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ABSTRACT

An electronic instrument for displaying -~any perspective of a 3-
dimensional surface S generated by 3 time-varying (not necessarily periodic)
signals is described. The surface S is a 3-dimensional Lissajous figure which is
need not be a closed curve as is typical of all strange extractors. This analog
(not digital) instrument is designed to rotate S along any axis (not just the
X,7,Z-axis) through any prescribed solid angles (0° - 360*) in the 3-
dimensional coordinate system in real time.

The instrument works as a preprocessor for a standard oscilloscope and is
built with components capable of displaying time-varying signals with a fre
quency spectrum from 0 to 20 K Hz.

To illustrate some immediate applications of this instrument, strange
attractors associated with both autonomous (Chua's circuit) and non-autonomous
(Series RL-diode circuit)circuits are presented in many different perspectives
and cross sections. In particular, numerous cross sections of these strange
attractors which have never been seen before can be easily displayed in any
desired perspective in real time. Such cross sections have proved to be most
revealing and invaluable in dissecting and uncovering the fine structures of
strange attractors.

tResearch partially supported by the office of Naval Research Contract N00014-76-C-0572 and the National
Science Foundation Grant ECS-8313278.

tt T. Sugawara is currently a visiting scholar at Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA 94720.
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1. Introduction.

This paper describes the design ofa small portable electronic instrument which when used

with astandard oscilloscope, allows us to display atwo-dimensional projection from any desired

direction of a 3-dimensional surface S evolving in time. The 3-dimensional surface S

represents the dynamic loci of 3 electrical signals *(/),y(0, and z(t) in the X-Y-Z space

over some observation time interval, and can be interpreted as the 3-dimensional generalization

of the well-known Lissajous figures[l].

At any instant of time t0,{x{t0),y{t0U{t0)) can be thought of as the position of aparti

cle, or aplanet, in our 3- dimensional space. As time evolves, this particle, or a planet, traces

out acontinuous trajectory. If the motion represented by <*<i).y<0.*<0) is periodic, as is the

case of a planet, this trajectory will eventually repeat itself. However, if the motion is not

periodic, as is the case in many practical applications, this trajectory never repeats itself and

over along period of time, would fill some volume in space whose overall envelope is a3-

dimensional surface S. This surface is usually extremely complicated with cross sections which

are "Fractals" [2] and to analyze its geometric structure would require adetailed analysis of

different perspectives and cross sections of Son the oscilloscope screen. It is necessary to take

perspectives and cross sections because the oscilloscope can display only 2-dimensional figures.

If we connect 2of the 3 signals to the horizontal and the vertical channels of the oscillo-

scope, we could obtain at most 3 possible projections onto the X-Y,Y-Zt or Z-X plane,

respectively. What we need in practice, however, is to be able to view the projection from any

direction. This is analogous to applying aparallel beam of light from any desired direction onto

the surface S and then observing its shadow on awhite screen behind S. Mathematically,
this operation is equivalent to rotating each of the 3coordinate axis through any desired angle
from 0 to 360 degrees and then taking its projection.

Another important operation needed in studying the geometric structure of S is to

pass aplane surface D at any desired position in space through S and look at the intersection

points between S and D. This set of intersection points is called across section of S with
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respect to D. In the case of strange attractors, such as the double scroll [3], such cross sections

are fractals.

One possible approach for implementing the above task is to sample the signals with a

high-speed A/D converter and then process the data mathematically by a digital computer

before outputting the transformed data into aD/A converter for final display on the oscillo

scope.

However, one major problem of this approach is that accurate and high-speed data acquisi

tion and processing currently require very expensive hardwares in addition to adedicated digital

computer. Even then, the displayed signal is no longer in real time. Another limitation of the

digital approach is that some of the detailed nature of signals may be lost in the course of data

acquisition unless the signals are properly scaled and the resolution of analog-to-digital con

verter is sufficiently high. An even more serious limitation of the digital approach becomes

obvious in the case ofcomplex (non-periodic) dynamics where the sequence ofdata to be taken

is extremely large and may easily exceed the available computer memory.

The instrument to be described in this paper is an analog design and therefore has none

of the above limitations. In particular, both rotation and cross-section operations are imple
mented in real time.

In Section 2, a brief description of the 3-dimensional rotation geometry is

given. Section 3 describes the basic design and block diagram of the 3-D rotation instru

ment. To illustrate the capability of this instrument, as well as an important application in the

study of chaos [41, strange attractors and cross sections associated with anon-autonomous cir

cuit consisting of aseries RL-diode circuit driven by aperiodic signal are given in section 4.

Similarly, the double scroll and its cross sections as measured from the autonomous Chua's cir

cuit [5] are displayed. To the best of our knowledge, many of the pictures given in section 4

and 5 have never been seen before and are therefore of independent interest to researchers in

chaotic dynamics.
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Finally, section 6 presents some possible modifications of the 3-D rotation instrument

as well as some concluding remarks. For readers interested in building this instrument, the

detailed circuit diagrams are given in the Appendix.

2. 3-Dimensional Rotation Geometry

In this section, a brief description of the pertinent 3-dimensional rotation geometry is

given along with the relation between the actual signal processing and the equivalent mathemat

ical operations.

Consider first the rotation of a 3-dimensional vector 5(0 = [x(t),y(t),z(t)]T as a func

tion of time. For convenience, we call the trajectory of 5(0 as a surface 5 because the

envelope of 5(0 eventually forms a 3-dimensional surface as time evolves. Strictly speaking,

5 is afractal [2] if 5(0 is associated with a strange attractor.

A. Rotation

Rotation of a vector 5(0 is simply an orthogonal transform of5(0, namely,

So(0 = Q S(t) (2.1)

where Q is an orthogonal 3-dimensional matrix and S0(t) is the rotated vector

t*.(0,y.<0.*(0]r.

