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Asymptotically efficient allocation rules for the
multiarmed bandit problem -with multiple plays Part I:

LI.D. rewards1

V. Anxmtharam?, P. Varaiya and J. Walrand

Department of Electrical Engineering and Computer Science
and Electronics Research Laboratory,

University of California, Berkeley, CA 94720.

ABSTRACT

At each instant of time we are required to sample a fixed

number to >: 1 out of N i.i.d. processes whose distributions belong

to a family suitably parametrized by a real number tf. The objec
tive is to maximize the long run total expected value of the sam
ples. Following Lai and Robbins, the learning loss of a sampling
scheme corresponding to a configuration of parameters C —
(*if * - - . &n) Is quantified by the regret Rn(C). This is the
difference between the maximum expected reward at time n that

could be achieved if C were known and the expected reward actu

ally obtained by the sampling scheme. We provide a lower bound

for the regret associated with any uniformly good scheme, and

construct a scheme which attains the lower bound for every

configuration C. The lower bound is given explicitly in terms of the
Kullback-Iiebler number between pairs of distributions. Part II of
the paper considers the same problem when the reward processes

are Markovian.

August 6, 1986

* Researchsupported in part by JSEP Contract F48620-84-C-0057.
8Present address: School of Electrical Engineering, Cornell Univ., Ithaca, NY 14853.
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V. Anantharam.2, P.Varaiya and J. Walrand

Department of Electrical Engineering and Computer Science
and Electronics Research Laboratory,

University of California, Berkeley, CA 94720.

1. Introduction

In this paper we study a version of the multiarmed bandit problem with
multiple plays. We are given a one-parameter family of reward distributions with
densities / (xrf) with respect to some measure v on R 1? is a real valued param
eter. There are N arms X;-, j = 1, • • • ,N with parameter configuration
C = (-#!, .... tfjy). When arm j is played, it gives a reward with distribution
f (x&j)dv(x). Successive plays of arm j produce i.i.d. rewards. At each stage
we are required to play a fixed number, to, of the arms, 1 ^ m <. N.

Suppose we know the distributions of the individual rewards. To maximize
the total expected reward up to any stage, one must play the arms with the to
highest means. However, if the parameters tfy are unknown, we are forced to
play the poorer arms in order to learn about their means from the observations.
The aim is to minimize, in some sense, the total expected loss incurred in the

process of learning for every possible parameter configuration.

For single plays, i.e., to = 1, this problem was studied by Lai and Robbins,
[3-5]. The techniques used here closely parallel their approach. However, the
final results are somewhat more general even in the single play case. For multi-
pie plays, i.e., to > 1, we report the first general results. In Part II of this paper
we study the same problem when the reward statistics of the arms are Marko-
vian with finite state space instead of i.i.d.

The actual values tf that can arise as parameters of the arms are known a
priori to belong to a subset 0C]R. In §2-5, ® is assumed to satisfy the denseness
condition (2.4). This restriction is removed in §6-7.

The results constitute part of the first author's dissertation.

1Research supported in part byJSEP Contract F49820-84-C-0057.
z Presentaddress: School ofElectrical Engineering, Cornell Univ., Ithaca, NY 14853.



2. Setup

We assume that the rewards are integrable

aa

f\x\ f(x,#)dv(x)<oa, (2.1)
—oo

and the mean reward

OS

MW= f x f{x&)dv(x)
—so

is a strictly monotone increasing function of the parameter 1>.

The Kullback-Liebler number,

f(x.D/<*.*) =ftodffffif(x.*)di4*)

is a well-known measure of dissimilarity between two distributions. In general

0 ^ /(tf.X) ^ oo. We assume that

0 < /(tf.X) < oo if \ > tf , (2.2)

and

/(tf.X) is continuous in A> tf for fixed tf . (2.3)

In §2-5, the following denseness condition on 0 is imposed:

for all X€ ®and 6 > 0, there is A' € ©s.t. fi(\) < /i(X') < /i(X)+<5 . (2.4)

Let Yji.Yj2. ' ' • denote successive rewards from arm,;. Let Ft(j) denote
the a-algebra generated by Yj\, • • • ,!}*• let FqJJ) = V ^<0)» and

G(j) = v -^oo^)* An adaptive allocation rule is a rule for deciding which to arms

to play at time t + l based only on knowledge of the past rewards
Yji, . . . , YjTt(j), j = 1, • • • ,N and the past decisions. For an adaptive allocation
rule $, the number of plays we have made of arm j by time t, Tt(j), is a stop
ping time of \Fa(j) v G(j) , s ^ lj. By Wald's Lemma, (see, e.g., [l], Lemma 3.1),
if 3f denotes the total reward received upto time t,

ESt = 2/*WE7lO). (2.5)
i = i

For a configuration C = (tfj tf#), the loss associated to a rule is a func
tion of the number of plays t which gives the difference between the expected
reward that could have been achieved with prior knowledge of the parameters

and the expected reward actually achieved under the rule. Following [4], this
function is called the regret. Let a be a permutation of \1, • • • ,N] such that

M(tf<r(l)) ^ m0>o<2)) ^ ' ' ' ^ M0#<t(JV)).
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Then the regret is

/*(*i. *' ' •%) =*2M^(i))-ESt. (2.6)
1=1

The problem is to minimize the regret in some sense. Note that it is impos
sible to do this uniformly over all parameter configurations. For example, the
rule "always play the arms 1,2, • • • ,m" will have zero regret when /i(i*t) > mO*j)
for all 1 ^ i ^ to and to+1 ^ j ss N. However, when a parameter configuration
has A*(^i) < M^j) for some 1^ i ^ to and to+1 ^ j ^ N, this rule will have regret
proportional to t.

We call a rule uniformly good if for every parameter configuration
Rt(&u • • ' ,&n) - °(*a) f°r every real a > 0. We consider as uninteresting any
rule that is not uniformly good.

3. A lower bound for the regret of a uniformly good rule

Let the arms have parameter configuration C = (i5lf . . . .tfjv) and let a be a
permutation of \ 1, • • ,N ] such that

M0*o(i)) ^ • • • ^ mC*<W-

(a) If /x(tfff(m)) >MC#a(m+i)) we caU a™3 *(*) ff(m) the distinctly m-best
arms and <j(to +1), .... a(N) the distinctly TO-tuors* arms.

(b) If fJL(#a(m)) = M(tfa(TO+1)) let 0 ^ i < to and to -sn £ JV be such that

M(tfa(l)) ^ • • • 5b At(l>a(0) >A*(*o»*l)) = • • =Jl(*o{m))

= M^a(n)) > AtC*<7(n+l)) ^ • • • ^ K^{N))-

Then we call arms ff(l), . . . ,a(l) the distinctly m-6esf arms, and arms
a(n + l),...,a(N) the distinctly m^worst arms.

(c) The arms with mean equal to M(^a(m)) are called the m-border arms. Note
that in (a) a(m) is both a distinctly TO-best arm and an to-border arm. In
(b) the to-border arms are the arms j, Z+ l ^ j'> ^ n.

The separation of arms into these three types will be crucial in all that follows.

Let $ be an adaptive allocation rule. Then $ is uniformly good iff for every
distinctly TO-best armj

W-Tt(j)) = o(t«),

and for every distinctly to-worst arm j

Wt(J)) = o(t«),

for every real a > 0.

Theorem 3.1 : Let the family of reward distributions satisfy conditions (2.2),
(2.3) and (2.4). Let $ be a uniformly good rule. If the arms have parameter
configuration C = (i>i &N), then for each distinctly to-worst arm j and



each e > 0

so that

-4

hminf —:—7—^
«-« log* /(^.^a(m)) '

where a is a permutation of |1, • • • ,N\ such that

MC*(7(1)) s= • • -^ M(^a(JV))-

Consequently,

hminf :—7 ^
t^oo log*

y [M(*«fr0)-M(*i)]
j ism-wan* I(#j.*o{m))

for every configuration C = (tfj, . . . ,%).

