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Asymptotically efficient allocation rules for the
multiarmed bandit problem with multiple plays Part I:
L1D. rewards!

V. Anantharam?, P.Varaiya and J. Walrend

Department of Electrical Engineering and Computer Science
and Electronics Research Laboratory,
University of California, Berkeley, CA 94720.

ABSTRACT

At each instant of time we are required to sample a fixed
number m =1 out of N i.i.d. processes whose distributions belong
to a family suitably parametrized by a real number 4. The objec-
tive is to maximize the long run total expected value of the sam-
ples. Following Lai and Robbins, the learning loss of a sampling
scheme corresponding to a conflguration of parameters C =
(¥, - - -, ¥y) is quantified by the regret R,(C). This is the
difference between the maximum expected reward at time n that
could be achieved if C were known and the expected reward actu-
ally obtained by the sampling scheme. We provide a lower bound
for the regret associated with any uniformly good scheme, and
construct a scheme which attains the lower bound for every
configuration C. The lower bound is given explicitly in terms of the
Kullback-Liebler number between pairs of distributions. Part II of
the paper considers the same problem when the reward processes
are Markovian.

August 6, 1988
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1. Introduction

In this paper we study a version of the multiarmed bandit problem with
multiple plays. We are given a one-parameter family of reward distributions with
densities f (z,9) with respect to some measure v on R. 4 is a real valued param-
eter. There are N arms X;,j =1, - -',N with parameter configuration
C=(¥,....,9). When arm j is played, it gives a reward with distribution
S (z.9;)d(z). Successive plays of arm j produce i.i.d. rewards. At each stage
we are required to play a fixed number, m, of the arms, 1< m < N.

Suppose we know the distributions of the individual rewards. To maximize
the total expected reward up to any stage, one must play the arms with the m
highest means. However, if the parameters ¥; are unknown, we are forced to
play the poorer arms in order to learn about their means from the observations.
The aim is to minimize, in some sense, the total expected loss incurred in the
process of learning for every possible parameter configuration.

For single plays, i.e.,, m = 1, this problem was studied by Lai and Robbins,
[3-5]. The techniques used here closely parallel their approach. However, the
final results are somewhat more general even in the single play case. For multi-
ple plays, i.e., m > 1, we report the first general results. In Part II of this paper
we study the same problem when the reward statistics of the arms are Marko-
vian with finite state space instead of i.i.d.

The actual values ¥ that can arise as parameters of the arms are known a
priori to belong to a subset @CR. In §2-5, @ is assumed to satisfy the denseness
condition (2.4). This restriction is removed in §68-7.

The results constitute part of the first author’s dissertation.

1 Research supported in part by JSEP Contract F48620-84-C-0057.
2 Present address: School of Electrical Engineering, Cornell Univ., [thaca, NY 14853,



2. Setup
We assume that the rewards are integrable
7' |z | f(z.9)dv(z) < o, (2.1)
and the mean reward
ud) = J = f(z.8)du(z)

is a strictly monotone increasing function of the parameter 4.
The Kullback-Liebler number,

I(BA) = f log[ﬁ%)L] S (z.8)dv(z)

is a well-known measure of dissimilarity between two distributions. In general
0= J(¥,\) s oo, We assume that

0<I(¥\) <o if A>¥, (2.2)
and
I{3,\) is continuousin A >3 for fixed 3. (=2.3)
In §2-5, the following denseness condition on @ is imposed:
forall A€® and § >0, thereis A €@ s.t. u(A) <u(X) < u(A)+6. (2.4)

Let Yj1.Yja, - - - denote successive rewards from arm j. Let F;(j) denote
the o-algebra generated by Y. :::.Yi. let F_(§)= Y Fi(4), and

G(j) = v F_(i). An adaptive allocation rule is a rule for deciding which m arms

imj @
to play at time {(+1 based only on knowledge of the past rewards
Yi..... Y%7, 7 =1 - .N and the past decisions. For an adaptive allocation

rule @, the number of plays we have made of arm j by time ¢, T;(j), is a stop-
ping time of {Fy(j)\ &j).s = 1. By Wald’'s Lemma, (see, e.g., [1], Lemma 3.1),
if S; denotes the total reward received upto time ¢,

B = 3 uo)ELG). (2.5)

For a conflguration C = (¥,, . . . , 8y), the loss associated to a rule is a func-

tion of the number of plays ¢{ which gives the difference between the expected

reward that could have been achieved with prior knowledge of the parameters

and the expected reward actually achieved under the rule. Following [4], this
function is called the 7Tegret. Let o be a permutation of {1, - - - ,N} such that

1(Ba)) = u(Voz)) = - - - = u(By0my).



Then the regret is

Re(%y, -+ By) = tiglﬂ-(ﬂa(t))—ﬂst- (2.8)

The problem is to minimize the regret in some sense. Note that it is impos-
sible to do this uniformly over all parameter conflgurations. For example, the
rule "always play the arms 1,2, - - - ,m" will have zero regret when u(;) > u(9;)
for all 1<i<m and m+1<j < N. However, when a parameter configuration
bas u(¥;) < u(¥;) for some 1<i <m and m+1<j < N, this rule will have regret
proportional to £.

We call a rule uniformly good if for every parameter conflguration
R(%; - - By) =0(t®) for every real a > 0. We consider as uninteresting any
rule that is not uniformly good.

3. Alower bound for the regret of a uniformly good rule

Let the arms have parameter configuration C = (¥,, . . . ,9y) and let o be a
permutation of { 1, - - - ,N | such that

B(Boy) = -+ = u(Bgy)-

(@) If u(Bggm)) > w(¥a(m+1)) we call arms o(1), . .. ,0(m) the distinctly m-best

arms and o(m +1), . . . , o(N) the distinctly m-worst arms.
(b) If u(Bo(m)) = u{Fa(m+1)) let 0= <m and m < n < N be such that

() = - -+ = p(Be) > p(Woen) = - = Bo(m) = - -
= “(ﬂo(n)) > /-f('l’a(nﬂ)) = -2 l‘(‘av(N))-
Then we call arms o(1), ...,0(l) the distinctly m-best arms, and arms
o(n+1),...,0(N) the distinctly m-worst arms.

(c) The arms with mean equal to u(¥(m)) are called the m-border arms. Note
that in (a) o(m) is both a distinctly m-best arm and an m-border arm. In
(b) the m-border arms are the arms j, l+1sj < n.

The separation of arms into these three types will be crucial in all that follows.
Let & be an adaptive allocation rule. Then @ is uniformly good iff for every
distinctly m-best arm j
E(t-T:(j)) = o(£%).
and for every distinctly m-worst arm j
E(T:(4)) = o(£%) .
for every real a > 0.

Theorem 3.1 : Let the family of reward distributions satisfy conditions (2.2),
(2.3) and (2.4). Let ® be a uniformly good rule. If the arms have parameter
configuration C = (¥,,...,3%y). then for each distinctly m-worst arm j and



each & >0
. . 1—¢)logt
lim PgiTy(j) = oi=gllogt_y -
t oo Cz ‘(J) I(“’jﬂ’a(m)) ;
so that
. EcT:(4) 1
liminf = '
t-»00 lOgt I ('61 -ﬂc(m))
where o is a permutation of {1, - - - ,N} such that
W(Be()) = - - - = pBo(wy)-
Consequently,
lirming Re(®y, - On) [1(Bo(m)) —(34)]
t o0 logt jiameorst (85, 8a(m))
for every configuration C = (¥,, . . . ,¥y).

Proof: Let j be an m-worst arm. Fix p > 0. Assumptions (2.3) and (2.4) allow us
to choose a parameter value A satisfying

uQA) > l‘(ﬁu(m)) > I"('ﬂj )

and
| I("j -A)-I("’j -"’a(m)) | = pl(“’j -ﬂc(m))- (3-1)

Consider the new conflguration of parameters C° = (¥4,...%5-1.A5+1,--9N),
ie., replace ¥; by A. Then arm j is one of the distinctly m-best for the parame-
ter constellation C°. Let Y,,Ys, - - - denote the sequence of rewards from plays
of arm j under the uniformly good rule . Define

_ 4 I (Y5.,9;)
L= Yol Ty

By the strong law of large numbers -[;-‘— - I(%;,A) as. [Pc]. Hence
;—rf‘a:éc Ly » I(34,A) a.s. [Pc]. For any K > 0 we have

lim PciLs > K(1+p)I(8;,M\)logt for some a < Klogt} =0. (3.2)

$ »00

We write
§T:(4) < Klogt, L7,(§) s K(1+p)I(8;,M)logt}

= U {T(G)=a.Ls< K(1+p)I(¥;.\)logt] .
a < Klogt

and
Po{T:(j) = @, Ly < K(1+p)I(%;,\)logt }

PN o

B {Ty(j) = a . Ly =< K(1+p)(8; N)logt] b = 1f(yb""i)
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= ¢ HNCN BT () = 0Ly < K(1+p)I (5. \)logt} .

