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The Design and Evaluation ofaSpeech Recognition System

for Engineering Workstations

PhI)- Robert A.Kavaler E.E.C.S.

Abstract

This thesis describes acomplete speech recognition system for engineering workstations. Four

' areas are discussed in detail: the basic recognition algorithm, the hardware design, the user interface, and
the application interface. Each system component is evaluated separately, and the system as awhole is
evaluated for one application well suited to speech input.

The speech recognizer is integrated into an existing engineering workstation as another input dev
ice, along with the existing keyboard and mouse. Five copies of the recognizer board were built

Although the basic recognition algorithm is aspeaker dependent dynamic-time-warp algorithm, the
resulting system is easy to train and has high performance. Up to one thousand words can be recognized
in real time. An adaptive training algorithm was developed using user feedback to increase recognition
accuracy from 97J5% to 99J5%.

The thesis arrives at four main conclusions. First, using special purpose integrated circuits tailored

to aspecific algorithm is apractical and efficient way to produce large vocabulary speech recognition
systems. Second, recognition feedback to the user will increase user acceptance of the system and
increase recognition accuracy. Third, the interface provided by most computer systems and applications
is not immediately usable by speech input Speech is inherently word oriented while most applications
depend on keyboards which are character oriented. Some mechanism other than the simple one word
corresponds to one character string must convert speech commands into computer commands. Finally,

the speech recognition system can best be evaluated by examining the user interface as awhole, not
evaluating the speech recognizer alone. The recognizer was evaluated with atypical application and it

was found that while the speed of the interaction did not increase significantly, users experienced less
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strain and could work longer with the recognizer than without it
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Committee Chairman



Ill

Table of Contents

Introduction ......^.....„................................-.............................................^.......""".-'"«—•• l

INTRO.l.The Application 1
INTRO.2. The Speech Recognizer ......... ............. ................ 3

INTRO.3. Input Devices .. 4
INTRO.4. SystemDesign Goals 4
INTRO.5. Previous Work . 5

INTRO.6. Organization of theThesis.... .—.... . ... . 6

Chapter 1 - The Algorithm ... ........ 6
1.1. Introduction.....—....... ......... .. 7

12. Front-End Processing 8

1.4.Word-to-Word Comparisons ............... .......... 12

1.5. Streamingand Block Algorithms ............ .......... . 15

1.6. Evaluationof the Algorithm ...... . .—. 17

Chapter 2 - Hardware . .... . . 18

2.1. Introduction............ . .... 19

22. Hardware Architecture .... ............ 20

2.3. General Purpose Sub-System ..... . ...... 21

2.4. Spectral Analysis Sub-system . .. ...... 24

2.5. Dynamic-Time-WarpSub-System 25

2.5.1. Template Memory 26

2.5.2. Scratch-pad Memory . .... ...... 28

2.5.3.Time-WarpChip 28

2.5.3.1.Circuit Operation 29

2.5.3.2. Address Generator 33

2.5.3.3.ClockGenerators andControl Outputs 34

2.5.3.4. Support forConnected Word Operation 34

2.5.3.5. Support for Slope Constraints 35
2.5.3.6. State Sequencer 36

2.5.3.7. Minimization PLA 37

2.5.3.8. Circuits and Layout ........ ~ ............... 37

2.6.Hardware Design Alternatives . 38
2.6.1. Filterbank 39

2.6.2. Dynamic-Time-Warp Processor Alternatives . .......... 41

2.6.2.1. General Purpose Chips .— 42



IV

2.6.2.2. NEC Chip 43

2.6.2.3. Bell LabsDTWP chip....................... . »««... . . 43

2.6.2J. OurApproach ......................................... ........................................................ 46

Chapter 3 - The User Interface ........M.«...................».»».............................»............................~......... 48

w»Ar« XliumnfcW ••••»•*••••••••••••«•••••«•••••••••••«•••*•••••••••••«••«••••«•••••••*••««•«••«•••*••••«•••«••••••«••••»«•••*••••«••••••«•••••••••• ^7

322. Input Devices ... . ............. ..... 50

3.3. Speech Input . ........ 51

3.4.WordModel 53

3.5. A Virtual Recognizer . . 54

3.6. Adding New Words 58

3.7. Feedback to the User 59

3.7.1. Rejection Errors .... 59

3.72. Substitution Errors ........ .... . ....................... ............. . ....... 61

3.7.3. Insertion Errors ............... ....................... ............. ..... ................... .............. 61

3.7.4. Other Feedback 62

3.8. Debugging . ................................... ........ 62

3.9. Feedback from the User . . .... 64

3.92. Adaptive Training .... 65

3.9.2.1.DesignIssues ........................... „ ...................... ..... 66

3.922. Previous Works . 66

3.923. TTie Algorithm 67

3.9.2.4.Thresholds andWeightings 69

3.9.2.5.Experiments 69

3.9.2.6. Conclusions .......... . ... ......... . ..................... 76

Chapter 4 - Interface Styles 78

4.1. Introduction . ... ..... . ~ 79

42. A Practical Consideration .. .. ............ ....... ............ ......— 79

4.3. A Model of Speech Input 80

4.4. Text andData Entry . 81

4JS. Menu-based Interfaces .... . .—. 82

4.5.1. A C Program Editor . 83

4.5.1.1. Indentation .............. ..... .... .... 84

4.5.12. Cursor andRegions ... . . .. ...... ... 84
4.5.1.3. C statements 84

4.5.1.4. Expressions . 85
4.5.1.5. Variable and Procedure Names 86



4J.1.6. Editing Commands 87
884.52. Connected Words........ .—...<

4.6. Text-based interfaces

4.6.1. TTie Byrne Shell 90
4.62. Speech Input 90

01
4.6.2.1. Grammars . . • •—.........••• ...............—.....—......— *

4.6.12. Words 92
4.6.2.3. End ofCommand « 93
4.6.2.4. Some Examples 94

4.6.3. Implementation ....... ........—~ •••••—•••••—............... • ^

4.6.3.1. Windows 95
4.6.3.2. Master File 98
4.6.3.3. Grammar Files ...... .—............ ........................... 99
4.6.3.4. Application Interface 10°

4.6.4. Shell Usage 10°
4.6.5. Connected Words ..— 102

4.7. Pointing Interfaces 102
4.8. Speaker Independence 103

Chapter 5-Evaluation ofthe System 103
5.1. Introduction 104
52. System Performance 104

52.1. The Experiment 106
5.22.Results and Discussion . ...... ..... •• ^7
5.2.3. Conclusions 112

5.3. ALong-Term Evaluation ....... •••••• 112
Chapter 6-Conclusions......... .... .—• 11^

6.1. Conclusions . • ♦ 114
62. Future Directions 115

Appendix A-Software 116
A.1. Recognizer Board ..... 117
A2.Miscellaneous Programs and Changes *2Q
A.3. Mara Daemon and Libraries 121

Appendix B-Mara User's Manual 121
B.l. Purpose ofSpeech Recognition 122
B2.Hardware Description 122
B.3. What the Programmer Sees 123

B.3.1. System Organization and Standard Usages 123
B.3.1.1. Terms 124
B.3.12. Structures 124
B.3.1.3. Word Model 127

B.3.2. The Virtual Recognizer 128



VI

B.3.2.1. Standard Commands ........................................ ................—............— 128

B.3.22. Classes . .. ... ... 134

B.3.2.3. Other Commands . ..... ..... 135

B.32.4. Command List.......................................... ..........................—..................._.. 136

B.3.3. Standard libraries .. ..... ......... . . 137

B.3.3.1. Word Model., 138

D.J.Jlibl VJaSSeS •••••n..........M.M.......n.MMM.M........MMMM.MM...M...MM.MM......M....M............*M.M....M... 1H 1

Dijijji uistances .••♦♦.«••.«.•••••.•.••.••......•..•.....♦...•••••••••.«...........^^.»....«.«......«»......••••..••«»•••*•••••*" ^

B.3.3.4. Averaging ......... ......... ....... 143

B.3.3.5. Trainer 144

B.3.3.6. Miscellaneous .......................... ................... ................. .............— 145

B.3.4. HighLevel Recognizer Commands ....... .................. ................ 145

B.3.4.1.BasicStrategies «. ........... ... ........................ ...—. 145

B.3.42. Tool Support 147
B.3.4.3. Tty Subwindow Support 149
B.3.4.4.OptionSubwindow Support... . ....... .—.......... 150

B.3.5. Relevant Files « 151

B.4. What the ComputerUser Sees ~ 151

B.4.1. Programs 151
B.4.1.1. TTie Mara Daemon ..—. 151

B.4.12.Suntools 152

X3»T«.1*0* ^suICT.i~m£i<ujiS •♦•••••••••••••••••••••••••••••••••••••»••♦♦♦••••••••••••••••••••••••••♦•••••♦•••••••••••••••••••••••*♦••*xjj

B.42. Window Environment ...... ..................... ................. 154

B.42.1. Getting Started 154

B.4.2.2. What You See 155

B.4.2.3. AdaptiveTraining . 156

B.4.2.4. AssigningWindow Names .... . ........ 156

B.4.2.5.Creating andModifyingTTY Vocabulary Files 157

B.4.2.6. Some OtherConventions to Make Life Simple .......... .............. 158

B.4.2.7. Some Common Mistakes and How to Fix Them ................. .......... 158

References ....^........................„............«...«...............~.»««~...............~...........~....~........................... 159



Introduction

In recent years much has been said about the coming boom of speech-oriented interfaces to com

puters. In fact, most papers summarizing speech recognition start with astatement such as "Speech has

long been thought ofas the ultimate man-machine interface..." The purpose ofthis project isto develop

asystem based on current speech recognition techniques to verify that premise. Many people think it

would be preferable to"talk" to their computer instead oftyping, however, but to date no such systems

really exist Current attempts at using speech recognition have been ineither highly automated environ

ments such as assembly lines, mass data entry, or in "hands-busy" environments where the use of akey

board severely restricts the speed and accuracy of data entry. People are not really "talking" to their

computer, theyare entering textand data using their voice.

The Mara system is an attempt to integrate a template-based speech recognizer into a single-user

engmeering/programming workstation. In this application there are three components of importance: the

computer and its programs, the speech recognizer and, most importantly, the computer's user. The Mara

system addresses the needs of ALLTHREE components inan attempt tobuild avery high accuracy, easy

to use, computersystem, basedon speech input

INTRO.l. The Application

With the current increase in computer power available with 16 and 32 bit microprocessors,

engmeering/programming workstations are quickly becoming the norm. These workstations generally

consist of a 1MIPS (million instructions per second) CPU, 2-4 Megabytes of memory, a high resolution

(1000 by 1000 pixels) display, akeyboard, and amouse. The workstations do not however run the same

software. Some workstations runLISP,1 someUNIX,2and others proprietary operating systems. Dueto

the general computing environment at Berkeley, we chose UNIX workstations made bySUN Microsys

tems (model 120). These workstations are used for inmany different applications:

• Writing programs(editing/compiling/debugging).

• Design,layout, simulation of integrated circuits.



• Writing papers.

• Daily routines such as electronic mail, messages, record keeping, etc.

The UNIX environment is based on keyboard input devices and CRT output devices. Thus, a

retrofit speech recognizer will have to create simulated keyboard input; as a speech synthesizer would

have to read the CRT output Since the main input device is a keyboard, the standard user interface

exploits this by:

• inmimizing the number of keystrokes for commands (common program names are usually a few

characters long:"od", "wc", "vi", "as","cc", etc.),

• using manyspecial symbols thathavespecial meanings, and

• allowing aliasing of complex commands toa few keystrokes.

The UNIX userinterface is "character-oriented", not "word-oriented". Forspeechrecognizers this

has tremendous consequences since speech is inherently word-oriented. The obvious keyboard retrofit

interface is to simulate a programmable string which is typed when aword is spoken. This technique is

popular, but has many flaws:

• Different programs require different strings (e.g. the word "quit" must send the string ":q" inone

program, "q" in another, and"quit" in another).

• The syntax implied by akeyboard, that of concatenating characters, seems awkward when speech

is used.

• Words are implicitly separated, but character strings require explicit separation, and the separation

characters are not always the same.

• Most keyboard commands are terminated with a"return" character, while speech commands may

or may not be terminated with long silences. Requiring users to say "now" orsome similar word at the

end of a command is cumbersome.

The design of the speech recognition system must bridge the gap between word and character

oriented interfaces.

The general purpose UNIXworkstation application was chosen for a few reasons:



• The application should containmost of the aspects of normalcomputer usage.

• To date, attemptsat designing suchinterfaces havenot been proven to be useful.

• Hie flexibility needed for this application could be appliedto less complex interfaces such as data

entry and hands-busy environments.

INTR02. The Speech Recognizer

Adding a speech recognizer to an existing system has many effects on the computer and user new

hardware is needed, the user must wear a microphone, some of the screen may be used by the recognizer,

and the user will have to learn how to use the new system. Also, most recognizers must be trained by the

user.

The speech recognizer used in this project is a speaker-dependent template-based system. The sys

tem is typical of the technology currently availablein commercial recognizers. Template-based systems

require that each word to be recognized (called the vocabulary)must be spoken at least once by the user.

A template is then generated for each vocabulary word in a process called training. Training is a very

importantpartof the overall system because:

• High recognition accuracydepends on good training.

• Existing input devices to computers (keyboard/mouse)do not require trainingbut speech recogniz

ers do require training.

• During training,the user is not performing"useful work".

til fact, training is considered the biggest drawback to speaker-dependent template-based systems

and the reason why many people think these recognizers arenot desirable. Keyboard input devices them

selves require no training, instead users must be trained to use them. Speech recognizers have the oppo

site problem: since everyone knows how to speak they want the recognizer to train to them.

The recognizer needs speech input from a microphone placed near the speaker. Many different

types and styles ofmicrophones can be used. Qose-talking head-mounted microphones provide for some

noise rejection at the cost of "wearing" the microphone. Other microphones such as lapel microphones

are also worn, but are not as noticeable. Unfortunately, lapel microphones must be mounted on suitable



clothing. Stationary microphones are difficult to use because users tend to move while they work, and

thus the speech signal at the microphone fades in and out Also, stationary microphones tend to pick up

background noise because they are not close to the speaker. The selection of the proper microphone is

dependent on the appHcation, the user, and the cost of the microphone. Our system was designed to use a

close-talking head-mounted microphone (Shure 10A), but other microphones have been used success

fully.

INTROJ. Input Devices

In order to design the most efficient interface possible, each input device should do only what it

does best

• Mouse - use for positioning and selection of existing items. Also, amouse button can supply a

menu of commands, but thisis onlyneeded as a "help" feature.

• Keyboard - use for mass text entry and adding new words to the recognizer. The speech recog

nizer is not toouseful as a "dictation machine" dueto itslimited vocabulary.

• Speech Recognizer -use for everything else. This includes all commands, file names, and limited

vocabulary text entry (such as programs with afew hundres variable names).

INTRO.4. System Design Goals

The application forced many of the design goals for the system. First the system must have "real

time" response. Delays between the spoken end of aword and that word's corresponding action (called

the latency) must be very small (about 0.5 sec is considered by many to be the upper limit). Second, the

system must have high accuracy for large vocabularies. The projected vocabulary sizes were 300 words,

but because multiple applications could be running at one time this number could easily reach 500 to

1000 words. Accuracy should be high enough that the user not be significantly slowed down due to

recognition errors.

After a few iterations ofdesigning suitable user interfaces we found that the major bottleneck to

using the recognizer was the difficulty in adding new words to the vocabulary. Thus, an important design



goal of the system was to be able to add new applications, extend current applications, add new words,

andchange (adapt) words tonew pronunciations without running a special program andwith a minimum

of user intervention.

In order to implement thesegoalswe decided early in the project that specialhardware neededto

be designed because commercially available speech recognizers couldnot be used.

• Commercial speech recognition products are proprietary. Therefore an important part of the sys

tem, the recognizer, would have to be treated as a "black box". This would be too limiting for our

research.

• No existingsystemscan handletherequired vocabulary size.

• Most systems either connect directly to an IBMPC through its internal bus or talk on low-speed

(9600 baudor less)terminal lines. Thus,we would havetoredesign the interface for our workstations.

We decided to design our ownMultibus compatible speech recognition hardware, plugging it into

our existing workstations. Because me hardware was actually going to be built it had to be debuggable,

work reliably, and be reproducible.

The primary goal of the project was to build a usable system. That is, the software, the hardware,

and the userinterface should worktogether to aid thecomputer's usernot slowhimdown. We wanted to

test whether a speech recognizer is a desirable and practical inputdevice for currentcomputer systems.

The system was designed so that experiments couldbe performed to analyze both systemcomponents

(i.e. therecognition algorithm, theuserinterface, etc.) andtheoverall system performance.

INTRO.5. Previous Work

Several commercial speech recognition systems have also been interfaced to workstations (gen

erally an IBM PC orApple II). These include systems from NEC (model SR-100), Interstate Voice Pro

ducts (model SRB), Texas Instruments, Keytronics (model KB 5152V), and Votan (model VPC 2000).

While the speech recognition algorithms and hardware for these systems differs widely (and are generally

proprietary), they are otherwise all very similar. Each system can recognize about 200 words with a

latency of between 02 and 0.5 seconds. The recognition accuracy quoted for these systems is between



98% and 100% although no mdependent tests have been performed onthese particular systems. The user

interface provided by each system is minimal: no feedback is given to the user unless a word is recog

nized correctly.

The vocabulary for anapplication is fixed by theapplication's designer and nonew words can be

added by the user. This inflexibilty limits theuseof these recognizers to few applications in an engineer

ing workstation environment These recognizers are trained off-line using a special program. Words can

be retrained only with the aidof this special program, and because the hostcomputer can run onlyone

program at a time, any modification of templates must also be performed off-line.

The interface provided to application programs is also the same forall the systems. Eachwordhas

a corresponding stringthatis sent to the computer when the wordis spoken. This technique is very popu

larbut, as explained earlier, is not very appropriate for speech input

These speechrecognition products are not transparent and complete enough to the user that they

eliminate the need for keyboard input With the exception of a few well suited applications, these sys

tems arevery cumbersome to use and have not been a largecommercial success.

INTRO.6. Organization of the Thesis

The thesis is split into six chapters. The first two chapters detail the algorithm andhardware design.

The third chapter explains the user interface and the interface provided for application programs. The

fourth chapter discusses four different interface styles and how the speech recognizer can be used for

each of these. The fifth chapterdiscusses an experiment performedto evaluate the entire recognition sys

tem for a particular application. The final chaptercontains conclusions drawn from the project



Chapter 1 - The Algorithm

1.1. Introduction

Currently, there are two types of practical high accuracy speech recognition algorithms: template

based dynamic-time-warp algorithms and Markov-model-based algorithms. Dynamic-time-warp algo

rithms have been inlaboratory use since 1970,3'4*5-6 and have proven useful in commercial applications

as well. Markov-model-based algorithms have also been in existence for manyyean, 7»8 but have only

been used commercially with small vocabularies.9 This isdue the the large amount of training, especially

initial training, required for Markov-model algorithms. Only recently have practical moderate to large

vocabulary Markov based systems been introduced commercially.10

Speech from
Microphone

A/D converter
Filterbank (chip)

Endpoint Detector

TRAINING

RECOGNITION

Template
Memory

X

Pattem

Matcher
(chip)

Figure 1.1 - Template based system

Rank

—* ordered

candidates

Over the past few years, the design of a sophisticated real-time isolated-word speech recognition

algorithm capable of recognizing 1000 words has been developed in ourlaboratory. Since this algorithm

is sufficient for the design goals of the Mara system, we decided to use the template-based algorithm.

The basic structure of the template-based dynamic-time-warp algorithm is typical of pattern matching

systems, representing each word as a collection of templates (normally just one template) which

correspond to different pronunciations of that word. The algorithmhas two main phases: training and

recognition. During training, each wordin the vocabulary (that is, the list of words to be recognized) is
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spoken a few times by the user and templates are generated for the word by averaging those utterances.

During recognition, each template is compared to the unknown spoken word. The vocabulary word tem

plate with the smallest word-to-word distance to this unknown word is recognized as the word that was

spoken. The output of therecognizer is an ordered listof templates and their scores.

The algorithm is naturally split into two computational sections: front endspectral/word analysis

and aword-to-word comparison algorithm. Thespectral/word analysis section takes the speech signal as

input and first generates a stream of vectors that represent spectral features (i.e. the log power spectrum).

It then divides the input stream into words, each word beginning and ending in silence. A word is a

time-ordered sequence of feature vectors. A training algorithm takes these words and generates tem

plates. The user is instructed to speak each word a few times and these utterances are clustered into

groups corresponding to major pronunciation differences, then each group of words is averaged to gen

erate a central template. The word-to-word comparison algorithm takes as input two words (a template

and the unknown word) and generates the smallest possible accumulated spectral distance allowed by a

non-linear stretching and compressing of the time axes of the two words. The spectral distance usedis

the squaredEuclidean distancebetween gain-normalized log-spectral components.

12. Front-End Processing

The purpose of front-end processing is to extract words from the incoming speech signal and

derive atimesequence of short-time spectra for each word. There are many different spectral representa

tions that are known to workwell for speech recognition. We chose adirect spectral representation gen

erated by a filterbank. A pre-emphasis is applied to the signal before the filterbank, onezero at500 Hz

and one pole at5000 Hz. The filterbank contains 16 channels, each channel consisting of a4 pole band

pass filter, a full-wave rectifier and alow-pass filter. The 3dB corner frequencies of the band-pass filters

are placed according to the "critical band" theory: linearly spaced filter upto lKHz, and logarithmically

spaced above lKHz. The three-pole low-pass filter (25 Hz 3dB frequency) windows the speech signal

with a 40 millisecond UR window.



Table 1.1 -Measured Filterbank Specificiation

center lower upper

channel freq band edge band edge Q
(Hz) (Hz) (Hz)

1 126 76 227 .83

2 261 277 345 IS

3 464 362 548 IS

4 682 564 767 3.4

5 901 767 986 4.1

6 1053 969 1171 52

7 1306 1188 1407 5.9

8 1559 1441 1728 5.4

9 1880 1627 2166 3.5

10 2352 2015 2504 4.8

11 2689 2386 2824 6.1

12 3094 2841 3280 7.0

13 3515 3279 3768 12

14 3903 3701 4276 5.8

15 4645 4359 5101 6.3

16 5523 5202 5758 9.0

The outputs of the filterbank, all 16channels, are sampled every 10milliseconds and log-converted

to 8 bits per filter, 0.375 dB per step. Then the log-filters are averaged to form an in-band energy esti

mate used for energy normalization and end-point detection. Also, the peak filter value is computed for

use later.

S;lc* = 16 log2 (S^**) i e {1.A16}

Ave -

16

ial

16

(1.1)

(1.2)

Peak =max(S{0«,Sj0« Sfr) (1.3)

The log-spectrum is energy normalized by subtracting theaverage energy estimate, Ave, from each log

filter, then quantized to4 bits per filter, 2 dB per step. This 4 bitquantization was found to be sufficient

in the sense that finer quantization steps led tonoincrease in recognition accuracy.11 The quantization

function is linear between +15dB and -15 dB, clipping above and below.
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Si = Q[Silo*-Ave] ie{l.A6} (1.4)

The result isa frame consisting of the normalized log-spectrum (4 bits/filter), log in-band energy estimate

(8 bits), and log peak estimate (8 bits), ofcomparable size to LPC parameterizations.12

The front-end processing then splits the incoming speech signal into words using a 3-level end-

point detection algorithm. Thealgorithm tags each frame as one of:

EPJGNORE frame not inaword (energy below low threshold)

EP_START possible start ofword (energy transisition from below toabove low
threshold)

EP_NULL frame in aword

EPJEND possible end ofword (energy dips below low threshold)

EPFOUND word found - use last EP_START and EP_END as real start/end ofword
(2 seconds of silence)

EP_SENTCEND end ofsentence was encountered (1.5 seconds ofsilence)

The end-point algorithm is similar to the one proposed by Rabiner and Sambur13 and modified by

Davies.14

The end-point algorithm uses three threshold levels: alow, mid, and high threshold. The low and

mid thresholds are set dynamically 3dB and 10 dB above the background noise level The high threshold

Tugh is set to aconstant value much greater than the noise level The noise level is estimated using a

non-linear filter thatis applied to the average in-band energy Ave.

if Ave > Noise

then Noise =Noise + — (1-5)
64

., . Ave + Noise
else Noise = -

The last step in front-end processing is down-sampling the 10 millisecond frames to 20 mil

liseconds. A "selective" down-sampling scheme similar to "frame repeat" in vocoders is used. Each

frame is compared to its previous frame. If the spectral distance is less than athreshold Tjg^ua^pu, then
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the frame is ignored.

if distanced, S1™*"") ^Tdnmtampk
then Si™*™ =5 (1.6)

else ignore S

The distance function is defined in section 1.4. The purpose of this down-sampling is to weigh long

steady state sounds equally with the transititions between sounds (Le. steady state sounds should be

downsampled). This algorithm has been shown to increase recognition accuracy while reducing compu

tation.11*15 The thresholdis set to achievea net 20 millisecond samplerate (factorof 2 compression) for

alarge number of words. Individual words may bedownsampled more orless than the factor of two.

The output of the front endis a timeseries of frames representing aword.

(i/M), ry-(2), •ry»(n)) (U)

The notation above denotes a series of frames that form the word U of length n. Each U"(x) is a spec

trum with 16 features written as U"(x) • • • U foCx).

1J. Training

Template-based speech recognizers must be trained. The training process normally interacts

directly with the user, prompting him to speak a particular wordoverand over. Training canbe thought

of in two distinct parts, acquiring utterances of a word from the user and creating templates using those

utterances. This section will deal with the second problem, creating the templates. The problem of

acquiringthe words will be discussed in chapter3.

Given utterances for a word, we wish to generate a set of templates which spans those utterances.

There is no guarantee that all theutterances willbe from theword to betrained; users donotalways say

what they are told to say! The training algorithm splits utterances into groups corresponding to distinct

pronunciations of the word, thenaverages each group to create one template pergroup.

Words are split into groups using theUWA16 (Unsupervised Without Averaging) algorithm. All

word-to-word distance measures are computed to form amatrix. The algorithm proceeds:
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1. Find the overall "average" word over all remaining words.

2. All wordswithin some distance thresholdT^ of this average wordarecollected.

3. Find the"average" word in this group. Iterate to step 2 until thegroup remains constant

4. The words in thegroup are removed from the listof words to form a pronunciation group. Iterate

to step 1 until all words are removed.

TheUWA algorithm defines the"average" of agroup of words as themini-max center of that group. The

mini-max center is theword whose largest distance to any word in thegroup is smallest The output of

the algorithm is a setof pronunciation groups. Each group must have atleast twomembers, eliminating

templates for misspoken words.

Next, each pronunciation group is averaged to form a template. To average words a target word is

chosen, in this case the mini-max average word. All otherwords are time-warped (described in the next

section) to this target word. For each frame of the target word, allcorresponding frames of thewarped

words are averaged to form the template. The average of a setof frames is computed by averaging each

feature in the frame seperately. A detailed description of the averaging algorithm can be found in [11].

The UWA algorithm assumes that training is performed in "one shot". That is, all utterances are gen

erated, then templates are computed, and then theutterances are thrown away. We found experimentally

that this "oneshot" training is insufficient for high accuracy, so anewtraining algorithm wasdeveloped.

The new algorithm takes new utterances of a word while the user is actually using the recognizer, and

creates new templates adaptively. This algorithm is detailed inchapter 3. TheUWA training algorithm

isused when alarge vocabulary must betrained, normally when the user starts anewapplication.

1.4. Word-to-Word Comparisons

The underlying computation in a template-based recognition system is the word-to-word distance

measure. This distance iscomputed between atemplate and an utterance of aword. The smaller the dis

tance, the more similar the words (that is, the distance is an error measure). Theword-to-word distance

measure iscomputed as asum of frame-to-frame distance measures. The frame-to-frame distance weuse
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is the squared Euclidean distance between the energy-normalized log-spectra generated bythe front-end

processor.

distance (£/, T) =£ (tfj - Tf)2 (1.8)
i-1

This distance measure isknown towork well in speaker-dependent recognition systems.5

/siiiks/ #1 s -* -• i i I k -» s
/sssiikkss/#2 s s s i -> I k k s s

frame to frame 34 5963738
distances

2

Figure 1.2 - Alignment of two utterances of /six/

Many word-to-word distance measures have been proposed, butthemostpopular and currently the

most accurate is the dynamic-time-warp measure.4*5 This measure is expensive, butworks well with lim

ited training. The time-axes of the template and the utterance are stretched to minimize the sum of

frame-to-frame distances. For example, in figure 1.2two utterances of theword"six" are aligned so that

the sounds of one utterance ("s", "i", "k", and"s") are compared the same sound of the otherutterance.