Proof: Let jf be an to-worst arm. Fix p > 0. Assumptions (2.3) and (2.4) allow us
to choose a parameter value X satisfying

fl(X) > M(i>ff(m)) > MfPi)

and

| /(*,.A)-/(*j.*.<w) I *pl(#j >#*&))• (3-D

Consider the new configuration of parameters C* = (tfi,..,'fy-.i,A,tfJ+i,../##),
Le., replace tfy by X. Then arm j is one of the distinctly m-best for the parame
ter constellation C*. Let Yx, Y2, • • • denote the sequence of rewards from plays
of arm j under the uniformly good rule $. Define

L,=a?1log[7o^r3
By the strong law of large numbers — */(tfj.A) a.s. [Pc]- Hence

4-max A, -» /(^i.X) a.s. [Pc], For any K>0we have

lim PciA» > K(l+p)I(Vj.\)logt for some a < Alog* j = 0 . (3.2)
t—aa

We write

\Tt(j) < Kiogt, LTt(j) * Jr(l+p)/(*j.X)log*i

= U i7,t0') = a.L«^iir(l+p)/(^,X)logM.
a <Klogt

and

P^WO) = a, U * tf(l+p)/(^.X)log*J

/(n.x)

\Tt{J) sa.i, *"2if(l+p)/(iJi.A)logtj 6i«l+i»)/WiA)lofitl 6 = l/ \Io^j)
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fc t-xi"*WiX>pciTty) =atLa -g K(l+p)I(^,\)logtl .

Thus

Pc.[Tt(j) < Klogt, Lrt(j) * iT(l+p)/(^.X)log*)

* r^+^^PclTtU) <Klogt, Lrt(j) * K(lrp)I(^,\)logt\. (3-3)

Since $ is uniformly good and arm j is distinctly TO-best under
C* = (tf1,...i>J-1.X,tf;-+1,..,%)

Vc.(t-Tt(j)) = o(t«),

so that

(t-Klogt)Pc4Tt(j) < Klogt I = o(t*) ,

hence

Pc.\Tt(j)< Klogt j =o(t*~l) (3.4)

for every real a > 0.

Choosing K = 7-—_ >... .. , we have, from (3.2), (3.3) and ( 3.4),
(l+2£)/(i>j,X)

umPe|r,(;)<(1^j^A)i =o. (3.5)
Since (l+p)I(^jt^oim)) ;> /(tfy.X) by (3.1), we have

iimPeir,o)<(1+gpK1^;(tf.^[n))i=o.
for every p > 0. Writing , w v as 1—s proves the first claim. Letting s-»0

proves the second claim. I

4. Construction of statistics

Motivated by Theorem 3.1, we call an adaptive allocation rule asymptoti
cally efficient if for each configuration C = (^x $N),

t^oo iogt jfcm-wnrf /(V;^ff(m))

To construct an asymptotically efficient rule we need a technique for decid
ing when we need to experiment, i.e., when to play an arm in order to learn
more about its parameter value from the additional sample. At time t we have

Tt(j) samples from arm j from which we can estimate t5;- by various methods,
e.g., sample mean, maximum likelihood estimate, sample median. The decision
we have to make at time t + 1 is whether to play the to arms whose estimated
parameter values are the largest —"play the winners" rule —or to experiment
by playing some of the apparently inferior arms. To do this we will construct a
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family of statistics gta(Yi Ya), 1^ a ^ t, t - 1,2, • • • , so that when gtTt(j) is
larger than any of the to best estimated parameter values this indicates the
need to experiment with arm j. Such statistics are constructed in [5] for
exponential families of distributions, based on results of Pollack and Siegmund
[7]. We use a similar technique to construct gta(Yi, . . . , Ya) under the following
assumptions

logfix.'O) is concave in $ for each fixed x, (4.1)

fx2 f {x&)dv(x) < oo for each tf GR. (4.2)

The reader may wish to glance at the beginning of §5 at this point, to see how
these statistics are used to construct an asymptotically efficient rule.

Lemmas 4.1 and 4.2 are needed in the proof of Theorem 4.1.

Lemma 4.1 : Let St = Xt+ • • • +Xj where Xi, X2, • • • are Li.d., EXi > 0, and let
00 ao

N = S !(s« ^ 0), I = £ 1(infSa £ 0). The following are equivalent:

(a)E(|Xl|2l(Xl=sO))<oo;
(b) EN < oo;
(c) EL < 00.

Proof : See Hogan [2]. I

Lemma 4.2 : Let St = Xi+ • • +Xt where Xi.Xg, • • • * are i.i.d., EXi > 0. Given

A>0. let NA = § !(s« * A)- If E( lxi l2l(xi * °)) <°°. then
t si

ENA 1

^Iup—*EXT

Proof : For s > 0

EXi t =1 1+*

Let Zt = X* - /4 \ . Then
(1+e)

=5 2E|X1|21(X1^ 0) +2E|X1|21(0 <Xi ^ ^ +2(y^2

< 00.

By Lemma 4.1, for some constant K depending on s,

ENa ^ AQlr£^ +K.A EX!

so that
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W*a , 1+e
hm2P-T-^ exT

Letting e-»0 concludes the proof. I

Theorem 4.1: Let Yi,Y%, • • • be the sequence of rewards from an arm. Let

0 - /(n.*+o
^-/A^SSr*^

where /i : (—°o,0) -» R* is a positive continuous function with J h(t)dt = 1. For
—oo

any K > 0 let

tf(a,rlf • • • ,ra.#) = inf {* | Wa(4) * K\. (4.3)

Then for all X > tf > 77,

(1) Pdrj < U(a,Yx, ••• ,Ya,K) for all a 2: lj ;> l-JL

1 ^ r, , r,/_ V „ r^X ^ >, _ 1(2) lim --^r 2 P*W(*,YX, ••• .r.JT) 5= Xj = , .
JT^oo logA at x /(v.X)

Heuristics : Having observed samples Yx, • • • ,Ya, for any tfeR, JKtt(i>) is a
natural statistic to test the hypothesis that the samples have been generated by

a parameter value less than tf against the hypothesis that they have been gen
erated by 1>. By the log concavity assumption (4.1), FKB(i>) is increasing in i*.
Therefore, for fixed K, for any tf > U(a,Yx Y*,K), it is more likely that the
samples have been generated by parameter values below 1> than by tf, whereas,
for any 1> < U(a,Yx,...,Ya,K), it is more likely that the samples have been gen
erated by tf than by parameter values below tf. When we use U(a, Yx,...,Ya,K) to
decide if there is a need to experiment, we choose K appropriately —the larger
K is, the more sure we will be that the samples have been generated by parame
ter values below i? before we reject the possibility that they may have been gen
erated by tf.

Proof : By (4.1), JKB(tf) is increasing in 1>, so

U(a,Yx Ya,K)*V O *.(*)*£

Now

\U(a,Yx,...,Ya,K)£rj for some o > lj

C \ U(a,Yx Ya,K) < tf for some a ^ lj

= \Wa(i}) > Kfor some a s lj.

Wa(&) is a nonnegative martingale under tf with mean 1. Bythe maximal inequal
ity, see e.g. [6], Lemma IV-2-9,

establishing (1).

P<A KW ^ K for some a ^ lj <; ~
K
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Let NK = 2 1(Wa(\) < K). Given s > 0, choose 0 < (5 <X-tf so that
a si

|/(tf,?7)| <eif |?7-tf| <<5.

Now

\Wa(\)<K\c\log f f[L&^h(:n-\)dV<logK]
|*I-5| <*6 =1/ Ub.AJ

=ilOg / ft i^f-/l°(77)d77 <logtf-lOg^j,

where

4= / A(iJ-A)*J. *•(,)= *&=*!-.

By Jensen's inequality

/(n.r?)

Now

i*.(X) <iT| CJJ / log; *^ h°(r))d<n <logtf-log.4 j.

Thus we must examine the sum of i.i.d. variables

*a / *« fir 'xi h'h)d*i-
where J& has distribution / (x,i$). These random variables have mean

1X1=^[log /ou)~+ J <*log /i^10 (7?)d7?] */(*x)~e >°«
for s sufficiently small.

We proceed to verify the condition of Lemma 4.2 for the random variables

X*.

OfcXtlCXt^O)* / log £g^i(£gi^U 1)7*0 ()d
\v-*\<6 /iV) /W1.XJ

n>*

/(y».n) .,/ov?)
In-*l<* /wi«A) /IM)

//<*.*)[log^°l(#i^l)^

Observe that
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(a) a:[loga:]2 *s 4"on \x <; lj; (4.5)
e

(b) Since X> 77 > tf, there is 0 < a < 1 such that 77 = atf + (l-a)X. By (4.1), for
each*, f(x,rj) 2* f (x,V)af (x,\)(l-«\ Hence

/(g.tf)/(g.A) ^ (^(i-a), (XtX)«. (4.6)
/(x,?7J

Let 770 = aX + (l-ct)tf. By (4.1) again,

/(x.tf)*1-*)/ (*,X)a *S / (x,77°). (4.7)

Putting (4.4). (4.5). (4.6) and (4.7) together gives E^lft *0)? * £-.
We may now use Lemma 4.2 to conclude E^Nx < <» and

hmsup ^
a>« iogir " /(i>,x)-e •

Letting s-*Q gives

»E»3ijr*7*far <4-8)
We now bound E^Nr from below. Define the stopping time

7^ = infja ;> 1 | Wm(\)*K\.

