

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A SHARED OBJECT HIERARCHY

by

L. A. Rowe

Memorandum No. UCB/ERL M86/40

3 June 1987

(Revised)

A SHARED OBJECT HIERARCHY

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M86/40

3 June 1987

(Revised)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

tA Shared Object Hierarchy

Lawrence A. Rowe

Computer Science Division, EECS Department
University of California

Berkeley, CA 94720

Abstract

This paper describes the design and proposed implementation of a
shared object hierarchy. The object hierarchy is stored in a relational data
base and objects referenced by an application program are cached in the
program's address space. The paper describes the database representation
for the object hierarchy and the use of POSTGRES, a next-generation rela
tional database management system, to implement object referencing
efficiently. The shared object hierarchy system will be used to implement
OBJFADS, an object-oriented programming environment for interactive
multimedia database applications, that will be the programming interface to
POSTGRES.

1. Introduction

Object-oriented programming has received much attention recently as a
new way to develop and structure programs [12,30]. This new programming
paradigm, when coupled with a sophisticated interactive programming
environment executing on a workstation with a bit-mapped display and
mouse, improves programmer productivity and the quality of programs they
produce.

A program written in an object-oriented language is composed of a col
lection of objects that contain data and procedures. These objects are organ
ized into an object hierarchy. Previous implementations of object-oriented
languages have required each user to have his or her own private object
hierarchy. In other words, the object hierarchy is not shared. Moreover, the
object hierarchy is usually restricted to main memory. The LOOM system

t This research was supported by the National Science Foundation under
Grant DCR-8507256.

stored object hierarchies in secondary memory [14], but it did not allow
object sharing. These restrictions limit the applications to which this new
programming technology can be applied.

There are two approaches to building a shared object hierarchy capable
of storing a large number of objects. The first approach is to build an object
data manager [2,9-11,17,20,35]. In this approach, the data manager stores
objects that a program can fetch and store. The disadvantage of this
approach is that a complete database management system (DBMS) must be
written. A query optimizer is needed to support object queries (e.g., "fetch
all foo objects where field bar is 6as"). Moreover, the optimizer must sup
port the equivalent of relational joins because objects can include references
to other objects. A transaction management system is needed to support
shared access and to maintain data integrity should the software or
hardware crash. Finally, protection and integrity systems are required to
control access to objects and to maintain data consistency. These modules
taken together account for a large fraction of the code in a DBMS. Pro
ponents of this approach argue that some of this functionality can be
avoided. However, we believe that eventually all of this functionality will
be required for the same reasons that it is required in a conventional data
base management system.

The second approach, and the one we are taking, is to store the object
hierarchy in a relational database. The advantage of this approach is that
we do not have to write a DBMS. A beneficial side-effect is that programs

written in a conventional programming language can simultaneously access
the data stored in the object hierarchy. The main objection to this approach
has been that the performance of existing relational DBMS's has been
inadequate. We believe this problem will be solved by using POSTGRES as
the DBMS on which to implement the shared hierarchy. POSTGRES is a
next-generation DBMS currently being implemented at the University of
California, Berkeley [31]. It has a number of features, including data of
type procedure, alerters, precomputed procedures and rules, that can be used
to implement the shared object hierarchy efficiently.

Figure 1 shows the architecture of the proposed system. Each applica
tion process is connected to a database process that manages the shared
database. The application program is presented a conventional view of the
object hierarchy. As objects are referenced by the program, a run-time sys
tem retrieves them from the database. Objects retrieved from the database
are stored in an object cache in the application process so that subsequent
references to the object will not require another database retrieval. Object

Application

Process

Application
Process

Database

Application
Process

Figure 1. Process architecture.

updates by the application are propagated to the database and to other
processes that have cached the object.

Other research groups are also investigating this approach
[1,5,16,21,22,28]. The main difference between our work and the work of
these other groups is the object cache in the application process. They have

not addressed the problem of maintaining cache consistency when more
than one application process is using an object. Research groups that are
addressing the object cache problem are using different implementation
strategies that will have different performance characteristics [17,18,20].

This paper describes how the OBJFADS shared object hierarchy will be
implemented using POSTGRES. The remainder of this paper is organized
as follows. Section 2 presents the object model. Section 3 describes the
database representation for the shared object hierarchy. Section 4 describes
the design of the object cache including strategies for improving the perfor
mance of fetching objects from the database. Section 5 discusses object
updating and transactions. Section 6 describes the support for selecting and
executing methods. And lastly, section 7 summarizes the paper.

2. Object Hierarchy Model

This section describes the object hierarchy model. The model is based
on the Common Lisp Object System (CLOS) [7] because OBJFADS is being
implemented in Common Lisp [29].

An object can be thought of as a record with named slots. Each slot has
a data type and a default value. The data type can be a primitive type (e.g.,

Integer) or a reference to another object.1 The type of an object is called the
class of the object. Class information (e.g., slot definitions) is represented by

another object called the class object.2 A particular object is also called an
instance and object slots are also called instance variables.

