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ABSTRACT

Multiple-valued logic minimization is an important technique for reducing the area
required by a Programmable Logic Array (PLA). This report describes both heuristic and
exact algorithms for solving the multiple-valued logic minimization problem. These
algorithms have been implemented in a C program called Espresso-MV.
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CHAPTER 1

Introduction

Programmable Logic Arrays (PLA's) are important subsystems in digital design of

integrated circuits [F1M75, LBH75]. A PLA provides a simple and regular layout strategy

for Boolean equations expressed in two-level canonical form, and is usually used to imple

ment "random" logic (random in the sense that the designer sees no regular structure in

the Boolean equations). Typical examples are the control logic for a reduced-instruction

set computer, or the control logic for a microcode engine. With the addition of latches for

feedback, PLA's are also often used for the combinational logic in a finite-state machine.

The optimization of PLA's is a useful application of Computer-Aided Design to the

automatic synthesis of custom VLSI designs.

Techniques for optimizing the structure of a PLA are becoming well understood. The

optimization goals are to minimize the area occupied by the PLA, and to minimize the

delay through the PLA. The regular structure of a PLA means that the area of the PLA is

simply proportional to the number of product terms in the array, and, to a first-order

approximation, the delay through the PLA is also proportional to the number of product

terms (i.e.. independent of the structure of each product term). Efficient algorithms can be

developed to minimize the number of product terms in the array. A complete strategy for

the design of a PLA macro-cell involves: (l) logic optimization of the PLA logic equations

including input variable assignment and output phase assignment [BMH84, Sas84b]; (2)

optimization of the PLA layout through folding and partitioning [DeS83. HNS82]; and (3)

generation of the mask geometries implementing the PLA[Mah84],

This report is concerned with the logic optimization of PLA equations, and in particu

lar, with the extension of the Espresso-II algorithms [BMH84] to the case of multiple-

valued logic functions. Recent advances in multiple-output minimization of Boolean equa-
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tions have produced algorithms able to minimize large Boolean functions. This is impor

tant for VLSI designs where a PLA can have more than 50 inputs and 50 outputs. Boolean

minimization is perhaps the most important logic optimization procedure for PLA's, but it

is not the only one. Other potential optimizations that change the form of the logic equa

tions include using multiple-bit decoders on the inputs and choosing the most appropriate

phase for each output. A multiple-valued minimization tool is an important part of each

of these optimization procedures.

Espresso-II is a collection of algorithms for the minimization of two-level binary-

valued switching functions [BMH84]. Research on the Espresso algorithms began in the

summer of 1981 at the IBM T. J. Watson Research Center. A program implementing these

algorithms was written in APL in the summer of 1982, and a C language version (called

Espresso-IIC) was completed in January of 1984. The research culminated in the publica

tion of the monograph Logic Minimization Algorithms for VLSI Synthesis [BMH84] in

1984. The public domain program Espresso-IIC was made available from the University

of California simultaneously with the publication of the monograph.

Some early ideas on the problem of minimizing multiple-valued Boolean functions

were presented in Chapter 5 of the monograph. Multiple-valued logic has many uses in

optimizing structures built from binary-valued logic. For example, it has been shown that

the input-encoding problem can be solved by treating it as a multiple-valued minimization

problem. This can be applied to the optimal state-assignment problem (for many types of

finite-state machines) [De83, DeB84] or to optimal assignment of opcodes in a processor so

as to minimize the instruction decode logic [De84]. Multiple-valued logic functions can

also be used to represent and minimize PLA's with multiple-bit decoders [F1M75. Sas84b].

With a simple transformation and the addition of an appropriate don't-care set, a

multiple-valued minimization problem can be solved with any binary-valued minimizer

[BMH84. Chapter 5]. However, this techniquefails to exploit any knowledge of the struc

ture of the multiple-valued minimization problem, and hence can be inefficient. For exam

ple, the don't-care set can become very large, and the number of binary variables needed
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equals the sum of the number of values (for all variables) in the original problem. Hence,

even Espresso-IIC was unable to minimize the transformed function resulting from per

forming a state-assignment on a dense 93-state machine. (It should be noted that the state

machine had more than 3200 transitions and the transformed function had over 100 input

variables, over 100 output functions, and there were more than 5000 don't-care terms.)

Hence, it was hoped that a multiple-valued minimizer would be able to solve this large

problem.

Also, it is known that the multiple-output minimization problem for PLA optimiza

tion is a special case of multiple-valued minimization. Therefore, it was hoped that a

better understanding of the effect of the output part on the multiple-output minimization

problem would result from working directly with the multiple-valued variables. For

these reasons, I became interested in extending the Espresso-II algorithms to the more gen

eral framework of multiple-valued logic functions.

In this report I present the extension of Espresso-II to multiple-valued logic func

tions, and I report my experience with the program Espresso-MV that implements these

extensions. Espresso-MV was found to be more efficient than Espresso-IIC due to its more

uniform treatment of the output part, and hence has replaced Espresso-IIC even for

minimization of binary-valued multiple-output functions. I also demonstrate how the

Espresso-II algorithms can be extended to solve the Boolean minimization problem exactly.

This exact algorithm relies on a new algorithm for the minimum cover problem which has

proven to be efficient for solving large, cyclic covering problems. I present results for a

large test set of PLA examples for several different minimization algorithms including the

heuristic and exact modes of Espresso-MV. The PLA examples in the test set are also

graded with respect to difficulty to organize the comparisons among competing algorithms.

Finally, I report on the successful multiple-valued minimization of the large state machine

mentioned above.

In particular, the basic definitions of multiple-valued logic functions are presented in

Chapter 2 along with the necessary extensions to the fundamental concepts of Espresso-II
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for dealing with multiple-valued logic functions. The key concepts in this chapter are the

extension of the Shannon Cofactor and unate functions to multiple-valued logic functions.

Background on logic optimization of PLA's. including logic minimization, input-

variable assignment for two-bit decoders, and output phase assignment, is presented in

Chapter 3. This provides motivation for interest in multiple-valued logic minimization as

well as an introduction to the exact minimization problem.

The algorithms used for heuristic minimization are described in Chapter 4. From an

outside view, the algorithms appear similar to the original Espresso-II algorithms. How

ever, the use of multiple-valued logic simplifies the description of many of the algorithms,

and hence, the algorithms are explained in detail.

The exact minimization problem is considered in Chapter 5. I show how the algo

rithms used by Espresso-MV can be used to create a minimization algorithm which pro

vides the minimum solution to the minimization problem. In particular, a new algorithm

for finding the minimum cover of the prime implicant table is presented that has success

fully completed the covering for several functions that have appeared in the literature

without a solution.

Experimental results with the C language version of the program Espresso-MV are

given in Chapter 6. First, results evaluating the difficulty of the PLA test set are

presented. For those examples where the exact minimizer is able to generate a solution,

Espresso-MV is much faster and is produces solutions which are very close to the exact

minimum. When minimizing multiple-valued functions. Espresso-MV is much more

efficient than using a two-valued logic minimizer with an appropriate don't-care set. Also.

Espresso-MV is more efficient than Espresso-IIC due to the uniform treatment of the out

put part.

Appendix A contains user documentation for the program Espresso-MV. including

the command line options and file formats.
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Appendix B contains results for the 145 PLA's in the Berkeley PLA Test Set.

Optimum results are reported for over 100 of the PLA's, and the best known solutions are

reported for the remaining problems. The examples where the minimum solution is not

known can be be viewed as a challenge to any Boolean minimization program to find the

minimum solution, or to find a solution better than that reported by Espresso-MV.



CHAPTER 2

Basic Definitions

The purpose of this chapter is to review the definitions that will be used in dealing

with multiple-valued input binary-valued output functions, and to define the notions of

Shannon cofactor, weakly-unate and strongly-unate for these types of functions. There is a

wealth of data in the literature regarding these types of functions. In particular, I follow

the notation and terminology of Sasao [Sas81. Sas83.Sas84b] for multiple-valued func

tions. Chapters 2 and 3 of Logic Minimization Algorithms for VLSI Synthesis [BMH84] are

valuable references for these definitions in the special case of binary-valued multiple-

output functions.

2.1. Multiple-Valued Functions

Let Pi for i = 1 • • • n be positive integers representing the number of values for each

of n variables. Define the set P; = { 0. ••-./>, —1 } for i = 1 • • • n which represents the

Pi values that variable i may assume, and defineB = { 0.1.* } which represents the value

of the function. A multiple-valued input, binary-valued output function. / .

(hereafter known as a multiple-valued function) is a mapping

/ :PiXP2x • • • xPn-+B

The function is said to have n multiple-valued inputs, and variable t is said to take

on one of p-t possible values.

Each element in the domain of the function is called a minterm of the function.

An enumeration of all minterms with the value of the function is called a truth

table.

The value * € B will represent a minterm for which the function value is allowed to

be either 0 or 1. Hence, we allow functions which are incompletely specified.

§2.1 6
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An n -input, m -output switching function can be represented by a multiple-valued

function of n + 1 variables where pt = 2 for i = 1 • • • n . and pn +i= m. This special case is

called a multiple-output function. It is easily proven that the Boolean minimization

problem for multiple-output functions is equivalent to the minimization of a multiple-

valued function of this form [Sas78. Theorem 4.1].

As an example of a multiple-valued function. I define a function of three variables

with the first variable assuming three values (pi = 3), the second variable assuming two

values (p2 = 2), and the third variable assuming three values (/>3 = 3). The function is

defined by the following truth table:

*l x* *3 value

0 0 0 1

0 0 1 1

0 0 2 0

0 1 0 1

0 1 1 0

0 1 2 1

0 0 0

0 1 1

0 2 1

1 0 1

1 1 1

1 2 0

2 0 0 *

2 0 1 *

2 0 2 0

2 1 0 1

2 1 1 *

2 1 2 0

Note that some of the function values are * indicating that the function value may be

either 0 or 1 for these minterms.

Let Xi be a variable taking a value from the set P,, and let St be a subset of Pi. X,'

represents the Boolean function

tf-
0 if ^ * Si

1 if XiG Si

X? is called a literal of variable X,. If S, = 0, then the value of the literal is always 0,

and the literal is called empty. If 5,=^. then the value of the literal is always 1. and



§2.1 8

the literal is called full.

In the example, Pt= [ 0.1.2 } . and if Xt= 1 then Xi °2 ' = 0. and Xj 1' = 1.

c —S S
The complement of the literal X;' (written Xt') is the literal X,'. The complement

of a literal evaluates to 0 when the literal evaluates to 1. and vice-versa.

A product term (sometimes simply a term) is a Boolean product (or AND) of

literals. If a product term evaluates to 1 for a given minterm, the product term is said to

contain the minterm. If a literal in a product term is full, the product term does not

depend on that variable. Without loss of generality, a product term consists of the

Boolean AND of a literal for each variable.

If a literal in a product term is empty, the product term contains no minterms. and is

called the null product term (written 0). If all literals in a product term are full, the

product term contains all minterms. and is called the universal product term.

A sum-of-products (also called a cover) is a Boolean sum (or OR) of product terms.

If any product term in the sum-of-products evaluates to 1 for a given minterm. then the

sum-of-products is said to contain the minterm.

The set Xon (called the ON-set) is the set of minterms for which the function value

is 1 (i.e.. Xon =/-1(l)). Likewise, the set Xoff (called the OFF-set) is the set of min

terms for which the function value is 0 (i.e.. Xoff =/ _1(0)). and Xdc (called the DC-set)

is the set of minterms for which the function value is unspecified (i.e.. Xdc =/ _1(* )).

An algebraic expression for / is a Boolean expression (written using Boolean sums

and Boolean products of literals) which evaluates to 1 for all minterms of the ON-set,

evaluates to 0 for all minterms of the OFF-set. and evaluates to either 0 or 1 for all min

terms of the DC-set.

Proposition 2.1: An algebraic expression for / can always be written in sum-of-products

form.
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Likewise, it is possible to define a sum term as a Boolean sum of literals, and a

product-of-sums as a Boolean product of sum terms. However, we restrict our attention

to sum-of-product forms because of the next proposition:

Proposition 2.2: The minimal product-of-sums form for a function / can be derived

from the minimal sum-of-products form for X0ff .

An implicant of a function / is a product term which does not contain any minterm

in the OFF-set of the function.

A prime implicant of a function / is an implicant which is contained by no other

implicant of the function.

An essential prime implicant is a prime implicant which contains some minterm

not contained by any other implicant.

In the example. X^ ° ' X2{ °'x' X3' °-1' is a product term (which is not an implicant of

the function), and a sum-of-products expression for the function is:

X,10'^1^^'21 u xi^xj^xj12] u

2.2. Operations on Product Terms and Covers

In the definitions which follow. S=XS11XS22 ••• X^" and T=x[xXT22 ••• xj"

represent product terms, and F and G will represent sum-of-product expressions.

The volume of a product term S (yol(S) ) is the number of minterms which the

n

product term contains, (i.e.. U 15,- I). 5 is said to be larger than 7 if vol (S ) > vol (7 ).
i = l

A product term S is said to contain a product term 7 (7 C S ) if 7,- C 5,- for all

i = 1 • • n. If. in addition. S^T, then S is said to strictly contain 7 (7C5). S

(strictly) contains 7 if 5 (strictly) contains all of the minterms that 7 contains.

The complement of a product term S (5 ) (computed using De Morgan's Law) is the

sum-of-products |J X,'.
i = l
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The intersection of product terms 5 and 7 (5 07) is the product term

s r\r s ri7" s r\T
Xj1 !X22 2 • • *X„" " which is the largest product term contained in both 5 and 7.

If St 07) = 0 for some i. then S 07 = 0 and 5 and 7 are said to be disjoint. If S 07

are not disjoint, they are said to intersect. Likewise, the intersection of two covers F and

G. is defined as the union of the pairwise intersection of the cubes from each cover.

The supercube of S and 7 (supercube (5.7)) is the product term

S U7" S U7" S U7"
Xx! lXi2 2 • • • Xnn n which is the smallest product term containing both 5 and 7.

Likewise, the supercube of a cover F is the smallest product term containing every pro

duct term of F.

The distance between 5 and 7 equals the number of empty literals in their intersec

tion . If the distance between two cubes is 0 they intersect, otherwise they are disjoint.

The sharp-product of 5 and 7 (5 #7 ) is the null product term if 5 and 7 are dis

joint. Otherwise, it is the sum-of-products:

5#7=507 = (jxl1 ••. xfinTi ••• x!"
i=l

S#T contains all of the minterms of 5 which are not contained by 7.

The consensus of 5 and 7 {consensus (S ,T)) is the sum-of-products:

\jx['nT' •••xf<ur< ••• xyT°
i = l

If distance (5. 7) M then consensus(S. 7) =0. If distance(5.7) = 1 and 5, 07, = 0.

5 (-J7- 5 U7*. 5 nr
then consensuses ,7) is the single product term X/ * • • • Xj' ' • • • Xnn n. If

distance (5,7) =0 then consensus (5,7) is a cover of n terms. If the consensus of 5 and

7 is nonempty, it contains minterms of both 5 and 7. Likewise, the consensus of two

covers F and G is defined as the union of the pairwise consensus of the product terms

from each cover.

The cofactor (or cube restriction) of 5 with respect to 7 (57-) is empty if 5 and 7

s ur s ur s uf
are disjoint. Otherwise, it is the product term X^ 'X22 2 • • • Xnn • n. Likewise the

cofactor of a cover F with respect to a cube 5 (F$ ) is the union of the cofactor of each
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cube of F with respect to 5,

23. Positional Cube Notation

s s s
Let X11X22 • • • Xn" be a product term. This product term can be represented by a

binary vector:

0„ 1efcf •••c{«"1 - c2<W •••c^ - CV.---C'""1
where c/= 0 if j j£ 5f, and cj= 1 if y6 5,-. This is called the positional cube notation or

more simply a cube [Su72]. A cube is a convenient representation for a product term, and

the terms cube and product term will often be used interchangeably. (For example, a

prime cube is a cube which represents a prime implicant.)

The notation c,- represents the binary vector c^c* • • •c,' , and lc,- I represents the

number of l's in the binary vector. The notation c, U<f, refers to the bit-wise OR of two

binary vectors, cf f\di refers to the bit-wise AND of two binary vectors, and ct refers to

the bit-wise complement of a binary vector.

A sum-of-products will be represented by a set of cubes, also called a cover. A cover

also has a natural two-dimensional matrix representation, where each row of the matrix is

a cube.

Continuing with the example, the following is a cover for the function:

*i x2 *3
012 01 012

100 01 101

010 10 Oil

100 10 110

011 01 110

The cube representation of a product term is useful because Boolean operations on the

binary vectors correspond to the useful operations on the product terms. For example, one

product term contains another if and only if their corresponding cubes contain each other

as bit-vectors, the intersection of two cubes is the cube which results from component

wise Boolean AND of the two cubes, and the supercube of two cubes results from the
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component-wise Boolean OR of the two cubes.

For computer implementation of the algorithms, the cube provides a convenient data

structure where one bit is used for each part of the cube. It is possible to perform opera

tions on the cubes as word-wide operations (i.e.. the bit-wise Boolean AND of two 32-bit

vectors on most 32-bit computers) which is more efficient than manipulating the binary

vectors element by element.

2.4. Generalized Shannon Cofactor and Multiple-Valued Unate Functions

In [BMH84], unate functions were defined for binary-valued functions, and several

important properties of unate functions were proven. In particular, it was shown that the

problems of finding the smallest cube containing the complement of a function (an impor

tant step of REDUCE), and the problem of determining whether a function is a tautology

(an important step of both IRREDUNDANT and ESSENTIAL) can be answered quickly for

unate functions. When these results are combined with Shannon's Theorem and the cofac

tor operation defined in Section 2.2. efficient recursive algorithms can be devised which

attempt to split the function so as to reach a leaf where the function is unate. and then

quickly determine the result for the unate function.

The basic paradigm for manipulating multiple-valued functions is to use the

multiple-valued extension of the Shannon Cofactor which is called the Generalized Shan

non Cofactor [Sas84a. Lemma 3.2]: In Proposition 2.3, F is a cover of a multiple-valued

function. Recall that Fei represents the cofactor of F with respect to the cube c'.

m

Proposition 23s Let c',i=l--m be a set of cubes satisfying Uc'sl and
i= 1

c'* ClcJ = 0 for i ?±j. Then.

m

F= \JclnFci
i=l

Remark: Using simple algebraic operations of Boolean algebra, it is east to show that the

operations of tautology, complementation and computing the supercube of the complement

of a cover (an important operation of REDUCE) can be computed using the properties:
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jF=1 <==?> F,=l fori = 1 • •-m
c

m _

F= \Jcl f\Fel
i = l

— m —

supercube (F ) = supercube ( U c' 0 supercube (Fc t))

In this section, I consider how to extend the definition of a binary-valued unate func

tion to the multiple-valued case. I show that there are two useful extensions. The first,

referred to as weakly-unate, preserves the important property that tautology and comput

ing the supercube of the complement are trivial operations for weakly-unate functions.

However, a weakly-unate function does not satisfy some of the other properties of

binary-valued unate functions, namely, that all prime implicants of a binary-valued unate

function are essential or that the complement of a binary-valued unate function is unate.

Hence, I also define a strongly-unate function (a stronger condition on the function than

weakly-unate) which preserves these two properties. It is important to note that the

definitions of weakly-unate and strongly-unate coincide for the special case of binary-

valued functions.

In this section. I also consider how to choose the cubes cl,c2. • • • cm when parti

tioning the function.

2.4.1. Weakly-Unate Functions

Definition 2.1: A function is said to be weakly-unate in variable X,- if there exists a j such

that changing the value of X,- from value j to any other value causes the function value,

if it changes, to change from 0 to 1. If a function is weakly unate in all of its variables,

then the function is said to be weakly unate.

If a function is weakly unate in variable Xt-. then changing the value of variable X,

to value j causes the value of the function, if it changes, to change from 1 to 0. Hence,

there is no need to define both unate increasing and unate decreasing functions.

Definition 2.2: A cover F is said to be weakly-unate in variable X,- if there exists a j such

that all cubes which depend on variable X,- contain a 0 in the position j.
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For example, the following cover is weakly-unate because it is weakly-unate in part

1 of variable 1, part 1 of variable 2. and part 5 of variable 3.

11111-00001-11110

01100-00011-01010

01010-00100-11111

00110-01001-11010

00001-11111-10110

Proposition 2.4: A weakly-unate cover in variable X, is a cover for a weakly-unate func

tion in variable X-,.

Proposition 2^: A function / is weakly-unate in variable X,- if and only if there exists a

j such that each prime implicant of / which depends on variable Xf has a 0 in part j of

variable X,-. Hence, a prime cover for a weakly-unate function is also a weakly-unate

cover.

The proofs of these propositions are trivial extensions of the proof for the binary-

valued case as in Propositions 3.3.1, 3.3.2 and 3.3.3 of [BMH84].

A simple test for whether a cover is weakly unate in a variable Xt is to form the

supercube of all cubes of F which do not have a full literal in variable Xj. This supercube

has a 0 in any parts of Xt that are weakly unate.

The following result is useful for determining whether a weakly-unate function is a

tautology:

Proposition 2.6: Let F be a weakly-unate cover in variable X,-. Let

G = { c € F \c does not depend on X,- } . Then G slW*" =1.

Proof: Clearly, if G =1. then Fsl. Assume that j is the part required by Definition 2.2

for F to be weakly-unate in variable X,-, and assume G^l. Then there exists a minterm

to €G with a 1 in value j of variable X,-. However. F is unate in X,-. and hence no terms

of F have a 1 in value j of variable X,-. Therefore, if follows that m £F. and hence

F^l.

I
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There is a special case when all variables are weakly unate:

Proposition 2.7: A weakly-unate cover is a tautology if and only if one of the cubes in the

cover is the universal cube.

Proof: By repeated application of Proposition 2.6, the function is a tautology if and only if

G = { c 6 F Ic does not depend on X,for alii } . Only the universal cube can be in G.

and hence G =1 if and only if the original function contains the universal cube.

I

Hence, the weakly unate condition on a function is sufficient to allow a simplification

of the function for the purpose of answering the tautology question. Also, as is shown in

Section 4.6. weak-unateness is sufficient to determine the smallest cube containing the

complement of a function. Two other useful properties of binary-valued unate functions

are: (1) all prime implicants of a binary-valued unate function are essential, and (2) the

complement of a binary-valued unate function is also unate. However, these two proper

ties do not hold for weakly-unate functions. Hence, there is motivation to find a stronger

condition than weakly-unate which preserves these properties.

To understand the limitation of weakly unate. consider that, in the binary-valued

case, if a cover F is unate, then the cover contains a cube c if and only if the cube is con

tained by some cube-of the cover. This is true because Fc is unate if F is unate, and

hence. Fc=1 if and only if Fc contains a universal cube. However, Fc contains a univer

sal cube if and only if it contains a single cube which contains c. However, it is not true

that Fc is weakly unate whenever F is weakly unate as the following example shows:

10-11-11-111

11-10-10-100

11-11-10-010

cofactoring against c =10-10-10-110 produces

11-11-11-111

11-11-11-101

11-11-11-011
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which is not weakly unate in variable 4. Also note that the function F contains c, but

that no single row of F contains c.

Also, in the binary-valued case, all primes of a unate function are essential, and the

complement of a unate function is unate. However, the function presented earlier violates

both of these properties:

11111-00001-11110 (essential)
01100-00011-01010 (nonessential)
01010-00100-11111 (essential)
00110-01001-11010 (nonessential)
00001-11111-10110 (essential)

The complement of this function is:

00110-01000-00101

11111-00001-00001

00001-11110-01001

01100-00010-10101

11000-11000-11111

10100-10100-11111

10010-10010-11111

which is weakly unate in variable 3, but not in variables 1 or 2.

Hence, we seek a condition stronger than weakly unate that preserves these proper

ties.

2.4.2. Strongly-Unate Functions

Definition 2.3: A function is said to be strongly unate in variable X,- if the values of Xt

can be totally ordered via < such that changing the value of variable Xx from value j to

value k (where j < k) causes the function value, if it changes, to change from 0 to 1. If

all variables of a function are strongly unate. then the function is called strongly unate.

Clearly any function which is strongly unate is also weakly unate in the part of

variable X,- which is less than (via < ) all the remaining parts. A strongly-unate func

tion provides a total order for all of the parts, and a weakly-unate function merely pro

vides a single part which is less than all remaining parts.
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Proposition 2.8: A strongly-unate cover contains a cube if and only if the cube is con

tained in some cube in the cover.

Proof: If H is strongly unate. then Hc consists of those cubes of H which intersect with

c. with the addition of full columns in the positions where cj is 1. Hence. Hc is also

strongly unate and is a tautology if. and only if. it contains a universal cube. But, Hc can

contain a universal cube if. and only if. it contains a single cube which contains c.

I

Proposition 2.9: All primes of a strongly-unate function are essential.

Proof: Exactly as proposition 3.3.6 in [BMH84], where Proposition 2.8 replaces proposition

3.3.5 of [BMH84].

