
 

 

 

 

 

 

 

 

 

Copyright © 1986, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



WEAKLY NONLINEAR OSCILLATOR CIRCUITS AND

AVERAGING: A GENERAL APPROACH

by

G. M. Bernstein and L. 0. Chua

Memorandum No. UCB/ERL M86/45

24 April 1986



WEAKLY NONLINEAR OSCILLATOR CIRCUITS AND

AVERAGING: A GENERAL APPROACH

by

G. M. Bernstein and L. 0. Chua

Memorandum No. UCB/ERL M86/45

24 April 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



WEAKLY NONLINEAR OSCILLATOR CIRCUITS AND

AVERAGING: A GENERAL APPROACH

by

G. M. Bernstein and L. 0. Chua

Memorandum No. UCB/ERL M86/45

24 April 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Weakly Nonlinear Oscillator Circuits and Averaging: A General
Approacht

G. M. Bernstein and L. 0. ChuaX

ABSTRACT

The method of averaging has been used for years to prove the existence
of oscillations in nonlinear circuits. In the past the application of averaging has
tended to be ad hoc rather than systematic. In addition the validity of the
method was not well established. The purpose of this paper is to rigorize and
systematize the analysis of weakly nonlinear oscillator circuits via the method of
averaging. In particular this paper will put on a rigorous foundation the work of
Kuramitsu et. al.[l,2,3] on the "Averaged Potential" and the work of T. Endo
and others on the oscillatory modes of coupled oscillator circuits. Furthermore
we give a novel way of simplifying the calculation of averages when we have a
potential function representation.

1. Introduction

The method of averaging has been widely known to physicists and engineers for many
years, with its origins stemming from Van der Pol, Krylov and Bogoliubov. Averaging in the
past has been treated primarily as a perturbation technique with various higher order terms
being thrown out of equations to simplify the analysis. This has made averaging difficult to
apply and the results of averaging somewhat questionable. The modern approach is to treat
averaging as a change of coordinates and then use it in conjunction with another mathematical
theory.

Results in averaging tend to fall into two different categories according to time scale, that
is finite time and infinite time. With finite time averaging one gets an approximation to trajec
tories of a system over finite time by the trajectories of a simpler averaged system. The most
widely known application is in approximating the orbits of the planets in the solar system when
the gravitational interaction between planets is taken into account. See [4] for details and
mathematical justification of this approach.

Infinite time averaging relates certain general features of the solution of a system to those
of a simpler averaged system. Infinite time averaging can be used to prove the existence of a
host of interesting nonlinear phenomena such as: oscillations, frequency entrainment and
subharmonic solutions. The mathematical justification of these results in the most general case,
stems from applying the method of averaging, as a transformation technique, and combining it
with the theory of integral manifolds. See [5] for a tutorial on the theory of integral manifolds
with circuit applications. When dealing with simple forced circuits it becomes possible to com
bine the method of averaging with the theory of noncritical perturbations of linear systems.
This is a simpler theory than that of integral manifolds and allows us to obtain estimates of the
parameter ranges for which averaging holds. This will be reported upon in a later paper.

t This research is supported in part by the Office of Naval Research Contract N00014-76-C-0572 and the
National Science Foundation Grant ECS-8313278.

* The authors are with the University of California, Berkeley, CA 94720



In this paper we will deal with infinite time averaging only and apply it to prove the
existence of oscillations in nonlinear circuits. We will proceed as follows: First, we define the
class of circuits for which the theory of averaging is applicable. Second, we will transform the
state equations of these circuits into a form suitable for averaging. Third, we will review the
mathematical justification of Averaging/Integral manifolds along with some novel
simplifications that we can make when we have a potential formulation and independent fre
quencies. Finally, we present a systematic analysis algorithm for applying the previous theory
and illustrate it by proving rigorously several classic results.

2. Equation formulation

Let N be a circuit containing passive linear capacitors (may be coupled), passive linear
inductors (may be coupled), two terminal linear and nonlinear resistors, independent voltage
sources and independent current sources. We require that N satisfy the following topological
conditions:*

(Tl) The capacitors and voltage sources form no loops,

(T2) The inductors and current sources form no cutsets,

(T3) Each current controlled resistor must form a cutset with inductors and/or current sources,

(T4) Each voltage controlled resistor must form a loop with capacitors and/or voltage sources.