A class inherits data definitions (i.e., slots) from another class, called a
superclass, unless a slot with the same name is defined in the class. Figure
2 shows a class hierarchy (i.e., type hierarchy) that defines equipment in an
integrated circuit (IC) computer integrated manufacturing database. [26].
Each class is represented by a labelled node (e.g., Object, Equipment, Fur
nace, etc.). The superclass of each class is indicated by the solid line with
an arrowhead. By convention, the top of the hierarchy is an object named

1 An object reference is represented by an object identifier {objid) that uniquely
identifies the object.

2 The term class is used ambiguously in the literature to refer to the type of an
object, the object that represents the type (i.e., the class object), and the set of ob
jects of a specific type. We will indicate the desired meaning in the surrounding
text.

Figure 2: Equipment class hierarchy.

Object. In this example, the class Tylan, which represents a furnace pro
duced by a particular vendor, inherits slots from Object, Equipment, and
Furnace.

As mentioned above, the class is represented by an object. The type of
these class objects is represented by the class named Class. In other words,
they are instances of the class Class. The InstanceOf relationship is
represented by dashed lines in the figure. For example, the class object
Equipment is an instance of the class Class. Given an object, it is possible
to determine the class of which it is an instance. Consequently, slot
definitions and, as described below, procedures that operate on the object
can be looked-up in the class object. For completeness, the type of the class
named Class is a class named MetaClass.

Figure 3 shows class definitions for Equipment, Furnace, and Tylan.
The definition of a class specifies the name of the class, the metaclass, the
superclass, and the slots. The metaclass is specified explicitly because a
different metaclass is used when the objects in the class are to be stored in
the database. In the example, the class Tylan inherits all slots in Furnace
and Equipment (i.e., Location, Picture, DateAcquired, NumberOfTubes, and
MaxTemperature).

Variables can be defined that are global to all instances of a class.
These variables, called class variables, hold data that represents information
about the entire class. For example, a class variable NumberOfFurnaces
can be defined for the class Furnace to keep track of the number of furnaces.
Class variables are inherited just like instance variables except that

Class Equipment
MetaClass Class

Superclass Object
Slots

Location Point

Picture Bitmap
DateAcquired Date

Class Furnace

MetaClass Class

Superclass Equipment
Slots

NumberOfTubes Integer
MaxTemperature DegreesCelsius

Class Tylan
MetaClass Class

Superclass Furnace
Slots

Figure 3: Class definitions for equipment.

inherited class variables refer to the same memory location. For example,
the slot named NumberOfFurnaces inherited by Tylan and Bruce refer to
the same variable as the class variable in Furnace.

Procedures that manipulate objects, called methods, take arguments of
a specific class (i.e., type). Methods with the same name can be defined for
different classes. For example, two methods named area can be defined: one
that computes the area of a box object and one that computes the area of a
circle object. The method executed when a program makes a call on area is
determined by the class of the argument object. For example,

area(x)

calls the area method for box if x is a box object or the area method for circle
if it is a circle object. The selection of the method to execute is called
method determination.

Methods are also inherited from the superclass of a class unless the
method name is redefined. Given a function call "f(x)"t the method invoked
is determined by the following algorithm. Follow the InstanceOf relation
ship from x to determine the class of the argument. Invoke the method
named f defined for the class, if it exists. Otherwise, look for.the method in
the superclass of the class object. This search up the superclass hierarchy
continues until the method is found or the top of the hierarchy is reached in
which case an error is reported.

Figure 4 shows some method definitions for Furnace and Tylan. Fur
naces in an IC fabrication facility are potentially dangerous, so they are
locked when they are not in use. The methods Lock and UnLock disable
and enable the equipment. These methods are defined for the class Furnace
so that all furnaces will have this behavior. The argument to these methods

is an object representing a furnace.3 The methods CompileRecipe and
LoadRecipe compile and load into the furnace code that, when executed by
the furnace, will process the semiconductor wafers as specified by the recipe
text. These methods are defined on the Tylan class because they are
different for each vendor's furnace. With these definitions, the class Tylan
has four methods because it inherits the methods from Furnace.

3 The argument name self was chosen because it indicates which argument is
the object.

method Lock(self: Furnace)

method UnLock(self: Furnace)

method CompileRecipe(self: Tylan, recipe: Text)

method LoadRecipe(self: Tylan, recipe: Code)

Figure 4: Example method definitions.

Slot and method definitions can be inherited from more than one super

class. For example, the Tylan class can inherit slots and methods that indi
cate how to communicate with the equipment through a network connection

by including the NetworkMixin class in the list of superclasses.4 Figure 5
shows the definition of NetworkMixin and the modified definition of Tylan.
With this definition, Tylan inherits the slots and methods from Network
Mixin and Furnace. A name conflict arises if two superclasses define slots
or methods with the same name (e.g., Furnace and NetworkMixin might
both have a slot named Status). A name conflict is resolved by inheriting

the definition from the first class that has a definition for the name in the

superclass list. Inheriting definitions from multiple classes is called multi
ple inheritance.

