably different.

The two theorems are however closely related. We begin the proof of the theorem with

the following lemma, which may be a useful for other purposes as well.

A

Lemma 3: Consider the system H above with input u and output v. Assume that:

(Cl)H is output reachable.

(C2) u is locally integrable. e.g. piecewise uniformly continuous.

(C3) 3 a function d: R -» C €Cn(R) with compact support, such that d * u is per

sistently exciting of order n —r+1.

Then y is persistently exciting.

Proof: Let

f(r).-=x(J* )rfd)= £x/*(i)d) (4.42)

As was shown in the proof of fact 1, the conditions on d ensure that q is an initial killer
A

of H . Let furthermore

v ;= d * u (4.43)

T) .•» q * y (4.44)

Then

oo

T)d)= /g(r)Ce-^Txd)rfT (4.45)
—oc

OO t —T OO

+/*(*) fCeAl'-T-<r,BuMd<TdT +Jq(T)Du(t-r)dT
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Due to the killing property of q, the first term on the RHS of (4.45) vanishes V t € R.

Changing order of integration (permissible since the integrand is continuous and has com

pact support), the second term on the RHS of (4.45) can be written

W n V

IC LX> fdt'KT^'-^dTBuU +&)dor
0 i =0 -oc

i> „ oo

~/c Z*i Jd{iKT)eA(-T-,r)dTBu{t+&)da'
—oo i =0 —a

Since d is smooth with compact support, using integration by parts (4.46) can be

expressed as

(4.46)

n i-l

fc £*ii[Ii4^(i-^)(-(r) +4i fd(T)eA{-r-&>dT]Bu(t+cr)dor (4.47)
0 i =0 J =0 -oo

ft I™1 ^^

- JC ZXii- ZAUu-1-^K-&) +Ai fdiT^^^d^BuU+cddC
—oo i =0 j =0 —<r

By the Cayley-Hamilton theorem and (4.3) this reduces to:

n i-l

—oo i =0 j =0

Observing that the last term of the RHS of (4.45) can be written as

f txiMod{i)(T)u{t-T)dT
i=0

we therefore have

(4.48)

(4.49)

^ )- J LXi t Mjd(i-j Krh (r -r)d 7 (4.50)
-oo i =0 ; =0

Since d is smooth with compact support and u is locally integrable. the differentiation can

be moved outside the integral sign in (4.50). Changing summation index and recalling that

Mq — - • • = Mr~x = 0. we thus obtain

T)d)= Z ZXiMt-jid *u^Kt)
j=0 i=j

Xrln An ^n

= [Mr -Mn]

Xn ,.o
Vn-r+ld)

(4.51)

Since the system is output reachable and the leading characteristic polynomial coefficient



Xn = 1. the matrix

Xr •*»! ' Xn -*n

M .•= [Mr • • • Mn\

has full rank. Since moreover v is persistently exciting of order n

a > 0 such that

24

(4.52)

+1. 3 A < oo and

t0+A

/ f)(t hfd )dt >\^n{MMH )al >0 V10 €R (4.53)

Since 9 is continuous with compact support, the rest of the lemma follows from proposi

tion 3. I

Theorem 2: Consider the systemH above with inputu and output y. Assume that:

(CI) 27 is output reachable.

(C2) u is bounded and u(n ~r) is piecewise uniformly continuous with minimum inter

discontinuity distance k > 0.

(C3) u is persistently exciting of order n—r +1.

Then y is persistently exciting.

Proof: Let

Then

and

n+2

da(t) .•= ♦ a rect (or ) a > 0
i=*l

suppCO -1-^.^1

(4.54)

(4.55)

fda(r)dr =1>0 Va >0 (4.56)
—oc

so by tern/no 7 3a <00such that d- * u is persistently exciting of order n-r+1. More-
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over ds € C (R). and by proposition 2 u is piecewise uniformly continuous and hence

locally integrable. The theorem therefore follows from lemma 3. I

Remark:

Most of theorem 1 could have been deduced by choosing a smooth function d : R -» C

with compact support, and whose Fourier transform is nonzero at at least n —r +1 of

the points of strong support of the spectral measure of the input signal, for example

n+2

d(t).-~ #<zrect(ar) a >0 (4.57)
1=1

for a large enough. Let v ?*d * u. Using lemma 2 it can be shown that

v(0). . . . ,v(n""r) are jointly stationary, so by proposition 6 v is persistently exciting

of order n—r+1. It then follows by lemma 3 that y is persistently exciting. One

reason for choosing the other approach is that it brings out the role played by the

controllability index fi.