The alignment adds sounds to the utterance by repeating the sound from the previous frame (-»). The

total distance is the sum of frame-to-frame distances between the aligned utterances. The time-warp

algorithm minimizes this distance over all possible alignments using a computionally efficient dynamic

programming algorithm. The result is the popular dynamic-time-warp algorithm.

The algorithm implemented inour system evaluates thefollowing dynamic programming recursion

equation:

*»i

where U is the Unknown word, and

T is the Template word;

Dij =min(Dt_u, A-i.y-i. A,y-i)+4., (11Q)
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where Z>o,x = oo;jDz,oseeforallx except:

D 1,0=0

Values of a\j are clipped at255tolimittheeffects of single frame errors. Theword-to-word distance is

DH% m foran unknown wordof lengthn, andtemplate of lengthm.

s

k

i

i

1

s

3 5 8 50 52 48 32 8 2

28 27 31 80 82 7 3 25 28

52 60 54 12 3 60 62 39 41

40 49 51 6 12 68 69 45 45

45 48 39 9 8 78 82 50 52

3 4 5 40 39 20 20 10 8

s s s I i k k s s
time-*

Figure 1.3 - d matrixcomparing two utterances of /six/

The equation is usually thought of in terms of a matrix of frame-to-frame distance measures d

shown in figure 1.3. The horizontal axis is the time axis of the unknown word U, and the vertical axis is

the time axis of the templateT. The algorithm then attenmts to find the path that starts from die lower

left comer andends at the upperrightcorner with the smallest sum. The pathmay not go backwards and

cannot skip either a column or a row. In orderto compute the sum, a second matrixof accumulated D

valuesis computed. The smallestsum will be in the upperrightcomer of the D matrix.

s

k

i

i

s

171 140 147 181 164 85 69 48 50

168 135 139 131 112 37 40 65 93

140 108 151 51 30 90 152 191 232

88 97 97 27 33 97 166 211 226

48 51 46 21 29 107 193 181 193

3 7 12 52 91 111 131 141 149

s s s i i k k s s

time-*

Figure 1.4 - D matrix comparing two utterances of /six/
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1.5. Streaming and Block Algorithms

To compute the recursion equation all the previous row and column values of D must be com

puted; however, not all of these values must be stored. If the equations are computed in column order

then only the previouscolumn must be stored, and similarlyfor the rows. Selecting betweencolumn and

row ordered computation is a critical factor in the design of the algorithm. Real time is traveling along

the horizontal axis of the matrix, thus the algorithmcan compute one column of each template after the

front-end generates that spectrum. Therefore, column-ordered computation is a streaming algorithm,

where computation is overlapped with data acquisition in real time. On the other hand, a row-ordered

system must wait for all frames of a word to be spoken before the word-to-word distance can be com

puted. Thus row-ordered computation is a block algorithm, where real-time must be defined in terms of

"reasonable response time", usually 0.2 to 0.5 seconds after die word is spoken. In connected word appli

cations or applications using long words, throughput for the block algorithm must be greatly increased to

maintain reasonable response time, while a streaming algorithm requires no increase in throughput

The selection between streaming and block algorithms effect both throughput and memory require

ments. During recognition, all templates must be compared with an unknown word. Since a streaming

algorithm must be able to compute one column of a matrix at the frame rate, the throughput in term of

computing equations 2 and 3 must be (assuming 1000 templates with an average length of 25 frames, 0.5

seconds):

1O0Otemplates *25equationS
temPlate =1,250,000 e^uaAonS

20 milliseconds seconds

When converted to typical general purpose instructions, this becomes 60 million instructions per second.

Obviously, this is not possible with availablegeneral purposeprocessors, but can be achieved with a spe

cial purpose chip if the proper architecture is used.

A block algorithm must be able to compute all 1000 matrices in the required response time (300

ms. in this example). Thus the throughput required is:
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1000templates xTS1"*"**""— fempfa* ^equations
300 milliseconds seconds

The block algorithm requires higher throughput than the streaming algorithm. Note further that if the

streaming algoridim were allowed the same response time as theblock algorithm, its throughput would

decrease by about 40%.

The memory requirements for the system are not small. Both streaming and block algorithms

require the same amount of template memory:

«««« t -* frames ., features _ A bits
1000templates x25 -*—;— x 16 *-? x4

1 temPlate £™£ &«!™- =200,000 bytes
byte

The streaming algorithm must store D values for the previous column of all templates in a

scratch-pad memory:

1000templates x2S^^x2A^-
i^2f£ £™L.=75,0006yr«

a bits
byte

while the block algorithm stores D values for only one template which requires only about 150 bytes.

Since the amount of template memory required forces the use of off-chip memory, the addition of an

off-chip scratch-pad memory is not a critical design factor.

The final step in the computation of word-to-word distances is the normalization of the distances.

Since each template has a different length, the number of frame-to-frame distances that willbe summed

is different This will bias scores for short templates to be smaller than scores for long templates. To

eliminate this bias, the sumis normalized by dividing it by thenumber of frame-to-frame distances that

were summed along the path. Instead of the exact path-length, the maximum of theunknown word and

template length is used. This normalization factor is easier tocompute, and works better than the real

path length.11 The reason for this might bethat this factor will give preference todiagonal paths, imple

menting a sort of slope constraint The normalization is not performed on the special purpose chip
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because the computation is performed only once per template and can be computed in the controlling

processor. The normalized scores are then sorted in ascending order and presented to die host computer.

1.6. Evaluation of the Algorithm

Table 1.2 System Performance with TI Database

speaker

ALK

DFG

GRD

JWS

MSW

RGL

SAS

TBS

CJP

GNL

HNJ

KAB

REH

RLD

SJN

WMF

TOTAL

errors

(out of 320)

1

0

3

2

0

0

2

0

1

0

2

0

0

1

0

1

13

% errors

0.31

0.00

0.93

0.62

0.00

0.00

0.62

0.00

0.31

0.00

0.62

0.00

0.00

0.31

0.00

0.31

0.25

Table 1J Speech Recognition System Comparisons

manufacturer model total errors

Verbex 1800 10(0.2%)
UC Berkeley 13 (025%)

NEC DP-100 60(12%)
Threshold Technology T-500 73 (1.4%)
Interstate Electronics VRM 147 (2.9%)

Heuristics 7000 300(5.9%)
Centigram MIKE 4725 366(7.1%)

Scott Instruments VET/1 646(12.6%)

The algorithm was evaluated using a standard database collected by Texas Instruments.17 The data

base consists of 20 words (the digits and 10 other common words) spoken 26 times each by 16 people (8

male, 8 female), recorded on 1/4 inch audio tape. The speakers were prompted to say each word. The
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first 10 words for each speaker were used to train the recognizer, the remaining 16 words were used as

test utterances. Table 1.2 shows the results of the experiment Table 1.3 shows how theseresults com

pare to some commercial recognizers. It should benoted that the tests for the commercial recognizers

were performed independently, while we performedour own tests.



Chapter 2 - Hardware

2.1. Introduction

There are constraints on speech recognition systems which make them very difficult to implement

in general-purpose computers. First, all processing must be performed in real time. Thus one cannot

afford page faults or use general purpose time-share schedulers. The recognizer must be running con

tinuously (ie. itcannot afford to drop samples), and requires very small latency for reasonable response

times. Second, signal processing tasks performed in the recognizer are CPU intensive. Generally these

tasks are best performed with special signal processing CPUs such as the TMS320.18 Also, some signal

processing algorithms require special forms ofarithmetic, such as saturating addition, which general pur

pose computers cannot handle efficiendy. Third, speech recognition is considered aperipheral function

to the computer; that is, the purpose ofthe computer is not to recognize speech, but to allow its users to

perform tasks such as writing papers, performing simulations, and designing chips. The recognizer is the

interface between the computer and its user, and thus it is in a tenuous position because it must be

integrated into the user interface ofthe computer system, but not consume substantial or even moderate

computational resources. The proper place for the speech recognizer is as aself-contained unit that con

nects tothe host computer through areliable bus. The advantages of this scheme are:

• Any computercan act as a host computer.

• The recognition algorithm can be designed independendy of the hardware available in the host

computer.

• The interface to the recognition system will be well defined and can thus be more easily studied

and optimized.

• Special hardware can be used in the speech recognizer independent ofthe hardware and software

in the host computer.

The disadvantagesof the this scheme are:

• The system may not be as efficient due tothe bandwidth constraint on the bus.

19
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• System development and algorithm development might be hindered by an additional layer ofinter

face.

For our system the advantages far outweighted the disadvantages, so the speech recognition system

was designed as astand-alone Multibus board which could be plugged into any Multibus host computer.

Multibus was chosen because the target host computer had abuilt-in Multibus available for user peri

pherals, and the bus itself isreliable and has ahigh bandwidth.

12. Hardware Architecture

In order to provide a useful user interface to the host computer, the recognizer must be able to

recognize between 500 and 1000 words in real-time. This requires enormous computational power,

about 100 million instructions/second for a general purpose computer. This number is far beyond the

capabilities of current microprocessors which operate at about 1million instructions/second. Our solu

tion to this computational problem was to develop special purpose integrated circuits as the computa

tional elements, anduse a general purpose microprocessor asacontroller.

Given this design approach, the speech recognition algorithm is naturally partitioned as shown in

figure 1.1. Data flows from block to block at the frame rate of50 frames per second on average. Each

block runs internally at a much higher rate (2-5 MHz). Thus, each block is implemented as a seperate

sub-system, and connected together on asingle microprocessor bus shown in figure 2.1. The board con

tains all three sub-systems: a general purpose system, a front-end spectral analysis system, and a

dynamic-time-warp pattern-matching system. All sub-systems run in parallel, communicating to each

other through theaddress and data bus lines provided bythe general-purpose sub-system.

The circuit implementation requires many tradeoffs. First board space is akey issue. There are

many advantages ofasingle board solution over multi-board solutions: less power, less buffering, and

most important less space is required in the workstation cabinet This was very important because the

workstation had space for only asingle wire-wrap Multibus board. Multibus boards can hold approxi

mately 150 16 pin chips, but much ofthis space is needed for memory (490K bytes requires 44 chips),

the 68 pin 80186, its buffers, and the multibus and serial ports. The remaining space (about 30% ofthe
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main microprocessor bus
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General purpose
sub-system

Figure 2.1 • Blockdiagram of speech recognition hardware
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total board space) is left for thespecial purpose ICs and their associated circuitry. Thus, thespecial pur

pose ICs must include much of their interfacing circuitry on-chip, increasing the complexity and design

timeof the ICs. Second, allthe special purpose chips had to be designed andtested withinareasonable

amount of timeorthesystemwould never be built Finally, since theboard was going to beusedfor real

work, the system had tobereliable. Thus the special purpose IC's had towork reliably at5 volts, and the

board hadto function inside anumber of different system configurations. The resulting Multibus board is

fully packed, drawing4.25 amps at5 volts.

23. General Purpose Sub-System

The general purpose sub-system was designed tobe used for multiple applications including: the

speech recognition system, an IC tester system, adata acquisition system and other stand-alone applica

tions. In orderto be useful for speechrecognition this sub-systemhad to:

• have 128K bytes of program and data memory,

• be able to address an additional 256K bytes of template memory,

• have a DMA portto readscores from the time-warp chip, and
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Figure 2.2 - Picture ofthe Multibus board

• execute divide instructions quickly (for distance normalization).

The Intel 80186 was chosen because in addition to the standard 1MIPS CPU, itcontains many of

the extra support functions on asingle chip. These include two DMA ports, three counter/timers, four

external interrupt channels, and chip select logic. This reduced the size of the general purpose section of

the board to less than one third of the Mulitbus board. The rest of the general purpose section of the

board contains:

• two RS232C serial ports,

a Multibus slave parallel port,

a 64Kby 16bit memory, and
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a 2K by 16 bit EPROM memory.

MULTIBUS

1
PORT1 PORT 2

II II
multibus
interface

serial
interface

'
main microprocessor bus

1

i

r <

i

' 1

80186 RAM ROM

Figure 2.3 - Blockdiagram of general purpose sub-system

The memory is implemented using 16 standard 64Kxl dynamic RAM chips. Refresh is performed in

software. The two serial ports are used mainly for debugging, but can also be used to add different

front-end processors to the board. For example, a digitizing pad can be attached to the boardto form a

character recognition system. There are three distinct port addresses in the Multibus memory space, one

for bi-directional data, one for bi-directional control information, and one that when read by the host,

resets the board (jumps to the EPROM monitor). Thus the boardrequiresno external reset switch. The

data port uses a fully interlocking handshake, while the control port does not The internal data and

address busses are buffered for use by the other sub-systems.

The EPROM contains a program that will load other programs from the host computer. The

EPROM monitor listens on both the Multibus port and one serial port for a download command. After

the command is received the follwing data is loaded into memory and executed This strategy allows

quickupdating of the recognition program running on the 80186. 80186 programs are written in C, using

a cross compiler from MIT.19 In order to speed development, a simple operating system was written to
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allow multiple co-operating processes, each associated with a different phase of die algoridim. This

structure greatlysimplified the softwareon the recognition board(see appendixA).

2.4. Spectral Analysis Sub-system

Due to limitations in the IC processing technology available for the digital filter spectral-analysis

chip (a 5 volt, 4 micronNMOS technology with only poly-metal capacitors), the analog interface circuits

including the anti-aliasing filter, sample andhold, andA/D conversion areperformed with separate off-

the-shelf integrated circuits. A CODEC (standard telephone A/D converter) could not be used here

because the sanmle rate of 14K Hz was needed. Even so, the analog sectionof the board is only 5% of

the boardarea. The anti-aliasing filter for the A/D converter areoff-board, as arethe microphone and its

pre-amplifier. This was due to both lack of space, and fear that digital noise would sum into the high

impedance nodes of the filter. The spectralanalysis sub-system contains:

• an analog buffer,

• analog pre-emphasis,

• a sample and hold, and

• a 12 bit A/D converter.

The required filtering is normally a computational bottleneck for many speech recognition systems.

The desired filterbank requires 81 poles of filtering, (i.e. 16 band pass filter channels (4 poles), 16 deci

mation filters (one pole) and 1 multiplexed low pass filter (two poles)), all operating at a 14KHz sample

rate. The computations are reduced dramatically by using a canonical signed-digit coefficient coding

scheme that reduces the total number of non-zero digits in each coefficient while only marginallychang

ing the overall filter shape. Details of the chip implementation can be found in Ruetz.20'21 Theresult of

the coefficient coding scheme is that each multiply becomesone or two "shift and add" operations. Thus

no multiply operations are required, reducing the complexity and size of the hardware. The filterbank is

implementedon a singlespecial-purpose integrated circuit The chip takesas inputthe outputof the A/D

converter andoutputs two channels each sample period. The outputis decimated to 10ms frames usinga

counter in the 80186 microprocessor. The net datarate is 16 channels every 10 ms. These samples are
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main microprocessor bus
i >

FIFO

. i

Filterbank

microphone
from —•

pre-amp
pre-emphasis S/H A/D

32.4 - Block diagram of spectraFigun lI analysis siib-S]fstem

loaded intoa FIFO andread by the 80186 every 10ms (theFIFO generates aninterrupt after all 16chan

nels are loaded).

Hie log-conversion, energy and peak estimates, endpoint algorithm, energy normalization and

quantization, andselective down-sampling are allperformed in the general puipose processor. Perform

ing theseoperations in die 80186 requires littlecompute time, and allows fastandsimplemodifications to

the front-end.

IS. Dynamic-Time-Warp Sub-System

This sub-system computes one column of theD matrix foralltemplates, returning the accumulated

distances on the top row ofeach template. This sub-systemcontains:

• 256K bytes of template memory,

• 96K bytes of scratch-pad memory,

• the dynamic-time-warp chip, and
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• FIFOsto read the dynamic-time-warpchip distances into the 80186.

Jl

TEMPLATE

MEMORY

latches k
—i—

main microprocessor bus

TP data in EOT
TPLSB address

address lines

RAS DYNAMIC

TIME WARP

CHIP
SCOL

SREC

R/W, RAS EOC
DP data

A

SCRATCH-PAD

MEMORY

' scratch-pad data/top scores

Fl FO

Rgure 2.5 - Block diagram of dynamic-time-warpsub-system

2.5.1. Template Memory

The template memory is dual-ported, allowing access through both the 80186 and the dynamic-

time-warp chip. The contents of the 16 bit wide template memory is organized as shown in figure 2.6.

Address 0 contains the boundary value (Dxfi) for the unknown word axis of the time warp chip. This

value is set to 0 for the first column, and ee for subsequent columns. The boundary value is set to other

values for connected word algorithms. Addresses 1,2, and 3 contain no information. Addresses 4,5, 6,

and 7 contain the current 64 bit frame (16 4-bit features) of the unknown word. Addresses 0,4,5,6, and

7 are updated by the 80186 for each new frame. The rest of the template memory contains the actual

templates stored sequentially with special frames as separators. A special frame with first word FFFF

hexadecimal indicates end-of-template (EOT), with second word FFFF indicates end-of-column (EOC,

i.e. end of all templates). The template memory is implemented with 32 standard 64Kxl dynamic RAM

chips, organized as a 64K x 16 x 2 interleaved memory. The memory is interleaved to cut the effective



j 16 bits

frame 1 of template 2

FFFF 0000 0000 0000

last frame of template 1

•

•

•

12 frame 2 of template 1

8 frame 1 of template 1

4 unknown word frame

0
boundary

value
XXXX XXXX XXXX

Figure 2.6 - Organization of template memory
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cycle time of the dynamic RAM chips in half, below therequired 200ns. The dynamic-time-warp chip

reads the template memory sequentially bothwhilecomputing and idle. This continuously refreshes the

dynamic memory.

The 80186 can directly read and write the template memory when the dynamic-time-warp chip is

idle. This allowsthe 80186 to move, add, delete, andupdate templates quickly. In fact, using the DMA

port provided by the 80186, templates can be added at the maximum speed of the bus (2M bytes/sec).

The templatememory appears as addresses 40000through 80000on the 80186bus.
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IS2. Scratch-pad Memory

The scratch-pad memory is constructed from 12 standard 16K x 4 dynamic RAM chips. This

memory is organized as 24 bits x 32K words, allowing for a 15 bitaccumulated distance, 1 bitof slope

constraint information, and 8 bits of path length information (used in connected speech). The RAS and

R/W signals for thememory are generated by thedynamic-time-warp chip, reducing theamount of extra

glue logic ontheboard. Unfortunately, this memory cannot beread directiy by the80186 which compli

cates its testing. In the future the dynamic-time-warp chip should bemodified to allow direct testing of

the scratch-pad memory.

2.53. Time-Warp Chip

The heart of the dynamic-time-warp sub-system is the dynamic-time-warp chip. This chip per

forms the d and D distance computations, template and scratch-pad memory addressing, scratch-pad

memory control generation, and state sequencing. The dynamic-time-warp chip is highly parallel and

pipelined in order to compute the distance measure as fast as possible. This technique is well suited to

special purpose design because the placement of pipeline registers and parallel units depends on the

implemented equations.

The chip operates from asingle 50% duty cycle 5MHz clock. Internally this clock isconverted to:
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• a two-phase non-overlapping 5 MHz clock (fastclocks: Oi, $2),

• a four-phase non-overlapping 1.25MHz clock (slow clocks: 4>o> $1,$2, <fo), and

• a two phasenon-overlapping 2.5 MHz address clock (Of, Of).

2.5.3.1. Circuit Operation

The chip starts in its idle mode, sequentially refreshing both the template and scratch-pad

memories. When a start-first-column (SREC) or start-other-columns (SCOL) signal is received, the chip

resets its address counter to 0 and reads the template memory sequentially. The first item read, the boun

dary value, is stored in the 16 bit PRESET register (15 bits plus one bit for slope-constraint). The next

three items are ignored. The next four items read are stored in the UNKNOWN FRAME register, a recir

culating shift register that outputs 16 bits of the 64-bit frame each fast clock cycle. Next, the first frame

of the first template is read from the template memory, requiring four fast clock cycles. A pipeline regis

ter at the top of the data path allows maximum delay though the memory (about 160ns out of the 200ns

clock). As each 16-bit word is read it is split into four 4-bit nibbles, and subtracted using four one's com

plement subtracters in parallel from the corresponding unknown frame nibble. These 5-bit differences

are then absolute-valued to 4 bits then pipelined. Next, each 4-bit value is squared forming an 8-bit value

and pipelined. These four 8-bit values are summed pairwise and pipelined to form two 9-bit sums, then

summed again pairwise to form a 10-bit sum. The 10 bit sum is clipped at 255 to 8 bits and then pipe

lined again. The result is an 8-bit 4-dimensional squared Euclidean distance every 200 ns. The 8-bit

values are then summed over the unknown frame (four cycles) using an 8-bit saturatingaccumulatorpro

ducing therequired 16-dimensional squared Euclidean distance dit-r
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*=1

TTie output of the accumulator is loaded into the a\tl register on fy allowing for the five pipeline delays

through the top half of the data path. The pipeline registers in the top half of the data path are clocked

with the fast clock.

While the top half of the data path computes the squared Euclidean distance, the bottom half com

putes the recursion equation:

Dij =min(Dl.u,Dl_i,y-i» A,y-i) +<*i,j

The equation iscomputed using adata path specifically designed tocompute this one function. The data

path consists of:

three 15-bit registers corresponding toD^ij. A-ij-i» and A,/-i»

three comparators tocompute A-i,y<^wj-i» A,/-i<^i-u-it •ndA.i-r^i-ijt

a PLA to select the minimum given the threecomparisons above,

amultiplexor toselect one ofZ>;_i j, A-i,y-i»Dij-i*orPRESET,

a 15-bit saturating adder thatadds theoutput of themultiplexor to diJt

a 16-bit PRESET register, and

an FFFFdetector (to detect EOT and EOC).

Inaddition to the operations above, the output of the diti register can besetto zero (NSEL input) and the

output of the adder can beset to»(PREP input). The input tothe FFFF detector and the 16-bit PRESET

register comes direcdy from the pads. This isadesign error that might shorten the amount of time avail

able to read from template memory as this is acritical path of the circuit The input should come from

the pipeline register right after the pads. The output of the FFFF detector goes into thestate sequencer.

In order to understand howtherecursion equation iscomputed onemustremember that thecompu

tation proceeds up a column of the matrix. Thus, Diti delayed one cycle becomes A-.y-i- Boundary

values are fixed (to the PRESET), thus A-j-i and A-1./-1 can be computed without going off-chip. The

onlyvalue which mustberead from thescratch-pad memory to compute Diti isA-i,y-
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Figure 2.9 - Chipdata path(bottom half)

The first row boundary condition (FROW) occurs at the start of anew template, causing the data

path to compute:

Ditl = min(PRESET, A_i. l) +4\ l

by loading the PRESET into the A\y-i register one slow cycle before A, l &computed (called the PREP

cycle). The minimization PLA equations are changed accordingly. FROW is an output of the state
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<fe write A,/-i

compute Dijfa

4>0 read A-i,y

Rgure 2.10 - Timing of recursionequation computations
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sequencer, indicatedby the specialEOT flag in the templatememory.

The toprowdistances (atEOT) are loaded intotheoff-chip FIFO for useby the80186. During the

first column (FCOL) the values read from the scratch-pad memory are ignored by a modification of the

minimization equations to disallow recursions past the template word axis. During subsequent columns,

the input from the scratch-pad memory is usedto compute therecursion equation. Distances in the FIFO

are read intothe 80186 using a DMA port When theendof all templates is detected, the chip strobes

end-of-column (EOC) and returns to an idle state waiting for thenextinput strobe.

2.53.2. Address Generator

The addressing unit generates both the template and scratch-pad memory addresses. The scratch

pad memory is accessed every two fast clocks, first a write, then a read. The address for the write is one

lower than the address for the read (i.e. first A.y-i is written, then A-ij is read). Thus the address

counter must count down one for the write, then up two for the read. This is acconmlished with a

adder/accumlator that selects between -1 and +2. The resetaddress (RADD) and address clock signals

are generatedby the slow/addressclock generator.

While the scratch-pad memory is accessed everytwo fast clocks, the template memory is accessed

every fast clock. The template memory is also accessed sequentially, not down one up two. In order to

share the same address generator, an external latch is required to hold the address generated for the
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Rgure 2.11 - Address counter

RADD

scratch-pad read cycle for 4 template memory read cycles. This latch is "free" because there is already a

need forexternal address multiplexing for the dynamic memories (Le. onecanuse latching multiplexors).

The two least significant address bits of the template memory address aregenerated by theslow/address

clock generator. These merely count from 0 to 3 continuously.

2S3S. Clock Generators and Control Outputs

As mentioned above, the chip requires one clock input, but internally generates 8 clock signals.

The two fast non-overlapping clocks are generated using a traditional multistage cross-coupled NOR

gate. Theoutput is buffered todrive therequired lOpF in40 ns. The slow clocks and address clocks are

generated using a 2-bit binary counter and a decoder. The counter outputs gooff-chip directly forming

the least-significant template memory address, and aredecoded internally (and ANDed bythe fast clock

to prevent glitching) such that <W occurs when the counter output is 0. Theclock generator alsocreates

the output control signals RAS and R/W using random logic. Scratch-pad memory write cycles are

suppressed when the chip is idle bynotasserting the RAS signal (using the WRTH, write inhibit, signal).

Finally, the slow clock unit generates the control signals for the address counter. <Df, <&£» and -1/+2.

2.5.3.4. Support for Connected Word Operation

Two modifications are required for connected word operation. First, the PRESET is set to any

value, as opposed toonly 0 and <*» as inisolated word operation. This isdone by the 80186. Second, the

projection of the path length on the unknown word axis must be computed. This means that for each
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Figure 2.12-- Data,address and controlsignals (at pads)

A,/» the path length into that element of the matrix must be computed. The path length of A,y is the

path length of the smallest ofA-i,y»A-w-i» and A.y-i. P^s one ifA_i j orA-i,/-i*s smallest The

path length of PRESET is set to zero on FROW byclearing the path length A,y-i register. The path-

lengthadder is 8 bits, saturating at2SS.

2.53.5. Support for Slope Constraints

Many people feel that slope constraints can improve recognition accuracy6 though ourexperience

has indicated otherwise.11 A simple type of slope constraint is implemented onthe chip. This constraint

specifies thatif a horizontal or vertical path is taken intoone elementof the matrix, then the path leaving

thatelementmust be diagonal. Note matthis form of slope constraint is not the sameasthe oneproposed

by Sakoe andChiba because it does not gaurantee theresult will be the path with smallest error (i.e. it no

longer computes a true minimization). Never the less, the chipcan handle this form of slopeconstraints

if enabled by settingthe most-significant bitof the PRESETregister (bit IS) to 0.
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IfA,y »s computed from A_i,j orAj-i then the slope bit for A,y is set low (active). The PLA

that computes the minimum for the recursion equation then looks at the slope bit for A-i, j and A,y-i

and disallows those paths if the bitis0. The circuitry involved isminimal, requiring one extra bitinthe

word of the scratch-pad memory, one bit for each of the A-ij and A j-i registers and amodification to

the rninimization PLA.

2.53.6. State Sequencer

The data path iscontrolled byastate sequencing finite-state-machine (FSM). The FSM isaided by

acircuit that delays input and output signals so that they occur at the correct time on the pipeline stages.

The sequencer runs at the slow clock rate, with clocks <fc and 4>0. Ithas 5 active states: idle, load preset,

load unknown word, first row, and other rows. The sequencer has three inputs: SCOL, SREC, and the

output of the FFFF detector in the data path, in addition to the four slow clock phases. The output of the

FFFF detector is clocked with the appropriate clock phases todetermine if EOT orEOC has occurred.