Label and order the circuit elements as follows: inductors (L's), current sources (J's),
voltage controlled resistors (G's), capacitors (C's), voltage sources (E's) and current controlled
resistors (R's). Let nL, nJt nc, nc, n£, and nR denote the number of elements in each of the
above sets respectively. The branch voltage and branch current vectors can be partitioned in
accordance with the labeling convention:

v= [vf, v/, v£, vj, vj, vjJ (2.1)
and

=[t. iL%, &&$] (2.2)
Note: v£ and ij are constants of the independent voltage and current sources respectively.

The topological hypotheses (Tl) - (T4) and the colored branch theorem [7] imply the
existence of a tree containing all of the capacitors, independent voltage sources and current
controlled resistors, i.e. {C's, E's, R's}, and a cotree containing all of the inductors, indepen
dent current sources and voltage controlled resistors, i.e. {L's, J's, G's }, such that the funda
mental loop matrix has the following form:

B =

\ 0 0 BLC BL£ Bl/?

0 '., ° BjC B/£ B/r

0 o '„ Bcc %GE 0

(2.3)

Under the labeling convention KVL, Bv = 0, may be written as follows:

vL = -BLCvc - BL£v£ - BLRvR (2.4)

Y/ = -Bycvc - Bjeve - BjftVg (2.5)

vc = -BocVc - BG£V£ (2.6)

• In [6] it is shown how these topological conditions can be somewhat relaxed with an increase in the
complexity in the equation formulation process. If a circuit contains a capacitor only loop (inductor only
cutset) then this loop (cutset) may be replaced by a set of mutually coupled capacitors (inductors) which no
longer form a loop (cutset). See [6], pages 434-436.



Similarly, the KCL equations, i = BTilildu, can be written as:

k = Blck + Bjeh + B^ic
te = B^ + B^i> + B^£ic
f* = B/^ii + By^/,

The elements have the following constitutive relations:
Capacitors:

dvc

v dt

where

C= diag[Cu C2 C-), C, > 0, i = 1

Inductors:

dk

dt
v, = L

where L is an nL by nL positive definite matrix.

Current controlled resistors:

v* = r(^)

where

«•(*) = Ir&tJ, r2(iR2), .... r (L )f

Voltage controlled resistors:

h = g(vc)

where

nc

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

forN

g(vc) = Ui(vCl). *2(vc2). -., gnG(vc )]T
*g

Combining KCL, KVL and the element relations we obtain the following state equations

dv
C"1T =BIck +Bjcij +B^gt-Bocvc - BG£v£)

diL
L~dT =~BlcVc " B^v* ~ *L*«*Ltk +BJtO)

(2.14a)

(2.14b)

Note that all other circuit variables can be obtained from vc and iL via KVL, KCL and the ele
ment relations.

The above formulation can be easily generalized when there is coupling between the non
par resistors. However, when there is no coupling or the multi-terminal resistors are Hi
reciprocal, the circuit equations can be written in terms ofapotential function as follows:
Let

>=i

/ 8j(u)du (2.15)



be the co-content and

G(iK)= J
y=l

J rj(u)du

be the content.

Define

#(vc, !l) = i[BLcvc + '/vc - G(-Bccvc - BG£v£)

+ »Z"BLvv£ + G(B[RiL + BjRij)

With //(vc, iL) defined as above the state equations can be written as:

dvr

-L

dt

dk_
dt

dH(vCtiL)

dH

1
BiL J

(2.16)

(2.17)

(2.18a)

(2.18b)

3. Analysis of the linear lossless circuit

Let N be a circuit consisting of passive linear inductors and capacitors which may be cou
pled. Assuming N satisfies the topological conditions (Tl) and (T2), the state equations can be
written as:

dvc T
(3.1a)

diL
(3.1b)

Since C and L are symmetric and positive definite, we can write C and L as follows [8]:

C=C,/4TC* (3.2)

L = L^L* (3.3)

Let C_v* and L~* denote the inverses of C% and L*.

Theorem 3.1 (Existence of a decoupling transformation)

Under the above conditions there exist orthogonal matrices P e r"cX,,c and Q e RniX,,i such
that the change of variables

vc = cr*4?*, x e r"c

iL = L-^Qy, y 6 R"L

transforms the state equations (3.1) into the form:

and

dt

where

(3.4a)

(3.4b)

(3.5a)

(3.5b)



ft =

'mx (ii^-m)

^(iic-m)xm ^(,nc-m)x(H^-m)
(3.6)

with

1= da^CO,,^ COm J (3.7)

©i £ ©2^ • • £ ©m > 0, and 0*x/ is a k by 1 matrix of zeros. The co '̂s are called the
natural or mode frequencies and m is said to be the number of degrees of freedom or modes of
the oscillator circuit.