5. State Space Realizations and Persistency of Excitation

The theorems in the previous section relates persistency of excitation of the output of

a linear system to the spectral content and the time domain behavior respectively of its

input. For a given (not necessarily minimal) state space realization (A.B.CJ)) there are of

course similar relations between the input and the state and between the state and the out

put. In the discussion of these relations below we will use the same notation as in the pre

vious section, but we relax the over all assumption, that A J3 ,C J> refer to a minimal real

ization. The following input/state-relation is a simple consequence of theorem 1

Corollary 1: If (A J?) is controllable and the input conditions (C2) - (C3) of theorem 1 or

theorem 2 are satisfied, then the state trajectory x in (4.2) is persistently exciting.
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Proof: The assumption that (A 3 ) is controllable is equivalent to the assumption that the

system with input u . output x and transfer function (si —A )~lB is output reachable. It

therefore follows from one of the two theorems, that x ispersistently exciting. I

Some state/output results are summarized below. Let

Mj ••= [0 • •0 M0 •• •Mi+j] € Zlp>m (5.1)
where the / leading zeros are pXm matrices, and [Mj }/=0 are the Markov parameters of

the system under consideration. We then have the following test for persistency of excita

tion of the state trajectory in terms of excitation properties of the input and output func

tions.

Theorem 3: Assume that (C A ) is observable with observability index v. If the input u

is v—1 times differentiable and the vector valued function

v-l

2d).-=x»'d)~ ZM„j"U)d)

is persistently exciting, then the state trajectory x: R -» C" is also persistently exciting.

Proof: Note that for I <v we have

y(/>d) =CA';cd)+ tMi'Ju°)(<^
Therefore by direct calculation

zd) =

y{0Kt)~ £Mo-,K0)d)
j=0

v-l

y{v~l\t)- ZM^.ju^Kt)
y=0

where the vp Xn matrix

CA

O,

CA v-l

CA°x(t)

CAv~lx(0

= Ovx(t)

(5.2)

(5.3)

(5.4)

(5.5)
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has full column rank by the definition of v. Hence

f x(t )xH(t )dt Zk^lfz(t )zH(t )dt ]k^OifO,) (5.6)

Vi0€R. VA€(0.oo)

from which the theorem follows. I

Remarks:

1) The Markov parameters can, in principle, be derived from any input-output descrip

tion of the system or from simple experiments. Thus, in principle, the test does not

require knowledge of the order of the system, let alone a state space parametrization.

The computation of z(t) does however require reliable differentiation of the input,

output and system impulse response signals. To make practical use of the test one

would have to rely on proposition 3 and lemma 1.

2) If we replace all derivatives in (5.2) by forward shifts, we obtain the corresponding

result for discrete time systems. In this case the Markov parameters are just the

impulse response of the system. Hence the i th component of z (t ) is given by

e{*z d ) = y d +i-l) - ZMi^-juit +j) = y(t +t-l) - p[i-lju (.+r )] (5.7)

where p(t ,u) denotes the zero state response at time t to the input u. We see that z

can readily be computed from the input- and output signals (without any unreliable

operations such as differentiation). If. furthermore, the system is stable.

p[i—l,u(.+r)] i =1 v can be obtained from the system itself without

knowledge of the Markov parameters. This method can obviously be used in prac

tice. In the special case when u = 0. this modified test (5.2) reduces to a previously

known result [4].

For unforced systems theorem 3 implies the following.
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Corollary 2: Assume that (C A) is observable with observability index v. If the input

u(t) =0 and the output y is persistently exciting of order v. then the state trajectory

x: R -♦ C is persistently exciting.

This fact can also be expressed in terms of the spectral measure of the input:

Corollary 3: Assume that (C A ) is observable with observability index v. If the input

u(t) =0. the output has jointly stationary derivatives of all orders less than v, and the

output spectral measure Sy has at least v points of support, then the state trajectory

x: R -» C is persistently exciting.

Proof: From proposition 6 we know that Xi- is persistently exciting. Since u(t) =0 we

have that

Xvd) = Ol/x(f) (5.8)

where Ov defined as above has full column rank = n . Hence the transfer function / from

2Lv to x is given by

J(s)^(O^OvTlO^ (5.9)

Since this n xvp matrix has full row rank. J represents an output reachable system. The

corollary then follows from theorem 1. I

Finally wenote some facts which are true for strictly proper systems only:

Proposition 7: For astrictly proper system (D = 0) the following is true,

(i) rkC <p =^y is not p.e. =>supp (Sy ) =0

(ii) If rkC = p. then

s^PP (Sx ) ;*0=5»jc is p.e. =>y is p.e.