Observe that N&& 7jr-l. Thus E^TK < °°. Since

w (x) - fr -^^ r ft £<2i^±£Lfc,,v**a(A) - ^T^xridn /(3W) mo*

where ^if0 is a martingale under 1> of mean 1, we see that

logJTsS EjlogflV^X) = E^ogZ,^ + Etflog^

^ E^log/^ + logE*^^

= J(*.A)«»7jr * /(*,A)Wfr.

which, together with (4.8), establishes (2). I

Theorem 4.2: Let^te(rl Ya) = fj[U(a,Yx, • • • ,Ya,t(logt)P)] for somep > 1.
Then for any X > tf > 77

(1) P*\9ta(Yx Ya) > Mr)) for all a -s t j = l-0(*-1(logO"p): (4.9)

tP*l9ta(YX Ya)^fJL(\)]
(2) limsup ^ _ ^ 1 . (4.10)

t-00 log* /(tf.X) v
(3) 3ta is nondecreasing in t for fixed a. (4.11)

Proof : (1) follows from (1) and (2) from (2) of Theorem 4.1. (3) follows from the
form of U(a,Yx, • • • ,Ya,K) and the assumption that fi(i}) is monotonic ally
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increasing im5. |

As estimate for the mean reward of an arm we take the sample mean

*-(r, Ya) =Y,+ "a *Ya •
Tanuria 4.3 : For any 0 < 5 < 1 and s > 0

P„J max | M7! ^)-mW I > « I = o(t~l) (4.12)
of * a -A t

for every tf.

Proof : Let Za = Y9-fjj(p)+e and St = Zx+ • • • +Zt. By Lemma 4.1, using (4.2),

g P*\ inf S0 =s Oj <oo.
t a 1 •*'

Hence forp > 0, there is T(p) such that

g P«iinfS.*0j<p.

For any t ss -^-,
PJ min /t^i y.) <fiW-e\ = PJ min S0 ^ Oj ^ P*| inf S. * Oj

of £ a ^ c oC^a^t sin

for any <52* ^ 6 <> 6t. Hence

6(l^)tP*\ min ha(Yl Ya) </2(4)-ej <p .
di as a * t

A similar argument applies to P*\ max /^(I^i, . . . , Ya) >/z(i>)+ej. Letting p->0
St •& a •& t

concludes the proof. |

5. An asymptotically efficient allocation rule

Let the N arms correspond to C = (&x 1>#). Assume that the arms
have been reindexed so that

/j&x) => • • • ss fi(i}N)

With gta and Aq as in §4, consider the following adaptive allocation rule.

1. In the first N steps sample m times from each of the arms in some order

to establish an initial sample.

2. Choose 0 < 6 < —=-. Consider the situation when we are about to decide
N*

which 77i arms to sample at time t+l. Clearly, whatever the preceding decisions,

at least m among the arms have been sampled at least 6t times. Among these
"well-sampled" arms choose the m-leaders at stage t + l, namely the arms with

the 77i best values of the statistic mij), j = 1, • • • ,N, where

juett) = hTt(j)(Yjx, *' ' >YiTtU))-
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Let j e (1, • •• ,N] be the arm for which t +l s ; mod N. Calculate the statistic
U% (j) where

UtU) = 9tTtU)(Yji, • • • ,YjTtU)).

(a) If arm j is already one of the m-leaders then at stage £+1 play the m-
Leaders.

(b) If arm; is not among the m-leaders, and Ut(j) is less than ^{k) for every
m-leader k, then again play the m-leaders.

(c) If arm j is not among the m-leaders, and Ut(j) equals or exceeds the fM
statistic of the least best of the m-leaders, then play the m-1 best of the

m-leaders and the arm j at stage t.

Note that in any case the m-1 best of the m-leaders of always get played.

Theorem 5.1: The rule above is asymptotically efficient.

Proof : The proof consists of three main steps. We first summarize the steps and
indicate how they combine to yield the result First, define 0<l ^ m-1 and
77i ^ n ^ N by

l4$x) fe .. * /i(tfi) > /i(tft+l) = .. =MO = • = M(tfn) > Mtfn+l) * » * K^n)-

Notice that with reference to (a) at the beginning of §3, in case
A*(^»+i) = ' • =Ai(tfm) >A*(tfm+i). we are setting n - m, so that the m-border
arms are in this case also the arms Xy, l +l^j^n.

jLt(l5i)-/z(l>m)
Throughout the proof fix £ > 0, satisfying s < - if I > 0 and

s < - if 71 < TV.

Step A: This step is required only if I > 0.

If fify) * fjL^) then E(t-Tt(j)) = o(logO-
Step B : This step is required only if n < N. Define the increasing sequence of
integer-valued random variables B\ by

P% - §\N ^ a ^ t | For some j ^ n +1, j is one of the 771-leaders at stage a +1 j

where # { j denotes the number of elements in \ j.

ThenEBt = o(logf).

Step C : This step is required only if n < N. For each j ^ n + 1 define the increas
ing sequence of integer-valued random variables St(J) by

S«0) - #\N ^ a ^ t J All the m-leaders at stage a + 1 are

among the arms k with fJ.(^k) s* M(^n)

and for each m-leader at stage a 4-1

I hTa{k)(Ykx YkT (k))-K^k) I <s ,
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but still the rule plays arm j at stage a +1 j.

Then, for eachp > 0 we can choose s > 0 so small that

We now indicate how these steps combine to yield the theorem.

1. ;?«(*!, •• ,%)= 2 \jJ,^m)-fJL(^)]ETt{j) + 0(logt).
/an+i

Indeed, from (2.5) and (2.6) we have

#«<*!. •• •%)= tti#j)(t-ETt(j))+ S M^m)-M^)]En(j)
jsX /an+l

If we observe that

we get

+m(AJ[ 2 ('-Er«(?))- S Er.O)]. (5.1)
i=t+l yam+l

2 *- t E7K;)= t(E^OM).
/a t+l /=i +l j al

so the first and third terms on the right in (5.1) are o (log*), from Step A.
Remark : If n = N this already yields the theorem.

2. Suppose n < N andj & n + 1. Then

Tt+i(j)*StU)

+ §\N ^ a ^ t | All the m-leaders at stage a + 1 are among

the arms with index ^ n, but for at least

one of the m-leaders at stage a + 1, say A:,

I "Ta{k)(Ykx YkTaik))-fi(Vk) | > s j

+Bt + N. (5.2)

Take expectations on both sides. By Step B, EBt = °(logf). Noting that

Pc\ The leaders at stage a all have index ^ n but at least one

of them, say arm A:, has | hT^k){Ykx YkTa{k))-fMPk) I > *!

* Pel max max | MEl Y^-fifa) | > ej

= 0(0 by (4.12).

we see that the expected value of the middle term on the right hand side of (5.2)
is o(log£).



-13-

By Step C we have

EcSeO) 1
^up^oiF-^7(^j-

from which the theorem follows.

We now prove the individual steps.

Proof of Step A : Recall that this step is required only if I > 0. Pick a positive
integer c, satisfying c > (1—N2d)~l. The idea behind the choice of c is that

£^£—>N6t fort >cr.
N

Lemma 5.1: Let r be a positive integer. Define the sets

Ar= n \ max | ht(Yjx Ifc )-/*(**) | * s j.

Br = n \ 9ta(Ykl, • • • ,Yka) ^ At(^t)-£ for 1 <5 a «s <Sr and cr_l sS * <S cr+1 j.

Then ^c(^) = °(c-r) and Pc(&f) = °(c~r) where ^ and i?£ denote the comple
ments of 4- and i?r respectively.

Proof : From (4.12) we immediately get Pc(A?) = o (c"7"). From (4.9) we see that
Pc(Br:)=0(c-rr-i>)=o{c-r). I

Lemma 5.2 : On the event ArC\BT, if t + l a k mod JV for some k^l and

cr_1 ^ t ^ cr+1, the rule plays armX*.

