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Kinematics and Control of Robot Manipulators

Bradley Evan Paden

Abstract

This dissertation focuses on the kinematics and control of robot manipulators. The

contribution to kinematics is a fundamental theorem on the design of manipulators with

six revolute joints. The theorem states, roughly speaking, that manipulators which have

six revolute joints and are modeled after the human arm are optimal and essentially

unique. In developing the mathematical framework to prove this theorem, we define pre

cisely the notions of length of a manipulator, well-connected-workspace, and work-

volume. We contribute to control a set of analysis techniques for the design of variable

structure (sliding mode) controllers for manipulators.

The organization of the dissertation is the following. After introductory remarks in

chapter one. the group of proper rigid motions. G. is introduced in chapter two. The

tangent bundle of G is introduced and it is shown that the velocity of a rigid body can be

represented by an element in the Lie algebra of G (commonly called a twist). Further,

rigid motions which are exponentials af twists are used to describe four commonly occur

ring subproblems in robot kinematics. In chapter three, the exponentials of twists are used

to write the forward kinematic map of robot manipulators and the subproblems of chapter

two are used to solve the Stanford manipulator and an elbow manipulator. Chapter four

focuses on manipulator singularities. Twist coordinates are used to find critical points of

the forward kinematic map. The contribution to kinematics is contained in chapter five

where a mathematical framework for studying the relationship between the design of 6R

manipulators and their performance is developed. Chapter seven contains the contribution

to control. The work of A. F. Filippov on differential equations with discontinuous right-



hand-side and the work of F. H. Clarke on generalized gradients are combined to obtain a

calculus for analyzing nonsmooth gradient systems. The techniques developed areapplied

to design a simple variable structure controller for the nonlinear dynamics of robot mani

pulators.

Key words: robotics, kinematics. Lie group, screws, sliding mode control, generalized gra

dient.
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Notation

N Natural numbers. {1.2.3,...}.

R Real numbers.

2R The collection of subsets of R" .

II • Hi 1-norm of a vector.

II • II 2-norm in Rn .

II • \\p 2-norm induced by the positive definite matrix P.

B (x ,8) The open ball of radius 8 centered at x

B (x .8) The closed ball of radius 8 centered at x.

50 (3) The groupof proper rotations in R3. The set of 3 X 3

orthogonal matrices with determinant one.

G The group of proper rigid motions in R3.

G0 The isotropy group of G at O € R3.

Those rigid motions which have O as a fixed point.

51 The unit circle (i.e.. [0. 2ir] with the endpoints identified).

52 The unit 2-sphere.

Ta The n-torus.

TM Tangent bundle of the manifold M.

Tx M Tangent space of M at x .

— Equivalent to.

= "Diffeomorphic to."

= v "Diffeomorphic to" via a volume preserving diffeomorphism.

II "Parallel to."

O J> Points in R3.

OP The line segment connecting O and P.
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sc

0

cr

cl

^min'^raax

"Perpendicular to."

An ordered set or list of indexed objects (usually 6).

(e.g.0=(0o 05)).

The ordered set or list of objects whose elements are those

of J with their order reversed.

Complement of the set S.

Empty set.

Continuously differentiable r times.

The set of linking curves of £.

The set of critical points of the function / .

Minimum and maximum singular values.

sgn (•) Sign function sgn (x ) =
1 if x > 0
0 if x =0 .

-1 if x > 0

SGN(-)

ATAN 2

CO

CO

argmin

/*

a.e.

df

AT

aiA)

f Iir

Set-valued sign function SGN (x ) =
{1} if x >0

[-1.1] if x =0.
{-1} if x >0

Two argument arctangent function.

"Convex hull."

"Convex closure."

"The argument which minimizes."

Lebesgue measure

Almost everywhere with respect to Lebesgue measure.

Generalized gradient of / .

The transpose of A .

The spectrum of A .

The open right half complex plane.

/ restricted to U.

IV
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Chapter One

Introduction

This thesis will focus on the kinematics and control of robot manipulators. Robot

manipulators are the mechanical arms one sees in automated factories loading and unload

ing conveyor belts or spot-welding auto bodies. Research in the field of robotics encom

passes topics ranging from actuator design to image processing, but the study of robot

manipulators constitutes a significant fraction of this research.

Robot manipulators are designed to affect general rigid motions on a tool attached to

the end of the manipulator or on objects held in the manipulator's hand. The flexibility of

manipulators is what distinguishes them as robotic systems as opposed to a programmable

machines (e.g. numerically controlled milling machines etc. ). Figure 1.1 shows a

schematic diagram of industrial manipulator. This manipulator consists of six joints which

allow one degree of freedom each. There are two types of joints on this manipulator. The

first type is represented by a cylindrical can and allows only rotation about the axis of the

can; this type of joint is called revolute and is by far the most common joint type. The

second type of joint is represented by a square prism and allows only translations along

its axis; this type of joint is called prismatic. Essentially all industrial robot joints are

either revolute or prismatic. These two types of joints are denoted R and P respectively.

With this notation the manipulator in Figure 1.1 is called a PRRRRR or P5R manipulator.

The kinematics of robot manipulators deals with the geometry of these machines.

An important map in the study of manipulator kinematics is the

forward kinematic map. Referring to Figure 1.1 one can observe that for each set of

joint positions we can associate a configuration of the manipulator's hand. This association



maps points in the manipulator's jointspace (R1 X T5 in this case) to points in the

configuration space of the manipulator's hand (the group of rigid motions on R3). The

study of this map, its inverse, and its critical points (singularities) are main themes in

robot kinematics.

Figure 1.1 Schematic Diagram of a Manipulator with Revolute (R)
and Prismatic (P) Joints.

The dynamics and control of manipulators is also a major research area. A manipu

lator such as the one in Figure 1.1 will have motors at each joint to actuate the manipula

tor. The first question one considers in the control of a given arm is given a desired trajec

tory of the manipulator's hand, what control law will give the necessary torques to move

the hand along the trajectory? Many control laws have been proposed, most of which can

be placed in the following categories. (1) Linear controllers acting independently at each

joint. These are typically the PID (proportional, integral, derivative) type. PID controllers

are appropriate controllers for manipulators which are either slow or whose inertias are

dominated by the actuator inertias ( this is not uncommon when gear reductions on the

order of 100 exist between motor and joint). (2) Linearizing controllers. These control



laws transform, by state feedback, the manipulator's nonlinear dynamics so that the input

to state map is linear. Once this is done, a linear control scheme is used to control the

manipulator. (3) Lyapunov-designed nonlinear controllers. The design of these controllers

is generated from a stability analyzis of the manipulator together with the controller. The

advantage of generating control laws in this fashion is that the effects of parameter errors

on stability are obvious and these errors can be accommodated. The control scheme we

propose in chapter six is in this class. (4) Adaptive controllers. These controllers use

information contained in the tracking error to update parameter estimates in the manipula

tor model. The structure of these controllers can be the same as (l)-(3) with an adaptation

law added (see[l. 2. 3] ).

This thesis contributes to manipulator kinematics a fundamental result relating the

kinematic design and performance of 6R manipulators. In the area of control we develop a

calculus for analyzing variable structure control laws which are described by nonsmooth

gradient systems. We use this machinery to analyze a variable structure control law for

robot manipulators. We begin with a review of related work.

1.1 Kinematics and Manipulator Workspaces.

Several authors have studied the relationship between the kinematic design of mani

pulators and the resulting set swept out by the manipulators hand. Their work forms the

context for chapter five and we review it here. First we discuss the jointspace and the

workspace of a manipulator.

As we saw with the manipulator diagramed in Figure 1.1. a manipulator defines a

map from its configuration space ( called jointspace ) to the configuration space of its

hand. For general manipulators with revolute and prismatic joints this is also the case. To

each point in the manipulator's jointspace. J. there is a natural assignment of a point in

the configuration space of the hand. The configuration space of the hand is almost always

the group of rigid motions on R3, G . so we write f J -*G for the forward kinematic



map of a manipulator. For a given manipulator, this map depends on which point in

jointspace we call zero, but we will work that out later. The image of /. / (/ ) CG is

called the workspace of the manipulator. This is our definition of workspace.

The thrust of the recent studies of manipulator workspaces has been on the genera

tion of projections of / (/) onto R3 and characterizing this projection. There are two

important projections of / (/). They are called the reachable workspace and

dextrous workspace by Kumar and Waldron [4]. These two projections are obtained as

follows. Each g € G can be written as rotation about a point P followed by a transla

tion. That is. there is a natural diffeomorphism. <pP. of G onto Gp X R3 where GP is the

subgroup of G which leaves P fixed. Let irR3 be the natural projection of Gp X R3 onto

its R3 component. In terms of ttr3 and <f>p.

WR(P) 4 7rR3o0Po/(7)

is called the reachable workspace (of P ) and

WDiP) 4 [vR,o*,([/(/)]c)]C
is called the dextrous workspace (of P). The point P is chosen to represent some

significant point attached to the hand of the manipulator. Often P is chosen to be a point

between the fingers of the hand or the point of intersection of the wrist axes. In words, the

reachable workspace is the set of points which can be reached by P and the dextrous

workspace is the set of points which can be reached by P with arbitrary orientation of the

hand.

Bounds on Ws (P ) are obtained numerically by Kumar and Waldron in [4]. There it

is observed that for manipulators with only revolute joints, the boundary of WR (P) con

sists of critical values of vKso0po/ . By generating a plot of these critical values Kumar

and Waldron were able to obtain graphical bounds. Additional work on the shape of

WD (P ) and Ws(P ) is contained in [5] where Gupta and Roth classify holes and voids in

the workspace projections and conditions for their existence are given. The basic difference

between a hole and void can be demonstrated with a bakery doughnut. If the surface of a



doughnut represents the reachable workspace of a manipulator, then the doughnut-hole is

a hole in this workspace and the doughnut-dough is a void. Gupta and Roth also discuss

the behavior of WD (P) and Wg (P) as a function of P. For a manipulator having its final

three axes intersecting at a point Pw , the reachable workspace increases and the dextrous

workspace decreases with increasing \\P —Pw II.

Further numerical studies of manipulator workspaces have been carried out by Yang

and Lee [6], Tsai and Soni [7], and Hansen et at [8]. These studies rely on numerical

methods to generate projections of the manipulator workspace. The advantages of these

schemes over analytical approaches is that mechanical constraints can be easily included.

The disadvantages when compared to analytical techniques are the usual ones.

The approach taken in this thesis to derive relationships between design and perfor

mance of manipulators differs in several ways from those mentioned above. (1) Rather

than projecting / (/ ) onto R3 we consider the volume of / (/ ) as a subset of the group

of rigid motions as a performance measure of a kinematic design. (2) We find designs

which optimize our performance measures. (3) The tools used are standard methods of

differential geometry which have not been used in the kinematics literature.

1.2 Control

Many controllers have been proposed for robot manipulators and range in complexity

from simple linear controllers to linearizing controllers which compute the manipulator

dynamics in real time. The PID controllers work well on slow industrial manipulators

where a large component of each joint inertia is contributed by the actuator. This is com

mon with high gear-ratio drives. However, when the nonlinear dynamics of the the mani

pulator become comparable to the linear actuator dynamics, the performance of the PID

controllers degrade and it becomes necessary to use more sophisticated control schemes.

To describe some differences between control schemes we need to write a few equa

tions. The ideal dynamics of a rigid-link manipulator are given by



where

6

M (0)0 + C(0.0) + G(0) = F (1.2.1)

0 is the vector of joint coordinates

M (0 ) is the positive definite inertia matrix

C (0,0 ) is the vector of Coriolis and centrifugal forces

G (0 ) is the vector of gravitational forces

F is the vector of generalized forces applied by

the actuators at the joints of the manipulator.

In terms of equation (1.2.1). linear controllers generate control torques which are linear in

the manipulator state [0.0 F and a desired state trajectory [0d ,6d]T (0d is sometimes

used as a feed-forward term). Linearizing controllers have a control of the form

F=M(0)[0d -*v(0 -0rf)-*,(0 -0<<)] + C(0.0) + G(0). Plugging this con

trol law into (1.2.1) yields the error dynamics e + kve + kpe =0 where e 4 0 —0d.

Thus, by appropriate choice of feedback gains kv and kp the error converges to zero

exponentially. Finally, robust nonlinear controllers are designed by Lyapunov methods

and have global stability properties. In the analyzis of these schemes one can see explicitly

the effects of parameter errors in the model and can increase control gains to compensate

for these. Our controller is a member of this class of controllers.

The PID controllers are observed to work in practice when the integral control is

omitted or a dead-zone is introduced to eliminate limit cycling due to friction. Linear

schemes without integral control have been analyzed by Golla. Garges. and Hughes [9] and

Takegaki and Arimoto [10]. Both of these schemes are asymptotically stable for set-point

regulation. The later work of [10] uses the Hamiltonian of the manipulator as a natural

Lyapunov function to obtain global results whereas the results of [9] are local for essen

tially the same system. The primary drawback of linear controllers is the lack of global

stability results for tracking control. This is overcome easily by using nonlinear



controllers.

Nonlinear controllers designed by Lyapunov methods have been proposed by Corless

and Leitmann [ll], Gilbert and Ha [12], Young [13], Slotine and Sastry [14], and Morgan

[15]. These schemes guarantee the convergence of tracking error to a neighborhood of zero

in the presence of disturbances and modeling errors. For the variable structure controllers

the error converges to zero. The basic idea of these schemes is simple and is summarized by

the system described by the following scalar differential equation.

x = u +</(x.f ) (1.2.2)

x(0) = x0

where u is the control and d (x X ) is a state dependent disturbance with \\d (x X )ll < D.

Suppose that we would like to control x to the origin. Choose the Lyapunov function

V (x ) = x 2I 2 and then we have

V(x) = x(u + d). (1.2.3)

Choosing u = —(k + D )x . k > 0 we have that

V(x) <-*x2 + D Ix I = (-* Ix I + D)\x I . (1.2.4)

It follows that x converges to a ball of radius DI k about the origin. By increasing k this

ball can be made arbitrarily small. This simple example illustrates the basic idea of the

Lyapunov based designs. The robot dynamics together with the control are rewritten as a

vector differential equation of the form (1.2.2) and similar arguments are used to derive

the controller gains.

When the above ideas are applied to discontinuous control schemes, technical prob

lems arise. In chapter six we work out these problems and describe a simple variable struc

ture controller for robot manipulators. Other variable structure schemes have been pro

posed for robot manipulators (see [13. 14]) but are not as simple as they could be. This is

due to constraints imposed by analyzis techniques rather than the inherent complexity of

the problem.
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Chapter 2

Rigid Motions and Twists

The group of proper rigid motions on R3 plays a central role in the study of rigid-

link robot manipulators. It is the configuration space of the links of such manipulators; the

most important of which is the final link or hand. This chapter will discuss the represen

tation of rigid motions as exponentials of twists and some commonly occurring problems

which arise in the solution of manipulator kinematics.

Representing the rigid motions which are rotations about or translations along joint

axes as exponentials of twists is discussed by Brockett in [l]. This approach proves useful

for the solution of manipulator kinematic equations in chapter three and as a compact

notation with clear geometric interpretation. The exponential of twists notation is also

used to express a set of commonly occurring subproblems which arise in the solution of

manipulator kinematic equations. These subproblems appear essentially in the form in

which they were presented by W. Kahan [2].

First, the notation used for points and vectors in introduced.

2.1 Points and Vectors.

Identify points in physical three-space with points in R3 via an orthonormal right-

handed coordinate system as usual. Thus, a point P can be represented by an element of

R3 written

P\

P = Pv2 (2.1.1)
P3

1
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where the one in the last row allows for the matrix representation of rigid motions by

homogeneous transformations in the next section. If O is the origin of the coordinate sys

tem then O = . The four components in the RHS of (2.1.1) do not all have the same

units. The first three components have units of length and the " l" is interpreted as a scale

factor (particularly in computer graphics) and is therefore unitless. Identifying a point

with its coordinates in (2.1.1) should not cause any confusion since only one coordinate

system will be used in developing manipulator kinematics. The reader will note that it is

never necessary to specify the coordinate system. This is because the objects we consider

are intrinsic to three-space and anything said about them is independent of the choice of

coordinate system.

Let ?(r) beaC1 curve representing the position of a particle. Then the velocity of

the particle at time t is given by

vx(t) Pl(t)

(2.1.2)

All column vectors having the form of the left-hand side of (2.1.2) will be called

vectors. So for points P and Q. the displacement from Q to P, P —Q. is a. vector as

usual. Also, if v is a vector. Q + v . is the point which is Q translated by v . Both points

and vectors will be considered as elements in R3: Their physical interpretations are com

pletely diiferent however. The zero and one which are in the fourth row of vectors and

points respectively will remind us of this and enforce a few rules of syntax. For example,

it is meaningless to add two points.

The vector cross and dot products are computed in a natural way. If

v = (vi,V2.V3,0)r and u = (u1,u2.«3.0)r then

VlU) Pi(t)
v2(0 d Pib)
v3U) dt Pi(t)

0 1

wv ^ uT v and u X v 4

u2v3 — W3V2

"3V1 -«iv3

U1V2-M2Vl

0

(2.1.3)



12

2.2 Proper Rigid Motions

Proper rigid motions are maps from R3 to R3 which preserve orientation and dis

tances between points. Formally. g:R3-»R3 is a proper rigid motion if

WgP -gR\\ = IIP - R II and (gR - gQ)T({gS -gQ)x(gP - gQ))

(R —Q)T((S —Q) x(P - Q)) V P.Q.R.S € R3. It is well known that when points are

represented as in (2.1.1) such maps can represented by a homogeneous transformation of

the form

g =

A b

0 1
(2.2.1)

where A € SO(3) and b € R3. Let G be the group (under matrix multiplication) of all

4X4 matrices of the form (2.2.1). G is called the group of proper rigid motions on R3.