(iii) If p = n and C is invertible. i.e. the observabilitv index v = 1, then
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supp(Sy) ^0=>v is p.e. =>x is p.e.

Proof: Immediate from proposition 4, theorem 1 and the fact that

/ y(t)yH(t)dt =C f x(t)xH(t)dt CH Vr0€R I (5.10)
*o 'o

Remark:

1) Note that the conclusion in (iii) is true under the weaker condition that rkC = n. If

rk C < p, however, it is impossible for y to be persistently exciting.

6. Application to Adaptive Identification

To illustrate the importance of the results in the previous sections, we will consider

an adaptive identification scheme for proper, possibly unstable, plants, and prove that it

ensures parameter convergence. We thereby extend the applicability of adaptive

identification techniques to the class of unstable plants. This is obviously of interest for

the purpose of identifying unstable plants. But more importantly it relaxes the require

ments of a priori knowledge about whether the plant to be identified is stable or unstable.

After all the parameters of the plant to be identified are unknown (Why else identify?), so

that the stability properties of the plant are not necessarily available.

In the first few subsections of this section we give a detailed convergence proof for

identification of SISO plants. We then present the natural extension of this result to

identification of multi input single output (M1SO) plants, along with the parts of the proof

that differ from the SISO case. Finally we outline how these results can be used for

identification of multi input multi output (MIMO) plants.

6.1. General Assumptions

Consider a plant with input u(t) € C. output yd ) € C and proper rational transfer
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P(5) =
n(s)

d(s)
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(6.1)

where n and d are coprime polynomials and d is monic of known degree = n. We

assume that the observable modes of the plant are not both unstable and uncontrollable.

The structure of the adaptive identifier is shown in fig. 1.

A

5 P«> Mp »
#

y-,

Gi-Arb (Sl-Ar'b

U V,

it

tf

4
Figure 1

where A € €"" . b,f 0(r ) € C". / ,(r ) € C" +1. Here and throughout the rest of this

paper it is understood that matrices and vectors of zero dimension represent non-existing

signal paths, states etc. With this interpretation the block diagram of the identifier in fig.

1 makes sense even when n = 0. In this case the blocks corresponding to A . b and / 0do

not exist, so y,(t) = / *, (t )u(t). f ,(r ) 6 C. We make the following assumptions about

the adaptive identifier design and the input signal.

(Al) (A Jt> ) is controllable.
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(A2)o(A)€ CI

(11) u is piecewise uniformly continuous with minimum interdiscontinuity distance
K >0.

(12) u is stationary, and its spectral measure Su has at least In +1 points of strong v
support.

We will w.l.o.g. assume that (A Jb ) is on canonical controllable form. It can then readily

be verified, that under the assumptions (Al) and (A2) there exists a unique parametriza-

tiong =[gJg[F.g0€ C-.giG C +1 of the plant P on the form given in fig. 2.

*»

a:
Vfe

<a-An> i

Figure 2

6.2. Notation

We introduce the following notation for the analysis of the adaptive identifier.

Identifier state:

Plant state: w(r)

^od)

vd) :» |v>id)

iw0d)

u(r)

1") For single input plants the attribute "strong* in condition (12 >has no significance. When referring
to (12) in the multi input case it is important however that "strong" not be omitted.

*y



State error: 6d ) .-

e0d) *v0d) ^0d)

6id) .•xs wjd) — v> id)

0 ud) ud)

Estimated parameters: / d )
/o(t)

go

?1

MO

WO

So

Sx

/od)

/id)
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True parameters: i •*=

Parameter error: #0

Identifier output: y,d)

Plant output: *CO

Output error: e(0ed ).- yF(t )-yi(t) = g»w(t) - /*d )vd )

= 0"(f)vd) + g"e(O

Note that the identifier- and plant "states" are not states strictly speaking in that they

include the input as well.