Proof : On Ar the h^ statistics of the m-leaders are all within s of their actual

means. If arm X* is one of the m-leaders at stage r + 1, then according to the

rule it is played. Suppose X^ is not an m-leader at stage r + 1. On 4- the least
best of the m -leaders at stage r+1, say jt, has

to(jt) </x(tfi)-e-

In case Tt(k) ^ 6t, we have on Ar,

M(^i)-£ ^nTt(k)(Ykx YkTt{Jk))

hence our rule will play X& since it will already be one of the m-leaders at stage
r + 1.

In case Tt(k) < 6t, we have on Br,

/ifa) - s z Ut(k),

so in any case, our rule plays X*. |

By Lemma 5.2, on the event ArC\BTt for cr ^ t *£ cr+1, the number of times
we have played arm Xk, k s I, exceeds

N-l(t-cr~l-2N)

which exceeds N6t if r ^ r0 for some r0.



-14-

Lemma 5.3 If r ^ r0> then on the event ArC\Br, for every cr s£ t ^ cr+1, we play
each arm X* with k & I.

Proof : By Lemma 5.2, on i^n^r.and cr ^ r ^ cr+1, r ssr0> all arms Xfc, A: < I,
are well sampled. Since on Af., every well sampled arm has its /i„ statistic £
close to its actual mean, all arms Xk, k <* I must be among the m-leaders.
Further, they cannot be replaced by a nonleading arm's gta statistic indicating
the need to learn from it, because none of them is the least best of the m-

leaders. I

Corollary: For r ^ r0, the expected number of times arm X*., A: <i I, is not played
during cr ^ t <> cr+1 is less than

2 Pc(Afi) + Pc(B°) = o(l).
Cr**:SCr+t

Hence the expected number of times arm Xk,k ^l, is not played in t steps is

o(logO. I
Proof of aep B : Recall that this step is required only if n < TV. The proof is
identical in form to that of Step A and proceeds as follows.

Lemma 5.1 B : Let Ar be as in Lemma 5.1 and let

Zr = O ! 9ta(Ykx, • • • ,Yka) ^ fJ.(^k)-£ for 1 ss a <; 6t and cr_1 <s r =s cr+l j.
k-An

Then Pc(A°) = o^-1") andPc(Zrc) = 0(0^).

Proof : The proof is identical to the proof of Lemma 5.1. I

Lemma 5.2 B : On the event ArC\Zr, 'if t+l & k mod TV for some k ^ n and

cr~l ^ t ^ cr+l, then at time r+1 the rule only plays arms with index ^ n.

Proof : Suppose not. Then k is not one of the 771-leaders and the least best of the

77i-leaders has index jt > n on the event Ar with fM(jt) < MC#n)-£-

If Tt(k)^6t,

M(tfn)-e ^ ^(*)(5fci **7*t(*))

on i4r, hence our rule will play Xfc ; in fact, Xk will already be one of the m-

leaders at stage t + l.

ltTt(k)<6t,

fi(#n)-e * Ut(k)

on Zr, hence our rule will play Xfc. I

Let r0 be defined as in the proof of Step A. We now show that on^n^T" f°r
r St r0+l and cr_1 ^ t ^ cr+1, m—l of the m-border arms have been played 6t
times:

1. First consider the case n = m. For each of the m-border arms

r—cr~*—2TVXy , £+1 ss j ^ n, there are at least — > TV<$£ times prior to t at which

£+ 1 s j mod TV. Choose <5r of these times. By Lemma 5.2 B, on the event
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ArOZr each of the arms that is played at this time has index ^ m. But this
means that the arm Xj is played at this time. Thus we see that at stage t+l, all
m-border arms are well sampled, and there are m—I of them.

2. Suppose n > 77i and that fewer than m—l of the m-border arms have
been well-sampled. Let X,- be one of the arms that is not well-sampled,

t —cr~*—2TV
l+l^j^n. There are at least ., > N6t times prior to t at which

* TV

t+l » j mod TV. Choose N6t of these times. Since arm j is not well-sampled,
we can choose (TV-1)<5* of these times at which the rule plays only arms whose
indices are ^ n, by Lemma 5.2 B above. We know by Lemma 5.3 that at each of
these times the rule plays all arms whose indices are ^1 on the event ArC\Br
which contains the event ArC\Zr- Thus (m-l)(N-l)6t plays of m-border arms
with index *j are made at these times. Note that there are n—l—l^m—l such
arms. Also note that at these (TV-1)<5* times, no one of these arms can undergo
more than (TV-l)dt plays. Suppose that only p <m-l of these n-J-1 arms
undergo 6t plays or more at these times. Then the total number of plays of
these arms at these times is strictly less than

p(N-l)6t + (n-l-l-p)<Jr

ss (m-i-l)(TV-l)<5r + (N-l)6t

= (m-£)(TV-l)«

which gives a contradiction.

The analog of Lemma 5.3 is

Lemma 5.3 B : If r 2s r0+l, than on the event A-O^r. for every cr &t «s cr+1, the
771-leaders are among the arms X*. k ^ n.

Proof : On Ar a well sampled arm has its h^ statistic s close to its mean. By the
above reasoning, at least m of the X^, k ^ n, are well sampled at stage t + l,
hence the m-leaders are constituted of such arms. [Note that, unlike in Lemma
5.3, we do not assert that the arms that are played at such times are among the
Xfc, k -& n. This is in fact false.] I

Step B follows from Lemmas 5.1 B and 5.3 B.

Proof of Step C : Recall that this step is required only if n < TV. Let j s n + 1.
Then observe that

S(0) =S #|TV * a <, t | g*TfXU){Yn YiTaU)) * A^m)-eJ

^ #|TV <> a ± t | gtTa{i)(Yix YjTfi{j)) * M#m)sL by (4.11)

<; #*TV =s 6 * t | gtb(Yjx Yjb) * ti(#m)-el

where YjX,YjZ, • • • denote the rewards on plays of arm j. Thus

EcStO") * E*, #*TV ^ b * t | ^(35, Yjb) > ^m)-e\

* £ P«l9to(Yjx Yjb)^fj.(^m)'sl
b = 1
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But by (4.10) we can , for eachp > 0, choose e > 0 so small that

t P*\9tb(Yjx Yjb) >/i(*m)-el *7^3*" loe<
which establishes Step C and Theorem 5.1. I

Remark : We have not examined whether our gta statistics can be recursively
computed, or whether there are other recursively computable gta statistics
satisfying (4.9), (4.10) and (4.11). For exponential families this is possible, since
U(atYx Ya,K) depends only on the sample mean. Moreover, for Bernoulli,
Poisson, normal and double exponential families, explicit recursively comput
able gta statistics are given by Lai and Robbins [4].

6. Isolated parameter values : Lower bound

Following Lai and Robbins [5], we will now examine the situation for multiple
plays when the denseness condition (2.4) is removed. Thus some of the allowed
parameter values may be isolated. For a parameter configuration
C = (tfi tfjy) let a be a permutation of {1, • • • ,TVj such that
A*(*a(i)) as • • • 2= fityeVf)). Throughout this section and §7, X e 0 (X depends on
C) is defined as

X= infK e 0 | i>>i?ff(m)J (6.1)

In case ^a(m) = sup tf, set X = <».

Theorem 6.1: Let the family of reward distributions satisfy (2.2) and (2.3). Let $
be a uniformly good rule. Let C = (&x ##) be a parameter constellation
and a, X as above. If X is finite, then, for each of the m-worst arms j

.. . . EcTt(J) ^ 1 /« r>\hminf ——r— st .,. xn • (6.2;
t-« logr /Cty.X)

Hence

t-oo logr jia m-worst H*j*)
Proof : Let j be an m-worst arm. Let C* = (tfl,..,i>j_i.X,'fy+l,..,tf#) denote the
parameter configuration when the arm j has parameter Xinstead of tfj. Repeat
ing the analysis of Theorem 3.1 we see that

for every p > 0, (see Eqn (3.5)), which proves (6.2). I

7. Isolated parameter values : An asymptotically efficient rule

We call an allocation rule asymptotically efficient if

limsu fl(*i. ••• .*n) ^ y Wfliimd-Mftj)]
t^«P logr j ism-wont I&j^)
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when Xis finite for the parameter constellation C = (i?i tf#), and

limsup Rt&i, ' • ' .%) < °°

when X = oo .