I

Proposition 2.10: The complement of a strongly-unate function is strongly-unate.

The algorithms developed for Espresso-MV make use of weakly-unate functions, but

do not make use of strongly-unate functions. The description here of strongly-unate

functions is presented for the sake of completeness. I wish to thank Dr. Agnes Hui Chan

of Mitre Corporation for suggestions leading to the definition of strongly unate.

2.5. Choice of Partition

Once a cofactor F t becomes weakly unate, it is trivial to determine if the function is

a tautology, or it is trivial to compute the smallest cube containing the complement of the

function. Hence, we wish to choose a partition c1. i= 1 • • • m so that each cofactor Fel

becomes a weakly-unate function as quickly as possible.

The choice of partition is simplified by first choosing a splitting variable, followed by

a choice of a partition of the splitting variable into a number of cubes which depend on

only the splitting variable. Any cube in the cover which is independent of the splitting

variable is duplicated in all branches of the recursion, hence this consideration enters into

our choice of the splitting variable.
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There is an important difference between the binary-valued case and the multiple-

valued case. When the variable has only two values, the function is split with the cubes

c1 = Xj' °* and c2 = X,-1 *'; the only choice is which variable X,- to use for splitting.

But this choice is easy to make. The most binate variable [BMH84], defined as the variable

which has the most cubes in the cover which depend on it. leads to the minimum duplica

tion of cubes after applying the Shannon Cofactor. As a secondary consideration, it is

desirable to keep the recursion balanced. Therefore, as a tie-breaker. Espresso chooses the

variable which has the closest to an equal number of cubes with X' °' and X' l'. These

rules guarantee a minimum of duplication between F i and Fc2 at the next level of the

recursion.

When a variable has more than two values, however, we must also choose how to

partition the parts of the variable into a number of different cubes. There are two possi

bilities:

(1) Partition the values of the splitting variable into two disjoint sets I C Pt and rCPt

(with I Cir = 0. and I Ur = Pt,). The function F is then split into two parts:

F = (XlClFxt) U (XrC\Fxr)

This enables us to maintain a binary recursive strategy. However, unlike the binary-

valued case, this does not necessarily make each of the cofactors independent of the split

ting variable.

(2) Partition the values of the splitting variable Xj into the pi cubes

X' °'. X{ l'. • • XlPi~1]. This effectively eliminates variable X, at this level of

the recursion, and forms a pi -way splitting of the function:

F = x'olnFx<0> U |Xm OFX{i) u X{«-U(\Frlfrl)
x

I chose strategy 1 because it leaves more degrees of freedom at the next level of the

recursion. For example, if a variable has 8 values, splitting on all 8 values (as suggested

by (2)) gives us the 8-way tree shown below:
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Using the binary partition (as suggested by (1)) and choosing the same variable for split

ting at the next two levels, we get the binary tree shown below:

However, at either the second or third level there is more freedom in that a different

variable may be chosen for splitting. Hence, strategy 1 reduces to strategy 2 in the case

that the same variable s chosen at each level. Note too. that strategy 1 also gives us a

natural way to use a tree structure to perform the n -way merge which would be required

by strategy 2.

2^.1. Choice of Splitting Variable

The simple test of which variable has the most number of "active" values, i.e.. a

value which does not have a column of all l's in the cover is used to select the variable for
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splitting. Ties are broken by selecting the variable with the most total number of O's. and

then by selecting the variable which has the fewest number of parts which contain a 0.

Note that this heuristic is equivalent to the binate heuristic of Espresso-II in the case of

binary-valued variables. And. when the variable are binary valued, it achieves the goal of

making the cover weakly unate.

23.2. Choice of Partition for the Splitting Variable

It was mentioned earlier that in the multiple-valued case it is more difficult to choose

a partition of the values which yields a minimum of duplication of cubes during the recur

sion. This can be formulated as follows:

Problem: Find a set of values c1 and c2 such that the total number of cubes in Pcl UF2

is minimized.

Consider the submatrix of the cover F restricting our attention to only the columns

associated with variable X,. Consider finding a row and column permutation of the

matrix into the form:

A 0

B

0 C

which minimizes the number of rows of B.

The columns of A are identified with the first half of the partition c1, and the

columns of C are identified with the second half of the partition c2. The cubes of B are

duplicated in both halves of the recursion.

This problem is a standard partitioning problem. Form a graph from the columns of

the matrix by placing an edge between two columns that have l's in the same row. The

weight of this edge is equal to the number of different rows in which these columns share

l's. The problem is then to partition the nodes into two disjoint sets such that a minimum

total edge weight connects the two sets.
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Solving the preceding problem is potentially expensive so I choose instead to partition

the active parts to place the first •£• into the set I, and the remaining ^- active parts into

the set r. This heuristic is very fast to compute (if a little crude), but it remains no worse

than an initial n -way split on the function. My experience with Espresso-MV is that even

with this simple heuristic, up to twenty-five percent of the time for the recursive routines

is spent determining the partition for the next step of the recursion.



CHAPTER 3

Logic Optimization of PLA's

In this chapter, I consider several important logic optimization steps in the design of a PLA

(i.e., optimizations that change the structure of the Boolean equations implemented in the

PLA). The optimizations I consider are: (1) Logic minimization, (2) Output phase assign

ment, (3) Input variable assignment and the use of two-bit decoders. (4) Optimal encoding

of the input, values to the PLA. and (5) Optimal encodingof the output values of the PLA.

The intent is to show how multiple-valued minimization can be applied to each of these

problems.

3.1. Logic Minimization

The logic minimization problem is to find a minimum cost cover for a given Boolean

function. The cost of a cover is defined as the sum of the costs of the cubes in the cover.

One typical cost function for a cube is:

cost(c)=l (3.1)

This reflects the primary goal of minimizing the number of product terms in the PLA (and

hence, minimizing both the area and delay associated with the PLA). It can be shown that

restricting attention to prime implicants is sufficient to find a minimum solution for this

cost function.

A secondary concern is to also minimize the total number of transistors in the PLA

(hence reducing parasitic capacitance in the array, and improving the prospects for folding

the array). Hence, another potential cost function is:

• n ., , # transistors to implement c ,~ ->>
COSt (C ) = 1 + : — — ^ : T. (3.2)

maximum # transistors in any implicant

Also, the cost function
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cost(c ) = ^transistors needed to implement c (3.3)

appears useful in applications of Boolean minimization to multiple-level networks.

When the cost function for an implicant obeys the property that

c C.d =S> cost(c) < cost(d) (3.4)

then the solution to the minimization algorithm consists of prime implicants [Rot80].

However, cost functions 3.2 and 3.3 violate this property because of the asymmetric

nature of the output-part of the implicant. Consider the two implicants:

10-11-10-110

10-11-10-100

The first three variables each have two parts, and the fourth variable, representing the

output-part of the multiple-output minimization, has three parts. Each 1 in the fourth

variable corresponds to a transistor in the output-plane of the PLA. The first implicant

contains the second implicant. but the second implicant costs less (using 3.2 or 3.3)

because fewer transistors are needed to implement it.

Hence, with these last two cost functions, it is possible that the minimum solution

will not consist of prime implicants. Most minimization algorithms (whether heuristic or

exact) sidestep this problem by limiting themselves to solutions consisting of prime impli

cants, and then, as a second step, they attempt to minimize the number of transistors

needed to implement the PLA. The primary cost function used is 3.1, with consideration

also given to reducing the number of transistors.

Finally, it is important to remember that the goals of minimizing the number of pro

duct terms and the total number of transistors sometime conflict. It is possible that a

cover with fewer product terms may require more transistors than a different cover with

more product terms. As is shown in Chapter 6, for the problems which are solvable by an

exact minimizer, Espresso generates solutions with more product terms, but fewer transis

tors.
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The techniques for solving this optimization problem exactly are well known

[McC56, Qui55]. Using cost function 3.1 the two steps are:

(1) Generate the set P of all prime implicants of the function:

(2) Extract from P a minimum subset that is sufficient to represent the function.

Many algorithms have been presented for generating all of the prime implicants of a

multiple-output function [DAR86, Rot80, Tis67], and most of these can be easily extended

to the case of multiple-valued binary functions. In Section 4.3. two techniques are

presented for generating the complete set of prime implicants for multiple-valued func

tions.

Solving the second step usually proceeds by forming the prime implicant table, A,

which is a binary matrix with the prime implicants listed across the columns of the table,

and the minterms listed down the rows of the table. A 1 is placed in position Ay if the

minterm i is contained in the prime implicant pj GP. The problem is then reformulated

as a special case of an integer-programming problem known as the minimum coverproblem.

This problem is to find a binary vector x satisfying

A*xr > (1.1 1)

(i.e.. each element of A •x1' is greater than or equal to l) such that

ipi

£ cost (pi) Xi
i=l

is minimized.

The procedures row dominance and column dominance (described in Chapter 5) exploit

relationships among the rows and columns of A to reduce the size of the matrix. Thus,

one of the goals of an exact minimization algorithm is to generate directly the reduced

form of the table. For example, generating only the prime implicants and using them for

the columns of the matrix is a heuristic (which applies when the cost function follows

property 3.4) for generating a reduced form of the table. Likewise, the IRREDUNDANT

algorithm presented in Section 4.4 is able to avoid listing minterms along the rows of A in
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favor of higher dimensional cubes, and hence it directly generates a reduced form of the

prime implicant table.

3.1.1. Difficulty of Logic Minimization

There are good reasons why an exact minimization algorithm cannot always produce

a result within a reasonable expenditure of computer resources. I review here two well

known failures for minimization algorithms that rely on the two steps outlined above.

First, the generation of the set of all prime implicants may fail because there are too

many prime implicants to be enumerated. There are functions with an exponential

number of prime implicants (as a function of the number of input variables). These "bad"

examples are often cited when referring to the complexity of generating all of the prime

implicants of a function. However, it is often the case that these bad functions also

require a very large number of implicants just to represent the function in two-level form

(i.e.. the minimum subset of the set of all prime implicants is also of exponential complex

ity in the number of inputs).

Example 1: The parity function of n variables has 2"_1 prime implicants. but also requires
2R_1 implicants for a minimum solution. Thus, if one can afford to present the exact
minimization program with a two-level form of this function, then the exact minimization
program can always afford to generate the set of all prime implicants (because the ratio
between the size of the minimum cover and the set of all primes is O(l)).

Example 2: The symmetric function of 3k variables described by "between k and Ik of

the input variables are 1" has (^fj |̂ f| prime implicants (which, asymptotically, equals —
for n = 3k ). But this function requires r* implicants to describe in two-level form, and
hence again, if one can afford to represent the function at all in two levels, then one can
afford to generate all of the prime implicants for the function (because the set of all
primes is smaller than the square of the number of terms in the minimum cover).

Hence, these two examples are not sufficient to prove the case that the generation of

the set of all prime implicants is difficult. One metric for measuring the complexity of

generating the set of all prime implicants is the relationship between the size of the

minimum cover (IM I) for the function and the number of prime implicants (IP I) for

the function. Generating the set of all prime implicants is most difficult when the com

plexity of IP I as a function of IM I (and not n) is greatest.
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A new result [McS84] shows that the worst case complexity for generating the set of

all prime implicants is \P \= 2]M]—1. and that this bound is precise in that there exists a

function with this complexity between its minimum cover and the set of all primes for the

function. Thus, there is the negative result that the set of all primes can become too large

to enumerate even though it is possible (and efficient) to represent the function in two-

level form.

The second failure of exact minimization algorithms is that they rely on solving the

minimum covering problem which is known to be NP-hard [GaJ79]. Further, the parame

ter that controls the complexity of the covering problem is IP I the size of the set of all

prime implicants. Hence, if a branch and bound strategy is used to solve this covering

problem, then the complexity can be as bad as 21". or. with respect to the users initial

input, the complexity can be as bad as 22

This is not to say that exact minimization is not possible for many functions. The

problem is that, in general, it is not possible to tell a priori which problems cannot be

solved within a reasonable expenditure of resources. Further, there will always be prob

lems which will be beyond the reach of any exact minimization procedure. Hence, there is

strong motivation for good approximate algorithms for solving the logic minimization

problem.

3.2. Output Phase Assignment

. The output of a PLA is typically buffered with either a noninverting or an inverting

buffer (depending on the actual implementation of the PLA). However, consider selec

tively changing each of the output buffers to be either inverting or noninverting. and

choosing, for each function, whether to implement the logic equations for the function or

its complement. As the phases of the outputs are changed, the Boolean equations which

are implemented by the PLA are changed, and hence the size of a minimum set of terms to

implement these equations also changes. Quite often this can reduce the number of rows

needed for the PLA as well as the number of transistors, and leads to a more area and
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time-efficient implementation of the function. The problem of choosing for each output

whether to implement its positive phase or its negative phase is called the output-phase

assignment problem.

It is still an open problem as to how to make an optimal choice from the 2m possible

assignments of phases. Note that merely minimizing each function once for the function,

and again for the complement of the function, is not a good strategy for choosing the phase

assignments. In particular, the greatest advantage from the choice of phase assignments

for a PLA implementation comes when a single product term can be used in several out

puts, and this simple algorithm ignores this effect. Sasao [Sas84b] suggests the following

algorithm for determining the phase assignment for a PLA with the outputs /o. f\.' '' .fm:

(1) Form the double-phase characteristic function which is a PLA implementing

the 2m functions /0, /i, • • • .fm >To- T\> ' ' ' Jm •

(2) Use a heuristic logic minimization algorithm to find a minimal cover for the

double phase characteristic function.

(3) Select from among the cubes in this minimal cover a minimum subset which

is sufficient to realize either f, or f for each i = 1 • • • m. This is done by

either expanding the covering expression, or by using a branch and bound

method. Each of these techniques is described in more detail in [Sas84b].

(4) Form the PLA which implements the output phases as chosen in Step 3, and

find a minimal cover for this function.

Most of the time taken for this algorithm is in the heuristic minimizer, although step

3 is potentially difficult for a problem with many outputs.

As an example of the usefulness of output phase assignment, I consider two of the

PLA's from the SOAR microprocessor [SKF85] which used PLA-based control logic. Infor

mation on the two largest PLA's are given in Table 3.1.
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name

cplal
xcplal
both

inputs outputs

9 16

9 23

10 39

rows

in minimized

PLA

38

41

79

rows after

output phase
optimization

28

32

45

rows using

complement for
all functions

26

30

43

28

Table 3.1. SOAR Control PLA's Before and After Output Phase Assignment.

It was intended that the control logic would be implemented as a single PLA (both).

However, the delay through the single PLA was determined to be too long, and hence the

PLA was manually partitioned into cplal and xcplal to reduce the delay. This partitioning

effectively duplicated the area of the AND-plane in each of the PLA's, and involved a sub

stantial amount of external area to route the inputs to each PLA.

The size of each PLA as implemented in the SOAR design is given in the column

"rows". (Each of these has been minimized using Espresso-MV.) The result of Sasao's

algorithm (using Espresso-MV as the heuristic minimizer) is given in the column "rows

after output phase optimization", and the result of minimizing the complement of every

function is shown in the column "rows using complement". The number of rows is seen

to be less (in all cases) when the complement of every function is used, as opposed to an

"optimal" choice of output phases for the outputs. Note that using the complement of all

functions doesn't necessary provide the optimum phase assignment for these examples.

Hence. I feel that the potential exists for better algorithms for the optimal phase assign

ment problem.

33. Input Variable Assignment and the Use of Two-Bit Decoders

Typically in a PLA. an input buffer provides the complement of each input, and

buffers the normal form of the input for driving the column of the PLA. Consider the

input buffers for two adjacent inputs, say a and b. These buffers generate the four logical

signals a.a.b.b. In a product term the AND of those columns with a transistor is

formed. There are sixteen possible ways to place the transistors in the four columns and

ten different functions of two variables can be generated as shown in Table 3.2. (A 0 in
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the table corresponds to a transistor, and a 1 corresponds to no transistor to be consistent

with the cube representation for a product term.) The function is then AND'ed with the

function formed from the rest of the variables to form a single product term. Note that

seven of the arrangements of transistors result in the Boolean AND of a signal with its

complement and hence is 0. This forces the entire product term to 0, and the product term

contains no useful information. Therefore, only nine useful functions of a and b can be

generated.

a a b b function comment

1 1 1 1

1 1 0 b

1 0 1 b
1 0 0 0 trivial

0 1 1 a

0 1 0 ab

0 0 1 ab

0 0 0 0 trivial

0 1 1 1 a

0 1 1 0 a b

0 1 0 1 a b

0 1- 0 0 0 trivial

0 0 1 1 - 0 trivial

0 0 1 0 0 trivial

0 0 0 1 0 trivial

0 0 0 0 0 trivial

Table 3.2. Functions generated by normal PLA buffer.

Another possibility, however, is to generate the four possible decodes of the two vari

ables a and b, namely, a+b.a+b.a+b, and a+b. Using these rather than using the

signals and their complements it is possible to form all sixteen functions of two variables

as shown in Table 3.3. For example. ab= (a+b )(a +b )(a +b ).
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a+b a+b a+b a+b function comment

1 1 1 1

1 1 0 a+b new

1 0 1 a+b new

1 0 0 a

0 1 1 a+b new

0 1 0 b

0 0 1 a b + a b new

0 0 0 a b

0 1 1 1 a+b new

0 1 1 0 a b + a b new

0 1 0 1 ab

0 1 0 0 a b

0 0 1 1 a

0 0 1 0 ab
0 0 0 1 ab

0 0 0 0 0 trivial

30

Table 3.3. Functions generated by two-bit decoder PLA buffer.

Note that using two-bit decoders generates the nine useful functions obtained with

the normal PLA buffer as well as six new functions. This leads to the following conclu

sion:

Proposition 3.1: Given a PLA with one-bit decoders (normal PLA buffers) it is possible to

group the inputs into pairs (in any order) and replace the input buffers with two-bit

decoders to yield a bit-paired PLA with the same number of columns and no more rows

(product terms) than the original PLA.

A straightforward mapping from the original PLA to a bit-paired PLA results in a

PLA with the same number of rows, but there will be more transistors in each row (for n

inputs, each row will contain !L more transistors as it takes one more transistor for every

pair of variables to implement the same function after pairing). However, the benefit of

bit-pairing comes from minimizing the logic function after the variables have been paired.

Theorem 2.1 of [Sas84b] shows that the logic minimization problem for a given choice of

pairing of variables is equivalent to a multiple-valued input logic minimization.

This can be generalized to allow forming the 2" decodes of n variables (i.e.. to pair

the three variables a.b.c forming the eight decodes a+b+c. a + b+c, a + b+c.
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a+b+c . a+ b+ c, a+ b+ c. a + b+ c, and a + b+ c), or to allow redundant pairings

of variables (i.e., to pair four variables a.b,c,d as (ab)(ac)(ad)). In both cases, the

resulting minimization problem is still equivalent to a multiple-valued Boolean minimiza

tion. However, in each of these cases, the number of columns in the PLA will increase.

The resulting optimization problem of finding the optimum pairing to minimize the total

area of the PLA is a very difficult one. Hereafter I consider only nonredundant pairings of

two variables.

However, there is still the problem of choosing which variables should be paired

together to achieve the greatest reduction in the number of terms in the PLA. There are a

large number of possible pairings, as the next proposition shows:

Proposition 3.2: For a function of n variables (n even), there are

n—x n!
n *=—

i = l.odd "j-

ways to choose the assignment of variables to two-bit decoders. (If n is odd. add a

dummy variable and consider a variable to be unpaired if it is paired with the dummy

variable: hence, the number of pairs for n odd is the same as the number of pairs for

n+1.)

Proof: To count the number of possible pairings, consider the problem of pairing n vari

ables as one of picking the first variable and pairing it with each of the remaining n—1

variables, and recursively counting the number of pairings for n —2 variables leading to

the recurrence:

/(*) =

n-lX/ (n-2) if n >2
1 if n = 2

0 if n <2

n-l

It is easy to verify that JJ i satisfies this recurrence.
i = l.odd
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One important observation is that the problems of output phase assignment and

input-variable assignment are not independent. For example, consider the simple function

f =ab +cd. There are three possible input-variable assignments: (a b) (c d); (a c) (b d);

and (a d) (b c). Each yields two product terms for / . There are two possible phase

assignments: either implement the function as is with two product terms, or implement

the complement of the function (/ =<z c+a d+b c+b d) which requires four terms.

Thus, performing input-variable assignment first, there is no reason to pair any variables

at all. Or, by performing output-phase assignment first, it is best to implement the func

tion rather than its complement. However, by implementing the complement of the func

tion with the input-variable assignment of (a b) (c d), the function requires only a single

term.

Sasao [Sas84b] presents the following algorithm for choosing an optimal assignment

of variables to the input decoders for a PLA function:

(1) Use a heuristic minimizer to obtain a minimal cover for the function without

considering two-bit decoders.

(2) Determine the number of cubes that can be removed from the cover if vari

ables i and j are paired for each pair of input variables i and j. This is done

by forming the multiple-valued cover corresponding to the pairing of i and j

and then either performing a distance-1 merge in the paired variable (a quick

upper bound), or by actually minimizing the function after the pairing (more

precise, but much more expensive).

(3) Create the assignment graph (a complete graph where the nodes represent

input variables, and an edge between nodes i and /" has weight w if w cubes

can be removed from the cover if variables i and j were to be paired).

(4) Cover the assignment graph with disjoint edges so as to maximize the sum of

the weights of the edges. If there are 16 or fewer inputs, it is reasonable to

enumerate all possible coverings (for 16 variables, there are 2.027.025
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different coverings), and choose the pairing of maximum sum: otherwise a

heuristic technique (as described in [Sas84b]) can be used.

(5) Form the multiple-valued function corresponding to this pairing of the input

variables, and find a minimal cover for the function.

One problem with this algorithm is that it ignores interaction between pairs. For

example, if the pair (12) removes 5 terms, and the pair (3 4) removes 5 terms, there is no

easy way to predict how many terms can be removed with the pairing (1 2) (3 4). Also, it

does not consider the effect of output phase assignment on the input-variable assignment

problem. Presumably, one can perform phase assignment followed by input bit-pairing,

and then bit-pairing followed by phase assignment to see which yields better results for

each problem.

As an example of using two-bit decoders. I consider the combined version of the con

trol PLA's from the SOAR microprocessor mentioned earlier (both). Choosing the negative

phase of each function gives the PLA shown in Table 3.4 with 43 rows and 686 transis

tors. The function is represented in standard PLA format (described in Appendix A)

which uses {0, 1. -} for the binary-valued input variables, and {0, 1} for the output vari

ables. The first step is to apply Sasao's algorithm to choose a pairing of the input vari

ables, and then to minimize the function with this pairing. The optimal pairing chosen

was (1 2) (3 7) (4 5) (6 8) (9 10). and Table 3.5 shows the direct translation of the PLA

(term by term) from Table 3.4 resulting in the bit-paired multiple-valued function.