63. Update Law

For the convergence analysis we assume that the identifier is updated according to the'

"least squares with covariance resetting* update law:

P(t) = 0/ >0 V r € RT .•= {nr}-o (6.2a)

P(t ) = -Pd )v(t)vH(t)P(t) V t € I?/ .•= [O.co)\*r (6.2b)

f(t) = P(t)v(t)eH(t) Vr £0 (6.2c)

for some T € (0,oo]. Note that the "ordinary least squares" update law without covariance

resetting is included as the special case for which T = oa In any case it follows immedi

ately that

p-Ko) >0

v(t)vH(t)

4>(t) = -/ d ) = -P(t )vd Vd ) V t >0

*p-Ht) = v(t)vH(t) Vr €RJ
at

(6.3a)

(6.3b)

(6.3c)
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6.4. Convergence Analysis

From fig. 1 we see. that, for n £ 0. the transfer function Q(s) from the input u(s )

to the identifier state v (s ) is given by

j0>(O ' |j°n(j)

Qis)
[si -A)~1bP(s)

(si - a r1*

1

sn-l

X(*)

KO
J0d(O

xfr)*(o
(6.4)

*(Oi(0
Since degx + degtf >n—l+deg<f ^n—1+degrc. the transfer function (2CO is

strictly proper. Moreover if [atf aflQ (O =0. where a0 € C , ati € Cn+l, then

a^JKjJs^JKj) (6.5)

where aoC* ) and a^j) are polynomials and dega0 <n = deg<f. If «<>(•*) ^ 0, the zeros

of the two sides in (6.5) must coincide, and then at least one of the zeros of d must also

be a zero of n. This contradicts the assumption that d and n are coprime. Therefore

a0(s ) =0 and hence oti(s ) =0. which shows that the rows of Q are linearly independent

over C. It follows that any system with transfer function Q (s ) is output reachable.

Under the input assumptions (II) - (12) this means that the hypotheses of theorem 1 are

satisfied. Thus the identifier state v is persistently exciting, i.e. 3 A < ooand a > 0 such

that

rn+A

/ v(t)vh(t)<*t >cJ Vr0€R

From (6.3) it then follows that

P-Ht) =P~K0) +fv(r)vH(r)d 7 > 1

Next from fig. 1 and fig. 2 we see that

v0d) = Av0(t) + byp(t)
v1(r) = >lv1(r) + &ud)

od Vr >0

(6.6)

(6.7)

(6.8a)

(6.8b)



Hence

w0(O = i4w0(O + byp(t)
Wi(t) = Awx(t) + bu(t)
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(6.9a)

(6.9b)

e0d) = w0(t) - v0d) = A €0d) (6.10a)
€,(r) = W,(r) - v,(r) = A€,(r) (6.10b)

Since a{A ) C CI, this implies that e(t) -• 0 exponentially. i.e. 3 M < oo and X >0 such

that

ll€(f)ll ^Me'* Vr ^0 (6.11)

We now introduce the function

V(t):=arH(t)p-1(t)<t>(t)-f \gHe(7)\2d7 (6.12)
o

This is almost a Lyapunov function. The only difference is the presence of the second

term, which contributes a time varying but bounded.(and therefore, for our purposes,

harmless shift). From (6.2) and the expression for the output error in section 6.2 we see

that V (r ) is differentiable on Rf and that

V(r) = - l0"(r)v(O + g*€(Ol2 = - le(r)l2 <0 Vr €J?rc
Thus

V(t)^V(nT) Vr €[nTjiT + J) Vn€K0:-NU{0}

From (6.1). (6.7). (6.11) and (6.12) it then follows that

gH0(nT)ll2 +"g''2M2 e-2A»r ^a\^nT^2 +J |g"€(T)|2dT

= V(nT) + f \gHe(7)\2d7 ><f>H(t)p-l(t)a>(t)

Hence

=*»(* )[P~HnT) +/v(T)v*(T)</T]0(r ) >(fi +
nT

Vr €[nTjiT +T) Vn € I\0

r -nT a)ll0(r)ll2

(6.13)

(6.14)

(6.15)

mtW<fimnT)\« +U~™ yt,[nTjtT+T)f Vn (6<
16)

r -nr
/3 + a

where



2 xj,2L _ WgW'M
2\

For the update law without covariance resetting (T = oo) with n=0 (6.16) yields:

0 +

25

(6.17)

(6.18)

i.e. parameter convergence with rate 1/ Vr . For an update law with covariance resetting