Thus
Pgo{Te(7) < Klogt, Ly, (j) < K(1+p)I(3;.\)logt}
= ¢ KON p (T, (5) < Klogt, Ly, () < K(1+p)I(8;\)logt}.  (3.3)
Since ® is uniformly good and arm j is distinctly m-best under
C* = (B1,eesB5 -1 AB; 1100 By)
Ep(t-T(4)) = 0(t%),
so that
(t—=Klogt)Py-4Te(j) < Klogt} = o(t?),
hence
P{Ti(j) < Klogt} = o(t7}) (3.4)

for every real a > 0.

Choosing K = , we have, from (3.2), (3.3) and ( 3.4),

1
(1+20)1(3;,1)

. . logt _ :
gchtm)<(1+2p‘)’§ww,- : (3.5)

Since (1+p)1(¥;,%6(m)) = 1(¥;.A) by (3.1), we have

logt ;
(1+20)(1+p)1(¥;,84(m))

‘limPciTc(J')< =0,

for every p > 0. Writing mas 1—¢ proves the first claim. Letting £-0

proves the second claim. |

4. Construction of statistics
Motivated by Theorem 3.1, we call an adaptive allocation rule asymptoti-

cally efficient if for each configuration C = (49,, . . . ,%y),
L, —(d
limsup Rt('lal "’N) < 2 [ﬂ("o(m)) ﬂ'( j)]
t oo logt j i8 m—worst 1(95.84(m))

To construct an asymptotically efficient rule we need a technique for decid-
ing when we need to experiment, i.e.,, when to play an arm in order to learn
more about its parameter value from the additional sample. At time { we have
T;(j) samples from arm j from which we can estimate Y¥; by various methods,
e.g., sample mean, maximum likelihood estimate, sample median. The decision
we have to make at time £+1 is whether to play the m arms whose estimated
parameter values are the largest - "play the winners" rule -- or to experiment
by playing some of the apparently inferior arms. To do this we will construct a
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family of statistics g¢(Y), ..., Y5), 1sa <t,£ =12, - -, sothat when ge7,(j) is
larger than any of the m best estimated parameter values this indicates the
need to experiment with arm j. Such statistics are constructed in [5] for
exponential families of distributions, based on results of Pollack and Siegmund

[7). We use a similar technique to construct g, (Y;. . . . . ¥3) under the following
assumptions

log f (z,9) is concave in ¥ for each fixed =z, (4.1)

Sz f(z8)dv(z) < o for each ¥ € R. (4.2)

The reader may wish to glance at the beginning of §5 at this point, to see how
these statistics are used to construct an asymptotically efficient rule.

Lemmas 4.1 and 4.2 are needed in the proof of Theorem 4.1.
Lemma 4.1 : Let S; = X;+ ' - - +X; where X;, Xo, - -+ are ii.d., EX; > 0, and let

N= Y 1(S;<0),L= f: 1( 'Lr;f‘S, < 0). The following are equivalent:
t=1 t=1 ©
(a) E(1X;|?1(X, = 0)) < oo;

(b) EN < co;
(c) EL < oo,
Proof : See Hogan [2]. |
lemma 4.2 : Let S; =X+ -+ +X; where X;,Xp, '+ - are ii.d., EX; > 0. Given

A>0,let Ny = 3 1(S; = 4). If E(|X,|?1(X, < 0)) < o, then
$=1

lim sup EN, = —1-.
A-co A Exl

Proof : Fore >0

A(l+e & tEX,
Ny = EX; + ‘gll(Sg = 1+e ).
Let Z; =X, - (—1:37- Then

B12, 121z, = 0)} = 2 BLIX, |2 + (To9?] 1(X, = o))

EX, \2
1+g’

EX
s 2 B|X|?21(X; < 0) + 2B|X;|?1(0 < X, = 1+;) +2(
< oa,

By Lemma 4.1, for some constant X depending on &,
ENg < ﬂé—é‘—eL+ K,
1

so that
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ENy _ 1+s
limsup —= .
A-'Qp A EX]_

Letting £-0 concludes the proof. |
Theorem 4.1 : Let Y;,Y5, - - + be the sequence of rewards from an arm. Let

ﬁ J (Y, 9+t)

Wc(") - (Y 13)

2o 7 p(t)dt,

0
where h : (—0,0) » R, is a positive continuous function with f h(t)dt = 1. For

any K > 0 let B
U(e,Yy, . Y5,K)=inf {8 | Wa(8) = K]j. (4.3)
ThenforalA >8>,
(1) Pyin < U(a,Yy, - - Y3, K) foralla = 1} = 1-1-,
(@) fim o ¥ PalU(@Yy - YaK) =N = Frss
Heuristics : Having observed samples Y), .Y, for any 8€R, #,(8) is a

natural statistic to test the hypothesis that the samples have been generated by
a parameter value less than ¥ against the hypothesis that they have been gen-
erated by ¥. By the log concavity assumption (4.1), W(¥) is increasing in 3.
Therefore, for fixed KX, for any 4 > U(a,Y)....,%5.K), it is more likely that the
samples have been generated by parameter values below ¥ than by 4, whereas,
for any ¥ < U(a,Y),...,.Y5.K), it is more likely that the samples have been gen-
erated by ¥ than by parameter values below ¥. When we use U(a,?),,...,%.K) to
decide if there is a need to experiment, we choose K appropriately -- the larger
K is, the more sure we will be that the samples have been generated by parame-
ter values below ¥ before we reject the possibility that they may have been gen-
erated by 9.

Proof : By (4.1), W,(#¥) is increasing in 9, so
U(a,Yy,...Y,,K) <8 < W,(3)= K
Now
{U(a,Y,,...,Y;,K) < n for some a = 1}
c {U(a,Y,.....Y5,K) <0 for some a = 1}
= { Wy (¥) > K for some a = 1].

W, () is a nonnegative martingale under 8 with mean 1. By the maximal inequal-
ity, see e.g. [8], Lemma IV-2-9,

Po{Wa(8)= K for some a = 1} < L

K
establishing (1).
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Let Ng = ) 1(W4(A) < K). Given ¢ > 0, choose 0 < § < A= so that
=1

[7(8.n)] <zif |[n—8| <4.

Now
I (Yom)
W) < Kyctiog ;4; 11 Sy =N < logk}
_ J(Ym) ., g
= mglv;;-d)l;abﬁ TON ————~h°(n)dn < logK-log4d],
where

A= [ Rr{n-Ndn, h°(n)=MﬂA——x)--
In;«;lﬂd

By Jensen’s inequality

F(Yom) ., .
§Wa(N) <K}SI§1 . ;.é;“log TN (n)dn < logK ~logA]}.

Thus we must examine the sum of i.i.d. variables

Xo= [ log S (Y1)

nd) <o ST (N (M
n>9

where Y, has distribution j’ (z,9). These random variables have mean

= By[log (X,)\) lﬂ;'%{l-< ,IOngX.J‘ﬂ-)Lh (n)dﬁ] = I(¥,N\)—¢ >0,

for & sufficiently small.

We proceed to verify the condition of Lernma 4.2 for the random variables

Xp.
o f( i) f(hm) L.
0=Xi1(X =0)= Iﬂ;ﬁ’gf 61 F(Y1.A) l(f(yh)\) < DA (m)dn,
f(Ym) S (Yun) 0
Ed[xll(xl s 0)]25 |n;{|;< JEG[]- f(Y )\) (f(y )\) ST o= 1)]2’7' ("7)477~
Now

SRR LR et b o

Observe that



(a) z[logz? = :—zon {z < 1}; (4.5)

(b) Since A >7 >, there is 0 < a < 1 such that 7 = a8 + (1-a)A. By (4.1), for
each z, f (z.1) = f (z,9)%f (z,\){} ™), Hence

L ("'j;‘af;;’"‘) < f(z,8)1-2f (z,\)2. (4.8)
Let 7° = aA + (1—a)¥. By (4.1) again,
1 (z8)479f (2,02 < f (z.1°). (4.7)

Putting (4.4), (4.5), (4.8) and (4.7) together gives By[X,1(X, = 0)]* = ;4'2—.