The orthogonal matrix Q implemented in our design is defined by its decomposition with

respect to the X,Y,and Z axis; namely,

where

g«*.(es)J?,(e,)*,(4K),

**(e,) =

Ry(%) =

1 0 0

0 cos(9x) sin(0x)

0 -sin(6x) cos(0x)

cos(8y) 0 sin(9y)
0 1 0

-sin^) 0 cos(e,)

(2.2)



and

*,(e.) =

cos(9s) sin(9x) 0

-sin(0,) cos(9,) 0

0 0 1

The transformation Q is equivalent to a rotation of the coordinates with respect to the

origin. Figure 1shows the geometrical transformation of this operation: Consider the rectangu

lar "brick" B in the input coordinate X-Y-Z space as shown in Fig. 1(a). By applying the

rotation operation /?X(0X), the output coordinates rotate around the X0-axis by 9X in acounter

clockwise direction. This is equivalent to rotating the brick B by Bs in a clockwise direction in

the output coordinates as shown in Fig. 1(b). Applying the operation Ry(Qy) to the 9,-rotated

brick in Fig. 1(b) is equivalent to further rotating the coordinate along the 1%-axis by 9

degree(clockwise) and hence the brick actually rotate in a counterclockwise direction as shown

in Fig. 1(c). Finally, applying /?f(9f) to the 9y-rotated brick gives the 9,-rotated (clockwise

direction) brick as shown in Fig. 1 (d).

B. Equation of Plane in R 3

Consider next a plane in the 3-dimensional space which is defined as a vector field

D{x,yyz) such that

Z> = {D(xty,z) \D UT=r], (2.3)
where U is a3-dimensional row vector such that U UT= 1and r is ascalar constant. Here, the

vector U indicates the normal direction of the plane D and r is the distance of D from the ori

gin.

C. Perpendicular Projection

The perpendicular projection of a 3-dimensional surface 5 onto a plane D can be written

as

5, = 5 + (r - 5 UT) U. (2.4)
See the geometrical interpretation of this operation in Fig. 2(a). If U lies in oneof the coordi

nates, say Z, then this transform is equivalent to replacing the corresponding component of5 ,



z(0» by a constant r.

D. Upper and Lower Surface Relative to Plane D

We define the upper surface relative to a plane D defined in (2.3) by

5+= {5 \S(t)UT-r> 0}. (2.5)
We define the lower surface relative to plane D by

{5-s {5 \S(t)UT -r< 0). (2.6)

E. Cross Section of Surface 5 on D

The cross section of asurface 5 on aplane D is the set of intersection points such that

{5 \S(t)UT -r=0}. (2.7)
However, since 5(0 is a function of f, we define the forward cross section by

{5 |5(Otfr-r=0 am/ S(t)UT> 0}. (2.8)
In other words, the/onvara* cross section of5(0 on aplane /> is the set of intersection points

such that 5(0 crosses D from the lower surface to the upper surface for all t> 0. A backward

cross section is similarly defined ( See Fig. 2(b)).



3. Hardware Implementation

In this section, we discuss the key idea of our hardware implementation. Figure 3 shows

a simplified block diagram of the instrument. An input time-varying vector,

SiO) = [*i(0. Ji(Ot *i(01r» is scaled by three preamplifiers so that all three signals have the

same order of magnitudes. This is equivalent to applying adiagonal matrix operator

G =

to 5,(0-

& 0 0

0 *, 0

0 0 &
(3.1)

A. Implementing the Rotation Operation:

Three identical 2-dimensional rotators are used to perform the operations RX(QS), R (9 ),

and /?,(9X). Observe that the connections of the three 2-dimensional rotators in Fig. 3realizes

the orthogonal transformation Q in (2.2).

Hence, the output vector S0(t) = [x9, yot z0]T of the 3-dimensional rotator enclosed by

the dotted rectangle in Fig. 3 is the rotated vector of 5(0 = [*<0.y(0.*(01r. To view its

projection, we simply pick 2ofthe three signals. This operation is equivalent to choosing U to

be the unit vector [l,0,0]r, [0,l,0]r, or [0,0,1]7 and then applying the perpendicular projec

tion (2.4) to 5o(0. Since S0(t) can be rotated by any desired angle, the projection of 5(0

from any direction can be displayed on the oscilloscope screen.

B. Implementing the Cross Section Operation:

The three sample-and-hold (S&H) circuits and the comparator on the right hand side of

Fig. 3 are all that is needed for displaying any desired cross section on D. Again, without loss

of generality, we specify our plane D by choosing U in (2.3) to be the unit vector [1,0,0]T,

[0,l,0]r, or [0,0, l]7". Here, the plane Dcan be defined, with the help of aswitch 5/>, in terms

of either the input coordinates (X,7,Z), or the output (rotated) coordinates*X„ Y0, Z0)L
tThe switch SD in Fig. 3is drawn for the case J/= [0,0, l]7 for convenience. For increased flexibility and
operational convenience, a 6-position switch, (3 for input coordinates, and 3 for output coordinates) is
recommended.



Since U has only one nonzero element, the times when 5(0 intersects D can be easily and

accurately detected by comparing one of the signals, say Z (0, and a constant r. Since signals

are time-varying, their values at the intersection point should be held for a short period of time.

Three sampled-and-hold circuits are used for this purpose.

Most of the functional blocks in Fig. 3 are implemented by using off-the-shelf integrated

circuit modules [10-12]. Since the detailed circuit for the design depend on the choice of

integrated circuit modules, it is given in the Appendix. Readers interested in duplicating our

instrument are therefore referred to the Appendix for more details.

C. Detailed Rotation Circuits:

The heart of any rotation circuit for implementing the transformation (2.2) is a multiplier.

Although the signals to be rotated are generally changing rapidly in time, the rotation angle is

either a constant, or changing continuously but slowly if we want the surfaces to be rotated con

tinuously through all angles. Hence, it is possible to build a multiplier by operational amplifiers

and potentiometers where the position of the potentiometers represent each element value of

matrix M. If we adjust the potentiometers so that the matrix M becomes orthogonal, then M

implements a rotation. This simple design, however, is inaccurate and cumbersome in practice

because the adjustments are tedious and error prone.

In our design, we use a multiplying digital-to-analog converter (MDAC) as the basic mul

tiplier. MDAC is a resistor array with electronically controllable switches (for example, MOS

transistors). Hence, it can be used either as a multiplier, or as a variable-gain amplifier when

incorporated with a summing operational amplifier. Eight- to twelve-bit MDACs[10,12] are

now widely available.

Figure 4 shows detailed circuit diagram of this scalar multiplier using an MDAC[12].

Here, an eight-bit R-2R ladder network generates a set of binary-weighted currents. Digitally

controlled switches, 5-1 to 5-8, are used to switch these currents between the ground and the

operational amplifier input which is at virtual ground. Since these currents are proportional to



the input voltage Vit the output voltage is given by

. . . a. .