(T <oo) (6.16) yields:

l!0((n +l)r)l!2 <a \\(f>(nT)l!2 + be"2^T V n € K0

where

a =

0 + a

* =

0 +

Hence

.n _.-2XT/J

l!0(nr)H2 ^a" II0(O)II2 +b f * ,»- c ^e"2xr

\\4>(nT)\\2 <a" ll<*(0)ll2 + nc""1* c = e~2xr

In any case for a resetting period T ^ A. (6.20a) shows that

(6.19)

(6.20a)

(6.20b)

(6.21a)

(6.21b)

\\<t>(nT)\\ - 0 (6.22)
/J ~^DO

exponentially. This shows that exponential parameter convergence can be obtained by

sampling the estimated parameter vector f (t) at resetting times t €Rr only. To relax

this, we see from (6.16) and (6.22) that

sup \\<f>(t)U2 ^H0(nDll2+ 4«~2Xnr "» °
r € [nT/if + T > p n -*o

exponentially.

If the identifier dynamics is fast enough, more precisely if

V . Re s + V Re j <0
»€Z(<n j€<KA)

the convergence rate indicated by (6.18) for the update law without covariance resetting

can be improved to 1 / r, a fact known to be true for discrete time systems [8]. Indeed

(6.23)

(6.24)



from (6.3) we have that

Hence

so

P~Kt )4>(t) = - v(r) [v"(r )0d) + eH(t )g)

= -~P-1dWr)-v(r)€w(r)g
at

~[p-1d)0d)] = -vd)€wd)g

P~Kt Wt) =P-Kowo) - fv (7 )e" (r)grf t

and thus
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(6.25)

(6.26)

(6.27)

1 "°UP~Kt )4>(t )ll <?••=-§- H0(O)II +/ IIv(t)IIII€(t)II</t llgll (6.28)

If y < oo. then

iwoii ^\\p(t)\w\p'Kt)4>(t)\\ <—l__ < y
\ . p~"itt lXn^-KO

Now from fig. 2 and (6.8) we have

where

w0(t)

wi(t) = A

w0(t)

*i(t) + bu(t)

A =
A + 6g? *

0 ^

with spectrum

- 0 (6.29)

(6.30)

(6.31)

oiA ) = oiA +bgg)Uo(A ) = Z(<? )UoU ) (6.32)
Since u is stationary and piecewise uniformly continuous with minimum interdiscon

tinuity distance k >0. by proposition 7 it is also bounded. Together with (6.30) this

implies that VK > V _Re5. 3Mv0.Mvl <oosuch that 11* (Oil ^Mw0 +MvleK'
s € oiA )

V r >0. Likewise since oXA ) C CI. from (6.10) we know that V X. > V Res. 3
~ s € oiA

k.t
Mt <oosuch that lied )ll ^Mfe ' V r >0. We therefore see that if (6.24) holds, then
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3 X€ < 0 and X„. < —Xe such that

oo oo

/llv(T)lllle(T)llrfT < f(lMT)ll +ll€(T)ll)lle(7)li<fT (6.33)
(< 0

oo oo

^J(Mw0^MwleKw,)M€ekttdt +fM2e2K*'dt <oo
o o

in which case y < ooand (6.29) holds.

6.5. Extension to Multi Input Single Output Plants

The adaptive identifier in the previous subsections can readily be extended to

identification of MIMO plants. We do this in two steps. In this subsection we discuss the

MISO case. The extension to multi-output plants is even simpler and treated in the next

subsection.

Consider a plant with input u(t) € C". output y (t) 6 C and proper rational

transfer function

P(s) = [P1(s)-Pm(s)] (6.34)

and left coprime polynomial MFD

P(s) = DrKs)NL(s) = ^J—ln^s) - nm(s)] (6.35)
d(s)

where d is a monic polynomial of known degree n . In analogy with the previous subsec

tions we propose the adaptive identifier structure in fig. 3 below, where A € C *" . b,

/ 0d ) € C . / id ) /md) € Cn+1 and (A b) satisfies the same conditions (Al) -

(A2) as in the previous subsection. It is again straight forward to check that there exists a

unique parametrization g .•= [go ' • gmT. go € C*. gi. .. . ,gm 6 Cn+1 of the plant P

given in fig. 4.