The identity. / € G . is simply the 4x4 identity matrix and

A b

0 1

-ATb' " K" (2.2.2)

If P is a point, then g € G acts on P by matrix multiplication.

A b
Pi

P2 A
Pi

P2 + 6

0 1 P3
1

Pi

1

(2.2.3)

The interpretation of (2.2.3) is that P is first rotated about the origin of the coordi

nate system by A and then translated by b. Observe that the 4 X 4 identity matrix

represents no rotation followed by zero translation.

In a rigid body, the distance between any two points attached to the body and the

chirality of any four points attached to the body is constant over the configurations of the

rigid body. If we take this as the definition of a rigid body then we have an isomorphism

between the configuration space of a rigid body and the group of rigid motions. Identify

/ € G with some nominal configuration of the rigid body, then a given configuration of

the rigid body is identified with the rigid motion which translates the body from the
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identity configuration to the given configuration. With this identification, a curve in G is

the trajectory of a rigid body such as a moving hand of a manipulator.

If g (t ) is a C1 curve in G representing the trajectory of a rigid body, then the velo

city of the rigid body is given by -j-git) € Tg(,}G where ThG is the tangent space of

G at h [3]. The trajectory g {t) can be written

g(0 =
AitY Pit)

"If!
(2.2.4)

where Pit) is a Cl curve of points and A (t) is a C1 curve in SO(3) which necessarily

satisfies

A (t)A (t)r = / V t € R.

Evaluating the derivative of (2.2.4) and (2.2.5) with respect to t at t

(At |
ffP\ (at * = 0) yields

7\G = ro"H iv avector-5^r +^r =°

(2.2.5)

0 for an arbitrary

(2.2.6)

There is a isomorphism of TgG onto TjG given by right translation by g-1. That is.

vg_1 € TjG V v € 2*gG . Thus, the velocity of a rigid body can be represented by an

element of TjG. The advantage of doing this is that the element of of TjG which

represents the velocity of a rigid body is independent of the choice of the identity position

of the rigid body.

Let ft) = (a>1(ft>2,ft>3.0)r and define the cross product operator constructed from ft) by

SM

0 —ft)3 <»>2|()
G>3 0 ~ft>i0

—ft>2 *»1 0 10
•"o ~o -o-io

(Observe that S ((o)b = ft) X b V vectors b. )

With this, i € TjG can be expressed

£=S(ft>)+ [$v]
for some vectors ft) and v

(2.2.7)

(2.2.8)
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Comment: If £. written the form (2.2.8). represents the velocity of a rigid body, then ft) is

the angular velocity of the rigid body in radians per unit time and v is the linear velocity

in length per unit time. The point attached to the rigid body which has velocity v is not

the center of mass, but a copy of the origin which is attached to the rigid body at the

instant we measure £.

Comment: Also. £ € TjG can be interpreted as a vector field. Note that to each point.

P, £ assigns a vector £P. When £ represents the velocity of a rigid body, the velocity of a

particle, with position P. in the rigid body has velocity £P. Recall that the units of £ and

P are mixed and note that £P has the mixed units of a vector; the first three components

have units length per unit time and the fourth component is zero ( with units of time'1).

The vector space TjG is the Lie algebra of G and has the same dimension (= six) as

the manifold G . In the next section, we describe the exponential map from TjG to G. In

chapter four, we study the linear dependence of elements of TjG when we find singular

configurations of manipulators.

2.3 Twists and Their Exponentials

In this section we introduce the notion of a twist [4.5] and its exponential.

Definition 2.3.1: Elements in T7G are called twists.

m

It is common practice to identify T7 G with R6. The six components in R6 are called twist

coordinates and are defined by the map tc.TjG -»R6:

0 -ft)3 *>2|vi
fc>3 0 —*»iv2

—ft»2_ft)l__ OJV3
0 0 o.o

ft)!

ft)2

6)3

Vl

v2

v3

(2.3.1)

For notational convenience a map that extracts the angular velocity and linear velocity

vectors from a twist is defined similarly.



ft)j

ft)2

0 -ft)3 ft)2|V! *>3
6)3 0 •"®lV2 ££ 0 = h-ft»2 ft)l

""b ~0~
Ojv3

'°l0
Vl

v2

V3
0

lv
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(2.3.2)

(Here isa case where we pay a price for using the four component representation of points

and vectors.)

A twist is given the attributes of pitch, magnitude, and an axis. These notions have

their geometric meaning derived from the screws one finds in a hardware store, and are

defined as follows.

Definition 23.2: Let £=tc'1 H then the pitch of £ is defined by

pitch of £ &

ft)rv

Hall
7 if ft) 5* 0

otherwise

Definition 2.3.3: Let £ = tc~l ®Ithen the magnitude of£ is defined by

magnitude of £ -
Ho II if 6) 5*0

llv II otherwise

(2.3.3)

•

(2.3.4)

Comment: The magnitude of £ is not a norm on T7G but is useful in describing zero and

infinite pitch twists particularly.

Definition 2.3.4: An axis of a twist is a directed line lu (line I with nonzero direction

vector u ) with the properties that (i) u x£Q = 0 for all Q € lu and (ii) u has the same

direction* as ft) (v resp.) if ft) 5* 0 (ft) = 0 resp.).

•

The next proposition identifies the relationship between twists and these attributes.

Proposition 23.1 (1) Every twist £ = tc l\v*\ has an axis. If ft) 5*0 then the axis is
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unique. (2) For each axis, pitch h € (—00,00], and magnitude M € (—00,00) there exists a

unique twist having these attributes.

Proof: (1) If ft> 5* 0 then verify that [O +4^t?t + Xft) IX € R)u is an axis of £. If ft) = 0.
Ilft)lr

then verify that any directed line with direction v is an axis of £.

If ft) 5* 0 . then, by requirement (ii) above, an axis of £ must be {J* + Xft) IX € R}M

for some P. Now (ox£Q = 0 for all Q € [P + Xft) IX € R}0 implies

ft)X(ft)X(/> +Xft)-O) + v) = 0 VX€R

^ ft)X(ft)X(/> — O )) + ft)Xv ) = 0

(As ft) X ft) = 0.)

=> (ft)*)7" - llft)ll2)(i> - O ) = -ft)Xv (2.3.5)

^_ ftKk)r
liftTF

ft)ft)r

liftTii2

Observe that

ft)Xv

TiftTiP
(P-0)=-^ (2.3.6)

is the orthogonal projection map onto the complement of sp{ft)}.

T

hence the nullspace of / - ^L- = sp{ft»}. It follows that (P - O) =^^ + Xft) for
llft)ll2 r Hoilh

ft)Xv

liftTiF
some X€R. since (P - O) =-^X. is a particular solution of (2.3.5). This implies

ft)Xvf0 +"ij-~j|7 +Xft) IX €R}w is the unique axis when ft) 5* 0.

(2) Case 1. h = 00. If i^ =0, then £ =0 and we are done. If M 5* 0 and Za is the axis,

then v =M-JL- and £=fc"'1|j]. Case 2. h finite. Let *« be the axis, then

« =^-jj^y- Lel p €/« . then

ft)X£P = 0 => ft)X(ft)X(P - O ) + v ) = 0

Premultiplying both sides of (2.3.7) by S(ft>) yields

* The zero vector has arbitrary direction
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uxiP - O)=-(/ - -^4-)v (2.3.8)
llft)llz

7*

Now \ is just fc . the pitch of £. Solving (2.3.8) for v yields v = <ax(0 - P) +hot.

=> £ = tc-K M" . M*X(0 - P) + AM " ).
Ilu II lit* II Hk II

Comment: If £ = tc~l 1^1 and ft) 5* 0 then ft) gives the direction of the axis of £ and v

defines the pitch and position of the the axis of £. The projection of v on sp{ft)} defines the

pitch and the projection of v on the nullspace of ft)r defines the position of the axis.

Comment: If £ € 7*/G represents the velocity of a rigid body, then the axis of £ is the

instantaneous axis of rotation of the body. The pitch of £ is the ratio of the translational

velocity along the axis to the angular velocity about the axis, and the magnitude of £ is the

magnitude of the angular velocity of the rigid body ( translational velocity if the angular

velocity if zero).

Comment: A triple consisting of an axis together with a pitch and magnitude is called a

screw. Proposition 2.3.1 shows that there is nearly an isomorphism between twists and

screws and this is why screws are used to represent twists. Screws are drawn to graphi

cally represent twists just as vectors (little arrows) are drawn to represent velocities.

Example: Let an axis be defined by the directed line through Q having unit direction vec

tor z . then the zero-pitch unit screw having this axis is

«-«fi-»|, x(<f_fl)|.
The infinite-pitch unit screw having this axis is

'--Br
•

The following proposition allows us to relate the rigid motion of a twist axis and the

change in the twist.

Proposition 23.2 (Rigid motion of a twist) Let £ €TXG with pitch h . magnitude M . and
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axis lm. If g € G . then g£g~* € TjG with pitch h . magnitude M and axis (gl )ga

Proof: Let £=tc~l rf I. then verify that g£g~x =tc g&)

gv +g5(ft))g"10 It follows

that g£g~l has the same magnitude and pitch as £. Now

u x£Q = 0 V (2 €/. => guXg Ig""1^ = 0 V i? € (gl)gu . Finally. « has direction ft)

(v resp. ) if ft) 5^ 0 (ft) = 0 resp.) implies gu has direction g ft) (gv resp. ) if g ft) 5* 0

(g ft) = 0 resp.)

•

Comment: As we saw earlier, a twist is a vector field in R3. g£g~l is then a vector field

defined in terms of g and £. To a point P, g£g"1 assigns a vector as follows. First P is

translated by g"1 to g~lP. then the vector field £ assigns the vector £g~lP which is then

translated back by g. Graphically, this is equivalent to shifting the entire vector field £ by

g . Thus, the axis of £ simply receives a rigid motion by g .

In the following chapters we will see that exponentials of twists are very useful in

the study of manipulator kinematics. Twists are square matrices so it makes sense to

exponentiate them. There is also an important geometric interpretation given by the fol

lowing propositions and discussion.

Proposition 2.3.3 Let ft) bea vector and define ft) 4 —^L. when ft) 5* 0. then
lift) II

es(«) =
ft)ft)r +sin(llft)ll)5(ft)) +cos(llft)ll)[l -£>ftV I if(o^0

I if ft) = 0
(2.3.9)

Proof: Observe that the spectrum of S(a) is [0. i lift)II. -* lift)II} and that the minimal

polynomial of S(ft)) is #(X) 4 X( X+ i llfi)ll)( X- i llftill). Also note that each eigenvalue

of 5 (ft)) is a root of multiplicity one of the minimal polynomial. Thus, we can compute

exp(S(ft))) by finding a polynomial p{\) such that />(X) = ex V X € a{SM) and

then evaluate />( X) at S(ft)). If ft) = 0 then p( X) = 1 will do and so e5(a) = / for this



case. If ft) s* 0 then

p( X) = 1+ (sinllwlO-A- + ( 1- cosllft)ll)
lift) II

is an appropriate polynomial. Evaluating (2.3.10) at S (ft)) yields

X2

liftTF
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(2.3.10)

,*<•> = / + sinllft)IIS(w) + (1 - cosllft)HXS(ft)))2. (2.3.11)

Using the identity ft) X (ft) X v) = ft)ft>rv — llft)ll2v, which which is equivalent to

(5 (ft)))2 = ft)ft)r - lift) II2 /. we have

c5(w) = ft)ft)r+ sinlift) 115 (ft») + cosllft)ll(/ - ft)ft)r). (2.3.12)

Figure 2.1 Interpretation of e5t**\

Figure 2.1 gives the geometric interpretation of cs(w) as a rotation by lift) II about the
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axis through the origin, O , having direction ft).

Proposition 2.3.4 Let £ = tc l y* , Q be a point on an axis of £. and P be an arbitrary

point. Then

i/> =

Proof: If ft) = 0. then

Q +cS(»)(p_G)+_rVifa)5i£0

P + v if ft) = 0

0'
,iv«-|8

and £* = 0 V * > 1. Thus.

and it follows that efP = P + v .

am'

(2.3.13)

(2.3.14)

(2.3.15)

If ft) 5*0. it is convenient to change coordinates to a system whose origin is on the

axis of £. Since Q is a point on the axis of £.

g M (2.3.16)

is a transformation which takes the origin O to a point on the axis. Note that g is a

translation by Q —O and its inverse is a translation by O —Q . Now

el = gg-^gg'1 = ge<« l^g'1

Defining £' & g~*£g yields

B.- U W
<"- 6<2

HoG1'1

0 -ft>3 ft)2 '
«*3 0 —*»l'

—<0j ft)i 0 |V
~0 "0~"0"'

lQ

0 -ft)3 ft)2 I

o "o oH

(2.3.17)

(2.3.18)

Recall that Q = O + • + Xft) for some X € R since Q is on the axis of £. There-
llft)lr

fore, from (2.3.18)



r-u -1
0 -6)3 a>2 I

ft)3 0 —ft>ilft)ft)rv
-ft)2_ft)i 0 |15jp"

0 0 0-,

0 -ft»3 «2 '
ft)3 0 "~ft)llft)ft)rv

ZW2_?»1_0 I Hal^
0 0 0 |

It is easy to compute the series of e? at this point. Since 5(ft))

in the taylor series of the exponential depends on v. We have

Fe? = exp|S(ft)) +

Moreover.

O4 ft)ft» v
OiliftTF"

= es{a) +

ge^g-ip = ge?[P +(0 -(2)]

!o'ft)ft)r
fojlftTii

= g
es(«)(i, _(2) + c5(»)0 + ft)ft)rv

liftTii2"

ft)ft)rv

IftTii2"
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(2.3.19)

0. only one term

(2.3.20)

(2.3.21)

Recall that es(a) is a rotation about the origin so e5(w)0 = O. Also, g is a translation by

Q — O so we have

e*P =Q +e5(tt)(P -<2) + OMt)rv

"iiftTF"
(2.3.22)

Figure 2.2 gives the geometric interpretation of c^ as a rotation about the axis of £ by

lift)II followed by a translation along the axis by the pitch times ft). Note that when the

pitch of £ is zero. e& is a pure rotation about the axis of £ by lift) II. When the pitch of £ is

infinity, e& is a pure translation by v (see 2.3.13).

2.4 Common Subproblems in Manipulator Kinematics (Kahan [2])

Some geometric subproblems occur frequently in the solution of manipulator

kinematics. By identifying the subproblems and solving them as "subroutines", it is easier

to conceptualize the solution of many common manipulators. It is important to point out

that the following problems are not an exhaustive set for the solution of arbitrary mani

pulators even though we have found them generally adequate for those commonly encoun-
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axis of £

Figure 2.2 Interpretation of e *.

tered.

Problem 1 (Fig 2.3) Routing a point P about an axis by 0 until it is coincident with

another point R. Formally, let P S € R3. and J a zero pitch twist with unit magnitude.

Find 9 such that

ee*P = R.

Solution: Let Q be a point on the axis of{ = tc'1 rj . Then

e°ip = R

<=>(e$tp)-Q =* -Q

<r>e°HP - Q) = Of -G)

Since ce*Q —Q for all fi on the axis of { as { is zero pitch.

(2.4.1)

(2.4.2)

(2.4.3)

(2.4.4)
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Figure 2.3 Problem 1.

ees<«)u = y (2.4.5)

where u £ (P —Q ) and y £ (R —Q ). By projecting (2.4.5) onto orthogonal sub-

spaces which are the span of ft) and the nullspace of ft)r . we have that (2.4.1) holds

«=> ft)rw = ft)ry (2.4.6)

and

ees<«)[u _ o)ft)rw ] = [y - ft)ft)ry ] (2.4.7)

Define «' 4 [u —a>a>ru] and y* A [y —ftK»ry ]. Equation (2.4.7) is a rotation in the

plane since u' and y' are both orthogonal to the vector of rotation, ft) (see Fig. 2.4). The

angle 0 is obuined from sinO and cosO from the cross and dot products of u' and y'. By

expressing the equality in (2.4.7) in polar form we have that (2.4.1) holds

<=> ft)ru = ft)ry. Ilu'll = lly'll.



24

Figure 2.4.

and

a)w* 5*Oand0 = ATAN2 ft)r (w' X y')
u'Ty'

(2.4.8a)

or

b) u' = 0 and 0 € [0.2ir] (2.4.8b)

In b) there are an infinity of solutions since this is the case when P = R and both points

lie on the axis of roution. If (2.4.8) cannot be satisfied there is no solution to (2.4.1).

Problem 2 (Fig. 2.5) Rotating a point P first about one axis by 01 and then about a second

axis (which intersects the first) by 02 so that it is coincident witha point R. To be precise:

let PM € R3 and £i,J2 be zero-pitch unit twists with intersecting axes. Find 0i,02

such that

•*299llip ojR#

= *--iSolution: Let {j = tc
ft)j

(2.4.9)

for i € {1,2}. Since £i and {2 have intersecting axes, we

can find a point Q in the intersection.

(a) In the insunce that the twist axes coincide we have that (2.4.9) holds if and only if

ft^XO), = 0and e(e> +{*T»*»**ip = R (2.4.10)
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Figure 2.5 Problem 2.

Note that <a[<a2 is ±1 depending on whether the axis directions are parallel or

antiparallel. The second part of (2.4.10) can be solved for (0j + (ft)fft)2)02) using

problem 1. There are 0 or infinite solutions in this case where the twist axes are coin

cident.