The sequencer generates nine outputs: EOC, EOT, FROW (first row), FCOL (first column), UWID (load
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unknown word), UWTD, PRES (load PRESET register), PREP (generated one cycle before FROW), and

WRIH (write inhibit inidle mode). The signals UWTD, UWTD, and PREP are super-buffered due to the

large capacitancethey must drive.

EOT EOTEOC

A \_ 1 _J 5 \ 1 ( 6 \ 1 ( 7
RESETT "*l uvviDy "iFROWJ

SRECSCOL

~~l TPIN

SREC+SCOL\ IDLE EOC

Figure2.14 • State sequencer

2.5.3.7. Minimization PLA

In addition to the state sequencer above, the data path is also controlled bythe minimization PLA.

The PLA uses different minimization rules depending on FROW, FCOL, slope-constraints, and PREP

(load PRESET into A.i-i register). The PLA has 9 inputs, 4outputs (super-buffered to the multiplexor

select inputs), and one additional slope-constraint output The PLA computes the the inverse of the

CSEL signal reducing itssize substantially. This signal drives aninverting super-buffer.

2.5.3.8. Circuits and Layout

The chip is designedwith fivebasicbuilding blocks:

• a delay register cell,

• two adder cells (even/oddbit slices)withoptionalsaturatinglogic,

• two comparatorcells (even/odd bit slices),
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Figure 2.15- Minimization PLA rules

• PLA's, and

• three multiplexor cells (2:1,3:1 and4:1).

Some random logic is also used to implement various enable signals, clock generators and clock drivers.

The adders and comparators use anon-precharged carry chain that has a4ns per bit delay.

The chip was implemented in a4micron NMOS process, has an active area of20,000 square mils,

and runs with a5MHz clock. The chip was fabricated by MOSIS22 and mounted in a68 pin lead-less

chip carrier.

2.6. Hardware Design Alternatives

Many research and commercial organizations have built speech recognition systems. The resulting



Table 2.1 - Time-Warp Chip Pins

Number Direction
Name Function

of pins (I/O)

3 I Power, Ground, Substrate
1 I CLK Clock (50% duty cycle)

16 I TPTN Input data from template memory
24 I/O DPDATA Data from/to scratch-pad memory
16 O ADDR Address lines (shared) for template

and scratchpad memories
2 0 LSB LSB address lines for template memory

I SREC Start first column

I SCOL Start other columns

0 EOC End of column

O EOT End of template
0 RAS RAS for scratch-pad memory
0 R/W Read/Write for scratch-padmemory
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hardware ranges from a few chips to an entire room full of computer equipment Single-board large-

vocabulary systems have become viable recendy because of decreasing memory costs andLSI technol

ogy. The chips in these systems are often designed specifically for speech or signal processing. Apracti

cal speech recognition system must useeither a single chip or a chip-set solution; otherwise the size of

the hardware required would be prohibitive. A comparison of these speech-processing chips is difficult

because each system uses a different speech recognition algorithm and hardware design. The design

goals of a given chip therefore vary from company to company.

2.6.1. Filterbank

Filterbank design is a classic problem in signal processing. There are many different hardware

configurations toperform filtering quickly and efficiendy, implemented in both analog anddigital techno

logies. Solutions to the problem range from single chips, tochip sets, to single boards, to entire comput

ers. Most analog filterbanks use switched-capacitor designs. NEC has produced a 16720 channel

switched-capacitor analog filterbank for their speech recognition system23 that includes a9 bit A/D con

verter. It is not clearwhether the chip actually works, or how it integrates into the rest of their system.

Other analog filterbanks include the Reticon CP5016 and Interstate Voice Products ASA-16, both single
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Figure 2.16-Chip Photo

chip 16 channel filterbanks with no A/D converter. These chips are produced commercially. We initially

attempted to use the Reticon chip, but found the Qof the filters to be too low for high accuracy speech

recognition. The problem with the current generation of switched-capacitor filters is low power supply

rejection. Special power supply filters are required which increases the board space required . The new

generation offully differential filters should solve this problem.

Many digital filter bank chips are also available, but these require more than one chip to perform 16

channels of filtering. The Texas Intruments TMS32010 (a general-purpose array-processor on a chip)

be programmed to form an 8channel filterbank, thus two would be required for 16 channels. The
can

320 includes no A/D converter, thus a total of3 chips would be required. The Intel 2920, an array-
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processor with A/D and D/A converters has also been programmed as an 8-chaimel filterbank at asample

rate of 8KHz. This would be suitable for recognition over telephone lines. Recendy, Kurtzweil Applied

Intellegence has produced achip24 that can perform eight 2nd-order sections with 24 bit coeffecients and

48 bits of accumulation using abit-serial approach. A 16-channel filterbank can be created from twelve

chips. Again, no A/D converter is supplied on-chip. To date, there are no commercial single-chip digital

16 channel filterbanks.

2.6.2. Dynamic-Time-Warp Processor Alternatives

In recent years different architectures have been examined to implement the dynamic-time-warp

algorithm. Both multi-chip and single chip implementations have been considered, as well as systolic

arrays requiring up to thousands ofchips. It is difficult to compare these chips fairly because each imple

ments adifferent algorithm. Major algorithmic differences include:

• distance metrics (squared Euclidean, Chebyshev, LPC dotproduct),

• Minimization equation (various weightings, recursion inone dimension only),

• streaming/block computation

• pruning.

A good measure of speech recognition chips is the time and area required to compute the distance

metric and minimization equation. Most trade-offs inchip designs come at this level. The Chebyshev

distance (the sum of the absolute value of differences) is usually implemented instead of the squared

Euclidean distance to reduce hardware. It is easier to takethe absolute value than square anumber, espe

cially in an architecture with no multiplier. The LPC (Itakura-Saito) distance metric25 is adifferent type

of computation, the log of adot product This metric requires avariable-variable multiplier and alog

conversion circuit, increasing chip area, though computation rate through the circuit can be as high as

with the squared Euclidean distance if enough parallelism is exploited. Some LPC-based implementa

tions use asimplier distance measure that does not require the log conversion. The minimization equa

tion can also vary between algorithms, but in general the computation is the same: add the smallest ofa

few numbers to the spectral distance and accumulate. Using the basic equation computation time as a
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comparison measure eliminates algorithmic variations such as number of spectra in a word, number of

features in spectrum, andnumberofdistances in the minimization.

2.6.2.1. General Purpose Chips

General purpose chips such as the MC6800026 and the TMS320 have been used inmany speech

recognition systems. The TMS320 has been programmed to recognize up to SO isolated words byimple

menting a simpler version of the dynamic-time-warp algorithm.27 The chip performs both the LPC

analysis and dynamic-time-warp matching. If only the matching is performed, about 100 words can be

recognized. If compared using astandard algorithm the TMS320 cannot perform nearly as well, about 35

words in real-time.28

register
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MUX

~\ "

ALU

"

accumulator

i

r

shifter
MAIN BUS

"
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Figure 2.17 - Typical general purpose data path(TMS320)

General purpose architectures use a single arithmetic unit, usually an adder or

multiplier/accumulator, multiplexing all computations through the one unit Parallelism in an algorithm

can only be exploited byusing many general purpose processors. If an algorithm requires only afew bits

for some signals, and more bits for other signals, the arithmetic unit must be as large as the largest bit

width. The efficiency of the unit during the small bit width computation is very low. A custom
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architecture can have small adders and large adders only where they are required, increasing chip area

efficiency.

A general purpose processor can perform any computation, but performs few efficiendy. For

example, the TMS320 can only perform comparisons pairwise, thus to find the smallest of three numbers

12 cycles are required. In order to operate efficiendy, algorithms must be changed to perform only those

operations that are efficient Special purpose architectures can implement any one algorithm efficiendy,

but cannotperformallalgorithms.

2.622. NEC Chip

In order to increase throughput beyond that of general purpose architectures, NEC designed a

chip29 to perform their version ofthe dynamic-time-warp algorithm. The chip contains two processors,

one to compute the distance metric and one for the ininimization. The distance metric processor com

putes the sum ofthe absolute value ofthe differences (Chebyshev metric) between the template and unk

nown word. The processor is programmable and has aspecial ALU with two 8-bit adder/accumulators to

increase throughput The niinimization processor is also programmable; microcode is down-loaded

through amicroprocessor interface. The processors have alimited instruction set and data path designed

to compute the time-warp equations efficiendy in 225 us per equation. The chip also contains enough

on-chip scratch-pad and template memory to compute one word-to-word distance. The chip can be pro

grammed to recognize up to 180 isolated words by using pruning techniques or 20 connected words using

the standard real-time algorithm. This chip is half way between ageneral purpose and special purpose

architecture, allowing afew different recognition algorithms tobeperformed.

2.623. Bell Labs DTWP chip

One Bell approach to speech recognition hardware was to build anon-programmable special pur

pose chip30 to implement their version of the dynamic-time-warp algorithm. Their algorithm was

developed on general purpose hardware forcing the use ofpruning techniques to increase throughput

Pruning techniques such as adjustment windows and global slope constraints reduce the total number of



44

m

template
word

frames

'' adjustment /
window T

global slope
constraint

unknown word frames

Figure 2.18 - Pruning techniques

distance metrics and minimization equations to be computed. This is acheived by computing the

dynamic programming equations only for matrix elements

Values of the D matrix outside the window are

;near the diagonal(ie. near a linear time warp).

:set to infinity. Adjustment windows compute in a region

parallel to the diagonal, while global slope constraints compute in a diamond shaped region around the

diagonal. Both pruning techniques require the entire word be spoken before the pattern matching can

start thus forcing block computation and isolated word operation. Block algorithms then require faster

processing to maintain reasonable latency (300 ms latency is used for the comparisons below),reinforc

ing the need for pruning. We have found that increased pruning reduces recognition accuracy, while

complicating the hardware design.

The Bell DTWP chip is designed solely for isolated word recognition. It uses a block algorithm,
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comparing a40 frame off-chip unknown word with a40 frame off-chip template in 902.5 us. The com

parison is performed in a 11 frame adjustment window along thediagonal of the word-to-word distance

matrix. A total of 360 of the 1600 matrix elements are computed, increasing throughput by a factor of

4.4. The distance measure requires ten 250 ns clock cycles for a totalof 2.5 us per equation. A totalof

330 isolated words can be recognized with 300 ms of latency. The chip is implemented with a special-

purpose architecture including a 250 ns multiplier, a logarithm converter, a 14 word scratch-padmemory

and a three input minimization circuit The chip also performs address generation for die external tem

plate and unknown word memories.

2.62.4. Systolic Arrays

til addition to single chip solutions, systolic arrays have been developed to perform the dynamic-

time-warp algorithm. These include designs from Lincoln Labs31 and Bell Laboratories.32 With systolic

arrays, each processor (P.E.) performs the basic distance and minimization computation, butmany pro

cessors are arranged to compute either anentire row, column ormatrix simultaneously. The resultis high

throughput at the cost of many processors.

The Lincoln Labs approach is to meld systolic arrays with wafer-scale integration to produce a

wafer that can recognize 3000 isolated words in real-time. While thecircuit is still in development it is

interesting to note that the architecture of each individual processor is similar to that described here

except parallel arithmetic was replaced withbit-serial arithmetic to reduce size atthe costof speed. Also,

very large bit widths are used internally, thus each processor requires more area andruns slower. The

wafercontains 63 processors and computes thetime-warp algorithm diagonally through the matrix.

The Bell systolic array approach is to design a general purpose processor as the basic processing

element The result is thateach distance rretric/minimization requires 50 us, which will be shown to be

62 times slower than the chipdescribed here. The entire system requires 1600 chips to recognize 20,000

words. This is not a chip or board level, but a cabinet level solution. The Bell systolic array is also a

block algorithm, although the array can be reconfigured to recognize500 words as a streaming algorithm

with 40 processors and additional scratch-pad memory.



46

Template
Word

Frames

1 i , i

P.E. P.E. P.E P.E

i i , i

P.E P.E. P.E

••

P.E.

, i i ,

P.E. P.E. P.E. P.E.

i i i \

P.E. P.E. P.E P.E.

, i i i

Unknown Word Frames

Figure 2.19 - Simple 4x4 systolic array

2.6.2.5. Our Approach

Systolic architectures applied to the dynamic-time-waip algorithm exploit parallelism by comput

ing the time-warp matrix using many slow computational elements. This solution requires large interpro-

cessor bandwidth, while simultaneously requiring processing elements which can perform the entire

time-warp algorithm including both the distance and minimization equations. The result is that each pro

cessing element is large and slow, and many are required for high throughput Our approach was to

design a processing element that can compute the dynamic-time-warp algorithm as fast as possible lim

ited by the number of I/O pins on the chip and the speed of the external template memory. Instead of

using many general purpose arithmetic units, each arithmetic unit is tailored to aparticular computation.
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The bit widths of these units need not be large because the algorithm requires only four bits for each of

the 16 features. Many of these units are then connected to compute therequired equations in parallel.

Theresult is achip that performs adistance metric and minimization in 800ns, three times faster than the

fastest of the previously described circuits while requiring theleast area in low density fabrication tech

nology (4u,NMOS).

The performance of the various chips is summarized below.

Table 22 - Time-Warp Chip Summary

TMS320 NEC DTWP
Bell

systolic
Lincoln

systolic
U.C.B.

distance/min

time (us)
25 2.25 2.5 50 10.6 0.8

isolated

words
100 180 330 20,000 3000 1000

isolated

processors
1 1 1 1600 63 1

connected

words
35 20 none 20,000 1000 1000

connected

processors
1 1 - 1600 65 1

streaming
(real-time)

yes no no no no yes

on-chip
scratch-pad

no yes yes yes yes no

cycle
time(ns)

200 250 250 200 62.5 200

chip area
(mm2) 30 37 - 15t 12.5t 13

technology
(u)

3.5

NMOS

2.5

NMOS

2.5

CMOS

3.5

CMOS

5

CMOS

4

NMOS

t Area for each processing element in the array.

2.7. Conclusions

Dynamic-time-warp algorithms have been implemented in chips by many people interested in

recognizing more words than are currently possible with general purpose processors. Speech recognition

algorithms are normally refined to workwellongeneral purpose machines without the influence of future

special-purpose hardware implementation. With general purpose machines, chip implementation issues
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such as bit widdis and parallelism cannot be exploited, so they are ignored in favor ofincreasing algo

rithmic complexity (eg. by pruning). Chip implementations based on these algorithms require much sili

con area and their performance limits their use to moderate vocabulary sizes ofafew hundred words.

Special purpose chips can perform operations much more quickly than general purpose chips ifthe

data path reflects the algorithm. By developing the speech recognition algorithm with the hardware

implementation in mind, the resulting algorithm can be implemented efficiendy in special purpose

integrated circuits requiring small silicon area. The development of aspecial purpose integrated circuit

that can recognize 1000 words in real-time, isokted or connected wim a4u. technology d^ntoiis

importance ofchosing the correct architecture for hardware implementation.



Chapter3 - The UserInterface

3.1. Introduction

One ofthe major aspects ofthis project is to identify and study the problems associated with using

aspeech recognizer as auser-computer interface. Speech recognition systems are normally thought of as

afront-end to some underlying application such as an airline reservation system. The design ofthe appli

cation is closely coupled to the design ofthe speech recognition system. For an engineering workstation

environment this approach is too limiting. This chapter treats the speech recognizer as an input device

and examines why speech input devices differ from standard input devices. The result ofthe analysis is a

set offeedback techniques which can be used to support the user's interaction with the computer and help

increase user productivity.

32. Hardware

Computers have many input and output devices, but most of these are not user oriented. Disks,

tapes, network links, and modems all either produce or read information that a user normally cannot.

Input devices such as card readers and printers deal with user-readable information, but interaction with

the computer is not immediate. Most modem computer systems support "on-line" input devices such as

terminals. When using a terminal, interaction with the computer is immediate, that is, die computer

responds to each character orline as the user is typing. This is the type ofsystem which is best supported

by speech recognition. For this reason we will examine speech only ininteractive environments.

3.2.1. Output Device

By far the most common user-readable output device for workstations is the screen (e.g. CRT,

liquid crystal, plasma). The resolution of screens varies from standard text-only 80 character by 24 line

terminal screen to 1024 by 1024 (or higher) pixel text and graphics high-resolution bit-mapped displays.

High-resolution bit-mapped displays are used in the current generation ofengineering workstations. Bit

mapped displays allow text and graphic symbols to be displayed anywhere on the screen. This output

49
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device also supports windowing systems. A window is a part of the screen thatis dedicated to a single

application where all interaction between thatapplication and the user takes place through the window.

Because the screen hashighresolution, manywindows can be placed on the screen atone time allowmg

multiple applications to run at one time.

322. Input Devices

Engineering workstations generally havetwo inputdevices: amouseandakeyboard. A mouseis a

hand-held device which rests on a smooth surface. A cursor on the computer's screen mimics the

mouse's movementsallowing the user to "point" to positions andobjects on the screen. The cursor is a

feedback mechanism which allows the user to know where the mouse is really pointing. In addition to

pointing, a mouse normally has a few buttons which can be used to select delete, create or otherwise

operateon objects such as windows, text and menus.

esc 1 2 3 4 5 6 7 8 9 0 -
a

• back

tab Q W E R T Y U I 0 P [ 1 del

Ctrl A S D F G H J K L •

>

\ return

shift Z X C V B N M
• •

/ shift If

space

Figure 3.1 - Standard Englishkeyboard configuration

The keyboard hasbeen the predominate inputdevice for computers sincethe first computers were

developed in the late 1930's and early 1940's.33 A keyboard is a board, about 6 inches by 20 inches

(sizes vary) that contains keys (switches) configured asanear-matrix. Each key is associated withasym

bol except for a few special keys (shifVcontrol/meta) which modify the meanings of other keys. The

keys are arranged in a standard configuration and labeled allowing users to usemanydifferent computers

without having to relearn key positions. For English keyboards, each letter and number of the alphabet

has its own key, and special symbols have their own keys, or share keys by use of the shift key. In
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additionto the standardEnglish symbols,keyboards supporta large number ofcontrol and meta symbols.

Typical keyboard alphabets consist of 128 to 256 different symbols. In addition to these symbol keys,

many keyboards contain "function" keys. Functionkeys, normally labeled with special numbers, are not

associatedwith symbolsbut with commands (functions). There are two types of functionkeys. The most

common sendah "escape sequence" to the computer when pressed. An escape sequence is a predefined

sequence of characters that start with an "esc" character. The other type of function key is programm

able. When pressed it sends a user-definable sequence of keys. Programmable function keys are not as

common as escaped sequence keys, and are not supported very well in most operating systems and appli

cations.

A keyboard provides feedback in a few different forms. First some keyboards "click", making a

small noise for each character sent to the computer. Second, most keyboards provide tactile feedback by

pressing back against the users fingers when the key is pressed. Third, most keystrokes perform some

action on the screen almost instantly after the key is pressed. In most computer systems this instantane

ous response, called echoing, is supported at the lowest possible level. Once the user is familiar with the

placement of keys on a keyboard, data can be entered very quickly - a rate of more then 360 characters

per minute is typical of fast typists.

Both mouse and keyboard input devices provide quick feedback to the user so that errors can be

detected early. This feature is essential because user interaction with the computer is not perfect

Sources of error vary greatly, but with keyboards most errors are due to typing mistakes. Other sources

of errors are "bouncy keys", where the user presses a key once but the computer thinks the key was

pressed many times, and "dirty keys", where a key is pressed but the computer does not detect it It is the

feedback mechanisms described above that inform the user when an error has occurred.

33. Speech Input

The user interface requirements of a speech recognition system are very different than those of a

keyboard or mouse. These differences stem from both the nature of speech itself and the constraintsof

currendy available recognition algorithms. To create an effective user interface the idiosyncrasies of
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speech recognition must be understood and handled comedy at the lowest levels ofthe interface.

PROCESSES SCREEN

Figure 3.2 - Structureof Mara System

Part of thedesign of a good speech recognition system is integrating it into thecomputer system.

The speech recognizer should not consume much of the resources of its host computer, but some

resources are neededto create an effective userinterface. One way to share the recognizer among many

different applications and provide auniform interface toboth the application and the user istoimplement

the speech recognizer as adaemon (server) process. A daemon is aprogram that handles all interaction

between an application (called aclient) and ashared resource (called aservice). The Mara daemon was

developed for thispurpose, providing 5 basic functions:

• provide theuserwith feedback related to speech input

• trainandupdatetemplates for words,

• maintain all recognizer related parameters,

coordinate requests for speech input from many applications in a manner independent of the

underlying speech recognition algorithm where possible, and
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• allow for the testing, debugging, and evaluation of the speech recognition hardware, algorithms,

and the complete system.

The daemon is started by the user at log-in time and claims a small part of the screen (awindow) for

feedback to the user. Because the user must log into the system, the speech recognizer knows who is

talking, and can therefore use the database ofpronunciations specific tothat user. The rest ofthis chapter

describes the problems associated with speech input devices and how the Mara daemon solves these

problems.

3.4. Word Model

A template-based speech recognition system recognizes words based on templates created from

previous utterances ofa word. Templates must be stored in permanent storage (on disk) toeliminate con

stant retraining. Storing templates onthe host computer's allows them tobeshared among many works

tations andallows thehostcomputer to create and manipulate templates. In fact in thecurrent daemon

implementation the training algorithms run on thehostcomputer.

Theconnection between a word and its templates forms the"word model" usedby therecognizer.

Template-based recognizers can recognize any sound asa word allowing users tospeak with their normal

pronunciations. But most recognizers, including the one described here, cannot verify that a word has

any particular pronunciation. The connection between a word and itspronunciations (templates) must be

enforced bytheuser, an interface problem specific tospeech input devices. Toshow why this is impor

tant consider what would happen if the word "stretch" was trained as "expand". Now if the user wishes

toperform the function associated with "stretch" and forgets that "stretch" was trained as "expand", there

isnoway to tell the user tosay "expand" because the templates cannot beplayed back touser. Thus the

usermustretrain theword "stretch". Another way to think about thisproblem is toconsider eachword as

an alias of a function, but one cannot list the aliases. Thus, if a user forgets the alias, it must be des

troyed.

Onesolution to this problem is todevelop a speech recognizer thatcanspeak templates back to the

user. Our system did nothave this capability, soinorder tosolve this problem the user must beable to
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speak aword unambiguously from its spelling. A set ofdisambiguating conventions was developed to

represent words. First, adictionary ofhomonyms was used to convert each spellmg into acanonical

spellmg. For example, "2", "to", "two", and "too" all have the same canonical spelling "2". Multiple

word phrases are represented as "word_word" and single letters are represented as single letters. Thus

the UNIX word "vi" is spelled"vj\ These conventions are not stricdy enforced, but are used by all pro

grams written as part ofthis project By representing words with an unambiguous spelling, the feedback

techniques described later willhave real meaning to theuser.

3.5. A Virtual Recognizer

When an application program wishes to use speech input itmust connect to the Mara daemon. The

daemon then provides a"virtual recognizer" to the application. The virtual recognizer isaset of server

calls (one can think ofthem as system calls) that application programs require to use arecognizer. A list

ofvirtual recognizer calls can be found in table 3.1. Each virtual recognizer is independent but because

of theword modelabove, applications can share words efficiendy.

When an application is started it normally loads its vocabulary into the recognizer using the

"LoadaSpelling" call. This call returns an integer between 1 and 1000 (called a"uname") that is the

internal name assigned by the recognizer for aword. The uname for agiven word is the same for all

applications, reducing the memory required in the daemon. After words are trained the application indi

cates where on the screen the application is "active". When aword is spoken the recognizer determines

which application receives that word by looking at which window the mouse is over. An application can

associate itself with any number ofwindows by using the"AssocWindow" call. An application can also

force the daemon to accept all voice input independent ofthe mouse. Finally, the application turns its

virtual recognizer on. While the recognizer is on, when aword is spoken in one the application's win

dows, amessage is sent to the application through the recognizer's file descriptor (i.e. like any other input

device). The application can then read this input using the "GetaHearing" procedure to determine the

action to be taken. The message sent by the daemon contains the uname ofthe recognized word or aspe

cial "reject" uname. If the application wishes to train anew word it must first turn off the recognizer,



Table 3.1 Mara Virtual Recognizer Commands

Type Meaning Function

WORD*

HEARING*

GetaWordXchar*prompt;WORD *word)
CompareWoroXWORD *w; HEARING *hearing)

int

int

int

int

uname

oname

uname

aname

LoadaRawTp(WORD *word; int flags)
UnloadaUname(int uname)
LoadaSpelling(char *spelling; int flags)
UnIoadaSpelling(char*spelling)

int

int

int

int

int

param

param

param

param

param

MaraParameter(int parameter; int valuetype; int value)
SetMaraParameter(parameter; value)
GetMaraParameter(parameter)
SetDefaultMaraParameter(parameter)
GetDefaultMaraParameter(parameter)

int

int

int

int

int

flags
flags
flags
flags
flags

MaraFlags(int flags; int valuetype; int value)
SetMaraFlags(flags,value)
GetMaraFlags(flags)
SetDefaultMaraFlags(flags)
GetDefaultMaraFlags(flags)

int

int

int

int

T/F

T/F

T/F

T/F

ConnectRecognizer(int fatal)
OnRecognizer(int graball)
OffRecognizer()
DisconnectRecognizer()
AbortRecognizerO

int

int

uname

uname

AddMemberToClass(char *class, *member, *cdata)
DeleteMemberFromClass(char *class, *member)

int T/F AssocWindow(int window)

FlashString(char *string; int x, y)
FlashUname(int uname; int x, y)

| TpVerifyO

55

then train the word then turn the recognizer back on.

The virtual recognizer also supports debugging and parameter-setting system calls. The "Loada-

Word" call allows the application to skip the word model and direcdy load an arbitrary template into the

recognizer allowing low-level tests of the recognizer. Recognition related parameters such as rejection

threshold, peak in-word energy threshold, silence between words/sentences etc. can also be set through

virtual recognizer calls. Parameters are global andtherefore effect allvirtualrecognizers.

In addition to returning just the best matched word, the recognizer can be placed in "evaluation

mode" causing the top few matches to be returned to the application. This mode is normally used to

evaluate the recognizer but can also be used to implement a maximum likelihood parser in applications
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r
* Load the digits, then recognize fromthe microphone
V

#include <stdio.h>
#include <mara/mara.h>

#define TRUE 1
#define FALSE 0

char*digftsfl - {"1", "2", "3", *4", "5", "6", V, "8", -9", "0". "oh", NULL};
char *names[1000];

main()

{
char **p;
int window;
HEARING *hr;

ConnectRecognizer(TRUE);
for(p«digits; *p; p++) {

uname • LoadaSpelling(*p, 0);
H(uname < 0) {

fprintf(stderr, "Couldnl load %s\n", *p);
}else{

names[uname] =- *p;

}
}
sscanf(getenv("WINDOW_MP), 7dev/win%d", &window);
AssocWindow(window);
OnRecognizer(FALSE);
while(hr» GetaHearingO) {

printf("you said %s with score %d.\n",
names[hr->hr_data[0].hr_uname],hr->hr_data[0].hr_score);

FreeHearing(hr);

}

Figure 3.3 - Sample application: recognize from microphone

that require constraining grammars. Thenumber of matches returned isby the application.

The"Compare" call allows the recognizer tobeused as an array processor. That is, the recognizer

normally will compare incoming words from a microphone with its templates. The "Compare" call will

send aword tothe recognizer as though it was spoken, and return the best match. When used inconjunc

tion with evaluation mode, this call allows large databases of words to be compared very quickly (60



r

* Loadthe digits, then compare each disk file specified on command
* line with alldigits
7

#include <stdk>.h>

#include <mara/mara.h>

#define TRUE 1
#define FALSE 0

char*digitsQ ={"1", "2", "3", "4", "5", "6", T, "8", "9", "0", "oh", NULL};
char *names[1000];

main(argc, argv)
int argc;
char *argvO;

{
char**p;
int i;
HEARING *hr;

ConnectRecognizer(TRUE);
for(p=digits; *p;p++) {

uname = LoadaSpelling(*p, 0);
if(uname < 0) {

fprintf(stderr, "Couldn't load %s\n", *p);
} else {

names[uname] =*p;
}

}
for(i=1; kargc; i++) {

word = ReadaWord(argv[i], NULL);
hr« CompareWord(word, NULL);
printf("file %s sounds like %s with score %d.\n",

argvlO.
names[hr->hr_data[OJ.hr_uname],
hr->hr_data[0].hr_score);

FreeHearing(hr);
free(word);

}

Figure 3.4 - Sample application: recognize fromdisk
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words/minute). The word used by the "Compare" call is not a digitized word; it is the oumut of the

recognizer's front-end processor.
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3.6. Adding New Words

Most speech recognition systems separate recognizer use into two phases, training and recognition.