Finally, Table 3.6 shows the result of the multiple-valued minimization which resulted in

36 rows and 822 transistors. In this case, the bit-pairing has increased by 136 the number

of transistors in the PLA while reducing by 7 the number of rows.
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input plane : output plane
-0101-001- OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOIOOOO

-0-0111-1- 000000000000000000000000000000000010000

-01—111- 000000000000000000000000000000000010000

-0-01101- OOOIOOIOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOI

_0-i-i 11- 000000001000000000000000000000000010000

-0—1001- 000000000000000000000000000000000011000

-01011-1- 000100000000000000000000000100000000110

-00—1101- 000000001100001000000000000000000010000

-1-1111- 000100000000000000000000000100000000000

-01-1— 000010000000000001000000001000000000001

-1110011- loooiooioiooooioiooiooooooooooooooooooo
-100-111- 000000101000100101100000000000001100000

-1010001- 101010110110000000000100000000100000000
10 000000000000000000000000100001000000000

11111- 000100100000000001100000000100001100000

—1-111- 000000100000000101100000000000001100000

-000-111- 000000010000110100100010000000001101010

-0—0-01- 000010010100001000000000000000000000000

-0—1-111- 000000001100001100000000000000000010101

-1-000-1- 000000111000010000100010000000000000010

—11-0001- 100010111100001000011000000000000000000

-0-11011- 110010010100001010011100000000010000000

-101-011- 110010111100001000000100000000100000000

-0-0011- 110010010100011010001010000000100000010

-1 000000001100001100000000000000000001111

—0-1101- 100011000101111000000010000100000001010

-11-1101- 100011010101111000000010001000000001011

-1-01101- 010000111000000000111101001110100000101

_0 01- 110001000001010000111100000010100000000

1 101101111111110100000000000000000000000

1i_o— 010000101000100000111101000110100001100

—01-0-1- 000001000001110000111011001110000001111

—11-0-1- 010001000001110000100111001110100001111

10111- 110011100001100001111101001110101101000

-0101011- 110011010101111001111101001110100001111

—mi- liooiioooioioiiooooiiioiiiiooiioooooiii

00-1- 110011000101101000011101001110100001101

0-001- 010011101001110000111111001110100000111

—001011- 110011010101111000111111001110100001111

-11-1011- 110011111101111000111111001110100001111

0101- 110011010101111001111101001110100001111

00- 110010101010111001111111001111100001111

10- 110011101001111001111111001111100001111

Table 3.4. SOAR Control PLA (Using Complement of all Functions)

34
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(12) (3 7) (4 5) (6 8) (9 10) Outputs
0101 1010 0010 1100 1100 000000000000000000000000000000000010000

0101 1000 mi 1010 1100 000000000000000000000000000000000010000

mi 0010 0101 0100 1100 000100100000000000000000000000000000001

0101 1010 1100 1010 1100 000000001000000000000000000000000010000

0101 0101 mi 0100 1100 000000000000000000000000000000000011000

mi 0010 0100 1100 1100 000100000000000000000000000100000000110

0101 0010 mi 0100 1100 000000001100001000000000000000000010000

mi 1000 mi 1000 1100 000100000000000000000000000100000000000

mi 0010 1100 mi mi 000010000000000001000000001000000000001

mi 0100 1000 0010 1100 100010010100001010010000000000000000000

mi 1000 0001 1010 1100 OOOOOOIOIOOOIOOIOIIOOOOOOOOOOOOOIIOOOOO

mi 0100 0010 0001 1100 101010110110000000000100000000100000000

mi mi mi mi 0100 000000000000000000000000100001000000000

mi 1010 1010 1000 1100 000100100000000001100000000100001100000

mi 1010 1100 1010 1100 000000100000000101100000000000001100000

mi 0010 0001 1010 1100 000000010000110100100010000000001101010

mi 0011 mi 0001 1100 000010010100001000000000000000000000000

0101 1010 1010 1010 1100 000000001100001100000000000000000010101

mi 0100 0101 0011 1100 000000111000010000100010000000000000010

mi 0100 1100 0001 1100 100010111100001000011000000000000000000

mi 0001 1010 1000 1100 11001001010000101001110000000001OOOO0O0

mi 0100 0010 1010 1100 110010111100001000000100000000100000000

mi 0001 mi 0010 1100 110010010100011010001010000000100000010

1010 mi mi mi mi 000000001100001100000000000000000001111

mi 1010 0011 0100 1100 100011000101111000000010000100000001010

mi 1000 1100 0100 1100 100011010101111000000010001000000001011

mi 1000 0101 0100 1100 010000111000000000111101001110100000101

mi 0011 mi 0101 1100 110001000001010000111100000010100000000

1100 mi mi mi mi 101101111111110100000000000000000000000

mi mi 1010 0100 mi 010000101000100000111101000110100001100

mi 0101 0010 mi 1100 oooooiooooon iooooi ilonooi iiooooooi iii

mi 0101 1000 mi 1100 010001000001110000100111001110100001111

mi 1010 1010 0010 1100 110011100001100001111101001110101101000

mi 0001 0100 1000 1100 110011010101111001111101001110100001111

mi 1010 mi 1000 1100 110011000101011000011101111001100000111

mi mi 0101 0011 1100 110011000101101000011101001110100001101

mi 0101 0101 0101 1100 010011101001110000111111001110100000111

mi 0101 0001 1000 1100 110011010101111000111111001110100001111

mi 0100 1100 1000 1100 110011111101111000111111001110100001111

mi 1010 mi 0001 1100 110011010101111001111101001110100001111

mi mi mi 0101 0011 110010101010111001111111001111100001111

mi mi mi 1010 0011 110011101001111001111111001111100001111

Table 3.5. SOAR Control PLA After Setup for Two-Bit Decoders.
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(12) (3 7) (4 5) (6 8) (9 10)

0101 mi 0010 0100 1100

0101 0111 mi 0100 1100

0101 0010 1110 1010 1100

mi 0001 0101 0010 1100

0101 1000 mi 1010 1100

mi 0100 0010 0001 1100

mi mi mi mi 0100

mi 0100 1000 0010 1100

mi 0010 1100 0100 1100

mi 1000 0001 1010 1100

mi 1010 0011 0100 1100

mi 0001 mi 0001 1100

mi 0001 mi 0010 1100

mi 0100 0010 1010 1100

mi 0001 1010 1000 1100

1010 mi mi mi mi

1100 mi mi mi 1111

mi 0010 0101 0100 1100

mi 1000 1101 0100 1100

mi 1001 mi 0111 1100

mi 0101 0010 mi 1100

mi 0101 1000 mi 1100

mi mi 1010 0100 1100

mi 1000 mi 1000 1100

mi 0010 1110 1000 1100

mi 1010 1110 0010 1100

mi 0001 0100 1000 1100

mi 0010 0001 1000 1100

mi 0101 0101 0101 1100

mi 0010 0001 0010 1100

mi 0101 0001 1001 1100

mi 1111 mi 0101 0011

mi 0100 0101 0010 1100

mi 0100 1100 1001 1100

mi 1010 mi 0001 1100

mi mi mi 1010 0011
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Outputs

000000000000000000000000000000000010010

000000001000000000000000000000000010000

000000001100001000000000000000000010100

000000000000000000010100001000000000001

000000001100001100000000000000000010101

1010101101lOOOOOOOOOOlOOOOOOOOlOOOOOOOO

000000000000000000000000100001000000000

110010010100001010010000000000000000000

100010000100001001000000001000000000101

000010100000100001110100001000001100000

100010001100101000000010000000000001000

000010010100001000010100000000000000000

000010010100011010000010000000000000010

110010111100001000000100000000100000000

110010010100001010011100000000010000000

000000001100001100000000000000000001111

101101111111110100000000000000000000000

010101100001010000111100000110100000011

000010111100011000110110001000000000011

110001000001100000001001000110100001100

0000010000011100001110110011IOOOOOOI111

000001000001110000100111001110100001111

010001100001110000111101000110100001100

110111100001010001111101111101101100010

110111100001010101111101111101101100011

110011100001100101111101001110101101001

110011010101111001111101001110100001111

110011010101111100111111111001101101111

010011101001110000111111001110100001111

110011010101111100111111001110101101111

110011010101111000111111001110100001111

110010101010111001111111001111100001111

110011111101111000111111001110100001111

110011111101111000111111001110100001111

110011010101111001111101001110100001111

110011101001111001111111001111100001111

Table 3.6. SOAR Control PLA After Minimization With Decoders
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3.4. Optimal Encoding of the Inputs of a PLA

The input encoding problem can be stated as follows:

Input Encoding Problem: Given a set of symbols 5'= i slt s2. • • • ,sp } and a Boolean

function:

/:{0.l)n x Sl -{0.1.2}m

find an encoding of the symbols into binary vectors that minimizes the number of product

terms needed to represent the function in two-level, sum-of-products form.

Remark: The problem with n binary inputs, 1 symbolic input and m outputs can easily

be extended to consider any number of symbolic inputs.

It has been shown [De83] that this problem can be solved by performing a multiple-

valued minimization of the function / (where S' is represented by a single multiple-

valued variable with p values), and then solving an encoding problem which maps the

result of the multiple-valued minimization into binary vectors for each symbol. The input

encoding problem has been used as an approximation to the state-assignment problem

[DBS85] where the set 5' is the set of states, and the function / defines the output func

tions as a function of the binary inputs and the present state. Note that in this approxi

mation, the effect of the encoding on the next-state function is ignored.

As an example of an input encoding problem. I consider the problem of optimal

assignment of opcodes for a simple microprocessor. The Table 3.7 shows the decode logic

for the microprocessor with the opcodes in symbolic form. There are two inputs (besides

the opcode), and 5 outputs.
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in i inl opcode outputs

0 0 ADD 10101

0 1 ADD 01100

1 0 ADD 01010

1 1 ADD 10100

0 0 SUB 10111

0 1 SUB 01010

1 0 SUB 01100

1 1 SUB 10100

0 - LOAD 11010
- 0 LOAD 01000

0 0 STORE 11100

0 1 STORE 01110

1 0 STORE 01100

1 1 STORE 01110
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Table 3.7. Microprocessor Decode Logic.

Translating this into a multiple-valued minimization, the problem has four variables

— the first two variables are binary-valued, the third variable has 4 values, and the fourth

variable has 5 values. Translating each product term results in Table 3.8. Note that, for

the binary valued variables, a 0 in Table 3.7 corresponds to 10 in Table 3.8, and a 1 in

Table 3.7 corresponds to 01 in Table 3.8. Also, the four values of the third variable

represent ADD, SUB. LOAD and STORE respectively.

10-10-1000-10101

10-01-1000-01100

01-10-1000-01010

01-01-1000-10100

10-10-0100-10111

10-01-0100-01010

01-10-0100-01100

01-01-0100-10100

10-11-0010-11010

11-10-0010-01000
10-10-0001-11100

10-01-0001-01110

01-10-0001-01100

01-01-0001-01110

Table 3.8. Multiple-valued version of decode logic.

The results of the multiple-valued minimization are shown in Table 3.9.
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01-01-1100-10100

10-10-1100-10101

01-10-0101-01100

11-10-0011-01000

01-10-1000-01010

10-01-1000-01100

10-01-0100-01000

10-11-0100-00010

10-11-0010-11010

10-10-0001-10100

11-01-0001-01110

* (ADD. SUB)
* (ADD. SUB)
* (SUB. STORE)
* (LOAD. STORE)
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Table 3.9. Microprocessor Decode after Minimization.

A constraint is generated for each term with 2 or more values in the symbolic vari

able. The constraints (ADD. SUB). (SUB. STORE). (LOAD. STORE) can be satisfied with

the embedding ADD = 01. SUB =11. LOAD = 00. and STORE = 10. This embedding

satisfies the requirement that each constraint can be represented by a single cube:

ADD. SUB -1
SUB. STORE 1-
LOAD. STORE -0

Minimizing with this assignment gives the PLA shown in Table 3.10. Note that the

product terms are not identical in form to the multiple-valued minimization because the

procedure MAKE_SPARSE has selected implicants which minimize the number of transis

tors in the PLA (as described in Section 4.8). If the embedding is exact in the sense that

all of the constraints are satisfied, then the number of product terms should not change

after the embedding is performed. To assist in analyzing this example, the differences have

been noted in the table.
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input output comments

11-1 10100

00-1 10101

101- 01100

-0-0 01000
1001 01010

-101 00100 variable 1 raised, variable 5 lowered
01- 01000 variable 3 raised, variable 4 raised

0-11 . 00010

0-00 10010 variable 5 lowered

001- 10100 variable 4 raised

-110 01110

Table 3.10. Microprocessor Decode PLA
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3.5. Optimal Encoding of the Outputs of a PLA

The last optimization problem I consider is the output encoding problem:

Output Encoding Problem: Given a set of symbols S° s { * } U { sx. s2. • • . sp } and

a Boolean function /

/ : { 0.1 }n - S°

find an encoding of the symbols of 5°.(as binary vectors) that minimizes the number of

product terms needed to represent the function in two-level, sum-of-products form. The

value "*" designates input conditions for which the value of the output is a don't-care.

Remark 1: The extension of this problem to consider any number of symbolic outputs is

straightforward.

Remark 2: The output encoding problem, while very similar in form to the input encoding

problem, is a much more difficult problem. This problem has been addressed with Sym

bolic Minimization [De85] which seeks to minimize a multiple-valued input, multiple-

valued output function in a code-independent manner. This is still an active area of

research.

As a practical example of an output encoding problem. I consider the design of a sub-

circuit of a high speed division circuit [Tay8l]. An n -bit divider accepts an n -bit dividend

r and an n -bit divisor d and produces an n -bit quotient q. (Assume that the radix point

for both dividend and divisor are to the immediate left of the numbers.) A divider is
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typically built as a sequential circuit which requires n clock transitions to produce the

quotient. During each clock transition, either d or —d is added to r producing one bit of

the quotient, d is shifted 1 position to the right, and the process is repeated n times. This

technique is called radix-2 division.

However, a faster division circuit can be built if the dividend is shifted 2 positions

each clock transition. This is referred to as radix-4 division [Tay8l]. In each clock transi

tion of radix-4 division, one of d . 2d, —d , —2d . or 0 is added to the dividend. (Com

puting ±2d is easily done with a shift of the divisor.) The divisor is then shifted 2 posi

tions to the right, and the process is repeated —times.

An important subcircuit in the design of a radix-4 divisor is the shift-size circuit

which determines whether to add d . 2d . —d. —2d . or 0 to the dividend. This circuit

examines a fixed number of leading bits of the dividend and divisor and determines the

proper value to be added to the dividend. Whether to add or subtract can be determined

from the sign of the dividend, but the decision to use 0. d. or 2d requires a nontrivial

amount of hardware. An important consideration in the design of the shift-size circuit is

that many combinations of leading bits for the divisor and dividend cannot appear in any

step of the division algorithm.

I concentrate now on the optimization of the shift-size circuit. The shift-size circuit

is a function:

/:{0.1)« - {*.<2o.Gi.<22}

where the values Qq.Q\. and Q2 represent the decision to add 0. d. or 2d respectively

based on the leading bits of the dividend and divisor. The value "*" is specified for input

combinations which are known not to occur.

For the shift-size circuit considered here, there are 11 binary inputs and 3 symbolic

outputs. Using a minimum bit encoding for the output, there are four values 0. 1. 2. 3 (or

00. 01, 10, 11 in binary) to assign to the three symbols. There are 4P3 = 24 different

assignments of the values to the symbols. However, not all of these result in different
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minimization problems. In Table 3.11, the twelve unique encodings are enumerated. Also

shown in the table are the results of an exact minimization of the function under each

assignment.

Qo Ql Ql terms comment

0 1 2 43 (same as 0 2 1)
0 1 3 26 (same as 0 2 3)
0 3 1 26 (same as 0 3 2)

0 2 26 (same as 2 0 1)
0 3 26 (same as 2 0 3)
2 0 29 (same as 2 1 0)
2 3 30 (same as 2 1 3)
3 0 27 (same as 2 3 0)
3 2 27 (same as 2 3 1)

3 0 1 26 (same as 3 0 2)
3 1 0 *25 (same as 3 2 0)
3 1 2 44 (same as 3 2 l)

Table 3.11. Shift-size Circuit With Different Output Encodings.

The two output bits from this circuit are referred to as Oi and 02. The assignments

£o= 00. Qi= 01. Q2= 10 and go= 00. Qi= 10. Q2= 01 are equivalent because they result in

a swap of the functions O i and 02.

The results show that the assignment of Q0= 11, Gi= 01. Q2= 00 is optimal for this

circuit. Also, there is almost a 2:1 ratio in the number of terms needed to implement the

function based on the encoding chosen.

There is a close relationship between output encoding and the output phase assign

ment problem. A simple analysis in this example shows that by enumerating all possible

output encodings, we have also considered all possible phase assignments for each of the

encodings. For example, the assignment Qo=00, Qi=01.Q2= 10 with the second output

complemented is equivalent to the assignment j2o= 01. 21= 00, Q2—\\.
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The Espresso-MV Minimization Algorithms

The Espresso-MV strategy for minimizing multiple-valued functions is identical to

the strategy employed by Espresso-II (and Espresso-IIC) for multiple-output functions.

Figure 4.1 shows an overview of the strategy. I briefly explain here the purpose of each

step in the algorithm. Later in the chapter each procedure will be explained in more detail,

including the extensions of the procedures for multiple-valued functions.

The first step performed by Espresso-MV is to read the function provided by the user

and split the function into a cover of the ON-set, a cover of the OFF-set. and a cover of

the DC-set. Espresso-MV requires all three covers. The user is allowed to specify a

multiple-valued function by providing any two of these three covers, and Espresso-MV

will use the COMPLEMENT procedure to compute the missing cover.

The inner loop of the Espresso-MV strategy consists of reducing the implicants to

nonprime cubes, expanding the cubes to prime implicants. and extracting a minimal subset

of the prime implicants. This scheme is iterated (using REDUCE) until there is no further

reduction in the number of cubes in the function.

When the solution stabilizes, the LAST_GASP strategy performs the reduction and

expansion in slightly different manner in an attempt to get past a local minimum.

One interesting variant added in Espresso-MV is the routine SUPER_GASP. This pro

cedure is used optionally instead of LAST_GASP to expend more effort in finding a better

solution.

Here are the main procedures employed by Espresso-MV:

COMPLEMENT Returns a representation of the complement of a multiple-valued func

tion. This procedure is used by the setup routine to compute a cover for

the ON-set. the OFF-set and the DC-set (when one of these is not

§4 43
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provided by the user). EXPAND is the only routine which requires the

OFF-set: the remaining routines use only the ON-set and DC-set.

EXPAND Replaces each cube in the cover F with a prime cube which covers the

cube. Heuristics guide the selection of a single prime from all of the

primes which cover the cube.

IRREDUNDANT Extracts from the cover F a minimal subcover which is still sufficient to

represent the function. A key component of this procedure is the routine

TAUTOLOGY which tests whether a function is 1 for all possible inputs,

and the routine FIND_TAUTOLOGY which returns a list of the ways that

cubes can be removed from a function in order to prevent the function

from being a tautology.

ESSENTIAL Identifies which prime cubes in the cover are essential primes. An essen

tial prime must be in any cover of the function, and hence the essential

primes can be set aside before entering the iterative part of the algorithm.

REDUCE Replaces each cube in the cover F with the smallest cube contained in the

cube which is necessary to still represent the same function. The cubes

are processed one at a time, and so the algorithm is sensitive to the order

in which the cubes are processed.

LASTJ3ASP An alternate REDUCE. EXPAND. IRREDUNDANT iteration performed in a

different manner in an attempt to achieve a better solution. The step

replaces each prime cube in the cover F with the maximal reduction of the

cube (independent of the order in which the cubes are processed), and

then these cubes are expanded in an attempt to cover other maximally

reduced cubes. If any maximally reduced cubes cover other maximally

reduced cubes, the resulting primes are added to the cover, followed by

IRREDUNDANT to select those that are useful for reducing the size of the

function.
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SUPER_GASP Similar to LAST_GASP. but, instead of using EXPAND to expand the maxi

mally reduced cubes, all prime implicants which contain each maximally

reduced cube are used. IRREDUNDANT then selects a minimal subcover of

this large cover of prime implicants.

MAKE_SPARSE Iterates over the cover attempting to reduce the total count of transistors

needed in a PLA form of the function. The main components are

LOWER__SPARSE which reduces the cubes in variables which are desired

sparse, and RAISE_DENSE which expands the cubes in variables which are

desired dense.

VERIFY This is used as a verification of the Espresso-MV program. When the

minimization is finished. VERIFY performs a logical equivalence between

the original cover and the minimized cover to verify that the function has

not been corrupted. If F^ is the original function. F is the minimized

function, and D is the don't-care set, then check that F^ CFUZ) and

F C F^UD.
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/* Espresso-MV — minimize a multiple-valued Boolean function

F refers to the ON-set of the function
D refers to the DC-set of the function
R refers to the OFF-set of the function

*/

cost ( F ) first considers the number of cubes in F,
and then the number of literals to implement F.

espresso(F. D)
I

/* Save original cover for verification */
/* Compute the complement */

Fow *~ F:
R - COMPLEMENT (F + D):

F <- EXPAND (F, R):
F - IRREDUNDANT (F. D):

E - ESSENTIAL (F. D):
F - F - E:

D - D + E:

/* Initial expansion */
/* Initial irredundant */

/* Detect essential primes */
/* Remove essentials from F */
/* Add essentials to D */

do

<f>2*- cost(F);

/* Repeat inner loop until solution becomes stable */
do {

0i«-lFI:
F <- REDUCE (F. D):
F - EXPAND (F. R):
F - IRREDUNDANT (F. D):

} while (IFI < &):

/* Perturb solution to see if we can continue to iterate */
G «- LAST_GASP (F. D. R):

} while (cost(F) < <fe);

F - F + E:
D «- D - E:

F - MAKE_SPARSE (F. D. R):

if (! VERIFY (F. D. F^))
exitO'verify error"):

return F:

/* Return essential toT */

/* Make the solution sparse */

Figure 4.1. The Espresso-MV main algorithm.
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4.1. TAUTOLOGY

Multiple-valued tautology is an important step in many heuristic minimization algo

rithms [Sas84a]. In this section, we will describe the algorithm used by Espresso-MV for

determining if a function is a tautology.

A well known result [BMH84, Sas84a] is the following:

Proposition 4.1.1: A cover F contains a cube c if and only if Fc is a tautology.

Hence, multiple-valued tautology can be used to determine if a cover contains a cube

(i.e.. the cover contains all of the minterms of the cube). This can be used to expand a

cube into a prime implicant [Sas84a. Theorem 5.1]. to detect redundant cubes in a cover

[Sas84a. Theorem 5.2], and to detect essential primes in a cover of prime implicants

[Sas84a. Theorem 5.3]. Although we choose to use the complement of the function to

expand a cube into a prime implicant, multiple-valued tautology is used in Espresso-MV to

extract an irredundant subcover from a cover, and to detect essential primes in a cover.

The tautology question for a multiple-valued function is NP-complete implying that

there is little hope of finding a polynomial-time algorithm to solve the problem. However,

in practice, we find that the run-time of the tautology algorithm accounts for only a small

fraction of the time for Espresso-MV. We will use the Generalized Shannon Cofactor

described in Chapter 2 to recursively divide the function into simpler functions which are

examined for tautology.

Proposition 4.1.2: [Sas84a, Lemma 3.3]. If a set of cubes c',t = l---m satisfies

m

U c' s 1 and c' C\cJ = 0 for i ?±j then F is a tautology if. and only if. each of F t is a
i= 1 c

tautology for i = 1 • • • m

To reduce the complexity of answering the tautology question, we will use the pro

perties of weakly-unate functions proven in Chapter 2. Using Proposition 2.6 we can

always reduce the size of the problem if there are any weakly-unate variables.
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4.1.1. Special Cases

Before we split the function, we first check a set of special cases:

(1) If the cover has a row of all l's (i.e.. contains a universal cube), then the

function is a tautology.

(2) If the cover has a column of all O's. then the function is not a tautology.

(3) If the function is weakly unate, then the function is not a tautology because

we did not identify a row of l's in case (1):

(4) If there are any weakly-unate variables, then cubes of F which are not full

in the unate variable are discarded according to Proposition 2.6. At this

point, we return to case (l) to continue checking the reduced function.

(5) If the cover H can be written as A U B where A and B are defined over dis

joint variable sets, then F is a tautology if and only if either A or B is a tau

tology. This case can be detected by finding a row and column permutation

of F resulting in a matrix of the form:

A 1

1 B

where 1 represents an appropriately sized block of all l's (and the division

does not split a variable between the two halves). Such a partition can be

easily detected with a simple greedy algorithm. However, in practice, such a

decomposition may not occur often, and hence should only be checked for in

the case that the matrix contains many l's.

If none of these special cases apply, then two cubes c1 and c2 are chosen (as described

in Section 2.3) as a partition of a heuristically selected splitting variable, and then each of

F.i and Fe2 are checked recursively for tautology. The function is a tautology only if each

of the two cofactors is a tautology.
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4.2. COMPLEMENT

COMPLEMENT computes the complement of a multiple-valued function. In the

Espresso-MV algorithms, the complement of a function is used by the EXPAND procedure.

Also, COMPLEMENT is used to determine the DC-set of a function if Espresso-MV is given

only the ON-set and OFF-set for the function.

The complement of a multiple-valued function is computed using the Generalized

Shannon Expansion via the following proposition [Sas83, Lemma 3.2]:

m

Proposition 4.2.1: Let c' ,i=l - • - m be a set of cubes satisfying U c'= 1 and

cl f)cj = 0 for i **j. Then.

i=l

In Espresso-MV, a splitting variable Xit and a partition the values of the variable

into two halves c1 and c2 is selected. Half of the values of Xt are placed in c1 and the

remaining half are placed in c2. The complement of the function is computed recursively

for each of Fc\ and Fc2. and the complement of F is c1DFci\ U c2fli7c

cedure complement_pierge is used to reduce the number of terms in F.

. The pro-

4.2.1. Merging the Complement

Merging is the process of forming the union of F \ and F 2 in such a way as to

minimize the number of terms in the union. The merge step can be viewed as a heuristic

minimization algorithm that attempts to minimize the number of terms in the complement

of the function while the complement is being computed.

If the same cube d appears in both Fc\ and Fc2 then the relation

(cJnrf) U (c2f)d) = (^Uc2) f\d = d

replaces the two cubes with the single cube d.

An expansion of the splitting variable is also attempted using one of two algorithms:
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Algorithm 1:

Check, for each cube d € F \. whether it is contained by Fc2. If so, use the

relation

[c^d] uUfJ = ((^Uc2) rw) u (c2nF2j
to raise the values of c2 in d (i.e.. replace c1C\d with supercubeic1C\d , c2).)

The condition d C Fc2 can be checked in three ways:

(a) Check if any single cube of Fc2 contains d; if so. d C Fq2. Hence, a

single-cube containment check can be used although it may miss some

possible lifting of parts.

(b) Determine if F 2 is a tautology. In general, the complexity of this
d

alternative rules it out.