28

where Dm = lor 0.

»'. =-<^f+^f+ •••+-rf)V| (3.2)

Hence, the gain between the input and the output varies from -r^r to -251. This means
256 256

that the multiplier constant can be adjusted to any value between 0.0 to 1.0, and accurate to

within the discretization error.

Figure 5 is the circuit diagram for a 2-dimensional matrix multiplier consisting of four

scalar multipliers ml, m2, m3, and m4. The two operational amplifiers are connected as adders

to implement the summing operation required in the matrix multiplication. The relation

between the inputs and the outputs of this circuit is

=

rll r12

r2i T22 (3.3)

where rti can assume one of 512 discrete values between -1.0 to 1.0.

Conversion from arotation angle 9 to the multiplication constants rtj can be implemented

by either using a micro computer or other digital circuit techniques. In our design, a Read

only Memory(ROM) is used to map 9 into ri} (See appendix for detailed discussion). This

approach is both simple and efficient because it is equivalent to looking up a trigonometric

function table electronically.

The mode of the sample-and-hold circuits is controlled by acomparator which detects the

time tk such that one of signals, say Z0(tk)t is equal to the reference voltage r. By holding the

value of the signals at the time tky we can observe the intersection point on the oscilloscope

screen. If the signals are sufficiently fast, the intersections, although occurring at different

times, will appear to the eye as a set of points on the cross section of 5 on D.

The comparator output can also be used to control the beam intensity of the oscilloscope

so that some part of the trajectory is blanked out from the screen. Figure 6 is an example of

such aselective display. Here, X{t),Y(O, and Z(0 are sample waveforms. If the comparator
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is used to compare Z(0 and the constant r, its output C(t) will be as shown in Fig. 6. By

applying C(r) or inverted C(0 to the intensity input of an oscilloscope, only the upper or the

lower surface of 5 relative to D in (2.3) will bedisplayed.

Figure 7 shows an example of a cross section display. If the sample-and-hold circuits are

controlled by C(0, their output waveforms, Xk(t),Yk(t), and Zk(t) corresponding to the

reference value r in Fig. 6 will appear as shown by the solid curves on Fig. 7(a), where the dot

ted curve denotes the original waveform. In this case, the values of X0(t)t Y0{t), and Z0(t)

are held whenever Z0{t) crosses the constant value r from the upper side. Hence, if the signals

during the holding periods are displayed on the screen, we would obtain a Backward cross sec

tion on D. In Fig. 7(b), the signals are held whenever Z0(t) crosses the constant value r from

the lower side. The corresponding signals will display the forward cross section with respect to

D.

The other circuit functions that are not shown in the block diagram in Fig. 3 include a

controlling circuit for rotation angles, areference plane generator, and asignal-reference plane

multiplexer block. These blocks are included for the user's convenience.
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4. Displaying Strange Attractors of a Nonautonomous Circuit

In this section, strange attractors of a second-order nonautonomous circuit will be

displayed using our 3-D rotation instrument. They represent snaps shots when the strange

attractor 5 - which is being viewed when 5 is rotated continuously and periodically through all

angles - is frozen momentarily at different selected angles of rotation.

Series R-L-diode Circuit

Consider the series RL-diode circuit [7-8] shown in Fig. 8(a). This circuit is similar to

the one used by several other researchers except that our inductor value and the type of diode

are chosen so that the strange attractor is scaled down in frequency to about 10 KHz. A 20Q

resistor is included for sensing the current ID through the device.

As we increase the excitation frequency, we observed first a period doubling, followed

period quadrupling etc., and finally a first chaotic band ( See Fig. 14(a)). Further increase in

the excitation frequency gives rise to *period 3 periodic window. This is followed by another

period-doubling process which leads to asecond chaotic band,etc, as shown in Fig. 14(a).

Aconventional method to characterize the periodic orbit or strange attractor in such asys

tem is to sample the waveforms at the input frequency for different phase angles of the input

signal. Such across section is called aPoincare map. Our instrument can be used not only to

display these conventional Poincare maps, but also to look at Poincare maps at different per

spectives. To do this, we simply choose the excitation signal as our third variable although it is

not astate variable. Since the excitation signal is aperiodic function of time, this third axis can

be interpreted as periodically-folded map of time. Figure 8(b) shows our coordinate system for

the nonautonomous case. This simple set up provides us with an extremely flexible and power

ful tool for analyzing the fine geometrical structure of strange attractors that was not possible
before.

Since we now have a3-dimensional space VDJDl and VSt instead of just VD and ID in

the conventional case, we can define a cutting plane in any desired position in the 3-
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dimensional space. One advantage of this approach is that by observing the 3-dimensional sur

face 5 from only a few appropriate directions, the local structure of 5 can usually be deter

mined without taking discrete Poincare maps at many phases of the input signal. In the special

case when our cutting plane is chosen to be orthogonal to the excitation axis, then the cross

section becomes the conventional Poincare map. In other words, our instrument is much more

versatile than just taking Poincare maps.

The following features of our instrument are used in displaying the strange attractors in

this paper:

1) Prescaling : Before applying any rotation, we always scale the input signals

5,(0 = [*i(0.yi(0»*.(0]T so that the input signals of the rotator

5(0 = [*(0.y(0»*(0]r have almost the same magnitudes.

2) Projection : Our instrument allows us to choose X0-Yof Y0-Z0% or Z0-X0 planes as the

projection plane. Hence, for each rotation operation prescribed by (9x,9,,9f), three

orthogonal projections can be taken easily.

3) Cross Section : Our instrument allows us to choose either the output (i.e..rotated) X0-Y0

plane, or the input (i.e.,unrotated) X-Y plane as our cutting plane D. Moreover, either

forward or backward cross section relative to D can be displayed with equal ease.

4) Reference plane : As a frame of reference to remind us of the relative position of the pro

jection plane and the input (unrotated) X-Y plane, - henceforth called the reference

plane —, which need not coincide with the cutting plane D, this reference plane can be

displayed simultaneously with the projected surface 5 or the cross section. The first qua

drant of this reference plane will always appear (when requested) as a uniform grid of

points on the oscilloscope screen.