(b) If the twist axes are not parallel, then

ft)! Xft)2 5*0 and e^*1/* =e6*2R (2.4.11)
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Continuing with the assumption of b) we have (2.4.11) holds

<=>Bapo'mtA such that (2.4.12)

ee^P =A= e~**UR

<=> 3A such that e*liKP - Q) = (A - Q) =e~*2*2(2? - Q) (2.4.13)
(As Q is on the axes of both the zero-pitch screws {i and {2.)

<=>Bw such that c°lS(ttl)u =w =e'^y (2.4.14)
whereu & P -Q.y & R -Q.w & A-Q.

<=><a fu = (o[w (2.4.15a)

ft)/w = &)2ry (2.4.15b)

llu II = llw II = lly II (2.4.15c)

and

e'^u =w (2.4.16a)
e'^y = w (2.4.16b)

Now ft)lt ft)2, and ft)j X ft)2 are linearly independent so w can be expressed

w = aft»! + 0ft)2 + X(ft)! X ft)2). (2.4.17a)

Plugging (2.4.17a) into (2.4.15) yields (2.4.15) and (2.4.16) hold if and only if

ft)/u = a + 0 ufa2 (2.4.17b)

ft)2ry = cmfa2 + 0 (2.4.17c)

ll« II2 = a2 + 02 + 2a/Jft)/ft)2 + X2llft)! X ft)2ll2 (2.4.17d)

and (2.4.16) holds.

Solving equations (2.4.17) for a. 0. and X. yields that (2.4.17) and (2.4.16) hold if and

only if

<a[u - (<a[<a2)(ta2Ty) ^ _0 x
<=><* = : ?—r-^5 (2.4.18a)1 — ( ft)/ft)2)z

wfy - (o>f<a2)(o>fu)
P : -(—^-^ (2.4.18b)1 — ( ft)/ft)2)z

(Hi* II2 - (a2 + P2 + 2a/3(ft)1rft)2))
X — -« (2.4.18c)

lift)! X ft)2ll2

and (2.4.16) holds.
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Depending on the value of X2 there will be 0 (X2 = 0), 1 (X2 = 0). or 2 (X2 > 0)

values of w and hence A . The values of 0X and 02 which satisfy (2.4.16a) and (2.4.16b)

(if any) are found by applying problem 1 for each possible value of A . Since there are

only finitely many values of A , we have infinite solutions to problem 2 only if the appli

cation of problem 1 to (2.4.16a). (2.4.16b). or (2.4.10) generates infinite solutions. Thus,

a necessary condition for infinite solutions to exist is that P lies on the axis of {i . R lies

on the axis of £2 or the axes are coincident (see (a) above).

In summary, problem 2, has a solution if and only if (2.4.18) and (2.4.16) hold.

Further, we can get infinite solutions to this problem if P or J? lies on the axis of {i or £2

respectively, or the axes are coincident.

Problem 3 (Fig. 2.6) Rotate a point R about and axis by 0 such that it is a given distance

from a second point Q. Formally. Let { = tc~l |*[ be a unit twist with zero pitch, and

P.Q.R € R3. Find 0 such that

IIP -e°*tf II =</ (2.4.19)

Solution: Let Q be a point on the axis of £. Then equation (2.4.19) holds

IK/* - Q ) - eeHR -Q)\\=d (2.4.20)

\\u -e6sl<a)y\\=d (2.4.21)

where u & (P - Q). y & (R - Q). Projecting u - eQS{a)y in (2.4.23) onto the

orthogonal subspaces splft)} and the nullspace of ft)r yields by the Pythagorean theorem

that (2.4.19) holds if and only if

llft)r(« -y)ll2+ ll(* -ft)ft)ru)-e0s(tt)(y - ft)ft)ry )ll2 = d2 (2.4.22)

<=>llu'-c0s(ttyil2 = </2- \\a>r(u -y)\\2 (2.4.23)

where u' ^ (k —G)(dt u ) and y' = (y —ft>ft)r y )• Figure 2.7 shows the triangle we

must solve to solve (2.4.23). Applying a standard angle formula (see [6], pg. 120 ) yields

that (2.4.23) holds

0 -0OI = 2 tan"
•i L / (s -llu'ltX-r -llv'll)

[V s(s - V(</2- llft)r(« -y)ll2) (2.4.24)
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axis of £

Figure 2.6 Problem 3.

where

— ♦.--I0o = tan
ft)r (y' X u')

y«u'

s =i( llu'li + lly'll + Jd2- llft)r(« -y)ll2)

There are solutions to this problem if and only if the quantities under the radicals in

(2.4.24) are positive. In this case there are 1 or 2 solutions depending on whether

10 —0oI is zero or positive. To summarize, problem 3 has a solution if and only if
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e°V /d2-llci)r(u -y)llJ
>*u

Figure 2.7.

equation (2.4.24) has a solution.

Figure 2.8 Problem .4.
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Problem 4 (Fig. 2.8) Translating a point R along a direction v by Z so that it is a given

distance d from another point P. In out notation, let { = tc~* I be a unit twist with

infinite pitch. Find I such that

\\P - e'*R II = </ (2.4.25)

Solution: Equation (2.4.25) holds

IIP -(R + Zv)ll =</ (2.4.26)

IIP - R II2 + Z2 - 2Zvr(i> - J? ) = d2 (2.4.27)

<=>Z = vr(P -R)±J(vT(P -R))2-(\\P -R\\2-d2) (2.4.28)

There are real solutions to (2.4.25) if and only if the quantity under the radical in

(2.4.28) is positive.

These problems will be applied to the solution of robot manipulators in the next

chapter.
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Chapter 3

Manipulator Kinematics

There are two important problems which arise in applications of robot manipulators.

First, given the configuration of the manipulator, find the configuration of the final link.

This is called the forward kinematic problem. Second, given the configuration of the final

link, find the possible configurations of the manipulator. This, for obvious reasons, is

called the inverse kinematic problem.

The forward kinematic problem is relatively simple if a structured approach is used.

The basic idea of all solution approaches is to specify what rigid motion each joint affects

on those links following it and then compose these motions to obtain the rigid motion of

the hand relative to some zero configuration.

The inverse kinematic problem has no closed form solution in general and is therefore

more troublesome than the forward kinematic problem. It turns out that many industrial

manipulators have closed form solutions which are obuined by repeated application of the

subproblems solved in the last chapter. It is a corollary to the results of Chapter five that

all "optimal" 6R manipulators have closed form solutions.

3.1 Forward Kinematics

A forward kinematic map of a manipulator assigns to each point in the joint space a

point in the configuration space of the last link of the manipulator (the group of rigid

motions).

The jointspace of a manipulator is the Cartesian product of the configuration spaces

of the joints. The configuration space of a revolute joint is S1 and the configuration space
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of a prismatic joint is R1. If we let /, (equal to Sl or R1) be the configuration of the *-th

n-i

joint, then the configuration space of the manipulator is / = X Jt.

A forward kinematic map for a manipulator is not unique as we may choose any

configuration as the nominal "zero" configuration. Choosing a "zero" configuration defines

the zero positions for each joint and the hand. In addition to choosing the nominal zero

position, the senses for positive rotation and translation must also be chosen.

Figure 3.1 shows a 3R planar manipulator in its zero position. The manipulator has

three revolute joints whose axes are perpendicular to the page and are marked by dots. Its

joint space is T3 and its workspace is contained in R2 X Sl (a subgroup of G ). To find the

forward kinematic map for the manipulator, let £i be zero-pitch unit screws whose axes

are coincident with the joint axes when the manipulator is in the zero configuration (and

have directions consistent with the desired sense of positive rotation). As long as the axis

of joint i is coincident with the axis if & a roUtion of Bt of joint i effects the rigid

motion e of the hand. Thus, if we move the manipulator from (0.0.0) to (B0,B x.B2) by

routing the joints in reverse order, the joints axes are coincident with axes of the £t

whenever we move them. This allows us to write down the resulting rigid motion of the

hand directly as e ° °e 1&le 2*2. Since the configuration of the hand in the zero

configuration is the identity,/. in G , the configuration of the hand when the joint angles

are (B0.BltB2) is e^e^V2*2/ =e6°V»V2*2. So we have that, the forward

kinematic map for this zero configuration is

(e o.ei.02)-ee°V»V2*2 (3.1.D

Comment: Clearly, the configuration of the hand is independent of the order in which we

rotate the joints. However, if we rotate joint 1 before we route joint 2, then the rotation

of joint 2 is no longer about the axis of £2 and the order of the rigid motions of the hand

due to joint 2 and that due to joint 1 is different. In fact, the roution of joint 2 is about

the axis of e 1 l£2e xl. If we keep track of the positions of the axes as we rotate them.
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Figure 3.1 3R Planar Manipulator,

we always get the same rigid motion of the hand independent of the order in which we

route the axes.

The above argument extends to n -joint manipulators with both prismatic and revo

lute joints. In the case of prismatic joints, we simply replace the zero-pitch unit screws

with oo-pitch unit screws whose axes are parallel to the motion of the prismatic joints. In

general, we define a forward kinematic map of an n -joint manipulator as follows. Let

£i ,i € {0, • • • ji— l) be zero-pitch (oo-pitch for prismatic joints) unit screws whose axes

are coincident with the joint axes of the i -th joint which is revolute. Then

/|C9o. •••.9„-i) 4 II*8'1'
*=0

3.2 Inverse Kinematics

(3.1.2)

is called the forward kinematic map of the manipulator corresponding to

In applications, it is often the case that a desired configuration of the hand is given

and the inverse image of this configuration under the the forward kinematic map must be
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found. In reference to (3.1.2), given g GG. find / fKg). This problem has some

interesting twists. When the joint space has higher dimension than the workspace,

/ |"1(g) is generically an infinite set. An important question for these redundant mani

pulators is how can the extra degrees of freedom be exploited? Open questions for the case

where the dimension of the joint and workspaces have the same dimension are what is the

number of solutions for the general problem and how can they be found?

Most industrial manipulators are designed such that / /"Kg ) can be easily calcu

lated. In Chapter five we will see that nothing is sacrificed for 6R manipulators when it is

required that / |-1(g) be easily calculable. To give examples of the solution of equation

(3.1.2) for a common industrial manipulators, we consider the elbow and Stanford mani

pulators. By abuse of notation, we identify the axes of zero-pitch unit twist and the

twists. Thus, we can write £0 P|£i ^ ^ when the axes of £0 and £x have nonzero intersec

tion.

Figure 3.2 An Elbow Manipulator.

3.2.1 Solution of the Elbow Manipulator.
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The important features of the elbow manipulator (Fig. 3.2) which alloW the simple

solution of its kinematic equation are that its first two axes intersect and its last three axes

intersect. Let £ = {£0, £2. • - • ,£s) be the set of zero-pitch unit screws whose axes are

coincident with those of the elbow manipulator for some nominal zero configuration.

Define c0 - £0 f]£i and c5 4 £3 f\£4 p|£s. And the equation we wish to solve is

e°<&ee*V2V3V<Vs*s =g (3.2.1)

for given g € G .

Solution: Applying both sides of (3.2.1) to c5 we have

.•oV*VAc5 =gcs (3.2.2)

since e * lcs = c5 V i € {3.4.5} as c5 = fen^Clfe- Next' subtracting c0 from both

sides of (3.2.2) and taking norms yields

lle^V'V2*2^ - c0ll = llgc5 - c0ll (3.2.3)

Q t Q f —1

Applying the distance preserving rigid motion (e e l ') to both terms in the LHS of

(3.2.3) leads to

llee^2c5 - c0ll = llgc5 - c0H (3.2.4)

as c0 € £o\\£i' Applying the solution procedure of problem 3 in Section 2.4 provides a

solution for B2. (If there are multiple solutions, we must choose one. and if there are no

solutions, then there is no solution to (3.2.1) for the given g.) With B2 determined.

0 £
e 2 2c5 is known and (3.2.2) becomes problem 2 of Section 2.4. Thus, we can obtain B0

and 6V Next, from (3.2.1) we have

ee3%64t4e<>sts _ (eeofoc«i«ie«2^)-1g (3 2.5)

Let Oa »^ c 5 be a point on £5. Then



ee&e0<t4Oa =(ceoV*V2*2) lgQa

This is again problem 2 of Section (2.4) and B3 and B4 can be determined. Only Bs

remains to be determined. From (3.2.1)

>sfc =(e^V'V2V3VAf*g
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(3.2.6)

(3.2.7)

Applying both sides of (3.2.7) to Ou t £s turns (3.2.7) into problem 1 of Section 2.4

and 9 s can be determined. Thus, using the subproblems of section 2.4 we have determined

all the joint angles of the elbow manipulator.

Figure 3.3 Stanford Manipulator.

3.2.2 Stanford Manipulator Solution

The Stanford manipulator drawn in Figure 3.3 is quite similar to the elbow manipu

lator as is its solution. The only difference is that the Stanford manipulator has a
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prismatic third joint instead of a revolute joint. Again, the important features of the Stan

ford manipulator which allow the simple solution of its kinematic equation are that its

first two axes intersect and its last three axes intersect. Lei £ = i£0, £2, • - - ,£s} be the

set unit screws whose axes are coincident with those of the elbow manipulator for some

nominal zero configuration. All of these screws are zero-pitch except for £2 which is

oo-pitch. Define c0 4 |0 fUi and c5 ^ £3 D&» H&- Now we solve

ee^eeiV2V3V^e°sls =g (3.2.8)

for given g € G .

Solution: Applying both sides of (3.2.8) to c 5 we have

efl°V,V2£2c5 =gcs (3.2.9)

Next, subtracting c0 from both sides of (3.2.9) and take norms yields

\\e9°t°eB&el2i2Cs _ Co„ = „gC5 _ Cq|, (3.2.10)

Applying (e^e*1*1)"1 to both terms in the LHS of (3.2.10) yields

lle/2*2c5 - c0H = Hgc5 - c0\\. (3.2.11)

Applying the solution procedure to problem 4 in Section 2.4 provides a solution for l2.

With l2 determined, e 2 2c5 is known and (3.2.9) becomes problem 2 of Section 2.4. Thus,

we can obtain B0 and Bx. Next, from (3.2.8) we have

ee3V<Vs*s = (e0aSoe9iilel*2)~lg (3.2.12)

Let Oa y*c 5 be a point on £5. Then

e*&ee<£40a = (e^ViV^f'gO,, (3.2.13)

This is again problem 2 of Section (2.4) and 03 and BA can be determined. Only 05
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remains to be determined. From (3.2.8)

e°sis _ (eeo£oeei£iei2i2ee*t3e°44j-1g (3.2.14)

Applying both sides of (3.2.14) to On I £s turns (3.2.14) into problem 1 of Section

2.4 and B5 can be determined. As with the elbow manipulator, we have determined all

the joint angles of the manipulator using the subproblems of section 2.4.

It is not new that these manipulators have solutions, but it is appealing that the

solutions can be described so simply in terms of common subroutines.
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Chapter 4

Manipulator Singularities

It is well known that differential motions of a manipulator's gripper may be related

through the Jacobian of the forward kinematic map to differential motions of the joints

[l]. An interesting subject of study has been those configurations of six degree-of-freedom

(d.o.f.) manipulators where the Jacobian is singular (i.e. critical points of the forward

kinematic map). Understanding these singular configurations is important for the follow

ing reasons.

(1) At singularities, bounded hand velocities may produce unbounded joint velocities.

(2) Points on the boundary1 of the manipulator's reachable space correspond to singular

configurations when the manipulator has all revolute joints.

(3) A technique commonly used to plan bounded error, straight line paths in the reach

able workspace generates more knot points near singularities [2]. This is due to the

fact that the distance between knot points in jointspace determines bounds on error

in the workspace. The scheme suggested by Taylor [2] reduces distances between

knot points in the workspace to improve tolerances. This is effective everywhere

except near singularities where small distances in the workspace do not necessarily

correspond to small distances in joint space.

(4) Points in the manipulator's workspace which are reachable only when the manipula

tor is in a singular configuration may become unreachable under perturbation of link

parameters. Since the position and orientation of a manipulator's gripper are given by

1 Here we restrict "boundary" to mean those points on the boundary of the geometrical model's reach
able space where mechanical limits are not an issue.
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a smooth function of the joint variables and the link parameters, the implicit func

tion theorem guarantees solutions to the inverse kinematic problem under perturba

tion of link parameters only where the Jacobian is nonsingular.

Manipulator singularities have received considerable attention. Whitney [l] presents

the Jacobian in a cross product form similar to the one that will be used here. Singulari

ties of robot wrists are analyzed and working regions away from these singularities are

defined by Paul and Stevenson [3]. Screw calculus has been used to describe singularities

[4] and Luh [5] has used screw calculus to analyze redundant manipulators. In particular.

Luh presents a method for avoiding singularities by taking advantage of redundancy. Since

singularities occur at boundary points, they can be used to define the reachable workspace

[6]. Finally. Litvin and Castelli [7] have found singular configurations for a Cincinnati

Milacron manipulator and the Unimation Puma manipulator. Additional related work is

presented by Paul [8] and Pieper [9].

This chapter focuses on the geometric interpreution of singularities for manipulators

with six degrees-of-freedom. Several properties of a manipulator's configuration are

independent of the coordinate system used to express them and depend only on the angles

and distances between links and joints. The singularity of the Jacobian is such a property

and this fact will be exploited to describe singularities geometrically.

The layout of this chapter is as follows: Section 4.1 describes the ungent of the for

ward kinematic map. Section 4.2 gives some examples of configurations where the the

Ungent map fails to be surjective. Section 4.3 describes the decoupling of singularities

which occurs in manipulators with three consecutive revolute joints with intersecting axes

and section 4.4 contains some discussion.