The allocation rule of §5 is not asymptotically efficient in case X = °°. Note
that this means I =0, i.e., there are no distinctly m-best arms. For a rule to be
asymptotically efficient in this case means that the expected number of plays of
each of the distinctly m-worst arms is finite. However, with the rule of §5, the
least best fit statistic among the m-leaders will fall infinitely often below
M(^o(m)). wbUe the $rto statistics grow in such a way that we are forced to play
the 77i-worst arms infinitely often.

Toget around this problem, following Lai and Robbins [5], we make a simple
modification of the rule of §5, sampling from the poorer looking arms only if
their gta statistic exceeds the least best fit statistic of the m-leaders by a mar
gin, with the margin decreasing to zero suitably. Let y(t), t St 1 decrease mono-
tonically to zero such that, for some q > 1. we have, for each 1> € 0,

P^J max \ha(Yx Ya)->4#)\ >7<0J = ^^(logr)"*) . (7.1)

y |, , , +y
where ha(Yx, . . . , Ya) - —. Such functions can be found if, for exam

ple,

f\x\4f(x,#)dv(x) <oo forall tf€0, (7.2)

which we assume henceforth.

Tgrama : Let the family of reward distributions satisfy (7.2). Then (7.1) holds for

7(0 = Kr~" for any K> 0 and 0 <a < j-.

Proof : Let St = Zx+ • • • +Zt. where Za = Ya - EYa. Then |St4j is a positive
integrable submartingale. By the maximal inequality [6],

Asimple calculation gives ESj4 ^ 9t2EZx*, from which

P<>l8m*&t\ha(Yx ro)-MW I>Kr"« j<L ^^
which is 0(f-1(log*)~*) for any q > 1, when 0 <a < j-. •

Condition (7.2) can obviously be considerably relaxed. We have not exam
ined this issue.

We now describe the modified rule.

1. In the first TV steps sample m times from each of the arms in some order

to establish an initial sample.
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2. Choose 0 < 6 < -~. Consider the situation at stage t + l, when we are
T\r

about to decide which tti. arms to play at time t + l. Let fif denote the h^ statistic
of the least best of the tti-leaders at stage t+l. Then calculate

fit =jnf>W I A*W >/V +7(01 •

fit could be oo.

3. Let k be the arm for which t+l & k mod TV. Calculate the statistic

Ut(k).

Ut(k) = gtTt{k)(Yx YkTt{k)).

Decide which of the arms to play at time t + l based on fit and Ut(k) as follows :

(a) If arm k is already one of the tti-leaders, then at time r + 1 play the m-
leaders.

(b) If arm k is not among the tti-leaders and Ut (k ) < fif, then at time r + 1 play
the m-leaders.

(c) If arm k is not among the m-ieaders, and Ut(k) ^ fi?, then play the m-1
best of the m-leaders and the arm k at time r+1.

Theorem 7.1: The rule above is asymptotically efficient.

Proof : The proof consists of three steps, parallel to the proof of Theorem 5.1.

Step A: This step is required only if I > 0.

If fi(pj) ss fi(-v\) then E[f-Tt(j)] < oo.
Step B : This step is required only if n < TV. Define the increasing sequence of
integer valued random variables Bt by

Bt = #|TV ^ a £ t | For some j^n+l.j is one of the tti-leaders at stage a +1 j

Then EBt < oo.

Step C : This step is required only if n < TV. For each ;sn+l define the increas
ing sequence of integer valued random variables Sj (j) by

St(J) = #|TV ^ a ;S t | All the m-leaders at stage a +lare among the

arms A:with fi(^k) ^ /x(tfn).

and for each m-leader at stage a +1 ,

I *T9{k)(Ykx fo>.Cfe))-ju(*fc) I <7(0 •

but still the rule plays arm j at stage a +1 j .

Then, if X < o°, for each p > 0 we have

•w-^gsS-**
while if X = oo, St(j)=0.



-19-

The argument that shows how these steps combine to prove asymptotic
efficiency is identical to that of Theorem 5.1. We proceed to the individual steps.

Proof of Step A : This step is required only if I > 0. Let c > (l-TV2^)"1 be an
integer, and let r0 be such that

TV-1(r-cr+l-2TV):>TV<5r,

7(cr-1) <

(if I > 0), and

7(cr-l) <r4*n)-l***+l)

(if n < TV), for all r ^ r0.

Lemma 7.1: For r = 1,2, • • , define the sets

4= Hi max \ht(Yjx Yjt)-fi(^)\ *y(cr+l)\,
l*j*N ocr~l*t*cr+l

Br = H \ 9t*(Ykx, • • • ,Yka) *= fi(#i) ioTl^a^tt and cr~l <s t *s cr+1 j.

Then PC(A^) = 0(c^ r"*) and PC(B^) = 0(c~r r"*) where A? and #? denote the
complements of Ar and f?r respectively.

Proof : From (7.1) we get PC(A?) = 0(c^ r~*). From (4.9) we get
Pc(B?) = 0(c^ r~r). I

Lemma 7.2 : For r ^ r0, on the event Ar C\Br if t +1 a A: mod TV with fc ^ £ and

cr_1 <xt <i cr+1, the rule plays arm A:.

Proof : As in Lemma 5.2, we can suppose arm k is not an tti-leader at stage r+1.
On Ar the least best of the m-leaders at stage t + l, say jt, has

rkUt) * f**m) + 7(cr+1) < M(*i)-7(cr+1) •

If Tt (k) 2* 6t we have on Ar

M(*i)-7(cr+l) **rtM(Ybl YkTt(k)) .

hence our rule will play arm k. In fact, arm k will already be one of the m-

leaders at stage r + 1.

If Tt(k) < 6t we have on Br

tM(Jt) + 7(0 < JMtit) + 7(cr_1) < MC*i) .

so that

Atf<A*(*i) *£*(*).

so in any case, our rule plays arm A:. |

The next result follows from Lemma 7.2 exactly as Lemma 5.3 followed from
Lemma 5.2 .
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Lemma 7.3 If r &r0, then on the event Arf\BTt for every cr ^ r ^ cr+1, we play
each arm k with k <, L.

Corollary : For r ^rQ and cr ^ t <> cr+1 the number of times an arm A:, k £ I, is
not played is less than

S Fc(4rc) + Pc(Bf) = 0(r-«) + 0(r~P),

so that the number of times an arm k ,k ^ l,is not played is finite.

Proof of Step B : This step is required only if n < TV.

Lemma 7.1 B: Let Ar be as in Lemma 5.1 and let

Zr = n \ 9ta(Ykx, • • • ,Yka) ^ fJ.(*k) for all 1 *s a <> St and c7*-1 -s r ss cr+1 j.

Then Pc(40 = 0(0^ r"*) and Pc(ZrG) = 0(c-r r"»).

Proof : The proof is identical to the proof of Lemma 7.1. |

Lemma 7.2 B : For r ^r0 on the event ArC\ZT* if r+1 ™ k mod TV for some
k <^n and cr_1 :S t ^ c1"1"1, then either the rule plays arm A: at time f+ 1 or the
rule plays only arms with index ss n at time t+l.

Proof : Suppose not. Then the least best of the m-leaders has index jt >n. If A:
is one of the m-leaders, it cannot be the least of the tti-leaders and is therefore

played. If A: is not one of the m-leaders, we can consider the cases Tt (k) ^ 6t
and Tt(k) *s <5r seperateiy, as in the proof of Lemma 5.2. |

Lemma 7.3 B : If r &r0+l, then on the event A-C\Zr, for every cT -&t -& cr+1, the
m-leaders are among the arms Xk, k s n.

Proof : On Ar a well-sampled arm has its ha statistic 7(cr+1) close to its mean.
Reasoning exactly as in Theorem 5.1 , we see that the Xk.k^n, are well-
sampled at stage t + 1 on ArC\Zr, hence the tti-leaders are constituted of such

arms. |

Proof of Sep C : This step is required only if n < TV. Let j'in+ 1. From the
definition of S< (j), we see

Sttt) * #\N * a * t | garjj)irsi 35^0) ^ M(tfm)j .