A. Projecting Periodic Attractors:

The periodic waveforms IdU)*VdU), and Vs(t) (at a fixed input frequency) are displayed

in Fig. 9(a) along with the signal C(t) from the comparator. Note that the period of VD(t) is 3
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times that of Vs(t). The projection of the surface 5 generated by ID,VDt and Vs onto the

VD-ID plane is shown in Fig. 9(b). Note the "barely visible" 3-loop Lissajous figure indicates a

period 3 relation between VD and ID. Here, the output signal is at the input of the sample-

and-hold circuits and hence C(0 is irrelevant. In figure 10, we apply the rotation operation

(0, = -50.6* ,0, = -18.3* , and 9, = 166.0° ) and then take projections. Figure 10(a) shows

the position of the rotated VD-ID plane. The cutting plane D in this case is a plane parallel to

the reference plane but passing through the IVaxis at Vs = r. By comparing the waveform of

Vs(t) and the threshold r, we can display either the projection of the upper or lower surface,

respectively.

Figure 10(b) shows the projection of the rotated Surface 5 onto the X0-Y0 plane (the

oscilloscope screen), along with the position of the rotated reference plane. Note the period-3

nature ofVD(t) is much clearer than that ofFig. 9(b). This demonstrates the power ofrotation

provided by this instrument: with an appropriate choice of rotation angles (9„9,, 9f), the pro

jection reveals much more details of the attractor that were otherwise hidden(as in Fig. 9(b))
prior to rotation.

In addition to the projection shown in Fig. 10(b), where the comparator signal C(0 is

irrelevant, Fig. 10(c) and (d) show the projection of the upper and lower surface achieved by

blanking out the other portion with the help of the blanking signal C(/). Note that if we

superimpose Fig. 10(d) on Fig. 10(c), we would recover complete projection in Fig. 10(b), as
expected.

As asecond application of the comparator signal C(0, we use it to display the backward

and forward cross sections of the above period-3 attractor relative to the cutting plane D

through Vs =r, as depicted in Fig. 11(a). The signal ID(t),VD(t) and Vs(t) at the output of

the sample-and-hold circuits are shown in Fig. 11(b) along with C(t). As expected, the back

ward and forward cross section shown in Fig. 11(c) and (d) consist of3 isolated points indicat

ing VdO) is period 3 relative to Vs(t).
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B. Projecting Chaotic Attractors:

Figures 12(a), (b), and (c) show the projection ofthe rotated chaotic attractor (in the first

chaotic band in Fig. 14(a)) on the three orthogonal planes (X0-YotY0-Z0, and Z0-X0 planes)

where the input signal Vs is a triangler waveform. Some part of this strange attractor is not

clearly displayed because its probability ofbeing visited by the chaotic signal is small relative to

the other part of the attractor. However, by taking appropriate cross section views, this "expo

sure" problem will be overcome. The relative position ofthe rotated VD-ID plane correspond

ing to Fig. 12(a), (b), and (c) are depicted in Fig. 12(d).

Figure 13 shows the projection of several backward cross sections of the above strange

attractor relative to the cutting plane D passing through several different values of Vs = r, as

depicted in Fig. 13(a). Note that while the dotted reference plane in Figs. 13(b)-(f) has been

rotated, our cutting plane D is always perpendicular to the vertical axis Vs.

Observe that the cross section in Fig. 13(f) reveals the presence of two "legs" (magnified

in Fig. 14(b)) which was not observable from the cross sections (b),(c), and (d). This 2-leg

attractor corresponds to that observed from the first chaotic band reported in [8].

Another cross section measured with the input frequency chosen to lie within the second

chaotic band in Fig. 14(a) is shown in Fig. 14(c). This 3-leg attractor corresponds to a similar

attractor reported in [8].

The above example clearly demonstrates the importance of choosing different cross sec

tions, which in our instrument corresponds to tuning asingle knob to set the dc reference sig

nal r.
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5. Displaying Strange Attractors of an Autonomous Circuit

The chaotic behavior of Chua's circuit (Fig. 15) has been reported in [3,5,6]. From hun

dreds of hours of computer simulation the chaotic attractor was found to have cross sections

consisting of two tightly wound spirals. The unique geometric structure inspires the name dou

ble scroll. No one, however, has seen the double scroll cross section experimentally. One of

our objectives in this section is to confirm the double scroll structure using our 3-D rotation

instrument.

The waveforms of the three state variables, -7L, VC\ and VC2 are shown in Fig. 16,

where the horizontal scale is 1 msec / div. Note that all variables oscillate at an approximate

rate of 10KHz and that the waveforms appear to be chaotic.

A. Projection Views of the Double Scroll Attractor

Figures 17(a),(b) and (c) show the "unrotated" projection of the double scroll onto the

(-4) - Vcu (-IL) - VC2, and the Vcl - VC2 planes .respectively. Figure 18(a),(b), and (c)

show the projections ofthe rotated upper surface relative to aZ =0 plane (the reference plane

in this case coincides with the Z =0 plane) onto the X0-Y0JC0-Zet and Z0-Y0 planes,

respectively. The relative position of the reference plane is depicted in Fig. 18(d). The "upper

surface" of the double scroll shown in Fig. 18 corresponds to the portion of the double scroll

above VC2=0. Note that the "dotted" reference plane is absent from Fig. 18(c) because it is

perpendicular to the paper and hence its projection consists of only points along with the 135°-

straight line through the origin.

B. Cross Section Views of the Double Scroll Attractor

A cutting plane D parallel to the (-/L) - VC2 plane and located at VCi = r is shown in

Fig. 19(a). Several cross sections of the double scroll on D for different values of r are shown

in Fig. 20.

Figure 19(b) shows the projection of the double scroll and its four forward cross sections

onto the (-/L) - VC\ plane. The four forward cross sections S1,S2,S3 and S4 appear as
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horizontal lines in Fig. 19(b) because the projection plane ((-/L)-VC1 plane) is orthogonal to

the VC\ = r planes.

Figures 20(a),(b),(c) and (d) give the projection of the forward cross sections SI, S2, S3,

and S4 onto the (-/L)-VC2 plane. In these pictures, a faint image of the projection of the

double scroll onto the (-/L)-VC2, plane is also displayed to show the relative location of these

cross sections and that of the double scroll Note the near-circular contour corresponds to the

projection of the lower "hole" of the double scroll attractor.