4.1 The Tangent Map, Tf | ( see [10])

From equation (3.1.2). we have that the forward kinematic map associated with

£ —(£o.£i. "" ' .£»-i). f i'J -»G . isgiven by
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n-1

i=0

(4.1.1)

where the £t are the twists corresponding to the joints in the zero configuration of the

manipulator. From (4.1.1). Tf gTJ -*TG is given by

r/j(e.v) =
n-1

Z
*=0"afr^9

n-1

)= Zn
*=0

a
*

1

«—1 A

II' '
i=0

where B € / and v € TeJ = Rn.

Observe that

a
ad4 i=0

=

i=0

&
i=k

•

= n« •*
i=0

& Tie'1
i=0

-l
n —

n
i = i>

Recall, from proposition 2.3.2. that

£'t =
4-1

n>9'6
i=0

*-l

i=0

-1

€T/{<e>* (4.1.2)

(4.1.3)

is a twist with the same pitch and magnitude as £k and the axis of £\ is that of £t

translated by
*-i ,

lie
i=0

Thus £'t is the twist representing the k th joint when the

manipulator is in the configuration given by (B0.Bi, • • • ,0n_i). Since elements in G are

nonsingular. we have that Tf jjiB) is surjective if and only if the £'k span TjG . Since the

map tc is a vector space isomorphism we have, in terms of the twist coordinates of £\ .

that Tf g(0 ) is surjective if and only if the matrix

J(B) =\tc(£'0) tc(£'0 ••• tc(£'„_!)] (4.1.4)

has full rank (=6). This matrix of twist coordinates is called the manipulator Jacobian.

Note that the columns of the Jacobian are determined only by the positions of the joint

axes. This means that singularities of the Jacobian are determined only by the geometry of
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the axes as we might expect.

4.2 Some Common Critical Points of Six d.o.f. Manipulators

Many critical points of the forward kinematic map of 6 d.o.f. manipulators have a

simple geometric interpretation. In this section, we describe several of these, and demon

strate them on industrial manipulators. There are. of course, many other critical points

which have no simple geometric interpretation other than the linear dependence of twists

representing the joints.

For the rest of this chapter, we will violate our own convention and write points and

vectors as columns of three real numbers rather than four. This will allow the writing of

twist coordinate as a column of two vectors in R3 and simplify our discussion. If £ is a

zero-pitch unit twist with its axis passing through a point Q and having unit direction

vector z. then

*c(«)=U(o*-e)] <«•»>
(We still follow the rules of syntax we had with the 4-vectors; it doeswhere O =

not make sense to Uke the cross product of a point and a vector). If £ is an oo-pitch unit

twist with unit axis direction vector z , then

tc(£)= [J]. (4.2.2)

So for a general six d.o.f. manipulator, the manipulator Jacobian will consist of six

columns of the form (4.2.1) or (4.2.2).

Example

Figure 3.3 shows the Stanford manipulator which is a RRPRRR manipulator. Its

Jacobian therefore has the form



/ =
Z0 Zi 0 *3 Z4 ZS

z0x(O -Go) *iX(0 -Qx) z2 z3x{0 -Q3) z4x{0 -fi3) z4x(0 -Q3)
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(4.2.3)

where the Qt are points on the revolute axes and the zt are directions of the axes. Since

the final three axes intersect, the points Q^. Q4.and Q5 are chosen equal to Q3.

Some examples of manipulator configurations where the Jacobian is singular are now

given. These examples have particularly simple geometric descriptions and apply to gen

eral manipulators, but it is important to remember that, in general, singular configurations

have no simple description. The fact that common manipulators are simple geometrically

may be the reason for their easily described singularities. To simplify noUtion we write

(Q a ) to represent the directed line through Q having unit direction vector z .

Example 1. Two Collinear Revolute Joints Axes.

Without loss of generality2, take the joints3 to be 0 and 1. Then

(a) Their axes. (Q0,z0) and (Q\.Zi). have parallel directions: z0 = ±zj

(b) The vector (Q0 —Q x) is parallel to z0 and Z\\z% X (Q0 - gi) for i € {O.l}. and

/ =
Zq *i

z0X(O -Qq) zxx{0 -fii) € R6X6.

By the elementary row operation4 row 2 «- row 2 + (O —Q0) X row 1 we have5

/ -

By (b) it follows that

zq Zi

0 z, X(fio-Gi)

/ -

Zq Zl

0 0

(4.2.4)

(4.2.5)

(4.2.6)

It is now clear by (a) that / is singular. The Stanford manipulator (Figure 3.3) exhibits

this singularity when joints 3 and 5 line up. When two revolute joints are collinear there

Elementary column operations allow us to obtain the form of (4.2.4) regardless of the joint numbering.
We number the columns of the Jacobian in the same way that we number the joints; we begin with

zero
4 By row 1 we mean the first row of vectors and similarly for row 1.

A —5 means that thereexists nonsingular C ,D suchthat A = CBD.
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are a continuum of solutions since the links between the two revolute joints may be

routed without affecting the position of the gripper.

Example 2. Three Parallel, Coplanar Revolute Joint Axes.

Without loss of generality Uke the three joints to be 0, 1, and 2, with axes

(Qi >Zi). i € {0,1,2}. The condition that the joints are parallel is then

(a) Zj = ±z} i.j € {0,1,2}

and the condition that the three joints are coplanar is

(b) There exists a plane containing the axes with unit normal n such that n Tzt =0 and

nT(Qi -Qj)=0 i.j € {0.1.2}.

Since joints 0.1. and 2 are revolute the Jacobian has the form

/ =
Zq Z\ Z2

z0x(O -fio) zxx(0 -Qi) z2x(0 -Q2)

By the elementary row operation row 2 «-row 2 + (O —Go) X row 1. we obtain

J -
Zq Z\ Z2

0 Zi x (Co - Ci) z2 x (G0 - G2) *"

By (a) there exists elementary column operations to yield

/ -

z0 0 0

0 *iX(Go-Gi) z2x(Q0-Q2)

By (b) columns 1 and 2 of (4.2.9) are in the range of [n ,0]r and are therefore linearly

(4.2.7)

(4.2.8)

(4.2.9)

dependent. Thus. / is singular. The elbow manipulator in Figure 3.2. has this singularity

when the elbow is fully extended as shown. In this configuration the manipulator is at

the boundary of its reachable space.

Example 3. Four Intersecting Revolute Joint Axes.

When four axes, say (Qi^i). i € {0.1.2.3}. intersect at a point Q, the point Q

satisfies

(a) zt X (Qi - Q ) = 0. i € {0.1.2.3}.



Now

/ =
Zq Z\ Z2 Z$

z0 X (O - Go) zx X CO - Gi) z2x(0 - Q2) z3x(0 - Ga)

(4.2.10)

By the elementary row operation row 2 «- row 2 + (0 —Q ) X row 1 and (a) yield
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/ -

Zq Zi Z2 Z$

0 0 0 0
(4.2.11)

which is clearly singular since the first four columns are contained in a 3 dimensional sub-

space of R6. The Intelledex 605 robot, diagramed in Figure 4.1 has three intersecting axes

at its shoulder. This type of singularity occurs when the final joint axis intersects the

shoulder adding a fourth axis as shown.

Figure 4.1. Intelledex 605 Robot.

Example 4. Four Parallel Revolute Joint Axes.

If the joint axes iQi^i). i € {0.1.2.3}. are parallel then



(a) Zf = ±zj. j € {0.1.2.3}.

/ =

Zq Zi Z2 Z3

z0x(O -Go) ZiXiO -QO z2x(0 -Q2) z2x(0 -Q3)
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(4.2.12)

By the elementary row operation row 2 «- row 2 + (O — Q0) X row 1, we have

/ -

J -

Zq Z i Z2 Z 3

0 *iX(Go-Gi) ^2x(Go-G2) ^3x(Go-G3)

Using (a) and elementary column operations we obtain

Zq 0 0 0

0 ^1x(Go-Gi) «2x(Go-G2) ^3x(Go-G3)

z0T ooo

(4.2.13)

(4.2.14)

Now columns2 1.2. and 3. in (4.2.14). are in the null space of

dimension 2. It follows that J is singular.

which has

Example 5. Four Coplanar Revolute Joint Axes.

Let n be the unit normal to the plane containing the four joint axes. These axes

(Qui).

i € {0,1.2.3}. then satisfy

(a) Each axis direction is orthogonal to n ; nTzt = 0. i € {0,1.2.3}, and

(b) The vector from Qk to Qj is orthogonal to n ; nT (Qi - Qj ) = 0. i € {0.1.2,3}.

Now

J =
Zq Zi Z2 Z3

ZqX(0 -Go) zxx(0 -Qi) z2 x(0 -G2) z3 X(0 -Ga)

By the elementary row operation row 2 *-row 2 + (O — Go) X row 1, we obuin

(4.2.15)

J -
Zq Zi z2 z3

0 Zi x(Go-Gi) z2 x(Qq-Q2) z3 x(Go-Ga)

Then elementary column operations yield

. (4.2.16)

/ =

TZq Z i—ZqZqZ i
T

Z 2—Z qZqZ2 Z 3—Z qZqZ3

0 Zi x(Go-Gi) z2 X(Q0-Q2) z3x(Q0-Q3) (4.2.17)



Columns 1.2, and 3, are in the range of the rank 2 matrix

above and are therefore linearly dependent.

The Sunford manipulator reaches this configuration when joints 0,1,3, and 4, are

coplanar as shown in Figure 3.3.

Example 6. Six revolute Joint Axes Intersecting a Line.

This configuration occurs in a six degree-of-freedom manipulator with all revolute

joints when the manipulator is at full reach. For this reason, this configuration is useful

for describing the reachable space of a manipulator. Let the line which the six revolute

axes intersect be represented by the axis (Q ,b ) . Each axis (Qi^t), i € {0,1,....5}, has a

point in common with the axis (Q Jb ) so there exists yi, fit ,i €{0,1 5}. such that

(a) Qi +yiZi =G + fab .

For a manipulator with all revolute joints, the columns of J are

Ji =
Zi

Zi x (O - Qi)

From (a) we have

i 6 {0.1.....5}.

0 n X Zq

n 0
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by (a) and (b)

(4.2.18)

Qi =G + Pi* -7iZi (4.2.19)

Using (4.2.18). (4.2.19). and the fact that the cross product of a vector with itself is zero

yields

Ji - Zi x(o -G - Pi*>) (4.2.20)

Applying the elemenury row operation row 2 «- row 2 + (O — Q ) X row 1, we obtain

Ji -
Zi

—&i Zi X b (4.2.21)

It follows that J is singular since [br .O7"] is in the left nullspace of the RHS of (4.2.21).

The elbow manipulator in Figure 3.2. is at full reach and exhibits this singularity. This

singularity occurs at other configurations those of maximum reach.
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Example 7. Prismatic Joint Axis Normal to a Plane Containing Two Parallel Revolute

Axes.

Label the two revolute joints 0 and 1, and the prismatic joint 2. The revolute axes are

therefore (Qo.z0) and (Gi^i) - and the prismatic joint axis is (G2^2) • The condition that

(Qo.*o) and (Gi-z i) are in a plane orthogonal to the prismatic joint axis is

(a) z2TZi = 0 i € {0.1}

z/(Go-Gi) = 0.

The condition that the two revolute axes are parallel is

(b) z0 = ±zx.

From (4.2.1) and (4.2.2)

/ =

/ -

Zq Zi 0

z0x(O -Go) Zi X(0 -Qi) z2

By the elemenury operation row 2 «-row 2 + (O —Go) X row 1 we have

Zq Zi 0

0 Z!X(Go-Gl) z2

Using the fact that the revolute axes are parallel, (b). together with an elemenury column

operation yields

/ -
Zq 0 0

0 *iX(Go-Gi) z2

Now by (a), both zx and (Go —Gi) are orthogonal to z2 so Zi X(Go —Gi) is in the

(4.2.22)

(4.2.23)

(4.2.24)

range of z2 . It follows that columns 1 and 2 of (4.21) are linearly dependent and that /

is singular. A schematic diagram of the Rhino robot is shown in Figure 1.1. It reaches this

singular configuration when joints 1 and 5 are parallel and in a plane perpendicular to the

sliding motion of joint 0.

4.3 Decoupled Singularities.

In this section we demonstrate the decoupling of singularities which occurs in mani-
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pulators having three consecutive revolute joints with intersecting axes. For these manipu

lators, singular configurations are easily recognized. We may choose points on the axes of

a manipulator in this class such that three are coincident with the intersection of the three

axes. For concreteness we discuss six degree-of-freedom manipulators with revolute joints

only. By renumbering the joints, the points on the axis of joints 3.4. and 5 may be chosen

to coincide with the intersection of the three axes. The Jacobian is then

/ =
Zq Zi Z2 Z3 Z4 Z5

ZqX(0-Qq) ZiX(0-Qi) z2x(0-Q2) z3x(0-Q3) z4x(0-Q3) zsx(0-Q3)

(4.3.1)

Note that the last three joints share the same origin labeled G3 • By the elemenury row

operation row 2 «- row 2 + (O —Q3) X row 1 . we have

z3 z4 z5

(4.3.2)/ -
Zq Zi Z2 Z3 Z4 Z5

*oX(G3-Go) *iX(G3-Gi) z2x(Q3-Q2) 0 0 0

Therefore J is singular if and only if either

(a) z3,z4, and z5 are coplanar.

or

(b) zq X (Q3 - Go)-*! X (Q3 - Gi). and z2 X (Q3 - Q2) are coplanar.

For the elbow manipulator in Figure 3.2 we may choose Q3 to coincide with the intersec

tion of the three wrist axes, and the joint numbering in (4.3.1) is the natural numbering

from base to gripper. Looking at the first and last three joints separately we may deter

mine the singularities of this manipulator by inspection using (a) and (b) above. First.

z3^4. and z5 are coplanar if and only if joints 3 and 5 are collinear. This is the only

singularity contributed by the wrist. Second, the three vectors in (b) are coplanar in the

following two cases.

(i) The elbow is fully extended, or 180 degrees from full extension, so that

Z\X(Q3 —Qi) and z2 X (Q3 —Q2) are linearly dependent.
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00 Qsis directly above the baseon the axis (Go^o) so that z0x(Q3 —Qq) = 0.

These singularities may be interpreted in terms of the examples as well as (a) and (b)

above.

4.4 Discussion

By using the manipulator Jacobian in cross product form, we have described several

singular configurations geometrically. The descriptions are manipulator independent and

therefore apply to any six degree-of-freedom manipulator which can atuin the singular

configurations. These simple descriptions allow the evaluation of singular configurations

without explicitly computing the determinant of the Jacobian. We have also shown that

for manipulators with three consecutive intersecting joint axes the evaluation of singulari

ties is particularly simple. Future work in this area should involve the study of branch

ing, or bifurcation, in the solutions of the inverse kinematic solutions. From the inverse

function theorem, it follows that branching can only occur at singular configurations. The

study of exactly which bifurcation occurs at a singularity requires second and higher order

derivatives of the forward kinematic equation.
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Chapter 5

Optimal Design of 6R Manipulators

This chapter develops, for 6R manipulators, the notions of work-volume, maximal

work-volume, duality, and well-connected-workspace. With these notions defined, a

design theorem is proved which sUtes that a 6R manipulator, M. has maximal work-

volume and well-connected-workspace if and only if M or M* (its dual) is an elbow

manipulator.

The ideas of this chapter are motivated by several authors. The notion of work-

volume used here is that derived from a translation invariant volume element on the

group of rigid motions in 3-dimensional Euclidean space. This definition of volume is

natural and corresponds to the integration of Roth's [l] service coefficient over the Reach

able Workspace [2]. The application of such a notion of volume to robot manipulators is

also suggested by Brockett [3]. The Dextrous and Reachable Workspaces of a manipulator

have been used to relate kinematic design to performance in [4] and in [2]. Other work on

manipulator workspaces appears in [5] and the references conuined therein.

The format of this chapter is the following. Section 1 develops the mathematical

framework for proving a basic theorem about 6R manipulators which is contained in sec

tion 2. and the Appendix contains a few subproblems encountered in section 2.

5.1 Mathematical Framework

A formal theory of manipulator kinematics requires, first of all. a mathematical

represenution of manipulators. The amount of information conuined in the represenu-

tion depends on what we are trying to accomplish. For dynamics, a represenution must



53

contain information on inertias etc. For the purposes of this chapter the only significant

objects on a 6R manipulators are the joint axes. Thus, we will represent a 6R manipulator

by an ordered set (ordered from base to gripper) of six zero-pitch unit twists whose axes

are coincident with the manipulator axes for some configuration of the manipulator . Fig

ure 5.1 depicts a manipulator and the axes of six zero-pitch unit twists which are coin

cident with the joint axes for the configuration shown. The ordered set of twists

£ = {£q £s) is called a represenutive of the manipulator M. Since there are many

Figure 5.1 Representing a 6R Manipulator by an
Ordered Set of Twists

such represenutives we say that £ is equivalent to £ and write £ — £ if J and £ are

represenutives of the same manipulator. Formally, £ —• £ if 3^ € T5 such that

fi= ±(eMoe+lil ••• e*1-|*'-,)$i(e*0*°e*,{l ••• e*'-1*'-1)"1 . i € {0 5}

From Proposition 2.3.2 we have that that g {g-1 ,g € G, has the same pitch and magni

tude as J and that the axis of gig'1 is the axis of £ translated by the rigid motion g.