While this view holds well for studying speech recognizers, it isnot the way that recognizers are used.

When used, training and recognition often occur atthe same time, that is, new words are added while an

application is running. Also, from the point ofview ofthe application program, training is arecognizer-

dependent feature with which applications should not have to deal, because in the future some recogniz

ers may need no training. An application program really requires only one word-related call such as

"LoadaSpelling".

Representing aword by its spelling allows many applications to share the same words without hav

ing to retrain words for each application. Since templates are associated with aword, not an application,

each application need only send the daemon the spelling ofa word tobe used. The Mara daemon sup

ports the function "LoadaSpelling" that can be executed by any application program when its virtual

recognizer isoff. "LoadaSpelling" will train a word ifnecessary (i.e. ifno templates are found on disk),

then load that word's templates into the recognizer.

Training requires user interaction, and if the user makes a mistake while training the recognizer,

then the recognizer cannot operate properly. Inorder toaid the user, the training interface should becon

sistent and error resistant The training algorithm must balance three considerations. First, the user

wants to say each word to be trained as few times as possible. The reason for this isobvious: training isa

burden onthe user and it does not direcdy aid an application. On the other hand, a word must be trained

well in order for the recognizer towork well. It has been discovered by many researchers that averaging

many utterances ofa word to form a template increases recognition accuracy greatly, and the more utter

ances that are averaged, the better the recognition accuracy. The third consideration is that users do not

always say what they are prompted to say. This is especially true when the recognizer isbeing used with

an application that requires newwordswhilerunning.

TheMaradaemon trains words byprompting theuser to sayeach word twice. Theprompt appears

in the middle of the screen in a large white box that pops up only when words are to betrained. These
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two utterances are compared and if they are similar (i.e. their word toword scores are small) then the

daemon averages the two utterances to form asingle template. If the utterances are not similar then the

user is prompted to say the word again. The training algorithm then compares all possible pairs oftwo of

these three utterances to find a match. If no match occurs the user is prompted to say theword again.

This process repeats until the word is spoken twice similarly. The Mara daemon's training algorithm

attempts to balance all three considerations. Thus when the user cooperates completely, he must say each

word only twice. If the user makes amistake or the recognizer makes a mistake then more than two

utterances are required.

It is interesting tonote that keyboards and mice do not require their applications toload avocabu

lary into them (an exception is keyboards with programmable function keys). Instead, these devices have

a predetermined set of symbols that they can send to the host This is one reason why a speech recog

nizercannotbe thoughtof asjust a"voice keyboard".

3.7. Feedback to the User

Another major difference between speech recognizers and keyboards is that speech recognizers

make many more mistakes, and the user does not expect (nor can he predict) when errors are going to

occur. Keyboards and mice generally donotmake mistakes, BUT, users make lots of mistakes when typ

ing. Thus some of the feedback mechanisms described here apply equally to keyboards and speech

recognizers, others are specific to speech. A speech recognizer can make three different types of mis

takes:

• Rejection error - theuser speaks aword/phrase and the computer does nothing.

• Insertion error • dieusersays nothing butthecomputer does something.

• Substitution error - the usersaysonething butthecomputer does something else.

3.7.1. Rejection Errors

Rejection errors are by far the most common sort of errors encountered in normal use. These

errors come from many different sources. First the recognizer might beturned off,broken or not initial-
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Figure 3.5 - The Mara window

ized properly. To solve this problem the user must receive feedback from the computer indicating that

the hardware and software are setupcorrectly. The Mara system provides such feedback in the form ofa

VU meter on the screen. The VU meter is updated after each word is detected, causing a gray bar pro

portional to the log ofthe peak in-word energy to be displayed in a fixed spot on the screen. Additional

VU meter information shows a long term energy estimate and background noise energy estimate so that

the pre-amplifier gain can be set correctly. System parameters such as the rejection threshold must also

be set properly.

The second source of rejection errors occurs when the user speaks a word that is unknown to the

recognizer. While this error is really auser error, it is avery common phenomenon and must be handled

by the user interface. The Mara daemon presents an ordered list of the top few recognition possibilities

for each spoken word along with the recognition score. This list is called the top words list. Normally if

a word is in the recognizer's vocabulary then the word will be in the list Also, if the spoken word

sounds similar to the required word, the user is reminded of the correct word. This feature is especially

useful for multi-word commands when the userremembers oneword butnot theother. The usercan also

scan thecurrent recognizer vocabulary by typing into theMara window.

The third source ofrejection errors occurs when the user says the correct word but the score ofthat
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word is greater than the rejection threshold. This is the type of rejection error traditionally associated

with speech recognizers and can be overcome by simply saying the word again. Another solution is to

retrainthe word so that its templates yield smallerscores.

3.12. Substitution Errors

Bom the user interface pointof view, substimtion errors are already dealtwith in many systems.

A substitution error can be handled just as if the user made a mistake and said the wrong word. An

"undo" command will undo the error, and the word can be spoken again as though it was rejected ini

tially. La order to supply die user with a consistent method of undoing errors (since substimtion errors

can happen at any time), the applications program should have an "undo lastword" function and trigger

that function when a special wordsuchas"error" or"undo" is spoken. Note that formany programs such

"undo" commands already exist, although they are usually implementedby undoing a singlekeystroke.

With a speech interface, errors occurat the word level,so it is important to undothe lastword. Often the

connection between number of keystrokes and words is difficult and inconsistent How this problem is

handled in the Mara system is discussed in chapter4.

3.7J. Insertion Errors

Insertion errors are specific to speech recognition systems. It is very rare to find a keyboard or

mouse that sends characters to the host computer without any user actions. A speech recognizer will

listen to noise that comes into its microphone and, if it is loud and long enough, interpret it as a word.

Thus non-speech sounds such as door slams, breathing noise or telephoneringing. Unintentional speech

sounds such as expletives, mumbling, or someone talkingin the background may match closely to some

word in the vocabulary. If this match has a score less than the rejection threshold then the system will

perform some random operation. If the application does not give feedback to the user about each com

mand performed, then the user wouldhaveno way of determining what function was accidentally per

formed without looking at the top words list Even the top words list does not work well formost noise

sources because it is updated with each new spoken word, andif the noise source is interpreted as more
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than oneword, thenthe windowchanges tooquickly.

There are two solutions to the insertion error problem. First, the application must inform the user,

somehow, about each word that is acted upon. Thus interfaces that allow users to change things that are

not visible should be rewritten to perform some function on the screen (for example flash aword on the

screen in such away as not to slow down the interface). The second solution is to turn off the recognizer

temporarily when noise is aproblem, for example, when someone comes up to talk to the user. TneMara

daemon allows the user to turn itoff by merely pointing the mouse to awindow on the screen that has no

application running in it, for example, the background window. Unlike rejection and substitution errors,

insertion errors cannot be reduced by retraining unless atemplate is trained to some specific noise by

accident

3.7.4. Other Feedback

The ordered list ofrecognition possibilities is avery useful feedback mechanism. It provides com

plete mformation about what the recognizer is hearing and how well the reconizer is working. Scores in

the Mara window can be examined to determine how to set the rejection threshold, when to retrain a

word, and ifthe recognizer is working well or just marginally so (i.e. ifscores are close to or far from the

rejection threshold). Another feedback mechanism was also considered, flashing the recognized word on

the screen over the cursor, that is, where the mouse points. "Reject" was flashed when a rejection

occurred. This flashing slowed down the response time ofthe system so that the user could not do any

thing while the word was flashed, and was therefore discarded.

3.8. Debugging

The feedback mechanisms described above provide the user with limited information as to why the

recognizer make mistakes. Sometimes the user might like more detailed information about aparticular

mistake. This is especially true when the user is the trying to debug the system. When requested, the

Mara daemon will pop up awindow that shows how the dynamic-time-warp algorithm comparing the

incoming unknown word withany specified template.
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The window contains six plots shown in figure 3.6. Tne plot upper left in the upper left comer

shows the energy vs. frame number for the template and the plot to its right shows the same for the unk

nown word. The two plots in the middle show one frame of the template overlayed with one frame of the

unknown and vice versa. Tne frame numbers ofthe template and unknown word are selected by moving

ahighlight in the upper plots or the lower plots. The plot in the lower left comer shows the dynamic-

time-warp path for the word to word comparison. The plot next to it shows the spectral error along that

path.

With ahttle practice, these plots can provide much information about why arecognition error

occurs. If the peak spectral error occurs atone end of spectral error plot then the error is most likely an

endpoint error (such as the one shown in figure 3.6). This can be confirmed by looking at the shape of

dynamic-time-warp path near the lower left and upper right corners. If the path is either vertical or hor

izontal this confirms the error. Other errors can be found by comparing the energy versus time plots

looking for missing peaks indicating different stress or missing syllables. Individual spectra can be

examined to determine if the front-end spectral analysis is working properly. For example, spectral tilt,

missing or shifted filters and flat specta all indicate that the front-end processing is faulty.

3.9. Feedback from the User

The feedback mechanisms describe above solve the problem oftelling the user what the recognizer

is doing, but do not allow the user to improve recognition accuracy. In order to do this, the user must

give feedback to the recognizer informing it when an error has occurred and how to fix the error. The

Mara system allows two forms ofuser feedback: retraining and adaptive training.

3.9.1. Retraining

The idea behind retraining is simple, ifatemplate is "bad", remove it and train anew one. The

Mara daemon allows any template to be retrained by pointing to it in the Mara daemon window, then

selecting the retrain command from apop-up menu. The retraining algorithm is the same as the initial

training algorithm: the user is prompted to say the word twice similarly then atemplate is created by
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averaging those two utterances.

332. Adaptive Training

Retraining can solve the problem of completely mistrained templates (e.g. templates that are

trained toa telephone ring) but does not solve the most common training problem: the way a person says

a word when reading is NOT thesame as when speaking spontaneously. Onemust remember that the

recognizer is trained by prompting the user to read a word then speak it When in use, however, the

recognizer hears words spoken spontaneously. Forexample, the word "erase", when read, is often pro

nounced with a initial IM sound; while when spoken spontaneously, the IM sound can change to an /uh/

sound. Another example is thattheword "eight" is often missing the trailing IM burstwhen spoken spon

taneously but not usually when read.

Another difference between utterances used to form templates and spontaneous speech is due to

physical and mental changes in theuser. Forexample, a cold causes severe nasalization of sounds that

arenormally nevernasalized. Thiscauses a decrease in recognition accuracy.

Training is theonly knowledge thatthesystem has as to how words arepronounced. In actual use,

input to the recognizer is spontaneous, so templates should be created from the recognizer while it is

being used. Unfortunately, to use the recognizer it first must be trained. To overcome thisproblem the

Mara daemon uses the initial training algorithm described above to form basic templates, then an adap

tivetraining algorithm attempts forrefine these templates. The result is an increase in recognition accu

racywithout requiring theuserto perform tedious, unneeded, andpossibly useless training.

The goals of the adaptive trainingalgorithmare to:

use spontaneous utterances of a word to updateexistingtemplates,

integrate intothe system without consuming toomany system resources (especially disk space),

beenvoked eitherautomatically or semi-automatically to ease theburdenon the user,

adapt toshort and long term voice changes bythe user toeliminate periodic retraining, and

increase recognition accuracy.
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3.9.2.1. Design Issues

The first issue in thedesign of an adaptive algorithm is to identify theinput to the algorithm. There

are two possibilities: one is to usejustthe unknown utterance as input, theother is to useboth theunk

nown utterance and a label indicating the word corresponding to the utterance. The first inputscheme

allows fully automatic adaptation (i.e. no user input is required), while the second scheme requires the

user to tell algorithm which word was spoken, and therefore is only semi-automatic. The algorithm

implemented in the Mara daemon is semi-automatic. The user can adapt any word by first saying that

word spontaneously, then finding the word in thetopwords list Very rarely, if it is not in the list then

the word can be typed into thedaemon's window. To perform theadaptation alltheuser mustdois press

the left mouse button. Adaptation is only performed when the user wishes, reducing the computational

overhead incurred by adaptive algorithms.

The second issue is how many templates will be used to represent each word. In general, if one

uses more templates per word, therecognition accuracy increases, butthe fewer words can berecognized

at one time. There aretwo different minimizationcriteria thatcanappliedto tradeoff templatesper word

versus vocabulary size: foreachword, minimizethenumber of templates for thatword; or for allwords,

minimize the average number of templates per word. The second minimization is very difficult because

the vocabulary changes often, therefore the Mara daemon attempts to minimizethe number of templates

per word.

The third issue is how many extra pieces of information are required to perform the adaptation.

This information mustbe stored on the hostcomputer's diskusingsomeof the hostcomputer's resources.

Thus, the amount of extra information should be as small as possible.

3322. Previous Works

Few adaptive training algorithms have been proposed in the literature. Lowerre34 implemented a

semi-automatic adaptive algorithm for HARPY.35 HARPY isnotatemplate-based speech recognizer, but

can be thought of as one, if templates are considered tobeentire phrases. Fully automatic schemes have

been proposed totrain sub-word level spectral classifiers36 and feature classifiers,37 but these techniques
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do not apply direcdy to wordor phrase level adaptation. Allof these adaptation algorithms are used to

convert speaker-dependent systems into speaker-independent systems by updating speaker dependent

information in the system for each new user. A dramatic increase in recognition accuracy occurs when

adaptation is performed. Lowerre34 found that anerrors decrease from 7%to 2% when adaptation was

performed, and Stern37 found that errors decrease from 12.5% to6.2% in their system.

To date, adaptive algorithms update only spectral information in a word but do not change the

structure of a word. These schemes, therefore, cannot handle cases where a user speaks a word with an

unexpected pronunciation. Lowerre solved this problem by assuming that all expected pronunciations

could be computed by applying linguisticprinciples. Since no linguisticprinciples are built into the Mara

system, it must provide an empirical method of findingunexpected pronunciations.

3.9.23. The Algorithm

The adaptive training algorithm has three inputs and two outputs. The first input is the unknown

utterance u, the second is the set of templates (T) for that utterance, the third is a set of template con

siderations (C). Template considerations are averages of utterances that might be templates in the future.

Note that because the unknown word is labeled by the user, its templates are known. The algorithm out

puts a set of templates and a set of tenmlate considerations. The templates are loaded back into the

recognizer and the tenmlate considerations are stored back on disk.

Each template and template consideration corresponds to a possible pronunciation of the word.

The first step in the algorithm is to determine if the unknown is a new pronunciation of the word or just a

refinement of an existing pronunciation. This is done by measuring the word-to-word distance between

the unknown utterance and each template and template consideration. If a distance is less than the adap

tation threshold T^T. then the unknown is averaged into that template. In computing the average, the

unknown word is weighted by 3 while the template is weighted by 2 times the number of utterances (N)

that were averaged to create that tenmlate. The maximum template weighting is 8. The weighting can be

thought of in terms of the formula:
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Definitions:

u - unknown word
r - set of templates for u
C - set of template considerations foru
L - temporary set oftemplates and template considerations

Algorithm:

any «- FALSE
forall* InT^jC

ifdistance^, u) <T^, then
any «- TRUE
x «- weighted_average(x, u)

if any then

else
L *-T \jC + u

sortL in ascending order

ri<-Lx
ifweighty >T^^,-^ then

r2<-L2

C4-L-T

Outputs:
TandC

Figure 3.7 - The adaptive training algorithm

T =s
3U+2NTotd

3 + 2-N

If the unknown word is not within T^, of any template or template consideration, then it is

assumed to be anew pronunciation and entered into the set ofconsiderations. The sets oftemplates and

template considerations are thenmerged intooneset(L).

The last step in the algorithm is to split L into the new sets of templates and template considera

tions. First L isordered by weight such that Li has the highest weight Li is always put into the set of

new templates, and L2is put into the set oftemplates if its weight is greater that the threshold T^-wgA*-
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The remaining mumbers ofI are placed inthe new list oftemplate considerations.

332A. Thresholds and Weightings

The two thresholds T^, and T,*.^, (along with the weighting scheme described above)

determine how the algorithm responds to short term and long term changes inpronunciations. Tadapt can

be thought ofas the largest possible error between two different pronunciations ofa word. Small values

ofT^T, will force many template considerations with little averaging. Large values will perform much

averaging among different pronunciations. Because averaging utterances isknown tocause an increase

in recognition accuracy, T^, should be set high. The Mara daemon sets this threshold 20 percent

above the rejection threshold.

TTie T^-^ja, threshold determines how quickly the system will adapt to new pronunciations. If

the threshold is set to 2 then one spontaneous utterance of a word which corresponds to a different

pronunciation will cause the algorithm tocreate two templates. If the threshold is setto3 ormore then

two or more utterances would berequired toforce thecreation of a new tenmlate. TheMaradaemon sets

the threshold to 2 for two reasons. First, because the user normally requests adaptation only when the

system is not working well, the recognizer should respond as quickly as possible. Requiring two utter

ances ofany new pronunciation would seem like an unresponsive system from the user's point ofview.

Second, as stated previously, spontaneous utterances often have a completely different pronunciation

than read utterances so it is not unreasonable to expect that a single labeled spontaneous utterance

corresponds to a new pronunciation.

The weightings were chosen so that the template is a running average of the all utterances that

created it To give more preference to recent utterances the template weight is limited to 8 and the

weightof the newestutterance is 3 insteadof 2.

3.9.2.5. Experiments

Aset ofexperiments were performed to test the adaptive training algorithm. The database for the

experiments was collected from ahigh fidelity audio recording ofa live KIC38 editing session. Details
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about the data collection can be found in section 5.2.1. Two speakers were used for the experiments:

Steve and peter. Tne vocabulary consisted of the 100 words shown in table 3.2. TTie database of spoken
words consisted of2or 3prompted utterances of each word (used for traiiimg) foUciwed by ma^^

taneous utterances (1658 for speaker steve, 952 for speaker peter). The distribution of the spontaneous

utterances for asingle speaker is shown in figure 3.8. Note that many words have afew or no spontane

ous utterances while afew words have many utterances. This is typical of recognizer usage in the

engineering workstation environment

Table 32 KIC Vocabulary

add layer arc area attribute basic

black blink blue bottom box

boxes brown changeJayer chip colors

contact copy delete deselect diffusion

dimension directory donut edit erase

expand fill flash glass green

grid hilight instance kill label
or

last layer left lessjblue less_green

lessjed lyra menu metal miiror_x

minor_y morejblue morejgreen more_red move

no opamp outline p_plus • pan

peek poly poly two polygon popjcell

push 0 r 2 3

8
4 5 6 7

9 90 180 270 45

red redraw removeJayer return save

1
select stretch_box switch technology text

text_two top undo update visible

well width window wires write

write out yellow yes zoom zoom full J

The first experiment simulated the adaptive training algorithm when used by aconscientious usen

one who adapts each unknown word only when arejection error or substimtion error occurs. The test

was kept "fair" by allowing only one template per word. Each adaptation averaged the unknown word
into the current template creating anew template (i.e. T^, =~). TTie experiment was performed for
rejection thresholds between 50 and 85 in steps of 5. Hie results of the first experiment are shown in
figure 3.9, and the same data is presented in table 3.3.
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1. select 283 21. delete 14

280-4 2. deselect 256 22. bottom 14

260-
, 3. streteh_box 147 23. basic 14

| 4.blue 123 24. well 13
240- 5. poly 96 25. text 9

fV\ '
1 6. move69 26. edit7

220-
• 7. boxes 66 27. expand 6

200- 6. copy 65 26. pan 5

180-
9. black 63 29. opamp 5

10. green 46 30. metal 5
160- 11. layer 45 31. mirror_y 4

140-
I 12. area 39 32. push 3
\ 13. yellow 33 33. pop_cell 3

120- \ 14. undo 31 34. contact 3

100- \ 15. save 26 35. switch 2
\ 16. write 18 36. mirrorjc 2

80- \ 17. left 17 37. instance 1
60- ^s 18. top 16 38. chip 1

• \ 19. lyra 16 39. changeJayer 1
40- N, 20. label 14 40. brown 1

20-

0-
^—v__

5 10 15 20 25 30 35 40 45 SO 55 60 65 70 75 80 85 90 95 100

Figure 3.8 - Distribution of spontaneous utterances forspeaker steve

In figure 3.9, therighthand side of thehorizontal axis corresponds to no adaptation atall. Compar

ing plots (a) and (b) of the figure, note that as the number of adaptations increases the error rate falls

quickly andthenplateaus. This suggests thattheuserneedonly adapt a wordonce forreasonable recog

nitionaccuracy. In order to measure the performance of the algorithm when the error rate plateaus, the

difference between the word to word scores of the unknown word compared to the correct template and

the best match among the incorrect templates was computed. The average value of this difference is

called the separation and is plotted in Figure 3.9c. It will be shown later that the separation tracks the

numberof adaptations nicely, but it doesnot always trackthe error rateaccurately.

The second experiment showsthe ability of the adaptive training algorithm to find new pronuncia

tions of a word. For this experiment the rejection threshold was fixed at 50, and T^T, was varied from

60 to 100 in steps of 5. Figure 3.10 (table 3.4 shows the same data) shows the number of words with 2
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Table33Adaptive'TrainingExperimentOne:T^.r=*>

speaker
rejection
threshold

substimtion

errors

numberof

adaptations
separation

noadaptation33(33%)036.4
oo11(1.2%)11392

8511(12%)1640.0

8010(1.1%)1941.6

7511(1.2%)2442.3
peter

709(0.95%)3043.8

658(0.84%)3644.7

606(0.63%)4745.6

554(0.42%)6446.6

505(0.53%)9648.3

noadaptation35(2.1%)031.8
oo16(0.96%)1632.9

8514(0.84%)1533.0

8013(0.78%)1633.0

steve
7513(0.78%)2234.5

7012(0.72%)2935.9

6511(0.66%)3836.8

6012(0.72%)5037.4

5510(0.60%)7138.3

5011(0.66%)9740.0

templatesversusT^T,.NotethatasT^T,decreases,thenumberofwordswith2templatesremains

relativelyflatthensuddenlyincreases.ThevalueofT~*T.shouldbechosenatthebendoftheplot

(about75).

Allowingmultiplepronuncationsdidnotchangetherecognitionaccuracyandseparationmeasur

ablysoadifferentcriterionwasusedtoevaluateeffectiveness.Wordswithtwotemplateswerecom

paredusingthedebuggingtooldescribedabove.Differencesbetweenthetwotemplateswereclassified

asshownintable3.5.Thewordsarelistedintheorderinwhichalgorithmfindstheirsecondpronuncia

tionasTadeptisdecreased.Somewordsgeneratedtwotemplatesthatwereveryclosetoeachother,but

mostwordshavetwodistincttemplates.Thisexperimentshowsthatthescoresgeneratedfromthe

dynamic-time-warpalgorithmcanbeusedtoseparatepronunciationsofaword,andthatmostwords

requireonlyonetemplate,butafewwordsrequiretwotemplates.

Thethirdexperimentexaminedtherelationshipbetweentrainingonpromptedversusspontaneous

speech.Forthisexperiment,thefirsttwospontaneousutterancesofeachwordwereremovedfromthe
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Figure 3.9 - Errors, adaptations, and separation vs. rejection threshold: 7^, =
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off

off

off

unknown word database. The prompted templates were created by averaging two pronmted utterances of

a word. The spontaneous templates were generated by averaging two spontaneous utterances of a word.

If a word did not have two spontaneous utterances men the prompted template wasused instead. Table
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Table 3.4 MultiplePronunciations: rejection threshold =50

. T substimtion words with
speater lada* errors two templates

100 5 0
95 5 0
90 5 1
85 5 1

peter 80 5 1
75 6 3
70 6 7
65 6 11
60 6 18

100 12 1
95 12 1
90 12 1
85 12 1

steve 80 12 2
75 12 3
70 12 6
65 12 9
60 13 18

20-, .

18- V

16.

14-

12-

'•X

10-

8-

6-

4-

V. X Peter

steve \\

2- ^\ **•—-,»

5 0

gure3

55 60 6570 75 80 85 90 95 100

shold a 50R 10- Words with twotemplates versusT^, for rejection thre



Table 3.5 Classification of Multiple Pronunciations

speaker * odopt word difference

steve

100

80

75

70

70

70

move

save

edit

black

blue

layer

completely different (all sounds)
different/a/sounds

different /eh/ sounds (shifted in frequency)
missing IM sound
missing/I/sound
small difference in spectral tilt

peter
90

75

75

select

deselect

zoom

no difference

no difference

stressed and unstressed Izl sounds

3.6 shows the resultsof the experiment

Table 3.6 Prompted vs. Spontaneous Training

speaker
substimtion .

*~~~ separation
errors

prompted 32(3.5%)
*^ spontaneous 12 (1.3%)
steve P*01"?**1 35(2.1%)

spontaneous 51 (3.1%)

32(3.5%) 36.4
45.3

31.8

37.4

75

Note that even though the separation increases for spontaneous templates the error rate also

increases. This discrepancy can be explained by plotting the distribution of separations (figure 3.11).

Values of separation less manzero indicate substimtion errors. While the spontaneous utterances have a

higher average separation, the lowertailof the distribution is not shifted. When examined usingthe com

parison tool descibed above, these tailswere foundto correspond to different pronuncations of the words.

Forexample, figure 3.12 shows the spontaneous templates fordie word 'move' compared to a later spon

taneous utterance of move. Note that the trailinghi sound is completely absent in the template, but not

in the utterance. This leads us to conclude thatthe variation of pronunciations in spontaneous speech is

greater than the variation in prompted speech. Thus templates generated from spontaneous speech must

be averaged from more utterances or a wider selection of utterances than templates generated from

prompted speech. The adaptive training algorithm does exacdy that: templates can be generated from

any utterance of a word.
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Figure 3.11 - Distribution of separations for speaker steve

It is interesting to note that the machine time required toperform the experiments above was only

12 hours because the special-purpose hardware was used. These same experiments, if performed on a

computer able to compute 10 word-to-word distances in 1 second, would require 6 days of computer

time.

3.9.2.6. Conclusions

The adaptive training algorithm was treated favorably byusers for three reasons. First, recognition

accuracy increases when adaptation is performed. As one can see from the experiments above, recogni

tion accuracy increases very quickly with each new adaptation. Thus alittle extra work provides the user

with adramatic increase inaccuracy. Second, the algorithm can sucessfully find new pronuncations ofa

word allowing the user to speak more naturally. This feature is important for template-based systems

because each word is trained by example, and an initial template does notnecessarily correspond to a
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Figure 3.12 - Spontaneous template forword 'move' compared to later spontaneous utterance
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natural pronuncation. Finally, from the user interface point of view, the adaptive training algorithm gives

the user achance to react positively when the recognizer makes amistake. Before the adaptive algorithm

was developed, users would react to arecognition error by either talking louder or enunciating clearer.

This reaction isunfortunate because it does not increase recognition accuracy. In order toincrease accu

racy the user must speak to match the template, which was not necessarily created from well enunciated

utterances. The adaptive training algorithm allows the user to react by telling the recognizer that it made

amistake, allowing the recognizer tocorrect that mistake inthe future.



Chapter 4 - Interface Styles

4.1. Introduction

The final system must use speech effectively without limiting the types of applications and the

effectiveness of those applications thatcurrently runon engineering workstations. This chapterdiscusses

how speech input devices can be used with four different styles of user interfaces: text/dataentry, menu-

based interfaces, text-based command interfaces, and pointing interfaces. These styles cover most user-

computer interaction in use today. Experimental and application specific interface styles such as namral

language interfaces are not covered.