Backward cross sections of the double scroll can also be easily obtained. Both forward and

backward cross sections of the double scroll on 3different cutting planes(corresponding to SI,

S2, and S3) are shown in Fig. 21. These pictures agree completely with the recent rigorous

analysis ofthe geometric structure ofthe double scroll, where the lower line corresponds to the

"entrance gate" and the double spiral correspond to the "exit gate" [9].

The proceeding projections and cross sections were measured directly( i.e., without rota

tion) from the double scroll. Figure 22 shows the result obtained by rotating the double scroll

as depicted in Fig. 22(a) by an angle 0, =56.25" about the Vcl-axis as depicted in Fig. 22(a).

The projection of this rotated double scroll onto the X0- VCI plane is shown in Fig. 22(b) along

with the two forward cross sections SI and S2 on the cutting plane parallel to the X0-Y0 plane

and passing through VC1 =r (See Fig. 22(a)). This projection reveals that the upper and lower

Saturn-like subset of the double scroll are extremely thin and that they are parallel to each other

and perpendicular to the X0-VC1 plane. This conclusion had of course been reported in [3]

and proved in [9], but not before spending literally hundreds of hours on the computer. Using

our instrument, this important geometrical structure is revealed instantly.

The projection of the two forward cross sections SI and S2 of the rotated double scroll on

the cutting planes depicted in Fig. 22(a) are shown in Figs. 23(a) and (b), respectively. Note

that they are merely rotations by the same angle 9, of the corresponding cross sections in Figs.

20(a) and (b), respectively, as expected.
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Our final figure 24 shows the superposition of a projection and a cross section of the dou

ble scroll after it has been rotated by some angle 0,, 9,, and 9,. The cutting plane in this

figure coincides with the projection plane (X0-Y0 plane). By applying the blanking signal C(0

corresponding to r= 0, we obtain the projection onto the X0-Y0 plane of the upper double scroll

in Fig. 24(b), and of the lower double scroll in Fig. 24(c), respectively. As expected, if we join

the two halfs in Fig. 24(b) and (c) together, we would obtain the complete cross section in Fig.

24(a). These half cross sections are very useful in that they reveal the directions of the trajec

tories (out of the paper in Fig. 24(b) and into the paper in Fig. 24(c)) in different portions of

the cross section. Such information is invaluable in deriving the fine "local" structure of strange

attractors.
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6. Conclusion Remarks

This paper describes the design of areal-time preprocessor for the oscilloscope for rotating

a 3-dimensional Lissajous figures through any angle, either fixed at some discrete value, or

varying continuously in a periodic manner. Applications of this 3-D rotation instrument for

observing strange attractors are illustrated for both autonomous and non-autonomous circuits.

Many of the projections and cross sections of strange attractors have never been seen before

and reveal much new insights into the local structure of strange attractors. Many of these cross

sections confirmed observations which were obtained previously through hundreds ofhours of

brute force computer simulation.

Since the rotation operation is valid not only in 3-dimension, but in any dimension, our

basic design can be easily extended to any higher dimension. In particular, this extension is

applicable to the measurement of higher-dimensional dynamic systems and for monitoring

multiple-channel signals. Since the complexity of the geometric structure in strange attractor

grows very quickly as the dimension increases, brute-force computer simulation is no longer

practical. In such cases, higher-dimensional versions of this instrument would play an increas
ingly important if not indispensable role.

Our present instrument is built using only low-frequency inexpensive integrated circuit

modules. More careful circuit design and choice of components would result in asignificantly

increased operating frequency range and accuracy. Also, the controlling circuit may be replaced

by amicro computer or interfaced with the host controller for increased flexibility.

In addition, more flexible reference signals can be generated by using ROM and D/A con

verters. Our extensive applications ofthe instrument have shown that the reference signals are

not just for convenience, but often they play crucial roles in identifying what we are looking at

and their approximate scale. Hence, even though it is not essential, areference-signal genera

tor implementation in this instrument is highly recommended.

Also several comparators may be helpful in dividing the surface 5 into several regions

simultaneously. This feature would certainly increase the flexibUity of our measurement
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process.

Finally, we can not overemphasize the invaluable applications of our 3-D rotation instru

ment as a tool for analyzing the geometric structures of 3-dimensional Lissajous figure in gen

eral, and of strange attractors in particular.
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APPENDIX

This appendix provides the detailed circuit implementation of our instrument. Some of

the circuit diagrams may appear trivial to the electronics engineers, but are included neverthe

less for the novice.

A.1) Detailed block diagram ( Figure A-1): The block diagram in Fig. A-1 includes a reference

plane generator and a multiplexer for displaying signals and the reference plane alter

nately. The controlling circuits for the rotators are shown in the upper part of the

diagram.

A.2) Bus structure for rotators ( Figure A-2): To control the rotators, a bus structure is used.

The data bus A is shared by three rotation angle counters. Data from bus A is converted

into corresponding multiplying constants by a ROM. The data from bus B supplies the

multiplying constants. To control different parts of the instrument, address and control

ling signals are provided to all blocks. Because of our choice of a bus structure, exten

sions to higher-dimensional rotators can be easily done without changing the interface.

Bus control signals

wr : write-enable when wr is false

mO : Rotator element address(LSB)

ml : Rotator element address(MSB)

m2 : Rotator address(LSB)

m3 : Rotator address(MSB)

bus A :rotation angles ( 9 - D -2—)
lZo

bus B :multiplying constants ( r - -^- - 1.0 )

A.3) Bus timing chart (Figure A-3): Each counter outputs its data into bus A according to its

address determined by m2 and m3. The data on bus A is converted into four multiplying

constants by a ROM where address signals, mO and ml are used to select the
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corresponding function table in the ROM. These data are placed on bus B so that the

multipliers can read their multiplying constants.

A.4) Controlling circuit and reference generator (Figure A-4): This circuit generates the address

signal, m0,ml,m2 and m4 and write-enable signal. It also provides a clock signal for the

angle counters. Two staircase signals, Xref and Yref, are available for displaying the

reference plane.

A.5) Rotation angle counter (Figure A-5): This is an example of a rotation-angle entry circuit.

This circuit may be replaced by an 8-bit switch if continuous rotation is not required.

