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Abstract

The thesis addresses three issues of prime importance to adaptive systems: the sta

bility under ideal conditions, the convergence of the adaptive parameters, and the robust

ness to modeling errors and to measurement noise. New results are presented, as well as

simplified and unified proofs of existing results.

First, some identification algorithms are reviewed, and their stability and parameter

convergence properties are established. Then, a new, input error, direct adaptive control

scheme is presented. It is an alternate scheme to the output error scheme of Narendra.

Lin. and Valavani, which does not require a strictly positive real condition on the refer

ence model, or overparametrization when the high-frequency gain is unknown. Useful

lemmas are presented and unified stability proofs are derived for the input and output

error schemes, as well as for an indirect adaptive control scheme. The results show that

all three schemes have similar stability and convergence properties. However, the input

error and the indirect schemes have the advantage of leading to a linear error equation,

and of allowing for a useful separation of identification and control.

The parameter convergence of the adaptive schemes is further analyzed using averag

ing techniques, assuming that the reference input possesses some stationarity properties,

and that the adaptation gain is sufficiently small. It is shown that the nonautonomous

adaptive systems can be approximated by autonomous systems, thereby considerably sim

plifying the analysis. In particular, estimates of the rates of exponential convergence of

the parameters are obtained for the linear identification scheme, as well for the nonlinear

adaptive control scheme. The approach is particularly useful, as it leads to a frequency

domain analysis, and has a vast potential of interesting extensions.

The Rohrs examples of instability in the presence of unmodeled dynamics are

reviewed. A connection between exponential convergence and robustness is established in

a general framework. The result is applied to a model reference adaptive control scheme,

and stresses the importance of the persistency of excitation condition for robustness.



Robustness margins of the adaptive control scheme are also obtained. The mechanisms of

instability observed in the Rohrs examples are explained, and methods to improve robust

ness are briefly investigated.
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Introduction

Motivation - Objectives

This thesis studies stability, convergence, and robustness properties of identification

and adaptive control systems, generally referred to as adaptive systems. Identification

methods are of considerable importance to several areas, especially control, communica

tions, and signal processing. The performance of any control system for example depends

crucially on the accuracy of the model used to design it. Adaptive control, a direct aggre

gation of identification and control, has current and potential applications to a large

number of systems with parametric uncertainty, and/or time-varying dynamics. Among

these, we find flight and space vehicles, robotic manipulators, chemical processes, and

many others. Therefore, our main motivation in studying adaptive systems is a large

number of current, and potential applications.

With this motivation comes the need for better understanding of the dynamical

behavior of adaptive systems. Although such systems have been studied at least since the

1960's. the field still lacks methods of analysis comparable to the classical methods for

nonadaptive linear time invariant systems. This has limited practical applications, espe

cially in adaptive control, despite a significant research effort. Many of the existing

results concern either algorithms, structures, or specific applications, and much still needs

to be understood concerning the dynamic behavior of adaptive systems, and their robust

ness to uncertainties. This is another motivation for this work.

Our goal is to study the dynamic properties of adaptive systems: their stability and

convergence under ideal conditions, and their ability to maintain stability in the presence

of noise and modeling errors. We do not intend to find the optimal algorithm, given a

specific problem, but to develop techniques to analyze and compare various algorithms.

As much as possible, we wish to derive new results on stability, convergence, and robust

ness that are sufficiently general to be applied to a large class of algorithms. Adaptive



systems are essentially time-varying, and usually non linear systems. This accounts for

much of the difficulty encountered in analyzing them, and causes the need to develop

appropriate methods of analysis. We do not want to restrict our attention to

simplifications based on either eliminating these characteristics by considering constant or

periodic inputs, orby linearizing the adaptive system around some nominal trajectory.

The number of existing identification and adaptive control schemes is considerable,

due to the variety of possible choices during their derivations. For simplicity, we will

limit the plant under consideration to be single-input, single-output, linear time invariant,
continuous time and deterministic. The identification schemes are parametric, and recur

sive, that is with parameters that are updated as time progresses. Their application to

adaptive control is therefore immediate. The adaptive control schemes considered are

model reference adaptive control schemes.