(c) Check if (cl\Jc2)C\d does not intersect F; if this intersection is

empty, then d <Z F 2.

The condition of Algorithm lb and lc is stronger than the single-cube containment

of Algorithm la because it detects multiple-cube containment.

Algorithm 2:

Check, for each cube d € F \, whether d is distance-1 from a cube / € F. If

so, the parts of / which are a 1 may not be raised in d (i.e., they must

remain 0). Any parts of d which are not forced to be 0 by some cube / 6 F

may be raised.

Both of these algorithms are symmetric in that the procedure is repeated for the cubes

d € Fc2.

Remark 1: Because the cubes have been sorted in order to remove the duplicates between

the two lists, the complexity of Algorithm la can be reduced by roughly a factor of 2 by

checking only the cubes of F 2 which are larger than d to see if they contain d .
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Remark 2: Algorithms la and lb either raise all of the parts in the splitting variable or

none of the parts. (This is the same technique'as used by Espresso-H for merging the

results of the complement.) However, Algorithm 2 allows individual parts of a cube to be

raised, and is able to determine precisely which parts can be raised, and which cannot be

raised. In fact, if the cubes of c1C\Fci and c2C\Fc2 are prime implicants. then the cover

resulting from applying Algorithm 2 will consist of prime implicants. Each leaf of the

recursion in COMPLEMENT produces only prime implicants. Hence, by induction, the final

cover returned by COMPLEMENT will consist of only prime implicants.

Remark 3: Algorithm 2 is using a technique similar to that used by EXPAND to determine

essentially raised and essentially lowered parts (as described in Section 4.3.2), except that

a cube of the OFF-set is being expanded against the cubes of the ON-set.

Algorithm 2 is a more powerful merging algorithm, and will, in general, yield a

smaller representation of the complement than either Algorithm la or Algorithm lb.

Assuming that the complexity of Algorithm la. is approximately 0.5 \F \\\F 2\, and that

of Algorithm 2 is approximately ( IF xI+1 Fq2 I) IF I. the following heuristic is used. If:

i\Fcl\ + \Fel\)\F\ <{\FcX\\Fc2\)

use Algorithm 2 to raise the parts in the splitting variable: otherwise, use Algorithm la.

Algorithm 2 is favored (by a factor of two) because it has the possibility of generating a

smaller representation of the complement (which improves the performance of the

EXPAND procedure).

Note that, as mentioned in Section 2.5. if the same variable is selected for splitting

until all cubes in the cover are independent of that variable, then the leaves will be the

functions Fx <0j. Fx {l j ... F {- >. Hence, in this case, the technique of splitting the

parts in half provides a natural binary tree for performing the merge operation.
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4.2.2. Special Cases

As usual, a set of special cases are checked before the function is split by the General

ized Shannon Cofactor. In the case of COMPLEMENT the special cases are:

(1) If there are no cubes in the cover (i.e.. the cover is empty), then the complement is

the universe; if there is row of all l's in the cover (i.e., the cover contains a universal

cube) then the complement is empty;

(2) If there is only a single cube in the cover, compute the complement using De

Morgan's law as described in Chapter 2.

(3) If the matrix of F contains a column of all O's, form the cube c which has a 0 in a

column which is all O's. and a 1 in all other positions. Then. F = cnFc, and

F = c\JFc. Hence, recursively compute the complement of Fe and return the union

of Fc and the complement of the single cube c.

(4) If all cubes of F depend on only a single variable, then the function is a tautology

(because there were no columns of O's detected in the previous step, the function

must be a tautology if it depends on only a single variable) and hence the comple

ment is empty.

If none of these special cases apply, the function is split into two pieces, and the com

plement is computed recursively.

43. EXPAND

The EXPAND procedure examines each cube c € F (where F is a cover of the ON-set

of the binary function / ) and replaces c with a prime implicant d with c Q d. If c is

not prime, then d covers more minterms of F than c does and hence is it said that c has

expanded into a larger cube. If c is known to be prime from a previous expansion, then

there is no reason to attempt to expand c. Note that each c is replaced with a single prime

implicant d (out of all of the possible prime implicants which cover c ) so that the number

of cubes in the cover can never increase during the EXPAND step.
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The goal for the minimization program is to minimize the number of cubes in F.

There are several criteria that can be used in the EXPAND procedure to achieve this goal.

For example, Espresso-II defines an optimally expanded prime as a prime d for which:

(a) d covers the largest number of cubes of F, and

(b) among all cubes d which cover the same number of cubes of F, d covers the

largest number of minterms of F.

Condition (a) is a local statement of the minimization objective, and condition (b)

expresses the condition that ties be broken by covering as many minterms of F as possible.

By enumerating all primes d 2 c. it is trivial to choose an optimally expanded prime

to replace c. Although a technique for enumerating all of these primes is presented here,

this can be prohibitively expensive. (It is possible that this would generate all of the

prime implicants of the function — something clearly to be avoided.) For these reasons.

Espresso-MV does not rely on generating all of these primes.

One strategy employed by some heuristic minimization programs for expanding an

implicant into a prime implicant is to scan the cube from left to right and attempt to

change each part of the cube which is 0 into a 1. To test whether this expansion is legal,

one can test either

(1) that the ON-set of the function still covers the cube after the expansion

[BaM85. Sim83], or

(2) that the expanded cube does not intersect any cube in the OFF-set of the

function [Rot80].

If the expansion is legal, then the cube is expanded in the particular part. In either case,

the algorithm then proceeds to the next part in the cube. The problem experienced with

this simple expansion strategy is that the resulting prime implicant depends strongly on

the order in which the parts are raised. We have seen examples where the final solution

returned by a minimization algorithm (using this simpler heuristic for expansion) can be

several times larger than the optimum solution. Also, these simpler algorithms fail to take
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the most important condition (a) into account (which is to reduce the size of the cover).

MINI [HC074] recognized the importance of choosing the order in which to expand

the parts. MINI orders the variables, and then maximally expands each variable according

to this ordering. The order is chosen in an attempt to expand the parts to cover other

cubes of F, but this was not guaranteed.

Espresso-II and Espresso-MV expend more effort in choosing a good set of parts to

raise so as to achieve the minimization objective (which is to reduce the number of cubes in

the cover). In particular, Espresso-MV first guarantees that if it is possible for the cardi

nality of F to decrease in a single EXPAND operation, that it will. In addition, the

EXPAND operation is able to consider all of the prime implicants which cover a cube.

43.1. EXPAND Cube Ordering

The expansion process is loosely cube-order dependent; the order in which the cubes

are expanded influences the final result. The same strategy as used in MINI is used

[HC074. ORDF1-ORDF3] for ordering the cubes prior to expansion (namely, to compute a

weight for each cube as the inner product of the cube with the column sums of F. and

then sort the cubes into ascending order based on the weights). This heuristic attempts to

expand cubes first which are unlikely to be covered by other cubes.

The cube-order dependency comes about in the heuristics which are used to expand a

cube into a prime. These heuristics look to expand a cube so as to cover cubes which fol

low the cube in the cover (any cube which has been expanded before the current cube is

already prime, and hence the current cube cannot expand so as to cover the cube). Also, if

a cube becomes covered by the expansion of some earlier cube in the cover, then the cube is

not expanded (because all of its minterms are already covered). Experiments have shown

that the order in which the cubes are processed can affect the outcome of a single EXPAND

operation, but. for the Espresso-MV running on a large set of test examples, the order in

which the cubes are processed appears to matter very little. In fact, the use of a random

cube-order (rather than the MINI heuristic) produced results nearly identical in both time
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and optimality of solution. For this reason, the EXPAND operation is said to be loosely

cube-order dependent.

43.2. Blocking Matrix and Covering Matrix

Espresso-II [BMH84] introduced the concepts of the blocking matrix and the covering

matrix, and then used these matrices to guide the expansion of a cube into a prime. The

blocking matrix is derived from the OFF-set by ensuring that each cube of the OFF-set has

only a single 1 in the output part. (This operation is referred to as unraveling the output

part.) The covering matrix is derived from the ON-set.

Espresso-MV views the problem a little differently, and uses the ON-set and OFF-set

directly to guide the expansion of a cube into a prime. The actual operations performed

are very similar in the case of multiple-output functions. Thus, the technique used by

Espresso-MV merely provides a different way of explaining the techniques used by

Espresso-II.

The blocking matrix is less convenient for the case of multiple-valued functions

because the size of the blocking matrix can become very large. A direct extension of the

blocking matrix to multiple-valued functions requires unraveling each multiple-valued

variable (i.e., each cube in the OFF-set which depends on variable Xt to have only a single

1 in the literal of Xf). The number of rows in the blocking matrix can become very large

— a single cube r of the OFF-set of an n -variable function expands into

fl "Hi
r( *• full

rows in the blocking matrix (where \rt I equals the number of l's in variable i of the cube

r ). This is clearly unacceptable, so we seek to avoid forming the blocking matrix if possi

ble. I present here a new explanation of why it was necessary for Espresso-II to unravel

the OFF-set to form the blocking matrix, and show how Espresso-MV can avoid doing so

until the very last step of the expansion process (and. in many cases, completely avoid the

unraveling of the multiple-valued variables).
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433. Expansion of a Single Cube

I now describe the expansion process in detail. Recall that the Boolean function being

minimized is / , and a cover of the ON-set of the function is given by F. We assume we

have access to a cover of the OFF-set of the function (which we call R ), and that we are

given a single cube c € F which we wish to expand. Initially, each part of the cube c

which is not already a 1 belongs to the set of free parts which is denoted free. As the

algorithm progresses, parts are removed from free. and some of these parts are added to

c. The algorithm terminates when free is empty, and at that point c is a prime cube. As

a matter of terminology, when a part of c is changed from a 0 into a 1, the part is said to

be raised or expanded.

Before proceeding, we first define two terms:

Definition: At each step of the algorithm, the overexpanded cube of c is the cube which

results from simultaneously raising all parts of free. Initially, the overexpanded cube is

the universe.

Definition: For any / € F. the expansion of c which covers / is the smallest cube con

taining both / and c (i.e., supercube(c ,f )). f is said to be feasibly covered if

supercubeic ,f ) is an implicant of F.

Of course, all feasibly covered cubes of F are covered by the overexpanded cube of c,

but it is possible that some cube which is covered by the overexpanded cube of c may not

be feasibly covered (precisely because to cover the cube would force c to intersect jR).

Also, initially, all parts are free so that the overexpanded cube of c is the universe. How

ever, as parts are removed from free. the overexpanded cube changes reflecting that only

the parts of free can be raised.
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Expansion Algorithm Overview:

(1) (Determination of essential parts): Determine which parts can never be raised

and remove these from free, and determine which parts can always be raised

and raise these parts of c. Exactly how this is done will be explained later.

(2) (Detection of feasibly covered cubes): If there are feasibly covered cubes in F,

expand c to cover one of the feasibly covered cubes by adding parts to c and

removing these parts from free. After each such expansion, check again for

parts which can never be raised, and parts which can always be raised.

Repeat Step 2 as long as there are feasibly covered cubes in F.

(3) (Expansion guided by the overexpanded cube): While there are cubes which

are still covered by the overexpanded cube of c, expand c in a single part so

as to overlap a maximum number of the cubes which are covered by the

overexpanded cube. After expanding this part, again remove parts which can

never be raised, and parts which can always be raised. Repeat Step 3 as long

as there are cubes of F covered by the overexpanded cube of c.

(4) (Finding the largest prime implicant covering the cube): When there are no

cubes covered by the overexpanded cube of c. map the problem of maximal

expansion of c into a covering problem whereby each minimal cover of the

covering problem corresponds to a prime implicant which covers c. Choose,

using some heuristic technique, a small (not necessarily minimum) cover for

the covering problem. This minimal cover corresponds to a large (not neces

sarily maximally large) prime implicant.

43.4. Determination of Essential Parts

This step helps us identify parts which can always be raised, parts which can never

be raised, and helps us reduce F and R to just those cubes which will influence the expan

sion of c. The goal is to reduce the complexity of the following steps.
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Proposition 43.1: If any cube e € R is distance 1 from c, then all of the parts of the

conflicting variable which are 1 in e may never be raised in c, and any part which does

not appear in any cube r 6 R may always be raised in c.

Proposition 43.2: If any cube r 6 R is distance 1 or more from the overexpanded cube of

c, then the cube r can be removed from R while still guaranteeing that the expansion of c

is an implicant of / . If any cube / 6 F- is not covered by the overexpanded cube of c,

then / is not covered by any prime containing c; hence, F can be reduced.

Therefore, Proposition 4.3.1 is used to identify parts which can never be raised and

Proposition 4.3.2 is used to reduce the number of cubes of F and R which have to be con

sidered in subsequent steps. Note that any cube which is used by Proposition 4.3.1 to

force parts out of the set free always satisfies the condition of Proposition 4.3.2 (after the

parts are removed from the free set), and hence is immediately removed from further con

sideration.

After applying these two propositions, every cube of R is distance 2 or more from c,

and every cube of R intersects the overexpanded cube of c. This is the equivalent to the

statement that any single part of free can be raised in isolation without c intersecting R,

and that it is not possible to simultaneously raise all the parts of free.

43.5. Detection of Feasibly Covered Cubes

A cube is feasibly covered if c can be expanded so as to cover the cube. A test to

determine whether a cube can be feasibly covered is given by the next proposition:

Proposition 433: A cube / 6 F is feasibly covered if. and only if. supercubeif , c) is

distance 1 or more from each cube of R.

Thus, each cube remaining in the cover F is tested for being feasibly covered (i.e..

only the cubes of F covered by the overexpanded cube of c are checked for being feasibly

covered.) To choose among the feasibly covered cubes, the feasibly covered cube which also

covers the most other feasibly covered cubes is chosen. Hence, c is expanded so as to cover

as many other feasibly covered cubes as possible.
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After selecting a feasibly covered cube / to be covered, c is replaced with

supercube{c , / ), and the parts of / are removed from the free set. Step 1 is repeated to

find more essential parts, and then Step 2 (this step) is repeated to detect any more feasi

bly covered cubes. The algorithm proceeds to Step 3 when there are no more feasibly

covered cubes.

This step allows us to guarantee that if it is possible for some expansion of a cube c

to cover some other cube in F, then that expansion will be chosen and hence reduce the

size of the cover.

43.6. Expansion Guided by the Overexpanded Cube

When there are no more feasibly covered cubes and while there are still cubes

covered by the overexpanded cube of c, then we select the single part of free which

occurs in the most cubes which are covered by the overexpanded cube of c. We are

allowed to expand c in this part because the distance between c and each cube of R is 2 or

more. This has the goal of forcing c to overlap in as many parts as possible other cubes of

F. After adding the part to c and removing it from free. Step 1 is repeated to detect

essential parts and continue with Step 3 if there are cubes still covered by the overex

panded cube of c.

This is similar to the static ordering used by MINI as the main heuristic for expanding

a cube into a prime implicant. The difference is that after selecting a single part to add to

c, Espresso-MV follows all consequences of that selection (by finding parts which can

never be raised, and parts which can always be raised after raising the single part). Then

the new set of cubes which are covered by the overexpanded cube are found and another

single part is selected. Thus, in some sense, Espresso-MV defines a dynamic ordering

which is recomputed after each selection of a part to raise. Further, this heuristic is per

formed only while there are no cubes which can be completely covered, but while there are

still cubes covered by the overexpanded cube of c.
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One other important difference is that, with the strategy of MINI, it is not possible to

reach all prime implicants containing c, even if all possible permutations of variables were

to be considered. This is because MINI chooses to pick a single variable, and then expand

maximally all of the parts in that variable before continuing to the next variable.

Espresso-MV instead, chooses a single part of a single variable to expand and is then free

to choose another part of a different variable. Therefore, Espresso-MV is able to reach all

possible primes which cover the original cube.

43.7. Expansion Via the Minimum Covering Problem

In order for c to expand into an implicant of F, we must have that, after expanding,

c be distance 1 or more from each r1 6 R. We can express this condition by writing a

Boolean expression. We let cf be a Boolean variable representing the condition that part k

of variable j of an expansion of c be set to 1. Also, we let (r1 )* have the value of 1 if

part k of variable j of the cube r1 is a 1. For any variable Xj, we can express the condi

tion that r' and an expansion of c be disjoint in Xj as:

GlV = (r^fcj0 U(rO/c/ U ••• UCrO '̂ty"1 = °
or equivalently:

GiJ = U CrO/c/* 0
* = o

or. using De Morgan's law. as:

Gu = PI «r/)/+cf)= 1
* = o

We stress that the values of r1 written as (r' )* are known values of either 0 or 1. and

that the variables in the above equation arecf.

To continue with the discussion, note that r' and c are disjoint if they are disjoint

for some variable j. This condition is written as:

Hi = (J On = 1
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Finally, the expansion of c is disjoint from R only if it is disjoint from all cubes r' € R.

and we express this as:

i = n *i- = i

We have a Boolean expression which expresses the condition that an assignment of {0. 1}

to the variables cf results in an implicant of / . Wewrite this in full as:

IJ?I n Pj~l

'=nun «F'),*+c.f)
, = 1 ; = 1 fc= 0

An implicant of the function / corresponds to an assignment of {0, 1} to the vari

ables cf which results in an implicant of / . Further, a prime implicant of / corresponds

to an assignment of (0, 1) to the variables cf which is maximal in the sense that no other

variable which is 0 can be made a 1; therefore, a prime implicant of / corresponds to a

prime implicant of / .

Proposition 43.4: / is a binary-valued unate function in the variables cf.

Proof: By construction, we see that / contains only the complements of the variables cf.

and is therefore unate.

Proposition 43.5: The prime implicants of / may be obtained by expanding the product-

of-sum-of-product form into a sum-of-products form, and then performing single-cube

containment on the resulting cover.

Proof: By proposition 3.3.7 of [BMH84]. we know that a unate. single-cube contained

minimal cover is in fact the set of all primes of the unate function defined by the cover.

Thus, if all cf are considered variables. Proposition 4.3.5 outlines a procedure for

generating all of the prime implicants of a function / given a cover for its complement.

If, instead, we set the values of cf to be 1 in those places where a cube c already has a 1

(and leave the variables for cf where c has a 0). Proposition 4.3.5 outlines a procedure for

generating all of the prime implicants which cover a cube c.
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We can also modify the expression for / using De Morgan's theorem to get the

equivalent form:

IJ?I n Pi'1

/= U fl U (ir^fcf)
i=iy=l *=o

Hence, we can directly write a sum-of-products expression for / and use COMPLEMENT to

generate the sum-of-products form for /. We can identify the blocking matrix as pro

posed by Espresso-II as a representation of the Boolean function /. The concept of unrav

eling the output part of each cube of the OFF-set in order to create the blocking matrix is

equivalent to the expansion of the inner product-of-sums in the expression for / to yield a

sum-of-product form for 7.

Thus, we have two techniques for generating all of the prime implicants of a func

tion: one which involves repeated intersection of sum-of-products forms and one which

involves the complementation of a sum-of-products form. We note here that the first for

mulation is equivalent to the technique outlined by Roth [Rot80] for generating all of the

prime implicants of a function. As far as we know, the second technique listed here is a

new formulation.

We use the form of 7 to discuss now how to generate the largest prime implicant

which covers a cube c. Take the cover R and unravel each variable for which there is

more than 1 part in the variable. (As mentioned earlier, this is equivalent to multiplying

out the product-of-sums subexpression in / to get a single sum-of-products representation

of 7.) Let us call the resulting binary matrix R'. A binary row vector x is called a cover

forR'lf R'»xr^(l.l l)r.

Proposition 4.3.6: Each minimal cover of R' corresponds to a prime cube in the comple

ment of /. and a minimum cover of R' corresponds to a maximum prime implicant in the

complement of /.

Hence, we can apply a heuristic technique (to be explained in more detail in Chapter

5) to compute from R' the largest possible prime implicant which contains c.



§4.3.7 63

One can reasonably ask whether it would make sense to go directly to Step 4 in the

expansion of a cube to a prime implicant. In practice this approach fails because there are

often several largest prime implicants, and the covering problem outlines no way to select

from among the largest prime implicants. Further, quite often a smaller prime implicant

may be more successful in covering other cubes of the function. It is for this reason that

Espresso-MV utilizes Steps 1-3 in an attempt to cover other cubes of the ON-set before

finally expanding the cube into a large prime implicant.

4.4. IRREDUNDANT

The IRREDUNDANT procedure extracts from a cover a minimal subset which is still

sufficient to cover the same function. Many minimization algorithms skip this step, prefer

ring instead to have REDUCE detect redundant cubes. However, that approach has the

problem of depending on the order in which the cubes are processed. One might remove a

prime implicant which is redundant, but fail to realize that, if that prime had been left in

the function, several other redundant primes could have been removed instead.

As usual, we assume we have a set of cubes F which cover the ON-set of the func

tion / , and a set of cubes D which cover the DC-set of the function / .

The cover F is first split into the relatively essential set Er. and the relatively redun

dant set Rr. A cube c 6 F belongs to Er if FDD—c fails to cover c, or c belongs to Rr if

FUD—c covers c. The set Er is relatively essential in the sense that all of the cubes of

Er must be retained in the cover in order to still cover the same function (for if any cube

of Er were removed from the cover, there would be some minterm which wouldn't be

covered by the remaining cubes).

Note that any essential prime of the function must belong to the set Er, but that the

primes in Er need not be essential primes. An essential prime of / must appear in any

cover for / , whereas a relatively essential prime of F must appear in any subcover of F.

(However, by starting with F as the set of all primes for / , then the set Er consists of

the set of all essential primes of / .)
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The prime implicants of Rr are further divided into the totally redundant subset Rt

and the partially redundant subset Rp. A cube c € Rr belongs to Rt if Er UD covers c. or

c belongs to Rp if Er UD fails to cover c. The cubes of Rt are totally redundant in the

sense that, because they are completely covered by the set of relatively essential primes,

they can never be in a minimum subcover of F. The cubes of Rp. are relatively redundant

because, although any single cube of Rp can be removed, it is not possible to simultane

ously remove all of the cubes of Rp while still maintaining a cover of / . Note that if F is

the set of all prime implicants. then Rp can be identified as the set of primes which are

dominated by the set of essential prime implicants.

What remains in Rp causes the most difficulty in trying to extract a minimum sub-

cover of F. Imagine the following simple irredundant algorithm used by many heuristic

minimizers: for each cube c € F test whether FUD—c contains c. If so. c is redundant

and is removed from F. Any time a cube of Er is tested, the cube cannot be removed.

Any time a cube of Rt is tested, the cube can always be removed (regardless of the order

in which we process the cubes). However, when a cube of Rp is tested with this simple

algorithm, we may or may not remove the cube depending on the order in which the cubes

are tested. With this simple algorithm, at least one member of Rp will be removed, but

we cannot guarantee that we will remove a maximum subset of the set Rp.

The multiple-valued tautology algorithm described earlier is used to split F into Er.

Rr . and Rp.

The Espresso-II (and Espresso-MV) techniques for extracting a maximal subset of

primes from Rp is now described. Note that this algorithm becomes important only when

there are three or more primes in Rp . It is not possible for there to be only one redundant

cube in Rp (because the cube would be totally redundant). Also, the case where there are

only two redundant cubes in Rp is uninteresting because we can always remove one cube

or the other (but never both — otherwise the cubes would be totally redundant).
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The key in the algorithm is a simple modification of the multiple-valued tautology

algorithm. Rather than testing whether the function is a tautology, we determine which

subsets of cubes in a function would have to be removed to prevent a function from

becoming a tautology.

Consider forming H = ErURp—c, and using the multiple-valued tautology algorithm

to determine if Hc is a tautology. Hc is a tautology because every cube of Rp is covered

by the union of Er and the remaining cubes of Rp. When we get to a leaf in the tautology

algorithm (i.e.. when we are able to determine that the function is a tautology), we exam

ine the cubes which are in the cover at this leaf. If there is a cube from Er (or D ) which

is the universe (in this leaf), then it is not possible to avoid the function being a tautology

in this leaf. Otherwise, all of the cubes of Rp which are the universe (in this leaf) must be

removed in order to avoid this leaf becoming a tautology. In terms of determining how a

cover covers the cube, this is equivalent to saying the cover will fail to cover the cube if

and only if all of the cubes of Rp which are universal in this leaf are discarded.

In this way. a binary matrix is formed with a cube of Rp associated with each

column. At each leaf which is a tautology (and for which no cube from Er is the univer

sal cube), we add a row to our Boolean matrix with a 1 for each column where (Rp )' is

universal. A minimal cover of this Boolean matrix corresponds to a minimal subset of the

primes of Rp which must be retained in the cover for / . The heuristic covering algorithm

outlined in Chapter 5 will be used to select a good minimum cover of the covering matrix.

The algorithm proceeds by forming Hc for each c € Rp. and calling a modified version

of the TAUTOLOGY procedure called FIND_TAUTOLOGY. FIND_TAUTOLOGY returns a

Boolean matrix. Note that after determining how c can be covered, c can be moved to the

set Er thus improving the performance of the algorithm (because we now know how all of

the minterms of c can be covered by selecting primes from Rp ).