Circuit Theoretic Interpretation

Let N, Figure 1, satisfy the previous hypotheses. Theorem 1 tells us that N is equivalent
toN, Figure 2, with

i, = Vc~vc., i = 1, 2, . *c

and

?, =V^fL;., 7= 1,2 nL
where

VltC*
,m

In essence, Theorem 3.1 allows us to decouple the circuit into separate tank circuits.
Proof of Theorem 3.1

Let

vc = <T V w e R"c

iL = L"V z 6 R^

Under the above change of variables we get

where

** a7\
<fc

= A'z

dz A— - -Aw
dt

A= L-^B^CT^ 6 R"***

(3.8a)

(3.8b)

(3.9)

(3.10a)

(3.10b)

(3.11a)

(3.11b)

(3.12)

The singular value decomposition of the matrix A, see [8], gives orthogonal matrices P and Q
such that

Letting

then

Qr AP = ft

w = Px and z = Qy

•^=PrA7Qy =^Apjy =ClTy

(3.13)



and

•& =-QTAPx =-ftx
dt

4. Transformation to a form suitable for averaging

Let N be a circuit satisfying the hypotheses of Section 2. If we open circuit the voltage
controlled resistors and short circuit the current controlled resistors, we obtain a lossless circuit
that satisfies the conditions of section 3. The circuit obtained in this manner is sometimes
called the generating circuit. Applying the decoupling transformation to the state equation for
the original circuit gives us the following state equations:

4r= ftTy+ x, +g(x) (4.1a)
dt

*L=-Clx-yt- f(y) (4.1b)
dt

where

f(x) = PTC-V4rBjcg(-BGCC-V4P^ - BC£v£) (4.1c)

r(y) = Q7"L-V4rBLJ?r(BLTi?L-V4Qy + By^fy) (4.1d)
xt = P'C-^By^y (4.1e)

y, = Q7L"^BL£v£ (4-lf)

We now make a generalized Van der Pol or polar coordinate transformation as follows.

Let

x, = p.cosG, and y, = -p.sinG, 1< i < m (4.2a)

Xi = p, m < i < nc (4.2b)

y» = P„c - m+,- m< i < nL (4.2c)

The state equations now become:

-^- =cosGJx,. +|,<x)] +sinG.ty, +n(y)] (4.3a)
at '

d§i sin9, %„ cosGi m tAfw\—i = (D,- -[*,. + |,(x)] + ——[y, + niy)] (4.3b)
dt p, ' p,

for 1 < i < m

ISL.x^Hz) (4.30
for m < i < nc and

dp»c- m + i

dr
= ->,- ft(y> <4-3d>

for m < i < nL. From the above we can see that the state equations now have the general
form:

4^= ©+ e(9,p), G€ Rm (4.4a)
dt



i£ =
dt

= /?(G,p), p€R
+ ». - «

(4.4b)

The Transformed Potential

When the differential equations of a circuit admit a potential function formulation, as in
Section 2, equation (2.18), the analysis of the ordinary differential equation can take this struc
ture into account to reveal additional information about the behavior of the circuit. One would
hope that even after all the transformations we have performed on the circuit we can still find a
suitable potential function. This turns out to be the case and will become the basis for the
averaged potential.

Define

//(6, p) = xjx - Gi-BocCT^Px - BCEvE)

- yTy, - G(B[RLr*Qy + B£i»

where G() and G() are defined in equations (2.15) and (2.16) respectively.
Applying the chain rule, see Appendix I, we see that

dt

3//(6, p)
3p

and

£Gj_
dt

for 1 < i <

= ©, + —T
Pi

m

dH (6, p)
dG,

(4.5)

(4.6a)

I (4.6b)

5. Applying the theory of Averaging/Integral Manifolds

In this section we show how the theory of Averaging/Integral Manifolds allows us to
analyze the solutions of the differential equation (4.4) via a simpler averaged equation. Note,
we say Averaging/Integral Manifolds instead of just averaging because we are using the method
of averaging combined with the theory of integral manifolds.