3. Shared Object Hierarchy Database Design

The view of the object hierarchy presented to an application program is
one consistent hierarchy. However, a portion of the hierarchy is actually
shared among all concurrent users of the database. This section describes

4 The use of the suffix Mixin indicates that this object defines behavior that is
added to or mixed into other objects. This suffix is used by convention to make it
easier to read and understand an object hierarchy.

8

Class NetworkMixin

MetaClass Class

Superclass Object
Instance Variables

HostName Text

Device Text

Methods

SendMessage(self: NetworkMixin; msg: Message)
ReceiveMessage (self: NetworkMixin) returns Message

Class Tylan
MetaClass Class

Superclass Furnace NetworkMixin

Figure 5: Multiple inheritance example.

how the shared portion of the hierarchy will be stored in the database.

Shared objects are created by defining a class with metaclass DBClass.
All instances of these classes, called shared classes, are stored in the data
base. A predefined shared class, named DBObject, is created at the top of
the shared object hierarchy. The relationship between this class and the
other predefined classes is shown in figure 6. All superclasses of a shared
object class must be shared classes except DBObject. This restriction is
required so that all definitions inherited by a shared class will be stored in
the database.

The POSTGRES data model supports attribute inheritance, user-defined
data types, data of type procedure, and rules [25,31] which are used by
OBJFADS to create the database representation for shared objects. System
catalogs are defined that maintain information about shared classes. In
addition, a relation is defined for each class that contains a tuple that
represents each class instance. This relation is called the instance relation.

OBJFADS maintains four system catalogs to represent shared class
information: DBObject, DBClass, SUPERCLASS, and METHODS. The
DBObject relation identifies objects in the database:

Figure 6: Predefined classes.

CREATE DBObjectdnstance, Class)

where

Instance is the objid of the object.
Class is the objid of the class object of this instance.

This catalog defines attributes that are inherited by all instance relations.
No tuples are inserted into this relation (i.e., it represents an abstract class).
However, all shared objects can be accessed through it by using transitive
closure queries. For example, the following query retrieves the objid of all
instances:

RETRIEVE (DBObjectMnstance)

The asterisk indicates closure over the relation DBObject and all other rela
tions that inherit attributes from it.

POSTGRES maintains a unique identifier for every tuple in the data
base. Each relation has a predefined attribute that contains the unique

10

identifier. While these identifiers are unique across all relations, the rela
tion that contains the tuple cannot be determined from the identifier. Con
sequently, we created our own object identifier (i.e., an objid) that specifies
the relation and tuple. A POSTGRES user-defined data type, named objid,
that represents this object identifier will be implemented. Objid values are
represented by an identifier for the instance relation (relid) and the tuple
(oid). Relid is the unique identifier for the tuple in the POSTGRES catalog
that stores information about database relations (i.e., the RELATION rela
tion). Given an objid, the following query will fetch the specified tuple:

RETRIEVE (o.all)

FROM o IN relid

WHERE o.oid = oid

This query will be optimized so that fetching an object instance will be very
efficient.

The DBClass relation contains a tuple for each shared class:

CREATE DBClass(Name, Owner) INHERITS (DBObject)

This relation has an attribute for the class name {Name) and the user that

created the class (Owner). Notice that it inherits the attributes in DBObject
(i.e., Instance and Class) because DBClass is itself a shared class.

The superclass list for a class is represented in the SUPERCLASS rela
tion:

CREATE SUPERCLASS(Class, Superclass, SeqNum)

where

Class is the name of the class object.
Superclass is the name of the parent class object.
SeqNum is a sequence number that specifies the inheritance order in

the case that a class has more than one superclass.
The superclass relationship is stored in a separate relation because a class
can inherit variables and methods from more than one parent (i.e., multiple
inheritance). The sequence number is required to implement the name
conflict resolution rule.

Methods are represented in the METHODS relation:

CREATE METHODS(Class, Name, Source, Binary)

where

Class is the objid of the class that defines the method.
Name is the name of the method.

Source is the source code for the method.

11

Binary is the relocatable binary code for the method.

Method code is dynamically loaded into the application program as needed.
Method determination and caching are discussed below.

Object instances are represented by tuples in the instance relation that
has an attribute for each instance variable. For example, if the classes
Equipment, Furnace, and Tylan shown in figure 3 were defined with meta
class DBClass, the relations shown in figure 7 would be created in the data
base. When an OBJFADS application creates an instance of one of these
classes, a tuple is automatically appended to the appropriate instance rela
tion. Notice that to create a shared class, the superclass of Equipment must
be changed to DBObject.

The POSTGRES data model uses the same inheritance conflict rules for

attributes that CLOS uses so attribute inheritance can be implemented in

the database system. If the rules were different, OBJFADS would have to
simulate data inheritance in the database or POSTGRES would have to be

changed to allow user-defined inheritance rules as in CLOS.