We can relate the binary matrix formed in this way to the prime implicant table of

the Quine-McCluskey algorithm for Boolean minimization. By starting with the set of all
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prime implicants, the binary matrix created is a reduced form of the prime implicant table;

rather than each row of the matrix corresponding to a minterm of the function, each row

corresponds to a collection of minterms all of which are covered by the same set of prime

implicants.

In practice, the set Rp has been observed to be small. Because the relatively essential

and totally redundant sets are first identified, there is little overhead in this algorithm

(compared to the simple IRREDUNDANT mentioned earlier). However, when there are par

tially redundant cubes, there is a much better chance of selecting a smaller subset of the

partially redundant primes.

This formulation of the IRREDUNDANT algorithm, including the formation of the

prime implicant table and the algorithm for finding a minimum cover for the prime impli

cant table, will be the basis for the exact minimization algorithm described in Chapter 5.

4.5. ESSENTIAL

Essential primes were defined in Chapter 2 as prime implicants that cover a minterm

not covered by any other prime implicant. Because an essential prime implicant provides

the only way of covering some minterm. all of the essential prime implicants of a function

must be present in any prime cover for the function. There are efficient methods to detect

those prime implicants in a cover which are essential. These essential prime implicants can

be removed from the function before Espresso-MV iterates over the cover, thus providing

fewer cubes which need to be processed in the inner loop. Of course, not all functions

have essential primes, but experience has shown that, for most functions, it is a useful

heuristic to detect and set aside the essential prime implicants.

The main theorem used for detecting which primes in a cover are essential is due to

Sasao [Sas84b. Theorem A.l. Sas]:

Theorem 4.5.1: Suppose that F can be written as G Up where p is a prime implicant of

the function / . and G and p are disjoint. Then, p is an essential prime implicant of / if.

and only if. p is not covered by consensus(G . p).
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The theorem can be understood by considering the following explanation: Given a

c€G. the distance between c and p is at least 1. If the distance is exactly 1. then the

consensus of c and p is a cube with minterms in both c and p. Hence, every minterm of

p covered by consensus (c, p) is covered by another prime implicant different from p.

(That is. a prime implicant which covers consensus(c,p) covers all of the minterms of

p flconsensus(c.p) and is different from.^ because it contains.minterms of c.) Continu

ing in this manner for all cubes of G. every minterm of p is covered by two or more

prime implicants if and only if every minterm is covered by some cube in

consensus (G , p).

This theorem provides a simple test for detecting essential prime implicants in any

cover:

Proposition 4.5.1: Given a cover F for the ON-set, a cover D for the DC-set of a

multiple-valued function, and a prime implicant p 6 F. form:

H = consensus (((F UD )#p ), p ).

p is an essential prime implicant if and only if p C HUD.

Proof: p is to be tested as an essential prime of the function FUD. Set G = (F UD )#p

and then FUD = GUp with G and p disjoint. Hence, Theorem 4.5.1 applies and p is

essential if. and only if. all of the care minterms of p are not covered by H.

m

Remark: The condition that all of the care minterms of p are not covered by if is tested

by checking if (HUD)p is a tautology. Hence, p is an essential prime implicant if. and

only if. (H UD)p is not a tautology.

A potential problem with this procedure is that H may contain a large number of

cubes (but no more than n IF UD I). In practice, the performance of the tautology algo

rithm depends strongly on the number of cubes in the function being tested for tautology.

For each cube of c € FUD. I review here the procedure for generating the cubes of

consensus (c #/>, p ):
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(1) If distance(c, p)^2 or c C p. then c#/> is empty and consensus (0,p) = 0.

Hence, no cubes are generated fairH.

(2) If distance (c, p) = 1 then c #^ equals c, and a single cube results from

consensus(c, p\ Hence, a single cube is generated for H.

(3) If distance (c, p ) =0, the sharp-product c #/> generates one cube for every variable

Xt satisfying c, C pt. The cube associated with such an Xt is:

Each of these cubes is distance 1 from c, and hence generates a cube after the con

sensus operation according to:

«*^ ^ licjOp^Upj =CjUPj ifi =;consensus ((c #/>), p)j =jc, n^ tf .^ ^-^>>

Thus, when /> and c intersect, as many as n cubes may be generated for if (where n

is the number of variables of c ).

The number of cubes generated in the case that p and c intersect can be reduced by

not generating extraneous cubes which result from the binary-valued variables (i.e.. vari

ables with two parts). Assume that c C p. and consider a cube d 6 H which results

from a binary-valued variable Xt. This cube will necessarily have </;=ll. and

dj = Cj C\pj for j^i. However, pj cannot be 11 (it must either 10 or 01 to satisfy

ci £ Pi^- Hence p C\d C cC\p. Thus, with respect to Proposition 4.5.1. the single cube

c Dp is sufficient to replace all of the cubes which result from considering each binary-

valued variables.

This result can be improved by noticing that any cube which results from a

multiple-valued variable (according to equation 4.5.2) contains c Dp. and hence it is not

necessary to consider the binary-valued variables if any multiple-valued variable generates

a cube for H.
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Hence, to summarize, if c and p intersect (but c C />). a single cube is generated

for each multiple-valued variable for which c,- C pt. Then, if no cubes have been gen

erated, the single cube c Dp is generated.

The TAUTOLOGY procedure outlined in the previous section is used to determine

whether the resulting cover does indeed cover the cube c. If it does, then the prime c is

nonessential. If it fails to cover the cube c. then the prime c is essential.

There are two methods for determining that a cube cannot be essential, and these are

used to reduce the number of cubes which have to be checked for essentiality:

Method 1:

As outlined by [BMH84], if a cube doesn't expand to its overexpanded cube(and

if it fails to cover any other cubes), then the resulting prime is nonessential.

Hence, this condition is detected in EXPAND, and primes which cannot be essen

tial primes are marked. These primes are not tested in ESSENTIAL for being

essential primes.

Method 2:

By performing the IRREDUNDANT procedure before ESSENTIAL, more primes

which cannot be essential primes are also detected. If a cube of F belongs to

Rr. then it is completely covered by some collection of primes in F. Hence, it

cannot be an essential prime. Only the primes in Er can be essential primes.

(This is equivalent to the statement that Er contains all of the essential primes

of the function.) For this reason, the ESSENTIAL operation is performed after

IRREDUNDANT.

Note that the first EXPAND procedure is guaranteed to generate all essential primes of

F. Hence. ESSENTIAL will detect and remove all essential primes of the function.

Finally, a comment is in order on an error in Logic Minimization Algorithms for VLSI

Synthesis. Given their definition of consensus. Theorem 4.4.3 on page 92 does not hold for

multiple-output functions, but rather, holds only for single-output functions. As shown
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here, it is possible to determine if a prime of a single-output function is essential by gen

erating at most one cube from each cube of FUD (in the case that c intersects the prime

p being tested, we need to use only c(\p rather than consensus(c #p, c) ). However, in

the multiple-output case, when c intersects the prime p being tested, we must be careful

to generate the single cube resulting from the multiple-valued consensus in the output-

variable (if there is such a cube). This statement was mistakenly left out of the definition

of consensus.

4.6. REDUCE

REDUCE is the step of the Espresso-II algorithm which transforms an irredundant

cover of prime implicants into a new cover by replacing each prime implicant. where possi

ble, with a smaller, nonprime implicant contained in the prime implicant. An irredundant.

prime cover is a local minimum for the cost function, and REDUCE moves us away from

the local minimum. The hope is that the subsequent EXPAND will determine a better set

of prime implicants.

The main component of REDUCE (and both LAST_GASP and SUPER__GASP) involves

the computation of the maximal reduction of a cube with respect to a cover:

Definition 4.6.1: The maximal reduction of a cube c with respect to a cover F is the

smallest cube contained in c that can replace c in F without changing the function real

ized. The maximal reduction of a cube c is denoted as _c_.

As described in MINI, the maximal reduction of a cube c with respect to a cover F

and a don't-care cover D equals the supercube of c# (FUD—c). However, computing

the reduction in this way is very inefficient.

Espresso-II uses the identity _c_= c 0supercube((FUD—c)c)io compute the maximal

reduction of a cube. Hence, the operation of finding the maximal reduction of a cube can

be reduced to finding the smallest cube which contains the complement of a cover. This

operation is readily computed recursively using the Generalized Shannon Cofactor.
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4.6.1. REDUCE Cube Ordering

Note that the reduction of a single cube depends on the form of the cover for the

function. In particular, the order in which the cubes are processed for reduction affects the

results of the REDUCE operation. The cubes which are reduced first will tend to reduce to

smaller cubes, thus possibly preventing cubes which follow from reducing as much as they

might have.

Espresso-II uses the static ordering defined by the pseudo-distance between each cube

and the largest cube in the cover. Pseudo-distance is defined (for multiple-output cubes)

as the number of variables in which the two cubes which are different (e.g.. 10-01-11-01-

011 and 10-11-01-01-111 have a pseudo distance of 3). MINI uses the reverse order of the

EXPAND ordering. (Recall from Section 4.3 that the MINI ordering for EXPAND weights

each cube according to how many other cubes have a 1 in the same parts as the cube.) All

of these heuristic ordering strategies attempt to place cubes which are the most likely to

reduce (i.e.. either "large" cubes, or cubes which have parts covered by many other cubes)

near the top of the list.

Experiments were performed for these REDUCE ordering strategies and also using a

random permutation of the cubes. It was discovered that the solution returned for a par

ticular execution of REDUCE varied, but did not favor any particular ordering over the

random permutation. More importantly, the final solution returned from the Espresso-

MV algorithm was not sensitive to the ordering in REDUCE. I feel this is due to both the

iterative nature of the Espresso-II algorithm (if a cube is ordered such that it fails to

reduce, it may reduce on a subsequent iteration), and the LAST_GASP strategy successfully

removing the cube-order dependency of REDUCE. Hence, the actual choice of cube ordering

is not believed to be critical.

In Espresso-MV we choose to alternate between the MINI strategy and a strategy

which places the largest cube on the top of the list, and orders the remaining cubes by

increasing distance from the largest cube. Alternating these two strategies produced con-
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sistently the same or better results for Espresso-MV than any single heuristic. We specu

late that this is because, if the same ordering is used for every iteration, that the same

cubes will tend to be reduced first. By mixing the strategies, very different orderings

result allowing for exploring a wider range of expansions.

4.6.2. Computing the Supercube of the Complement

The Generalized Shannon Cofactor is used to recursively compute the supercube of

the complement (i.e.. the smallest cube containing the complement) of a function according

to the next two propositions:

m

Proposition 4.6.1: If a set of cubes c'.i=l-m satisfies Uc'=l and
i = l

c' Ocj = 0 for i **j . then

supercube (F) = supercube

Proof: Using Proposition 2.3:

U c' Dsupercube(F i)
i = l

i=l

to show

supercube (F ) = supercube [Jc'nF.
i = l

Given that supercube (c' O.F.,) =c' PI supercube (F.,). we see the proposition holds.

This recursion naturally terminates when F t becomes a single cube where the fol

lowing test is applied:

Proposition 4.6.2: Given a cube c:

supercube (c) =
0 if c depends on no variables
c if c depends on one variable
universe if c depends on two or more variables
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Remark: If c depends on only the variable X-t. then c is a single cube resulting from the

bit-wise complement of ct.

Proof: Trivial if one considers computing the complement of a cube using De Morgan's

law. If the cube depends on more than two variables, then the complement contains more

than two cubes. Each of these cubes depends on only a single variable (with the remaining

literals all full), and hence the supercube of these cubes is the universe. If the cube

depends on only a single variable, there is only one cube in the complement. Finally, if

the cube is the universe, the complement is empty.

However, there is also the following more powerful result:

Proposition 4.6.3: If F is a weakly unate cover and F' represents the ith cube in the

cover, then:

_ iF' _
supercube (F ) = f] supercube (Fl)

Thus, if the cover is weakly unate. this result is applied to quickly determine the

supercube of the complement of a cover. Further, only the cubes of the weakly unate

cover which depend on a single variable need be considered (assuming the cover does not

contain a universal cube), because the supercube of the complement of any cube which

depends on two or more variables is the universe and hence does not affect the intersection.

There are two other results (easily derived from De Morgan's law) which can be use

ful in reducing the amount of work necessary to compute the supercube of the comple

ment of a function.

Proposition 4.6.4: If the cover F contains a column of O's. form the cube c which has a 0

in each position where F has a column of all O's. and 1 elsewhere. Then, from the iden

tity F = c fl Fc, is is seen that

supercube (F ) = supercube (supercube (i7- ), supercube (c )).

Hence, if there is a column of O's in the matrix for F. this proposition is applied to

compute supercube (F). In particular, if F has a column of O's in two separate variables.
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then it is immediately determined that supercube (F ) = universe.

Proposition 4.6.5: If F can be factored into the form F = A U B where A and B are over

disjoint variable sets, then

supercube (F ) = supercube (A ) O supercube (B )

Detecting such a partition of H corresponds to finding a row and column permuta

tion resulting in the form:

A 1

1 B

where 1 represents an appropriately sized block of all l's (and the division does not split

a variable between the two halves). As in the case of tautology, such a partition is easily

determined with a simple greedy strategy. In practice, such a decomposition may not be

common, and should only be checked for when the matrix contains many l's.

4.6.3. Choice of Splitting Variable

It would be desirable to choose the cubes ci.c2, • • • ,cm so that the resulting cofac

tors quickly become weakly unate. However, it is not clear how to efficiently choose a

splitting variable and a partition of that variable so as to achieve this goal. In Espresso-

MV the simple strategy outlined in Section 2.5 is used when choosing the cubes for parti

tioning.

4.7. LAST_GASP and SUPER_GASP

The basic iteration of Espresso-II (REDUCE, EXPAND. IRREDUNDANT) faces the fol

lowing obstacles: (1) The EXPAND step uses heuristics to choose one prime implicant (from

all of the prime implicants which cover a cube) to replace each cube in the cover; and (2)

the REDUCE algorithm is cube-order dependent so that cubes which are reduced first tend

to reduce more than cubes which are reduced later. Different minimization algorithms

have managed these problems in different ways. For example. MINI uses the reshape

operation in order to sidestep these problems, and Prestol-II uses the change_shape opera-
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tion (twice in succession) in order to escape these problems. I describe here the Espresso-II

strategy LAST_GASP and the Espresso-MV strategy SUPER_GASP for improving the basic

minimization algorithm.

4.7.1. LAST_GASP

This algorithm first computes the maximal reduction of every cube of the ON-set

cover F and creates a new cover G. If a cube cannot be reduced it is ignored. A modified

version of the EXPAND algorithm expands each of the cubes of G. The EXPAND procedure

is modified so that: (1) the expansion of a cube is stopped as soon as it is determined that

it cannot cover any other cubes: the cube is removed from G in the case that it cannot

expand to cover any other cubes: and (2) all of the cubes are expanded even if they are

covered by the expansion of a different cube. As shown in [BMH84], those cubes that

succeed in covering some other reduced cube are potentially useful primes for reducing the

cardinality of the cover. These new primes are simply added to the cover F. and the

IRREDUNDANT procedure then extracts a minimal subcover. Because the number of

reduced cubes which can expand to cover other reduced cubes tends to be very small, this

technique is applicable to a wide range of problems. In particular, I have not found any

examples for which the running time of the algorithm is dominated by the LASTjGASP

operation.

4.7.2. SUPERJGASP

Espresso-MV also has an optional routine SUPER_GASP. This algorithm computes

the maximal reduction of each cube of the cover F and then generates all of the prime

implicants which cover the cube (rather than only a single prime implicant which covers

the cube). In order to generate all of the prime implicants which cover a cube, the algo

rithm given in Section 4.3 (EXPAND) is used. By sorting this set of prime implicants.

duplicate prime implicants are easily detected. IRREDUNDANT then extracts a minimal

subcover from the remaining set of prime implicants. Note that if IRREDUNDANT returns

the minimum number of cubes necessary to implement the function, then no single
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iteration of REDUCE, EXPAND, and IRREDUNDANT can do any better from the same start

ing point.

Of course, the process of generating all of the primes which cover the maximally

reduced cubes may greatly expand the size of the cover. (In particular, if the original

cover were all minterms, the generation of all of the primes covering each minterm would

be an inefficient way to generate all of the primes for the function.) The program

Espresso-MV is careful to terminate the generation of all of the primes in the case there

are too many primes, in which case the LAST_GASP strategy is used instead. In practice,

the SUPER_GASP can be selected optionally when the program Espresso-MV is run. In

Chapter 6,1 report experimental results with this option.

4.8. MAKEJSPARSE

When the outer loop of the Espresso-MV algorithm terminates, the solution consists

of an irredundant cover of prime implicants which represents the original function. How

ever, depending on the final implementation of the multiple-valued function, we may

desire a final cover which does not necessarily consist of prime implicants. One goal is to

reduce the number of transistors needs to implement each literal of a cube. This depends

on the number of O's and l's in the literal, but it also depends on the type of variable as

shown in Table 4.8.1:

Variable Type Number of transistors Comment

binary-valued variable count number number of zeros sparse

multiple-valued variable
(for a two-bit decoder)

count number of zeros sparse

multiple-valued variable
(for the output part)

count number of ones dense

multiple-valued variable
(for the input encoding problem)

count number of ones

(unless literal is full)
dense

Table 4.8.1. Transistors per Literal in a PLA

For example, if the function being minimized represents a two-level multiple-output

PLA function, then each 0 in the cube for a binary-valued variable corresponds to a
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transistor in the AND-plane of the PLA, but each 1 in the multiple-valued output variable

corresponds to a transistor in the OR-plane of the PLA.

Another example is minimizing a multiple-valued function for the state-assignment

program KISS. For these functions, it is preferred that the multiple-valued variables have

as few l's as necessary (which will lead to fewer constraints for the embedding problem).

Hence, the binary-valued variables and multiple-valued variables resulting from a

bit-paired PLA are desired to be dense (i.e., have many l's), and the multiple-valued vari

able resulting from the output-part of a PLA are desired to be sparse (i.e., have few l's).

Finally, the multiple-valued variables resulting from a symbolic variable (as in KISS)

should be sparse unless the cube does not depend on this particular variable. With these

observations we define, for each variable, whether the variable is to be a sparse variable

or a dense variable. The MAKE_SPARSE procedure then attempts to satisfy these goals.

MAKE_SPARSE consists of two steps: LOWER_SPARSE removes redundant parts from

the sparse variables and RAISE_DENSE attempts to add parts to the dense variables (which

may be possible following LOWER_SPARSE because the cubes are no longer prime impli

cants). These two algorithms are iterated until there is no more reduction of any sparse

variable, or until there is no more expansion of any dense variable. This algorithm is

iterated in Espresso-MV (as opposed to Espresso-II which only executed each step once)

because the total literal reduction is worth the extra expense.

During the first iteration of LOWER_SPARSE and RAISE_DENSE the cardinality of the

cover cannot decrease (because the cover is an irredundant. and consists of prime impli

cants). However, in extreme cases, it is possible for the cardinality to decrease in subse

quent iterations. In fact, the procedure MAKE_SPARSE can be viewed as a complete

minimization algorithm. (The pop program from Berkeley [Sim83] uses essentially this

simple algorithm, but without the powerful techniques for each of the basic steps as in

MAKE_SPARSE. However, this minimization algorithm is restricted in the size of the set of

prime implicants which it can explore.)
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In the discussion that follows, we assume, as usual, that F is a cover for the ON-set.

D is a cover for the DC-set and R is a cover for the OFF-set.

4.8.1. LOWER_SPARSE — Reduce the Sparse Variables

The goal of LOWER_jSPARSE is to remove parts from the sparse variables so as to

reduce (if possible) the number of l's in these variables for each cube. This procedure can

be viewed as cube reduction applied to each cube with the reduction retained only for the

the multiple-valued variables. However, this technique suffers from the same problem as

REDUCE, namely that the order in which the cubes are processed can greatly affect the

total amount of reduction possible.

Instead, the IRREDUNDANT routine is used to select, for a particular part, which

cubes are redundant: this part is set to 0 for the redundant cubes. This way the cube ord

ering problem is avoided, and the more powerful heuristics of IRREDUNDANT are used to

find a good reduction of the sparse variables.

For each value j of a sparse variable Xt. define ej to be the cube of X-t i '. By

finding an irredundant cover for (FUD) , we can determine which cubes of F can have

part j removed. If a cube does not belong to the irredundant subcover of (F UD) >. then

the part in the cube is redundant and can be removed. These parts are removed, and. after

all parts for a variable have been processed, the next variable is processed.

Note that by using the IRREDUNDANT algorithm rather than REDUCE, the order in

which the cubes are examined in part / of variable X, is immaterial. (Further, the order

in which the parts of any variable is processed is also immaterial.) But. the order in which

the sparse variables are processed does influence the reduction of variables which are not

processed first. In Espresso-MV. LOWER_SPARSE is applied to sparse variables

corresponding to multiple-valued variables resulting from the input-encoding problem.

This is done to simplify the constraints which arise from the multiple-valued parts. The

last variable processed is the multiple-output variable. Admittedly, this heuristic is a lit

tle crude.
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4.8.2. RAISEJBV — Expand the Dense Variables

As mentioned earlier, we desire that the binary-valued variables, and the variables

resulting from bit-pairing be dense. After reducing the multiple-valued variables with

LOWER.JSPARSE. the resulting set of cube is no longer prime. Hence, we can try to expand

this set of cubes by expanding only the dense parts of each cube. This is done with a

modified version of EXPAND which removes all of the sparse parts from the free set (cf.

sec 4.3) before finding the expansion of a cube. Hence, none of the sparse parts will be

expanded.

Interestingly. EXPAND will still check for cubes which, when limited to only the

dense variables, can expand to cover another cube. As mentioned earlier, on subsequent

iterations of MAKE__SPARSE it is possible for the cardinality of the cover to decrease. If it

is possible for a cube to be covered. EXPAND will expand the dense variables so as to cover

the cube.



CHAPTER 5

Exact Boolean Minimization

Two methods for generating all of the prime implicants of a Boolean function were

presented in Section 4.3 (EXPAND), and in Section 4.4 (IRREDUNDANT) an algorithm for

efficiently generating the prime implicant table of Quine and McCluskey was presented.

Generating the set of all prime implicants. using IRREDUNDANT to generate the prime

implicant table, and then solving the covering problem for this table provides an algorithm

for determining the minimum solution for a given minimization problem.

In this chapter, a new set of heuristics for guiding a branch and bound solution to the

covering problem is presented. These heuristics have been used to solve many large cover

ing problems resulting from Boolean minimization problems. A new approximate algo

rithm cf polynomial complexity (based on these heuristics without any backtracking)

which is more practical for heuristic minimization programs is also presented. This

approximate algorithm also has the advantage of providing a lower-bound on the cardinal

ity of the exact solution, and hence can sometimes determine that the solution provided is

in fact optimum.

5.1. Minimum Cover Problem in Espresso-MV

Recall that the minimum covering problem appears in Espresso-MV in two ways:

(1) During IRREDUNDANT when there are partially redundant cubes in the cover, the

problem is translated (via the Generalized Shannon Cofactor) into an equivalent cov

ering problem. A minimal solution to this covering problem corresponds to discard

ing a maximal subset of the partially redundant set. (Also. LOWER_SPARSE uses

IRREDUNDANT to remove redundant parts from the sparse variables).
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(2) During EXPAND, when there is no longer any way to obviously guide the expansion

of a cube into a prime implicant. the problem of expanding the cube into the largest

possible prime implicant (the prime implicant covering a maximal number of min

terms) is translated into a covering problem. The solution to this covering problem

determines how the cube should expand.

5.2. Minimum Cover Problem

Minimum Covering Problem: Given a binary matrix A. and a cost cost(') for each

m

column of the matrix, find a vector x such that A*xT ^ (1,1 l)r and J^xiCost(i) is
;=i

minimum.

The constraint A *xT ^ (1,1 l)r can be understood as saying that each row of the

matrix must have at least one 1 in some column where x has a 1. (In this case, the row is

said to be "covered" by the particular "column" of x, and the goal is to cover all rows

with a vector of minimum weight.) This problem is NP-hard [GaJ79] so that any algo

rithm which solves the problem can be expected to have a bad worst-case complexity.

In this chapter, a cost function of 1 for each column of the matrix is used to simplify

the explanation. In Section 5.8. the extensions of the algorithm presented here to a more

general cost function are considered.

53. Reducing the Size of the Covering Problem

First. I review some results which are of interest in reducing the size of a covering

problem:

(1) Partitioning: If the rows and columns of matrix A can be permuted to yield a block
structure of the form:

A 0

0 B

where 0 represents an appropriately sized block of all zeros, then a minimum cover
for A can be written as the union of a minimum cover for A, and a minimum cover
forB.

(2) Essential Elements: Any row of the matrix A which has only a single 1 identifies
an essential column. The solution vector x must have a 1 in the essential column in



§ 5.3 82

order to cover the row singleton. After placing a 1 in the essential column, any other
rows which become covered can be removed from consideration.