The equation to be studied is of the form

6 = © + £0(6, p)

p= e/?(G, p)

(5.1a)

(5.1b)

where e e R, GeRm, pe R\ n= nc + nL - m, ©= (©,, • • ,©m)T, ©y > 0,
j = 1, • • • , m, the functions ft, R are periodic of period 2n in each component of the vec
tor G, and are continuous with all derivatives up through the second order.

Note: all the above conditions are satisfied for the transformed equations, (4.4), for our
circuit with the resistor characteristics twice continuously differentiable and multiplied, that is
scaled, by e.

The parameter e in the above equations puts a mathematical meaning behind the idea that
the nonlinearity is weak. One can also think of this as small damping, that is the resistance of
the current controlled resistors and the conductance of the voltage controlled resistors are
small. The theorems that follow will state various results under the condition that e is
sufficiently small.

The basic object that we will analyze in the differential equation (5.1) is an integral mani
fold. To motivate the definition and use of integral manifolds, consider a 2-dimensional auto
nomous oscillator, such as the classic Van der Pol oscillator, whose defining differential equa
tion depends continuously on some parameter. As we vary that parameter a little bit the limit



cycles will change a small amount and so will the frequency. Since the frequencies of the two
systems are different, trajectories of the two systems starting close will eventually separate,
even though their limit cycles as curves in the plane are close. It is for this reason we don't
study the trajectories of the two systems but their limit cycles as invariant surfaces.

Definition 5.1. (Integral Manifolds)
Given a differential equation z = Z(t, z), z e R", a surface S in (t, z) space is said to be an
integral manifold if for any point P in S, the solution z(f) of the differential equation through P
is such that (t, z(t)) is in S for all t in the domain of definition of the solution.

Define

e0(6, p) = lim -M 6(G + ©r, p)dt (5.2a)

, t
/?0(G, p)= lim-M /?(G+ ©/, p)</f (5.2b)

t-*- TJ0

With the above definition of 60 and R o, we define the averaged system as:

G= ©+ ee0(G, p) (5.3a)

p=e/?o(9. P) <5-3b)

The above averages are usually referred to as the time average. As will be seen shortly,
when ©o and R 0 are independent of G, the analysis is greatly simplified. If this is not the case,
a meaningful analysis usually cannot be carried out. The following results tell us about the
existence of the time average and its dependence on G. In addition, these results can be used to
simplify its computation.

Let/() be a real valued function on Rm such that/() is 2tc periodic in each component
of G. We usually call / (•) a function on the Torus Tm.

Definition 5.2

The time average of the function /(•) on the torus Tm with respect to the frequency vector © is
the function

t

/u~(e)= limf/(6+ (Ot)dt (5.4)
T-*- o

when the limit exists.

Definition 5.3

The space average of a function /(•) on the torus Tm is the number

/^. =-7^rJ •• J/(e^e, ••• dtm (5.5)
(2Jt) o 0

Definition 5.4

The frequencies ©lt ©2,.-» ©m are said to be incommensurable or independent if

*i©i+ £2©2+ • • • *m©m = 0

for *], *2. * * ' *m e z implies

Theorem 5.1 (Theorem on averages [9] )
(i) The time average exists everywhere.
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(ii) If/(•) is continuous and the frequencies ©i • • • ©m are incommensurable then the time
average is equal to the space average.

Note: this is a sufficient condition for the time average to be independent of G. Depending on
the nonlinearity the condition for independence can be greatly relaxed, as the examples will
show.

Fundamental results of Averaging/Integral Manifolds
Theorem 5.2 [10,11]
Given that the averaged system (5.3) is independent of G, that is,

G= ©+ ee0(p) (5.6a)

p=e/?o(P) (5.6b)

Suppose there exist a p0 such that R0(p0) = 0 and the real parts of the eigenvalues of

A =
a*o(p)

aP P-Po (5.7)

are nonzero, then there exists Ej > 0, a continuous function D(t), 0 < e < elf approaching
zero as e -» 0 and a function /(G, e) in R" which is continuous in Rm x [0, e,] and satisfying

l/"(G, e)- pol < £>(£)

such that /(G, e) is 2?t periodic in each component of 6 and the set

S, =1(G, p):p=/(G, E), G€ Rm \

is an integral manifold of (5.1) with the manifold being stable if all eigenvalues of A have
negative real parts and unstable if one eigenvalue has a positive real part.