A.6) Function ROM (Figure A-6 ): Address of the ROM is specified by DO to D7 in bus A and

mO and ml. Data of bus B is simply a data of the ROM memory. See actual data of

ROM in Table A-1.

ml mO meaning output data

0 0 rll cos(0)

0 1 rl2 sin(0)

1 0 r21 -sin(9)

1 1 r22 cos(9)

A.7) Detailed 2-dimensional multiplier circuit diagram (Figure A-7): This circuit is controlled by

a through bus similar to the common micro computer interface. Address decoder may

vary by application. All resistors shown in the circuit diagram should have at least 0.5 %

accuracy so that multiplication is accurate enough.

A.8) Sample-and-hold and comparator circuit (Figure A-8): Although this circuit is very simple,

consult the corresponding integrated-circuit reference to avoid unexpected effects.



-23-

FIGURE CAPTIONS

Fig. 1. Geometrical interpretation of the 3-dimensional rotation operation.

(a) Input coordinate view of rectangular "brick" B.

(b) Output coordinate view after applying rotation operation RX(QX) to (a).

(c) Output coordinate view after applying rotation operation Ryfiy) to (b).

(d) Output coordinate view after applying rotation operation Rg (9,) to (c).

Fig. 2. Geometrical interpretation of the perpendicular projection and cross section operation.

The plane D is defined by anormal direction vector U and the distance of the plane D

from the origin (denoted by r).

(a) Perpendicular projection of 5 onto plane D.

(b) The upper and the lower cross section of5 (6 solid dots in this example) relative to

the plane D.

Fig. 3. Simplified block diagram of the 3-D rotation instrument.

Fig. 4. A scalar multiplier circuit.

The gain of this circuit is determined by aset of digitally-controlled switches S-l to S-8.

Fig. 5. Simplified 2-dimensional matrix multiplier Circuit.

Modules ml, m2, m3 and m4 denote scalar multipliers.

Fig. 6. Sample signals iUustrating the display of the projeaion of the upper and the lower surface ofS

Here, X0(t), Y0(t), and Z0(t) are sample waveforms, C(t) is acomparator output signal

obtained by comparing Z9(t) with a dc signal of magnitude r, and U and L denote the
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time intervals corresponding to the the upper and lower surface, respectively.

Fig. 7. Sample signals illustrating the display of the cross section of 5

in both backward and forward directions.

Solid curves denote the output waveforms of the sample-and-hold circuits.

(a) Output waveform for displaying the backward cross section.

(b) Output waveform for displaying the forward cross section.

Fig. 8. A driven series R-L-diode circuit.

(a) Circuitry.

(b) Coordinates System including the excitation signal Vs.

Fig. 9. Waveforms and their unrotated projection associated with the R-L diode circuit.

Prescaling: X = VD, Y = 3,000(Q) ID, and Z = Vs.

(a) Waveforms associated with a period-three limit cycle. Horizontal scale:20 ji sec.

Vertical scale: 5 V/division.

(b) Projection on the VD-ID plane. The reference plane indicates 1V/division scale.

Fig. 10. Projection of (rotated) period-three limit cycle.

Prescaling: same as Fig. 9. Rotation : 9X = -50.6°, By = -18.3°, and 9, = 166.0°.

(a) Location of the cutting plane D in this case is a VD-ID plane passing through Vs = r

(negative value).

(b) Projection of the whole surface onto the X0-Y0 plane.

(c) Projection of only the upper surface onto the X0-Y0 plane.
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(d) Projection of only the lower surface onto the X0-Y0 plane.

Fig. 11. Cross section of the period-three limit cycle.

Prescaling: same as Fig. 9. Rotation : same as Fig. 10.

(a) Location of the cutting plane D in this case is aVD-ID plane passing through Vs = r

(negative value).

(b) Waveforms of ID(t),VD(t) and Vs(t) at the output of the sample-and-hold circuits

in response to the comparator output signal C(t). Horizontal scale: 20 \i sec. Verti

cal scale: 5 V/division.

(c) Projection of the backward cross section onto the X0-Y0 plane.

(d) Projection of the forward cross section onto theX0-Y0 plane.

Fig. 12. Projection of the attractor located at the first chaotic band in Fig. 14.

Prescaling: same as Fig. 9. Rotation: same as Fig. 10. The input signal Vs is a 8.6 KHz

triangler waveform.

(a) Projection onto the X0-Y0 plane.

(b) Projection onto the Z9 -Y0. plane.

(c) Projection onto the Zo-X0 plane.

(d) Location of the input coordinates. The 3 squares starting from the top left position

in aclockwise direction corresponds to (a), (b) and (c), respectively.

Fig. 13. Cross section of the attractor at the first chaotic band in Fig. 14.

These pictures denote cross sections of the rotated attractor in Fig. 12(a).

(a) Location of the cutting plane D in this case is aVD-ID plane passing through Vs = r

for different negative values of r.
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(b), (c),(d),(e) and (f) show the backward cross sections at Vs =0V, -IV, -2V -2.5V and

-3V, respectively.

Fig. 14. Bifurcation tree and magnified backward cross sections.

(a) Qualitative sketch of the bifurcation tree diagram.

(b) Magnified version of Fig. 13(f) (cross section at the first chaotic band).

(c) Magnified backward cross section at the second chaotic band where the input fre

quency is 12.0 KHz.

Fig. 15. Chua's circuit.

(a) Circuitry.

(b) Constitutive relation of the nonlinear resistor.

Fig. 16. Waveforms associated with the double scroll attractor.

Prescaling: X = 2 Vcl,Y = -3,000(Q) IL> and Z = 10 VC2. Horizontal scale: 1

msec/division. Vertical scale: 5 V/division.

Fig. 17. Projections of the unrotated double scroll attractor.

Prescaling: same as Fig. 16. Horizontal scale: 2 V/division. Vertical scale: 2 V/division.

(a) Projection onto the (-//.)-VC\ plane.

(b) Projection onto the (-/j,)- VC2 plane.

(c) Projection onto the VC\-VC2 plane.

Fig. 18. Projection of double scroll attractor after rotation.

Prescaling: same as Fig.16. Rotation : 9, = -50.6°, By = -18.3°, and 9, = 166.0°. Hor

izontal scale: 2 V/division. Vertical scale: 2 V/ division.
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(a) Projection onto the X0-Y0 plane.

(b) Projection onto the X0 -Z0 plane.

(c) Projection onto the Zo-Y0 plane.

Fig. 19. Cross section of 3-dimensional strange attractor.