(3) Row Dominance: If row i of A contains another row j of A (i.e.. row i contains a
1 for all columns in which row j has a 1). then row i can be removed from the
matrix A without changing the minimum solution. Clearly, once row j has been
covered, then row i will automatically also be covered, and hence row i is providing
redundant information in the covering problem.

(4) Column dominance: If column i of A contains another column j of A (i.e., column
i contains a 1 for all rows in which column j contains a 1). then column j can be
removed from the matrix A without changing the minimum solution. Clearly, there
could be no advantage to choosing column j because choosing column i instead
would cover the same set of rows, and perhaps more. Hence, column j is not needed
for a minimum solution.

Therefore, the strategy to reduce the size of the matrix is:

(1) Look for a block partitioning.

(2) Use row dominance and column dominance to reduce the number of rows and

columns in the matrix. Note that it is only necessary to apply either transformation

once, and the order in which they are applied is irrelevant.

(3) Identify essential elements and add them to the covering set. The rows which are

now covered and the essential columns are removed from the matrix.

(4) Repeat Steps (2)-(4) until no essential elements are detected in Step (3).

After using Steps (l)-(4) to reduce the size of the matrix, if a solution has not been

reached, an element is selected for branching. The problem is then solved recursively

assuming the branching element is in the solution, and then assuming the branching ele

ment is not in the solution.

The branch and bound algorithm for solving this problem is shown on the next page.

The routine is entered at the top level with: the matrix (A ) to be covered, a current solu

tion (x ) which is initially the empty set. a record (best) of the best solution known to be

a cover (which is initially a full set), a lower bound (best_possible) on the size of the best

solution (which is initially oo), and an indication level of the current level in the recursion

(which is initially 0). The routine returns a set of the columns of A which is a minimum

cover for A.
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bit_vector minimum__cover(A, x. best, level)
bit_matrix A: /* the matrix to be covered */
bit__vector x; /* the current solution */
bit_vector best; /* the best solution seen so far */
int best^possible; /* the best solution possible */
int level; /* recursion level */
I

if (partition(A .H1.H2)) { /* check for block partition */
x i«- minimum_coverCff'i. 0,0. best_possible, 0):
Xi«- minimum_coverCff2» 0.0. best_possible. 0);
return x1Ux2;

do {
/* reduce the number of rows and columns */
A«- remove_row_dominance(A);
A«- remove_column_dominance(A):

/* Select essentials, and remove rows covered by an essential */
p *- detect_essential(A);
x*- x Up;
A «-reduce(A, p);

} while (p ;*0);

independent_jet «- maximal_independent_set(A);
if (level = 0)

best_possible «- Iindependent^set I :

/* if current solution exceeds the best possible from here on. bound the search */
if ( Ix Uindependent_set I ^ Ibest I )

return best;

/* if no rows left in A. then new best solution */
else if (numrows(A) = 0)

return x;

/* Else branch on some column */
else {

q «- select_jcolunm(A. independent_set);
/* recur assuming q belongs to the minimum cover */
left *-minimum_cover(reduce(A ,q).xUq, best. best_possible. level+1);
if (\left\ < \best I)

best - left;
if ( Ibest_possible I= Ibest I)

return best;

/* recur assuming q does not belong to the minimum cover */
right «~minimum_cover(remove(A . q). x , best. best_possible. level+1);
if (\right\<\best I)

best - right;

return best;
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The routines remove__row_dominance and remove_column_dominance apply

row and column dominance to A to reduce its size. The routine detect_essential detects

rows with only a single 1, and these are added to" the selected set. The function

select_column applies heuristics to select a column of A for branching. The function

reduce removes those rows of A which are covered by q and removes the column q. and

the function remove(A , q ) deletes the column q from A .

First a check is made for a simple partition of the covering problem. If this fails, row

and column dominance are applied iteratively to reduce the size of the covering problem,

and then the essential elements are detected and added to the selected set. Then, using a

technique described in the next section, a lower bound is placed on the size of the cover for

A. and the search is terminated (or bounded) if the size of the selected set exceeds the best

solution possible for A . If there are no more rows in A . then we have reached a new best

solution, and the solution is returned. Otherwise, a column is selected heuristically to

branch on and recursively compute the solution assuming that the element is in the cover

ing set. and then assuming that the element is not in the covering set.

5.4. Use of the Maximum Independent Set

The most important feature of the above algorithm is in the routine

maximal_independent_set. This routine finds a maximal set of rows of A all of which

are pairwise disjoint (i.e., they do not have l's in the same column). It should be clear

that the number of rows in this independent set is a lower bound on the solution to the

covering problem, because a different element must be selected from each of the indepen

dent rows in order to cover these rows. Hence, this lower bound can be used to terminate

the search if the size of the current solution plus the size of the independent set is greater

or equal to the best solution seen so far. Also, the size of the independent set at the first

level of the recursion is a lower bound for the final minimum cover. Hence, by recording

this value, the search can be terminated if a solution is found which meets this lower

bound.
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The major drawback of this technique, of course, is that the problem of finding a

maximum independent set of rows is itself an NP-hard problem. But this is of no concern.

The problem of finding a maximal independent set of rows can be solved heuristically

while still providing a correct lower bound on the size of the final solution. (In general,

finding the maximum independent set provides the best bound; other minimal solutions

provide less precise, but, nonetheless, accurate lower bounds.) Hence, even though this

problem is itself difficult, a good, heuristic algorithm is sufficient for finding a maximal

independent set of rows.

To find a large independent set of rows, a graph is constructed where the nodes

correspond to rows in the matrix, and an edge is placed between two nodes if the two

rows are disjoint. The problem is now equivalent to finding a maximal clique (a maximal,

completely connected subgraph) of this graph. To solve this problem, a greedy algorithm

is used:

(1) Initialize the clique to be empty (contains no nodes):

(2) Pick the node of largest degree (and not already in the current clique), and add this

node to the clique. Break ties by choosing the node which is connected to the most

other nodes of maximum degree;

(3) Remove all nodes and their edges from the graph which are not connected to the

current clique:

(4) Repeat Steps 1 and 2 while there are still nodes in the graph not in the current clique.

The node of largest degree in Step 2 corresponds to the row which is disjoint with the

maximum number of other rows of the matrix. The tie-breaker attempts to preserve as

many of the remaining nodes of maximum degree as possible.

Thus, the bounding in the branch and bound algorithm is modified by bounding the

search if Imaximal_independent_set(A ) Ux I equals or exceeds the best known solu

tion (rather than waiting until \x I equals or exceeds the best known solution.) The goal

is to terminate unprofitable searches as early as possible.
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Besides the fact that the problem of finding a maximum independent set of rows is

NP-hard. there is the further difficulty that the bound provided by the maximum indepen

dent set may not be sharp. For example, consider the matrix:

1 1 0

0 1 1

1 0 1

A maximum independent set of rows for this matrix contains only a single row. but

a minimum cover requires at least two columns. The size of the maximum independent set

remains a lower bound on the size of a minimum cover; the search may just not be ter

minated as early as possible.

5.5. Choice of Branching Column

A unique element from each set of the independent set of rows must be in the

minimum solution. Once a maximal independent set of rows has been computed, the selec

tion of a branching element is limited to some element which belongs to one of these rows.

Each element of each row is given a weight as the reciprocal of the row sum. Then the

weights are summed for each column, and the column of maximum weight which is also

in the independent set of rows is chosen for the branching variable. This weighting stra

tegy gives the elements of the smaller sets a higher weight. For example, in a set with 2

elements, each element receives a weight of 0.5. whereas in a set with 10 elements, each

element receives a weight of 0.1. The larger sets are thought of as "easier" to cover, and

the smaller sets are "harder" to cover. The heuristic is to try to force a selection from one

of the smaller sets. Another reason for favoring choosing an element from a smaller set

(for example, a set with two elements) is to create more essential elements at the next step

of the recursion.

5.6. Heuristic Covering Algorithm

The heuristic covering algorithm used in Espresso-MV is based on the above algo

rithm for the minimum covering problem. In order to make the running time more
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predictable, the algorithm is converted into a greedy algorithm in which the first leaf

visited is taken as the solution and no backtracking is performed. Note that this greedy

algorithm has the nice property that it can compute a lower bound on the size of a

minimum cover (even though it is not guaranteed to generate a minimum cover). (Recall

that the size of the maximal independent set of rows at the first level of the recursion is a

lower bound for the minimum solution to the covering problem.) Hence, sometimes this

greedy algorithm is able to demonstrate that it has achieved a minimum solution.

5.7. Implementation

The matrix A is stored as a fully packed bit-matrix. Each row occupies a number of

consecutive words, and each bit in the word is set to either 0 or 1.

The algorithm, as described above, is recursive. At the top level, the maximal

independent set determines a lower bound on the final solution. This is recorded, and if

the lower bound is ever achieved, the branch and bound is terminated.

The first step is to determine if the matrix has a block partition. If so. the matrix is

split into two parts, and the algorithm is recursively entered at the top level.

Row dominance is detected by first sorting the rows of the matrix using an

O(n logn) sorting algorithm. The rows are sorted into ascending order based on the

number of l's in the row; two rows with the same number of l's are sorted into lexico

graphical order. Equal rows (a special case of row dominance) are then easily detected and

removed. Because duplicate rows have been removed, a row can only dominate another

row if it has strictly fewer l's: hence, to determine if a row is dominated, it is only neces

sary to compare it against rows which precede it in the sorted matrix.

Column dominance is slightly more difficult because of the row-oriented structure of

the bit-matrix. The matrix is first transposed so that all column operations become row

operations, and then the matrix is sorted as described above. Then containment is per

formed on the columns in a similar manner to the row containment described above.

Finally, the matrix is transposed a second time to restore it to its proper shape.
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The maximal independent set graph (G) is symmetric, and is most easily represented

by a fully-packed binary adjacency matrix. The matrix is generated by intersecting each

pair of rows of the matrix, and inserting a 1 into position Gy if the rows are disjoint.

5.8. Extension to a General Cost Function

The branch and bound algorithm presented here can also be extended to treat the

more general case of an arbitrary cost function c(") defined for each column.

Row dominance remains a valid technique to* reduce the number of rows in the

matrix, and essential columns must still be in a minimum cover. However, if column i

contains column j, then column j can be deleted only if the cost of column / is the same

or more than the cost of column i.

The major extensions to the covering algorithm depend mostly on how to interpret

the maximal independent set for the purpose of bounding the search. The bound on a

minimum cost solution is given by the cost of the current solution plus the cost of the ele

ment of least cost in each row of the set of independent rows.



CHAPTER 6

Experimental Results

In this chapter I report results from an implementation of the Espresso-MV algo

rithms. The Berkeley PLA test set includes a large collection of PLA's and a smaller col

lection of multiple-valued logic functions. I present results from the program Espresso-

MV (in both its heuristic and exact modes) for all examples in the test set and compare

the results to the exact minimizer McBoole [DAR86], and to the heuristic minimizer

Prestol-II [BaM85]. For the multiple-valued minimization problems, I present results for

Espresso-MV minimizing these problems as a binary-valued minimizer with an appropriate

don't care set, and as a multiple-valued minimizer. Unfortunately, I do not have access to

other multiple-valued minimization programs for comparison.

6.1. Espresso-MV

The program Espresso-MV implements the heuristic and exact logic minimization

algorithms described earlier, as well as heuristic and exhaustive algorithms for the output

phase assignment and the input variable assignment problems. The program can also be

used for manipulating multiple-valued logic functions. Espresso-MV will (l) compute the

intersection, union, or sharp-product between two logic functions; (2) verify the logical

consistency of two logic functions; (3) compute the complement; (4) compute the set of all

prime implicants: (5) check the logical consistency of a single logic function. The use of

the program (including the input and output file formats) is documented in Appendix A.

Espresso-MV is written in the C language and is about 10,000 source lines. The program

as written fits into the UNIX environment as a filter (reading a logic function or logic

functions from standard input, and writing the logic functions to standard output).

The command line option -do exact selects the exact minimization algorithm of

Espresso-MV. This is referred to as Espresso-MV in the exact mode. Likewise, the
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command line option -strong uses the SUPER_GASP heuristic described in Section 4.7. and

is referred to as Espresso-MV in the strong mode.

6.2. The PLA Test Set

When research leading to the Espresso-II algorithms began. PLA examples were col

lected as a vehicle for comparing different minimization algorithms. By the time the book

Logic Minimization Algorithms for VLSISynthesis was written. 56 PLA examples had been

collected. Further donations to the test set from industry and Universities has expanded

the test set to 134 functions. Of these. 111 are designated as industrial examples (imply

ing that their origin is either an industrial or University chip design), and 23 are

mathematical functions such as multiply and square root. Included in the test set are 11

randomly generated examples given to us by the authors of Prestol-II. Because the ran

dom examples exhibit behavior which is much different from the industrial examples, they

are reported in a separate section. Tables 6.1 and 6.2 show the raw data for Espresso-MV

in its normal, strong, and exact modes and raw data for McBoole and Prestol-II when such

data is available. (This raw data is summarized in the text.)

The complete test set presented here is available from the Industrial Support Office.

461 Cory Hall, University of California. Berkeley. CA 94720.

6.2.1. Grading the Test Set by Problem Difficulty

With a test set so large, it is a challenge to present the results from competing algo

rithms in a meaningful manner. It can be misleading to merely report the total number of

cubes and total number of literals for each algorithm and then attempt to draw conclu

sions from these totals. Hence, my first goal is to determine the difficulty of the minimiza

tion problem for each PLA in the test set.
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For each problem in the test set, I first classify the problem as one of the following:

Classification Description
trivial minimum solution consists of essential prime implicants

noncyclic the covering problem contains no cyclic constraints

cyclic and solved the covering problem contains cyclic constraints
and the minimum solution is known

cyclic and unsolved the covering problem contains cyclic constraints
but the minimum solution is unknown

too many primes there were too many primes to be enumerated

Table 6.1. PLA Classification by Degree of Difficulty.

The classifications were determined by allowing the exact minimization algorithm of

Espresso-MV and the exact minimization algorithm of McBoole to run for 5 hours for each

example on an Apollo DN6601. (If a program had not terminated after 5 hours, it was

aborted). By examining the results for each program, a classification is determined for

each example. If the problem was solved by either of the two exact minimization algo

rithms, it is easy to decide whether it belongs to the class trivial, noncyclic. or cyclic

and solved. An example is classified as too many primes only if neither program was

able to enumerate the complete set of prime implicants, and an example is classified as

cyclic and unsolved only if neither program was able to complete the covering program

after having generated the set of all prime implicants.

6.2.2. Comparison of Exact Minimization Algorithms

I first report the results from the exact minimization algorithm of Espresso-MV, and

the exact minimization algorithm McBoole. Note that both programs first generate the set

of all prime implicants. and then attempt to find a minimum subset of the set of all prime

implicants. Further, both programs attempt to solve only the simpler covering problem,

namely, to return the cover with the fewest number of cubes without consideration for

1Tests show that the Apollo DN660 with Version 3.12 of the CCompiler executes Espresso-MV at thesame
speed as a DEC VAX 11/785 with the 4.3BSD portable C compiler. All results in this section were timed on an
Apollo DN660 with 4 megabytes of memory.
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the number of literals. (In fact, both programs use a "cleanup" step where the number of

literals is reduced once the minimum number of rows has been achieved, but both pro

grams solve this problem heuristically.) McBoole generates the prime implicants using the

consensus algorithm described in [DAR86]. By maintaining the tree structure correspond

ing to where a cube was generated, McBoole is able to reduce the number of pairwise con

sensus operations that need to be performed. During the generation of prime implicants.

McBoole creates a directed graph which is used to solve the selection of a subset of the set

of all prime implicants.

Table 6.2.2 summarizes the comparison between Espresso-MV (exact mode), and

McBoole for the 134 PLA's in the test set. Number primes is the number of examples for

which each program was able to generate all of the primes for. number solved is the

number of the examples for which each program was able to solve, and time gives the total

time on an Apollo DN660 (in seconds) taken for those examples which could be solved

within the 5 hour time limit. Thus, for example. Espresso-MV took more than 30,000

seconds longer than McBoole for the category cyclic and solved, but this involved solving

20 more problems than McBoole.

type total

Espresso-MV (exact)
number number time

primes solved (sec)

McBoole (exact)
number number time

primes solved (sec)
trivial .

noncyclic
cyclic and solved
cyclic and unsolved
too many primes

9

56

42

10

17

9
55

42

7

0

9 120

54 26524

41 41330

0

0

9 9

56 56

42 21

10 0

0 0

271

35956

11241

Totals 134 113 104 67974 117 86 47468

Table 6.2.2. Comparison of Espresso-MV (exact) and McBoole.

For examples with no cyclic constraints, both Espresso-MV and McBoole are usually

able to find the minimum solution. Espresso-MV failed to generate the minimum solution

for two examples (al2 and proml). For proml. it was unable to enumerate all of the

primes (which has 9.179 primes). For all. it was able to generate all of the primes (there

were 9.326 primes), but was unable to generate the prime implicant table.
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However, when there are cyclic constraints, the covering algorithm of Espresso-MV is

able to find the minimum solution for many more of the PLA's than McBoole. Only for

example intb did Espresso-MV fail to solve an example with cyclic constraints that

McBoole was able to solve. (Espresso-MV was unable to generate the prime implicant

table for intb .which has 6,522 prime implicants.) Sometimes the results are quite

dramatic. The example sqr6 was allowed to run for 58 hours with McBoole without ter

minating with the minimum solution: however, Espresso-MV is able to complete this same

example in only 100 seconds. Also. Espresso-MV was able to determine the minimum

cover for the example mlp4 (a four bit multiplier) in about 1 hour. Results have been

published for both of these examples without presenting the minimum solution

[DAR86. Sas82]. As far as I know, no previous program has successfully minimized these

two examples.

Comparing the efficiency of the prime generation algorithms, we find that in 113 cases

both programs could generate all of the prime implicants, in 4 cases (b4 with 6.455 primes.

bcO with 6.596 primes, proml with 9.326 primes, and tl with 15,135 primes) McBoole was

able to generate all of the prime implicants when Espresso-MV could not, and in 17 cases

neither program was able to generate all of the prime implicants. There were no cases

where Espresso-MV was able to generate all of the primes, and McBoole was unable to.

Overall, there were 83 examples which both programs could minimize. 3 examples

which McBoole could minimize which Espresso-MV could not. 21 examples which

Espresso-MV could minimize which McBoolecould not, and 27 examples for which neither

program was able to complete the exact minimization (20 %). For the 83 examples which

both programs could minimize, Espresso-MV used 38.198 seconds, and McBoole used

28.628 seconds. The Espresso-MV result had 51.821 literals, and McBoole had 53.686

literals indicating that MAKE_SPARSE was more efficient at reducing the number of literals

(once the minimum number of terms was determined). Of course, for these 83 examples,

both returned the same number of prime implicants. essential prime implicants, and solu

tion cubes.
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Including the time each program used on those examples for which a solution was

not found, Espresso-MV used 6.1 days of computer time and McBoole used 10.3 days of

computer time.

Detailed results for all 134 examples are given in Table 6.1. We summarize the

lower bounds obtained from Espresso-MV and the best upper bound results for the 10

examples in the category cyclic and unsolved in Table 6.2.3.

Example Primes
Essential

Primes

Lower Bound Upper Bound

9sym 1680 0 84 84

b4 6455 40 54

bcO 6596 37 177

ex5 2532 28 59 67

linrom 1087 8 125 129

maxI024 1278 14 239 267

prom2 2635 9 274 287

spla 4972 33 251

tl 15135 7 102

tial 7145 220 575

Table 6.2.3 Upper and Lower Bounds for the Cyclic and Unsolved Problems.

6.23. Espresso-MV Results

I am thus in an excellent position to grade the quality of the results for the heuristic

minimization algorithm Espresso-MV. I know the minimum solution for 107 of the 134

examples in the test set, and. as shown in 6.2.3 I have a lower bound for 5 of the remain

ing 27 examples.

Table 6.2.4 shows the totals for 133 examples, broken down by category, for

Espresso-MV and Espresso-MV (strong mode). The examples were run on an Apollo

DN660. It is evident that the SUPERJ3ASP option can be expensive: but. sometimes the

extra reduction in the number of terms might be considered worthwhile. Curiously.

SUPER_GASP produces more literals in all categories.
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Espresso-MV Espresso-MV (strong)
type # solution time solution time

cubes lits (sees) cubes lits (sees)

trivial 9 243 1683 23 243 1683 23

noncyclic 56 3909 45712 1674 3899 45956 2372

cyclic-s 42 4092 42030 3202 4056 42577 5403

cyclic-us 10 2023 25347 3444 2010 25438 4637

too-many-primes 16 2759 35718 6751 2755 35881 7924

Totals 133 13026 150490 15094 12963 151535 20359

Table 6.2.4. Espresso-MV Results.

Next I compare the results from Espresso-MV (again, with and without

SUPER_GASP). but I only consider those examples for which Espresso-MV running as an

exact minimizer was able to generate the minimum solution. This will allow me to com

pare the relative efficiency of Espresso-MV in its exact and heuristic modes. The results

are shown in Table 6.2.4. It is evident that Espresso-MV provides a high quality result

for all of the examples for which I can generate a minimum solution — the difference

between Espresso-MV and Espresso-MV (exact) is about one percent. Also. Espresso-MV

is more than fifteen times faster than the exact minimizer on problems that both algo

rithms can solve.

type #

Espresso-MV
solution time

cubes lits (sec)

Espresso-MV (strong)
solution time

cubes lits (sec)

Espresso-MV (exact)
solution time

cubes lits (sec)

trivial

noncyclic
cyclic-s

9

54

41

243 1683

3371 34060

3463 36163

23

1366

2532

243 1683

3361 34223

3427 36658

23

2030

4279

243 1683

3360 34204

3395 36564

120

26523

41329

totals 104 7077 71906 3920 7031 72564 6332 6998 72451 67973

Table 6.2.5. Espresso-MV Exact Mode versus Heuristic Mode.

6.2.4. Comparison of Prestol-II and Espresso

Without access to the program Prestol-II, direct comparisons have been difficult to

make. I compare here the results from Espresso-MV (in both normal and strong modes)

and the results from Prestol-II reported in [BaM85]. (The raw data comes from the Ph.D.

thesis of Marc Bartholomeus of Leuven University.) Table 6.2.6 presents results for 65

examples from the industrial and mathematical class. (Results for some random examples
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will be reported in the next section.) The times for Prestol-II, which is a Pascal program,

are from a VAX 11/780 running VMS. The times for Espresso-MV are from an Apollo

DN660.

Espresso-MV Espres so-MV (strong) Prestol-H

type # solution time solution time solution time

cubes lits (sec) cubes lits (sec) cubes lits (sec)
trivial 1 112 736 13 112 736 13.3 112 736 84

noncyclic 29 2362 33217 1231 2354 33391 1340 2359 31858 1396

cyclic-s 22 2110 21751 1266 2098 21935 2542 2108 21944 1321

cyclic-us 6 1181 14392 1649 1178 14416 2457 1189 14329 1993

too many primes 7 928 7544 2758 924 7632 3283 928 7887 2186

total 65 6693 77640 6917 6666 78110 9635 6696 76754 6980

Table 6.2.6. Comparison Between Espresso-MV and Prestol-II.

We see that the results returned by Espresso-MV and Prestol-II are very close in

quality of solution and in the execution time required. However. I have results from

Prestol-II for only 13 of the 27 difficult problems.

6.2.5. Random Example Results

Included in the test set are 11 random examples provided by H. De Man of the

University of Leuven. Results for some of these examples were first reported in [BaM84].

Each example is a truth table where the output value is randomly chosen from {0, 1. 2}

with probabilities poff . pon . and pdc respectively. Although I don't know the probabilities

used to generate each example. I report below the observed percentages of minterms in the

OFF-set. ON-set and DC-set for each example.
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name in out % OFF-set % ON-set % DC-set

bench 6 8 22.1 9.4 68.6

benchl 9 9 22.5 9.3 68.2

exlOlO 10 10 15.3 14.4 70.3

exam 10 10 7.1 6.1 86.8

fout 6 10 28.8 29.8 41.4

Pi 8 18 16.6 6.4 77.0

P3 8 14 14.0 6.3 79.6

testl 8 10 35.7 14.3 50.1

test! 11 35 19.4 9.9 70.7

testS 10 35 19.3 9.9 70.8

test4 8 30 8.8 19.7 71.5

97

Table 6.2.8. Distribution of Minterms for the Random Examples.

Note that the examples test2, and test3, and test4 are large examples. Also, all of the

examples have extremely large don't-care sets.

I next report the success for Espresso-MV (both normal and strong modes). McBoole,

Espresso-MV (exact mode). Prestol-II and MINI for each of these examples. The results

for MINI and Prestol-II are quoted from [BaM85]. Results for SPAM. Presto and Phipmin

were also reported in [BaM84]: however, each of these three programs did significantly

worse than either Espresso-MV or Prestol-II. and hence these results are not repeated here.