We may now use Lemma 4.2 to conclude EyNg < 0 and

EsNg 1
hmsup ook < TN —¢

Letting £-0 gives

(4.8)

. EsNk 1
limsup 1ok = TN -

We now bound EyNy from below. Define the stopping time
=inflfa =1 | Wg(A)= K].
Observe that Ny = Txg—1. Thus E4Tx < oo, Since

Y, 9 Yo A+t
o= AT 1 o

= LeMy
where M, is a martingale under 4 of mean 1, we see that
log K < Eglog W7, () = EylogLy, + EylogMy,

< EylogLy, + logEsMr,

= I(O\)By T < (9, \)ByNy ,
which, together with (4.8), establishes (2). |
Theorem 4.2: Let g¢a(Y1, . . .. ¥Y3) = u[U(a.Yy, - - -, Ya.t(logt )P)] for some p > 1.
Then for any A > 49 > 7
(1) Palgta(Yr, .. . Ya) > u(n) foralla <t} = 1-0(¢tY(logt) P ); (4.9)

Y Potgia(Yy - .. . Ya) = pA))

- a=1
(2) limsup logt =IBN

(3) g¢s is nondecreasing in ¢ for fixed a. (4.11)

Proof : (1) follows from (1) and (2) from (2) of Theorem 4.1. (3) follows from the
form of U(a,Y,, -,%.K) and the assumption that u(®¥) is monotonically

(4.10)
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increasing in 9. |

As estimate for the mean reward of an arm we take the sample mean

i+ +Y,
he(Yy ... . Y) = —— " = =
lemma 4.3:Forany0<d<lande >0
Pyl max | ha(Yy, ..., Yo)=p(®) | >ei=o(t™) (4.12)

ft<a=<t
for every 9.
Proof : Let Z, = Yy—u(¥)+c and S; = Z,+ - - - +Z;. By Lemma 4.1, using (4.2),

-]
Hence for p > 0, there is T(p) such that

‘ =§;wp,,i£f‘s, <0} <p.

Foranyt = 1(6%)—
Pal,0in, Ja(Yi, . To) < al®)—¢} = Pof min S < 0} < Pat it S, < 0]
for any 6% < b < 6¢t. Hence
6(1=-0)tPsf, min ho(Yy, .. .. Ys) <p(d)-e] <p.
A similar argument applies to Pg{c‘rgﬁ‘h,()’,. oY) > pu(¥)+el. Letting p-0
concludes the proof. | |

5. An asymptotically efficient allocation rule

Let the N arms correspond to C = (¥, . .. ,¥y). Assume that the arms
have been reindexed so that

p(d) = - = p(dy)
With g¢q and 24 as in §4, consider the following adaptive allocation rule.

1. In the first N steps sample m times from each of the arms in some order
to establish an initial sample.

2. Choose 0 <4 < 1\}2_ Consider the situation when we are about to decide

which m arms to sample at time £ +1. Clearly, whatever the preceding decisions,
at least m among the arms have been sampled at least 6¢ times. Among these
“well-sampled” arms choose the m-leaders at stage £ +1, namely the arms with

the m best values of the statistic 14 (j),j = 1, - - - N, where

e (F) = hei (Y1 - - - Yin))-
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Let j € {1, - - ,N} be the arm for which t+1 = j mod N. Calculate the statistic
Ui () where

Ue(G) = ger, (Y50 - - - Yim)-

(a) If arm j is already one of the m-leaders then at stage £+1 play the m-
leaders.

(b) If arm j is not among the m-leaders, and U;(j) is less than u, (k) for every
m-leader k, then again play the m-leaders.

(c) If arm j is not among the m-leaders, and U;(j) equals or exceeds the s
statistic of the least best of the m-leaders, then play the m —1 best of the
m-leaders and the arm j at stage £.

Note that in any case the m —1 best of the m-leaders of always get played.
Theorem 5.1 : The rule above is asymptotically efficient.

Proof : The proof consists of three main steps. We first summarize the steps and
indicate how they combine to yield the result. First, define 0! <=m-1 and
m=nsN by

w(B) == p(9) > p(a) = . = u(Bm) = .. = w(Ba) > ul(Bne1) = . = u(dy).
Notice that with reference to (a) at the beginning of §3, in case
W) = - - = (V) > u(Bm+y). we are setting n = m, so that the m-border

arms are in this case also the arms X;, l+1<sj <n.

1(9,) =B )

> if {1 >0 and

Throughout the proof fix £ >0, satisfying & <

£< p’(“’n )_:(1’1; +I)

Step A : This step is required only if I > 0.
If u(9;) = u(¥;) then E(t-T;(5)) = o(logt).

Step B : This step is required only if n < N. Define the increasing sequence of
integer-valued random variables 5; by

ifn <N.

B, =#i{N<a =<t | Forsomej=mn+l,jis one of the m-leaders at stage a +1}

where #{ ] denotes the number of elements in { {.
Then EB; = o(logt).

Step C: This step is required only if n < N. For each j = n+1 define the increas-
ing sequence of integer-valued random variables S;(j) by

S¢(j) = #{N < a <t | All the m-leaders at stage a +1 are
among the arms k with u(9) = u(d,)
and for each m-leader at stage a +1

| Az e)(Yer. - - -« Yer, o)) —1(%) | <t
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but still the rule plays arm jat stage a +1 }.

Then, for each p > 0 we can choose &£ > 0 so small that

1+p+0(1)
B () = T35 Bm) logt

We now indicate how these steps combine to yield the theorem.
1L Re(8y - .15”)=j 32“[#(%)—;&(13;)]”:(]‘) + o(logt).
n

Indeed, from (2.5) and (2.6) we have

By o) = 8 u@)E-ERG) ¥ T [0 -ue) [ELG)

Jan+l

o) 2 (t-ETG) - ¥ ET.()). (5.1)

s i+l Jam+l

If we observe that
ﬁ ET:(j) =mt
=1

we get

- ¥ ERG) =j$l(ET.<j)-t).

=iyl j=li+1

so the first and third terms on the right in (5.1) are o(logt), from Step A.
Remark : If n = N this already yields the theorem.

2. Supposen < N and j =n+1. Then
Te+1(7) = S:(4)
+ #{N s a <t | All the m-leaders at stage a+1 are among
the arms with index =< n, but for at least
one of the m-leaders at stage a+1, say k,
| Ay ge)(Yers - - - o Yery ) () | > &}
+B; + N. (5.2)
Take expectations on both sides. By Step B, E5; = o(logt). Noting that
Ppi The leaders at stage a all have index<n but at least one
of them, say arm k, has | Az e)(Yer, - - - . Yer, ) —u(Be) | > €}
< Pef max max | k(Y ..., Yoo)—u(%:) | > ¢

1=sisNfa<bdb=a

=o0(a"') by (4.12),

we see that the expected value of the middle term on the right hand side of (5.2)
is o (logt ).
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By Step C we have

. EcS:(4) 1
limsu <
TouP Togt 1(8;.5m)
from which the theorem follows.
We now prove the individual steps.

Proof of Step A : Recall that this step is required only if I > 0. Pick a positive
integer c, satisfying ¢ > (1-N?%5)"'. The idea behind the choice of ¢ is that

t _cr—l

N > Nét for t > c”.

Lemma 5.1 : Let 7 be a positive integer. Define the sets
A= N1 | Re(Yin, o oo Yy )=p(9y) | =€),

1sjs N Gc"“st cr#l

Br= Nigwa(Yer'  Yia)=pu()—cfori<a<étandc™ 'stsc™™)
k<! '

Then Pg(Af) = o(c™) and Pp(Bf) = o(c™™) where Af and Bf denote the comple-
ments of 4. and 5, respectively.

Proof : From (4.12) we immediately get Po(4f) = o(c ™). From (4.9) we see that
Pc(Bf) = 0(c™r?)=0(c™). |
Lemma 5.2 : On the event A N5, if t+1 = k mod N for some k<!l and
cT" 1<t < c™), the rule plays arm X;.