Thus far, we have not described how OBJFADS data types (i.e., Com
mon Lisp data types) are mapped to POSTGRES data types. Data types will
be mapped between the two environments as specified by type conversion
catalogs. Most programming language interfaces to database systems do not
store type mapping information in the database [3,4,6,23,24,27]. We are
maintaining this information in catalogs so that user-defined data types in

CREATE Equipment(Location, Picture, DateAcquired)
INHERITS (DBObject)

CREATE Furnace(NumberOfTubes, MaxTemperature)
INHERITS (Equipment)

CREATE TylanO
INHERITS (Furnace)

Figure 7: Shared object relations.

12

the database can be mapped to the appropriate Common Lisp data type.

The type mapping information is stored in three catalogs: TYPEMAP,
OFTOPG, and PGTOOF. The TYPEMAP catalog specifies a type mapping
and procedures to convert between the types:

CREATE TYPEMAP(OFType, PGType, ToPG, ToOF)

where

OFType is an OBJFADS type.
PGType is a POSTGRES type.
ToPG is a procedure that converts from the OBJFADS type to the

POSTGRES type.
ToOF is a procedure that converts from the POSTGRES type to

the OBJFADS type.
The table in figure 8 shows the mapping for selected Common Lisp types.
Where possible, Common Lisp values are converted to equivalent
POSTGRES types (e.g., fixnum to int4). In other cases, the values are con
verted to a print representation when they are stored in the database and
recreated by evaluating the print representation when they are fetched into

Common Lisp POSTGRES Description

fixnum int4 4 byte integer.

float float 4 byte floating point number.

(simple-array
string-char)

char[] Variable length character string.

symbol char[] A string that represents the
symbol (e.g., "'x" for the symbol
x).

(local) object char[] A string that contains a function
call that will recreate the object
when executed.

Figure 8: Data type mapping examples.

13

the program (e.g., symbols and functions). We expect over time to build-up
a set of user-defined POSTGRES types that will represent the commonly
used Common Lisp types (e.g., list, random-state, etc.). However, we also
expect application data structures to be designed to take advantage of the
natural database representation. For example, it makes more sense to store
a list as a separate relation with a common attribute (e.g., a PO# that joins
a purchase order with the line items it contains) than as an array of objid's
in the database.

Class variables are more difficult to represent than class information
and instances variables. The straightforward approach is to define a rela
tion CVARS that contains a tuple for each class variable:

CREATE CVARS(Class, Variable, Value)

where Class and Variable uniquely determine t.ie class variable and Value
represents the current value of the variable. This solution requires a union
type mechanism because the attribute values in different tuples may have
different types. POSTGRES does not support union types because they
violate the relational tenet that all attribute values must have the same

type.

Two other representations for class variables are possible with
POSTGRES. First, a separate relation can be defined for each class that
contains a single tuple that holds the current values of all class variables.
For example, the following relation could be defined for the Furnace class:

FurnaceCVARS(NumberOfFurnaces)

Unfortunately, this solution introduces representational overhead (the extra
relation) and requires another join to fetch the slots in an object. Moreover,
it does not take advantage of POSTGRES features that can be used to
update the count automatically.

The second alternative uses POSTGRES rules. A rule can be used to

define an attribute value that appears to the application as if it was stored
[34]. For example, the following command defines a rule that computes the
number of furnaces:

REPLACE ALWAYS Furnace*(

NumberOfFurnaces = COUNT{Furnace*.Instance})

A reference to Furnace.NumberOfFurnaces will execute the COUNT aggre
gate to compute the current number of furnaces. The relation variable Fur
nace* in the aggregate specifies that tuples in Furnace and all relations that
inherit data from Furnace (e.g., Tylan and Bruce) are to be counted. With

14

this representation, the database maintains the correct count. Notice that
the command replaces this value in Furnace* which causes the rule to be
inherited by all relations that inherit data from Furnace. The disadvantage
of this approach is that the COUNT aggregate is executed every time the
class variable is referenced.

POSTGRES provides another mechanism that can be used to cache the
answer to this query so that it does not have to be recomputed each time the
variable is referenced. This mechanism allows the application designer to
request that a rule be evaluated early (i.e., precomputed) and cached in the
appropriate relation. In other words, the furnace count will be cached in the
relations Furnace, Tylan, and Bruce so that references to the variable will
avoid recomputation. Updates to Furnace or subclasses of Furnace will
cause the precomputed value to be invalidated. POSTGRES will recompute
the rule off-line or when the class variable is next referenced whichever

comes first.

Class variables that are not computable from the database can be
represented by a rule that is assigned the current value as illustrated in the
following command:

REPLACE ALWAYS Furnace(x = current value)

Given this definition, a reference to Furnaccx in a query will return the
current value of the class variable. The variable is updated by redefining
the rule. We plan to experiment with both the single tuple relation and
rule approaches to determine which provides better performance.

This section described the object hierarchy model and a database design
for storing it in a relational database. The next section describes the appli
cation process object cache and optimizations to improve the time required
to fetch an object from the database.

4. Object Cache Design

The object cache must support three functions: object fetching, object
updating, and method determination. This section describes the design for

efficiently accessing objects. The next section describes the support for
object updating and the section following that describes the support for
method determination.