42. A Practical Consideration

There is one crucial practical consideration in the design of a speech input device: speech is a

newcomer to the input device field and existing applications are tightly coupled to other input devices,

especially keyboards. The first concern of any speech input designer should be: "can I run existing appli

cations?". The answer had better be "yes!" otherwise the speech recognizer will not be too useful. It is

unreasonable to expect other people to change their applications to suit a speech recognizer especially

when speech input devices are not generally available. Speech input devices must be retrofit devices that

can talk to any apphcation by simulating an existing input device (i.e. a keyboard).

While UNIX provides a mechanism to simulatekeyboard input (tty/pty devices), the SUN window

system used as partof this project does not supply an equivalent for mouse input or window-driven key

board input The SUN window system tags each event (each keystroke and mouse action is called an

event) with the x and y locationof the mouse when the event occurredand a time stamp to allow applica

tions to detect double-clicking of mouse buttons. Because the window system is implemented in the

UNIX kernel and the kernel was constantlybeing updatedduring this project, we felt that it would be too

difficult to make substantial changes to the window system. Instead, the Mara system was retrofitto the

window environment by supplying the applications programmer with a library of routines that provide

speech input events much like the SUN window system provides keyboard and mouse events. This

79
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scheme works reasonable well, but a more integrated scheme would be better. Most speech interfaces,

however, usethestandard tty/pty terminal emulator for speech input

A3. A Model of Speech Input

Before examining different styles ofuser interfaces, the speech recognizer should be modeled in

terms ofthe speed, type, and flexibility ofinput that itcan supply to an application. Aspeech recognizer

can be thought ofas akeyboard with only function keys. The labels on these keys can be changed, and

new keys can be created at any time. The difference between akeyboard and aspeech recognizer is that

a speech recognizer has no alphabetic keys. Words are not created by concatenating letters, but by

adding new function keys. The alphabetic keys on the keyboard are normally used to both create new

items (files, text, commands, etc), and reference old items. This isnot the case with aspeech recognizer.

Speech recognizers cannot create new items spontaneously, but must be told the name ofan item before

it can be referenced.

To make a speech recognizer more like akeyboard it must be able to take speech as input then

create strings of characters as output all with no predetermined vocabulary. This task is far beyond the

capabilities of current speech recognition systems and is not being considered as the goal of any major

speech project

The speed of speech input is limited by the speed that the user can speak, the processing power in

the speech recognizer, and constraints placed on the way the user must speak. The major constraint

placed on the user in a speech recognition system is whether words must bespoken in isolated orcon

nected form. Isolated word recognizers require the user to pause briefly before and after each word.

Connected word recognizers require no pauses and thus the user can talk faster. Even for isolated word

recognizers such as Mara, the user is not significantly slowed by the speech recognizer. The most

significant deterrent to high speed speech entry is the user the user cannot think as fast as the speech

recognizer can recognize. Gould39 showed that in a letter dictation application users were not

significantly slowed down when speaking words in isolation. The Mara speech recognition system can

recognize between one and two words per second, although we will see later that the user typically
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speaks much slower.

Theslow speed of the input device when combined with its moderate sized vocabularies suggests

that for a workable interface, each word must perform the equivalent of many keystrokes. Speech com

mandsshouldbe macrocommands, combining many basicfunctions into one word.

4.4. Text and Data Entry

Textanddata entry entails thetranscription of large amounts of text intoa computer forprocessing

at a latertime. Thecreation of a new letter, paper, or computer program starts with a longmonologue by

theuser. During thismonologue, the thoughts of theuserare transcribed intoa computer-readable form.

Normally the transcription is performed by the user in the form of typing. The transcription process

requires a simple interaction with thecomputer feedback from thecomputer is in theform of a display of

me transcribed material. Depending on the application, vocabulary sizes for a transcription interface

might bevery small (e.g. 10digits) or very large (e.g. theentire English dictionary). Fora memo-writing

application, IBM40 has found that a93% coverage ofthe vocabulary can beachieved with 5000 words.

The expectedvocabulary sizesfor computer programs wasdetermined by examining the numberof

names in a typical set of programs. The set used was the standard UNIX programs including those in

"/bin", 7usr/bin", and 7usr/ucbR. A total of 133 programs were examined. The average number of

names in theseprograms is 109,themedian is 80,andtherange of values is verybroad, from9 names to

424 names. Only 10 programs contain more than 250names, 3 programs morethan300name, indicating

that manyprogramscan be entered by speecheven if all namesmust be trained.

Text entry interfaces also require some editing capabilities. Simple commands such as "delete the

last word" and "delete the last sentence" are sufficient for transcription. More complex editing features

are part of either the menu-basedor text-basedcommandinterfacestyle.

Speech recognition systems have long been thought of as the perfect input device for text entry.

Efficient speech input would eliminate the need for a user to learn to type efficiendy. Unfortunately, due

to the limits on vocabulary,size and accuracy of current speech recognizers, entry of English text through

speech input has not been successful. Even so, it is with respect to the text entry interface style that most



82

speech recognition systems are evaluated.

To increase recognition accuracy for English text entry, alanguage model of English is usually

applied to the outputof the recognizer. Tlieoutoutofarecogiiizerisanora^redlistof word possibilities

and corresponding scores. Given that some words are more likely than others, the recognizer may choose

the second word in the list if its score is close to the first word and itoccurs more often in English text

Tnis process can also be applied to word pairs, and triples. Bahl41 has proposed such an English

language model for an office dictation speech recognition system using probabilities derived as a

weighted sum of single, double, and triple word probabilities. For a2000 word vocabulary, the word

error rate decreased from 203%to2.5% when the language model was used.

Text entry in an engineering workstation environment is normally much more structured than just

English text and therefore does not require alanguage model Instead, text entry should be coupled with

an editor to provide an efficient method of creating structured text The next section describes such an

editor for 'C programs.

AS. Menu-based Interfaces

Menu-based interfaces are a popular interface style and are currendy associated with the phrase

"user-friendly". These interfaces are used to enter both commands and data. The idea behind amenu

interface is simple, all commands and data are presented to the user in alist called amenu. The user then

selects one of the items in the menu either by entering acode associated with the item (usually asingle

keystroke) or by pointing to the item with the mouse. If the item is acommand then itis executed, ifdata

then the data is entered.

There are many variations on this basic theme. Sometimes menus become too long to display on

one screen. To solve this problem the menu is split into sub-menus requiring the user to first select the

correct sub-menu, then select the correct item. Another limit that forces the use ofsub-menus is the shor

tage ofkeys on akeyboard. Often keyboard-based menu systems such as editors do not display the menu

on the screen, but the menu can be displayed at the users request (a "help" feature). Some menus are

displayed in afixed place on the screen, others "pop-up" when and where required.



83

Menu systems usually provide feedback toinform theuser which command is currendy being exe

cuted. Feedback forms range from highlighting or blinking theitemon the screen to displaying the item

in some obvious spot on the screen.

In addition tocommands and data, menu interfaces are also used tochange anddisplay thestate of

an application. For example, for a drawing appHcation state information might include such items as

current color, line style, and fill pattern. For state information menus, feedback is usually provided to

informtheuseraboutthecurrent stateof the application.

Speech inputis well suitedto menu-based interfaces. A simple speechmenusystemwouldassoci

ate each word with a menu item. Because menus are normally predetermined (i.e. the commands are

fixed by the appHcation), the vocabulary for the speech recognizer can be selected to avoid confusing

words, increasing recognition accuracy. Often, speech menus are not displayed because the association

between a command and a spoken word is easier to remember than between a command and a single

keystroke. For example, the commands "move to previous line, character, and word" mightcorrespond

to the keystrokes "e", "h", and "a" as theydo in the text editorWordStar,42 while thosesamecommands

could correspond to thespoken phrases "previous line", "previous character" and"previous word". Even

witha speech recognizer as an inputdevice, a "help" feature is always desirable.

4.5.1. A C Program Editor

A simple text entry interface and a menu-based interface can be combined to form a powerful

speech editor for structured text One commonexampleof structuredtext entry in an engineering works

tation environment is computer programming. Computer programs are written in a language that has a

syntax which can be exploited to aid the user in transcribing a program. Syntax-directed editing has been

previously examined in the context of keyboard and mouse input Such editors are called structure edi

tors because they know about the structureof the data that is being edited. A complete descriptionof the

structure editors can be found in [43].

The speech-driven editor developed for this project is not a real structure editor, instead it borrows

some ideas present in structure editors to help the user write a program more efficiently. In particular, the
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editor automatically indents a program as it isbeing edited, and has asimplified input vocabulary that is

not "character-oriented" instead it is "function-oriented".

The editor iswritten in the extension language provided by aversion ofthe EMACS44 text editor.

The language was complete and powerful enough so that nochanges tothe editor were required.

4.5.1.1. Indentation

The editor keeps track of the indentation level for all program statements, not just the current

indentation level. When a new statementas added, its level is computedby searching backwards for the

start of itscorresponding statement block. Commands that generate newstatement blocks set the inden

tation for all statements in the block. Labels are shifted left by one half of the statement block indenta

tion.

4.5.1.2. Cursor and Regions

The editor has its own cursor that is controlledindependently from the mouse cunor. The user can

move the editor cursor to the characterin the text nearest the mouse cursor by clicking the left button on

the mouse.

In addition to a cursor, the editor has an invisible marker that is used to define a region. The

marker is set either by using the "mark" command, in which case the marker is placed at the cursor's

location, or with the mouse by pressing the left mouse button then moving the mouse. In this case the

cursor is placed where the mouse button is lifted and the marker is placed where the button was first

pressed. Regions are used to select text to be deleted, moved or otherwise edited.

4.5.1.3. C statements

There are five executable statements in the *C language: "while", "if, "for", "switch", and

"if_else"; and there is onecorresponding word for each of these. Each statement contains oneexpression

and one or more statement blocks. When one of the words above is spoken, the editor first opens the

expression for editing, then places the token f*next-statement*f at each statement block yet to be edited.

For example, the while statement produces the following text
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whilef) {
f*next-statement*l

}

The '*' character indicates the location of the editor cursor after the command is executed. After the

expression is entered, the command "next" is used to jump forward to the next token, then a new line is

opened above for editing. A semicolon is appended to each *C* statement automatically. For example,

after the word "true" and "next" are spoken for the example above, the following will appear on the

screen:

whileCTRUE) {

l*next'Statement*l

}

When a statement block is finished, the "done" command is used to remove the I*next-statement*I token

and proceed to the next token.

Statements can alsobe inserted between two line by moving the cursor to die line afterwhere the

statement is to be inserted, then issuing the "add_statement" command. This commandinserts a ^next-

statement*/token and opens a new line for editing.

Declaration statements use a different token than executable statements: l*next-declaration*l. The

nadd_declaration" command is theequivalent of the"add_statement" commandfordeclarations.

Structure definitions require one additional command "new_struct" to set up the structure definition

braces. Labels are emitted by the command "label", andcase labels are emitted by the word "case".

4.5.1.4. Expressions

Expressions are entered from left to right using the words in table 4.1 with two notable exceptions.

Parenthesized expressions and subscripts are entered as balanced pairs. The command "expression"

enters "O" and "subscript" enters "[*]". The command "move_outside" jumps the cursor forward just

outside an expression or subscript For example, the expression "(a+b)*c" is entered with the word

sequence "expression a plus b move_outside times c". This method of entering expressions forces

expressions to be balanced at all times. Parentheses and subscripts can be placed around an expression
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Table 4.1 'C Editor Text Entry Vocabulary

Word Text Word Text

and && break break

char char comma »

continue continue decrement —

dot . doublejraote N

equal - equals "

extern extern increment ++

int int is_equal_to ..

is_greater_than > isjgreater_than_or_equal_to >=

is less than < is_less_dian_or_equal_to <»

minus - not 1

or II plus +

pointsjo -> register register
return return semicolon t

single_quote » space

star * static static

struct struct times *

by putting a region around the expression, then issuing either the command nexpression_around" or

"subscript_around".

4.5.1.5. Variable and Procedure Names

Most variables and procedure names are not part of the standardvocabulary but must be added on

an as needed basis. Each new variableand procedure name is firstcreatedby typing it on the keyboard.

The commands "train_variable" and "trainj>rocedure" are then used to load the word into the

recognizer's vocabulary. These commands inform the recognizer (through the byme shell described

later) to associate that word with either the variable or procedure word type (described later). When a

variable is spoken it is entered as though it was typed, while a procedure is entered then appended with

thesuing "O". Whena procedure is defined the"newjjrocedure" call is usedto generate the following:

...o
{

}

l*next-declaration*l

l*next~statement*l

The phrase "main_procedure" generates a procedure definition with argc and argv parameters already
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defined.

A set of standard variable and procedure names is included in thebasic editor vocabulary. These

are shown in table 4.2.

Table A2 'C Editor Standard Variables and Procedures

Variables

Word Text Word Text

0 0 1 1

2 2 3 3
5 5 6 6

7 7 8 8

9 9 argjc argc

arg_v argv false FALSE

l l J J
k k null NULL

standard error stderr temp temp
true TRUE

Procedures

f_print_f fprintf exit exit

mam mam print_f printf
printusage printusage

45.1.6. Editing Commands

The most important editing command is "delete". The editor knows the meaning of most symbols

and knows how expressions and statements are constructed, so the "delete" command can be intellegent

For example, when a left parenthesis is deleted the corresponding right parenthesis is also deleted. The

delete command also deletes entire variable names and special symbols.

Entire lines can be deletedwith the "cut_lines" command. The lines to be cut are thosedefined by

the current region. lines must be balanced, that is, the indentation level of the lines must never precede

die indentation level of the first line, and the first and last lines must be indented to the same level. The

deleted lines are placed in a special buffer so mat they can be put back into the program at a later time

with the "put_lines" command. When lines are replaced they are automatically reindented. The

"select_lines" command performs the equivalent of the "cutjines" command except the lines are not

removed from the text
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Regions within aline can also be cut and put back using the "cut_region" and "putjregion" com

mands. These commands check tomake sure that expressions intheregion are balanced.

Other miscellaneous editing commands include "indent_more", "indentjess", "movejnside",

"deletejuselessjine", and "msert_blankjine". The "deletejiselessjine" command isused to get rid of

lines with onlyasemicolon that are created when editing is performed outof sequence.

Inaddition toediting commands, the editor also has standard searching, read/write, movement and

undo commands.

Table A3 'C Editor Commands

beginning_of_file case compile
cutjines cutjegion default

define delete done

end of file expression expression_around
for" if ifelse

include indent less indentjnore
iiisertjile label main_procedure

mark movejnside movejoutside
new_procedure new_struct next

putjines putjregion quit
replace search selectjines

selectjegion subscript subscript~_around
switch train_procedure train_variable

visit file 1 while write file

The entire standardvocabulary for the editor is 103 words. In addition each programrequires one

word pervariableand procedure. Foran average program this comes to a totalof211 words.

Figure4.1 shows an example programand the word sequence that created the program. The text

inside the V characterswas typed, not spoken.

AS2. Connected Words

Connected word recognizers would probably not improve the performance of menu-based inter

faces very much. Each word or phrase is associated with a function and feedback is on the word or

phrase leveL When usingrecognizers thatmake mistakes, the usernormally waits for the feedback from

one wordbeforethe next wordis spoken. In sucha case, the user pauses between words eliminating the



main(argc, argv)
int argc;
char*argvfl;

{
int i, limit;

H(argc<2){
printusageO;

}
limit * atoi(argv[1]);
for(i - 0; i < limit; \++) {

printf("%d%dVn",i,ri);
}

Program Listing

Word Sequence

main main_procedure
int i comma /limit/ train_variabie done
if arg_c isjessJhan 2 next
printusage done
limitequals atoi argv subscript 1 next
for i equals 0 semicolon i isjessjhan limit semicolon i increment next
printj r%d %d\n7 comma i comma i times i done
done

Figure 4.1 - Example programand corresponding word entry sequence
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need for a connected-word recognizer. A connected-word recognizer would however improve the per

formance of a combined text-entry/menu-based interface because the userdoes not normally wait for text

to be displayed during text entry.

4.6. Text-based interfaces

In addition to menu-based interfaces, many applications specify commands as text This is espe

cially true for keyboard based systems such asUNIX. Text commands differ from text entry in four key

ways:

• The command language is not English and often uses special symbols heavily. Commands arenot

word oriented, but character oriented.

• Text commands often manipulate items such as file names that are not predetermined but are
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created by the user for reference atalater time.

• TTie last word in acommand cannot always be determined by the command, but is usually indi

catedwith a special key (the return key).

• Feedback supplied for text commands is normally atransciption ofthe character sequence ofthe

command. Because commands are not made of words but characters, one cannot read the command

unambiguously.

These differences conspire tomake text commands very awkward for speech input

4.6.1. The Byrne Shell

One example of text-based commands in UNIX is the shell command processor. The shell is an

interactive command interpreter that is used to run application programs, manipulate files, browse

through data files, and control running applications. The structure ofashell command islinked closely to

the structure of theUNIX operating system,andis detailed in [2].

Adding speech input to the existing shell program would have been to expensive with respect to

development time. Instead, a new shell, called the Byme shell was developed to interface to both an

existing shell command interpreter and any application that requires acommand interpreter. The Byrne

shell converts speech commands into character strings and sends those strings toeither an application ora

shell for interpretation. The application is connected through atty/pty device pair allowing any existing

application to accept speech input that can accept keyboard input (except those application that use win

dow system interface direcdy).

Along with managing speech input the Bymeshell provides agraphical multiprocess management

scheme using icons and a history mechanism that allows the viewing of the last screen of each applica

tion.

4.62. Speech Input

The speech input mechanism isword-oriented. This means that feedback isprovided tothe user as

a sequence of words, not word meanings. For example the command "Is a/b" is shown as "list b in a".



91

Note that "b ina" could also be spoken as "a slash b". The command for either the current application or

the Byrneshell is displayed in a special window called thecommand window. The words in thiswindow

can be edited using a built-in mouse-driven cutand paste editor orwith thewordcommands "delete" and

"delete_all".

4.6.2.1. Grammars

Commands are entered as a string of words but interpreted according toa grammar. Thegrammar

converts a command word string into a character string suitable for anapplication. Each application has

itsowngrammar as does theByrne shell itself. The Byrne shell currendy uses asimple precedence parse

like that described in [45].

A grammar consists of a set of word types (terminal symbols), productions (reduction rules), and

no reduce rules (precedence table). The entireprecedence table is not computedautomatically, but must

be supplied by the application in the form of no reduce rules. Each no reduce rule specifies an "equals"

precedence for a pair of symbols. A better approach would be to compute the required parsing table

directly from the grammarproductions.

Each word in the Byrne shell has both a type and a value. Types are the terminal symbols for the

grammar and are either local to an application or global so that they can be referenced by the user.

Values are character strings that are used as the data to form the character string sent to an application.

Each production specifies both the reduce rule to convert a handle into a non-terminal symbol and the

corresponding semantic operations to create the character string.

Figure A2 shows the grammar for numbers. Statements in a grammar file specify either a produc

tion, no reduce rule, or word. Productions consists of the left-hand-side non-terminal symbol, the charac

ter operation string, then the handle. Character operationstrings are coded as a suing of characters where

each field in the form "%<number>" is replaced with the string for the appropriate handle component.

The leftmost handle component is "%0". Thus the operation "%00" for the handle "ty_number" appends

me character "0" to the string associated with "tyjiumber". Words are specified as word, type, and

value. In the case of the number grammar, words are global, meaning that all numbers should be
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# Standard Number grammar
#

production number "%0"
productionnumber "%0%r
production number "%00"
production number "%0%1"
production number "%0"

no_reduce_rule ty_number digit;

global_word 1 digit 1;
global_word 2 digit 2;
g!obal_word 3 digit 3;

g!obal_word 0 digit 0;
global_word oh digit 0;

global_word 20 ty_number 2;
g!obal_word 30 ty_number 3;
global_word 40 ty_number 4;

globaLword 90 ty_number 9;

global_word 10 teen_number 10;
globaLword 11 teenjiumber 11;
globaLword 12 teen_number 12;

globaLword 19 teen.number 19;

digit;
ty_number number;
ty_number;
number number;
teen_number;

Figure 4.2 - Byrne shell grammar for numbers

interpretedthe same by all applications.

A command is parsedsuccessfully if it terminates with only the non-terminal"terminate".

4.6.2.2. Words

Words come from two different sources: the application and the user. Words that come from the

application are eitherhard-wired into the grammar file of the application as terminal symbols or included

as members of a localor globaltype. Words thatcome fromthe usermust be a memberof a globaltype.

Global types include things such as "files", "variables", "procedures", and"users". Some globaltypes are
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specific to anapplication others areused in allapplications. A type is made global with the"type" state

ment in a grammar file.

Words that are addedby the userare global, that is, they applyto all applications. These wordsare

organized into projects. When the Byrne shell is started, a projectname is specified on the command

line. Theproject name corresponds to a file in a project directory thatcontains all the user-specified glo

bal words for a particular project Asa given project proceeds itsprojectfile grows. Whena newproject

is started, the Byrne shell's vocabulary starts from scratch.

New words are added to the shell by typing into the command window. A special word window is

then popped up over the command window and the user can enter the new word, value and type. The

shell will then load the new word and update the current project file.

4.623. End of Command

With speech input it is difficult to determine the end of a command. Some applications, especially

menu-based applications, require only one word per command. Other applications such as the shell

require the user to specify die end of the command because it cannot be determined by looking at the

word sequence. In order to reconcile these problems the Byrne shell has two end of command indicators:

SEOC and EOC. These indicators are appended to each command string before it is parsed. If the gram

mar can reduce the command to a single "terminate" non-terminal then the command is processed.

SEOC is used for menu-based systems, and EOC is used for standard command systems. Both can exist

in the same grammar file, that is, some aspects of the application interface might be menu-based, others

command based.

The SEOC indicator is appendedand parsed after each word is spoken. If the parser is successful

then the resulting character string is sent to the applicationand the command window is cleared.

The EOC indicator is appended and parsed only when the end of a sentence is detected (about 1.5

seconds of silenceafter the last spoken word). Even thisschemedid not work well to detect the end of a

command so it was modified to include a "stop/go" indicator. The problem with detecting the end of a

command occurs when the recognizer makes a mistake, or more commonly when the user has to think
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about the command for more than IS seconds. In either case, the shell will parse an incomplete or

erroneous command.

The "stop/go" indicator appears inthe information window of the Byme shell as either "stop" or

"go". When in the "stop" mode, the end of sentence is ignored. The indicator changes from "go" to

"stop" whenever arejection error occurs or an editing command is used. This allows the user to say "uh"

or some other untrained word and have the recognizer stop attempting to interpret the command. The

indicator can bechanged from "stop" to "go" by saying the word "go". When the command window is

empty, the indicatoralways shows "go".

The advantage of this scheme is that if the user knows what he is going to say and the recognizer

works perfectly then there is no need to say "go". If the user has to think, create a command with the

built-in editor, or not wait IS seconds then the user must say "go".

4.6.2.4. Some Examples

The description of the interface can beclarified bya few examples. First the grammar for the 'C

program editor described above is shown in figure 4.3. Notice diat most commands are members of type

"immediate" which, according to the grammar, uses the SEOC indicator to send thecommand immedi

ately to theapplication. Theonlywords that are processed by the shell are file names, which endwithan

EOC indicator.

The grammar for themail application is shown in figure 4.4. Themail application has short com

mands that end with an SEOC, and long commands that endwith an EOC. Figure AS shows the same

grammarin syntax chart form.

4.63. Implementation

The Byrne shell runs under the SUN window system. The shell is started with the command

"byrne <project name>". The shell starts byreading the master file, then the project file. Anapplication

file is read only when its application is executed. The format of the application, master and project files

is the same: each statment in a file contains a list of strings terminated with a semicolon. Characters



production terminate
production terminate
production terminate
production terminate
production terminate
production terminate
production terminate

"%0" immediate SEOC;
"%0" immediate EOC;
"%0" variable SEOC;
"%0" variable EOC;
"%0\emake-expression\r"
"%0\emake-expression\r"
"%0\r" fulljiie EOC;

type immediate variable procedure;

include fu[l_fi!e.grammar;

#

# Basic emacs editing words

procedure EOC;
procedure SEOC;

word quit
word mark
word compile
word search

word replace
word beginning_pf.
word end_oMile
word visitJile
word insertjile
word write file

immediate "\exexit-emacs\r";
immediate "\exset-mark\r";
immediate "\exnew-compile-'rt\r";
immediate "\exsearch-forward\r";
immediate "\exquery-replace-string\r";

file immediate "\exbeginning-of-file\r";
immediate "\exend-of-file\r";
immediate "\exvisrt-path-file\r";
immediate "\exinsert-file\r";
immediate "\exwrite-file\r";

# Other word files

word load_c_words immediate
"\extoad\rkavaler/emacs/mara_c.ml\r";

Figure 4.3 - Grammar forC programeditor (emacs.app)
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between a '#' character and theendof a lineare ignored to allow comments. The first string in the state

mentis the command, therestof thestrings are thedata for thecommand. Strings can be placed in dou

ble quotes to include spaces and special characters.

4.63.1. Windows

There are four separate windows for each Byrne shell: die information window, the icon window,

the command window, and the application window. The information window contains one line for text

messages to the user and one line to display the state of the shell State information for the shell includes
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include futljRIe.grammar;
include number.grammar;

production number "%0" anything;
productionterminate "%0\n" number SEOC;

productionterminate "%0\n" number EOC;

productionterminate "%0\n" immediate SEOC;

productionterminate "%0\n" immediate EOC;

production terminate "%1\n" read number EOC;

productionterminate "s%1\n" save fulljile EOC;
productionterminate "s%1\n" save into fulljile EOC;
productionterminate "%0\n" long_command EOC;
productionterminate "%0%1\n" longLCommand number EOC;
productionterminate "%0%1-%3\n" longLCommand number upjo number EOC;
include mail.unix;
production terminate "%0\n" ajcommand EOC;

word read read read t

word save save save ;

word into into into;
word upjo upjo upjo;
word remove long_command "d";

word preserve long_command "pre";
word letters longjcommand "h";

word all number i

word quit immediate "q";
wordx immediate "x";

word help immediate"?";
word respond immediate "R";

include specialwords>;

Figure 4.4- Grammar for mail application (mail.app)

the command window indicator, the "stop/go" indicator, the update button, and the current directory.

The command window indicator shows which command is being displayed inthe command win

dow:

• the shell command, (a white crystal ball),

• theapplication command (ablackcrystal ball), or

• aprevious command (a pair of glasses).

Normally the shell command is displayed. If an application is running, its command is displayed. The
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Figure 4.5 - Syntax chart of mail grammar
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shell command can be displayed when an application is running by pointing to the icon window. If the

right mouse button is pressed over an icon, then the command that created that icon is displayed. The

update button, when clicked, rereads all the project, application and master files, to allow the user to

change these files while the shell is running.

The icon window shows the history of executed applications as a list of icons. When a new appli

cation is started, its icon is shifted into the icon window from the left One icon is always highlighted (in

reverse video) and the application for that icon is shown in the application window. Only one application

can be viewed at a time. If an application is running then the label RUN is placed over its icon. An icon

is selected by clicking the left mouse button over the icon.

The application windowshows the lastscreen full of data foreach application. If the application is
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Figure 4.6 - Byrne shell windows

running then the application window is alive and the application can change the window as though it is a

terminal (a terminal emulator). After an application dies, its lastscreen image (called its corpse) can still

be viewed but not modified.

4.63.2. Master File

The master file has three functions: to control the paths prependedto each application and icon file,

to specify the applications and their corresponding icon andgrammar files, and to define the Byrne shell

grammar. Figure 4.7 shows an example master file.
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include_path. '/projects Tcavaler/mara/byme/bymejib /usr/local/lib/byme;
icon_path. "kavaler/mara/byme/byrneJib/Icons /usr/local/Iib/byrne/icons;

application emacs emacs.icon emacs.appemacs;
application mail mail.icon mail.app mail Mail;
application msgs msgs.icon msgs.app msgs news;
application shell shell.icon shell.app cshsh; ,
application more more.lcon more.app more;

include

include
include
include

shell.unix;
maii.unix;
number.words;
file.words;

include

include

aliases;
7.byrne;

include browse.project;

Figure 4.7 - Example master file

One "application" statement is required for each application thatneeds a grammar. The statement

is in the format:

application<name> <icon file> <grammar file> <othername>...;

The othername fields associate a shell command with an application. The icon and grammar files are

read according to the include_path and konj>ath lists. For the master file example shown, the grammar

for the Byrneshellis splitintosmaller files and included using an"include" statement

The master file is called"Masterfile" andnormally lives in a special library directory. A user can

customize the master fileby puttinga private copy in the directory ""/projects".