Proof : On A, the h; statistics of the m-leaders are all within ¢ of their actual
means. If arm X, is one of the m-leaders at stage t+1, then according to the
rule it is played. Suppose X, is not an m-leader at stage ¢ +1. On A, the least
best of the m-leaders at stage ¢t +1, say j;, has

pe(Ge) < () — ¢ .
In case T, (k) = 6t, we have on 4,,
k() —¢ < hpue)(Yer - - - Yerye)

hence our rule will play X, since it will already be one of the m-leaders at stage
t+1.

In case T, (k) < é¢, we have on 5,,
“(151) —-&£= Ut(k)t
so in any case, our rule plays X,. |

By Lemma 5.2, on the event A. N5y, forc”™ <t <c7*, the number of times
we have played arm X, £ <, exceeds

Nt —cT-1-2N)

which exceeds Nét if 7 = rg for some 7.
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Lemma 5.3 If 7 =7, then on the event 4. N\5,, for every c” <t < c"*!, we play
each arm X, withk s .

Proof : By Lemma 5.2, on 4 (\Br.and c” <t <c™!, r =rq, all arms Xg, k <,
are well sampled. Since on A,, every well sampled arm has its 2, statistic &
close to its actual mean, all arms X, k =! must be among the m-leaders.
Further, they cannot be replaced by a nonleading arm's g, statistic indicating
the need to learn from it, because none of them is the least best of the m-
leaders. |

Corollary : For 7 = 7, the expected number of times arm X, k£ =, is not played
during ¢” < £ < c"*!is less than

Y Pc(Af) + Pc(BF) = a(1).

cTst <ot
Hence the expected number of times arm X,k <, is not played in ¢ steps is
o(logt). |
Proof of Step B : Recall that this step is required only if n < N. The proof is
identical in form to that of Step A and proceeds as follows.

Lemma 5.1 B: Let A, be as in Lemma 5.1 and let
Zr= N{9wa(Yn  Yg)=u{8)-cforl<a<étandc™ st =<c™]

ksn
Then Po(Af) = o(c ™) and Pp(Z,¢) = o{c™™).
Proof : The proof is identical to the proof of Lemma 5.1. |

Lemma 5.2 B : On the event 4. NZ., if t+1 = k mod N for some k =n and
c™"!< ¢t < c™!, then at time ¢ +1 the rule only plays arms with index = n.

Proof : Suppose not. Then k is not one of the m-leaders and the least best of the
m-leaders has index j; > n on the event 4, with u; (j¢) < u(8,)—¢.

#{(Vn)—€ S hpq)(Yer. - - - Yerya)
on 4., hence our rule will play X, ; in fact, X, will already be one of the m-
leaders at stage ¢ +1.
If T, (k) < 6¢,

KBy )—e s Up(k)
on Z,, hence our rule will play X,. |

Let 7o be defined as in the proof of Step A. We now show that on 4. N2Z,, for
T 27+l and ¢! s ¢ s c™!, m—l of the m-border arms have been played di
times:

1. First consider the case n =m. For each of the m-border arms

-7 1la
tc—N_21L> N6t times prior to £ at which

t+1 j mod N. Choose df of these times. By Lemma 5.2 B, on the event

X; . l+1<sj <mn, there are at least
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A-N\Z; each of the arms that is played at this time has index = m. But this
means that the arm X; is played at this time. Thus we see that at stage t+1, all
m-border arms are well sampled, and there are m — of them.

2. Suppose n >m and that fewer than m -l of the m-border arms have
been well-sampled. Let X; be one of the arms that is not well-sampled,

-t 1o
l+1<j=n. There are at least t__c_N__2l> Nét times prior to ¢ at which

t+1 = j mod N. Choose N6t of these times. Since arm j is not well-sampled,
we can choose (N—1)8¢ of these times at which the rule plays only arms whose
indices are <n, by Lemma 5.2 B above. We know by Lemma 5.3 that at each of
these times the rule plays all arms whose indices are <! on the event 4. N5,
which contains the event 4.\Z,. Thus (m-l)(N-1)6t plays of m-border arms
with index #j are made at these times. Note that there are n—l—1=m-l such
arms. Also note that at these (N-1)6t times, no one of these arms can undergo
more than (N-1)6t plays. Suppose that only p <m—l of these n—l~1 arms
undergo &6¢ plays or more at these times. Then the total number of plays of
these arms at these times is strictly less than
p(N-1)6t + (n-1-1-p)ét

< (m—-1-1)(N-1)6t + (N-1)6¢

= (m-l)(N-1)6t
which gives a contradiction.

The analog of Lemma 5.3 is

Lemma 5.3 B: If 7 = ro+1, than on the event 4. N\ Z,, for every c” <t <c™*!, the
m-leaders are among the arms X, k < n.

Proof : On A, a well sampled arm has its h, statistic ¢ close to its mean. By the
above reasoning, at least m of the X, k¥ sn, are well sampled at stage £ +1,
hence the m-leaders are constituted of such arms. [Note that, unlike in Lemma
5.3, we do not assert that the arms that are played at such times are among the
X, k <n. This is in fact false. ] |

Step B follows from Lemmas 5.1 B and 5.3 B.

Proof of Step C : Recall that this step is required only if n < N. Let j=2n+1.
Then observe that

Se(i)s#N<ast | gar,y)(Y ... Yir,g) = u(¥m)—e}
s#iIN=as<t]| g (G- Y,y =u(dn)-el by (4.11)
SHIN<b <t |ge(Y . ... .Ye)=pudns)-¢cl
where Yj,,Yj3, - - - denote the rewards on plays of arm j. Thus

EcSi(J) s By #tN sb =t | gp (Y1 .. .\ Yio) = (V) -}

= bglpcfgtb(yjn v Y ) = u(Bp) el
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But by (4.10) we can , for each p > 0, choose &£ > 0 so small that

+p+
bélp'digtb(}?ln o Y)Y 2 pu(Pn)-el s 1—(1%'(&' logt

which establishes Step C and Theorem 5.1. |

Remark : We have not examined whether our g statistics can be recursively
computed, or whether there are other recursively computable gi; statistics
satisfying (4.9), (4.10) and (4.11). For exponential families this is possible, since
U(a,Y:,....Ys.K) depends only on the sample mean. Moreover, for Bernoulli,
Poisson, normal and double exponential families, explicit recursively comput-
able g4 statistics are given by Lai and Robbins [4].

8. Isolated parameter values : Lower bound

Following Lai and Robbins [5], we will now examine the situation for multiple
plays when the denseness condition (2.4) is removed. Thus some of the allowed
parameter values may be isolated. For a parameter configuration
C=(¥,....,9) let ¢ be a permutation of {1, --:,N] such that
W) = - - = (B Throughout this section and §7, A € ® (A depends on
C) is defined as

A=inf{d € @ | 9> Fgm)} (8.1)
In case ¥4(m) = sup 3, set A = oo,

Theorem 6.1 : Let the family of reward distributions satlsfy (2.2) and (2.3). Let d

be a uniformly good rule. Let C =(¥,,....,9y) be a parameter constellation
and g, A as above. If A is finite, then, for each of the m-worst arms j
EcT:(5) 1
= . .
minf = = 108, (6.2)
Hence
liminf Re(y, - - -ﬂN) > D‘(‘so(m))-ﬂ(ﬂj)] '
t oo logt § is m—worst 1(¥;.0)

Proof : lLet j be an m-worst arm. Let C° = (¥,...%;-1.A%;41,...9y) denote the
parameter configuration when the arm j has parameter A instead of ¥;. Repeat-
ing the analysis of Theorem 3.1 we see that

logt =
(1+2P)I('0J A)

for every p > 0, (see Eqn (3.5) ), which proves (8.2). | |

PﬂPCiTt(j)<

7. Isolated parameter values : An asymptotically efficient rule

We call an allocation rule asymptotically effficient if
Re(8y, -+ - Oy) [(B o(m)) —14(3;)]
limsu <
¢ »c0 P logt j is m—worst I(djvk)
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when A is finite for the parameter constellation C = (94, . . . ,By), and
limsup Ry (¥, - - MHy) <o
t»c0
when A = oo,

The allocation rule of §5 is not asymptotically efficient in case A = co. Note
that this means ! = 0, i.e., there are no distinctly m-best arms. For a rule to be
asymptotically efficient in this case means that the expected number of plays of
each of the distinctly m-worst arms is finite. However, with the rule of §5, the
least best u; statistic among the m-leaders will fall infinitely often below
/1.(13,(,,,,)). while the g, statistics grow in such a way that we are forced to play
the m-worst arms infinitely often.