The major problem with implementing an object hierarchy on a rela
tional database system is the time required to fetch an object. This problem
arises because queries must be executed to fetch and update objects and
because objects are decomposed and stored in several relations that must be

15

joined to retrieve it from the database. Three strategies will be used to
speed-up object fetch time: caching, precomputation, and prefetching. This
section describes how these strategies will be implemented.

The application process will cache objects fetched from the database.
The cache will be similar to a conventional Smalltalk run-time system [13].
An object index will be maintained in main memory to allow the run-time
system to determine quickly if a referenced object is in the cache. Each
index entry will contain an object identifier and the main memory address
of the object. All object references, even instance variables that reference
other objects, will use the object identifier assigned by the database (i.e., the
instance attribute). These indirect pointers may slow the system down but
they avoid the problem of mapping addresses when objects are moved

between main memory and the database.5 The object index will be hashed to
speed-up object referencing.

Object caching can speed-up references to objects that have already
been fetched from the database but it cannot speed-up the time required to
fetch the object the first time it is referenced. The implementation strategy
we will use to solve.this problem is to precompute the memory representa

tion of an object and to cache it in an OBJFADS catalog:

CREATE PRECOMPUTED(Objid, ObjRep)

where

Objid is the object identifier.
ObjRep is the main memory object representation.

Suppose we are given the function RepObject that takes an object identifier
and returns the memory representation of the object. Notice that the
memory representation includes class variables and data type conversions.
An application process could execute RepObject and store the result back in
the PRECOMPUTED relation. This approach does not work because the
precomputed representation must be changed if another process updates the
object either through an operation on the object or an operation on the rela
tion that contains the object. For example, a user could run the following

*• query to update the values of MaxTemperature in all Furnace objects:

5 Most Smalltalk implementations use a similar scheme and it does not appear
to be a bottleneck.

16

REPLACE Furnace*(MaxTemperature = newvalue)

This update would cause all Furnace objects in PRECOMPUTED to be

changed.6
A better approach is to have the DBMS process execute RepObject and

invalidate the cached result when necessary. POSTGRES supports precom
puted procedure values that can be used to implement this approach. Query
language commands can be stored as the value of a relation attribute. A
query that calls RepObject to compute the memory representation for the
object can be stored in PRECOMPUTED.Objrep:

RETRIEVE (MemRep = RepObject($Objid))

$Objid refers to the object identifier of the tuple in which this query is
stored (i.e., PRECOMPUTED.Objid). To retrieve the memory representa
tion for the object with objid "Furnace-123," the following query is executed:

RETRIEVE (object = PRECOMPUTED.ObjRep.MemRep)
WHERE PRECOMPUTED.objid = "Furnace-123"

The nested dot notation (PRECOMPUTED.ObjRep.MemRep) accesses values
from the result tuples of the query stored in ObjRep [36]. The constant
"Furnace-123" is an external representation for the objid (i.e., the Furnace
object with oid 123). Executing this query causes RepObject to be called
which returns the main memory representation of the object.

This representation by itself does not alter the performance of fetching
an object. The performance can be changed by instructing the DBMS to
precompute the query in ObjRep (i.e., to cache the memory representation of
the object in the PRECOMPUTED tuple). If this optimization is performed,
fetching an object turns into a single relation, restriction query that can be
efficiently implemented. POSTGRES supports precomputation of query
language command values similar to the early evaluation of rules described

above.7 Database values retrieved by the commands will be marked so that
if they are updated, the cached result can be invalidated. This mechanism

6 Furnace objects cached in an application process must also be invalidated.
Object updating, cache consistency, and update propagation are discussed in the
next section.

7 The POSTGRES server checks that the command does not update the data
base and that any procedures called in the command do not update the database so
that precomputing the command will not introduce side-effects.

17

is described in greater detail elsewhere [32,33].

The last implementation strategy to speed-up object referencing is pre
fetching. The basic idea is to fetch an object into the cache before it is refer
enced. The HINTS relation maintains a list of objects that should be pre
fetched when a particular object is fetched:

CREATE HINTS(FetchObject, HintObject, Application)

When an object is fetched from the database by an application (Application),
all HintObjecfs for the FetchObject will be fetched at the same time. For
example, after fetching an object, the following query can be run to prefetch
other objects:

RETRIEVE (obj = p.ObjRep.MemRep)
FROM p IN PRECOMPUTED, h IN HINTS
WHERE p.Objid = h.HintObject

AND h.FetchObject = fetched-object-identifier
AND h.Application = application-name

This query fetches objects one-at-a-time. We will also investigate precom-
puting collections of objects, so called composite objects [30]. The idea is to
precompute a memory representation for a composite object (e.g., a form or
procedure definition that is composed of several objects) and retrieve all
objects into the cache in one request. This strategy may speed-up fetching
large complex objects with many subobjects.

We believe that with these three strategies object retrieval from the
database can be implemented efficiently. Our attention thus far has been
focussed on speeding up object fetching from the database. We will also
have to manage the limited memory space in the object cache. An LRU
replacement algorithm will be used to select infrequently accessed objects to
remove from the cache. We will also have to implement a mechanism to
"pin down" objects that are not accessed frequently but which are critical to
the execution of the system or are time consuming to retrieve.