4.6J J. Grammar Files

Each applicationhas its own grammarfile. The grammaris defined by the following statements:

• "production <lhs><operation> <handle>;" - described earlier.

• "no_reduce_rule<symbol><symbol>;" - describedearlier.

• "word <word> <type> <value>" - in an application file the word is local to the application, in a
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project file the word is global

• "global_word <word> <type> <value>;" - aglobal word.

• "type <type>...;" - a globaltype definition.

• "include <file> ...;" - include another file, this is especially useful for sharing commonsubgram-

mars.

• "special_word <word> <function>;" - The Byrne shell has a few special functions that can be

associated with aword. Special functions include suchthings as"go", "delete", "delete_alT, etc. A com

plete menu of these functions is provided when the right mouse button is pressed in diecommand win

dow.

Project files live in the directory ""/projects", while mostother files live in a library directory.

4.6.3.4. Application Interface

An application can addnew words orchange its grammar while it is running. To do thistheappli

cations sends a special escape sequence to its terminal emulator

\eFW<word>|<type>|<value>\e\

(\e is the escape character) will adda new word to the global vocabulary just as thoughit was typed into

the command window. This feature is used by the *C program editor to add new variables and pro

cedures.

The sequence

\eIW<file>\e\

will read the given file asthough it wasincluded in theoriginal application file (Le. aninclude statement).

4.6.4. Shell Usage

The standard usage of the Byrne shell differs from a normal shell. The Byrne shell is controlled

mainly by a combination of mouse movements and speech commands. The mouse is used to select

things onthescreen and speech is used to givecommands to those things. To illustate this typeof inter

face consider browsing the UNIX file system. For keyboard input the user would perform an "Is"
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command, then "cd" into a directory and "Is" again. When an interesting file appears on the screen after

an "Is", the "more" command is used to show it on the screen. A typical session might proceed as fol

lows:

Is

cd/usr

Is

cd local

Is

cdlib

Is

cdbyrne
Is

moreMasterfile

more emacs.app

Notice that the vocabulary for this application is constantly increasing. In fact, every command except

the "Is" command requires anew word. For keyboard input this isno problem, butfor speech this is abig

problem because the costof adding anew wordis high.

This problem is solved in theByrne shell which allows theuser to point to a file name generated by

the "Is" command and select the nameby double-clicking the left mousebutton. The selected name can

then be inserted into the "cd" or "more" command with the special word "it". The word "it" inserts a

word with type "anything" into the command. The shell grammar converts the type"anything" into the

type "file" using the statement: "production file "%0" anything;". Other applications, such as the mail

appliation, convert "anything" intoadifferent type.

The "cd" then "Is" command sequence is so common that a "go_to" command was introduced to

combine the two. This style of interface reduces the vocabulary for the recognizer enormously. A word

is no longer required for each file name. Words are only required for those file names that referred to

often.

Another Byrne shell feature eliminatesthe need for multiplereferences for an appendixed file. The

C compiler, for example, will takes as input a fileappended with "x" and creates a filewith the appendix

".o". If the user wishes to reference both the "x" and ".o" files, two words are needed. The Byrne shell

uses die global type "only_appendix" to strip the currentappendix from a file and appendix a new string.
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For example, the word "dot_oh" will change the file "mainx" to "maiiuo". Thus the user can define the

word "main" tobetype "file", value "mainx". The file "mainx" can be referenced with the single word

"main", and"main.o" can be referenced by the twowords "maindotjoh".

4.6.5. Connected Words

Theshell interface would notneed to bechanged substantially to support connected-word recogni

tion. First, the 1.5second delay to detect endof sentence might beshortened, butbecause the usermust

think about the command to be executed the "stop"/"go" indicator is stillnecessary. The wordoriented

interface is also needed because the user is still speaking words.

The main benefit of using a connected-word recognizer would be to elimate the isolated word

speech constraint on the user, providing a more natural interface. It is not clear that theresulting inter

facewouldbe any fasterbecause mostcommands takelongertoexecute thantheytake to speak.

4.7. Pointing Interfaces

The final interface style used by manyapplications is thepointing interface. We havealreadyseen.

menu-based interfaces that use a mouse to point to a command, and some applications also require data

entry in the form of coordinates on the screen. For example, the integrated circuit layout editor KIC38

uses the mouse to place boxes corresponding to mask layers on the screen. Anotheruse of a pointing

interface is in video games where the mouse is used to control a player's position on the screen. Feed

backfor a pointinginterface is usually a cursor indicating eithera singlepointor the region that is being

pointed to.

Speech is particularly inappropriate for pointing interfaces. Commands such as "up", "down",

"right", and "left" are cumbersome to speak in quick succession and are slow compared to a mouse.

Specifying a numberwith each commandwill speed the interface, but it alsorequires the user to estimate

a distance on the screen accurately. Interfaces that use pointing should eitherbe rewritten to keeppoint

ing information to a minimum, or to use themouse forpointing related information and therecognizer for

all other information.
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4.8. Speaker Independence

Li this chapterwe have been considering differentinterfacestyles andhow a speechrecognizercan

be used for each style. One aspect of speech recognizer performance that has not been considered is

speaker independence. Most existing speech recognizers only work well for the speaker who trained the

recognizer. A speaker-independent recognizer would recognize words from anyone. The problem with

theserecognizers is that words cannot be added to the recognizer's vocabulary while the recognizer is

running. In fact, words must usually be spoken by many people before they can be trained to work in a

speaker-independent fashion. For the four interface styles detailed above this restriction limits the use of

speech recognizers ONLY to interfaces with predetermined vocabularies. In anengineering workstation

environment mere are few programs mat have a predetermined vocabulary. Some programs, however,

might have a largepredetermined vocabulary anda smallprogrammable vocabulary.

Speaker-independent recognizers must be ableto addnew wordswhile they arerunning if they are

to be generally useful. The words that they add need not be speaker-independent In fact, for the

engineering workstation application there is no real need forspeaker independence because the computer

cankeep trackof who is using the recognizer very easily.



Chapter 5 - Evaluation of the System

5.1. Introduction

The Mara system consists of many components that work together toallow aperson touse acom

puter by voice. System components such as the hardware, the speech recognition algorithm, and the

adaptive training algorithm have been evaluated separately, but the system as a whole must also be

evaluated. Evaluations of speech recognition systems have generally concentrated on the recognition

algorithms leading to erroneous assumptions about the relative importance of various system com

ponents. For example, most commercial speech recognition systems claim 99% accuracy ormore, yet

these systems have had little or no commercial success. One reason for this discrepancy is that these

commercial systems do not perform as well in the field as they do in the laboratory. The reason for this is

that the evaluation of speech recognizers is normally performed with data-bases that do notreflect how

the system is used. For example, data-bases are normally collected by prompting auser while in real life

the user speaks spontaneously. Other performance issues such as user acceptability and user productivity

are completely ignored. The result isaspeech recognizer that works well inthe laboratory but not at all

in the field. The final goal of this project is todevelop amethod of evaluating speech recognition systems

that reflects how they are used.

5.2. System Performance

The development of the user interface and itsassociated feedback techniques was akey factor in

increasing user acceptability and system performance of speech input devices but amore formal experi

ment was also needed to quantify these factors. The experiment compared the same editor being used

with two different input devices: amouse and the speech recognizer. A menu-based VLSI editor called

KIC38 wasused for the experiment

KIC uses the mouse in twodifferent ways: as a pointing device toselect coordinates for geometric

manipulations and as menu device to select commands from fixed menus on die left side and bottom of

the screen. The total number of command menu items is greater than can fit on the screen atone time.
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To solve this problem the menu is split into four sub-menus where only one is on the screen at a time.

Each command menu contains a command togotoanother sub-menu. During normal usea single menu,

the "select" menu, is used most of the time. The menu on the bottom of the screen is used to select the

current color (layer).
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Figure 5.1 - KIC screen

The basic object that KIC can edit is a box. Boxes are placed on the screen with the command

"boxes" followed by two mouse clicks indicating the diagonal corners of the box. Boxes can also be

moved, stretched, copied, and deleted. For example, a box (or boxes) can be moved with the command

sequence: "select" - click over the box or boxes to move - "move" - two mouse clicks indicating relative
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movement - "deselect". The screen is updated after any change is made to the layout In addition to

these simple editing commands, other commands are available to check for layout rule violations, handle

the cell hierarchy, and read and write files. Tne editor has been in use for many years and is very robust

In order to be "fair" to the experiment speech was retrofit to the editor in a straight-forward

fashion: each command and color had an associated word. The words used for commands were taken

from the KIC user's manual When aword is spoken the corresponding command was executed. In

addition to commands and layers, some keyboard input was also entered by voice, namely the words

"yes", "no", and file-names. Ttie resulting speech interface was cumbersome for some commands

because itrequired the user to remember state information highlighted in the menu. For example, the

command "stretchJ>ox" requires two arguments: adistance and the side to be stretched. The distance is

given with the mouse, but the side to be stretched is specified by aentry in the menu. The menu entry is

toggled each time the word "left" or "right" is spoken. Thus ifthe current state ofthe entry is "left", say

ing "left" will adjust the "right" side of abox. This is very unnatural for speech, but in order to be fair it

was not changed.

5.2.1. The Experiment

The experiment involved two users (steve and peter) performing normal editing tasks. Both users

had used KIC previously to layout at least one entire integrated circuit and were also familiar with the

speech recognizer. The first part ofthe experiment consisted oftraining the recognizer. The vocabulary

used by KIC is shown in table 3.2. User peter took 12.5 minutes to train the recognizer, user steve took

14 minutes. TTie users were then given a specific circuit to edit The circuit was a single stage of a

switched capacitor filter. The circuit was laid out twice, once with the recognizer and once without the

recognizer. The users were instructed not to race through the session but to go at anormal pace. The

experiment stopped when the circuit was validated by the layout rule checker. Layout took place one

hour per day over four days for user peter and six days for user steve. All editing sessions were recorded

digitally using aPCM recorder and standard Beta format VCR for use as aspeech data-base.
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The purpose of the experiment was to determine the relative speed gained or lost by using the

recognizer. Because the users were editing the same circuit twice it was unfairto just measure the total

time required to perform all editing. Instead, the time between commands and the time between words

was used as a normalized measurement The time between commands and words has many advantages

as a measure:

• delays caused by excessive thinking by the user or the computer can be eliminated by throwing

away delays greater than a few seconds,

• manydata points can be acquired, enough to estimate both the average delay andthe shape of the

delay distribution, and

• delays for different combinations of inputs can be measured allowing a morecomplete analysis of

why the interface works well or poorly.

5.2.2. Results and Discussion

User actions were split into two types: pointing actions (called points) and command actions

(called commands). Delays were split into four categories: point-to-command, point-to-point

command-to-point and command-to-command. The one exception is the command "deselect" which is

first a command, then a point Thus the sequence "deselect" - "boxes" contributes a point-to-command

delay instead of a command-to-command delay. This change forces the re-draw time associated with the

"deselect"command, into the same categoryas othercommands that redrawthe screen.

Table 5.1 KIC Experiment With and Without a Recognizer

. with/without ^ _ „ ^ A .
speaker c-to-c p-to-p p-to-c c-to-p total
_ recognizer r v r *_

steve

peter

.. 1.70 1.66 2.56 0.87 1.69 delay (sec.)
132% 272% 29.4% 302% 1706 commands

.. 1.75 1.74 2.58 1.82 2.01 delay (sec.)witnout 119% rj3% ^5% 29A% 136Q gQjnnjan^

.. 1.97 1.45 2.51 1.01 1.67 delay (sec.)
95% 27.6% 29.9% 33.0% 784 commands

.. 1.47 1.30 2.18 1.46 1.62 delay (sec.)witnout 1U% 3Zg% nA% 2?/7% 500 conunands
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Table 5.1 shows the results of the experiment Each pair ofrows in the table indicates the average

delay in seconds and percentage of actions for each category along with the total average delay and total

number ofuser actions. The average delay was computed by ignoring detectable think and redraw time.

That is, delays greater than five seconds were ignored. This table shows much information about how the

recognizer is actually used, and how itcan bemade more efficient

The command-to-command delays accounted for only between 10 and 15 percent of the total

number ofdelays. While one user had equal command-to-command times, the other could use the mouse

menu faster than the speech menu. Even so, the overall speed ofthe system is not primarily determined

by the speed of the recognizer alone. The three other delays: command-to-point point-to-point and

point-to-command account equally for remaining 90% of the total delay. Because point-to-point times

are not dependent on the recognizer, and command-to-point times are determined mainly by the time

required to redraw the screen and think about the next command. The main recognizer related factor in

determining speed is the point-to-command time. Both users experienced alarge speed-up in the point-

to-command delay when using the recognizer. This leads us to conclude that the speed-up gained by

using the recognizer with the KIC application isprimarily due to overlapping ofspeech commands with

pointing actions. The overall speed gained by using the recognizer (total average delay) was about 15%

for user steve and nogain for user peter. If just the command-to-command and command-to-point delays

are considered, that is, those delays direcdy attributable to the recognizer, then user steve experienced a

38% speed gain anduser petera 16%gain.

Some of the speed lost in command-to-command delays was due to rejection and substitution

errors. While the recognizer performed well during all experiments, the rejection threhold was lowered

and raised during the experiment to simulate different rejection error rates. The result was that afew ses

sion contained many rejection errors slowing down the user. Table 5.2 shows the distribution of substitu

tion errors andrejectionerrors each day for both users.

It is also interesting tolook at the distribution ofdelays for each category. These plots are shown

in figures 52 and 5.3 for speaker steve. The dashed lines show the delay distribution without the recog-



Table 5.2 Errors During KIC Experiment

speaker day
substitution

errors

rejection
errors

total

errors

1peter 2 1

5

11

30

12(3.1%)
35(8.2%)

1

steve 2

3

6

8

1

34

2

24

40(7.7%)
10(2.0%)
25(4.1%)
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nizer while the solidlines are with the recognizer. The plots are normalized so thatthe area under each

plot is 500.

Notice that the distributions in figure 52 are identical with and without the recognizer while the

other two distributions, command-to-point and command-to-command have different shapes. This sup

ports die claim that only the command-to-point and command-to-command distributions depend on the

recognizer. There are a few anomalies in the plots that also deserve an explanation. First the distribu

tions tend to peak near intervals of onesecond. This isnotbecause of user actions, instead themeasuring

technique used depends on the internal clock kept by theUNIX operating system. This clock seems to

change slowly at second intervals. This hypothesis was verified by feeding a series of beeps into the

recognizer with a flat delay distribution and measuring theresulting interbeep delay. The shape of this

distribution alsopeaked nearsecond intervals.

The second anomaly is in the command-to-point plot Notice that when the recognizer is used the

distribution has only one peak, while when the recognizer is not used it has two peaks. This can be

explained by examining the types of pointing that are performed in KIC. Each pointing action requires

either fine alignment for specific coordinates or gross alignment to select existing boxes. When the

recognizer is not used the mouse comes from the command menu and then must either be finely or

grossly aligned. Fine alignment takes longer than gross alignment therefore two distinct peaks appear in

me distributions. When the recognizer is used, the mouse is normally aligned while the command word

is being spoken, thus the delay required for alignment is mainly a function of the recognizer latency.

This explanation was verified by examining which commands contributed to the two peaks.
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The third anomaly is in the command-to-command plot The distribution without the recognizer is

flatter than the distribution with the recognizer. Because each word isequally easy tospeak, one would

expect that the distribution with the recognizer should have adistinct peak. On the other hand, using the

mouse command menu requires the user to move the mouse different amounts depending on the com-
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mand. In addition, the user might forget wherea word is placedin the menu and must search forit Thus

the distribution without therecognizer is flatter than thedistribution with therecognizer.
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523. Conclusions

The speed-related performance of recognizers is usually quantified by two measures: words recog-

nized in asecond (call this the speed) and latency. Theimrx>rtanceofeachoftheseisa

dent For the KIC editor, an application typical of most menu-based applications, the latency of the

recognizer has been demostrated to be more important than the speed. In fact only 10 to 15 percent of

the total interaction delay is due the speed ofthe recognizer. The rest is due to the interaction between

the recognizer and the other input devices. This would indicate that in order to speed the interface the

recognizer must have asmall and predictable latency, as is the case with the speech recognizer presented

here. Another possible solution is to integrate the mouse into the speech recognizer and delay the mouse

action until after a word is spoken. This solution would allow mouse actions to overlap speech com

mands, decreasing thecommand-to-point delay evenfurther.

The speed gained by using the speech recognizer is not signicantiy large to alone justify its use for

this application.

53. A Long-Term Evaluation

One user, steve, used the recognizer with KIC tolayout an entire chip (a video rate 8 bitA/D con

verter). The chip was part of aPhD. project The recognizer was used a total of 144 hours over one

month. Although the error rates were not measured during this time, some ofthe delays were measured.

Figure 5.4 shows the word-to-word delay distribution. Again note the peaks near the second intervals.

The distribution rises sharply atabout one second then falls as adecaying exponential. The aver

age value of the distribution is 7.2 seconds indicating that the recognizer is not being used constandy.

The decaying shape indicates that the recognizer is used in bursts, that is, the user speaks a few words

then waits for the response. In order to speed the interface the curve must be shifted to the left suggesting

that aconnected word recognizer would speed the interaction. But the connected word recognizer would

only have to handle strings of two or three words, not long phrases or sentences, to be useful for this

application.
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The usernoted that although the speed gained by using the recognizer was difficult to judge, the

strain associated with laying out thecircuit wasmuchlesswhenthe recognizer was used. This descrease

in strain allowed the user to edit thechiplonger each dayand make fewer mistakes. Overall he evaluated

therecognizer's contribution positively and wouldrecommend itsuse for chiplayout



Chapter 6 - Conclusions

6.1. Conclusions

The predicted boom inspeech input devices is normally billed as providing anatural interface to

computer systems. In reality, these speech devices must be integrated into the computer system as one

input device ofmany. Itis unreasonable to expect all existing non-natural computer interfaces and appli

cations to be completely rewritten specifically for speech input Instead, the speech recognizer must be

integrated intoexisting systems and applications.

Additional hardware mustbe added to mostcomputers to recognize speech. This hardware must

be flexible enough torecognize at least a few hundred words with high accuracy and litde latency. For

this project special purpose integrated circuits were designed in a4u, NMOS process that allowed one

thousand words to berecognized inreal time. The architecture of the chips istailored toaversion of the

dynamic-time-warp algorithm allowing enormous throughput in arelatively old fabrication process. The

chips are part of a single board speech recognizer that connects direcdy to the internal I/O bus of an

existing engineeringworkstation.

Issues not normally considered part of speech recognizer design such as feedback techniques and

interface styles must be part of any speech input device for computers. Feedback techniques can be used

both toincrease recognizer performance and toaid the user. Anadaptive training algorithm linked to the

display of top recognition candidates has been shown to increase recognition accuracy from 97.5% to

99.5%. Increased recognition is not the only benefit from feedback techniques. By presenting the user

with alist of the top candidates for each unknown word, the user can determine how well the recognizer

is working and be reminded of the applicable vocabulary for an application. Such feedback must be in

the form of words, not just action.

Three interface styles - text entry, menu-based commands, and multi-word commands - have been

examined for use with speech input devices. While text entry, also called dictation, is atraditional model

for aspeech input device, it is avery poor model ofhow speech recognizers are used in aworkstation.
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Menu-based and multi-word commands are more typical of computer interface styles. These styles

require different recognizer capabilities than text entry, namely, words must be added on a regular basis.

These words can be categorized into types for use by a input parser to convert wordphrases into com

puter commands. Associating a wordwith a particular equivalent string is not sufficient for speech com

mands.

Traditional performance measures used to evaluate speech recognizers do not work well when

applied to speech recognition in the engineering workstation environment Speaker dependence issues

are not as important as being able to add new words on the fly. A usable systemmust of course, run in

real-time, but it must also provide a small and predictable latency. Connected word recognition would

relieve some constraints on the user and might speed the overall interaction a litde, but without the

corresponding natural language interface, connected speech alone will not make a recognizer more

natural than an isolated word recognizer. For an application particularly suited to speech input - amenu-

based application - no significant gain in interaction speed was realized when speech input was used.

However, users did indicate thatspeech inputwas less straining and caused fewer errors than a mouse-

based menu interface.

62. Future Directions

There are three aspects of the system that need further attention. First the algorithm should be

extended to recognize connected speech. While the hardware supports connect word operation, a real

time algorithm has notbeen implemented on it (although one has been implemented on past versions of

the hardware). Connected speech, if applied with a language model, would probably allow the recog

nizerto be more robust whilestillmaintaining highaccuracy.

The speed with which templates are loaded into the recognizer should be increased so that no

noticeable delay occun when a large vocabulary is needed. Currendy the main source of delay is in the

network file system provided by SUN. Another source causing delay is synchronous template by tem

plate loading. If a"loadmultipletemplates" command were implemented, the system would be faster.
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Finally, the Byrne shell should be evaluated and extended to provide more sophisticated speech

input for applications. In fact the Byrne shell grammars should be implemented at a lower level in the

recognizer allowing the recognizer to make use of the language model implicit in the Byrne grammar

files.

In addition to these changes, addition interface styles need tobe examined. In particular, natural

language interfaces and application specific interfaces should bedeveloped.



Appendix A - Software

Thesoftware described herein canbe found relative to thedirectory ""kavaler" on the SUN works

tations with server "zeus".

A.1. Recognizer Board

The software for the recognizer board is written in C with a few a assembly language routines to

access 80186 registers andinstructions that donothave corresponding C instructions. Thesoftware was

designed in 4 levels, the lowest three are in thelibrary "cc86mit/libl86". The lowestlevelroutines are in

the directories "gen" and "sys". The "gen" routines are the basic C library routines such as "strlen",

"strcmp", and "malloc" thatarenormally supplied with any C compiler. The"sys" routines deal with the

special 80186 instructions such as interrupt instructions and I/O instructions. Interrupts must behandled

byspecial routines that first save thestate of the processor then call the appropriate C routine. Table A.1

lists the low level routines.

Table A.1 Low Level Library Routines

atoi(p) atol(p)
calloc(num, size) cfree(p, num, size)
free(ap) index(sp, c)
IoOut(port data) lblt(to, from, len)
MemFill(paddr, n, dO, dl,...) Memln(paddr)
physaddr(pntr) qsort(a, n, es, fc)
realloc(p, nbytes) RefreshO
sbrk(incr) Setlnt(type, paddr)
splow() splx(status)
strcat(sl, s2) strcatn(sl, s2, n)
strcmpn(sl, s2, n) strcpy(sl, s2)
strlen(s) stmcat(sl, s2, n)
stmcpy(sl, s2,n) swab(pf, pt n)

In order to aid the development of the system, a simple operating system was designed for the

board. The lowest levels of the operating system are in the "stdio" and "multibus" directories. The

"stdio" directory includes standard I/O procedures such as"putchar", "printf, and "getchar". The "scanf'

function is not currendy supported, instead thefunction "getaline" can be used to read. The standard I/O
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devices (stdin, stdout) normally talk to the terminal port of the 80186 board. Calling the procedure

"sio_new(&sio_multibus)n will change the I/O devices to talk on the multibus to the SUN workstation.

The SUN must be running the program "mbhost" to emulate a terminal. The routines in the "multibus"

directory handle the low level handshake between the 80186 and the SUN workstation. Adevice driver

in the SUN workstation handles theother side of the handshake. From the 80186 point of view data is

sent and received as messages ofarbitrary length. On the SUN side, the "read" and "write" commands

can be used to receive and send messagesto the 80186.

Table A2 Mid-Level Library Routines

fprintf(iop, fmt args)
Qmts(s,iop)
printf(fmt args)
puts(s)
MBGetWortKtype)

fputc(c fjp)
getline(st length)
putchar(c)
putw(i, iop)
MBIntOn(mask)

The highest level ofthe operating system isintwo directories: "opsys" and "messages". The basic

operating system on the 80186 has asimple multiple cooperating process structure. Processes are created

as functions that get called twice, the first time a function is called it returns the size of its run-time

stack, thenexttime it should never return. Processes arescheduled bya round-robin scheduler thatmust

get called explicidy whenever a process is busy-waiting or otherwise idle. The scheduler is called

"Dispatch". The scheduler can also be called as the result ofan interrupt The main interprocess com

munication facility is the queue. Queues are created once with a fixed size entry and a fixed number of

entries. The queue get and put routines call "Dispatch" automatically instead ofbusy-waiting. The pro

cedures lock and unlock can be used to lock a shared resource.

The speech recognizer program is in the directory "mara/mara86". There are two version of the

hardware: thefirst version is for the prototype board in the machine "robert" and allother boards are ver

sion two boards. The software for version two boards is in"mara/mara86.v2" which isjusta copy of the

"mara86" directory with achange tothe "makefile" tocompile the correct version.

The recognizerprogram has nine processes:



Table AJ High-Level Library Routines

Dispatch() InitDone()
LinkObject(Objects, object) Lock(x)
MGGetWord(type) MesgFlushO
Mesgln(p) MesglnitO
MesgOut(data, length) MesgQOut(p)
NewMgftiQ(type, q) ProcKill(Processes)
ProcRet(p) ProcStart(Processes)
RelinkObject(Objects, tunc) SendObject(Objects, obj, len)
SendQueue(q, len) SetObject(Objects, object pers)
UnlinkObjecttpbjects, object) Unlock(x)
gedq(q,b) igetq(q)
iputq(q) killq()
menuO pfree(p)
putlq(q, b) resetq(q)
shell(prompt commands)

Filters
RltQ

VuQ

MesglnP) MasterQ,( Master

Figure A.1 - Recognizer processes and queues
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• Filters - handles the filter interrupt andlowestlevel filter queue. The outputof this routine is the

raw filter values as they come out of the filterbank chip. The outputqueue is "FiltQ".

• FrontEnd - handles the front end processing of "FiltQ" mcluding log conversion, end-point detec

tion, energy normalization, down-sampling, and data compaction. The output of this is the queue



120

"FrameQ".

• GetaWord - converts theincoming "FrameQ" into word objects. A word object is a large array of

frames thatis reference-counted to allow words to be passed to other routines inside the program without

having to make copies of the word. The GetaWord routine puts a pointer to the word object in the

"WordQ", and the incoming frames are also sent to the "DpQ". This routine also sends the VU-meter

message to the SUN.

• DpChip - sends frames in the "DpQ" to the dynamic-time-warp chip for processing. This process

is triggered by adone interrupt from thechip. Theoutput of the chip isplaced in the queue "ScoreQ".

• PostProcess - reads scores from "ScoreQ" and word objects from the "WordQ", finds the best

matches, and sends the resulting scores and matches to the SUN.

• Master • handles request from theSUN. Requests are read from the"MasterQ" and include things

suchassettingparameters, loading words,andreading backwords.

• Message In - receives messages fromthe SUN andplaces themon theMasterQ.

• Message Out - sends messages to the SUN.

• Debug - used to debug the system.

A2. Miscellaneous Programs and Changes

Programs can be downloaded from the SUN to the 80186 board in two ways: through the serial

port using the program 861dr or through themultibus using theprogram mbldr. Both programs take the

name of the 80186 file (in .com format) to download. The SUN program mbhost can also be used to

download aprogram. Inaddition todownloading aprogram, mbhost hosts the terminal I/O for the80186

through the multibus.

Along with the standard 80186 program, a special program was written to help debug the

hardware. The program is in the directory "spuds/wreck". Two versions of the programs are compiled;

the only difference between them is the input and output devices they use. The program "wreck-

bus.com" uses theSUN program "mbhost" as its input and output device while "wreck-term.com" uses a

standard terminal (i.e. the serial I/O port). The wreck program calls various routines to test the special
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purpose chips, the template memory,the local memory andthe timers.

Two modification to thestandard SUN operating system were required for therecognizer. First a

device driver was added to the kernel and accessed as "/dev/spO". The source to the driver is in

"local/spuds" along with documentation of the hardware and software interface. The driver and the

corresponding multibus hardware on the 80186 board can be tested using the programs provided in

"spuds/drtest".