To get around this problem, following Lai and Robbins [5], we make a simple
modification of the rule of §5, sampling from the poorer looking arms only if
their g;q statistic exceeds the least best u; statistic of the m-leaders by a mar-
gin, with the margin decreasing to zero suitably. Let ¥(¢), £ = 1 decrease mono-
tonically to zero such that, for some q > 1, we have, for each ¥ €8,

Pol,max |he(Yy .. .. Ya)=p(8)] > A(t)} = O(t~}(10gt)™) (7.1)
+. " e e +
where ha(Yy, . .. . Ya) = ﬁ—zi. Such functions can be found if, for exam-
ple,
flz |* f(z.8)dv(z) <oo forall Y€0, (7.2)

which we assume henceforth.

Lemma : Let the family of reward distributions satisfy (7.2). Then (7.1) holds for

7(t)=Kt"°‘foranyK>0and0<a<i—.

Proof : Let S; = Z;+ - +Z;, where Z; = Y, — EY;. Then ng‘*f is a positive
integrable submartingale. By the maximal inequality [6],
ES,*
Kt
A simple calculation gives ES;* < 9t2EZ,*, from which

4 4(1-a)
Pt E?&S“ > Kt } =<

E|7,[*

Pyf max |he(Yy, ... Yo)—pu(d)| >Kt™% )< T

ft<sasxt

which is O(¢~!(logt)™?) for any ¢ > 1, when0 < a < ‘-1- 1

Condition (7.2) can obviously be considerably relaxed. We have not exam-
ined this issue.
We now describe the modified rule.

1. In the first N steps sample m times from each of the arms in some order
to establish an initial sample.
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2. Choose 0< 6 < 1—3'2—- Consider the situation at stage {+1, when we are

about to decide which m arms to play at time ¢ +1. Let x4, denote the k4 statistic
of the least best of the m-leaders at stage £ +1. Then calculate

Mt = }ggm(ﬂ) | u(8) > p + ().

M¢ could be oo,
3. Let k be the arm for which ¢£+1 = k mod N. Calculate the statistic
Ue(k),
Ue(k) = gen (Y1, - - - Yery (o))
Decide which of the arms to play at time £ +1 based on u; and U;(k) as follows :

(a) If arm k is already one of the m-leaders, then at time £+1 play the m-
leaders.

(b) If arm k is not among the m-leaders and U; (k) < ¢, then at time £ +1 play
the m-leaders.

(c) If arm k is not among the m-leaders, and U;(k) = u, then play the m—1
best of the m-leaders and the arm &k at time £ +1.

Theorem 7.1 : The rule above is asymptotically efficient.
Proof : The proof consists of three steps, parallel to the proof of Theorem 5.1 .
Step A : This step is required only if L > 0.

If u(¥;) = () then Eft —T; (4)] < oo.

Step B : This step is required only if n < N. Define the increasing sequence of
integer valued random variables 5; by

By =#i{N=<as<t | Forsomej=n+l,jis one of the m-leaders at stage a +1}
Then EB; < oo,

Step C: This step is required only if n < N. For each j = n +1 define the increas-
ing sequence of integer valued random variables S;(j) by

Se(j) = #IN < a <t | All the m-leaders at stage a +1are among the
arms kwith u(8;) = u(d,),
and for each m-leader at stagea +1,
P Ary@e)(Yeer, - - - Yer o)) (B ) | < ().
but still the rule plays arm jat stage a+1 1.

Then, if A < 00, for each p > 0 we have

, 1+p+a(1)

while if A = oo, S¢(j)=0.
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The argument that shows how these steps combine to prove asymptotic
efficiency is identical to that of Theorem 5.1. We proceed to the individual steps.

Proof of Step A : This step is required only if L > 0. Let ¢ > (1~N?6)"! be an
integer, and let 7g be such that
N~Y{(t—-cT™*'-2N) = Nét,

Se™ ) < p(8,)=p(Sm )
2
(if L > 0), and

(O ) —11(Bn +1)
2

7(c™) <

(ifn < N), forall r =7,
Lemma 7.1: Forr = 1,2, : - -, define the sets

A= Nt max | k(Y. Ye)u(8y) | s /e

1= j=N [ Lo PY P

Br= Ni{9a(Yer ' Yg)=u(®) forlsa<étandec™ st <c™ ],
ksl

Then Pg{4f) = O(c™ r™?) and Pp(Bf) = O(c ™ rP) where AFf and 5f denote the

complements of 4. and 5, respectively.

Proof : From (7.1) we get Pc(Af)=0(c™r™?). From (4.9) we get

Pc(Bf) = O(c™ r7P). . i
Lemma 7.2 : For r =7y, on the event 4.5, if t+1 = k mod N with k <! and

¢! <t < c™, the rule plays arm k.

Proof : As in Lemma 5.2, we can suppose arm k is not an m-leader at stage ¢ +1.
On 4, the least best of the m-leaders at stage £ +1, say j;, has

pe(Ge) < w(Bm) + 7(c™) < u(By)—y(c™) .
If T¢(k) = 6t we have on 4,
() =r(c™Y S hrge(Yer - - - Yerye))

hence our rule will play arm k. In fact, arm k will already be one of the m-
leaders at stage £ +1.

If T¢(k) < 6t we have on B,

He(Ge) + 7(t) < e (Ge) + 7(c™71) < ()
so that
Mt < (%) < Up(k),
so in any case, our rule plays arm k. 1

The next result follows from Lemma 7.2 exactly as Lemmma 5.3 followed from
Lemma 5.2 .
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Lemma 7.3 If 7 =g, then on the event 4.\ By, for every ¢c” <t < ¢!, we play
each arm k with k < {.

Corollary : For r = rg and ¢’ < ¢ < c¢”*! the number of times an arm k, k <, is
not played is less than

Y Po(&) + Pe(BE) = O(r™7) + O(rP),

IR TRk

so that the number of times an arm k ,k <, is not played is finite.
Proof of Step B : This step is required only if n < N.
Lemma 7.1 B: Let A, be as in Lemma 5.1 and let
Zy =bﬂ {9a(Yer " Yig) = u{B) forall l<sa<étandc™ st <cr*l .
-n

Then Pc(Af) = O(c™ r77) and Pp(Z,%) = O(c ™™ rP).
Proof : The proof is identical to the proof of Lemma 7.1. B

Lemma 7.2 B : For 7 =7, on the event 4. NZ,, if t+1 = k mod N for some

k=n and ¢™"! <t < ¢!, then either the rule plays arm k& at time £+1 or the
rule plays only arms with index < n at time £+1.

Proof : Suppose not. Then the least best of the m-leaders has index j; >n. If k
is one of the m-leaders, it cannot be the least of the m-leaders and is therefore
played. If k is not one of the m-leaders, we can consider the cases Ti(k) = 6t
and T;(k) < 6t seperately, as in the proof of Lemma 5.2. |

Lemma 7.3 B: If » = ro+1, then on the event 4. NZ,, for every c” <t <c™*}, the
m-leaders are among the arms X, k s n.

Proof : On A, a well-sampled arm has its h, statistic y(c™*!) close to its mean.
Reasoning exactly as in Theorem 5.1 , we see that the X, k <=, are well-
sampled at stage £+1 on A N\ Z,, hence the m-leaders are constituted of such
arms. |

Proof of Step C : This step is required only if n < N. Let j =n+1. From the
definition of S¢(j ), we see

Se(f)s#IN<a<t | ger Y. ... Yry) =un) .
Thus S;(j) = 0 when A = co, If A < o0, since ¥(t) < ¢ for any & > O for all large ¢,

we can argue as in the proof of Theorem 5.1 to see that for each p>0 we can
choose £>0 so small that

i Palgw (Y . .. . Yp)=N = li.'mgl)-bg(t)
b= J{CTHN)

and conclude the proof. |
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Asymptotically efficient allocation rules for the
multiarmed bandit problem with multiple plays Part II:
Markovian rewards!