When ©0 and R0 depend on G, the results get more specialized and complicated. One of
the simplest is

Theorem 5.3 [10]

Given the averaged system (5.3). Suppose there exists a p0 such that R0(G, p0) = 0 for all G,
3*o(G, p) ,

A =
dp |p=p°

and e0(G, p0) are independent of G. Then the conclusions of Theorem 5.2 remain valid if the
real part of the eigenvalues of A are non-zero.

The Averaged Potential

Suppose we have the following potential formulation

BH
p= £ (5.8a)dp J

*-*♦ *[*%*]
which can be obtained from the circuit equations as in Section 4.
Definition 5.5
Define

tf«v(6, p) = lim —J H(B+ <at, p)dt (5.9)
/ — 1 ft
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We call //av(G, p) the averaged potential [1].

The following theorems show the implications of the potential formulation on the aver
aged equations.

Theorem 5.4

Given the system (5.8) with p lying in a closed ball of finite radius. Then the averaged system
is

; e a#ov(e, p)
6, = ©, + -j (5.10a)

Pi u«

P= £ (5.10b)
'ov(P) T
dp J

Proof

It will suffice to establish the interchange of averaging and differentiation which will also estab
lish the differentiability of the averaged potential. We prove the partial derivative with respect
to 0,-case. The please is analogous. Since //(G, p) is 2rc-periodic in each G, and continuously
differentiable, 9//(6, p)/d6; is uniformly continuous in Qi. Given e > 0, there exists a
6(e) > 0 such that

\dH(Q + ©f,p) 3//(60+ ©/, p) 1
| dQ~ BB; \K E (5-H)

where

Go = [Gi, . . . t6i_i,Gio,G,+ i Gm]

if

0< \Bi- 6i0l< 8(e)

for all t and p. The mean value theorem gives:

d//(6fl + ©f,p)
//(6+ ©/, p) - //(00+ ©/, p) =(G, - G,o) tjjj; — (5.12)

where

Gfl = [Gj, . . . »Gj_i,6ia»Gj+i, . . . ,Gm]

and 6^ is between 9, and 9|0. Equations (5.11) and (5.12) imply:

j//(0+ ©f,p)-//(G0+©r,p) 8//(Q+©r,p)l
| Gi - 6jo dOi |

Finally we see that

!,//„( 6, p)- //^(Qo, p) i fT 8//(6+ ©/,p) J
| o^ fey J. ae"^1!
< lim —[ I***9* w» P> " #(6o+ Q>f>P) _ 9//(6 +©f, p) |

r— T J0 g"^ 3G4

^ lim 4: U7*) =e •

Theorem 5.5

Given the system (5.8). Suppose the frequencies ©i, ©2,...©m are incommensurable. Then the
averaged system is
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6= © (5.14a)

BHm(p)
P= E

and

dp •I (5.14b)

2a lit

Un) 0 0

Proof

Since the frequencies are incommensurable, we can replace the time averages with space aver
ages

2x 2k

This is easily seen to be zero by first applying the fundamental theorem of calculus to the G,
integral and then using the fact that //(G, p) is 2* periodic in each component of G.

From real analysis[12] we can interchange the order ofdifferentiation and integration to get

»WP)-^I (5.18)
The differential equation (5.8a) for p is known as agradient system[13]. Consequently, if

po is an isolated maximum of Hm(p), then p0 is an asymptotically stable equilibrium of (5.8a).
If Po is an asymptotically stable equilibrium of (5.8a), then the eigenvalues of

. d2Hm(p) ,
A= ap2 jP-Po (5.19)

are real and less than or equal to zero. Hence, once we have an isolated maximum of Hm(p)
all we need to do is check that A is non-singular and then the conditions of Theorem 5.2 are
satisfied with the integral manifold stable.

6. Analysis algorithm and examples

In the previous sections we have given the necessary circuit theoretic and mathematical
background needed for the analysis of weakly nonlinear oscillator circuits. Here we summarize
the steps of the analysis.

Algorithm

0. Check that the circuit satisfies the topological conditions (T1)-(T4).
1. For the graph of the circuit let the tree contain all the capacitors, independent vol

tage sources and current controlled resistors, i.e., {C's, E's, R's] and the cotree con
tain all the inductors, independent current sources and voltage controlled resistors,
i.e., {L's, J's, G's}. Label and order the circuit variables as in (2.1) and (2.2). Find
the fundamental loop matrix and partition it as in equation (2.3).