This section described strategies to speed-up object fetching. The next
section discusses object updating.

5. Object Updating and Transactions
This section describes the run-time support for updating objects. Two

aspects of object updating are discussed: how the database representation of
an object is updated (database concurrency and transaction management)
and how the update is propagated to other application processes that have
cached the object.

18

The run-time system in the application process specifies the desired
update mode for an object when it is fetched from the database into the
object cache. The system supports four update modes: local-copy, direct-
update, deferred-update, and object-update. Local-copy mode makes a copy
of the object in the cache. Updates to the object are not propagated to the
database and updates by other processes are not propagated to the local
copy. This mode is provided so that changes are valid only for the current
session.

Direct-update mode treats the object as though it were actually in the
database. Each update to the object is propagated immediately to the data
base. In other words, updating an instance variable in an object causes an
update query to be run on the relation that represents instances of the
object. A conventional database transaction model is used for these updates.
Write locks are acquired when the update query is executed and they are
released when it finishes (i.e., the update is a single statement transaction).
Note that read locks are not acquired when an object is fetched into the
cache. Updates to the object made by other processes are propagated to the
cached object when the run-time system is notified that an update has
occurred. The notification mechanism is described below. Direct-update

mode is provided so that the application can view "live data."

Deferred-update mode saves object updates until the application expli
citly requests that they be propagated to the database. A conventional tran
saction model is used to specify the update boundaries. A begin transaction
operation can be executed for a specific object. Subsequent variable accesses
will set the appropriate read and write locks to ensure transaction atomicity
and recoverability. The transaction is committed when an end transaction
operation is executed on the object. Deferred-update mode is provided so
that the application can make several updates atomic.

The last update mode supported by the system is object-update. This
mode treats all accesses to the object as a single transaction. An intention-

to-write lock is acquired on the object when it is first retrieved from the
database. Other processes can read the object, but they cannot update it.
Object updates are propagated to the database when the object is released
from the cache. This mode is provided so that transactions can be expressed
in terms of the object, not the database representation. However, note that
this mode may reduce concurrency because the entire object is locked while
it is in the object cache.

Thus far, we have only addressed the issue of propagating updates to
the database. The remainder of this section will describe how updates are

19

propagated to other processes that have cached the updated object. The
basic idea is to propagate updates through the shared database. When a
process retrieves an object, a database alerter [8] is set on the object that
will notify the process when it is updated by another process. When the
alerter is trigger by another process, the process that set the alerter is
notified. The value returned by the alerter to the process that set it is the
updated value of the object. Note that the precomputed value of the object
memory representation will be invalidated by the update so that it will
have to be recomputed by the POSTGRES server. The advantage of this
approach is that the process that updates an object does not have to know
which processes want to be notified when a particular object is updated.

The disadvantages of this approach are that the database must be
prepared to handle thousands of alerters and the time and resources
required to propagate an update may be prohibitive. Thousands of alerters
are required because each process will define an alerter for every object in
its cache that uses direct-, deferred-, or object-update mode. An alerter is
not required for local-copy mode because database updates by others are not
propagated to the local copy. POSTGRES is being designed to support large
databases of rules so this problem'is being addressed.

The second disadvantage is the update propagation overhead. The
remainder of this section describes two propagated update protocols, an
alerter protocol and a distributed cache update protocol, and compares them.
Figure 9 shows the process structure for the alerter approach. Each applica
tion process (AP) has a database process called its POSTGRES server (PS).
The POSTMASTER process (PM) controls all POSTGRES servers. Suppose
that AP- updates an object in the database on which M ^ N AP's have set
an alerter. Figure 10 shows the protocol that is executed to propagate the
updates to the other AP's. The cost of this propagated update is:

2M +1 process-to-process messages

1 database update

1 catalog query

1 object fetch

The object fetch is avoidable if the alerter returns the changed value. This
optimization works for small objects but may not be reasonable for large
objects.

The alternative approach to propagate updates is to have the user
processes signal each other that an update has occurred. We call this

20

Appl Appl
Process Process

1 2

POST GRES POSTGRES

Server Server

1 2

• • •

Appl
Process

N

POSTGRES

Server

N

Figure 9: Process structure for the alerter approach.

21

1. AP. updates the database.

2. PS- sends a message to PM indicating
which alerters were tripped.

3. PM queries the alerter catalog to determine
which PS's set the alerters.

4. PM sends a message to PS. for each alerter.

5. Each PS- sends a message to AP- indicating
that the alerter has been trippea.

6. Each PS- refetches the object.
J

Figure 10. Propagated update protocol for the alerter approach.

approach the distributed cache update approach. The process structure is'
similar to that shown in figure 9, except that each AP must be able to
broadcast a message to all other AP's. Figure 11 shows the distributed
cache update protocol. This protocol uses a primary site update protocol. If

1. AP. acquires the update token for the
object.

2. AP. updates the database.

3. AP- broadcasts to all AP's that the object

has been updated.

4. Each AP- that has the object in its cache
refetches it.

Figure 11. Propagated update protocol for the distributed cache approach.