The second modification requires a change to theSUN window system. A new window iced call

was added so that theMara daemon could determine theexact location of themouse (i.e. window number

and x and y coordinates). The source for modified versions of the window device (SUN versions 1.3,1.4,

and 2.0)is in "local/sunwindowdev_<version>".

A3. Mara Daemon and Libraries

The software for the Mara Daemon lives in the directory "mara/mara". The daemon is really two

programs, one just reads from the 80186 board and formats the data for the main program. Two pro

grams were neededto use the "select" systemcall for synchronization. The daemon itself is written in a

straight forward manner. Connections are made by clients through the UNIX domain socket

"/tmp/mara".

The library routines described in the User's Manual (appendix B) are in the directories

"mara/libmara" and "mara/libmarawindow".



Appendix B - Mara User's Manual

B.l. Purpose of Speech Recognition

Most papers on speech recognition usually start with a statement like "Speech has long been

thought of as the ultimate man-machine interface..." The purpose of this projectis to develop a system

based on current speech recognition techniques that verifies that premise. It is true that many people

think they would like to "talk" to their computer instead of typing, but to date no such system really

exists. Currentattempts at using speech recognition have been in eitherhighly automated environments

such as assembly lines, mass data entry, or in hands busy environments, where the use of a keyboard

severely restricts the speed and accuracy of data entry. To date, people are not really "talking" to their

computer, they are entering data using their voice.

The Mara systemis an attempt to integrate a template basedspeech recognizer into a single user

engineering/programming workstation. In this application there are threecomponents of importance: the

computer and its programs, the speech recognizer, and most importandy die computer's user. The Mara

system addresses the needs of ALL THREE componentsin an attempt to build a very high accuracy, easy

to use, user environment based on speech input (and hopefully output too).

B.2. Hardware Description

The Mara hardware consists of a MultibusPC board, a backplate with connector, a BNC cable, a

pre-amplifier, anda microphone. Nootherhardware isrequired, butonecanconnect twoterminals to the

PC board if desired (or one terminal and one computer). The microphone should be connected to the

pre-amp, which in turnis connected to thePC board through theBNCcableandthrough the backplate.

The Mara boardcontains two special purpose integrated circuits developed at Berkeley. One per

forms spectral analysis, the other computes the Dynamic Time Warp algorithm. There is also an Intel

80186 microprocessor on the board used to manage templates and perform higher levels of the speech

recognition algorithm. The board also contains 2 serial channels for terminal communications, a Mul

tibus slave port for high speedcommunication to a host computer (i.e. a SUN workstation), 128K bytes
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of memory local to the 186,256K bytes of template memory, and 96K bytesof scratch pad memory used

in the timewarp algorithm. The restof theboard consists of various buffers, latches, and gluelogic.

B3. What the Programmer Sees

BJ.l. System Organization and Standard Usages

The MaraSystem has five softwarecomponents:

1. The PC board program - mara86.com

2. The Mara Daemon - mara

3. The Low Level Recognition commandlibrary - libmara.a

4. The Standardlibrary- libmara.a

5. Supportlibraries for various applications - libmarawindow.a

The system was splitthis way to provide maximum flexibility and still let users share important recog

nizer resources.

The Mara system was designed to let multiple UNIX processes share the resources on the PC

Board (1). Each Unix process can connect to the Mara Daemon (2) andobtain a "virtual recognizer".

The connecting process becomes a "user" of the speech recognizer. The Mara Daemon manages the

sharing between these processes as well as providing high level support for therecognition system. All

virtual recognizers look identical to each user. To ease communications with the Mara Daemon a set of

library functions waswritten that correspond to thelowest level virtual recognizer commands (3). There

is also a Standard library (4) that allows any UNIX process to perform common speech recognition func

tions (i.e. compare two words, average a set of words, file words using a standard dictionary, etc.)

locally.

The PC board program is written almost entirely in C. It uses an 8086cross compiler written at

MIT as partof their portable C compiler project The Mara Daemon and libraries are written entirely in

C. The daemon can run under the SunWindows package or on any standard terminal. Of course, Mara
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under SunWindows is a much better system.

B3.1.1. Terms

Before going any further we must define some ofthe terms used in speech recognition, and some of

the structures and abstractions used by my programs. Any word that is in capital letters is the name ofa

'C structure type or aconstant These structures and their corresponding constants and macros can be

used by including the file <mara/maraJi> (see Relevant Files).

An'utterance' is aWORD that isacquired by the system as the result ofaperson speaking aword.

Note that 'WORD* refers tothe structure described below, while 'word' refers towhat wenormally think

of as a word.

A 'template* isaWORD that is hopefully agood match to most utterances ofagiven word. Often

aword needs more than one template corresponding to different pronunciations ofthat word. A template

may be an actual utterance ofaword, or might be an average over many utterances, or may even be syn

thesized from allophones.

A 'uname' (short for 'universal name') isthe fundamental low level name given bythe Mara Dae

mon. Since agiven word might require more than one template, and since the Mara Daemon may change

aword's templates in agiven session, aunique identifier not directiy associated with atemplate must be

used for each word loaded by each user. This identifier is the uname. The uname for aword is assigned

by the Mara Daemon and is avalue between 0and 999 inclusive. In order to save memory and simplify

operations there is only one uname per word. Thus two users that load the same word will get the same

uname for that word.

B.3.1.2. Structures

FRAME{
unsigned char fr_ave;
unsigned char fr_max;
unsignedchar fr_data[NUMFILTS/2];

};
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A FRAME is a sampleof the speech spectrum. Fr_ave is the average value (0-127) of the spectral com

ponents in the speech spectrum. Fr_max is the maximum value (0-127) of the spectral components.

Fr_data is the actual spectrum quantized to 4 bits per feature, 16 features (NUMFILTS). The data is

coded so thatthe low nibbleof fr_data[0] is the lowest frequency filter, andthe high nibbleof fi_data[0]

is the second lowest etc.

WORD{
short wd_type;
short wdjength;
short wd_flags;
short wd_elements;
short wd_ex3;
FRAME wd_frames[MAXWORDLEN];

};

A WORD is a time ordered collection of FRAMEs. Wd_type indicates the condition of the algorithm

when this set of frames was acquired (i.e. down-sample threshold, shape of filters, etc.). Wdjength is

the number of FRAMEs in the word. Wd_flags contains various flags that indicated information about

how this word was formed and how it should be used:

WDF_UNPROMPTED word was acquired without use of a prompt

WDF_AVERAGE word was createdby averaging utterances.

WDF_SPEAKERTNDEP word is a speakerindependenttemplate.

Wd_elements is the number of words that were used to create the WORD. This field is only applicable

when WDF_AVERAGE is set The function WordElements(word) will return a value of 1 if

WDF_AVERAGE is not set andwd_elements if it is set The field wd_ex3 is reserved for futureexpan

sion. Wd_frames is the time ordered array of FRAMEs. The size of a WORD in bytes can be obtained

by using the macro WordSize(word). The size of the header information is the constant WordHSize.
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HEARING {
short hr_mgtype;
short hr_idtype;
short hr_id;
short hrj>lace;
short hr_x;
short hr_y; .
short hrjinlen;
short hrjiumscores;
struct {

short hrjiname;
short hr_score;
short hr_condition;
char *hr_cdata;

} hr data[l];

};

A HEARING is the resultof comparing a wordwith all templates. It is sentby the daemon to a user if a

wordis heard,or as the resultof executing a CompareWord function. Hr_mgtype is set to one of the fol

lowing constants:

HR_ERROR an erroroccurred while trying to process thisHEARING.

HR_REJECT this word should be rejected.

HR_OFF turnoff therecognizer now.

HR_ENDOFSENTENCE

end of sentence has occurred.

HR_EVAL this HEARING contains information about the top hr_numscores words that

were trained by this user (EVALMODE).

HR_NORMAL this HEARING contains information about only the topword thatwas trained by

this user (in data[0]).

Hr_idtype and hr_id together form a unique identifier for the word corresponding to this HEARING.

Hr_place is thenumber of the topmost window under the cursor when the word was spoken. Hr_xand

hr_y are the x and y coordinates of thecursor in the screen's coordinate system. Hrjinlen is the length

in FRAMEs of the word. Hr_numscores indicates the number of valid score/name pairs in the hr_data

field. Each entry consists offour subfields hrjiname, hr_score, hr_condition, and hr_cdata. Hr_data[0] is
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the best (lowest score) match ofthe word with all templates currendy trained by the user. Hr_data[l] is

the second lowest score, etc. Hr_score is the actual score, and hrjiname is the uname of the word.

Hr_condition can be ignored for now. Hr_cdata is the data associated with hrjiname if hrjiname is

really a class. The size of a HEARING in bytes can be obtained by using the macro

HearingSize(hearing). Thesize of the header information is the constant HearingHSize.

B3.13. Word Model

At the core of the template sharing mechanismis the 'Word Model'. This abstraction allows one to

store and retrieve WORDs (utterances and templates) without knowing thedetails of theunderlying filing

system. The model consists of a set of library routines tostore and retrieve WORDs, a 'Dictionary' of

words andtheir possible spellings, and a UNIX directory (with sub-directories). If a word is not in the

dictionary then theWordModel willcreate atemporary entry for that word.

A word consists of three pieces of information: a canonical spelling (canspell), a setof other spel

lings, anda 'template group' name. The dictionary is a set of entries of this kind. A wordis referred to

by oneof its spellings. For example, the word 'six' is referred to by the character string 'six'. Many

words have different spellings even though they are pronounced the same way (e.g. 1/one/won;

right/write; to/two/too/2 etc.). In order to handle these cases consistendy there is concept of canonical

spelling (canspell). A word can be referred to by any of its known spellings, and the Mara system will

derive the correct canspell (using the Dictionary). All information about a word is associated with its

canspell, not a particular spelling.The canspell is really a 'C structure that contains information about

the word. In order to let ALL programs share the same WORDs, eachWORD is filed in a particular

placeon disk. The 'template group' specifies a sub-directory into which this word should be stored. Its

use is optional, but can speed operations by shortening the average lengthof directories.

The 'word model' must be set up by creating a directory "templates" in ones main directory. The

"templates" directory should contain the file 'Dictionary', the dictionary of words. The directory should

also contain a directory for each template group.
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B32. The Virtual Recognizer

A typical process will first connect to the daemon, obtaining avirtual recognizer. The process will

then load the set of words particular to its own application. Next the process might enable or disable

various options. The process must also inform the daemon when this virtual recognizer should receive

HEARINGS. Finally the process tells the recognizer to start recognizing. If the process wishes to add

templates, orchange options itmust first turn the recognizer off, then make the changes, then turn iton

again. In order to let the user run an evaluation ofthe raw speech recognizer each virtual recognizer can

be placed in EVALMODE. Normally, the HEARING sent by the daemon to the user is just a single

uname (or reject). But a process might want to know the top few candidate words that could have been

recognized. The recognizer can be placed inEVALMODE, which will send back aHEARING with the

topSCORESNEEDED score/name pairs filled in.

Inorder tosimplify interaction with the Mara Daemon, a library ofstandard Cprocedure calls was

written. If one uses this library then only one recognizer connection can beestablished per process. This

maychange in the future, but I doubt it

B.3.2.1. Standard Commands

A virtual recognizer is inone of three possible states at all times: disconnected, off, or on. In the

disconnected state the daemon does not even know of the existence of the UNIX process that wants to

use the recognizer. The'off state isentered when a process wants togive commands toitsvirtual recog

nizer. When the recognizer is inthe 'on' state, aprocess may notsend commands tothe daemon. In this

state recognition results (HEARING structures) are sent from the daemon tothe process indicating that a

word was spoken. Transitions between these states are handled by the procedure MaraGotoStateO, orby

the use of easy to remembermacros: (Easyto remember, not to type).

OnRecognizerO
OffRecognizerO
CormectRecognizerO
DisconnectRecognizerO

The first thing thata process thatwishes to usetherecognizer should doiscall:
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ConnectRecognizer(fatal)
int fatal;

If fatal is TRUE then the process will abort (call exit(-l)) if it cannot connect to the daemon. If fatal is

FALSE the process will return TRUE if the connection succeeded, FALSE if it didn't succeed.

Next a processwill normally load WORDs to be recognized (templates). There are two different

ways to load templates.

LoadaRawTp(word, flags)
WORD +word;
int flags;

LoadaRawTp is usedif youhavea WORD structure thatyouwantto useas a template.

LoadaSpelling(spelling, flags)
char 'spelling;
int flags;

LoadaSpelling is usedif youwantto loadallthetemplates of a given canspellof thegiven spelling. The

latter call allows multiple processes to share thesame spellings. If thiscall is used, onlyoneset of tem

plates for each spelling is loaded into the template memory on thePC board. Thusone is encouraged to

use LoadaSpelling whenever possible.

The flags fieldis set to a bit vectorof the following options:

LDF_GLOBAL this word is a global word (i.e. recognize it regardless of where the mouse

points).

LDF__RETATNED retain templates for this word in template memory even if no users refer to

this word.

LDF_NAME this word is a name for this user. Redirect input to this user if name is spo

ken. Redirection is active until end of sentence is encountered. A HEAR

ING corresponding to the user name will NOT be sent to the user.

The value returned from both LoadaRawTp and LoadaSpelling is the uname of this word, or

MERROR if an error occurred and the word could not be loaded. Possible errors include: a global word

was already trained by another user, no more template memory, or templates for this word could not be
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found or created. A word can be loaded twice, in which case the same uname will be returned both

times it is loaded.

If a user wants to delete a word one of the following commands can be used:

UnloadaUname(uname)
int uname;

or

UnloadaSpelling(spelling)
char 'spelling;

The action of these two operations is obvious. In both cases the uname of thedeleted word is returned,

or MERROR if an error occurred.

Eachvirtual recognizer has a set of userdefinable parameters andflags. To set (orget) a parameter

one uses:

MaraParameter(parameter, valueJype, value)
int parameter;
int value_type;
int value;

There are twodifferent types of parameters, userandglobal. Local parameters arespecific toonepartic

ularuser, while global parameters arethesame forallusers. In general, global parameters should notbe

changed. Currendy the following parameters are defined:

User.

PRM_REJECTTHRESHOLD rejection threshold

PRM_SCORESNEEDED maximum number of score/name pairs to return when in

EVALMODE

Global:

PRMGJREJECTTHRESHOLD rejectionthreshold

FRMG_SILENTGAP sizeinframes of maximum intraword gap

PRMG_DOWNSAMPLETHRESH down-sampling threshold
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PRMG_HIGHENERGYTHRESH rninimum peakenergyfor a word

PRMGJSENTENCEGAP numberof frames of silence between sentences

FRMG_ADAPTRADIUS determines radiusof similarityfor adaptive trainingalgorithm

ValueJype indicates the type of operation to be performed on the parameter. There are four different

possibilities:

PMT_SETTODEFAULT set parameterto default value

FMTGEIDEFAULT return default value for this parameter

PMTGET return current value of this parameter

PMT_SET set parameterto specified value.

Instead of using MaraParameter, the user should use one these four convenient macros:

SetMaraParameter(parameter, value)
GetMaraParameter(parameter)
SetDefaultMaraParameter(parameter)
GetDefaultMaraPanuneter(parameter)

In addition to userdefinable parameters, each userhasa set of flags that it can set

FLG_EVALMODE put virtualrecognizer in EVALMODE

FLGJFLASHSPELLING flash (under SunWindows) the recognized word

FLG_FLASHREJECT flash (underSunWindows) 'REJECT' if the word is to be rejected.

FLG^SENDEOSENTENCE send end of sentence HEARINGS if set

FLGJTRAINONLOAD when a word is loadedan no templatesexist for the word, then one is

trained.

The function call is in the form:

MaraFlags(flags, valuejype, value)
int flags;
int valuejype;
int value;

Flags is a bit vectorof the flags that one wants to change. Value_type is as above for parameters, and
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value is a bit vector of new values. Again, the user shoulduse on the four macros:

SetMaraHags(flags, value)
GetMaraFlags(flags)
SetDefaulfMaraFlags(flags)
GetDefanltMaraFlags(flags)

For example, to clear both flashings use:

SetMaraHags(FLG_FLASHSPElJLJNG|FLG_FLASHREJECT, 0);

The ultimate goal of the any speech recognizer is to send a message to the computer that a particular

word hasjustbeen spoken. In thevirtual recognizer system proposed, this task is complicated bythefact

that all virtual recognizers are running simultaneously. But a spoken word should only be sent to ONE

virtual recognizer. The daemon picks the correct recognizer to get a given"wordwas spoken" message

(HEARING) using the following algorithm:

If any user has grab_all set
then send HEARING to that user

else

if user name was spoken in the recent past
then send HEARING to that user

else

if the top word is global (LDFJ3LOBAL)
then send HEARING to the user that loaded that word

else

determine the window that the mouse is in

send HEARING to the last user associated with that window

If Mara is being usedoutside the window system then theHEARING willbe ignored if grab_all is not

set or thetopword isnotglobal. Aparticular window is associated with a user byusing thecommand:

AssocWindow(window)
int window;

Window is the number from the device /dev/win#. This number can be obtained by extracting it from the

environment variable WINDOW_ME, or, if the window's file descriptor isopen (i.e. ina tool), by using

thecall fdtonumber(fd). Maramaintains a stackof associations for eachwindow. If a userdies the win

dow will revert to itsprevious owner. I hope that this scheme issufficient AssocWindow returns TRUE

if it can make the association otherwise it returns FALSE.
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Now, after all templates are loaded, andall options are set correcdy the usercan turnon the recog

nizer. While on, the recognizer can not load words, set options, or perform any other commands. The

macro to turn on the recognizer is:

OnRecognizer(grab_all)
int grabjdl;

If grabjril is true then the daemon will send the results ofALL words that it hears to this user. Grab_all

should onlybe usedto run through testtapes or similar applications. OnRecognizer returns TRUE if the

recognizer was turned on, otherwise it returns FALSE.

While therecognizer is on, the user should wait for input from thefile descriptor "mara_fd". For

example, one might use the select system call with input_bits equal to (1 « marajtt). Note that the

valueof mara_fdshouldneverbe changed.

If input is available from file descriptor "mara_fd", theuser canreadtheHEARING with thecom

mand:

HEARING *GetHearing(hearing)
HEARING 'hearing;

GetHearing fills the HEARING structure passed to it with theHEARING being sentfrom thedaemon. If

hearing is NULL then a new HEARING is created using mallocO- GetHearing returns a pointer to the

HEARING, or NULL if an error occurred. The HEARING returned by this callis encoded asexplained

in theprevious section of this manual Remember, thedaemon will only return uname's associated with

words thattheuserhasloaded. AHEARING'S memory canbefreed bycalling:

FreeHearing(hearing)
HEARING 'hearing;

If the HEARINGwas not created usingmalloc(), thenone shouldinsteadcall:

FreeHearingData(hearing)
HEARING 'hearing;

FreeHearingData will free all the cdata sub_fields for re-use.

Finally, if a user wants to turn off the recognizer it should call:
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OffRecognizerO

Any words that are spoken from this point until the next OnRecognizer command will be ignored. Ifa

userwishes to disconnect from the recognizerit shouldcalk

DisconnectRecognizerO

If aprocess dies without turning offand disconnecting then Mara Daemon will delete all of the users

loaded templates gracefully. Thus, IT IS NOT NECCESSARY TO DISCONNECT BEFORE EXITING

A USERPROGRAM. Another wayto disconnect therecognizer is tocalk

AbortRecognizerO

This call can be executed at any time.

B.3.2.2. Classes

The above schemelets a userassociate each wordwith ameaning, but provides no methodof shar

ing meanings among users. Classes let users associate an arbitrary string with agiven word. The string

is the same for all users, and is remembered from session to session. For example, a file-name class

might associate with each word a file name. Thus regardless ofwhich window one isin, when the word

is spoken die window can use die filename.

By convention (enforced), all class names start with a"#" character. To load aclass one should

call LoadaSpellingO with the name of the class instead ofthe name ofaspelling. Atthat point all words

in the given class are active. The uname returned byLoadaSpelling isthe uname of the class. When a

HEARING isreceived, that same uname will beinthe hrjiname subfield, and hr_cdata will besettothe

string.

Members can be added to class by calling:

AddMemberToClass(class, member, cdata)
char 'class;
char'member;
char 'cdata;

AddMemberToClass will add the spelling "member" to the class "class", and associate the data "cdata"

with this spelling.
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DeleteMemberFromClass(class, member)
char 'class;
char 'member;

This procedure does the obvious thing. Class associations are stored on disk in the file "Classes" in ones

templates directory. The file is written at strategic points, and thus shouldalways be up to date. If you

wish though, you can call:

DumpQassesO

and force the file to be up to date.

There are a few more things that are important to know about classes. First all class members are

always loaded in template memory even if no user has loaded that class. This is done to simply things.

Thus do not put all words into a class. Second, a word can only be a member of one class at a time. To

move a word from one class to another first delete it from the old class, then add it to the new class.

Third,a wordcan be loadedas a class member and at the same time be loadedas a spelling. This is how

the "#names" class does its work. The spellingtakesprecedence over the class membership (for a given

user). Fourth, if you have been paying attention then you will realize that the class argument of the

DeleteMemberFromClass function is redundant (since each word can only belong to one class). This

argument is provided as a check, and must be set correcdy.

B323. Other Commands

In addition to the above, there are a few more commands that are very useful.

WORD *GetaWord(prompt word)
char 'prompt;
WORD 'word;

GetaWord tells the Mara Daemon to print "Please say 'prompt'" on the screen, and wait for the speaker

to speak this word. The word that the speaker actual says is then returned in the structure "word". Note

that there is no guarantee that the returned WORD corresponds to an actual utterance of the word sug

gested by the prompt The WORD structure returned by GetaWord is placed in "word", unless "word" is

NULL, in which case a new WORD is created using malloc(). In either case a pointer to the WORD is

returned by GetaWord. If NULL is returned then an error occurred.
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HEARING *CompareWoTd(word, hearing)
WORD'word;
HEARING 'hearing;

CompareWord uses the processing power ofthe Mara PC board to compare the WORD "word" with all

words currendy loaded. The resulting HEARING is processed according tothe options set and returned

in hearing. If hearing is NULL then a new HEARING is created. If NULL is returned then an error

occurred. The user should be cautious to set all the appropriate options before calling CompareWord.

Also, CompareWord (and GetaWord) can only beused while the recognizer isoff.

TpVerifyO

TpVerify is useless to allpeople butthose repairing Mara PCboards. It attempts to verify that the tem

plates onthePCboard have notbeen destroyed due toa synchronization bug in thehardware.

HashString(string, x, y)
char 'string;
int x,y;

FlashString will flash "string" on thescreen associated with the Mara Daemon. X andy specify thecoor

dinates where thestring is to be flashed (screen coordinate system). It is suggested that the x andy from

theHEARING thatgenerated theeventbe used. Thiscallcanbeusedwhen therecognizer is eitheronor

off. This call is included so that a user doesn't have to include the SunWindow library in order to flash

messages.

FlashUname(uname, x, y)
int uname;
int x,y;

FlashUname is similar to FlashString exceptthat it is passed a uname instead of a string. If the uname

has a value less than zero than "REJECT" will be flashed on the screen. Otherwise the spelling of the

canspell corresponding to the uname is flashed.

B.3.2.4. Command List



137

Mara Virtual Recognizer Commands

Type Meaning Function

WORD*

HEARING*

GetaWord(char *prompt;WORD *word)
CompareWord(WORD *w; HEARING *hearing)

int

int

int

int

uname

uname

uname

uname

LoadaRawTp(WORD *word; int flags)
UnloadaUname(int uname)
LoadaSpelling(char 'spelling; int flags)
UnloadaSpelling(char 'spelling)

int

int

int

int

int

param

param

param

param

param

MaraParameter(int parameter; int valuejype; int value)
SetMaraParameter(parameter; value)
GetMaraParameter(parameter)
SetDefaultMaraParameter(parameter)
GetDefaultMaraParameter(parameter)

int

int

int

int

int

flags
flags
flags
flags
flags

MaraFlags(int flags; int valuejype; int value)
SetMaraFlags(flags, value)
GetMaraFlags(flags)
SetDefaultMaraFlags(flags)
GetDefaultMaraFlags(flags)

int

int

int

int

T/F

T/F

T/F

T/F

ConnectRecognizer(int fatal)
OnRecognizer(int grab_all)
OffRecognizerO
DisconnectRecognizerO
AbortRecognizerO

int

int

uname

uname

AddMemberToQass(char 'class, 'member, 'cdata)
DeleteMemberFromGass(char 'class, 'member)

int T/F AssocWindow(int window)

FlashString(char'string; int x, y)
FlashUname(intuname; int x, y)
TpVerifyO

MaraVirtual Recognizer Responses
Type Meaning Function

HEARING* GetHearing(HEARING 'hearing)

XXX*

uname

T/F

param

flags

B33. Standard Libraries

Explanation ofTypes and Meanings

Pointerto an xxx structure. Error in indicatedby NULL.
an integer between 0 and 999 (inclusive).

A value less than 0 indicates an error condition.

TRUE or FALSE

The value of the parameter.
The value of all flags specified.

In order to save time regenerating the same code for each speech application, a set of standard
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library routines was written. These routines perform all the word model functions, word and frame dis

tance computations, averaging algorithms, training algorithms, and afew miscellaneous functions.

B.3.3.1. Word Model

Before one can start to use any of the word model routines the dictionary must be set up. This is

done by calling:

SetupDicitonaryO

Once the dictionary is set up itneed never be set up again. Ifentries are added to the dictionary file itis

automatically reread and the data-base updated. The dictionary resides in the templates directory under

ones main directory. The exact full path to the templates directory can be obtained bycalling:

char 'MaraDirectoryO

This routine will normally return the expanded "/templates, but if the environment variable

MARA_TEMPLATES isset then 7$MARA_TEMPLATES isreturned.

The dictionary file isnamed "Dictionary" and itcontains lines inthe form:

<canspeU> <template group> <other spelling> <other spelling>....;

Once an entry is made to thedictionary it should notbedeleted.

CANSPELL *CanspellOfaSpelling(spelling)
char 'spelling;

CanspeUOfaSpelling returns pointer to the CANSPELL structure for the given spelling. Ifthe word is not

in the dictionary then anew canspell is created. This new canspell will have only one spelling. The

template group for this canspell is ctetermined from the first letter in the spelling. The pointer returned is

unique for each CANSPELL, and WILL NOT CHANGE even ifthe dictionary is changed. The canspell

isintended tobe the ultimate reference for all words. The spelling of this canspell can be obtained using

the macro:

char *SpellingOfaCanspell(canspell)
CANSPELL *canspell;

A spelling, as you remember, isastring suitable for printing.
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The wordmodel specifies thateachWORD is uniquely ^identified by threepieces of information:

canspell, type and appendix. The type is one of:

WTTEMPLATE ThisWORD should be usedas a template.

WT_UTTERANCE This WORDis just an utterance.

WT_CONSIDERATION This WORD may become a template soon.

Appendicies start from 1 and are assigned in increasing order. Words are storedin files on the disk. The

filename fora given word canbeobtained bycalling

char *FilenameOfaWord(filename, canspell, type, appendix)
char 'filename;
CANSPELL*canspell;
char type;
int appendix;

Filename is theplace in memory thatwill getfilled with theappropriate file name. Thefunction returns a

pointer to the filename.

char *DirectoryOfaCanspeU(directory, canspell)
char 'directory;
CANSPELL *canspell;

DirectoryOfACanspell fills "directory" with the string fortheUNIX directory that canspell canbefound

in.

int ExpandWordFilename(fh, sp, splen, type, appendix)
char *fh;
char *sp;
int 'splen;
char*type;
int 'appendix;

ExpandWordFilename getspassed a filename (fh) and breaks it into its three components sp (spelling),

type, and appendix. Splenis the length of thespelling "sp". The function returns TRUEif "fh" is a valid

filename. Note: all leading path parts of thefilename are deleted so thattheresulting spelling "sp" should

be usable as an actual spelling.