V. Anantharam?®, P. Varaiya and J. Walrand
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ABSTRACT

At each instant of time we are required to sample a fixed
number m = 1 out of N Markov chains whose stationary transition
probability matrices belong to a family suitably parameterized by
a real number 9. The objective is to maximize the long run
expected value of the samples. The learning loss of a sampling
scheme corresponding to a parameters configuration C =
(¥, - -+, ¥y) is quantified by the regret R,(C). This is the
difference between the maximum expected reward that could be
achieved if C were known and the expected reward actually
achieved. We provide a lower bound for the regret associated with
any uniformly good scheme, and construct a sampling scheme
which attains the lower bound for every C. The lower bound is
given explicity in terms of the Kullback-Liebler number between
pairs of transition probabilities.

1. Introduction

We study the problem of Part I of this paper [1] when the reward statistics
are Markovian and given by a one-parameter family of stochastic transition
matrices P(¥) = [P(z,y,¥)],¥€R, z,y<X, where X C R is a finite set of

rewards. There are N arms X;,j =1, ' -, N with parameter configuration
C = (¥, . ..,.By). Successive plays of arm j result in X-valued random variables
Y;1.Ya - - - whose statistics are given by P(¥). The first play of an arm with

parameter 3 has reward distribution p (%) which need not be the invariant distri-
bution. We are required at each stage to play m arms. The aim is to maximize
in some sense the total expected reward for every parameter configuration.

; Research supported in part by JSEP Contract F48620-84-C-0057
Present address: School of Electrical Engineering, Cornell Univ., [thaca, NY 14853.



We assume that
forz,yeX, 9, ¥ER, P(z,y.¥) >0 =>P(z,y,¥)>0,
P(%) is irreducible and aperiodic for all 3 € R, and
" p(z,8)>0forallz€Xand ¥R (1.1)

For 8 € R, m(¥) = [n(z,8)], z € X, denotes the invariant probability distri-
bution on X and the mean reward

() = Zezxzﬂ(z.ﬂ) (1.2)

is assumed to be strictly monotone increasing in 4.

The values that can actually arise as parameters of the arms belong to a
subset ®CR. In §2-5, ® is assumed to satisfy the denseness condition (2.12).
This. restriction is removed in §6-7.

2. Setup

Let Y,,Y,, -+ -+ be Markovian with state space X, initial distribution p, sta-
tionary distribution 7 and transition matrix P, satisfying (1.1).
Lemma 2.1 : Let F; denote the g-algebra generated by Y,,Y,, - - - .Y; and Ga o-

algebra independent of F_ = YF‘ Let T be a stopping time of {F; \v G. Let

N(z,7) = i}ll(}’,l =z)

and
=1
N(z,y.7) = Ell(Yc =z,Y%41 =Y).
a=
Then for some fixed constant X
|BN(z.7) — n(z)ET| = K, (2.1)
and
|EN(z,y,7) - m(z) P(z,y)ET| < K, (2.2)

for all p and all T with ET < oo,
Proof : Let X° = U X!, with the Borel g-algebra of the discrete topology, i.e., all

tx1
subsets are measurable. The process {Y; , £ = 1] allows to define random vari-
ables B,;, Ba, ' - + called blocks with values in X° . First define the {F;} stopping
times 71, T2, + * © by

Te =inf{t >7e | =Yy

with 7o = 1. Then T < ¢ as., and for a sample path & = (¥;, ¥2 * * - ) the kth
block is the sequence (¥r,_ (u) Yr,_(a)+1: * " * + Yry(w)-1)- Observe that the range
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of B is restricted to sequences whose first letter appears only once. It is simple
to check that

th = U(Bl, Bz- R Bk)° (2'3)

Forz,y € X, y=¥1n Y2 ....Y%) € X°, let i(y) = length of y, N(z, y) = number
of times z appears in y, and N(z, ¥, y) = number of transitions from z toy iny
where y; - Y, is also considered a transition.

It is well-known, see e.g., [4] Chapter 1, Theorem (31), that {5} is Li.d. and
foranyz,y € X

EN{(z, B,) = n(z) El(B,).
EN(z,y, By) = n(z) P(z,y) EL(B)).

Let T=inf{t >7 | % =Y,). Then T = 7., where « is a stopping time of F,,.
Indeed {7¢-, < T} €Fy, _, see [5], Prop. II-1-5. By Wald's lemma

EY 1% =2)=EY Nz B,) = n(z) B(B,) B (2.4)
a=1 k=1
T-1
EY K =2 fan =y) = E,g,”"" y. By) = n(z) P(z,y) EL(B)) Ex, (2.5)
E(T-1) = Ebi 1(B.) = B(B,) Ex. (2.8)
=1

Observe that for a fixed constant K independent of p and 7, E(T-7) < K. In fact
the mean time to visit any state starting at Y, is finite.

Forz € X,

N{(z,T) - (T-1) < N(z,7) < N(z,T) .

Using (2.4), (2.5) and (2.8),
w(z) B(T-1) - K< EN(z,7) < n(z) B(T-1) + 1,

so that

n(z) Er — K< EN(z,7) s n(z) Br + K. (2.7)
Forz,yeX

N(z,y,T) - (T-7)= N(z,y,7) < N(z.y,T).
Using (2.4), (2.5) and (2.8),
m(z) P(z.y)E(T-1) - K < EN(z.,y.7) < n(z) P(z.y)E(T-1),
so that
m(z) P(z,y) Br - K< EN(z,y,7) < n(z) P(z,y) BT + K. (2.8)

The result follows from (2.7) and (2.8). |



-4-

Let ¥;,,%z - -+ denote the succesive rewards from arm j. Let F;(j) denote
the o-algebra generated by Yy, - -+ Yj, F(j) = ‘\i/ng(j). and G(j) = i\:{jF”(i)'
As in §2 of [1], an adaptive allocation rule is a rule for deciding which m arms to
play at time ¢+1 based only on knowledge of the past rewards
Yi1,.. .. Y. =1, -+ ,N and the past decisions. For an adaptive allocation
rule  the number of plays we have made of arm j at time £, T;(j), is a stopping
time of {F3(j)\v &J) , s = 1}. The total reward is

5= 3 X 0= $ DaNEnO).
i 1 Jj=1zeX

=las=

By Lemma 2.1,

[ES,~ 3} (8, )BT, ()] 5 const. (2.9)
J =

where the constant may depend on the parameter configuration, but not on £.

As in the i.i.d. case, the loss associated to an adaptive allocation rule  and
a configuration C = (8,, . . . ,¥y) is a function of the number of plays ¢, called
the regret. It is the difference between the maximum expected reward that
could have been achieved with prior knowledge of C and the actual expected
reward. Let o be a permutation of {1, - - - ,N{ such that

B(Bo(1)) = u(Bggg)) = - - - = pu(Baq)) -
Then the regret is

Ry, - By)= tjlu(m))-rsg .
By (2.9),

IRy, < )=l 5 poo)= 3 il (] < const. (2.10)

=1
where the constant can depend on the C.

An allocation rule is called uniformly good if for every configuration
Re(8y, - - - ,By) = 0o(t®) for every a > 0.

Let P and @ be irreducible and aperiodic stochastic matrices with P having
invariant distribution =, which satisfy P(z,y)>0 < @Q(z,y)>0. The
Kullback-Liebler number

I(P,Q) = 3 m(z) ), P(z.y)log M
z€X yex Q(z.y)
is a well-known measure of dissimilarity between P and &. Note that [/ (P.Q) is
just the expectation with respect to the invariant measure of P of the Kullback-
Liebler numbers between the individual rows of P and & thought of as probabil-
ity distributions on X. Let /(¥,A) denote /(P(¥),P(A\)). Under (1.1) and (1.2),
0 < I(¥,A) < oo for ¥ # A\. We assume that
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I(¥,]) is continuous in A > 8 for fixed 4. (2.11)
In §2-5 we also assume the following denseness condition on &:

forall A€®and 6 > 0, thereis A €0 s.t. u(A) <u(X) <u(A) + 6.  (2.12)

3. Alower bound for the regret of a uniformly good rule

For a parameter configuration C = (¥,. . . . ,¥y), define the notions of m-
best, m-worst and m-border arms exactly as in § 3 of [1]. By (2.10), an adaptive
allocation rule 9 is uniformly good iff for every distinctly m-best arm j

Et-Ti(j)) = o (¢%),

and for every distinctly m -worst arm j

E(T: (7)) = o(t%),
for every real a > 0.