22

AP. does not have the update token signifying that it is the primary site for
the object, it sends a broadcast message to all AP's requesting the token.
The AP that has the token sends it to AP^ Assuming that APi does not
have the update token, the cost of this protocol is:

2 broadcast messages

1 process-to-process message

1 database update
1 object fetch

One broadcast message and the process-to-process message are eliminated if
AP- already has the update token. The advantage of this protocol is that a
multicast protocol can be used to implement the broadcast messages in a
way that is more efficient than sending N process-to-process messages. Of
course, the disadvantage is that AP's have to examine all update signals to
determine whether the updated object is in its cache.

Assume that the database update and object fetch take the same
resources in both approaches and that the alerter catalog is cached in main
memory so the catalog query does not have to read the disk in the alerter
approach. With these assumptions, the comparison of these two approaches
comes down to the cost of 2 broadcast messages versus 2M process-to-process
messages. If objects are cached in relatively few AP's (i.e., M << N) and
broadcast messages are efficient, the distributed cache update appears
better. On the other hand, if M is larger, so the probability of doing 2
broadcasts goes up, and broadcasts are inefficient, the alerter approach
appears better. We have chosen the alerter approach because an efficient
multicast protocol does not exist but the alerter mechanism will exist in
POSTGRES. If this approach is too slow, we will have to tune the alerter
code or implement the multicast protocol.

This section described the mechanisms for updating shared objects. The
last operation that the run-time system must support is method determina
tion which is discussed in the next section.

6. Method Determination

Method determination is the action taken to select the method to be

executed when a procedure is called with an object as an argument. Con
ventional object-oriented systems implement a cache of recently called
methods to speed-up method determination [12]. The cache is typically a
hash table that maps an object identifier of the receiving object and a
method name to the entry address of the method to be executed. If the
desired object and method name is not in the table, the standard look-up

23

algorithm is invoked. In memory resident Smalltalk systems, this strategy
has proven to be very good because high hit ratios have been achieved with
modest cache sizes (e.g., 95% with 2K entries in the cache) [19].

We will adapt the method cache idea to a database environment. A
method index relation will be computed that indicates which method should
be called for each object class and method name. The data will be stored in
the DM relation defined as follows:

CREATE DM(Class, Name, DefClass)

where

Class is the class of the argument object.
Name is the name of the method called.

DefClass is the class in which the method is defined.

Given this relation, the binary code for the method to be executed can be
retrieved from the database by the following query:

RETRIEVE (m.Binary)

FROM m IN METHODS, d IN DM

WHERE m.Cla'ss = d.DefClass

AND d.Class = argument-class-objid
AND d.Name = method-name

The DM relation can be precomputed for all classes in the shared object
hierarchy and incrementally updated as the hierarchy is modified.

Method code will be cached in the application process so that the data
base will not have to be queried for every procedure call. Procedures in the
cache will have to be invalidated if another process modifies the method
definition or the inheritance hierarchy. Database alerters will be used to
signal object changes that require invalidating cache entries. We will also
support a check-in/check-out protocol for objects so that production programs
can isolate their object hierarchy from changes being made by application
developers [15].

This section described a shared index that will be used for method

determination.

7. Summary

This paper described a proposed implementation of a shared object
hierarchy in a POSTGRES database. Objects accessed by an application
program are cached in the application process. Precomputation and pre
fetching are used to reduce the time to retrieve objects from the database.
Several update modes were defined that can be used to control concurrency.

24

Database alerters are used to propagate updates to copies of objects in other
caches. A number of features in POSTGRES will be exploited to implement
the system, including: rules, POSTQUEL data types, precomputed queries
and rules, and database alerters.

References

1. R. M. Abarbanel and M. D. Williams, A Relational Representation for
Knowledge Bases, Unpublished manuscript, Apr. 1986.

2. H. Afsarmanesh and et. al., "An Extensible, Object-Oriented Approach
to Databases for VLSI/CAD", Proc. 11th Int. Conf. on VLDB, Aug.

1985.

3. A. Albano and et. al., "Galileo: A Strongly-Typed, Interactive
Conceptual Language", ACM Trans. Database Systems , June 1985,
230-260.

4. E. Allman- and et. al., "Embedding a Relational Data Sublanguage in a
General Purpose Programming Language", Proc. of a Conf. on Data:
Abstraction, Definition, and Structure, SIGPLAN Notices,, Mar. .1978.

5. T. Anderson and et. al., "PROTEUS: Objectifying the DBMS User
Interface", Proc. Int. Wkshp on Object-Oriented Database Systems ,
Asilomar, CA , Sep. 1986.

6. M. P. Atkinson and et. al., "An Approach to Persistent Programming",
Computer Journal 26, 4 (1983), 360-365.

7. D. Bobrow and G. Kiczales, "Common Lisp Object System
Specification", Draft X3 Document 87-001, Am. Nat. Stand. Inst.,
February 1987.

8. O. P. Buneman and E. K. Clemons, "Efficiently Monitoring Relational
Databases", ACM Trans. Database Systems, Sep. 1979, 368-382.