Prescaling: X=-3.000(G) IL, Y = 10 VC2, and Z =2 VC1. Horizontal scale: 2

V/division. Vertical scale: 2 V/division.

(a) Location of the cutting plane D in this case is a(-/L)-VC2 plane passing through
Vex = r.

(b) Multiple exposures showing the projection of the double scroll attractor and four

forward cross sections SI, S2, S3 and S4 onto the (-IL)-VC1 plane.

Fig. 20. Forward cross sections of the unrotated double scroll attractor.

Prescaling: same as Fig.19. Horizontal scale: 2V/division. Vertical scale: 2V/division,

(a), (b),(c) and (d) are projections of the forward cross sections SI, S2, S3 and S4 in

Fig. 19(b) onto the (-IL)-VC2 plane, respectively.

Fig. 21. The forward and the backward cross sections of the double scroll attractor.

Prescaling: same as Fig.19. Horizontal scale: 2V/division. Vertical scale: 2V/division.

(a), (b), and (d) are the forward and the backward cross sections at SI, S2 and S3 in Fig.
19(b), respectively.

Fig. 22. Projection of the double scroll attractor after arotation around the Vci-axis.

Prescaling: same as Fig.19. Rotation: 9, = 56.25°. Horizontal scale: 2 V/division. Verti

cal scale: 2 V/division.



-28-

(a) Rotation around the Vcl-axis and the location of the cutting plane D.

(b) Projection of the double scroll attractor and two forward cross sections SI and S2

onto the X9-Vcl plane (X0-Z0 plane).

Fig. 23. Forward cross section after arotation around the Vci-axis.

Prescaling: same as Fig.19. Rotation: 9, = 56.25° . Horizontal scale: 2 V/division. Verti

cal scale: 2 V/division.

(a) and (b) are projection of the forward cross sections SI and S2 onto the X0-Y0 plane,

respectively.

Fig. 24. Double exposure of the double scroll attractor and a cross section:

Prescaling: same as Fig. 19.

(a) Entire surface of the double scroll attractor along with one cross section after some

rotation

(b) The upper surface and a backward cross section.

(c) The lower surface and a forward cross section.
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Fig. A-1. Detailed block diagram of the 3-D rotation instrument.

Fig. A-2. Bus structure of the 3-D rotation instrument.

Fig. A-3. Bus Timing chart.

Fig. A-4. Angle data entry circuit.

Fig. A-5. Control circuit.

Fig. A-6. Function ROM circuit.

Fig. A-7. Two-dimensional rotator circuit.

Fig. A-8. Comparator and sample-and-hold circuit.
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Table A-1. Function ROM data.

The first columns are hexadecimal address of the ROM.



Brick B

Fig. 1



Fig. 1



Projection of S on D

(a)

Forward cross section
Upper Surface S+

^ ^ In
/ //

** fj> Plane D

Lower surface S"

(b)

Fig. 2

Backward cross section



N

C
O

2
-
D

R
o

ta
to

r
cT

<?
<

D

I a o 0
1

*
^

o



D7 D6 D5 ft DO
(MSB) (LSB)

Fig. 4



Fig. 5



Fig. 6



0
1

Z
h(

t)
Y

h(
t)

X
h(

t)

z
z

C
O

C
O

3
3

3

zh
(t

)

3 <
o

Y
h(

t)

3

X
h(

t)

C
O

C
O C
O

3



0

77T*

(a)

(b)

100X1
—vw-

R1

20fl
•AAAr-

R2

20mH

L

Fig. 8

+

dAv,



time

(a)

♦V,

(b)

Fig. 9



Plane D

(c)

(b) (d)

Fig. 10



(a)

(c)

yt)

V0(t)

Vs(t)

C(t)

Fig. 11

(d)



(a)

A <"

VD

(d)

Fig. 12

(b)

(c)



(b) (e)

(c)

Fig. 13



A

period
1

« >

period
2 "*

< >

(b)

first |
periodj chaotic | period-3

4 band | window
< +~r* •H >

Frequency

(a)

Fig. 14

period
6

se« ond

ch. 3tic

band

(c)



« ^y^c^v
'r

* >

Vcz/"-^ Cz Vci

0.05/J.F *—^ 8.2mH S,500/lF

• 'L

-Bp

(a)

iR -g (Vr)

m0--0.5

m|—0.8

0 Bp

(b)

Fig. 15

mo

Vr

Vr



time

Fig. 16



(a)

(b) (c)

Fig. 17



(a) (c)

(b) (d)

Fig. 18



(a)

(b)

Fig. 19

Cutting
plane D



(a) (c)

(b) (d)

Fig. 20



(a) (c)

(b)

Fig. 21



(a)

(b)

Fig. 22

Cutting
plane D

S1

S2



(a)

(b)

Fig. 23



(a)

(b)

(c)

Fig. 24



APPENDIX



Xi o PrsA«p.

tf o PreA<

ZiO

8% By Bx
Rrtc

TlMlMfrGBN

t

t:

l

I

"Xppk

c=&n_JA

cu

Fig. A-1

RCK JUfc

Ccmf.

X

CO

X

X
<*
to

I

H <*

S8

-K>Xi

•H^^oZu

I—Oln



»*
1

O
Q r r
o

2 O
B

C i
» O
B

C
O

N
T

R
O

L
L

E
R

T
C

O
U

N
TE

R
*

0
0

x

>

?
C

O
U

N
T

E
R

*
!

6
v

9 [
C

O
U

N
T

E
R

*
2

0
*

1
R

O
T

A
T

O
R

#
0

B
x

I
R

O
TA

TO
R

*1
> >

|
RO

TA
TO

R
*2

©
i

3
0

o z H 3
0

o 2 2 a*
.

r
-

W
5



_
l
_

l

LJr-l

a
)

B
:

«
4

*

U

<
fr

<<

u

X

_
J

C
D

^
o

Liff

e
nI

<
:0
0



PRESET

MO 1

o

0 H

II

S-0
^J 1 1 a aA

B _ QB

c Hoc

£
g

*-!