2. Factor the C and L matrices as in (3.2) and (3.3). Note: both the C* matrix and the
L matrix can be obtained using Cholesky decomposition[8] since they are sym
metric and positive definite.

3. Form the matrix A=L^B^C-*7 as in equation (3.12), then calculate the singu
lar value decomposition of the matrix A, i.e., obtain the orthogonal matrices P and
Q such that QrAP = Q with Q as in (3.6) and (3.7). The <o/s will be the mode



4.

5.

7.

and

12

frequencies.

Use the matrices obtained in steps 2. and 3. to calculate the transformed equations
(4.1).

Apply the generalized polar coordinate transformation of equation (4.2) to finally
arrive at the state equation (4.3). Note: since the resistors are two-terminal, we can
use the co-content (2.15) and content (2.16) to form the transformed potential,
J/(6, p), as in equation (4.5), and obtain the potential formulation (4.14).
Obtain the averaged system. Note: if the frequencies are incommensurable, we can
make use of Theorem 5.1 and use space averages. Furthermore, if we have a poten
tial formulation, we can make use of the results of Theorem 5.4 and possibly
Theorem 5.5.

.Finally, apply the main theorems: if the averaged system is independent of G, use
Theorem 5.2, otherwise try Theorem 5.3.

Remarks:

1. If multi-terminal resistors are present then we can still form the state equations[6]. How
ever, for general multi-terminal resistors there will be no potential formulation.

2. If the multi-terminal resistors are reciprocal, then we can obtain a potential formulation.
3. If the circuit contains capacitor loops or inductor cutsets, we can transform the circuit via

the techniques of [6] and proceed with the analysis.

Example 1 (Endo and Mori[14])

The circuit shown in Figure 3 is an inductively coupled pair of Van der Pol oscillators.
The resistor nonlinearity is g(v) = -g^v + $3v3, with glt gz > 0. For our analysis we will take
Cl= C2= C, L! = L2- L and L3 = I0. For illustrative purposes, we will go through all the
steps of the analysis algorithm in this example.

Step 1) We pick {C,, C2} as the tree for the graph and {L„ L2, L3, Gj, G2} as the subtree.
With this we obtain the crucial components of the fundamental loop matrix BLC and B^.

-1 0

BLC = (6.1a)

Bqc -

Step 2) Since C and L are both diagonal, obtaining CH and L*4 is trivial, i.e„

•Jc~ 0

0 -1

-1 1

-1 0

0 -1
(6.1b)

and

Step 3)

C» =
0 vc

L* =

vr o o

o vr o

0 0 yJTl

1

A = L-^BlcC-^-

VIC"

0

1

1

>ILC

1

yJL0C JL0C

(6.2a)

(6.2b)

(6.3)
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Calculating the singular value decomposition of A gives:

©i 0

QrAP= 0 ©2

0 0

where

©2

and

©! =

-V c(r+w

p=vT
1 1

1 -1

"Y*
l

V2

1

V2

2(L0 + 2L) do+ 2L)

Q =
2(L0+ 2L)

21

a0 + 2L)

"to r Tfl4

"*4

do+ 2L)

Y4

(I0+ 2L)

Step 4) We now use the matrices P and Q to obtain the transformed state equations.

dx_
dt

©i 0 0

0 ©2 0

©1 0

0 ©2

0 0

*2

J2_
2C2

xj(xf + 3x22)
x2(xi + 3xf)

(6.4a)

(6.4b)

(6.4c)

(6.4d)

(6.4e)

(6.5a)

(6.5b)

Step 5) We now apply the generalized polar coordinate transformation to the system (6.5) to
obtain:

£i S3Pi= 7rPiCos2G1---jPiCos2Gi[p2cos2G1+ 3p22cos2G2]
2C

0. p,

P2 = — p2cos2G2 - •—2-p2cos2G2[p22cos2G2 + 3p2cos2Gi]

p3= 0

gl P3
©i = ©i - -rrsinGjCOsG, + —ysinGjCOsGjIpfcos^j + 3p22cos2G2]

l 2C

8\ £3
©2= co2- — sinG2cosG2+ —2"Sin62cosG2[p22cos2G2 + 3p?cos26i]

*-• 2C

(6.6a)

(6.6b)

(6.6c)

(6.6d)

(6.6d)
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The transformed potential can be calculated to be:

"(6, p) =^(pfcos2^ +p22cos2G2)
*3~ 777(Pi4cos4Gj + 6p12p22cos2G1cos2G2 + p24cos462)

8C2
(6.7)

Note, it is usually easier to calculate //(6, p) first and then use it to obtain the new state equa
tions. Furthermore, we usually don't need to bother calculating the transformed equations, just
the averaged equations.