Thus St(j) = 0 when X= oo. If X< oo, since y(t) < s for any s > 0 for all large f,
we can argue as in the proof of Theorem 5.1 to see that for each p>0 we can
choose s>0 so small that

£p*\9tb(Yjx Yj>)*\l* ^ffffi log(0
and conclude the proof. |
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Asymptotically efficient allocation rules for the
multiarmed bandit problem "with multiple plays Part II:

Markovian rewards1
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ABSTRACT

At each instant of time we are required to sample a fixed
number tti ^ 1 out of N Markov chains whose stationary transition

probability matrices belong to a family suitably parameterized by
a real number tf. The objective is to maximize the long run
expected value of the samples. The learning loss of a sampling
scheme corresponding to a parameters configuration C =
0*ii • • • . %) is quantified by the regret Rn(C). This is the
difference between the maximum expected reward that could be
achieved if C were known and the expected reward actually

achieved. We provide a lower bound for the regret associated with
any uniformly good scheme, and construct a sampling scheme
which attains the lower bound for every C. The lower bound is
given explicity in terms of the Kullback-Liebler number between
pairs of transition probabilities.

1. Introduction

We study the problem of Part I of this paper [1] when the reward statistics
are Markovian and given by a one-parameter family of stochastic transition
matrices P(&) = [P(x, y, tf)] , tfcR, x, y eX, where X C IR is a finite set of
rewards. There are N arms Xj,j = l,-,N with parameter configuration
C = (i?!, . . . .tftf). Successive plays of arm j result in X-valued random variables
Yji,Yj2, ' • • whose statistics are given by P(tf). The first play of an arm with
parameter 1? has reward distribution p (i>) which need not be the invariant distri
bution. We are required at each stage to play m arms. The aim is to maximize
in some sense the total expected reward for every parameter configuration.

*Researchsupported in part by JSEP Contract F49620-84-C-0057
Present address: School of Electrical Engineering, Cornell Univ., Ithaca, NY 14653.
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We assume that

forar.y €X,tf, tf'eR P(x, y.tf) >0 =>P(x, y,#') > 0,

P(i9) is irreducible and aperiodic for all tf € R and

p(x,i>) > 0 for alia? eX andtfeR. (1.1)

For tf e R Tr(tf) = [Tr(ar,i>)], a: e X, denotes the invariant probability distri
bution on X and the mean reward

fi(V) = 2 **(*.*) (1.2)

is assumed to be strictly monotone increasing in 1>.

The values that can actually arise as parameters of the arms belong to a

subset 0C1R. In §2-5, © is assumed to satisfy the denseness condition (2.12).
This restriction is removed in §6-7.

2. Setup

Let Yx,Yz, - ' • be Markovian with state space X, initial distribution p, sta

tionary distribution n and transition matrix P, satisfying (l.l).

T^»mmfi 2.1 : Let Ft denote the (7-algebra generated by Yx, Yz, • • • ,Yt and G a o-
algebra independent of F^ = y Ft. Let t be a stopping time of \Ft v G{• Let

tf(*.T)= £ l(Ya=x)
a = 1

and

N(x,y,r) =Tf l(r. =x,Ya+x =y).
a = l

Then for some fixed constant K

\EN(x,t) - tt(x)Et| £ K, (2.1)

and

|EW(x,y,T) - rr(x) P(x,y)Er\ *s K, (2.2)

for allp and all t with Er < co.

Proof : Let X* = \JX1, with the Borel ff-algebra of the discrete topology, i.e., all
til

subsets are measurable. The process \Yt , t S: lj allows to define random vari
ables Bx, Bz, ' • • called blocks with values in X* . First define the \Ft \ stopping
times rx, rz, • • • by

rk = inf \t > rk-x | Yt = Yx\

with To = 1. Then rk < co a.s., and for a sample path « = (yx, yz, • • • ) the fcth
block is the sequence (y^.^o). Vt^uHi. • • • . y-rfc(u)-i)- Observe that the range



of Bk is restricted to sequences whose first letter appears only once. It is simple
to check that

FTfo =a(Bx, Bz,-, Bk). (2.3)

Forx, y € X, y= (yx, yz yt) e X#. let l(y) = length of y, N(x, y) = number
of times x appears in y, and N(x, y, y) = number of transitions from x to y in y
where y< -» yx is also considered a transition.

It is well-known, see e.g., [4] Chapter 1, Theorem (31), that \Bk\ is Li.d. and
for any x, y € X

EN(x, Bx) = n(x)El(Bx),

Etf(x, y. Bx) = rr(x) P(x, y) El(Bx).

Let 7* = inf [f > r | Yt = Yx\. Then T = tk , where « is a stopping time of FTfc.
Indeed \Tk-x ^ rj €/V , see [5], Prop. II-1-5. By Wald's lemma

E^ 1(^« =x) =e£ N(x, Bk) =rr(x) B(*i) Ek. (£4)
a = 1 Jb si

E^11(5- =*. I«+i =V) =E£ N(x, y, Bk) =rr(x) P(x, y) EL(BX) Etc, (2.5)
a s i Jb = 1

E(r-l) =E£ l(Bk) =K(£i) Ec. (2.6)
Jb si

Observe that for a fixed constant K independent of p and r, E(7—r) ^ iT. In fact
the mean time to visit any state starting at Yr is finite.

For x e X,

N(x,T) - (T-t) <: N(x,t) < N(x,T) .

Using (2.4), (2.5) and (2.6),

tt(x) E(r-l) - K^ EN(x,t) < rr(x) E(r-l) + 1,

so that

tt(x) Et - Ks: EN(x,t) ^n(x)Er + K (2.7)

Forx, yeX,

N(x,y,T) - (T-t) <. N(x,y,r) ss N(x,y,T).

Using (2.4). (2.5) and (2.6),

tt(x) P(x,y)E(T-l) - K*EN(x,y,T) <S rr(x) P(x,y)E(T-l),

so that

tt(x) P(x,y) Et-K* EN(x,y,r) ^ rr(x) P(x,y) Er + K. (2.8)

The result follows from (2.7) and (2.8). |



Let YjX,YjZ, • • • denote the succesive rewards from ami;. Let Ft (J) denote
the a-algebra generated by Yjx, ••• ,Yjt, Fm(j) =,Y/«0'). and <Xj) =^ F^i).
As in §2 of [l], an adaptive allocation rule is a rule for deciding which m arms to
play at time r +1 based only on knowledge of the past rewards

Yj\ Yjft{j), j = 1, • • • ,N and the past decisions. For an adaptive allocation
rule $ the number of plays we have made of arm j at time t, Tt(J), is a stopping
time of \Fs(j) v G(j) , s ^ lj. The total reward is

S* =£ £ U)Yja =£ E^(x,Tt(j)) •
is ia si /sixeX

By Lemma 2.1,

|ES<- £ fii^ETtiJ) I* const, (2.9)
; =i

where the constant may depend on the parameter configuration, but not on t.

As in the i.i.d. case, the loss associated to an adaptive allocation rule $ and
a configuration C = (&x, . . . ,&N) is a function of the number of plays r, called
the regret. It is the difference between the maximum expected reward that

could have been achieved with prior knowledge of C and the actual expected

reward. Let ffbea permutation of {1, • • • ,N\ such that

M(i>a(i)) ^ A*0*«r(a)) * • • • * M(%)) •
Then the regret is

isi

By (2.9),

W(*i. •' ' .**)-[' 2 MOW" £ Ml*4j))*Tt(j)]\ * const. (2.10)
t = 1 /si

where the constant can depend on the C.

An allocation rule is called uniformly good if for every configuration

Bt(&h ' • • .%) = o(ta) for every a > 0.

Let P and Q be irreducible and aperiodic stochastic matrices with P having
invariant distribution rr, which satisfy P(x, y) > 0 <=^ Q(x, y) > 0. The
Kullback-Iiebler number

HP.Q) =S rr(x) 2 P(x.v)l°gafcZ\ .
*eX yeX V{.x,y)

is a well-known measure of dissimilarity between P and Q. Note that I(P, Q) is
just the expectation with respect to the invariant measure of P of the Kullback-

Iiebler numbers between the individual rows of P and Q thought of as probabil

ity distributions on X. Let I(*,\) denote I(P(-d),P(\)). Under (1.1) and (1.2).
0 < /(tf.A) < oo for tf * X. We assume that
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/(tf.X) is continuous in X> tf for fixed tf. (2.11)

In §2-5 we also assume the following denseness condition on 0:

for all X€ 0 and 6 > 0, there is X' e 0 s.t. fi(X) < fi(X) < ji(\) + 6. (2.12)

3. A lower bound for the regret of a uniformly good rule

For a parameter configuration C = (1*1 tfjy). define the notions of TO-
best, tti-worst and tti-border arms exactly as in § 3 of [1], By (2.10), an adaptive
allocation rule $ is uniformly good iff for every distinctly tti-best arm j

E(t-Tt(j)) = o(t«),

and for every distinctly tti-worst arm j

B(7iO)) = o(*a).

for every real a > 0.