The results from Espresso-MV in the exact mode also include, in some cases, a lower

bound (returned from the minimum cover strategy outlined in Chapter 5). and an upper

bound (if the minimum solution was not achieved).

name MINI Prestol-II Espresso-MV Espresso-MV
strong

Espresso-MV
exact

McBoole

bench 24 19 17 17 16 16

benchl 177 148 140 128 111-126 -

exlOlO 389 246 302 264 - -

exam 86 59 70 66 52-? -

fout 48 42 42 42 40 -

Pi 57 54 56 54 54 54

P3 41 39 40 39 39 39
testl 138 123 126 115 103-111 -

testl - - 1118 995 - -

testS 922 552 558 491 - -

test4 - - 120 104 - -

Table 6.2.9. Random Example Summary.
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The results for Prestol-II have not been published for for examples testl and test4.

There is a much greater variability among the different programs for these examples (espe

cially for the largest random examples).

In particular, the results for test3 were very surprising: Prestol-II and Espresso-MV

were very close to each other, and it was assumed they were both close to the minimum.

The addition of the SUPER_GASP strategy to Espresso-MV. however, produced a result

with 61 fewer cubes then the best previously known result. Similar surprising results are

seen in the data for testl. which, with the addition of the SUPER_GASP strategy produced

a solution with 123 fewer cubes than without that strategy. However, running Espresso-

MV in the strong mode greatly increased the execution time for this example. (Espresso-

MV required 7 hours on an Apollo DN660).

These random problems are especially difficult minimization problems because of the

large percentage of don't-care minterms. and the fact that the DC-set is scattered. As a

result, all of these examples have a very large number of prime implicants, very few

essential prime implicants. and most of them had cyclic constraints in the covering prob

lem. Because these examples exhibit behavior much different from either the industrial

examples or the mathematical functions, these results have been presented apart from the

rest of the test set.

63. Multiple-Valued Minimization Results

63.1. Multiple-Valued Minimizer versus Binary-Valued with a DC-set

As mentioned in Chapter 1. it is possible to use a binary-valued minimizer to minim

ize a multiple-valued function. The problem is recast so that each value of a multiple-

valued variable uses a single binary-valued variable, and a 1 in a cube for a multiple-

valued variable is represented as a 1 in the binary-valued cube. A don't-care set is added

which allows any number of l's to appear simultaneously in the binary-variables which

correspond to each of the multiple-valued variables. This technique is described in more

detail in [BMH84. Chapter 5].
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I present results for a small collection of multiple-valued minimization problems.

Table 6.3.1 compares Espresso-MV running as a multiple-valued minimizer versus

translating the problem into an equivalent binary-valued minimization problem, and using

Espresso-MV as the binary-valued minimizer. The time reported for these examples was

measured on an IBM 3081. The examples DK14. DK16. PCC, and BLUE represent prob

lems that are being solved by the state-assignment program KISS [DBS85]. They have 7,

8,12, and 93 states respectively.

Solving a multiple-valued minimization problem using a binary-valued minimization

tool can be inefficient. In the two largest cases, the binary-valued minimizer was unable to

complete the solution after 1 hour on an IBM 3081.

Example States Binary--Valued Multiple-Valued
Terms Time2 Terms Time2

DK14 7 26 4.3 26 0.5

DK16 8 55 108.6 55 1.6

PCC 12 - (3600) 48 4.4

BLUE 93 - (3600) 775 1053.0

Table 6.3.1. Using a Binary-Valued Minimizer for Multiple-Valued Functions.

The computation did not terminate for either PCC or BLUE within
the 1 hour time limit.

63.2. Multiple-Output Espresso-EC versus Espresso-MV

Table 6.3.2 compares the performance of Espresso-MV against the binary-valued

minimizer Espresso-IIC for the 56 examples published in [BMH84].

Program Cubes Literals Time2
Espresso-MV 5993 60322 560
Espresso-IIC 6001 60578 992

Table 6.3.2. Espresso-MV versus Espresso-IIC.

Comparing Espresso-IIC and Espresso-MV. the quality of the results is almost identi

cal, but the run-time has been reduced by almost fifty percent. This is a surprising result.

2Time in seconds measured on an IBM 3081 using the Waterloo C Compiler,
Version 1.1 under the VM/CMS Operating System.
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as one might expect the generalization of the algorithms to multiple-valued variables to

penalize the performance for binary-valued minimization problems. However, the algo

rithms are improved by the more uniform treatment of the output-part during the

multiple-valued minimization. For example, as described in Section 4.3. the OFF-set does

not need to be represented with only a single-output active in each cube. This leads to a

more compact representation of the OFF-set. and to a more efficient EXPAND procedure.

Likewise. Espresso-IIC effectively would not split against the output part until reaching a

leaf of one of the recursive procedures (e.g.. TAUTOLOGY). By allowing the program to

split against the output at any step of the procedure, the heuristics of choosing the split

ting variable leads to a more efficient choice of splitting variables.
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Esoresso-MV McBoole
name type primes essen

cubes lits time cubes lits time

5xpl cyclic-s 390 8 63 360 55 ♦64 0 1322

9sym cyclic-us 1680 0 0 0 18000 0 0 18000

accpla primes • 0 0 0 0 18000 0 0 18000

add6 noncyclic 8568 153 355 2551 4546 355 2935 3235

oddm.4 cyclic-s 1122 24 189 1405 1526 *191 1508 3477

adr4 noncyclic 397 35 75 415 34 75 467 12

all noncyclic 9179 16 0 0 18000 66 427 3017

alcom noncyclic 4657 16 40 223 4596 40 224 1156

alul trivial 780 19 19 60 94 19 60 195

alu2 noncyclic 434 36 68 347 85 68 369 64

alu3 noncyclic 540 27 64 352 94 64 367 100

amd cyclic-s 457 32 66 658 93 *66 692 260

apla noncyclic 201 0 25 232 52 25 228 11

bio cyclic-s 938 51 100 1009 409 100 1081 55

bll noncyclic 44 22 27 181 5 27 187 2

bl2 cyclic-s 1490 2 41 233 715 0 0 18000

b2 noncyclic 928 54 104 1970 906 104 1977 41

b3 cyclic-s 3056 123 210 2506 6399 0 0 18000

b4 cyclic-us 6455 0 0 0 18000 0 0 18000

67 noncyclic 44 22 27 181 5 27 187 2

69 noncyclic 3002 48 119 873 687 119 938 558

bcO cyclic-us 6596 37 0 0 18000 0 0 18000

bca noncyclic 305 144 180 3281 1627 180 3454 8

bcb noncyclic 255 137 155 2763 728 155 2799 7

bcc cyclic-s 237 119 137 2530 892 137 2570 6

bed noncyclic 172 100 117 2026 444 117 2057 5

bcd.div3 trivial 13 9 9 38 1 9 38 1

bench cyclic-s 391 . 0 16 102 43 16 125. 13

benchl cyclic-us 5972 0 0 0 18000 0 0 18000

brl noncyclic 29 17 19 254 5 19 257 1

brl noncyclic 27 9 13 172 4 13 174 1

chkn cyclic-s 671 86 140 1742 629 140 1770 893

dpi trivial 143 20 20 75 6 20 75 11

col4 trivial 14 14 14 210 2 14 210 1

cps cyclic-s 2487 57 157 2849 2370 *162 3154 10689

del noncyclic 22 3 9 58 2 9 57 1

del noncyclic 173 18 39 260 11 39 275 3
dekoder cyclic-s 26 3 9 47 2 9 52 1

dist cyclic-s 401 23 120 875 68 120 913 18

dkl7 noncyclic 111 0 18 177 29 18 137 11

dkll cyclic-s 82 0 10 61 28 10 46 12

dk48 cyclic-s 157 0 21 224 190 0 0 18000

exlOlO primes 0 0 0 0 18000 0 0 18000

ex4 primes 0 0 0 0 18000 0 0 18000

ex5 cyclic-us 2532 28 0 0 18000 0 0 18000

Table 6.1. Raw Data for Espresso-MV / McBoole Comparison.
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name type primes essen
Espresso-MV

cubes lits time cubes

McBoole

lits time

ex7 noncyclic 3002 48 119 873 709 119 938 540

exam. cyclic-us 4955 0 0 0 18000 0 0 18000

exep noncyclic 558 82 108 1278 3318 108 1281 26
exp noncyclic 238 30 56 559 75 56 662 5
exps cyclic-s 852 56 132 1928 346 *135 2099 4818
f51m cyclic-s 561 13 76 401 64 76 450 25

fout cyclic-s 436 2 40 306 399 *41 392 2762

gory cyclic-s 706 60 107 1118 180 107 1162 21

ibm primes 0 0 0 0 18000 0 0 18000

inO cyclic-s 706 60 107 1118 162 107 1149 17

inl noncyclic 928 54 104 1970 892 104 1977 38

in! cyclic-s 666 85 134 1430 189 134 1453 65

in3 noncyclic 1114 44 74 772 616 74 808 259
in4 cyclic-s 3076 118 211 2539 6945 211 2635 2331
in5 noncyclic 1067 53 62 741 258 62 746 36

in6 noncyclic 6174 40 54 547 3745 54 553 11819
Inl noncyclic 2112 31 54 427 950 54 434 1305

inc cyclic-s 124 12 29 196 10 29 212 3

intb cyclic-s 6522 186 0 0 18000 629 6342 7595

jbp primes 0 0 0 0 18000 0 0 18000

l&err cyclic-s 142 15 50 304 23 •51 327 64

life noncyclic 224 56 84 756 15 84 756 2

lin.rom cyclic-us 1087 8 0 0 18000 0 0 18000

log8mod cyclic-s 105 13 38 225 9 38 236 2

luc noncyclic 190 14 26 388 37 26 416 5
ml noncyclic 59 6 19 217 5 19 223 1

ml81 cyclic-s 1636 2 41 233 866 0 0 18000

ml cyclic-s 243 7 47 670 39 47 686 22

m3 cyclic-s 344 4 62 841 63 *63 861 1438

m.4 cyclic-s 670 11 101 1241 1049 * 103 1360 12919

mainpla primes 0 0 0 0 18000 0 0 18000

mark I cyclic-s 208 1 19 265 527 0 0 18000

max1014 cyclic-us 1278 14 0 0 18000 0 0 18000

max128 cyclic-s 469 6 78 1174 157 *83 1105 13776

max46 trivial 49 46 46 441 7 46 441 1

maxSll cyclic-s 535 20 133 1006 519 * 136 1069 9129
misg primes 0 0 0 0 18000 0 0 18000

mish primes 0 0 0 0 18000 0 0 18000

misj primes 0 0 0 0 18000 0 0 18000

mlp4 cyclic-s 606 12 121 865 4722 * 123 955 3326
mpld cyclic-s 469 13 30 201 278 0 0 18000

newapla noncyclic 113 9 17 102 7 17 106 4

newaplal noncyclic 31 9 10 76 2 10 76 1

newaplal trivial 7 7 7 49 1 7 49 1

newbyte trivial 8 8 8 48 1 8 48 1

Table 6.1. Raw Data for Espresso-MV / McBoole Comparison (cont.).
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Esoresso-MV McBoole
name type primes essen

cubes lits time cubes lits time

newcond noncyclic 72 18 31 239 5 31 239 2

newcplal cyclic-s 170 22 38 263 24 38 303 16

newcplal noncyclic 38 14 19 129 4 19 129 1

newcwp noncyclic 23 7 11 50 2 11 53 1

newill cyclic-s 11 5 8 50 1 8 49 1

newtag trivial 8 8 8 26 1 8 26 1

newtpla noncyclic 40 16 23 199 3 23 201 1

newtplal noncyclic 6 3 4 37 1 4 37 1

newtpla2 noncyclic 23 4 9 69 2 9 69 1

newxcplal noncyclic 191 18 39 309 31 39 336 6
opa cyclic-s 477 22 77 1121 234 *78 1369 2951

Pi noncyclic 287 25 54 404 165 54 612 20

p3 noncyclic 185 22 39 280 79 39 324 10

P82 noncyclic 48 16 21 149 4 21 156 1

pdc primes 0 0 0 0 18000 0 0 18000

pope.rom cyclic-s 593 12 59 1472 347 *61 1427 17167

proml noncyclic 9326 182 0 0 18000 472 11228 8228

proml cyclic-us 2635 9 0 0 18000 0 0 18000

radd noncyclic 397 35 75 415 24 75 465 10

rckl noncyclic 302 6 32 657 67 32 657 3043

rd53 noncyclic 51 21 31 173 2 31 175 1

rd!3 noncyclic 211 106 127 903 18 127 904 3

rise noncyclic 46 22 28 187 4 28 191 1

root cyclic-s 152 9 57 381 26 57 401 5

ryy6 trivial 112 112 112 736 7 112 736 61
sex noncyclic 99 13 21 105 6 21 105 2

shift primes 0 0 0 0 18000 0 0 18000

signet primes .0 0 0 0 18000 0 0 18000

soar.pla primes 0 0 0 0 18000- 0 0 18000

sola cyclic-us 4972 33 0 0 18000 0 0 18000

sqn noncyclic 75 23 38 226 6 38 233 1

sqr6 cyclic-s 205 3 47 274 114 *49 299 1322

symlO cyclic-s 3150 0 210 1470 9182 0 0 18000
tl cyclic-us 15135 7 0 0 18000 0 0 18000
tl noncyclic 233 25 52 363 39 52 386 8

t3 noncyclic 42 30 33 250 4 33 251 1

t4 noncyclic 174 0 16 91 68 16 97 14

testl cyclic-us 2407 0 0 0 18000 *U6 1160 10727

testl primes 0 0 0 0 18000 0 0 18000
test3 primes 0 0 0 0 18000 0 0 18000
test4 cyclic-us 6139 0 0 0 18000 0 0 18000
ti primes 0 0 0 0 18000 0 0 18000
tial cyclic-us 7145 220 0 0 18000 *575 5355 11346
tms cyclic-s 162 13 30 415 25 30 451 4

tslO primes 0 0 0 0 18000 0 0 18000

Table 6.1. Raw Data for Espresso-MV / McBoole Comparison (cont.).
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Espresso-!VIV McBoole
name type primes essen

cubes lits time cubes lits time

vgl noncyclic 1188 100 110 914 765 no 942 616

vtxl noncyclic 1220 100 110 1074 259 110 1094 562

wim cyclic-s 25 3 9 47 2 9 54 1

xldn noncyclic 1220 100 110 1074 257 110 1094 568

xldn primes 0 0 0 0 18000 0 0 18000

x6dn cyclic-s 916 60 81 817 1848 81 820 150

xldn primes 0 0 0 0 18000 0 0 18000

x9dn noncyclic 1272 110 120 1258 452 120 1298 611

xparc primes 0 0 0 0 18000 0 0 18000

z4 noncyclic 167 35 59 311 11 59 333 3

Table 6.1. Raw Data for Espresso-MV / McBoole Comparison (cont.).
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* indicates McBoole terminated branching after 10 levels: hence, the solution returned is
not guaranteed optimal.

Times for both Espresso-MV and McBoole are for an Apollo DN660 with 4 mega
bytes of memory using Version 3.12 of the C Compiler.

McBoole detected that it had solved 5xpl incorrectly: the problem was reported to
the author, and the program was subsequently corrected.

McBoole and Espresso-MV disagree on the number of prime implicants for I8err
(McBoole has 16. and Espresso-MV has 15). The problem is being investigated by the
author of McBoole.
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Espresso-MV Espresso-MV Prestol-II

name (strong mode)
cubes lits time cubes lits time cubes lits time

Sxpl 63 358 27 64 415 30

9sym 85 595 30 84 588 37 86 602 98

accpla 175 2750 924 175 2741 956

add6 355 2551 144 355 2581 691

addm4 200 1500 98 192 1441 219

adr4 75 415 19 75 417 22 75 415 37

all 66 427 21 66 427 22

alcom 40 223 10 40 224 10

alul 19 60 1 19 60 2

alul 68 347 18 68 347 21

alu3 66 347 14 64 360 26

amd 66 660 50 66 658 53

apla 25 221 9 25 238 10 25 223 18

blO 100 1000 35 100 1009 42 101 1004 42

bll 27 181 7 27 182 7

bll 42 208 27 41 234 59 42 246 21

bl 106 1940 51 104 1972 49 104 1893 21

b3 211 2511 122 211 2512 149 211 2511 202

b4 54 546 35 54 546 37 54 546 22

bl 27 181 7 27 182 7 27 181 5

b9 119 873 22 119 873 33 119 873 53

bcO 178 2061 197 177 2088 260

bca 180 3266 300 180 3285 307 181 2618 67

bob 156 2778 159 155 2762 170 155 2191 595

bee 137 2530 177 137 2533 179 138 2034 40

bed 117 2026 96 117 2026 98

bcd.div3 9 38 1 9 38 1

bench 18 100 8 17 100 22 • 19 112 5

benchl 136 1187 161 128 1147 394 148 1245 705

brl 19 254 3 19 254 3 20 268 2

brl 13 172 3 13 172 3 14 188 2

chkn 140 1739 60 140 1764 70 140 1740 215

clpl 20 75 2 20 75 2

col4 14 210 1 14 210 1

cps 163 2824 344 159 2857 508

del 9 54 2 9 58 2

del 39 260 5 39 262 6 40 264 5

dekoder 9 47 2 9 48 3 9 53 1

dist 121 875 49 121 882 58 120 872 61

dkll 18 135 7 18 142 8

dkll 10 46 5 10 61 7

dk48 22 143 23 22 211 31

exlOlO 283 2743 1270 264 2623 2461 246 2667 2525

ex5 74 1900 115 72 1861 417 76 2014 69

exl 119 873 22 119 873 33

Table 6.2. Raw Data for Espresso-MV / Prestol-II Comparison.

105



§ 6.3.2

Espresso-MV Espresso-MV Prestol-II

name (strong mode)
cubes lits time cubes lits time cubes lits time

exep 108 1274 61 108 1276 64 109 1221 55
exp 59 558 24 56 560 31 56 560 13
exps 134 1959 129 133 1946 145 135 2152 49
f51m 77 400 32 76 399 45 76 405 49
fout 44 315 31 42 318 36 42 335 22

gory 107 1116 30 107 1135 39 107 1119 25
ibm 173 1055 35 173 1055 36 173 2191 115
inO 107 1116 37 107 1133 45
inl 106 1940 51 104 1972 49 104 1893 20

inl 136 1420 28 134 1437 58 137 1507 36
in3 74 773 30 74 775 32 74 754 23
in4 212 2543 105 212 2561 121

in5 62 741 13 62 742 14 62 739 14

in6 54 547 11 54 547 12

inl 54 427 12 54 429 13

inc 30 198 7 29 195 9
intb 629 5867 671 629 5919 1124

jbp 122 1027 134 122 1030 151 123 1036 139

I8err 51 313 29 51 319 30

life 84 756 18 84 756 20

lin.rom 128 3202 269 128 3202 278

log8mod 38 228 6 38 231 7

luc 26 394 11 26 388 13 26 394 4

ml 19 217 4 19 217 6 19 217 2

ml81 42 213 27 41 233 55 42 245 21

ml 47 648 29 47 640 34 47 672 6

m3 65 770 45 63 836 54 64 834 12

m4 107 1194 126 104 1172 153 105 1372 25

mainpla 172 8759 373 172 8761 650
markl 19 154 219 19 282 256

maxl014 274 2273 508 267 2266 678

max128 82 1070 89 79 1108 111

max46 46 441 2 46 441 2

max512 143 1072 116 137 1058 141

misg 69 247 15 69 279 23 69 247 59
mish 82 238 26 82 242 33

misj 35 102 4 35 102 6

mlp4 128 893 60 127 899 73 124 878 62

mpld 31 198 22 31 201 34 34 215 44

newapla 17 102 3 17 102 3

newaplal 10 76 1 10 79 1

newapla2 7 49 1 7 49 1

newbyte 8 48 1 8 48 1

newcond 31 239 2 31 239 3

newcplal 38 263 7 38 264 9

Table 6.2. Raw Data for Espresso-MV / Prestol-II Comparison (cont.).
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Espresso-MV Espresso-MV Prestol-II

name (strong mode)
cubes lits time cubes lits time cubes lits time

newcpla2 19 129 2 19 130 2

newcwp 11 50 1 11 52 1

newiVL 8 50 1 8 52 1

newtag 8 26 1 8 26 1

newtpla 23 199 2 23 200 2

newtplal 4 37 1 4 37 1

newtpla2 9 69 1 9 69 1

newxcplal 39 282 11 39 283 15

opa 79 1097 111 79 1095 136 79 1144 50

p82 21 149 3 21 149 3

pdc 123 1126 2133 119 1172 2581 122 1097 1611

pope.rom 62 1345 90 59 1418 140

proml 472 11225 288 472 11306 320 472 11237 200

proml 287 5610 635 287 5610 662 288 5353 50

radd 75 415 9 75 417 15 75 415 24

rckl 32 657 50 32 657 49 32 657 11

rd53 31 175 2 31 173 3 31 173 2

rd!3 127 903 14 127 903 15

rise 28 187 5 28 187 5

root 57 383 21 57 387 23 57 384 14

ryy6 112 736 13 112 736 13 112 736 84

sex 21 105 2 21 109 2

shift 100 493 6 100 493 6 100 493 14

signet 119 636 356 119 638 360

soar.pla 352 3049 1053 352 3094 1197

spla 262 3419 821 260 3466 964

sqn 38 230 5 38 228 6 38 228 8

sqr6 49 266 13 49 280 18 49 268 17

symlO 210 1470 98 210 1470 1093 210 1470 282

tl 102 612 84 102 628 120 102 650 95

tl 53 362 17 53 361 19 52 359 21

t3 33 250 4 33 251 4 33 251 4

t4 16 89 27 16 94 45 17 89 15

ti 213 2572 425 213 2579 478 213 1799 230

tial 579 5129 751 579 5183 1185 583 5164 1659

tms 30 486 9 30 416 18

tslO 128 1024 8 128 1024 8 128 1024 18

vgl 110 914 17 110 914 19 110 914 60

vtxl 110 1074 14 110 1074 16

wim 9 43 2 9 43 3

xldn 110 1074 14 110 1074 16 110 1074 47

xldn 104 564 53 104 565 61

x6dn 81 814 22 81 823 24 81 819 47

xldn 538 4600 524 538 4603 651

Table 6.2. Raw Data for Espresso-MV / Prestol-II Comparison (cont.).
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name

x9dn

xparc

z4

Espresso-MV

cubes lits time

120 1258 17

254 7476 680

59 311 8

Espresso-MV
(strong mode)

cubes lits time

120 1258 18

254 7503 728

59 311 9

Prestol-II

cubes lits time

120 1258

59 311

52

17

Table 6.2. Raw Data for Espresso-MV / Prestol-II Comparison (cont.).
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Data for Prestol-II comes from the PhD thesis of Marc Bartholomeus. Leuven Univer
sity.

Time for Prestol-II is on a VAX 11/780 under VMS in seconds: Time for Espresso-
MV is on an Apollo DN660 in seconds.

There is the possibility that the total number of literals for ibm is in error for
Prestol-II. The number of literals is very large, and happens to equal the number of
literals on the line immediately above in Table 4.4 of Bartholomeus' thesis.

In [BaM84], a result was reported for ml which was later proven incorrect by
Espresso-MV running in the exact mode. The error was subsequently acknowledged and
corrected by the author of Prestol-II.
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ESPRESSO ( 1 ) UNIX Programmer's Manual ESPRESSO ( 1)

NAME

espresso — Boolean Minimization

SYNOPSIS

espresso [type] [file] [options]
DESCRIPTION

Espresso takes as input a two-level representation of a two-valued (or a multiple-valued)
Boolean function, and produces a minimal equivalent representation. The algorithms used
are new and represent an advance in both speed and optimality of solution in heuristic
Boolean minimization.

Espresso reads the file provided (or standard input if no files are specified), performs the
minimization, and writes the minimized result to standard output. Espresso automatically
verifies that the minimized function is equivalent to the original function. Options allow
for using an exact minimization algorithm, for choosing an optimal phase assignment for
the output functions, and for choosing an optimal assignment of the inputs to input
decoders.

The default input and output file formats are compatible with the Berkeley standard for
mat for the physical description of a PLA. The input format is described in detail in
espresso(5). Note that the input file is a logical representation of a set of Boolean equa
tions, and hence the input format differs slightly from that described in pla(5) (which
provides for the physical representation of a PLA). The input and output formats have
been expanded to allow for multiple-valued logic functions, and to allow for the
specification of the don't care set which will be used in the minimization.
Type specifies the logical format for the function. The allowed types are -f. -r. -fr. -fd.
-dr. and -fdr which havethe same meanings assigned in espresso(5).
The command line options described below can be specified anywhere on thecommand line
and must be separated by spaces. A complete list of the command line options is given
below. Be warned that many of the command line options are for internal use and debug
ging only.
-d Verbose detail describing the progress of the minimization is written to standard

output. Useful only for those familiar with the algorithms used.
-do [s] This option executes subprogram [s]. Some of the more useful ones are listed

separately below. The remaining subprograms (contain, dlmerge_m. dlmerge_put.
disjoint, dsharp. intersect, minterms, primes, sharp, union, unravel: essen. expand,
irred. make_sparse. mincov, reduce, taut. super_gasp) are intended for those
heavily into manipulating Boolean functions.