Step 6) To obtain the averaged system we can calculate directly from equations (6.6) or use the
averaged potential. If ©j * ©j then

*» / 2 2x 3*3
4C(p?+rf)" 64C*#av(P)= t^t(Pi2+ P22)- (Pi4+ 4p,2p22+ pi)

Using #sv(p) we obtain the averaged equations.

,2-p,(p2+ 2p22)Pl 2CPl 16C

8\

p2~ 2CP2 16C
Gi = ©i, G2 = ©2

3«:
2P2(P22 + 2pl)

(6.8)

(6.9a)

(6.9b)

(6.9c)

Step 7) We will use Theorem 5.2 to tell us of the existence of an integral manifold and hence
oscillations for the circuit. We need to look at the equilibrium points of (6.9a) and (6.9b) and
calculate their stability. Note:

BR0

dp

Case (i):

8\

2C

3*:

16C2

-3*3

(3p?+ 2p22)

2P1P2
4C 2C

-3*3

lcrPlp2

^-1&(3P2+2P?)
(6.10)

Pi = 0, p2 = 0

The eigenvalues of BR o/dp at this equilibrium point are

1 _ 81 1 81
^"2C* ^"2C

Both are positive. Hence, this integral manifold is (completely) unstable. This is the non-
oscillatory case.

Case (ii):

Pi =0, p2 =
8*iC

>4

3*

The eigenvalues of BR o/dp at this equilibrium point are

1 _ ~*i 1 -gi
*^i — M — > A2 = _

2C C

Since the eigenvalues are both negative, the integral manifold is stable. In this case we have a
stable single-mode oscillation.
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Case (iii)

p2 =0, p, =
8|£
3*3

Y4

The eigenvalues of BRq/Bp at this equilibrium point are

X,« 2C* *2~
-gi

C

Since the eigenvalues are both negative, the integral manifold is stable. In this case we have a
stable single-mode oscillation.

Case (iv):

Pi =

The eigenvalues of BR o/Bp are

8*iC
y*>

•8z P2 =
8*iC

Y4

•83

One eigenvalue is positive the other negative. Hence, the integral manifold is unstable (saddle
like). In this case we say that we have an unstable double-mode oscillation.
Example 2

The circuit shown in Figure 4 is a double tank circuit with a single nonlinear resistor.
This circuit was first studied by Van der Pol and later by many others, notably Bruyland[15].
We will study this circuit for the case Cx= C2= C and resistor nonlinearity
*(v) = g^v + $3v3+ *5v5.

Picking {Cj, C2} for the tree and {L lf I2, g} for the cotree we get:

-1 0
Blc = 0 -1 . Bcc = [-1,-1]

The A matrix in this case is very simple, namely

-1

A =

0

0

-1

<L2C

The singular value decomposition is trivial, i.e.,

P =

Q =

1 o

0 1

hi 0

0 -1

The linearly transformed state equations are:

x =

y =

©J 0 '

0 ©2

©j 0

0 ©2

y-wg(wx> +wx*[\]

(6.11)

(6.12a)

(6.12b)

(6.12c)

(6.13a)

(6.13b)
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After applying the generalized polar coordinate transformation, the state equation above
becomes somewhat messy and not very useful. So we will use the potential formulation to sim
plify matters. The transformed potential is:

"*»-- 2 ^ o- - , -2* *3tf(G, p) = -TTTOc,2 + 2x,x2+ x22) - -^2-(*4 +4x3x2 + 6x?x22 + x24)
4C

8s

6C
3-(xf + 6x!5x2+ 15x,4x| + 20x,3x| + lSxfx} + oxjxf + xt) (6.14)

where xx = p^osGj and x2 = p2cosG2.