Theorem 3.1: Let the family of reward distributions satisfy conditions (2.11) and
(2.12). Let $ be a uniformly good rule. If the arms have parameter configuration
C = (i>j tfjy), then for each distinctly tti-worst arm j and each s > 0,

so that

.. . r*cTt(j) ^ i
TT logr " /(^,^(m)) '

where a is a permutation of {1, • • • ,N\ such that

M(tf<r(i)) ^ • • ^ M(l>a(JV)).

Consequently,

r . . *<foi, • ' • ,*n) ^ v Wfioimd-lMPj)]
hminf ;—I ^ Zj 77"5—a \ •

«-oo logr j ism-wont *C*j/*<r(m);

Proof: As in the proof of Theorem 3.1 of [1], let j be an to-worst arm and, for any
p > 0, choose X satisfying

MW>^o(m))>^). and | I(*j.\)-H*i.*aim)) I * pity.*oim))
which is possible by (2.11) and (2.12) .

Consider the new configuration of parameters C* = (tf1,..,tfJ-_i,A,'#j+1,..,iJjv).
Let YXt Yz, ' • • denote the sequence of rewards from plays of arm j under the
uniformly good rule $. Define

By (1.1) and the ergodic theorem ——»/(tfj.X) a.s. [Pc]. Hence 7-max La -»
r L a 1m t
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/Ofy.X) a.s. [Pc]. For any K > 0 we have

limPc(A» > A"(l+p)/(^,X)logr for some a < K logr \ = 0.
t-*eo

After this point the proof proceeds exactly as in Theorem 3.1 of [l]. |

4. Construction of statistics

An allocation rule is asymptotically efficient if for each C = (&x, .... tfjy)

t-» logr iiam-vwrs* ' Cfy.tfff&n))

We will construct an asymptotically efficient rule using a family of statistics
9ta(Yx, . . . , Ya), 2^ a as t, t = 2, 3, • • • as in §4 of [1], under the following
assumption:

for x, y eX , log.P(x,y,i5) is a concave function of tf. (4.1)

The following lemmas are needed later.

Lemma 4.1 : Let YX,YZ, -be Markovian with finite state space X, transition
matrix P, invariant distribution rr and initial distribution p. Let / : X -• IR be

such that 2 *(*)/(*) >0and let St = £f(Ya). Let L= £ l(inf SB ss 0). Then
xex asi ui "*'

EL < oo.

Proof : We appeal to the large deviations theory for the empirical distribution of
a finite state Markov chain, see especially [2] and [3]. Let M be the unit simplex
in IR'X' identified with the space of probability measures on X. Define F : M-» R
by F(v) = 2 / (*M«) and let K = \v <Z H | F(v) as Oj. K is closed and rrj£ #".

seX

The process J1^ j defines for each r ^ 1 a probability measure Qt on M which
is the distribution of the f-sample empirical distribution of \Yt\. By the ergodic
theorem Qt -»tfw weakly as probability measures on H. From the large deviations
theory for this weak convergence, [3] Theorem II.1, there are constants A > 0,
a > 0 such that

Now

so that

Qt(K) <AB'at for all r ^ 1.

st= E *<*.')/(*).
*eX

Qt(K) = El(St*0),

and the result follows. |

Lemma 4.2 : Let \Yt, t ^ lj, P, n, p be as in Lemma 4.1 and / : X2 -»IR be such

that 2 rr(x)JP(x,y)/(x,y)>0. For r^2 let S« = £f(Ya.Ya+x). Let
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N = E 1(s« * 0). Then EW < oo.

Proof : We appeal to the large deviations theory for the empirical transition
count matrix of a finite state Markov chain, see [2]. Let II*2* be the unit simplex
in RIx' identified with the space of probability measures on X2, and define
F:UF>-1R by F(v)= £ /(x,y)i/(x,y). Let K=IvzVlW \ F(v) ^ Oj. Let

x.yeX

nP €M^ be given by nP(x,y) = n(x)P(x,y). Then K is closed and nP ft K.
\ Yt J defines for each r &2 a probability measure Qt ^ on M*2* which is the

distribution of the H^ valued random variable whose component in the (x,y)

direction is —»•_(' • '^nen Qt® "* &itP weakly as probability measures onM^.
From the large deviations theory, [2] Problem IX.6.12, there are constants A > 0,
a > 0 such that

Now

so that

Qt{2\K) <Ae~at for all f 2t2.

S* = E N{x,y,t)f(x,y),
*.y eX

Qtl2KK) = El(St*0),

from which the result follows. |

Lemma 4.3 : With the same conditions as in Lemma 4.2, write fi for

E Tr(x)P(x.y)/(x,y). Given A>0, let NA = £ 1(S, <, A). Then
s.y eX f = 2

EA^ i
limsup —:— ^ —.

*— A fi

Proof : For any s > 0,

Let tf(x,y) =/(x,y) - -£_. Then £ rr(x)P(x,y)g(x,y) >0 and

|St ^ ('-l)Tf—{ = i Efl^a.^+i) * °i. so by Lemma 4.2,
ltB a=l

ENA * ^1+g^ +const,
fi

for some constant depending on s. Thus

EAk . l+e
limsup . _

A-aa A fl

Letting s -* 0 yields the result.
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I

Theorem 4.1 : Let YX,YZ, • • • be the sequence of rewards from an arm. For
aat2writePa(y0)forP(Jri.72) • • • P(Ya-XtYa). For a :> 2, let

I^iY*,*)

0

where h: (—00,0) -» R+ is a positive continuous function satisfying Jh(t)dt = 1.
—00

For any K > 0, let

U(a, Yx, • • • , Ya.K) = inf {0 | FTa(tf) ^ fl. (4.2)

Then for all X > 0 > 77,

(1) P^t? < U(a,Yx, ••• ,Ya,k) for alia ^2) S: l-±-,

(2) lim t-^t E ^W^i. •••,Ya.K)>\\ =77^-.
JJT-oo logA 0 = 2 /(v.X;

Heuristics : The reason for introducing U is similar to that in Theorem 4.1 of [l].

Proof : By (4.1), Wa is increasing in tf, so

U(a,Yx Ya,K)<i)0 WaW^K

Now

\U(a,Yx Ya,K)^rj for some a S: 2J

c{U(atYXt...,Ya.K) < tf for some a ;> 2j

= | WaW ^ K for some a S: 2j .

Wa(&) is a nonnegative martingale under tf with mean 1. By the maximal inequal
ity,

P*l KW ^ Kfor some a fe 2{ <: ^-
A

establishing (1).

Let J\fo = E 1(^«(x) < K). Given e > 0. choose 6 > 0 so that |/(tf,7?) | < e if
a =2

I77—1>| < <5. Now

\Wa(\) <K\c Hog / Z&ll "(V-W* <logA-j

=^°g / £{£'fl ^'W^ <logA--logAj .

where

A= f h(r)-X)dr) and /i°(t7) = M22Z*L
|»»-t>| <«



By Jensen's inequality

\Wa(\)<K\c\ f log|^f|-^(77)dT7<logA--log^.
|tj-i>| <6 r \I ,A)

Now

9-

E n(x,*)P(x,y,i» f log ffif/fl h'(n)dn
ii>4

= g *<».«)J'(».v.«)[u«ffi*-«} - / ^Sl'l'v) *'(l>)<fa>]x.yex r[x,y,X) \r)^\<s r\xW)

=/(0,X)- / I(^,rj)h0(rj)drj

2: J(tf,X) - £ > 0

ir>«

for e sufficiently small. By Lemma 4.3, ENk < °° and

Letting e-*0 gives

limsup -—=- ^ ttttT- (4*3)jt^oo logJT /(tf.X)

To bound E^JV^ from below, define the stopping time

7> = inffas>2 | Wa(\)*K\ .