This gives the interpretation of — as £ — £ if the axis of each £,- can be rotated succes

sively about the previous axes £,_i £0 such that its axis is coincident (possibly anti-

parallel) with that of £t. A manipulator is identified with an equivalence class generated

Since this chapter deals exclusively with 6R manipulators we will drop the 6R and simply write mani
pulator.
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by —. If { is a representative of M. we say M = [{]. The brackets, [•]. are read "the

equivalence class containing."

The length of a manipulator is imporunt for obuining bounds on its work-volume.

Presently, we develop a notion of length for 6R manipulators which has operational

significance. Define the (non-empty) set of linking curves of £ as follows.

Definition 5.1.1 2

C| 4 {c :[0,5] ->R3 Ic is continuous, linear on [i.i+l], i € {0.1.2.3,4}.
and cj C\£i ** 0} is called the set of linking curves of £.

(We use the noUtion ct to denote c evaluated at t).

(5.1.1)

We refer to the line segments C[l#i+1]. i € {0.1.2,3,4} as links of £.

•

Using the set of linking curves we can define the length of £ as the infimum of the lengths

of all linking curves.

Definition 5.1.2 Define the length of f. 1%. by

lj 4 inf f \\±-ct\\dt (5.1.2)
c €cf o dt

•

The following proposition allows the replacement of the "inf" in (5.1.2) by a "min."

r dProposition 5.1.1 There exists c €C| such that J H-j-c, Wdt = Z|.

Proof: Let Qt. i € {0 5} be arbitrary points on the axes of the £-, respectively, and let

zt be unit direction vectors along these axes. Then any point on the axis of £i may be

written Q-t + X' zt for some X1" € R.

2^7We allow ourselves the minor abuse of notation by identifying a zero-pitch twists with its axis.
£l fi £2*^ means the axes of £i and £2 intersect.



55

Since a linking curve is linear between its points of intersection with the axes of the

£i. the linking curve is described completely by the points of intersection. Let X € R6 be

such that Qi + X1 zt are the points of intersection. Then the length of the linking curve is

d(\) 4 £ \\(Q. + X'v,)- (Gi-i + X'-'vi-x)!! >0.
i - 1

To show that there is a linking curve having minimal length, it is sufficient to prove

the existence of a X* € R6 which minimizes d (X).

Let {\k } be a sequence in R6 such that d(kk ) -»Z|. If {\k } has an accumulation

point, X* , then by the continuity of d . d (X* ) = Z| and we are done.

If {X4 } has no accumulation point, then {X*} is unbounded for some i € {0.....5}.

Now d (Xk ) is bounded so ll(Gi + X '̂v; ) —(Qj + X/v, )ll is bounded by the triangle ine

quality. Thus {X*'} is unbounded for all i € {0,...,5} and the vt are parallel (i.e.

vfvj = ±1). Without loss of generality, let vt = Vj V *J € {0 5}. Then

d(\) = d(\ + al) where a € R and 1 4 (l.l.l,l,l.l)r. Moreover, the sequence

lyt 1 = {*•* ~~ ^*°l J >s also an infimizing sequence with yk° =0. This implies that [yk }

is bounded and has an accumulation point y* and d (y* ) = I z. The accumulation point

defines the desired linking curve.

•

The next proposition allows the extension of Definition 5.1.2 to a definition of length for

manipulators.

Proposition 5.1.2 If £ —£. then *g= *{•

Proof: £ —f => 3$ € T5 such that

£i = ±(e+oio ••- e*i-lil-iXi(eMo ••• e*'-^-»)-i t € {0 5}. Let c e C; and

define the curve d by

dt =e*°*° ••• e*liict for t t[i.i+l],i € {0.1.2.3.4}
(5.1.3)
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dt is linear on [*.i+l] and e*°*° ••• e*lliCi = e*0*0 ••• «*,-lt,-|cj so d is continu

ous and piecewise linear on [0,5]. Also cj € {j (meaning Cj is on the axis of £%) =>

di = e*°*° •••e*'-|*,-,ci € &. It follows that d € C|.

Since rigid motions preserve length it is easy to see that

5 . 5

f \\^-ct\\dt = f \\JLdt\\dt . (5.1.4)
o « <o dt

Thus, for every linking curve of £. 3 a linking curve of £ having the same length. By the

symmetry of the equivalence relation. —. the opposite is also true. Thus. Z| = 1%.

m

Proposition 5.1.2 tells us that each representative of a manipulator has the same

length. Thus, the length of a manipulator is well defined as follows.

Definition 5.13 Let M = [ f] then its length . lM, is given by

lM &li (5.1.5)
•

It is often the case that a property of a manipulator is invariant under the reversal of

the axis order. Reversing the order of the axes is equivalent to using the gripper end of the

robot as the base and the base end as a gripper (clearly this is not practical unless we

replace the final link with a gripping device and the first link with a mounting flange).

This is an important symmetry which is made precise by defining the dual of a manipula

tor.

Definition 5.1.4 If M = [ £0 £5] then M* 4 [£5 £0] is called the dual of M. The

representative of M* is denoted £* .

•

Proposition 5.13 Let M be a manipulator, then lM = lM*.

Proof: If c, is a linking curve for £, a representative of M. then c5_, is a linking curve
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for £* and vice versa.

•

For manipulation we express the motion of the hand attached after the last joint in

terms of the joint angles. If £ represents the configuration of the manipulator axes when

the hand is in the identity configuration, then the configuration of the hand as a function

of the joint angles is

R =ee°ioeBi€l ••• e6*£s . (5.1.6)

The rigid motion of the hand relative to its identity configuration is a roUtion about £s by

B5 followed by a roUtion about £4 by B4. etc. As we saw in chapter three, the map /1

defined by / g:0 -*e °^c n • • • e s s is called the forward kinematic map for [£]

associated with £. It would be nice to be able to define a unique forward kinematic map.

however there does not seem to be a natural way to do this. The following proposition

demonstrates the relationship between forward kinematic maps associated with different

represenutives of the same manipulator.

Proposition 5.1.4 If £ — { then 3 $ € T5 such that

/ £B0 B5) =/ f(( ±0o+0o) ( ±B4+4>4).( ±05))*~*s{s ' ' ' *~*°*0
(5.1.7)

for some choice of signs in the RHS of (5.1.7).

Proof: Since £ — £ 3 $ € T5 such that

£i= ± (e*0*0 e*lil ••• e0i-ltl-l)ii(eeoioeeiil ••• ee'-t*«-i)-i. Thus.

f£B0. •-•.05) =e°^ •• e°si*
=e ±e°*0exp( ±eie(*°*o)$1e(-*°{(>)) -•• exp( ±Bs(eMo •••e*<*<){5(e*°*° •••e^4)"1)
=e *e°L°[e+oioe ±e^e-+<*°] . . . exp( ±Bs(eMo •• •e^XsU**0 "' ' •*4l4)~l)
=,( *#.+«.,< ±«,+*i«, . . . e(*•#*,-**< . . . c-*oto =rhs of i5mlJ)m

(5.1.8)
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Thus, / | = Rg / £>h where h is an automorphism of T6 and Rg is a right translation by

some g € G. It follows that / g(T6) = Rg f j(T6). (i.e.. a translated version of / g(T6)).

If we define volume in G such that it is invariant under translations by group elements,

then we can associate a unique volume to each manipulator. Let <a be the unique transla

tion invariant volume form on SO (3) [6] such that J (a = Sir2. This normalization gives
SO(3)

the units of orientation-volume in radians cubed. Define a volume element on R3 by

dx A dy A dz as usual. Then we construct the volume form

O 4 dx A dy A dz A a* on R3XS0(3). From [7] page 399 we have that

dx A dy A dz induces a measure u1 (Lebesgue measure) on R3 and <a induces a meas

ure fi2 on SO(3). The volume form ft induces a measure on R3 X SO (3) which is simply

the product measure /ttj X fi2. This observation will simplify our calculation of volumes

in R3 XSO (3) since we only calculate volumes of rectangles of the form A xSO (3),

A C R3. We make the identification of G with R3 X SO (3) and note that CI is a transla

tion invariant volume form on G .

Definition 5.1.5 The work-volume, VM. of a manipulator. M = [£], is given by

VM & f CI (5.1.9)
/f(T«)

Comment: The translation invariance of ft in 5.1.9 guarantees that VM is independent of

the choice of representative £.

Proposition 5.1.5 For any manipulator. M,

Proof: Let c € Cj with length lM. Then 11/ g(0)c5-co II < lM VB € T6 since we

can construct a curve from c0 to / g(B)c5 of length lM VB as was done in Proposition
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5.1.2. Thus.

f£B)c5-c0 € B(0.lM) (5.1.10)

Thus c5 is always "tethered" to c0 by a curve of length lM. (The other ct are also "teth

ered" together by shorter curves).

=>/g(T6) C{gig2\gi € Gis a translation by (5.1.11)
v € B(cQ-c5.lM) and g2€Gc$) =v B(0Xm)xSO(3)

Thus.

vm <4iK/m)3*8ij2 (5112)
•

Definition 5.1.6 M has maximal work-volume (MWV) if VM = -1 w(Z^ )3 •8W2.

LetC| be the set of critical points [7] of / i.

Definition 5.1.7 The manipulator [£] has well-connected-workspace if

f j£B) = f g(T6)\/ |(C|) V connected components. 5. of T^XC|. (Since / | and /^ are

related, for £ —{. by compositions with diffeomorphisms this property is well-defined for

a manipulator).

•

Comment: A manipulator having the well-connected-workspace property has the ability

(modulo obstacles and mechanical constraints) to move its gripper from one regular value

[7] to another without passing through a critical value (singularity). This is a "nice" pro

perty of manipulators since it guarantees that the manipulator need not change

configurations (e.g. from elbow up to elbow down ) in order to move from one regular

value of its forward kinematic map to another

Proposition 5.1.6 Let A/bea manipulator. Then VM = V^..

Proof: Let £ be a represenutive of M then
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/|(T6) =ueo10--Vs5sie € T6}
-((•"•^••••••^•rMr e t6}

= {(eerfs-ce°^)-1ie € T6}

= I/g.(T6) (5.1.13)

where I is the inversion map in the group G . I is volume preserving for translation invari

ant volume elements => VM = Vm» •

•

Corollary M has MWV <=> M* has MWV.

Using the fact that I is a diffeomorphism we can show.

Proposition 5.1.7 M has well-connected-workspace <=> M* has a well-connected-

workspace.

•

Comment: Proposition 5.1.6, its corollary, and Proposition 5.1.7 tell us that the notion of

a dual is a fundamental symmetry in the analysis of manipulators. We will use this sym

metry to simplify our proof of Theorem 5.2.1. When we exploit this symmetry we say

"by duality ...".

We will see shortly that elbow manipulators are very special 6R manipulators. We

first give a formal definition of an elbow manipulator.

Definition 5.1.8 M is an elbow manipulator if it has a represenUtive £ with the fol

lowing properties (see Fig. 5.2):

3a line segment c0cs with (i) £0 n£2 = c0. (ii) £0 ±.£i> ("0 £i _L CqC5. (iv) £i\\£2 M

£2 is a perpendicular bisector of CoC5. (vi) £3 C\£4 C\£5=> c5 , (vii) £3 J_ £4 and (viii)

& _L fc-

(We use c0cs anticipating a linking curve with endpoints c0 and c5.)
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to fc
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Figure. 5.2 RepresenUtive of an Elbow Manipulator

Proposition 5.1.8 Let M be an elbow manipulator and c0c5 be as in the definition of

the elbow manipulator. Then lM = \\c5—c0\\.

Proof: Let £ be a represenUtive of M which satisfies Definition 5.1.8. Since the last three

axes of £ intersect consecutively orthogonally at c5 we can point joint axis 5 arbitrarily.

Thus we can route £5 about £4 and then about £3 to a new position £'s with £'5ll£i. Then

Cqc 5 is a mutual perpendicular of £i and £'s. There is no curve shorter than llc5—c0ll con

necting £i and £'$ and therefore lM ^ llc5—c0H. Now it is easy to construct a linking

curve ct with C[05j = CqC5 and whose length is llc5—c0ll. Therefore lM = llc5—c0l

This concludes the mathematical setup. In the next section a basic theorem is proved

relating the ideas of this section.

5.2 Optimality Theorem

It is generally accepted that "elbow" manipulators have large work-volumes. This is

made precise and an interesting converse is proved in the following theorem.

Theorem 5.2.1 A 6R manipulator. M. has well-connected-workspace and maximal

work-volume if and only if M or M* is an elbow manipulator.
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Proof: ( <=) By duality, it is sufficient to prove this implication for M an elbow mani

pulator. Let £ be a represenUtive of an elbow manipulator satisfying the properties in the

definition and the additional (nonrestrictive) properties £3 = £$ and

Zq(c5—cq) = He 5—c0 II where z0 is a unit vector parallel to £q. (These added conditions

allow us to write down a closed form inverse kinematic solution for /1.) We prove the

well-connectedness and maximal work-volume of M by examining the solution to the

kinematic equation:

,eo*o„ <ei-°2/ 2K, Orf, Ms.*4l<„°sfc = R * (5.2.1)

where R € G is a desired rigid motion. Let zt be a unit vector parallel to £t. i € {0 5}.

Also. c5 and c0 are as in Definition 5.1.8. and lM = He5—c0ll is the length of the manipu

lator. A straightforward application of the solution procedures of the subproblems of sec

tion 2.4. to 5.2.1 yields that B is a solution to (5.2.1) if and only if 0 satisfies (5.2.2-

5.2.5):

B?= ± -1
cos

2IUte5-c0ll2
- 1

(5#F

«i A Rc5 - c0

Bi= ± ATAN2
•y/\\Ui\\2-(zlui)2

ZoUl

±zfyl
B0 = ATAN2

±(Z0 X Zi)rUi

(The upper and lower signs are matched in (5.2.3a) and (5.2.3b).)

R, 4 [e»Ae««i-*2/ 2>V^]-*1?

(5.2.2)

(5.2.3a)

(5.2.3b)

Note that we make a minor change in joint coordinates (B |—•O1—B 2I 2) in joint coordinates. This is
for convenience and has no effect on work-volume or the well-connected-workspace property.



"2 * Rxz

B4= ± ATAN2
Jl-(zT3u2)2

—T—z'3u2

T z\u-
Bs = ATAN

±(z3Xz4)Tu2

R2 4 [e9*e9*1rlXi. u3 4 R2z4

(The upper and lower signs are matched in (5.2.4a) and (5.2.4b)).

(zsXz4)Tu3
B* = ATAN

Tz'4u3
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(5.2.4a)

(5.2.4b)

(5.2.5)

Note that all quantities under the radical in (5.2.3-5.2.4) are nonnegative and that the

domain of the ATAN 2 function is the entire plane. (The numerator and denominator are

2 distinct arguments of the ATAN 2 function. When they are both zero the function is set

valued and the Bt may take any value in [0, 2ir ]). The only restrictions we have on R

are given by (5.2.2). That is. there is a solution for R if and only if

, , IWiCtr-Cq\\2R € {g€GI( * s ° -1)6 [-1.1])

= {g €Glllgc5-c0ll < lM)

= v B(OJM)XSO(3)

(5.2.6)

. 4Thus the work-volume of the elbow manipulator is -=- iK*m )3 • 8172 and is therefore max

imal.

The singular configurations of the elbow manipulator are those where the elbow is

fully extended or retracted, joints 3 and 5 are coincident, or the intersection of the last

three joints lies on joint axis zero. A calculation of the Jacobian determinant of / j (see [8]

for this type of calculation) yields that the set of critical points for / | in (5.2.1) is
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C|= {0 10! 6{0.tt} or 02€ {O.irjor 04 € {O.ir}} (5.2.7)

It is easy to see that T6\ C| has 8 connected components. We must verify that

/ iB >= / ^K f |(Cg) (5.2.8)

for all connected components. B. of T*\C|. Let R € / |(T6)\ / g(C|). then when we

apply the solution procedure (5.2.2-5.2.5) with such an R there must be no choice of signs

in (5.2.2-5.2.5) such that Bt € {O.ir}. i € {1.2.4} (otherwise R is a critical value). Thus,

whenever we choose a solution branch for 01( 02. and B4 (5.2.2. 5.3.3a and 5.3.4a) there is

a choice of 0,- € (O.ir) or 0 -t € (—ir.O). i € {1,2.4}. It follows that we can find a solution

in each connected component ofT^XCi =>(5.3.8) holds.

(=>) Let M =[{] and c' £ C% with length lM and define /' 4 max He Me

6 6 T*

•••eestsc's-c'0\\. If l' <lM then VM < 1 iK/'̂ Sir2 <1 n{lMy&n2 and M does

not have MWV. Thus 30 such that He®0*0 • ••efl5*scs-c0ll = lM • Let I be a represenU

tive corresponding to this configuration. As was done in Proposition 5.1.2 we can con

struct c € C| from c' such that c has length lM . c0 =c0'. and c5 =ee°*° •••e°^sc5'.

Thus. 3c. a linking curve for £ with length lM = llc5—c0ll. So C[0(5] = c0c5, a line seg

ment. Since c is a linking curve, all ft intersect CqC5 and the Cj are ordered on c0c5.

(Figure 5.3a shows a representative consistent with our knowledge of M at this point in

the proof.) Let / |: T6 -• G be the forward kinematic map for M associated with £. Now

/ |(T6) is compact => x € / g(T6)c has a neighborhood of nonzero volume. Thus MWV

= >

/ |(T6) ={gig2lgi € G isa translation by v € B(c0-c5JM).g2€GCs)
(see proof of prop. 5.1.5).

Thus / |(r6) contains
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O ° l& iS 21 g 1 is a translation by

v € [lMS2 + (cQ-cs)).g2 € Gc$} =^S2xSO(3) (5.2.9)

and O is a 5-manifold.