The averaged potential in the non-resonant case, i.e., ©, * ©y, ©, * 2co;, ©, * 3co; and
©, * 5©, where (i, j) = (1, 2) or (2, 1), is:

AC yri r" 32C

8s

#«v(p)= -^r(P?+ P22)- 2^2
a(3Pi + 12pfp2Z+ 3p24)

96C
5-(5pf+ 45p4p22+ 45pfp24+ 5p26)

Using the averaged potential we can find the averaged equations

8s
Pi= -Pi #+^r(3p?+6p|)+ i6c3 (5p,4+ 30pfp22+ 15p24)

p2= -p2 (5p24+ 30p?p22 + 15pf)

(6.15)

(6.16a)

(6.16b)

We are interested in the existence of double mode oscillations. So we will study the equili
brium points of (6.16) and there stability when pj and p2 are strictly greater than zero. The
analysis is broken into two cases.

Case (i): Third order eventually passive nonlinearity, i.e., g$ = 0 and g3 > 0.

Assuming p} > 0 and p2 > 0, we get the following equilibrium point for (6.16):

Pi2 = P22 =
-4glC

9*3
(6.17a)

Note that this equation requires 8\ < 0 for the equilibrium point to exist. Calculating the
eigenvalues of BRo/dp at this equilibrium point gives:

X, =4r < 0, X2 =-sfr > 0
1 C 2 3C

(6.17b)

Thus the integral manifold is saddle-like and for the third power nonlinearity there is no stable
double mode oscillation. This is the classic result of Van der Pol.

Case (ii): Fifth power eventually passive nonlinearity, i.e., g5> 0. In solving (6.16) with
pi > 0 and p2> 0 we find that px = p2. Define p = pj = p2. The equilibrium point equation
becomes:

25*5P4 + 9*3Cp2 + 45lC2 = 0 (6.18)

Define ki = 8C3Xi and k2 = 8C3X2, where X} and X2 are eigenvalues of BRo/Bp at p. Since
C > 0, the signs of lj and 12 are the same as Xj and X2. Requiring the equilibrium point to be
stable gives the following inequalities:

1, = - 125*sP4 - 27*3C p2 - AglC2 < 0 (6.19a)

U = SgspA - 3*3Cp2 - 4*,C2 < 0 (6.19b)
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From these equations we arrive at the following conditions for the existence of a stable double
mode oscillation:

with the equilibrium at

P2 =

8\ > 0 and *3 < 0

*i<

8\>

81 8i

400 g5

45 gl
400 g5

-9g3+ V 81*3Z - 400^5'
50*5

(6.20a)

(6.20b)

(6.20c)

(6.21)

These relations are plotted in the *i~*3 plane for a fixed gs in Figure 5. Hence, we have just
proven the existence of a stable double mode oscillation in this circuit for the parameter range
specified above.

7. Conclusion

In this paper we have shown how to systematically analyze weakly nonlinear oscillator cir
cuits via averaging and put this analysis on a firm mathematical foundation. In a later paper we
will look more closely at the resonance cases, phase locking and frequecy entrainment.

Appendix I

Let g(x), A(y), u(x) and v(y) be continuously differentiable. Then from the chain rule
we easily see that

and

Bg(x) _ Bg(x) fa**" 1* «*"•'.
dp, 9x, U» otherwise^

(Zl= 8^(y) j"sin9" 1*l'*m'
p, Byi [}* otherwiset

Bh

Bp

d"(*) _ du(x)ae,- " -5^—(-PismGj

36, dyt p,cos0'}

for 1 !g i < m. Applying these to //(6, p) we get

^-&- =cos04(x,. +|,(x)) +sinG,(y,. +fiiy))
for 1 £ i < m

BH(B, p)
3p, B*',+ &<*>

for m < i < nc

BH(B, p) „t x
OP«c - m + I '

(A.l)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)
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for m < i < nL and

BH (6, p)jg-*- =-p.sinG.fx,, + gi(x)) + PtCOsBiiy,. + f4(y)) (A.8)

for 1£ i £ m. Comparing with the transformed equation (4.3) we see that

'/(e, p) T15"^J (A-9a)
and

i^i =co. +J. [^(e,p)
* ' p,2 ae-

for 1 < i < m.
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Figure captions

Fig. 1
An arbitrary LC circuit, N, satisfying (Tl) and (T2).

Fig. 2
N the decoupled equivalent circuit to N .

Fig. 3
Inductively coupled pair of Van der Pol oscillators.

Fig. 4
Double tank circuit of Van der Pol.

Fig. 5
Plot of parameter region where a stable double-mode oscillation occurs for the double tank cir
cuit.
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