-do check
Checks that the function is a partition of the entire space (i.e.. that the ON-set.
OFF-set and DC-set are pairwise disjoint, and that their union is the Universe)

-do dlmerge
Performs a quick distance-1 merge on the input file to reduce the number of
terms. Useful when the input file is very large (e.g.. a truth table with more than
1000 terms) because distance-1 merge is 0(n log n) rather than Espresso which is
0(n * n). It is expected that the output would then be run through espresso to
complete the minimization.

-do echo
Implies "-out fdr" and echoes the function to standard output. This can be used
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to compute the complement of a function.

Exact minimization algorithm (guarantees minimum number of product terms.
and heuristically minimizes number of literals). Potentially expensive.

-do map
Draw the Karnaugh maps for a function.

-doopo Perform output phase optimization (i.e.. determine which functions to comple
ment to reduce the number of terms needed to implement the function). After
choosing an assignment of phases for the outputs, the function is minimized.

-do opoall . f .
Minimize the function with all possible phase assignments. The option can be fol
lowed by three integers which specify the first and last outputs to be used (count
ing from 0). and the third integer is 0 to use the heuristic minimizer in espresso or
1 to use the exact minimizer in espresso. Be warned that opoall requires an
exponential number of minimizations !

-do pair ...
Choose an assignment of the inputs to two-bit decoders, and minimize the func
tion.

-do pairall
Minimize the function with all possible assignments of inputs to two-bit decoders.
The option can be followed by an integer which is 2 to use the heuristic minimizer
of espresso. 3 to use the exact minimizer of espresso, and 4 to perform output
phase assignment (as in the -do opo option) for each assignment. Be warned that
pairall requires an exponential number of minimizations !

-do single_output
Minimize each function one at a time as a single-output function. Terms will not
be shared among the functions.

-do single_putput_best
Minimize each function one at a time as a single-output function, but choose the
function or its complement based on which has fewer terms.

-do stats
Provide simplestatistics on the size of the function.

-do verify
Reads two file names from the command line and verifies that the two functions
are Boolean equivalent.

-do PLAverify
Reads two filenames from the command line, assumes that each specifies names
for the inputs and outputs, permutes columns so that the two PLA's have the
same order for the inputs and outputs, and then checks Boolean equivalence
between the two functions.

-eat Normally comments are echoed from the input file to the output file. This options
discards any comments in the input file.

-fast Stop after the first EXPAND and IRREDUNDANT operations (i.e.. do not iterate
over the solution).

-kiss Sets up a kiss-style minimization problem.
-ness Essential primes will not be detected and removed from the minimization.
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-nirr The result will not necessarily be made irredundant in the final step which
removes redundant literals.

-nunwrap
The ON-set will not be unwrapped beforebeginning the minimization.

-help Provides a quick summary of theavailable command line options.
-onset Recompute the ON-set before the minimization. Useful when the PLA has a large

number of product terms (e.g.. an exhaustive list of minterms).
-out [s] Selects the output format. By default, only the ON-set (i.e.. type f) is output

after the minimization, [s] can be one of f. d. r. fd. dr.fr. or fdr to select any
combination of the ON-set (f). the OFF-set (r) or the DC-set (d). [s] may also be
eqntott to output algebraic equations acceptable toeqntott(l). or pleasure to out
put an unmerged PLA (with the label and .group keywords) acceptable to pleas
ured).

-pos Swaps the ON-set and OFF-set of the function after reading the function. This can
be used to minimize the OFF-set of a function, .phase in the input file can also
specify an arbitrary choice of output phases.

-s Will provide ashort summary of the execution of the program including the ini
tial cost of the function, the final cost, and thecomputer resources used.

-strong Uses an alternate strategy for the LAST_GASP step which is more expensive, but
occasionally provides better results.

-t Will produce atrace showing the execution of the program. After each main step
of the algorithm, a single line is printed which reports the processor time used,
and the current cost of the function.

-x Suppress printing of the solution.

DIAGNOSTICS . r TT„„„„
espresso will issue a warning message if aproduct term spans more than one line. Usually
this is an indication that the number of inputs or outputs of the function is specified
incorrectly.

SEE ALSO

kiss(l). pleasured). pla(5). espresso(5)

R. Brayton. G. Hachtel. C. McMullen. and A. Sangiovanni-Vincentelli. Logic Minimization
Algorithms for VLSI Synthesis. Kluwer Academic Publishers. 1984.

R. Rudell. A. Sangiovanni-Vincentelli. "Espresso-MV: Algorithms for Multiple-Valued
Logic Minimization." Proc. Cust. Int. Circ. Conf.. May 1985.

R. Rudell. "Multiple-Valued Minimization for PLA Synthesis." Master's Report. University
of California. Berkeley. June 1986.

AUTHOR

Richard Rudell

BUGS Always passes unrecognized options straight from the input file to standard output (some
times this isn't what you want).

There are a lot of options, but typical use doesn't need them.
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NAME
espresso —input file format for espresso(l)

DESCRIPTIONEspresso accepts as input a two-level description of aBoolean switching function. This is
described as a character matrix with keywords imbedded in the input to specify the size of
the matrix and the logical format of the input function. Comments are allowed within the
input by placing a pound sign (#) as the first character on a line. Comments and unrecog
nized keywords are passed directly from the input file to standard output. Any white-
space (blanks, tabs. etc.). except when used as a delimiter in an imbedded command, is
ignored. It is generally assumed that the PLA is specified such that each row of the PLA
fits on a single line in the input file.

KEYWORDS
The following keywords are recognized by espresso. The list shows the probable order of
the keywords in a PLA description, [d] denotes a decimal number and [sj denotes a text
string.

a [d] Specifies the number of input variables.
jo[d] Specifies the numberof output functions.
.type [s] Sets the logical interpretation of the character matrix as described below

under "Logical Description of a PLA". This keyword must come before any
product terms, [s] isone of f. r. fd. fr. dr. or fdr.

.phase [s] [s] is a string of as many O's or l's as there are output functions. It specifies
which polarity of each output function should be used for the minimization
(a 1 specifies that the ON-set of the corresponding output function should be
used, and a 0 specifies that the OFF-set of the corresponding output function
should be minimized).

.pair [d] Specifies the number of pairs of variables which will be paired together using
two-bit decoders. The rest of the line contains pairs of numbers which
specify the binary variables of the PLA which will be paired together. The
binary variables are numbered starting with 1. The PLA will be reshaped so
that any unpaired binary variables occupy the leftmost part of the array,
then the paired multiple-valued columns, and finally any multiple-valued
variables.

.TH.ee Sets up for a kiss-style minimization.

.p [d] Specifies the number of product terms. The product terms (one per line) fol
low immediately after this keyword. Actually, this line is ignored, and the
".e"." .end". or the endof the file indicate the end of the input description.

je (.end) Marks the end of the PLA description.

LOGICAL DESCRIPTION OF A PLA
When we speak of the ON-set of a Boolean function, we mean those minterms which
imply the function value is a 1. Likewise, the OFF-set are those terms which imply the
function is a 0. and the DC-set (don't care set) are those terms for which the function is
unspecified. Afunction is completely described by providing its ON-set. OFF-set and DC-
set. Note that all minterms lie in the union of the ON-set. OFF-set and DC-set. and that
the ON-set. OFF-set and DC-set share no minterms.
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The purpose of the espresso minimization program is to find a logically equivalent set of
product-terms to represent the ON-set and optionally minterms which lie in the DC-set.
without containing any minterms of the OFF-set.

A Boolean function can be described in one of the following ways:

1) By providing the ON-set. In this case, espresso computes the OFF-set as the comple
ment of the ON-set and the DC-set is empty. This is indicated with the keyword
.type f in the input file, or -f on the command line.

2) By providing the ON-set and DC-set. In this case, espresso computes the OFF-set as
the complement of the union of the ON-set and the DC-set. If any minterm
belongs to both the ON-set and DC-set. then it is considered adon't care and may
be removed from the ON-set during the minimization process. This is indicated
with the keyword .type fd in the input file, or -fd on the command line.

3) By providing the ON-set and OFF-set. In this case, espresso computes the DC-set as
the complement of the union of the ON-set and the OFF-set. It is an error for any
minterm to belong to both the ON-set and OFF-set. This error may notte detected
during the minimization, but it can be checked with the subprogram "-do check
which will check the consistency of a function. This is indicated with the key
word on the command line.

4) By providing the ON-set. OFF-set and DC-set. This is indicated with the keyword
• .type fdr in the input file, or -fdr on the command line.

If at all possible, espresso should be given the DC-set (either implicitly or explicitly) in
order to improve the results of the minimization.
A term is represented by a"cube" which can be considered either acompact representation
of an algebraic product term which implies the function value is a 1. or as arepresentation
of a row in a PLA which implements the term. A cube has an input part which
corresponds to the input plane ofaPLA. and an output part which corresponds to the out
put plane ofaPLA (for the multiple-valued case, see below).

SYMBOLS IN THE PLA MATRIX AND THEIR INTERPRETATION
Each position in the input plane corresponds to an input variable where a 0 implies the
corresponding input literal appears complemented in the product term, a 1 implies the
input literal appears uncomplemented in the product term, and - implies the input literal
does not appear in the product term.

With logical type /. for each output, a 1 means this product term belongs to the ON-set.
and a0 or - means this product term has no meaning for the value of this function. This
logical type corresponds to an actual PLA where only the ON-set is actually implemented.
With logical type fd (the default), for each output, a1means this product term belongs to
theON-set. a0 means this product term has no meaning for the value of this function, and
a - implies this product term belongs to the DC-set.
With logical type fr. for each output, a 1means this product term belongs to the ON-set. a
0 means this product term belongs to the OFF-set. and a- means this product term has no
meaning for the value of this function.
With logical type fdr. for each output, a 1 means this product term belongs to the ON-set.
a0 means this product term belongs to the OFF-set. a- means this product term belongs to
the DC-set. and a" implies this product term has no meaning for the value of this func
tion.
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Note that regardless of the logical type of PLA, a ~ implies the product term has no mean
ing for the value of this function. 2 is allowed as a synonym for -. 4 is allowed for 1.
and 3 is allowed for ~ . Also, the logical PLA type can also be specified on the command
line.

MULTIPLE-VALUED FUNCTIONS
Espresso will also minimize multiple-valued Boolean functions. There can be an arbitrary
number of multiple-valued variables, and each can be of a different size. If there are also
binary-valued variables, they should be given as the first variables on the line (for ease of
description). Of course, it is always possible to place them anywhere on the line as a
two-valued multiple-valued variable. The function size is described by the imbedded
option

jnT [niim_varJXnum_bmary_-Var] fell •• • fen]
Specifies the number of variables (nunr^var-), the number of binary variables
(num_binary_var). and the size of each of the multiple-valued variables (si
through sn).

A multiple-output binary function with ni inputs and no outputs would be specified as
*.mv ni+1 ni no* w.mv" cannot be used with either ".i" or ".o" — use one or the other to
specify the function size.

The binary variables are given as described above. Each of the multiple-valued variables
are given as a bit-vector of 0 and 1 which have their usual meaning for multiple-valued
functions. The last multiple-valued variable (also called the output) is interpreted as
described above for the output (to split the function into an ON-set, OFF-set and DC-set).
A vertical bar Imay be used to separate the multiple-valued fields in the input file.
If the size of the multiple-valued field is less than zero, than a symbolic field is interpreted
from the input file. The absolute value of the size specifies the maximum number of
unique symbolic labels which are expected in this column. The symbolic labels are
white-space delimited strings of characters.

To perform a kiss-style encoding problem, either the keyword Juss must be in the file, or
the -kiss option must be used on the command line. Further, the third to last variable on
the input file must be the symbolic "present state", and the second to last variable must be
the "next state". As always, the last variable is the output. The symbolic "next state"
will be hacked to be actually part of the output.
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EXAMPLE #1

A two-bit adder which takes in two 2-bit operands and produces a 3-bit result can be
described completely in minterms as:

# 2-bit by 2-bit binary adder (with no carry input)
.i 4

.0 3

.type fr

.pair 2 (1 3) (2 4)

.phase Oil
00 00 000

00 01 001

00 10 010

00 11 Oil

01 00 001

01 01 010

01 10 on

01 11 100

10 00 010

10 01 Oil

10 10 100

10 11 101

11 00 on

11 01 100

11 10 101

11 11 110

.end

The logical format for this input file (i.e.. type fr) is given to indicate that the file contains
both the ON-set and the OFF-set. Note that in this case, the zeros in the output plane are
really specifying "value must be zero" rather than "no information".

The imbedded option .pair indicates that the first binary-valued variable should be paired
with the third binary-valued variable, and that the second variable should be paired with
the fourth variable. The function will then be mapped into an equivalent multiple-valued
minimization problem.

The imbedded option .phase indicates that the positive-phase should beused for the second
and third outputs, and that the negative phase should be used for the first output.
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EXAMPLE #2

This example shows a description of a multiple-valued function with 5 binary variables
and 3 multiple-valued variables (8 variables total) where the multiple-valued variables
have sizes of 4 27 and 10 (note that the last multiple-valued variable is the "output" and
also encodes the ON-set. DC-set and OFF-set information).

7th Edition

.mv 8

0-010

10-10

0-111

0-10-

00000

00010

01001

0101-

0-0-0

10000

11100

10-10

11111

5 4 2

10001

10001

10001

10001

10001

10001

10001

10001

10001

10001

10001

10001

10001

7 10

10000

01000

00100

00010

00001

00000

00000

00000

00000

00000

00000

00000

00000

0000000000000000000000

0000000000000000000000

0000000000000000000000

0000000000000000000000

0000000000000000000000

1000000000000000000000

0100000000000000000000

0010000000000000000000

0001000000000000000000

0000100000000000000000

0000010000000000000000

0000001000000000000000

0000000100000000000000

0010000000

1000000000

0001000000

0001000000

1000000000

0010000000

0000000010

0000000000

1000000000

0000000000

0010000000

0000000000

0010000000

11111 10001 I000000000000000000000000001 10000000000
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EXAMPLE #3

This example shows a description of a multiple-valued function setup for kiss-style
minimization. There are 5 binary variables. 2 symbolic variables (the present-state and
the next-state of the FSM) and the output (8 variables total).
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.mv 8

•type

.kiss

# This is

5 -10 -10

fr

a translation of IOFSM from OPUS
101 100 INIT SHR MMCK

WUT MINIT NRD SACK MVR DLI
# inputs are
# outputs are
# reset logic
--1--

- initO 110000

# wait for INIT to go away
--1-- initO initO 110000

--0-- initO initl 110000

# wait for SRR

--00- initl initl 110000

--01- initl init2 110001

# Latch address

--0-- init2 init4 110100

# wai t for SWR to jgo away

--01- in it4 init4 110100

--00- ini t4 iowa it 000000

# wai t for command from MFSM

0000- iowait iowa it 000000

1000- iowa it initl 110000

01000 iowa it readO 101000

11000 iowa it writeO 100010

01001 iowa it rmack 100000

11001 iowa it vwnack 100000

--01- iowa it ini t2 110001

# wait for MACK to fall (rea<i operation)
--0-0 rmack rmack 100000

--0-1 rmack readO 101000

# wait for MACK to fall (write operation-)
--0-0 vunack wmack 100000

--0-1 wmack wr iteO 100010

# perform read operation
--0-- readO readl 101001

--0-- readl iowait 000000

# perform write operation
__0-- writeO iowait 000000

. end
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APPENDIX B

Summary of Optimal Results for the PLA Test Set

This table presents the results of Boolean minimization for the 145 PLA's in the

Berkeley PLA test suite. The cost function is assumed to be minimum number of terms

with only a secondary concern given to the number of literals. Each example is classified

as one of 3 types:

type

indust

math

random

description

example donated from actual chip designs
mathematical function

randomly generated example

Each example also belongs to one of 5 categories, which measures the relative

difficulty of the problem:

class

trivial

noncyclic
cyclic-s

cyclic-us

primes

description

minimum solution consists of essential prime implicants
the covering problem contains no cyclic constraints
the covering problem contains cyclic constraints.
and the covering problem has been solved
the covering problem contains cyclic constraints.
and the covering problem as not been solved
unable to enumerate all prime implicants

These classifications were determined by using the exact minimization algorithms of

Espresso-MV as well as the exact minimization algorithm of McBoole. The classifications

of cyclic-us and primes are dependent on the exact minimization algorithms which were

used. For example, although we know the minimum solution for Z9sym and ibm (by

methods not involving the use of an exact minimization algorithm) these examples are still

classified as cyclic-us and primes respectively because the exact minimization algorithm was

unable to determine the minimum solution.

For each example, we first give the number of inputs, the number of outputs., and the

number of terms in the initial representation of the function. If the number of terms is
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marked by *. then there is a don't-care set specified for the function (which is not counted

in the initial number of terms).

We then present the number of prime implicants (when known), the number of

essential primes, and the minimum solution (when known). When the minimum solution

is not known for the class cyclic-us a lower bound (as determined by the covering algo

rithm of Espresso-MV) and an upper bound (the best solution we've seen) are given. For

the class primes, the lower bound is merely the number of essential prime implicants. and

the upper bound is the best solution we've seen. For the examples ex1010 and exam the

best results have been reported by the authors Prestol-II. and we have not seen or verified

the results.

This table also gives the results for Espresso-MV in both its normal mode (Esp.) and

its strong mode (Esp. (s)).
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name in/out terms type class
#

primes
#

essen.

minimum

solution

Esp. Esp.
(s)

newtplal 10/2 4 indust noncyclic 6 3 4 4 4

newtpla2 10/4 9 indust noncyclic 23 4 9 9 9

newxcplal 9/23 40 indust noncyclic 191 18 39 39 39

Pi 8/18 *89 random noncyclic 287 25 54 55 54

P3 8/14 *66 random noncyclic 185 22 39 39 39
p82 5/14 24 indust noncyclic 48 16 21 21 21

proml 9/40 502 indust noncyclic 9326 182 472 472 472

radd 8/5 120 math noncyclic 397 35 75 75 75

rckl 32/7 .96 math noncyclic 302 6 32 32 32

rd53 5/3 31 math noncyclic 51 21 31 31 31

rd73 7/3 147 math noncyclic 211 106 127 127 127

rise 8/31 74 indust noncyclic 46 22 28 28 28

sex 9/14 23 indust noncyclic 99 13 21 21 21

sqn 7/3 84 indust noncyclic 75 23 38 38 38

t2 17/16 *128 indust noncyclic 233 25 52 53 53

t3 12/8 148 indust noncyclic 42 30 33 33 33

t4 12/8 *38 indust noncyclic 174 0 16 16 16

vg2 25/8 110 indust noncyclic 1188 100 110 110 110

vtxl 27/6 110 indust noncyclic 1220 100 110 110 110

xldn 27/6 112 indust noncyclic 1220 100 110 110 110

x9dn 27/7 120 indust noncyclic 1272 110 120 120 120

z4 7/4 127 math noncyclic 167 35 59 59 59

Z5xpl 7/10 128 math cyclic-s 390 8 63 63 64

addm4 9/8 480 math cyclic-s 1122 24 189 200 192

amd 14/24 171 indust cyclic-s 457 32 66 66 66
blO 15/11 * 135 indust cyclic-s 938 51 100 100 100

bl2 15/9 431 indust cyclic-s 1490 2 41 42 41

b3 32/20 *234 indust cyclic-s 3056 123 210 211 211

bec 26/45 *245 indust cyclic-s 237 119 137 137 137

bench 6/8 *31 random cyclic-s 391 0 16 18 17

chkn 29/7 153 indust cyclic-s 671 86 140 140 140

cps 24/109 654 indust cyclic-s 2487 57 157 163 159
dekoder 4/7 * 10 indust cyclic-s 26 3 9 9 9

dist 8/5 255 math cyclic-s 401 23 120 121 121

dk27 9/9 *20 indust cyclic-s 82 0 10 10 10

dk48 15/17 *42 indust cyclic-s 157 0 21 22 22

exps 8/38 *196 indust cyclic-s 852 56 132 134 133

f51m 8/8 255 math cyclic-s 561 13 76 77 76

fout 6/10 *61 random cyclic-s 436 2 40 44 42

gary 15/11 214 indust cyclic-s 706 60 107 107 107

inO 15/11 135 indust cyclic-s 706 60 107 107 107

in2 19/10 137 indust cyclic-s 666 85 134 136 134

in4 32/20 234 indust cyclic-s 3076 118 211 212 212

inc 7/9 *34 indust cyclic-s 124 12 29 30 29

Table B.l. Optimum Results for the Berkeley PLA Test Set.
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# # minimum Esp. Esp.
name in/out terms type class

primes essen. solution (s)

intb 15/7 664 indust cyclic-s 6522 186 629 629 629

18err 8/8 *253 math cyclic-s 142 15 50 51 51

logSmod 8/5 46 math cyclic-s 105 13 38 38 38

ml81 15/9 430 math cyclic-s 1636 2 41 42 41

m2 8/16 96 indust cyclic-s 243 7 47 47 47

m3 8/16 128 indust cyclic-s 344 4 62 65 63

m4 8/16 256 indust cyclic-s 670 11 101 107 104

markl 20/31 *23 indust cyclic-s 208 1 19 19 19

maxl28 7/24 128 indust cyclic-s 469 6 78 82 79

max512 9/6 512 indust cyclic-s 535 20 133 142 137

mlp4 8/8 225 math cyclic-s 606 12 121 128 127

mp2d 14/14 123 indust cyclic-s 469 13 30 31 31

newcplal 9/16 38 indust cyclic-s 170 22 38 38 38

newill 8/1 8 indust cyclic-s 11 5 8 8 8

opa 17/69 342 indust cyclic-s 477 22 77 79 79

pope.rom 6/48 64 indust cyclic-s 593 12 59 62 59

root 8/5 255 math cyclic-s 152 9 57 57 57

sqr6 6/12 63 math cyclic-s 205 3 47 49 49

symlO 10/1 837 math cyclic-s 3150 0 210 210 210

tms 8/16 30 indust cyclic-s 162 13 30 30 30

wim 4/7 *10 indust cyclic-s 25 3 9 9 9

x6dn 39/5 121 indust cyclic-s 916 60 81 81 81

Z9sym 9/1 420 math cyclic-us 1680 0 84/84 85 84

b4 33/23 *54 indust cyclic-us 6455 40 40/54 54 54

bcO 26/11 419 indust cyclic-us 6596 37 37/177 178 177

benchl 9/9 *285 random cyclic-us 5972 0 111/126 136 128

ex5 8/63 256 indust cyclic-us 2532 28 59/67 74 72

exam 10/10 *410 random cyclic-us 4955 0 52/59 67 66

lin.rom 7/36 128 indust cyclic-us 1087 8 125/128 128 128

maxl024 10/6 1024 indust cyclic-us 1278 14 239/267 274 267

prom2 9/21 287 indust cyclic-us 2635 9 274/287 287 287

spla 16/46 *2296 indust cyclic-us 4972 33 33/251 262 260

tl 21/23 796 indust cyclic-us 15135 7 7/102 102 102

testl 8/10 *209 random cyclic-us 2407 0 103/111 123 115

test4 8/30 *256 random cyclic-us 6139 0 0/104 122 104

tial 14/8 640 math cyclic-us 7145 220 220/575 579 579

accpla 50/69 183 indust primes ? 97 97/175 175 175

exlOlO 10/10 *810 random primes 7 0 0/246 283 264

ex4 128/28 620 indust primes 7 138 138/279 279 279

ibm 48/17 173 indust primes ? 172 173/173 173 173

jbp 36/57 166 indust primes ? 0 0/122 122 122

mainpla 27/54 181 indust primes ? 29 29/172 172 172

misg 56/23 75 indust primes ? 3 3/69 69 69

Table B.l. Optimum Results for the Berkeley PLA Test Set.
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name in/out terms type class
#

primes
#

essen.

minimum

solution

Esp. Esp.
(s)

mish 94/43 91 indust primes ? 3 3/82 82 82

misj 35/14 48 indust primes ? 13 13/35 35 35

pdc 16/40 *2406 indust primes ? 2 2/100 125 121

shift 19/16 100 indust primes 7 100 100/100 100 100

signet 39/8 124 indust primes ? 104 104/119 119 119

soar.pla 83/94 529 indust primes ? 2 2/352 352 352

test2 11/35 *1999 random primes ? 0 0/995 1105

test3 10/35 ♦1003 random primes ? 0 0/491 543 491
ti 47/72 241 indust primes ? 46 46/213 213 213

tslO 22/16 128 indust primes ? 128 128/128 128 128

x2dn 82/56 112 indust primes ? 2 2/104 104 104

x7dn 66/15 622 indust primes ? 378 378/538 538 538

xparc 41/73 551 indust primes ? 140 140/254 254 254

Table B.l. Optimum Results for the Berkeley PLA Test Set.
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