To read a word from a file the following function should be used:
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WORD *ReadaWord(filename, word)
char 'filename;
WORD *word;

In this case, if "word" is NULL then a new word is created using mallocO. otiierwise the WORD is

placed in "word". ReadaWord return NULL if an error occurred (like the WORD doesn't exist), other

wise it returns apointer totheWORD. AWORD can bewritten using:

int WriteaWord(filename, word)
char 'filename;
WORD *word;

This function returnsFALSE if anerroroccurred, otherwiseit returns TRUE.

The functions FilenameOfAWordO, DirectoryOfACanspell(), ExpandWordFilenameO, Reada-

WordO, and WriteaWord() are low level routines and should not beused byusers (although you can use

them if you want). There are four higher level functions that users should use. They are:

WORD **GetWordFiles(cs, type, lower, upper, wordlist appendflag)
CANSPELL *cs;
int type, lower, upper;
WORD **wordlist;
int appendflag;

int PutWordFiles(cs, type, lower, upper,wordlist overwrite)
CANSPELL *cs;
int type, lower, upper;
WORD **wordlist;
int overwrite;

WORD **GetBlockWordFiles(cs, type, wordlist appendflag)
CANSPELL *cs;
int type;
WORD **wordlist;
int appendflag;

int PutBlockWordFiles(cs, type, wordlist overwrite)
CANSPELL *cs;

int type;
WORD **wordlist;
int overwrite;

GetWordFiles returns alistof new WORDs (created using mallocO) inwordlist The WORDs putin the

list are those that correspond to the canspell "cs", with type "type", and an appendix between "lower" and

"upper". If appendflag is TRUE then wordlist is appended to (i.e. new words are added to the end ofthe
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list); otherwise wordlist is assumed to be empty. Rememberthat wordlist is NULL terminated. That is,

the last WORD in wordlist is actually a NULL pointer.

PutWordFiles does the opposite operation, writing WORDs to disk. Again "cs" is the canspell and

"type" specifies the type. Words are written starting with appendix equal to "lower" and going up to

"upper". If overwrite is TRUE then WORDs will be written over existing WORDs on disk. Normally

overwrite should be FALSE.

Certain types are stored, by convention, in blocks. This means that the all appendicies are consecu

tive and start from one. It turns out that the GetWordFiles and PutWordFiles are too inefficient under

certain conditions. Currendy WTJTEMFLATE and WT_CONSTDERATION are stored as block word

files. The command GetBlockWordFiles will get words starting with appendix equal to one until a word

is not found. PutBlockWordFiles will write words starting either from one (overwrite is TRUE), or from

the highest appendix for this word (overwrite is FALSE). After all words in the list are written, Put

BlockWordFiles will remove all disk files that correspond to larger appendicies for that word.

B332. Classes

In order to let users manipulate class information the following routines are provided:

IsClassName(class)
char class;

IsClassNamewill return true if the argumentpassed to it is a valid class name.

FILE *OpenClassesFile(mode)
char 'mode;

OpenClassesFile will return a FILE * as the result of opening the "Classes" file with mode string "mode".

The mode string is the same as is found in fopen(). If the file cannot be opened then NULL is returned.

B.3J.3. Distances

At the heart of all speech recognition systems is the definition of the distance between two

WORDs. This distance should have the property that WORDs that correspond to the same word should

have small distances, and different words should have large distances. Mara uses the squaredEuclidean
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distance between 4 bit quantized spectral estimates. The FRAME to FRAME distance measure that can

be computed using:

int Fr2Fr(framel, frame2)
FRAME 'framel, *frame2;

Fr2Fr returns a number between 0 and 255 indicating the spectral distance between framel and frame2.

The WORD toWORD distance ismuch more complicated. The distance measure implemented inMara

is a dynamic time warp algorithm. The algorithm has no slope constraints, adjustments windows, or

pruning. A1-1-1 weighting is used, with anormalization factor equal to the maximum length ofthe two

WORDs. The results of the WORD toWORD comparison isa 15 bitvalue, and for good matches will

generallybe less than 30:

int Word2Word(wordl, word2)
WORD *wordl, *word2;

The algorithm is symmetric, so the order ofwordl and word2 isunimportant Another useful function is:

int Word2WordPath(wordl, word2,pathl, path2, pathlength)
WORD *wordl, *word2;
int **pathl, **path2;
int *pathlength;

This function returns the same thing as Word2Word. In addition to computing the distance,

Word2WordPath also computes the dynamic time warp path. The path is a set of pairs ((*pathl)[i],

(*path2)[i]) that correspond to the FRAME to FRAME comparison along the path with the smallest dis

tance. The total length ofthe path isput into *pathlength. The paths are created using mallocO and must

be freed after they are used. This is the recommended usage ofWord2WordPath:

int *wlpath, *w2path,pathlen;
WORD *wordl, *word2;
int score;

score - Word2WordPath(wordl,word2, &wlpath, &w2path, Apathlen);

free(wlpath);
free(w2path);
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BJ.3.4. Averaging

In addition to computing distances, another common speech recognition function is WORD

averaging.

WORD*AverageWords(wc, wordlist wo, threshold, wordcount)
WORD *wc;
WORD "wordlist;
WORD *wo;
int threshold;
int 'wordcount;

AverageWords averages theWORDs in "wordlist", using center WORD "wc". Theaveraged WORD is

placed in"wo." A new WORD is created using mallocO if "wo" is NULL. The only WORDs included

in the average are those whose distance from the center WORD is less than or equal to threshold. If

threshold is less than zero then all WORDs are used. AverageWords returns a pointer to the average

WORD, and sets wordcount tothe number ofWORDs that were used toform the average. The average

of a set ofPROMPTED and UNPROMPTEDWORDs results in an UNPROMPTED WORD.

AverageWords uses two routines to interprettheFRAMEdata structure. These are:

ExpandFrame(frame, intarray)
FRAME *frame;
int 'intarray;

and

CompressFrame(frame, intarray)
FRAME'frame;
int 'intarray;

ExpandFrame takes as input a FRAME frame, and expands it into an array of integers intarray. Intar-

ray[0] is fr_ave, intarray[l] is frjnax, intarray[2] is the low nibble of fr_data[0] etc. CompressFrame

performs the inverse operation.

In addition to a normal average, thelibrary also contains a routine tocompute a weighted average.

The functions:

WordWeight(word)
WORD 'word;
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and

WordWeightNoClip(word)
WORD 'word;

return the weightings for the given words. WordWeight will clip weights atsome small constant The

weighted average of asetofwords canbe computed by calling:

WORD 'WeightedAverageWords(wc, wordlistwo, threshold, wordcount)
WORD *wc;
WORD **wordlist;
WORD *wo;
int threshold;
int *wordcount;

The parameters for thisroutine are identical to those for AverageWords.

B.3.3.5. Trainer

A bigpart of any speech recognition system is the training algorithm. The Mara system currendy

uses a trainer called Rickie. Rickietakes as input aWORD listand uses aUWA clustering algorithm to

find possible key WORDs. These WORDs are then averaged with their neighbors to form templates.

Outliers areexcluded. Rickie can be used by calling:

WORD **Rickie(wordlist clminsize, clthresh, force, numtemplates)
WORD **wordlist;
int clminsize;
int clthresh;
int force;
int *numtemplates;

Rickie takes the WORD list "wordlist", and attempts to form' clusters of maximum spread "clthresh".

These clusters are then averaged around their center to form templates. Rickie returns aWORD list num

templates long (NULL terminated). Two other parameters are under user control: clminsize and force.

Clminsize specifies the minimum size (in number ofWORDs) of acluster for it to be considered avahd

template. Anything smaller is considered an outlier. If force is true then Rickie will always create at

least one template. Its algorithm specifies that the threshold be incremented by one until at least one valid

template is formed.
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B3.3.6. Miscellaneous

ListLength(list)
int **list;

ListLength returns the length of a list (number of non-NULL elements) for a wordlist or any other list of

pointers to things.

FreeListMembers(list)
int **list;

FreeListMemberscalls free on all the members of the specifiedlist

B.3.4. High Level Recognizer Commands

In order to supply a set of recognizer commands closer to the users needs, a set of higher level

recognizer calls was developed. Thesecallscan be usedin mostapplications.

BJ.4.1. Basic Strategies

The purposeof the high levelpackage is to provide supportfor differenttypes of voice commands.

All high level commands can be mixed with lowerlevelcommands. To initialize this package the rou

tine:

marajnitializeO;

should be called before any other Mara calls. The package supports different commands through the use

of two structures:

UNAMEITEM {
char uijype;
char ui_flags;
char *ui_data;

};

MARAMENUITEM {
char *nun_data;
short mm_flags;
UNAMEITEM mmjii;

};

These structures are defined in <mara/marawindowJi>. There are one thousand (MAXUNAMES)

UNAMEITEM structures in die system (one per uname). Each structure indicates how to respond when
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a uname is spoken. Ui_flags is set to a vectorof:

UI_FLASH flash thespelling of this word when spoken

UI_ICONACTTVE command should berecognized when tool isiconic

Uijypeisthe type ofoperation tobe performed ifthis word isrecognized. Current value are:

UI TTYSW 1

TjfPROCEDURE 2

UI~TOOLPROC 3

Ul"OPTSW BOOL 4

UI OPTSW COMMAND 5

TjT0PTSW_ENUM 6

UI~OPTSW TEXT 7

UfUSENAME 8

ufuSEVOCABFELE 9

Thelargest allowable value is currendy 40.Newtypes canbecreated bycalling:

mara_settype(type, procedure, free_procedure)
int type;
int (*procedure)0;
int (*free_procedure)0;

Marajettype informs the system tocall "procedure" when a word oftype "type" is spoken. "Procedure"

is called with:

<procedure>(ui, hearing)
UNAMEITEM *ui;
HEARING 'hearing;

"Free_procedure" is called with the just the UNAMEITEM parameter when a uname is redefined. This

procedure should free the instance data associated with the given type, that is, data created using mal

locO. The routine

mara freedata(ui)
"UNAMEITEM *ui;

is the generic memory freeing routine. It calls free(ui->ui_data). If free_procedure is NULL, then no

freeing routine is called.

TheMARAMENUTTEM structure contains spelling and flags fields (seeLoadaSpelling above) and

the UNAMEITEM to be associated with this spelling. A single MARAMENUTTEM can be attached

(loaded) by calling:
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mara_attachsingle(maramenu)
MARAMENUTTEM *maramenu;

An entire menu of items can be attachedby calling:

mara__attachmenu(maramenu)
MARAMENUTTEM'maramenu;

A menu is an array of MARAMENUTTEMs that is terminated with aNULLin themisspelling field.

In addition to supplying a set of attach calls,the basicpackage suppliesa standard routineto handle

Mara input When a process wishes to reada Mara event andprocess it it should call:

mara_handTeinput(iconic)
int iconic;

Iconic is TRUE if the window is currendy iconic (see UMCONACTTVE flag above). The

marajiandleinput routine reads a HEARING from mara_fd and performs the appropriate actions (calls

the procedure associated with the uiJype field). In addition, if theMara Daemon dies thenAbortRecog-

nizeris called. After AbortRecognizer is called, a user routine canbe called by using:

mara_setabort(procedure)
int CprocedureX);

B.3.4.2. Tool Support

A library of callswas developed for use when one designs a new tool. These callsareadapted to

be very similar to their corresponding SunWindow calls. There is currendy one restriction placed on

tools: only one tool is allowed perUNIX process. A tool thatwishesto use arecognizer shouldcall

struct tool*mara_tool_create(name, flags, normalrect icon, mm)
char 'name;

short flags;
struct rect "normalrect;
struct icon 'icon;
MARAMENUTTEM *mm;

mstead of tool_create. All the parameters are the same as thenormal tool_create, except for the addition

of the mm parameter. Mm should be the mara menu associated the the tool window (or NULL if no

menu is wanted). The normal menu is:
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MARAMENUTTEM 'rnarajoolmenuQ;

Marajool_create calls mara_initialize. After the tool is set up other menus can be attached and other

Mara subwindows can be established. Explicit names may be given to tools on theircommand line by

specifying the"-n<name>" flag. Thecall toextract these names from thecommand lineis:

mara_tool_args(argc argv)
int 'argc;
char 'argvQ;

Here argc is a pointer to the real argc. Thename andflag areremoved from the command line and the

resulting spaceis compacted. The automatic naming feature can be activated by calling:

mara_tool_activatenameclass()

This function loads the class "#names", a class of window names. When one of the names is spoken, and

the mouse is in this users window, then that name is trained as the name of the window (after a mouse

confirmation). The namestripe of thewindow is updated withthenameof thewindow. The cdataassoci

ated with the #names class is the same as the spelling.When all menushave been set up, and all subwin

dows have be created one should call:

mara_tool_install(tool)
struct tool 'tool;

Marajooljnstall replaces thenormal tooljnstall call At this point thetool should be installed, andthe

recognizer should be on. Marajooljnstall changes the "selected" routine associated with the tool so

that input is handled automatically. One need nevercall marajiandleinput

The toolnaming feature places the all of its names in thenamestripe above the tool. Thus, in order

to change the namestripe one should call:

marajooljiewnamestripe(name, display)
char 'name;
int display;

Display should be trueif thewindows are installed, otherwise it should befalse. Name is thenewnames

tripe.
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B.3.4.3. Tty SubwindowSupport

Support for the ttysubwindow consists of supplying a method of attaching to each word a suing

that is "typed" when that word is spoken. In this case, ui_type should be UIJTTYSW, and the uijiata

should bethe string tobe"typed". Inorder toletpeople make better use ofthe support one can use:

lnarajtyswjoadmenufile(filename)
char 'filename;

This routine will loadthewords andstrings found in thespecified file. Thefile contains lines of theform:

<spellmg>:<flags>:<string>

Flags isa string that can beused tosetvarious flags. Current flags are:

g-LDF_GLOBAL
r-LDF RETAINED

f-UI H-ASH

i-UIJCONACTIVE

String is encoded so that\n, \r, \e (ESCape) etc. canbe used. Also \[A-Z] canbe used as control charac

ters. If the spelling isa class, then the cdata associated with the word will be inserted inthe string when a

"%s" is encountered. "%%" should be used as "%". One can also load files from the command line

using:

mara_ttysw_args(argc, argv)
int 'argc;
char 'argvQ;

Where argc is a pointer to the actual argc. Files that get loaded are those that occur after a "-v" flag.

More thanonevocabulary file can be specified.

The class "#vocabs" can be used to associate vocabulary files with windows. To activate the

#vocabs class one should call:

mara_ttysw_activatevocabsclass(windowfd)
int windowfd;

Windowfd shouldbe the windowfd of the toolor the ttysw subwindow. The #vocabs classcontains asso

ciations of words to vocabulary files (full path names). When one of these words is spoken, the

corresponding vocabulary file is loaded(aftermouse confirmation).
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BJ.4.4. Option Subwindow Support

The include file for the optionsubwindowis <mara/optionswJi>. Three optionstypes arecurrendy

supported: boolean,command, and enumerated. The boolean optioncan be set up by calling

caddrj mara_optsw_bool(optsw, label,init notify, spelling, flags)
caddrj optsw;
struct typed_pair 'label;
int init;

int (*notify)0;
char 'spelling;
int flags;

instead of thenormal optsw_bool0 routine. Thiscall is identical tooptsw_bool exceptthatit also attachs

theword"spelling" to toggle thevalue. Flags specifies theui_flags field associated with thisword.

caddrj mara_optsw_command(optsw, label,notify, spelling, flags)
caddrj optsw;
struct typed_pair 'label;
int (*notify)0;
char 'spelling;
int flags;

Mara_optsw_command performs the same function for command options. For this case flags should be

set toUI_FLASH sinceI couldnot find a way to get the label to flash otherwise.

caddrj mara_optsw_enum(optsw, label, choices, init notify, spellings, flags)
caddrj optsw;
struct typedjiair 'label;
struct typedj>air'choices;
int init;
int (*notify)();
char 'spellings D;
int flags;

Mara_optsw_enum performs the similar function for enumerated types. In this case spellings is a listof

spellings.

caddrj maraj>ptswjext(optsw, label, defaultjralue, flags, notify, class, clflags)
caddrj optsw;
struct typed_pair 'label;
char *default_value;
int flags;
int (*notify)();
char 'class;
int clflags;
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Mara_optsw_text is used for textitems. In this case a class is usedinstead of a spelling. Thus, different

text items can be associated with different classes (i.e. one for files, one for directories, one for com

mands). I am sure that this type ofitem will have tobeexpanded on inthe future toinclude spellings and

numbers.

B3S. Relevant Files

In orderto usethelibraries above onemust include thefollowing header files:

#include <mara/maraJi> /* Low Level Commands */
^include <mara/marawindowJi> /* Basic Level and Tool Commands */
#include <mara/optionsw.h> /* Option Subwindow Commands */

The libraries themselves can belinked into your programs byincluding:

-lmarawindow -lmara

on die C compile line.

B.4. What the Computer User Sees

B.4.1. Programs

B.4.1.1. The Mara Daemon

TheMara Daemon is called "mara" and lives in /usr/locaL TheDaemon will download the pro

gram that runs on the PC Board. This programis in /usr/local/mara86.com. When the Daemonis started

it will normally print all sorts ofstuff onthe console. This stuff can besuppressed byusing the -ecom

mand lineoption. Forexample, theDaemon should normally becalled withthe line:

/usr/local/mara /usr/local/mara86.com -e

The daemon can run in a few different terminal environments (SunWindows, terminals with 25th lines

and terminals without 25th lines). It will automatically determine the environment to use when started,

but can be overridden with the -d <display> option. Here <display> is one of: sun, hl9, hl9-a, ansi, or

vtlOO.
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The daemon, when started, will read from the file "jnara^setop" mones home directory and use it

toset the default user flags and parameters. The file should have lines inthe form:

<option> <value>

Current options are:

flashreject

flashspelling

trainonload

rejectthreshold

silentgap

downsamplethreshold

highenergythreshold

sentencegap

adaptionradius

offVon [normally on]

off/on [normally off]

off/on [normallyon]

[normally27]

Word toword gap time in 10ms units [normally 18]

[normally 6]

[normally 80]

in 10ms units [normally 150]

inpercent of rejection threshold [normally 120]

The daemon can be killed byeither selecting "Quit" inits "tool manager" menu, or byrunning the

program:

/usr/local/killmara

If the daemon dies for some strange reason then the recognizer must bereset This is done by the pro

gram resetmara.

/usr/local/resetmara

B.4.1.2. Suntools

In the directory /usr/local/maratool is a copy of the standard suntools programs that have been

recompiled to include voice capabilities. To use these programs one should include in ones path variable

the entry /usr/local/maratool BEFORE the entry /usr/suntool. To change the recognizer from its default

position on the screen, one should set the environment variable WTNDOW^MARALOCATION:
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setenv WTNDOW^MARALOCATION 980:156:164:168:1082:156:64:64:0

This line will start the daemon up on the right side of the screen(for SUN 120/170displays), about two

icon heights from the top of the screen.

The suntools programs sets up three phrases: "new shell", "new graphics", and "redisplay all". If

one of these phrases is spoken the appropriate actionis performed.

The shelltool and gfxtool programs are set up to read voice files for their tty subwindows. These

tools activate the #names and #vocabs classes.

B.4.1J. Other Programs

The program "maraparams" provides the user with a way to set the global recognition parameters

(and print them). The program will print the values of all the parameters if no arguments are provided.

Arguments arein to form:

-<flag><value>

possible flags are:

r Reject threshold
w Word to word gap time (in 10ms units)
d Down-sample threshold
h High Energy (in word) threshold
s Intersentence gap (in 10ms units)
a Adaption Radius (in percentof rejectionthreshold)

Values should be numbers. There are 3 special values:

d use default value

p print current value
P print out default value

The program "class" is used to add/delete/look at class relationships. If called with no arguments it

will dump all the class associtates to the screen in a readable format (really is a pretty printer of the

Classes file). If arguments are supplied then die first argument is the name of a class (with the "#" char

acter). The rest of the arguments apply to this class. There are two different types of requests, delete and

add. A delete is indicated by a "-" as the first character of an argument The rest of the argument is taken

as the spellingto be deleted from the class. The absence of a"-" character indicates an add command. In
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this case the two arguments are needed, first the spelling, then the cdata string. One can put as many

requests asonewants on a single class commmand.

Since thedescription above is pretty unclear I will give a few examples.

class tvocabs v_i_wbrds 7vocabs/vi.v -test_words

This request will add the spelling "v_i_words" to the class #vocabs and associate the string 7vocabs/viv

(the " should be expanded by the c-shell). It will also delete the spelling "test_words" from the class

#vocabs.

class tnames clydeClyde -v_i_windowbonnie bonnie

This request will add the spellings clyde and bonnie to the #names class, and delete v_i_window from

this sameclass.Note thatin the caseof the #names classthe spelling andits string shouldbe the same(or

else allh will breakloose).

B.4.2. Window Environment

This section deals with Mara in the SunWindows environment

B.4.2.1. Getting Started

Getting started is probably the mostdifficult part of using Mara. First onemustobtain a working

PC Board with allthe neccessary connectors, the pre-amp and a microphone. After the board is installed

and all the cables are set up the hardest part is over. Your UNIX system musthave the SPUDS board

driver installed, and should have the device /dev/spO. Assuming all this is set up beforehand, setting up

Mara itself is relatively easy.

Run the program "setupmara <dictionary>" where <dictionary> is aDictionary file. A reasonable

start-up dictionary is suppliedin /usr/local/maraDictionary.

setupmara/usr/local/maraJDictionary

This shell script will create all the neccessary files (templates directory, Dictionary, sub-directories).

Next edit your .cshrc file to include the directory /usr/local/maratool BEFORE /usr/suntool in your path

variable. You are now ready to use Mara.
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At this point it is bestto testto make sure everything is setup correcdy. Start theMara Daemon

using the command:

/usr/local/mara /usr/locaI/mara86.com

You should see the message "Spuds started", then a new window should appear with the tide"Mara".

Turn on the pre-amp (also flip the switch to "filters on"), set the filters to6K, and turn the gain toabout

80% offull scale. Now say aword ortwo and look atthe Mara window. You should see a bar go across

die window. This is a VU-meter. If you don't see this then something is wrong. Tokill the daemon

move the mouse tothe tide line, press the rightmost mouse button, and select "Quit" onthemenu.

Now it is time to use Mara for real. First kill the daemon, then exit the suntools environment and

log out Log back in, and start up the suntools environment You should be prompted to say some words.

Say them. Now point to a window and say one of the words you just trained. Isn't that interesting, it

should do what you tell it

B.4.2.2. What You See

Look at the Mara window and will notice two different things going on. Firstat the top ofwindow

isa grey barthat goes from lefttoright whenever you speak a word. This is a VU-meter, and it is used to

help setthe gain on the pre-amplifier. The gain should be adjusted sothat words typically cause the bar

togo to 75% of full scale. You might have to adjust the position of the microphone too. If the baris all

the way to the right then the system willclip the signal, if the bar is below 50% of full scale then the

word will be ignored. You might also notice a black bar at the left hand side of the window. This bar

indicates the background noise level Normally it should be either invisible orjustbarely visible. If the

background noise increases then the bar will start creeping to the right Notice also that the grey bar goes

away after about a second and a half. This is triggered byan"end of sentence" detector. Above the gray

portion of the VU-meter isa small black line. This line indicates the long term average ofword peaks.

The rest of the Mara window contains words and scores. When Mara hears a word it tries to find

the trained words that are mostsimilarto thespoken word. Thesmallerthescoredie moresimilarthe two

words. For each spoken word, the top candidate words are put in the Mara window along with their
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scores. The word with the smallest score is the one that was assumed to have been spoken, unless its

score is above a "rejection threshold". If you want to see fewer/more candidate words one need only

decrease/increase the height of the Mara window using the "Stretch" menu command. Only global

words, andwords attached to thewindow under themouse are displayed in thewindow. You mightalso

notice that if youmove themouse over the Mara window, the word under the mouse willgointo reverse

video. This indicates that the wordis selected. Mara allows oneto do strange andinteresting thingswith

selected words.

B.4.2.3. Adaptive Training

If a word is trained poorly then its scores will be high. In fact its score might be so high that it

exceeds the rejection threshold most of the time. In other cases the score might be so high that other

trained words are a better match to the spoken word. In either case theword can be retrained first saying

that word, then selecting the word in the Mara window and clicking the left mouse button. When the

adapation algorithm is done, the window will go blank and Mara is ready for action again. Usually it

takes from 1 to 4 seconds to retrain a word.

If the wordthat you spokedoes not appear in diewindow then youcannot selectit Unfortunately

this will often occurwhen words are very poorly trained (i.e.when you train a word as a "door slam" by

accident). All hope is not lostin thiscase. If you typecharacters on thekeyboard while the mouse is in

the Mara window then the words that appear in the window will be those words that match the typed

characters so far. For example, if the word "clock" was trained as some strange noise that can not be

retrieved, thenone needonly type "c","1",... until theword clockcomes intothewindow, thenselect it

normally (move the mouse over the word), and click the left button to adapt The backspace character

and kill (control-X) characters will do the right thing.

B.4.2.4. Assigning Window Names

Each window can have one or more names associated with it These names allow one to redirect

voicecommands to windowsotherthan the windowdirecdy under the mouse. A nameis associated with
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a window by firstenteringthe name in the #names class.

class #names <window name> <window name>

Notice that the window name must be given TWICE. At this pointyou will be asked to say the name.

Oncethenameis in the #names classit neednotbeentered again. Nextone shouldmovethe mouse into

thewindow thatis to begiven thename. Now saythename. Thesystem willaskyouif this name isOK.

If all went right click the left button. (If you changed you mind then hit the right button.) The name

shouldnowbe assigned to thatwindow. Notice thenamestripe nowcontains dienameof the window.

Words can be redirected to this window by first speaking the name, then the words. A silence of

one and a half seconds "clears" the name, sending words to their usual window. The command associ

ated with each word will execute as soon as that word is spoken.

B.4.23. Creating and ModifyingTTY Vocabulary Files

Tty vocabulary files forma first attempt at retrofitting mostcommon programs to voiceinput The

ideaof a tty vocabulary fileis to associate an arbitrary string witheachword. Thisstring is thensent to a

process as though it was typed on the keyboard. Tty vocabulary files can only work within "tty sub-

windows", (i.e.SunWindow graphics programs thatusethekeyboard cannotuse tty-vocabulary files). In

order to keep things consistent one shouldcreate a directory 7vocabs for vocabulary files. Generally, a

different vocabulary file should be usedfor each application or set of applications. For a given applica

tion the vocabulary fileshouldbe named7vocabs/<application>.v, For example7vocabs/unix.v mightbe

general purpose unix commands,and 7vocabs/editv might be editor commands.

There are three steps in creating a new vocabulary file. First one must create a file

7vocabs/<appIication>.v in the format specified in section 3.4.3. Next one should add the vocabulary file

to the class of all vocabulary files. This is done by typing the command:

class#vocabs <application>_words 7vocabs/<application>.v

Mara will ask you to say "<application>_words", and you should do so. Finally, one should say

"<application>_words" in the window that wants to load this application.
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When changing a vocabulary file or applying it to a new window, one need only say

n<application>_words" in the appropriate window and the new vocabulary file willbeloaded.

B.4.2.6. Some Other Conventions to Make Life Simple

In order to makelife simple for yourself (and me), I suggest the following convention: the spelling

of a word or word phrase should be in the form:

<word>_<word>_....

For cases where the word is one letter, the letter should be spoken as one would normally speak that

letter. Forexample, the unix command "Is" shouldbe spelledas"i_s" andspoken as"ell ess".

B.4.2.7. Some Common Mistakes and How to Fix Them

Of course, the recognizer is not perfect and many bug are yet to be found. If something catas

trophic occurs one should just start from the beginning. The most common non-fatal erroris not saying

the word that you are asked to say. For example, when traininga word for the first time the Mara Dae

mon put up a box on the screen asking you to say a particularword. Just then you cough, and the daemon

says "Thank You". Well, you have now trained the word to sound like a cough. What you want to do is

retrain the word so that it sounds like it should sound. The way to do this is to say the word, then move

the mouse into the Mara window, then type the word in this window. As soon as you see the word to be

retrained in the window, move the mouse over the word, it should go into reverse video. Now press the

left mouse button. The word is now retrained(unless you coughed again). A common source of cough

like noise is the keyboard on the SUN (models 120 and 170).
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