If we replace the vectors v , w . e, / . g and <f> in the notation of the previous subsec

tion by

v .-=[vj v{ uj vj u2 • • ' v£ umY (6.36)

w .*=» [wj w\ ux w2 u2 • • • w^ umY (6.37)

e ••= [€<[ cf 0 €i 0 • • el Of = w-v (6.38)
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(6.39)

(6.40)

(6.41)
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where all elements except the g,'s are functions of time, and use the same update law

(6.2). the convergence analysis that follows is almost identical to that in the foregoing

SISO case. The only things we have to check are that the identifier state v is persistently

exciting, and that the state error e(t ) -» 0 exponentially fast.
r-«eo

Indeed, from fig. 3 we see that the transfer function Q(s ) from the input u(s) to the

identifier state v (s ) is given by

2(0 =
(si -A)~1bP(s)

[si - A )~xb
1

L ®

(6.42)

We note that Q(s) is proper. Moreover if the lxm matrix o^Q(s) =0 where

a = [af • •a£F. a0 6 Cn. alt. . . ,affl 6 Cn+1. then

0=oPQ(s)ej = Y" '•<*£

= a?(sl -Ar'bPjU)****

(si -A)"1bP(s)ej

[si - A Tlb
1

e} ®

(j/ - ^ )'lb
1

1= [a0(s)nj(s) + aj(s)d(s)] -

where a^, j = 0 m are polynomials and degoto <n —degd . Exactly as in the sin

; =1.

(6.43)

,m

gle input case this implies that

a0(s ) = ott(s ) s • • • = am(s ) = 0

Otherwise

(6.44)

Z(d)C) n Z(nj)*0
j=i J

v0d) = Av0(t) + byp(t)

v, (r) = Av0(t ) + bui(t ) i = 1 m

(6.45)

which would contradict the coprimeness of DL and NL. Hence the rows of Q are

linearly independent over C. Under the input conditions (II) - (12) it then follows by

theorem 1, that the identifier state is persistently exciting.

For the state error dynamics we observe by inspection of fig. 3 and fig. 4 that

(6.46a)

(6.46b)
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w0(t ) = Aw0(t ) + byp (t) (6.47a)

w-,(t)= Aw0(t ) + buj(t) i = 1 m (6.47b)

Hence

€i(t)=AeXt) i=0 m (6.48)

which shows that €(r) -♦ 0 exponentially fast. The results for the (SISO) plant there-

fore extend to the adaptive identifications scheme for (MIMO) plants above.

6.6. Main Result

We summarize the results above in the following theorem:

Theorem 4: Consider the adaptive identifier in fig. 1 or fig. 3 with satisfied conditions (Al)

- (A2) along with the update law (6.2). If the input satisfies conditions (II) - (12), then

the estimated parameters converge to their true values, i.e.

/ (O - g (6.49)
f -*oo

With covariance resetting with long enough period (T ^A) the convergence rate is

exponential. Without covariance resetting the convergence is at least as fast as 1 / vT.

Moreover for any (stable) identifier whose slowest mode is faster than the fastest unstable

mode of the plant, i.e. such that

V . Re s + V Re 5 <0 (6.50)
j€ZW) itoiA)

the convergence is at least as fast as 1 / r.

6.7. Extension to Multi Output Plants

The adaptive identification scheme for single output plants above can be extended to

a scheme for multi output plants, by simply connecting one replica of the single output

identifier to each component of the plant output. This means that each row of the plant

transfer function is identified separately. An obvious practical difficulty arising from this
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approach is the need to know the degree of each row of the plant transfer function. By

the degree of a row, say the ith row. of a transfer function we mean the degree of the

transfer function from the input to the i th component of the output vector. This degree is

equal to the degree of the smallest common divisor of the elements in the i th row.

7. Conclusion

We have determined input conditions, under which the output of an output reachable

possibly unstable multivariable continuous time system with proper rational transfer func

tion is persistently exciting. Although not easily stated in one line, these conditions are

readily met by an appropriate choice of input signal. These conditions were also found to

ensure persistency of excitation of the state trajectory of a controllable state space realiza

tion.

For observable state space realizations, tests for persistency of excitation of the state

trajectory "in terms of the input and the output were developed, and expressed in both time

and frequency domain. Some simple relations regarding persistency of excitation of the

state and the output of a state space realization of a strictly proper system were given.

Finally we proposed an adaptive identification scheme with least squares update law

for proper possibly unstable MISO plants. Using the general framework developed in this

paper, parameter convergence was proved under certain excitation conditions on the input

signal. With covariance resetting, the convergence rate was found to be exponential.

Without covariance resetting it was shown to be at least as 1 / Vr for every stable

identifier, and as 1 / r for sufficiently fast identifiers. It was indicated how repeated ver

sions of this MISO scheme can be used to identify MIMO plants as well.
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