9. G. Copeland and D. Maier, "Making Smalltalk a Database System",
Proc. 1984 ACM-SIGMOD Int. Conf. on the Mgt. of Data, June 1984.

10. U. Dayal and et.al., "A Knowledge-Oriented Database Management
System", Proc. Islamorada Conference on Large Scale Knowledge Base
and Reasoning Systems, Feb. 1985.

11. N. P. Derrett and et.al., "An Object-Oriented Approach to Data
Management", Proc. 1986 IEEE Spring Compcon, 1986.

25

12. A. Goldberg and D. Robson, Smalltalk-80: The Language and its
Implementation, Addison Wesley, Reading, MA, May 1983.

13. T. Kaehler, "Virtual Memory for an Object-Oriented Language", Byte
6, 8 (Aug. 1981).

14. T. Kaehler and G. Krasner, "LOOM - Large Object-Oriented Memory
for Smalltalk-80 Systems", in Smalltalk-80: Bits of History, Words of
Advice, G. Krasner (editor), Addison Wesley, Reading, MA, May 1983.

15. R. Katz, "Managing the Chip Design Database", Computer Magazine
16, 12 (Dec. 1983).

16. J. Kempf and A. Snyder, "Persistent Objects on a Database", Report
STL-86-12, Sftw. Tech. Lab., HP Labs, Sep. 1986.

17. S. Khoshanfian and P. Valduriez, "Sharing, Persistence, and Object
Orientation: A Database Perspective", DB-106-87, MCC, Apr. 1987.

18. G. L. Krablin, "Building Flexible Multilevel Transactions in a
Distributed Persistent Environment", Persistence and Data Types,
Papers for the Appin Workshop, U. of Glasgow, Aug. 1985.

19. G. Krasner, ed., Smalltalk-80: Bits of History, Words of Advice,
Addison Wesley, Reading, MA, May 1983.

20. D. Maier and J. Stein, "Development of an Object-Oriented DBMS",
Proc. 1986 ACM OOPSLA Conf, Portland, OR, Sep. 1986.

21. F. Maryanski and et.al., "The Data Model Compiler: a Tool for
Generating Object-Oriented Database Systems", Unpublished
manuscript, Elect. Eng. Comp. Sci. Dept., Univ. of Connecticut, 1987.

22. N. Meyrowitz, "Intermedia: The Architecture and Construction of an
Object-Oriented Hypermedia System and Applications Framework",
Proc. 1986 ACM OOPSLA Conf, Portland, OR, Sep. 1986, 186-201.

23. J. Mylopoulos and et. al., "A Language Facility for Designing
Interactive Database-Intensive Systems", ACM Trans. Database
Systems 10, 4 (Dec. 1985).

24. L. A. Rowe and K. A. Shoens, "Data Abstraction, Views, and Updates
in Rigel", Proc. 1979 ACM-SIGMOD Int. Conf on the Mgt. of Data,
Boston, MA, May 1979.

25. L. A. Rowe and M. R. Stonebraker, "The POSTGRES Data Model", to
appear in Proc. 13th VLDB Conf, Britton, England, Sep. 1987.

26. L. A. Rowe and C. B. Williams, "An Object-Oriented Database Design
for Integrated Circuit Fabrication", submitted for publication, Apr.

26

1987.

27. J. Schmidt, "Some High Level Language Constructs for Data of Type
Relation", ACM Trans. Database Systems 2, 3 (Sep. 1977), 247-261.

28. A. H. Skarra and et. al., "An Object Server for an Object-Oriented
Database System", Proc. Int. Wkshp on Object-Oriented Database
Systems , Asilomar, CA , Sep. 1986.

29. G. L. Steele, Common Lisp - The Language, Digital Press, 1984.

30. M. Stefik and D. G. Bobrow, "Object-Oriented Programming: Themes
and Variations", The Al Magazine 6, 4 (Winter 1986), 40-62.

31. M. R. Stonebraker and L. A. Rowe, "The Design of POSTGRES", Proc.
1986 ACM-SIGMOD Int. Conf. on the Mgt. ofData, June 1986.

32. M. R. Stonebraker, "Object Management in POSTGRES Using
Procedures", Proc. Int. Wkshp on Object-Oriented Database Systems ,
Asilomar, CA , Sep. 1986.

33. M. R. Stonebraker, "Extending a Relational Data Base System with
Procedures", to appear ACM TOD, 1987.

34. M. R. Stonebraker, E. Hanson and C. H. Hong, "The Design of the
POSTGRES Rules System", IEEE Conference on Data Engineering, Los
Angeles, CA, Feb. 1987.

35. S. M. Thatte, "Persistent memory: A Storage Architecture for Object-
Oriented Database Systems", Proc. Int. Wkshp on Object-Oriented
Database Systems , Asilomar, CA , Sep. 1986.

36. C. Zaniola, "The Database Language GEM", Proc. 1983 ACM-SIGMOD
Conference on Management of Data, San Jose, CA., May 1983.

27

	Copyright notice1986
	ERL-86-40