Observe that NK s TK-1. Thus E*7> < oo. Since

w (\\- P'iY*,*) °rP*(Ya,\+t) U,^M _ , „

where Af0 is a martingale under tf with mean 1, we obtain

logA* <; E*log ^(X) =logBtfi,^ +E^ogMrK

&EtflOgi/T^ + lOgE^T*^

=EtflogZ,^. (4.4)

Now

E*log£rif= E Et,7V(x,y,7»log^ '̂y;^ ,
s.yeX r\x,y,A)

and by Lemma 2.1

|E„^(x,y,7A-)-7r(x,iJ) P(x,y,-d)E*TK\ <; const.

Hence
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|E*log2^-/(i>,X)E*TK| ^ const. (4.5)

From (4.4) and (4.5), and using Ng ^ Tg—1, we have

EfiNfc i
liminf -—— fe
TZT logK ~ W,\)

which, together with (4.3), establishes (2). I

Theorem 4.2 : Fix p > 1. For t = 2, 3, • • • and 2 ^ a ^ t, let

ffteC^i Ya) ~ fA.U{a,Yx, • -.Ya.t(]ogty]. ThenforallX>^>77,

(1) P*l9ta(Yx Ya) > f4rj] for all 2 ^ a <; r j = l-0(r-1(tofl(O"p). (4.6)

/q\ r ^ ^foa^l Ya)*fl(\)\ 1 , .(2) limsup 2g J^p * T^xy. (4.7)
(3) <7ta is nondecreasing in r for fixed a. (4.8)

Proof : (1) follows from (l) and (2) from (2) of Theorem (4.1), while (3) follows
from the form of U(a,Yx, • • • tYatK) and the assumption that fi(&) is monotoni-
cally increasing in 1?. I

As estimate for the mean reward of an arm we take the sample mean

*.<* r.) =*+••••'•&.

Tflmma 4.4: For any 0 < 6 < 1 and s > 0

P^ma\ha(Yl Ya)-fiW\ > sj = o(fl) (4.9)
it A a A t

for every 1>.

Proof : Consider f(x) =x-/z(tf)+e. Then E 7r(x,tf)/(x) > 0. By Lemma 4.1, for
sex

any p > 0, there is T(p) such that

E P«iinfS.J<p.
t-T{p) •*'

where S« =£ f{Ya). For any rs -^fel
a=l (52

P*f min Ml^ Ya) < fiW-e] = P*f ,min Sa ^ Oj
StAaAt St A a-&t

^ P*\ inf Sb ^ 01

for any (52r ^ 6 ^ <5f. Hence

<5(l-<5)ri^ min A^i Ya) <tf*)-ej < p.
at a a At

A similar argument applies to P$\ max ha(Yx Ya) > fiW+s\. Letting p -» 0
6t AaAt

concludes the proof. |
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5. An asymptotically efficient rule

Consider the allocation rule of §5 of [l] using the gta and ha statistics con
structed in §4 above, and an initial sample of size 2N to initiate the gta statis
tics.

Theorem 5.1: The rule above is asymptotically efficient.

Proof : Reindex the arms so that fi(#x) & • • • ^M%)- Let 0^ i ^ m-1 and
m ^ n ^ N be defined as in the proof ofTheorem 5.1 of [l]. Given the properties
(4.6). (4.7), (4.8) and (4.9) of the gta and ha statistics which we have already
established, the proof of Theorem 5.1 of [l] carries over word for word to estab
lish the following assertions A, B, and C.

A:IfZ >0, thenE(r-7t0)) = o(logr) for every j ^ I.

B:Ifn <N. let

Bt - #JJV ^ a < t | 3 ; &n+1 s.t. j is one of the m-leaders at stage a +1).

ThenE^ = o(logr).

C:Ifn<WandO<£ < mOO-^OVh). then for; ^ n +1 let

St(J) - #\N ^a^t | All the m-leaders at stage a +lare among the

arms A: with fi(&k) ^ fi(#n), and

for each m-leader at stage a+1

I hTa[k)(Yki YkTa{k))-K^k) I <* .but

still the rule samples from arm j at stage a +1 J.

For each p > 0 we can then choose s > 0 so small that

As indicated in Theorem 5.1 of [l], these steps can be combined to obtain

r \t^)-t^)mu) M(„m)-^)
from which the proof follows using (2.10). I

6. Isolated parameter values : Lower bound

We proceed to examine the situation in the absence of the denseness condi
tion (2.12). For a configuration C = (&x %), let a be a permutation of
\1, • • • ,N\ such that fi(Va{X)) ^ *" ' ^ A*0*atfo)- Throughout this section and §7,
X € 0 (X depending on C) is defined as

X= inf $tfe0 | tf>tfff(m)J .

In case &a(m) = sup i>, set X = oo.
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Theorem 6.1 : Let the family of reward distributions satisfy (2.11). Let $ be a
uniformly good rule. Let C = (tfi, . . . .tfjy) be a configuration and a, Xas above.
If X < oo, then, for each distinctly m-worst arm j,

r . . *cTt(j) w 1
hminf —:—-— ^
t-« logt /(tf;,X) "

Consequently, by (2.10),

r . , M+l* ' ' • •**) ^ V M#*(m))-ti*j))
linunf ;—: s L TfM w

for each C.

Proof: Let j be an m-worst arm. Consider the parameter configuration
C* = (tfi,..,'#j-i,X,'fy+1,..,i*tf) when the arm j has parameter Xinstead of ify and
proceed as in Theorem 3.1. I

7. Isolated parameter values : An asymptotically efficient rule

As in §7 of [1], an allocation rule is called asymptotically efficient if

when X is finite for the configuration C = (tfi, .... tfjy), and

limsup i?t(tfi, • • • ,tfjv) < °°
t-*eo

when X = oo .

The following lemma allows the construction of asymptotically efficient
rules.

Lemma 7.1: Let YX,YZ, • • • be samples coming under parameter 1>. For any

K > 0 and 0 < a < «t~. with y(t) = K t~* we have
4

PA max \K(YX Ya)-fiW\ > y(t)\ = 0(r-i(iogf )-*), (7.1)
St A a a t

Y + • ' • +Y
for all 0 < 6 < 1, q > 1andtf€0, where ha(Yx Ya) = —i —.

Proof : Fixx €X. Let t0 = inf Jr ^ 1 I *« = x\ and define TltT2f • • • and Tn by

Tn = inf{tfel | YTn^t =x\,

Tn = T0 + T! + • • • + Tn .

The random variables rn, n ^ 1, are i.i.d. Further, t0 and \rn,n^ lj have
geometrically bounded tails, see e.g. [4], Chapter 1, Prop. (79), and hence have

moments of all orders. Moreover, Eti = —,—rr-. Note that Tn is the time of the
7i\x,i>;

(n + l)st visit tox.
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Let Sn = Tn t^-tz— Er0, so that |Sn, n 2s 1] is a martingale. Asimple cal-
n n 7r(x,tf)

culation gives

ES44* E(r0-Er0)4 +6rE(r0-Er0)2E(T1-;^5ye2 +3t2E(Tx-^±-^* .
The maximal inequality applied to the positive submartingale \3t4] gives, for any
K>0,

Po{maxt\Sa\*Ktl-«\ =0(t^2) (7.2)

which is Oit'^logt)-*) for any g>lifO<a<^-. We have
\ max \ha(Yx Ya)-fi(#)\ > K t~«\
StAaAt

t tr *1—aC^maxJJV(x,a)-a7r(x,i>)| >™^ j. (7.3)
Further,

and

xjr f l-a
\N(x,a) >arr(x,*) + QA' jc|r 6Kti-« .,**l

IA | fonfr.*) +~^j 11

6K t1-a
c(,!?.a5«is'|S5"2ixri-

|%a)<a^)-^Hcjr ar,i-« , >«i
IA | [an(z ,*) ™ lj

6Ktl~«
c | max ISb I ^1XXOUW I kJ0 \ ^- nlvl J•

for t sufficienty large. The result follows from (7.2) and (7.3). I

Theorem 7.1 : The allocation rule of §7 of [1], with an initial sample of size 2N to
initiate the gta statistics, is asymptotically efficient.

Proof : Reindex the arms so that fi(v^x) & • • • ^ mO#jv)* Using (7.1) and the pro
perties (4.6), (4.7) and (4.8) of the gta statistic, we can argue exactly as in the
proof of Theorem 7.2 of [l] to get

t£n(*i)-£ti'*;)ETt(j)
t?«P logr jiarn^wo^t H*i.»

if X < oo, and

t£r<*t)-£r<*l)XTt(j)
limsup -^ t-~^i < oo

(-.<» logr

if X = oo. The proof is concluded using (2.10).
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