Theorem 3.1 : Let the family of reward distributions satisfy conditions (2.11) and
(2.12). Let ¢ be a uniformly good rule. If the arms have parameter configuration

C = (¥,, . .. ,By), then for each distinctly m-worst arm j and each £ > 0,
, 1—¢)logt
lim PA§ T, > {(1-e)logt =1,
t-eca Ci ‘O) [(1’1'130("')) ’
so that
. EBeT(d) 1
liminf = '
te  logt (31, 9e(m))
where o is a permutation of {1, - - - ,N{ such that

W(Be(r)) = - - = p(Boy).
Consequently,

limi ERt(“sl- o By) - [Il-(’*-’o(m))"#(‘dj)]
t—co logt —jﬁmz-umst 1(%;8¢(m))

Proof: As in the proof of Theorem 3.1 of [1], let j be an m-worst arm and, for any
p > 0, choose A satisfying

BA) > 1l Bg(m)) > u(8;) ., and | I(8;,M)=1(8;.84(m)) | S pI(B;,85(m))
which is possible by (2.11) and (2.12) .

Consider the new configuration of parameters C° = (131....13,--1,)\.6,-“,...13”).

Let Y,,Y, - -+ denote the sequence of rewards from plays of arm j under the
uniformly good rule ®. Define

- p(Y, ) =} P(Yatytl+ '1")
Lr = log Jrpsy 2‘ A ATV

By (1.1) and the ergodic theorem I:—-* I(¥;\) a.s. [Pc]. Hence }—mg:‘cL., -
a
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I(84,A) a.s. [P¢]. For any K > 0 we have
limPciLy > K(1+p)I(¥5,A\)logt for some a < K logt} = 0.

5]

After this point the proof proceeds exactly as in Theorem 3.1 of [1]. |

4. Construction of statistics

An allocation rule is asymptotically efficient if for each C = (¥,, . . . ,8y)
R 1’ . .1’ -
limsup e (34 N) < [1{Bo(m)) —2(%;)] _
t~o0 logt jismworst 1 (95.80(m))

We will construct an asymptotically eflicient rule using a family of statistics
9a(Y ... . Y3),2<a=<t, t =23, as in §4 of [1], under the following
assumption:

for z, y €X, logP(z,y,¥) is a concave function of . (4.1)

The following lemmas are needed later.

Lemma 4.1 : Let Y,,Y,, : - -+ be Markovian with finite state space X, transition

matrix P, invariant distribution 7 and initial distribution p. Let f : X+ R be

such that ) n(z)f(z)>0andlet S; = éf(]’a). Let L = )] 1(inf Sg < 0). Then
zeX a=1 t=1 o=t

EL < oo,

Proof : We appeal to the large deviations theory for the empirical distribution of

a finite state Markov chain, see especially [2] and [3]. Let M be the unit simplex

in RX! identified with the space of probability measures on X. Define F: M > R

by F(v) = fo (z)Az)andlet K =fv € M | F(v)<0]. K is closed and 7 & X.
ZE

The process {Y;] defines for each ¢ = 1 a probability measure @, on M which
is the distribution of the {-sample empirical distribution of {¥;]. By the ergodic
theorem & -4, weakly as probability measures on M. From the large deviations
theory for this weak convergence, [3] Theorem II.1, there are constants 4 > 0,
a > 0 such that

&(K) <Ae~* forallt =1.

Now
Se = 2 N(z.t)f (z).
zeX
so that
@(K) = B1(S; = 0),
and the result follows. [ |

Lemma 4.2 : Let {Y;, £ = 1}, P, m, p be as in Lemma 4.1 and f : X » R be such

t—1
that ) m(z)P(z.y)f(z.y)>0. For t=2 let S¢= ) f(YaYasr) Let
z.y€X a=1



N = ) 1(S; =0). Then EN < oo,
t=2

Proof : We appeal to the large deviations theory for the empirical transition
count matrix of a finite state Markov chain, see [2]. Let M be the unit simplex
in RIXI? jdentified with the space of probability measures on X?, and define
F:MR R by FQ)= fo (zyv(zy). Let K=jveM?® | F(v)=<0]. Let

Y€

wP € M® be given by mP(z,y) = m(z)P(z,y). Then K is closed and 7P £ K.

{¥:} defines for each ¢t = 2 a probability measure @ ® on M(® which is the
distribution of the M® valued random variable whose component in the (z,¥)

direction is E%’_}{l—‘t—)— Then &® + 6,p weakly as probability measures on M,

From the large deviations theory, [2] Problem IX.8.12, there are constants 4 > 0,
a > 0 such that

Q@ K) < de~ for all t = 2.
Now

St = EXN(x.y.t)f(z.y).

zy€
so that
Q& ®(K) = Ei(S, = 0),
from which the result follows. : | |

Lemma 4.3 : With the same conditions as in Lemma 4.2, write u for

Y, m(z)P(z.y)f (z.¥). Given 4 > 0, let Ny = i 1(S; < A). Then
t=2

sy eX

. EN,
limsup 1
A-co

<L
n
Proof : For any £ > 0,

Ny = M+ 1+ § 1[S; = (¢ -1)-L—].
y 7 t=2 1+

Let g(z.) = f(z.y) - £—. Then Y, m(z)P(z.y)g(z.y) >0 and
. l+e zyEX
(8 = (t-1) P53 = { £ 9(¥a. Yau1) 5 03, 50 by Lemma 4.2,
a=1
EN, = -“%)—4- const,

for some constant depending on ¢&. Thus

. ENy 1+¢g
limsup — < .
A»mp A K

Letting £ -» O yields the resulit.



Theorem 4.1 : Let Y),Y,, - be the sequence of rewards from an arm. For
a = 2 write P*(Y®) for P(Y1,Y2) - - - P(Y3-1,Ys). Fora =2, let

Ha(3) = _Z Bl tya:
0
where h: (—00,0) - R, is a positive continuous function satisfying f h(t)dt = 1.
For any K > 0, let -
U(@.Yy Yo K) =int (8 | Wo(®)= K3, (4.2)
Then for all A > 48 > 7,
(1) Paln < U(@.Yi, - - Yak) foralla =2} = 1- %,

! 1 o - 1
@) lIm gk &, V(@ Y k) =N = sy

Heuristics : The reason for introducing U is similar to that in Theorem 4.1 of [1].
Proof : By (4.1), W, is increasing in ¥, so

U(a,Y},...Y,K) <8 < W,(¥) =K

lo

Now
{U(a,Y),...,Ys,K) < 7 for some a = 2}
c{U(a,Y,,...,Y3,K) < for some a = 2}
= {Wg(¥) = K for some a = 2§ .

W4 (¥) is a nonnegative martingale under ¥ with mean 1. By the maximal inequal-
ity,
1

Py Wa(8) = K for some a = 2} < e

establishing (1).

Let Nx = ) 1{W,{(A) < K). Given &£ > 0, choose 6 > 0 so that |/(¥,n)] < ¢ if
a=2
|[n=8| < 4. Now

PUYm) b
§{Wa(A) < K] < Elogh_%/;odpﬂ(y")\) h(n-A)dn < logK}

n>

P3(Y®
= flo, PAY* M) orVan < 1ogK-logAl ,
§ gm;%iu!’“(}"-?\) (n)dn < logK-logA}

where

4= [ hm-Ndn and ho(p) = HIA
In;'~3>|0<6



By Jensen’'s inequality

P(Y"
Wa(A\) < Kjc lo —u)—hﬂ(n)dn < logK —logAj.

Now

Y m=z8)P(zys) [ logmm-m(n)dn

z.yeX ln;o’]: s - P(z.yA)

= PlzyB) _ P(z.y.8) ;.
z.yzexﬂ(z'ﬂ)P(z'y'ﬁ)[log P(zyN) 4y ;’{"; 6log P(z.y.m) h°(n)dn]

=I(A) = [ I(®n) R (n)dn
-3 <8

|n"”

=I(8A) -£>0

for ¢ sufficiently small. By Lemma 4.3, ENg < o and

Bl _ 1
Koo logK = [(WA)—&

Letting £-0 gives

limsup ﬁ:ﬁ}é = T (4.3)
To bound EyNg from below, define the stopping time
Ty =infla 22 | Wo(A)=K}.
Observe that Ngy = Tg—1. Thus E4Tx < oo. Since
a(\) = ﬁ:gﬁ:ﬁ; zp;ﬁ’(’"y;’f;)‘ L h(t)dt = LoHa,
where M, is a martingale under 4 with mean 1, we obtain
logK < Eglog #r,(A) = logBsLy, + BglogMr,
< BslogLy, + logEsMr,
= BylogLy, . (4.4)

Now

= P(z,y.9)
EolOgLTK z.yEGXEoN(z Y, Tx)log P(z.y.k) '

and by Lemma 2.1
| ByN(z .y, Tx)—m(z,9) P(z,y,8)BsTx| < const.