5-2

*-3

a
g-.

cz
en BP tyri

COUNT/STOP

Fig. A-4*

1AI

1A2 |Y1

1A3 1Y2

1A+ m

2A1 2 2tt
2A2 2Y5

2A5 2Y4

2A±_

ui
o

8
UI

-©Do

-OD2

•oP3

•*P+

•op6

-0P7

-o1H2

KESisTflRs: 2.1K 20%

UP/DOWN



9 MASTER CLOCK

7377

Fig. A-5

ICI.IC2: AD7S24
OPi,OP2: LM318

•o WR



Ccoo

D0
3

jn
/+

5
V

A
9

A
S

A
7

A
C

A
5

A
4

A
5

tA
2

A
1

A
IO

V
P

P

<
4

o

D
7

P
C

D
S

D
+

D
3

\>
2

P
I

A
O

_
_

DO
O

E
C

E

777.
7

R

*<
s

*
*V
J

S
~

\
o

O
Q

o

v
-
/

•
J
o

v
a

*

0
0

isA
.

5
4

*
H2

3

3

I6
0

•
Hfa



X
o

L
U

ou

5
«

—
U

J

x
h

C
M

0
0

***
71

t-M
&

Z
<

-
*

<p
.
.
.
.

2
0

a
.

M
O

If
o

o
.

h
o

.*7

I0
0

•Hfa



Itl-IC3:LF398
IC4:lmiii

Y

C+ 100

C- IC+7777 /4SV

j=OJ^ 2.7K
nr.

«l, Hir^
V J Invert Intensity

Ittvctt SAH

Fig. A-8

ici

*h

0.001^.

«Y
^p 0.00 Ija

*Zh

aootyt

In



000 H ^OFFHI cosce) (SAME FOR 300 H ->- 3FFH)

F60: FF FF FF FF FE FE FE FD FD FC FB FA FA F9 F8
10: F5 F4 F3 Fl FO EE ED EB EA E8 E6 E4 E2 EO DE DC
20: DA D7 D5 D3 DO CE CB C9 C6 C4 CI BE BC B9 B6 B3
30:t BO AD AA A7 AS A2 9E 9B 98 95 92 8F ec 89 86 83
40: 80 7C 79 76 73 70 6D 6A 67 64 61 5D SA 58 55 52
SO: 4F 4C 49 46 43 41 3E 3B 39 36 34 31 2F 2C 2A 28
60: 25 23 21 IF ID IB 19 17 15 14 12 11 F E C B
70: A 9 7 6 5 5 4 3 2 2 1 1 1 0 0 0
80: 0 0 0 0 1 1 1 2 2 3 4 5 5 6 7 9
90: A B C E F 11 12 14 15 17 19 IB ID IF 21 23
AO: 25 28 2A 2C 2F 31 34 36 39 3B 3E 41 43 46 49 4C
BO: 4F 52 55 58 SA 5D 61 64 67 6A 6D 70 73 76 79 7C
CO: 80 83 86 89 8C 8F 92 93 98 9B 9E A2 A5 A7 AA AD
DO: BO B3 B6 B9 BC BE CI C4 C6 C9 CB CE DO D3 D5 D7
EO: DA DC DE EO E2 E4 E6 E8 EA EB ED EE FO Fl F3 F4
FOi F5 F6 F8 F9 FA FA FB FC FD FD FE FE FE FF FF FF

lOOH-v* IFFH SINC0)

0: 80 83 86 89 8C 8F 92 95 98 9B 9E A2 A5 A7 AA AD
10 BO B3 B6 B9 BC BE CI C4 C6 C9 CB CE DO D3 D5 D7
20:t DA DC DE EO E2 E4 E6 E8 EA EB ED EE FO Fl F3 F4
'30: F5 F6 FB- F9 FA FA FB FC FD FD FE FE FE FF FF FF
40: FF FF FF FF FE FE FE FD FD FC FB FA FA F9 F8 F6
50: F5 F4 F3 Fl FO EE ED EB EA E8 E6 E4 E2 EO DE DC
60: DA D7 D5 D3 DO CE CB C9 C6 C4 CI BE BC B9 B6 B3
70: BO AD AA A7 A5 A2 9E 9B 98 95 92 8F 8C 89 86 83
80: 80 7C 79 76 73 70 6D 6A 67 64 61 SD SA 58 55 52
90: 4F 4C 49 46 43 41 3E 3B 39 36 34 31 2F 2C 2A 28
AO: 25 23 21 IF ID IB 19 17 15 14 12 11 F -. E C B
BO A 9 7 6 5 5 4 3 2 2 1 1 1 0 0 0
CO:: 0 0 0 0 1 1 1 2 2 3 4 5 5 6 7 9
DO A B c E F 11 12 14 15 17 19 IB ID IF 21 23
EO,: 25 28 2A 2C 2F 31 34 36 39 3B 3E 41 43 46 49 4C
FO 4F 52 55 58 5A 5D 61 64 67 6A 6D 70 73 76 79 7C

2 OOH -2FFH -SI NO)
0:i 80 7C 79 76 73 70 6D 6A 67 64 61 5D 5A 58 55 52

10: 4F 4C 49 46 43 41 3E 3B 39 36 34 31 2F 2C 2A 28
20:: 25 23 21 IF ID IB 19 17 15 14 12 11 F E C B
30:\ A 9 7 6 5 5 4 3 2 2 1 1 1 0 0 0
40: 0 0 0 0 1 1 1 2 2 3 4 5 5 6 7 9
50:: A B c E F 11 12 14 15 17 19 IB ID IF 21 23
60: 25 28 2A 2C 2F 31 34 36 39 3B 3E 41 43 46 49 4C
70: 4F 52 55 58 5A 5D 61 64 67 6A 6D 70 73 76 79 7C
80: 80 83 86 89 8C 8F 92 95 96 9B 9E A2 AS A7 AA AD
90: BO B3 B6 B9 BC BE CI C4 C6 C9 CB CE DO D3 D5 D7
AO: DA DC DE EO E2 E4 E6 E8 EA EB ED EE FO Fl F3 F4
BO: F5 F6 F8 F9 FA FA FB FC FD FD FE FE FE FF FF FF
CO: FF FF FF FF FE FE FE FD FD FC FB FA FA F9 *F8 F6
DO: F5 F4 F3 Fl FO EE ED EB EA E8 E6 E4 E2 EO 'DE DC
EO: DA D7 D5 D3 DO CE CB C9 . C6 C4 CI BE BC B9 B6 B3

11 BO AD AA A7 AS A2 9E 9B 98 95 92 8F BC 89 86 83

Table A-1
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