Next, define

min = min{i Ift n c0 = 0} (5.2.10)

max = max{i Ift Oc5 = 0}

By definition of a linking curve min >0. and max <5. Also, max ^ min; otherwise

there would only be one link with nonzero length and MWV would not hold. From

(5.2.9). we have that

\\eeoS°-e9*iscs-CQ\\ =lM V6€ffl(0) . (5.2.11)

Since c0Oft 5*0 V* <minandc5nft 5*0 Vi > max, (5.2.11) becomes

„c0».n£min . . . c*m.*£m«C5 _ c^ =̂ y Q € / f1 (O) (5.2.12)

=> ||(ce»^»in . . . ee^»"c5-cmin) +(cmin-c0)ll =*M

V0 € ffl(0) (5.2.13)

Since f H-^-c, IW* =llc5-Coll we have fll-y-c, IIA =llc6-ca II. V a Jb € [0.5]. Let a =
0 *" a "'

min, b= 5. then by a tethering argument similar to the first part of the proof of Proposi

tion 5.1.5.

He•-«•*•»». -V—G—cs-Cntoll < llc5-cminll VBtffHO) (5.2.14)

Since Hcmin--coll + llc5—cminll = lM. the two terms in the norm in (5.2.13) have the same

direction and the first term attains the bound in (5.2.14):
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emin£min . . . 0«n«x£m«c . = Cmin C<> ||c . II
e c c5 cmin ir- —7T UC 5 Cminll

l,cmin~"c0»

= C5-Cnun (5.2.15)

= >

c®minute. . .ce»^m« € GCj. V0 € / f*(O) . (5.2.16)
A similar argument with cmax (duality) yields

(c*mln£»in. . .g*n,«&nax)-l g GC() V0 € f f1 (O) . (5.2.17)

Let 7) be a zero-pitch unit twist whose axis is coincident with cqcs, then since g"1 € G0

=>* € G0.

{e*»*&*... c•.»£»« 19- € /|-i(o)} CG^nGe^U^I^S1} (5.2.18)

Now

O=/ (/ -*«>)) ={eeoio •••e05l5l0 € / ~l(0)}
C {ee°£°- • . eemln-lfm.n-le*i,c®m,x+l^m«+l . . .gMsjfl.^ €$1} (5.2.19)

The conuinment in (5.2.19) follows from (5.2.18). Since O is a 5-manifold. the order of

{0o....,0min-i.^.0max +1 0s) must be 5 (see A4). (Intuitively, we need 5 degrees of free

dom to sweep out a 5-manifold.) Thus, max-min < 1. (Fig. 5.3b represents approxi

mately our knowledge of M at this point in the proof — at most two of the ft do not

intersect c0 or c5). Suppose max-min =1and that [e6^^e&m^m^x (gf €/ |-i (o)} is a

finite set. Then from (5.2.18) we have that 3a finite set {fa. • • • .fa } such that

|€^*A*/«A™,y € f -i (0)J =(c«t,,0 €{^ ^ }j

(5.2.20)

and

O C f|{e°o£o •••ee,aiB^n»ta-1c**e0««+^"«+» . . . eB**s\B- €S1}
*=i
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Figure 5.3 The Steps in the Proof of Theorem 5.2.1.
Since the union is finite and each set in the union is compact it follows (Baire Category

Theorem [Roy. l]) that one of the sets in the union has nonempty interior in O. Now O is

a 5-manifold so the order of {00 0min-i.0max+i 0sJ must be 5 by (A4). but the order
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is at most 4 when max-min = 1. Thus we must have that

|c*mjn£mincem.*e£™.x, q € j -l (0 )j is infinite wnen max _ min » 1# This and (5.2.16) =>

ceminfminc m*x£m«xc ^=c5has «, soiutions. This, in turn, implies (see section 2.4 problem

2) that ft™* flc5 ?S0 or ftnin flc5 5*0. The definition of max =>^max ric5 = 0. By

duality ftnin Q c0=0 also. This is a contradiction so max —min= 1 is impossible and

max = min. Thus, there is exactly one twist. ft^. which intersects neither c0 nor c$.

Next, we show that ftnjn is a perpendicular bisector of C0C5.

M has maximal work-volume => The map / :0 -» He ° ° • • • e s sc5—cQ\\ is onto

[0iM ]. Since ^min is the only axis not intersecting c5 or c0 / (0) = He m,n mlnc5—c0\\ and

by A3 we have that

ftnin 1S a perpendicular bisector of cqc 5 (5.2.21)

So we have that (v) of definition 5.1.8 is satisfied if min = 2. (We will see this shortly.)

(Figure 5.3c is a represenUtive consistent with our knowledge of M at this point in the

proof. The drawings are isometric.)

Next, we claim that MWV => d:0 -»e°0*0 • - •eem,n"|fm,n"1cmin-c0 is onto

Ncmin~"CoMS2- Suppose not. then since d (T6) C llcmin—c0\\S2 3 a unit vector u such that

uTd(B) <llcmin-coIIV0 € T6

=> uT(f -fB)cs —cq) < He5—c0II V0 € T6 which is a contradiction to MWV since

/ g(T6) closed (compact). Thus the claim is true.

Now d is a smooth function onto a 2-manifold so d is a function of 2 or more of the

Bi by (A4). Thus, min ^ 2. By duality, min = max < (5—2)=3. Thus, there are 2

axes intersecting one end of Cqc5 and 3 the other. In other words M or M* has min = 2.

Since we are only trying to prove M or M* is an elbow manipulator there is no loss in

generality by assuming M has the property min = 2. It follows from Al of the Appendix

and the fact that d is onto \\cmin—c0\\S2 that
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ft) _L ft and ft _L c0cs (5.2.22)

At this point, (O.(ii).(iii), and (v) of Definition 5.1.8 are satisfied. Next we show that

fell**

Recall that z0 is the unit vector parallel to ft. Then since M has MWV. 30 € T6

- Im -such that / |(0)c5 =c0 +(-j-^o (this point lies in B(c0Xm )). Let ft be arepresenUtive

corresponding to this configuration, and c' € Cj. be the linking curvederived from c (see

the proof of Proposition 5.1.2 ). Figure 5.4 shows the configuration of the manipulator

represented by £'. Note that c '0. c '2. c '5 are not collinear and consider the plane conuin-

ing them. Since

Figure 5.4 Showing that ft II ft

ft0. and c 'qc '2 are in the plane we have by (5.2.22) that £\. is perpendicular to the plane.

Now c *0c *2 and c *2c '5 are in the plane => £'2 is perpendicular to the plane by (5.2.21) and

so £'2\\£\ => ft "ft and (iv) is satisfied. (Figure 5.3d represents approximately the infor-

Angles between successive joints, and between joints and adjacent links are independent of choice of
representative when the linking curves are related as in the proof of Proposition 5.1.2.
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mation we have at this point in the proof.)

Since min = max = 2. the last three twist axes intersect at c5 satisfying (vi) of the

definition of the elbow manipulator. To show that these axes are consecutively orthogonal

( (vii) and (viii) of Definition 5.1.8). we write

/ j(0 ) =h (0o.0 i.B2)w (03.04.B5) (5.2.23)

where/i (0o.01.02) ^ e0<>V»V^2 and w(B3,B4.B5) & ee3V4Vs& .

Since the wrist axes of M are intersecting the singularities of the manipulator decou

ple. That is,

<=>

or

More concisely,

0is a critical point of/ |

(0O.01.02) is a critical point of

h':(B0,Bi.B2) -+h(B0.Bi,B2)cs

(0 3.0 4.0 5) is acritical point of w :T3 -♦ Gc $. (5.2.24)

T6\C| = T3\CVXT3\C, (5.2.24b)

Since we know the relationship among ft.ft and ft ft 1S straight forward to verify

that h' has the property that each connected component./?], of T3\CA< satisfies

h'(Bi) = h '(T3)\/i '(CA) and T3\CV has 4 connected components. Also h' is 1-1 when

restricted to a connected component of T3\ Ch •.

Suppose that ft, ft, ft are not consecutively orthogonal. Then w is not onto Gc$ by

(A2). Then w (T3) is a compact, proper subset of Gc and w (T3)c is a nonempty open set

in Gc$. In addition, let 0 be a regular point of / | and let (B0i ,0 u ,B2i ),i € {1.2.3.4} be

the four solutions to the equation h'('.'.') = h'(B0.B i.B2). Since the critical values of w
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have measure zero in Gc$ (the measure on GCj is that induced by a translation invariant

volume form)

Dw 4 (j[h(BQ.Bi.B2)]-1h(Boi.Bii.B2i)w(Cw) (5.2.25)
i=l

has measure zero in Ge . Therefore w (T3)c\ Dw is nonempty and

BR1 € w(T3)c\Dw. (5.2.26)

It follows that h(B0,Bi,B2)R1 is a regular value of /g and by the choice of -ff1.

/|(0) 5»s/i(0o.0i.02)-*1- The manipulator has maximal work-volume so there exists

0' € T6such that

f£B,) = h(B0.Bi.B2)Rl . (5.2.27)

as Ji (0O.01.0 z)*1 € {g € G I Hgc5-c0ll </a/}. Also. by (5.2.26).

(0 o'.01'.02) 5* (0o.0 i.0 2). Now h' is 1-1 on connected components of T3\ CA => 0' and 0

are not in the same connected component of T^XCg = r3\Cyi- Xr3\C„ thereby contrad

icting the well-connected-workspace assumption. Thus

ft _L ft . and ft JL ft. (5.2.28)

In other words (vii) and (viii) are satisfied and we have that M or M* is an elbow mani

pulator.

•

Theorem 5.2.1 reinforces the generally accepted idea that elbow manipulators are

good kinematic designs and are optimal with respect to work-volume. It is somewhat

surprising that the elbow manipulators and their duals are the only designs that meet the

criteria of maximal workspace/well-connected workspace. This theorem should encourage

special consideration of elbow manipulators and their duals in the study of path planning

and collision detection problems.

Admittedly, the class of 6R manipulators is quite limited. The extension of the
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theorem to 6 dof manipulators with both R and P (prismatic) joints is feasible with an

extension of the definition of lM. The analog of the elbow manipulator when P joints are

allowed is the Stanford manipulator with zero shoulder oflfset. Also note that the

definitions of work-volume and length of a manipulator extend directly to redundant nR

manipulators. One can conclude from arguments in the proof of theorem 1 that nR redun

dant manipulators having maximal work-volume have their first two and last two joints

intersecting. As redundancy supposedly increases the "connectivity" of the workspace, it

will be interesting to see if there is a "very"-well-connectedness measure for redundant

manipulators.

5.A Appendix to Chapter Five

Collected here for convenience are several subproblems which appear in the proof of

Theorem 5.2.1.

Al) Let ft. ft. be zero-pitch unit twists. O J> € R3. O ^P. and ft Oft =0. If

(Bq.B 0 ->ee°ioedlilP is onto O + UP-O WS2 (The sphere of radius WP-O II centered at

O ) then

ft _L ft and ft J. OP . (5.A.1)

Proof: Let z 0 and z j be unit vectors parallel to ft and ft respectively. Now

/ (T2) = O + WP-O WS2 (5.A.2)

=> zl(f (T2)-0 ) = [-HP-O W.WP-O II] (5.A.3)

=>301.01' such that

e*iil(P-0 ) = WP-O llz0 (5.A.4)
e6xi\P-0) = -WP-OWz0
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=> e0iiKP-O ) = -e0iiKP-O ) (5.A.5)

Premultiplying both sides by z \

=>z\ (P-O) =-z\ (P-O) =>z\(P-0) = 0 (5.A.6)

Thus

ft _L OP (5.A.7)

Next from (5.A.4)

_ _*& (P-O) ft. A^
20 ~e TP=OW (5A8)

->z1z0-z1e lj_gfT-,1 ||/>_0|| -0 (5.A.9)

=>ftJ_ft> (5.A.10)

•

A2) Let O € R3 and ft. ft. ft bezero-pitch unit twists with ft Hft n ft = O. If

(0o.0!.02) ^"V'V2*2 is onto G0 (5.A.11)

then ft _L ft. ft _L ft

Proof: / onto G0 =>

V* € G0. 3 (0O.010 2) such that (5.A.12)

Let P ^O be a point on ft and let both sides of (5.A.12) act on P. Then (5.A.12)

implies

VR € G0 . 3(0l02) such that e0,Vl£,/> = RP

but G0P =0 + IIP-O IIS2 so the result follows from Al.



74

A3) Let £ be a zero-pitch unit twist and O .P € R3 with O ^P and £ HOP t*0. If

/ :0 -»WeBgP-0 II is onto [O.IIP-0 II] then £ is a perpendicular bisecter of OP.

Proof: LetQ € £ HOP. then

llee^-0 II =llee*(/>-GMO-G)H > \WP-Q ll-IIO-fi II | (5.A.13)

but We^P-O II = 0 for some <f> => WP-Q II = HO -Q II

=>£ HOP conuins the midpoint of OP . (5.A.14)

Now. let z be a unit vector parallel to £ then

zTe+*(P-Q) = zT(0-Q) (5.A.15)

=>zT(P-Q) = zr(0-Q) (5.A.16)

=>zT(P-O) = 0 (5.A.17)

This together with (5.A. 14) yields the result.

A4) Let M and N be m and n -manifolds respectively and let / :M -»JV be smooth.

If / (Af ) has non-empty interior then m ^ n .

Proof: Since the set of regular values of / is dense in N [Mil. 1.. pg. 11] there exists a

regular value y € interior of / (M). Thus, there exists x € M such that

Tf :TM -»TN is surjective => m ^ n .
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Chapter 6

Variable Structure Control of Robot Manipulators

In this chapter we propose a variable structure controller for robot manipulators.

This is an extension and application of the theory of variable structure systems (VSS) as

described in [1.2], and [3]. Previous applications of VSS ideas to manipulator control are

described by Young [4], Slotine and Sastry [5], and Morgan and Ozguner [6]. These

schemes decouple the manipulator dynamics by introducing one hyperplane of control

discontinuity for each joint of the manipulator via feedback control. In [4] a hierarchical

method (see [2]) is used to move the manipulator sute to the hyperplanes of control

discontinuity sequentially, whereas in [5] the manipulator sute moves to all the hyper

planes simultaneously. Our contribution is twofold: (1)A new analysis technique is

developed for variable structure systems by integrating Filippov's solution concept for

differential equations with discontinuous RHS and Clarke's generalized gradient. (2) We

use this technique to analyze sliding on the intersection of control discontinuities.

The qualitative properties of a VSS are shown in Figure 6.1. Figure 6.1(a) depicts a

phase diagram for a hypothetical VSS with control discontinuities at Sx and S2 . Trajec

tories for the flow in Figure 6.1(a) move to. and then slide along the switching surface Si.

This motion of the sute along the control discontinuity motivates the nomenclatures slid

ing mode and sliding surface. Although there is a control discontinuity across S2. no slid

ing mode exists there. Figure 6.1(b) represents a disturbance flow which is added to the

original flow of Figure 6.1(a). The robust nature of the sliding surface is demonstrated in

the resulting flow shown in Figure 6.1(c). The flows have changed somewhat but a sliding

mode still exists along Si. The primary reason that sliding modes are introduced into
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dynamical systems is this robustness to disturbances.

52

(a) (b)

(c)

Figure 6.1 Phase Portrait of an Hypothetical VSS.

The VSS control scheme proposed here for robot manipulators is a multivariable

design which produces a sliding mode on the intersection of several switching surfaces but

does not necessarily generate sliding modes on the switching surfaces independently. This

type of sliding mode is mentioned in [l] and is analyzed for the first time here. Figure 6.2

is a phase diagram of this type of VSS having a sliding mode at the origin. The techniques

used in this chapter to analyze this type of sliding mode are new. Essential to the analysis

is the use of Clarke's generalized gradient [7] and Filippov's solution concept for

differential equations with discontinuous right-hand side [8]. A simple relationship

between these two ideas is proved in Theorem 6.1.1 part (6). As is common in VSS.

saturating switching controls are used in our scheme. In addition to providing robust

tracking, there is a natural force limiting provided by these saturating controls which

allow the manipulator to "give" when a slight misalignment in an assembly operation



78

requires the manipulator to deviate from its nominal trajectory. We show that there is

bounded set of forces that the'manipulator can apply at its gripper without deviating from

the nominal trajectory. The size and shape of this set can be be varied by adjusting the

gains in the VSS controller. Thus, the apparent stiffness of the gripper can be varied mak

ing the manipulator suitable for compliant assembly.

Figure 6.2 Phase Portrait of a Multivariate VSS.

Existing compliance control formulations which are important for comparison are due

to Salisbury[9] and Raibert and Craig[lO]. Salisbury varies the servo stiffness of a linear

controller to control the stiffness of the manipulators gripper. Our approach is similar in

that we use the natural stiffness properties of the control scheme to control compliance at

the gripper. The resulting compliance forces of the two schemes is however quiu different.

In [10] Raibert and Craig switch various degrees of freedom of the gripper from position to

force control to allow compliant motion. The VSS control scheme presented here switches

implicitly to force control when the manipulator is perturbed from its nominal trajectory.

This is a result of our choice of discontinuous control.

It is important to point out that the direct application of discontinuous control in
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mechanical systems is almost always impractical since the effects of switching forces on

actuators and gear trains can be destructive. Thus, in real systems the control discon

tinuity is smoothed [5] so that the system trajectory moves to a neighborhood of the

approximate discontinuity. The study of the idealized discontinuous control scheme, how

ever, gives a clear picture of the salient properties of the system dynamics. Nonidealities

other than smoothed discontinuities such as small delays and hysteresis produce chattering

along sliding surfaces rather the ideal sliding described above. Descriptions of the ideal

behavior as a limit of these nonideal motions are contained in [8, 2] and [l] and provide

additional motivation for studying VSS.