Hence
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| Bglog L7, —1(8.\) By Ty | < const. (4.5)
From (4.4) and (4.5), and using Ng = Tx—1, we have
... BNy 1
bminf Toek = TN
which, together with (4.3), establishes (2). [ |
Theorem 42 : Fix p>1. For £t=23,: - and 2=<ast, let
g1 ... . Y)=u[U(a,Y,, - Y, t(logt)? ]. Thenforal A >8>,
(1) Paigea(Yy, . ... Y2) > uln] for all 2 < a =< t} = 1-0(t~Y(logt )P), (4.8)
. Pyigea(Yy, - . .. Y5) = pu(A) 1
2) lims < , 4.7
(@) timsup 3 log? TN ()
(8) g¢q is nondecreasing in ¢ for fixed a. (4.8)
Proof : (1) follows from (1) and (2) from (2) of Theorem (4.1), while (3) follows
from the form of U(a,Y;, - - ,Y¥3,K) and the assumption that u(¥) is monotoni-
cally increasing in 4. |

As estimate for the mean reward of an arm we take the sample mean

Yit+ - +%,
I A
Lemma4.4:Forany0<é6<1lande >0
Pat,max It . Y)-a®)] > 8 = (67 (+9)
for every 4.
Proof : Consider f(z) = z—u(8)+e. Then ) n(z,9)f (z) > 0. By Lemma 4.1, for

zeX
any p > 0, there is T(p) such that

Y PolinfSii<p,

¢ =T(p)
where S; = éf(}’,,). Forany ¢ = %%L
as1
Pd“lili&n“hu(yx- o Ya) < p(9)—e) = Pdi“l;liunstsa =0}
< P.,{aixaxfbsb < 0
for any 6%t < b < 6t. Hence
6(1-0)t P‘Os“m‘hu(yl- co Yo) <u(B)—e] <p.

A similar argument applies to P,,Q“rgﬁ ‘ha(Yl. o 1) > p(8)+el. Letting p » 0

concludes the proof. |
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5. An asymptotically efficient rule

Consider the allocation rule of §5 of [1] using the g, and A, statistics con-
structed in §4 above, and an initial sample of size 2N to initiate the gis statis-
ties.

Theorem 5.1 : The rule above is asymptotically efficient.

Proof : Reindex the arms so that u{¥,)= -+ =2 u(¥y). Let 0sl<m-1 and
m <n < N be defined as in the proof of Theorem 5.1 of [1]. Given the properties
(4.8). (4.7), (4.8) and (4.9) of the gy and hg statistics which we have already
established, the proof of Theorem 5.1 of [1] carries over word for word to estab-
lish the following assertions A, B, and C.

A:1fL >0, then E(t —T:(j)) = o(logt) for every j s L.
B:Ifn <N, let
By =#i{N<as<t| 3j=n+lst jisoneofthe m-leaders at stage c + 13}.
Then EB; = o(logt).
C:Ifn < N and 0 < & < u(¥,)—u(Bpn+1), then for j = n+1let
S¢(j) = #{N < a <t | All the m-leaders at stage a +1lare among the
arms k with u(89;) = u(9,), and
for each m-leader at stagea +1
| Ry @)(Yer, - - - Yer ) =) | <¢.but
still the rule samples from arm jat stage a+1 {.

For each p > 0 we can then choose £ > 0 so small that

1+g+o§12

As indicated in Theorem 5.1 of [1], these steps can be combined to obtain

t aﬂ(ﬂ()-jg 1N‘@’j)m'ﬂ(-") BB ) —14(;5)

limsup = = ,
t-ooap logt jiomaworst [(85.8m)
from which the proof follows using (2.10). [ |

8. Isolated parameter values : Lower bound

We proceed to examine the situation in the absence of the denseness condi-
tion (2.12). For a configuration C = (¥, ....,¥y), let ¢ be a permutation of
§1, - - - ,N] such that u(¥,q)) = * *+ = u(Be)). Throughout this section and §7,
A € O (A depending on C) is deflned as

A=inff9€@ | 9> Fgm)l .

In case Yo(m) = sup ¥, set A = co,
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Theorem 8.1 : Let the family of reward distributions satisfy (2.11). Let & be a
uniformly good rule. Let C = (¥, ....¥y) be a configuration and o, A as above.
If A < oo, then, for each distinctly m-worst arm j,

.. BeTe(d) 1
hminf =t = T0;0)

Consequently, by (2.10),
Ry(%y, + - - Oy) (P'("’c(m)) -”'(1’} )
liminf >
£ 00 logt jis mz—1mt F{CTON)

for each C.

Proof: Let j be an m-worst arm. Consider the parameter configuration
c’= (‘01,..,65_1.7\,1$j+1....1§}v) when the arm j has parameter A instead of ¥; and
proceed as in Theorem 3.1. |

7. Isolated parameter values : An asymptotically efficient rule
As in §7 of [1], an allocation rule is called asymptotically efficient if

L R ) () =13))
£ ~co logt § is m—worst 1(9;,A)
when A is finite for the configuration C = (¥;, . . . ,8y), and
limsup Re(%y, -+ - ,9y) < oo
§-~0c0

when A = o0,

The following lemma allows the construction of asymptotically efficient
rules.

Lemma 7.1: Let Y,,Y,, - -+ be samples coming under parameter ¥. For any
K>0and0<a< i—. with ¥(¢) = K t=* we have
Pyf,max |ho(Yy, . ... Ya)=p(®)] > ¥(£)} = Ot (logt)™), (7.1)
Y1+ +Y,
forall0 <8< 1,q >1and €0, where hg(Yy, ..., %) = —‘—T-J—
Proof :Fixz €X. Let T = inf §{¢ = 1| ¥; = z} and define 7,73, - - - and T, by

Tn=infit21| YTn_l'H =I;,
Ta=To+ T+ ' +7Th.

The random variables T,, n =1, are ii.d. Further, 7o and {T,.m = 1] have
geometrically bounded tails, see e.g. [4], Chapter 1, Prop. (79), and hence have
moments of all orders. Moreover, Er, = . Note that T, is the time of the

(n +1)st visit to z.

1 __
nw(z,3)
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n

Let S, = T,,—W-

— E7q, so that §S,, n = 1} is a martingale. A simple cal-
culation gives
1 1
4 - 4 - 2 - 2 2 - 4
ES; 4 < E(1o—Emg)* + 8t E(To—ET)*E(T, "—(;F)—) + 3t%E(T, p )
The maximal inequality applied to the positive submartingale {S¢4] gives, for any
K >0,

1-a) = 4a-2 2
Py} max |Ss| = K t17%) = O(t*™) (7.2)
which is O(t ~!(logt) ™) forany g > 1if0 <a < %- We have
- -Qa
{,max |ha(Yy ... Ya)—u(9)| > K t7
c U max |N(z.a)-an(z.8)| > KL (7.3)
gexdt=ast ) ' IX]
Further,
{N(z,a) > an(z,8) + GK—tl_i;ciT - .Ssal
IX| lan(z.0) + "—Kp‘ﬂ—- 1
SK t1™2
Cil?ﬁtlsbl = 2|X]| h
and
{N(z.a) <an(z,8) — sK ¢ 2 ciT 1-a >al
IX] i lan(z.8) - "—KT)‘-(-I—- 1
dK t1e
<tmex, ISl =TT
for ¢ sufficienty large. The result follows from (7.2) and (7.3). |

Theorem 7.1 : The allocation rule of §7 of [1], with an initial sample of size 2N to
initiate the g statistics, is asymptotically efficient.
Proof : Reindex the arms so that u(¥;) = - -+ = u(¥y). Using (7.1) and the pro-

perties (4.6), (4.7) and (4.8) of the g,, statistic, we can argue exactly as in the
proof of Theorem 7.2 of [1] to get

£ 8 uw)- $ us,)ET, G)
. i=1 j=1 (O ) —1(B5)
lu‘ris‘:lp logt = j is m —worst I ('aj -)\) =

if A € o0, and

¢ 3 u(%)-)ﬁ ()BT (3)

i1i=1 =1

i
u;r_l.s:p logt

< oo

if A = oo. The proof is concluded using (2.10).
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