The format of this chapter is as follows. Section 1 contains the non-standard

mathematical framework used in the analysis of the control scheme. Section 2 presents the

manipulator dynamics and formulates the tracking problem. The control scheme is

developed in section 3 and a design example is worked through in section 4. The effects of

a linear coordinate transformation of the joint coordinates is discussed in section 5. Com

pliance properties are analyzed in section 6 and section 7 contains a brief discussion.

6.1 Differential Equations with Discontinuous RHS and Nonsmooth Potential Func

tions.

Since we will be considering control laws which are discontinuous and potential

functions which are not differentiable everywhere, the associated (non-standard)

mathematical framework is developed in this section. We begin by defining a solution to

differential equations with discontinuous right-hand side. A solution concept for such

differential equations has been developed by Filippov and is used here. Other solution

concepts are discussed and compared with Filippov's in [ll].

Consider the vector differential equation

x = f (xX ) (6.1.1)

where / :Rn XR-»Rn satisfies the following condition [8].
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Condition B : / is defined almost everywhere and measurable in an open region

Q CRn+1. Further. V compact D CQ 3 integrable A (t) such that

11/Gc.Oll **A(t) a.e. inZ).

•

Definition 6.1.1 [Filippov] A vector function x() is called a solution of (6.1.1) on [t0^i]

if x (•) is absolutely continuous on [t0,tJ and for almost all t € [t0,t J

x SK[f](x) (6.1.2)

where

K[f](x) 4 fl PI cof(B(x,h)-Nx)
6>0 fiN =o

and (| denotes the intersection over all sets N of Lebesgue measure zero.
fiN =o

•

The time dependence of K[f ](x ) is dropped in definition 6.1.1 for economy - all results in

this chapter that pertain to K[] hold with time dependence since t can be viewed as a

parameter in the definition. Note that the definition of K[f ] makes sense for / :R/n -*Rn :

this is a minor generalization, but it is useful in theorem 6.1.1. We will assume

throughout that all functions are defined a.e. and Lebesgue measurable.

The definition of K in (6.1.2) is quite cumbersome to use in applications so that the

set of properties summarized in Theorem 6.1.1 is useful. Before proceeding with the

theorem we need to introduce Clarke's generalized gradient.

Definition 6.1.2: Let V:Rn ->R be locally Lipschitz continuous and define QV. the gen

eralized gradient of V. by

QV(x) 4 co{limW(*i) I Xi -*xjCi t fV \JN^
where $V is the set of Lebesgue measure zero where W does not exist and N is an arbi

trary set of zero measure.

•

Theorem 6.1.1. (Properties of K[f ]) The map K:{f I/ :Rm -»Rn } - {g \g:Rm -2R"}

has the following properties.
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(1) Assume that / :Rm -*Rn is locally bounded. Then 3Nf C Rm ,fiNf = 0 such that

V N C Rm. uN = 0

K[f](x) = co\limf(xi)\x, -*.*, £ JV, \JN } (6.1.3)

(2) Assume that / ,g:Rm -»Rn are locally bounded then

K[f +g](x) CK[f](x) + K[g](x) (6.1.4)

(3) Assume that f} :Rm -»R";. j € {1.2 N} are locally bounded, then

K[% fj](x) C ##[/;](*)♦ (6.1.5)
(4) Let / :Rm -*Rn beC1.rank Df(x) = n .and / :Rn -•R^ be locally bounded, then

K[fog](x) = K[f ](g(x)) (6.1.6)

(5) (equivalent control [2] ) Let g :Rm -»R'"1 (i.e. matrix valued) be C° and / :Rm -»R"

be locally bounded, then

^[g/ ]U) = g(x)i:[/. ](*) (6.1.7)

where gf (x ) 4 g(x)f (x) € R'.

(6) Let V:Rn -*R be locally Lipschitz continuous, then

KiW](x) = dV(x) (6.1.8)

(7) Let / :Rm -»Rn be continuous, then

K[f](x) = {f(x)) (6.1.9)

Proof: See Appendix 6.A.

•

The manipulator dynamics together with our proposed control law is best described

as a nonsmooth gradient system, i.e. a gradient system whose potential function is not

differentiable everywhere. The following definition and theorem provide the formalism

necessary to calculate ceruin time derivatives associated with nonsmooth gradient

Cartesian product notation and column vector notation are used interchangeably.
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systems.

Definition 6.1.3: V:Rm -♦R is called a max function if V(x)= max/;0c) where

f j :Rm -♦ R are C1 and Y is a finite index set.

•

Theorem 6.1.2.

Let V :Rm — R be a max function. If* :R -♦ Rm and V(x (t)) are differentiable at t. then

4-W(x(t))] =£Tx \/£ € evCc)
at

Proof: See Appendix 6.A.

•

6.2 Manipulator Dynamics and Problem Formulation.

The dynamics of an n-joint rigid-link manipulator may be described by the equation

M (B )B + C (9 .B) + G (& ) + D (B .B x) = F (6.2.1)

where

1 1. B is the n X 1 vector of joint coordinates M(B) is the n X n inertia matrix

C (B ,B ) is the n X 1 vector of Coriolis and centrifugal forces1 G (B ) is the n X 1

vector of gravitational forces D(B ,B X ) is the n X 1 vector of disturbances F is the n X

1 vector of generalized forces applied by the actuators at the joints of the manipula

tor.

and (6.2.1) has the following properties.

(PI) M(B) is symmetric and positive definite. M(). C(v), and G() are C1 functions of

the manipulator state [9,B]r. D(v.) is locally bounded.

i
"Forces" and "generalized forces" will be used interchangeably throughout.
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The positive definiteness of M(9) is an important property of the manipulator

dynamics as it is essential to the stability analysis of the proposed sliding mode control

scheme. This property is exploited in [4] and [5] to guarantee the invertibility of M(9 ).

Another important feature of the dynamics for earth-bound manipulators is the graviu-

tional force G (9 ) which is usually large. To accommodate this fact the joint forces will

include a compensation2 term for the gravitational forces. For the sake of generality we

allow for the compensation of other forces as well. We therefore write the joint forces

applied by the actuators in the form

F = C(9 .9) + 6(9) + D(9.9x) + u (6.2.2)

where the hatted terms are estimates of the corresponding unhatted objects and satisfy the

following assumption.

(Al) C,G . and D are locally bounded. (Note that no continuity assumption is made so

that discontinuous models of friction may be used in D.)

•

The vector u is the additional joint force beyond the compensation forces and will be

referred to as the control. The expression of the dynamics described by (6.2.1) and (6.2.2)

is simplified by defining the "disturbance" vector

D(9.9x) A G(9)-G(9) + C(9.9)-C(9,9) + D(9.9x)-D(9.9x). (6.2.3)

Using (6.2.1).(6.2.2). and (6.2.3) the manipulator dynamics become

M(9 )9 = u + D(9 .9 x ). (6.2.4)

Dropping the functional dependencies, the state equation form of (6.2.4) is

9 _
M'Ku + D) (6.2.5)

Let [9d.9dY be the desired state trajectory that we would like the manipulator to

follow. Further, let it satisfy

"Any or all of the compensation terms may be set to zero.
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(A2) [9d ,9d]T is C1 on [tO.oo).

Now define the tracking error by

e

e

A 9
9

—

9d

V

4 [B I]

and the control u by

(6.2.6)

In terms of (6.2.5) and (6.2.6) the tracking problem is the following:

Find a feedback control u such that for any given initial state [9,9 ](t0) = [90.9 0]r .

[e(t ).e(t)]r-+0 as t-*co.

Once u is chosen to achieve accurate tracking, the usefulness of the feedback control

scheme for compliant motion is considered. The restoring forces exerted by the manipula

tor when it is perturbed from a nominal trajectory determine the suitability of the control

scheme for tasks that require compliance. These forces are calculated in section 6.6.

63 The Control Scheme.

Choose B €RnXn such that oiB) C C£

Define the "switching" vector

u =-k(9.9.9d.9d.9d)W(s) 3

V(s) 4 \\s\\i= X.\st\.
i=l

(6.3.1)

(6.3.2)

(6.3.3)

where the gain k satisfies

(A3)*:R5n -RisC0.

Clearly, if s =0 then

e =-Be (6.3.4)

and it follows that [e e]r-»0 exponentially for arbitrary initial conditions. Our goal.

V^ is not defined ona set of Lebesgue measure zero. The analysis to follow takes this into account.
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then, is to choose k such that s becomes zero in finite time. To find such a k a Lyapunov

based design approach is used with the obvious choice of Lyapunov function. V(s ).

We begin by computing V and then choosing k such that V is bounded below zero

(i.e. V(t ) <-€ V t Zt0) whenever s 9*0.

This will guarantee that s -»0 in finite time. Lyapunov theory as developed say in [12]

holds for differential equations with continuous right hand side. However, the

nondifferentiability of V(s) and the discontinuous nature of the control pose some techni

cal problems. Using the results of section 2 we can compute an upper bound for V.

Theorem 6.3.1 Let the manipulator dynamics and control be described by (6.2.5) and

(6.3.1-6.3.3). Assume that PI. A2 and A3 are satisfied. If [9.9] is a solution to (6.2.5) on

[to.oo) in the sense of Fillipov then

(i) V(s (t )) is the Lebesgue integral of its derivative

(ii) 38 € K[D] such that

V *z-k £TM~l£ + £T(M~lh + Be - 9d ) a.e.

where £ = argmin {llrjll^-i IT) € $V(s) }.

Proof: From (6.2.5), (6.3.2) and the fact that [9,9] is a solution to (6.2.5) on [f0.oo) we

have the following a.e. in [tO.oo).

€K
9

-kM-xW(s) + M~lD

Now by Theorem 6.1.1. property (3)

K[9]
K[-kM~lW(s) + M~lD]

Next, by Properties (2),(5), and (7).

9
-kM~lK[W(s)] + M~lK[D]

(6.3.5)

(6.3.6)

(6.3.7)
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(6.2.6),(6.3.1).(6.3.7). and property (6) yield

s e-kM'1QV(s ) + Be + M^KiD] - 9d (6.3.8)

The absolute continuity of the solution [9.9Y on compact intervals , and the con

tinuous differentiability of [9d,9dY imply s is absolutely continuous on compact inter

vals. This, in turn, implies the absolute continuity of V on compact intervals. Thus. V

exists almost everywhere. V is the Lebesgue integral of its derivative and (i) holds.

From (6.3.3) we have

V(s ) = Zmax (-Si jt). (6.3.9)
i =1

Since the finite sum of max functions is a max function we have by Theorem 6.1.2, and

the absolute continuity of V and s that

V=fs a.e. (6.3.10)

V £€QV(s)

From (6.3.8) and (6.3.10)

V = -kfM-1!* + £T[M~l 8 + Be-Bd] a.e. (6.3.11)

V £eQV(s ) , some p€$V(s ) . and some 8 € K[D].

Choose

£ = argmin{\\7)\\M.l\T)€QV(s)} (6.3.12)

Then, from the convexity of the set $V(s ),

V^-k £TM~l£ + £T[M~l S + Be-Bd] a.e. (6.3.13)

Whence we have (ii).

•

Part (i) of Theorem 6.3.1 tells us that we can ignore the set of measure zero where V

does not exist and obtain an upper bound on V by integrating the bound on V in part (ii).

The following corollary uses this fact to determine k such that s -* 0 in finite time.

Corollary Let (6.2.5) satisfy the conditions of Theorem 6.3.1. and let [9,9]r be a solution

of (6.2.5) on [^o»°°)- If k satisfies
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k >crmaxM(€ + IIZ)I' + ILBell + 110 JI) (6.3.14)
o~minAf

with ILDM £ sup{ll8ll 18 € K[D]\ and e > 0. then 3T € R such that

5 =0 V * >T. (6.3.15)

Proof: From Theorem 6.3.1 we have

V *z-kU&Po-ninM-1 + \\£\\(o-mzxM-l\\D\\ + Il5eII + 110, II) a.e. (6.3.16)

The assumption (6.3.14) on k yields

V ^\\£[\-\\£\\2)(<rmzxM-l\\D\\ + Il5ell + 11011) - ll£ll2€ a.e. on [tO.oo) (6.3.17)

Since QV(0) = [—1.1]" . the unit cube in R" . we have by the convexity of the function V.

fiV(j)f|(-l,l)"=0Vi 5* 0 (see [7] proposition 2.2.9). Thus, by definition of £.

II £ II >1 V s 5* 0 and from (6.3.17) we have V <-€ V s 5*0 a.e. on[tO.oo). Thus.

since V ^0 and V =0 <=> s = 0 we have 5 = 0 V t ^T & t0 + V(t0)/ €.

In order to use the corollary we must show that a Filippov solution to (6.2.5) exists

on [t0,od). In Appendix 6.B it is proved, under the assumptions of the corollary and (A2).

that a solution exists. Thus, under these assumptions. 5 -»0 in finite time and by the

definition of s. [e ,eY ~*0 exponentially. These results justify the following design pro

cedure for a manipulator controller. The procedure generates a control law that solves the

tracking problem.

Design Procedure

Data:

Manipulator dynamics of the form (6.2.1) satisfying (PI) and a class of desired tra

jectories satisfying (A2).

Step 1:

AAA

Choose C ,G ,D satisfying (Al).

Step 2:
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Choose B £ RnXn such that oiB ) C C£.

Step 3:

Choose k satisfying (A3) and (6.3.14). (e.g. if IIZ>M is C° then Uking k equal to the

RHS of (6.3.14) is a satisfactory choice).

Step 4:

Chooseactuator forces according to (6.2.2) and (6.3.1-6.3.3).

Comment: In practice a large value of k may excite unmodeled dynamics (for instance,

flexure modes in the manipulator). Thus, in order to minimize the required gain the esti

mates in step 1 of the procedure should be as close to the true values as possible. These

can be determined from the nominal joint inertias and measured values of joint friction.

Bounds on the errors of the estimates can be obuined from knowledge of the errors in the

link inertias and measurement errors. Also, if the eigenvalues of B are large, the gain k

may be large due to (6.3.14): this should be considered in step 2.

Note that the only information necessary to design a controller satisfying (6.3.14) is

bounds on &miaM. cm9XM. and WDW. Thus, variation of M and D within these bounds

will not affect the tracking performance of the controller. This robustness to parameter

variations and disturbances is common in VSS controllers.

6.4 Design Example

Consider the two-degrees-of-freedom manipulator shown in Figure 6.3. Each link

has unit mass concentrated at its endpoint. unit length, and the acceleration of gravity is

taken to be one. Each joint actuator has unit inertia also. Given these parameters the

dynamics are [13]

4 + 2cos(02) 1 +cos(02)

l + cos(02) 2
0i
*2

2 0102sin(02)+ 0fsin(02)
20102sin(02) + 0fsin(02)

sin(0,) + sin(0j + 02)
sin(0! + 02)

^i
F2

(6.4.1)
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Figure 6.3 Two Degree-of-Freedom Manipulator.

Equation (6.4.1) satisfies (PI) and has the form of (6.2.1) where the disturbance

term is equal to zero. The only contribution to D will be from the error in estimating

C (0 .0 ) and G (0 ) . A sundard practice, which will be followed here, is to estimate G (0)

and to approximate the Coriolis and centrifugal terms by zero. With the simplifying

assumption that the estimate of the gravitational forces is exact it follows that

D =C(0.0) =
20102sin(02) + 022sin(02)
20102sin(02) + 012sin(02)

(6.4.2)

and (Al) is satisfied. To simplify the form of the gain k the following bound for D will

be used.

ILDII <2(0! + 02)2.

We begin by choosing the matrix B diagonal:

(6.4.3)

B =
1 0

0 1

<Wtf <7

<Wtf >1-

(6.4.4)

Next, for concreteness. set 6 = 1, and from (6.4.1). and a simple calculation, it follows

that

(6.4.5)
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Now verify that

k = 7(1 + 2(0! + 02)2 + 110 - 0,11 + 110,11) (6.4.6)

satisfies (A3) and (6.3.14). Putting together (6.2.2).(6.3.1-6.3.3).(6.4.4). and (6.4.6)

yields

F = -g (9 ) + u (6.4.7)

sin(0!) + sin(0j + 02)
sin(0! + 02)

-(7 + 14(0! + 02)2 + 7110 - 0,11 + 7110,11)

where 0, is any trajectory satisfying (A2). The choice of joint forces in (6.4.8) will move

the switching vector s to zero in finite time. Thus, by our choice of B, the tracking error

tends to zero exponentially.

There are many possible variations in deriving a gain that satisfies (6.3.14): in prac

tice all bounds used should be made as tight as possible without violating constraints on

computation time for the joint forces. The next section discusses a method for reducing the

required gain k by scaling.

6.5 Linear Coordinate Transformation.

In the design example of the last section the link masses and lengths were the same

so that cmiXM I oVnjnA/ was not excessively large for any configuration. However, this is

not the case for most manipulators as their link masses and lengths vary widely. From

equation (6.3.14) it is clear that a large value of (TmaJdl armiaM will cause the gain k to

be large. Also, equation (6.3.2) suggests that all joint forces are approximately the same

modulo the gravity compensation. This is not appropriate for a manipulator with differing

link sizes. The natural modification to the "normalized" control (6.3.2) is a scaling. This is

accomplished by making a linear transformation of the joint coordinates.

Choose nonsingular A €RnXn and define transformed coordinates and forces by

q & A~l9 (6.5.1)

and

*gn(0</i-0i +0*i-0i)J648)
sgn(9d2 —92 + 9d2 —92)
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/ £ ATF (6.5.2)
Multiplying equation (6.2.1) on the left by AT yields

m(q)q + c(q 4) + g(q) + d(q .qx) = f (6.5.3)

where

m(q) = ATM(Aq)A

c(q^) = ATC(AqAq)

g(q) = ArG(Aq)

d(q.qx) = ArD(AqAqX)

This equation in the transformed variable q has the same form as (6.2.1) and satisfies

(PI). The design approach, therefore, works on these transformed dynamics as well. The

advantage of allowing this transformation is that we may choose A to minimize

°maxm/ °~minm' fit the joint forces to match the actuators more closely, or achieve some

compromise between the two.

The force transformation (6.5.2). and equation (6.3.2) suggest that a good choice for

A might be a diagonal matrix with A,-, equal to the inverse of the i th actuator force rat

ing. A nonlinear transformation may be desirable to achieve a particular dynamic behavior

[14] but the discussion here will consider linear transformations only.

6.6 Compliance.

In assembly operations requiring compliance, the forces that are generated when the

manipulator moves one workpiece into contact with another must be controlled. For exam

ple, consider the peg insertion task depicted in Figure 6.4: in order to execute this task

with the proposed VSS control scheme a nominal trajectory must be specified for the mani

pulator to follow. The manipulator follows this trajectory until some misalignment of

the peg or hole causes the manipulator to deviate from the nominal trajectory. If the

resulting forces do not cause binding or excessive friction, the manipulator will follow a

path close to the nominal path and complete the usk.

We use the approach of [9] and describe the compliance of the control scheme by the
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Figure 6.4 Peg-in-Hole Task

restoring forces 1 generated by the control when the manipulator is forced from the nomi

nal trajectory. To study the performance of the proposed control scheme in compliant

motion it is assumed that the motion is quasi —static. That is. all time derivatives of the

manipulator state and the desired trajectory are approximated by zero. This approxima

tion is reasonable for most assembly operations requiring programmed compliance [15].

With this assumption the force exerted by the manipulator on its environment is cal

culated. Let Fc be the force that the manipulator exerts at its gripper in some set of

workspace oriented coordinates. This force is translated into joint forces by the usual

Jacobian transformation [13] and is equal to JT(9)FC where 7(0) is the Jacobian of the

workspace oriented coordinates with respect to the joint coordinates. With this added

force, which is not accounted for in the design procedure, equation (6.2.1) becomes

(6.6.1)M(0)0 + C(0.0) + G(0) + D(9.0 x)=F +JT(9)FC.

Making the linear transformation described in the last section yields

m(q)q + c(q 4) + g(q) + d(q jq x) = / + ArJT(A'lq )FC

Applying the design procedure to (6.6.2) with Fc ^>. we obtain

/ =c(qj) + g(q) + d(q4X) + u

where

(6.6.2)

(6.6.3)
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u =-kVV(s)

V(s) = WsWi

k ^crmaxm(€ + JUL + \\Be\\ + ||0,||), (6.6.4)
0"min/n

5 = B(qd -q) + (qd - q)

where qd is the desired trajectory and d is defined in (6.2.3) with upper-case characters

replaced by lower-case. The dynamics are then

m(q)q = u + d(q jqX ) + ATJT (A~lq)FC . (6.6.5)

Choosing B to be the identity matrix and applying the quasi-static assumption we have

* **<Wn(€ + -^-l (6.6.6)

s =(qd -q) (6.6.7)

Given the control specified by (6.6.3) - (6.6.7) the compliance question is: what force does

the manipulator apply at its gripper when the manipulator is perturbed slightly to qc *k[d

? Using the quasi-static assumption again we set q = 0 in equation (6.6.5) and from the

Filippov definition of solution of section 6.1, it follows that

[ATJr]Fc 6 -K[u + d). (6.6.8)

Equation (6.6.8) defines the compliance of the control scheme. We restrict our atten

tion now to manipulators with six degrees-of-freedom. Let 0O be the approximate

configuration of the manipulator for an assembly task and assume 7(0O) is nonsingular.

Choosing A = 7(0O)~1 for the transformation will simplify the compliance of the control

scheme since (6.6.8) becomes

Fc € [kdV(s)-K[d]]. (6.6.9)

Define

hq =qd -qc (6.6.10)

= A"H0, -0C)

= 7(0, -0C)

% Ax

where Ax represents a small change in the gripper coordinates by definition of the Jaco-



bian.

Then we have (approximately)

Fc € kQV(s)-K[d] = k

SGNAxi
SGNtoc2

SGN Ax6

Here the compliance behavior of the quasi-static manipulator is apparent. When q = qd

the manipulator can apply at its gripper any reaction force in [—k Jc ]6 modulo distur

bances and modeling errors. Once the manipulator is forced from the desired position the

control applies an approximately constant restoring force. The gain k is a stiffness param

eter which may be used to control the compliance behavior of the manipulator. Note that

equation (6.6.6) puts a lower bound on the stiffnessand that this bound is given primarily

by the magnitude of disturbances that must be rejected. In words, the stiffness of the

manipulator may be controlled but the manipulator can only be as compliant as modeling

errors, joint friction, and other disturbances allow.

Various choices of A and B will give different stiffness behavior to the manipulator.

For example, stiffnesses along different axes may be controlled independently by suitable

choice of these matrices.
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Kid] (6.6.11)

6.7 Discussion

We have shown by using a multivariable approach to VSS that an extremely simple

controller can be designed for robot manipulators. The control scheme developed provides

for robust tracking and for compliance control and the compliance behavior is such that

when the manipulator is forced from a nominal trajectory the control switches implicitly

to force control.

The techniques used for proving stability are new for VSS and should be useful for

the analysis of a wide variety of VSS described by nonsmooth gradient systems.

6.A Appendix A to Chapter 6



95

Proof of Theorem 6.1.1:

(l) To prove this property we first need two lemmas.

Lemma (6.1.1)

Let {Em } be a sequence of compact subsets of Rn such that Em +1 C Em. Then

f]coEm = co f]Em. (6.A.1)

Proof: This is a simple application of Caratheodory's theorem for convex sets [16].

•

Lemma (6.1.2)

Let / be defined almost everywhere and measurable on a set E. fiE ^ 0. Then

3 Nf of measure zerosuch that

H co f(E -N) = co f(E -Nf ). (6.A.2)
fiN = 0

Proof: See [8].

•

Henceforth, N subscripted with a function will be interpreted in terms of this lemma.

Proceeding with the proof of the property.

K[f](x)= 0 fl cof(B(x,8)-N) (6.A.3)
5 >0 (iN = 0

= fl fl cof(B(x,l/m)-N) (6.A.4)
m € N ftN =0

Now, from lemma (6.1.2) we have

Define

then

K[f](x) = fl cof(B(x.\/m)-Nf/n) (6.A.5)
m € N

Nf = U Nf„ (6.A.6)

K[f](x) = H cof(B(x.l/m)-Nf) (6.A.7)
m € N

since Nf ^ can be enlarged by a set of measure zero in (6.A.2).
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Now / is locally bounded =>

K[f(x)]= fl co f(B(x.l/m)-Nf). (6.A.8)

= f] co{ lim f (x,) \XiSB(x.l/ m) - Nf] (6.A.9)
/n€ N

By lemma 6.1.1

K[f(x)] = co f][limf(xi) \Xi 65(x.l/m) - Nf } (6.A.10)
m€ N

= co {lim/(x,) I x.—x.x, g ty} (6.A.11)

Finally, by noting that Nf can be enlarged by any set of measure zero in (6.A.2) the

result follows.

(2) By property (1)

K[f +g](x) =co{lim(/ + g)(xi)\xi->x.xi t Nf +g \jNf \jNg }(6.A.12)

Since / and g are locally bounded, for each sequence x, -»x such that the limit in

(6.A.12) exists, 3 a subsequence (we do not reindex) x, -»x such that lim/(xj) and

lim g(xi) exist and lim / (x,) + limg(x;) = lim( / + g )(x,) Thus.

K[f + g ](x ) = co{ lim/ (x,) + limg(xi) Ix, -»x. x> I Nf +g {JNf \jNg }
Cco{limg(xi)lxi -x.x, £ Nfn\jNf \jNg }

+co[ lim/ (x,) Ix, -x . x, £ Nf +g \jNf \jNg }
= K[f](x) + K[g](x). (6.A.13)

(3)

Define

g(x) &% fj(x) (6.A.14)
then by property (1)

K[ # fj](x) =co{lim # fj(xt) Ix,—x.x,,t (jNf\\NA
j =i j =i j=i '' w fi

Ceo X{lim/;(x,) IXi -x.x,, £ Oty IJaU
j =i yZi J* w *

= XcollimMxi) Ix,- ->x.x, i (\Nf .\JN.)y =1 ^ ' ; w «
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= %K[fj](x) (6.A.15)

(4)

We begin the proof of this property with a lemma.

Lemma (6.3.1)

Let / :Rm+n -R" be C1 and x £ Rm+n besuch that rank (Df (x )) = n. Then 3 neighbor

hoods U of x and W of / (x ). such that V M CRm+n ,N CR" . with fiM = fiN = 0. we

have

fji{[f(ur\Mc))cr\w)=o

Mir _i( w n^c )r n^ i=o (6.A.16)
Proof: rank (Df (x)) = n => we can choose (without loss of generality) a partition

(x1(x2) of Rm+n with Xi€Rm.x2€Rn so that D2f (xxjc2) is nonsingular. By the implicit

function theorem. 3 a C1 function g:RmxR" -»Rn> and neighborhoods £/i containing xx

U2 containing x2. and W containing / (xi.x2) such that

f (xi.g(xi.w)) = w V xi eUi.w € W. (6.A.17)

and * defined by <Kx1.w) = U1,g(x1.w)) is a C1 diffeomorphism of (/^W onto

U&UiXU2. By continuity of <D it follows (see [17] pg. 551) that ^\utxw maps null

(zero-measure) sets to null sets and similarly for 4>_11 v. It is therefore sufficient to prove

the result for / o$\ulXw which is simply a projection. This is straight forward and is left

to the reader.

•

Now the proof of the property: By lemma (6.3.1). 3 neighborhoods U of x and W of

/ (x) such that [g~x(W f]Nf)Y f)U and [g(U H^/og)]0 f)w are null sets. Next, by

property (1), and the fact that K[f ](x ) depends on / only near x we obuin

K[f og](x) = co L[f og](x) (6.A.18)

where

L[f og ](x ) 4 {lim fog (Xi) Ix, -»x .x, €U f^, fl*"1* WfW)>



98

and

K[f ](g(x)) = coL[f ](g(x)) (6.A.19)

where

L[f ](g(x)) = {lim/ (yi)\yi^g(x).yi£W f]g(U fl^/og)^/}
For every z €£[/ og](x). 3c,—x such that x^U f^Nfogflg'KW f]Nf) . and

f(g(xt))^z.

Now. let y-t =g(x,). then y, €g (6/ Hn/»g )Dw H^/ and vi ""*£ (* ) since i 1S continu

ous. Now f (yt)-*z =>

L[fog](x) CL[f](g(x)). (6.A.20)

For the reverse inclusion, let z €Z,[/]g(x) then 3y,-»g(x) such that

y* € w f)i(u r\Nfog)f)Nf and / (y,)-»z. By the rank condition on Dg(x), g is

locally surjective (see [17] page 108) so 3 a subsequence of {y,} (we do not index) such

that y, ewf)g(U fl^/og f|*(* .2"'» HtyC- Thus.

3x, ->x ^ €U f\Nfog f\g~l(W f]Nf) such that yk =g (xt )and/ (g (x, ))->z
=>r €Z,[/og](x)

Thus we have L[f og](x) = L[f ](g(x)) and the result follows by taking the con

vex hull of both sides.

(5)

By proposition 1. we obtain

K[gf ](x ) =co { lim g(x;)/ (x, ) I x, - x . x, 6 Ngf \jNf } (6.A.21)
Since g is continuous in its argument and / is locally bounded

K[gf ](x) = co{g(x )lim/(x,) I y, ^x.x t Ngf \jNf }.
= g(x)K[f ](x). (6.A.22)

since co commutes with linear maps.

(6) Since V is locally Lipschitz, W is defined almost everywhere and is locally bounded.
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Therefore by (1) we have

iT[W]U) = co{limW(xl)lx, -x.x, I N^\

= 6V(x) (6.A.23)

(7)

This is a corollary of (4) obtained by taking / to be the identity map.

Proof of Theorem 6.1.2: First, we have by definition

V(x (t )) = max / , (x (t)) (6.A.24)
j € y J

Computing left and right derivatives we obuin

4-[v Oc (t ))] exists <=> max VfKx )x(t)= min VfJ(x )x (t ) (6.A.25)
dt j € Y*(x) j € Y*(x)

where Y! (x ) = {j I/j (x ) = V(x )}

Thus, the existence of V =>

-^[V(x (t ))] =Vfj(x )x (t) Vj €r (x ) (6.A.26)

^-[V (x (t ))] =[ £ h V/ /(* )] x(t )
at j € }*(*)
V {X;} such that £ \j = 1 (6.A.27)

-^-[V(x(r))] =|7"x(r) V| €co{^T;l; €y'(x)} (6.A.28)
andcoJV/yU € y*(x)} =QV(x).

63 Appendix B to Chapter 6

Here we prove the existence and continuation of a Filippov solution to (6.2.5).

Theorem 6.A.1 Let u be defined by (6.3.1-6.3.3) and (6.3.14). If A1.A2.A3, and PI are

satisfied, then, for any initial condition [0.0]r(*o) = [0O'0oF. (6.2.5) has a solution con-

tinuable on [t o.oo).
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Proof: Let Q = R2n XR and let D be an arbitrary compact set in Q. By A1.A2.A3. and

PI we have that 9 .M~l,D . and k are bounded on D. Also. W is defined a&. and

bounded. Thus. RHS of (6.2.5) is bounded by. say. L on D. Choose A (t) = L which is

integrable on D. The RHS of (6.2.5) is measurable and defined a.e. in Q. Thus, the RHS of

3.5 satisfies condition B. Now by theorem 4 of [8] we have the local existence of a solution

to (6.2.5).

By theorem 5 of [8] any solution of (6.2.5) is continuable on [t0Xi) where 11 = ooor

ll[0,0]rll -»oo. By (6.3.15) we have for any solution of (6.2.5) that s is bounded =>•

[e,eY is bounded by (6.3.1) => [0.0f is bounded on bounded sets by Al. Therefore,

there exists a solution continuable on [fO.oo) (see[l8]. for a discussion of uniqueness).

•
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Chapter Seven

Conclusion

This thesis has dealt with two subfields in robotics: kinematics and control of robot

manipulators. Following a tutorial development of manipulator kinematics using twists

and their exponentials (chapters 1-4) an optimal design theorem for 6R manipulators was

proved using this noUtion. To address the problem of control for robot manipulators, we

developed nonsmooth analysis techniques which made the design of a robust variable

structure control scheme a simple exercise.

The tutorial on manipulator kinematics relied on the expression of rigid motions as

exponentials of twists. When writing the kinematic equations for manipulators we were

able to avoid attaching a coordinate system to each link of the manipulator in contrast to

the sundard Hartenburg-Denavit approach. The only information needed to write down

the forward kinematic map is the positions of the joint axes in the nominal zero position.

In addition, the exponential notation makes differentiation and the determination of criti

cal points in the forward kinematic map easy. We claim that the proof of the optimal

design theorem is (even more) gruesome in the sundard noUtion.

Future development of this geometric approach to kinematics may include the fol

lowing. (1) A truly geometric development of twists sUrting with physical 3-space

modeled as a manifold. This would avoid the expression of twists in coordinates which

tends to confuse one's intuition. (2) A simplification of manipulator dynamics. Just as the

exponential notation simplifies differentiation and the determination of critical points, we

expect that the exponential noUtion will give a clear picture of manipulator dynamics.

These twists and their exponentials are not a cure all. They allow us to represent simple
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ideas simply: difficult problems remain. We do not . for example, expect that twists will

help find solutions to general kinematic equations of 6R manipulators. For these, the

kinematic equation must be reduced to a set of polynomial equations which will most

likely be solved numerically.

The optimality theorem of chapter five answers some fundamental questions on the

design of manipulators. It develops the relationships between significant design parameters,

and provides a clear statement and proof of a folk theorem that sutes that elbow manipu

lators are optimal. On top of this, the theorem is consistent with the design of the human

arm. The human arm is like the elbow manipulator in that one degree of freedom is at the

elbow (halfway between the shoulder and the wrist) and the remaining degrees of free

dom are concentrated at the ends (shoulder and wrist). Also, the definitions of length and

work-volume extend to other types of manipulators and set a framework for studying

these as well. We expect that this theorem will motivate the special consideration of

elbow manipulators and their duals in the study of path-planning, collision detection, and

dynamics. The special structure of elbow manipulators may simplify these problems and

lead to practical implementation of sophisticated control algorithms.

The calculus developed for analyzing variable structure systems in chapter six allows

us to view variable structure control as an extension of standard nonlinear control tech

niques. We replaced high gain feedback with discontinuous feedback and a smooth

Lyapunov function with a nonsmooth Lyapunov function. When applied to the robot

control problem, we were able to obtain subility results easily as in standard Lyapunov

analysis. We simply exchanged differential equations with differential inclusions and gra

dients with (set-valued) generalized gradients. Although we developed a simple controller

for robot manipulators the impact of this work on VSS controllers is likely to be felt more

in the area of VSS. We expect that this (sub-)sub-field will be viewed as an application of

nonsmooth analysis.

This thesis has treated only two problems in a field which is incredibly broad. There
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are many more open problems in robotics which also need careful attention.
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