Finally, our objective in this thesis is to present a reasonably self-contained treat

ment of stability, convergence, and robustness issues in adaptive systems. We present
results in a unified framework, sometimes simplifying proofs of existing results. Our

purpose there is to make this work accessible to a wider audience, and clarify the connec
tions between various adaptive schemes, and between different topics. For example, we

will show the connections between apparently very different direct and indirect adaptive

control schemes, and between input error and output error adaptive control schemes. We

will also show connections between robustness and convergence, and between convergence

results obtained by exact methods and by averaging.

Review of Literature

We do not intend to review here the considerable literature in identification and

adaptive control, but to show the evolution of the research connected to the topics of the

thesis.

Model reference adaptive control techniques appear to have been first proposed for

the control of aircraft and spacecraft in the work of Whitaker (1959). and Osburn. Whi-
taker. and Kezer (1959). Their purpose was to design a self-adapting control system such

that, over the whole flight envelope, the controlled aircraft would behave in a satisfactory
way, as described by a reference model. Adaptation algorithms were based on an analysis



of the sensitivity of the output error to adjustable parameters, followed by a steepest

descent search. The resulting update law was called the MIT rule, and was the topic of

much research such as in Donalson and Leondes (1963a &b). Horrocks (1964). Dymock
et al (1965). and White (1966). These papers already showed the difficulties encountered

by the authors in dealing with the dynamics of these nonlinear time-varying systems, and
their attempts to reduce their complexity and analyze them with conventional LTI tech

niques.

The lack of stability proofs, and instabilities observed on examples induced the

redesign of the model reference adaptive control system by Parks (1966). This design
was supported by a stability proof based on Lyapunov techniques. It also marked the
beginning of amore rigorous approach, accounting for the nonlinearity and time variation
of the adaptive system. The scheme was further extended by Monopoli (1974). Narendra
and Valavani (1978), and Landau (1979). Stability proofs for the general case appeared

simultaneously in Narendra. Lin. and Valavani (1980). Morse (1980). and in the
discrete-time literature, in Goodwin. Ramadge. and Caines (1980). In addition to

Lyapunov analysis, these papers introduced the use of functional analysis techniques
(such as studied in Desoer and Vidyasagar (1975)) to establish stability of the adaptive

systems.

The stability and convergence of identifiers was independently addressed as early as

in Lion (1967). and proofs of exponential convergence were derived by Sondhi and Mitra
(1976). Anderson (1977). Kreisselmeier (1977). Morgan and Narendra (1977a & b).
These results were then extended to the adaptive control case by Boyd and Sastry (1983)

and (1984).

The robustness issue appeared with acontroversial paper by Rohrs et al (1982) and
(1985). The example led to further discussion by Astrom (1983). Astrom (1984). Chen
and Cook (1984). Reidle. Cyr. and Kokotovic (1984). and Rohrs (1985). Anderson

(1985) showed the existence of unstable bursting phenomena in adaptive control systems,

even without unmodeled dynamics. Besides the controversy related to the discussion, a

significant research effort was started, that led to robustness analyses, and to methods of
improvement of robustness in work by Kreisselmeier and Narendra (1982). Peterson and
Narendra (1982). Anderson and Johnstone (1983). Bodson and Sastry (1984), Kosut and

Johnson (1984). Sastry (1984), Ortega. Praly. and Landau (1985). Kreisselmeier (1986).



Kreisselmeier and Anderson (1986), Narendra and Annaswamy (1986), and others. A

significant step was the introduction of averaging methods to analyze instabilities of adap

tive systems in the work of Astrom (1984) and (1985), Riedle and Kokotovic (1985),

Kokotovic. Riedle. and Praly (1985). Riedle and Kokotovic (1986). Mareels et al (1986).

the book by Anderson et al (1986). and Fu and Sastry (1986). Averaging methods were

also introduced for the analysis of convergence of adaptive systems in Fu. Bodson, and

Sastry (1985). and Bodson et al (1986).

Contributions of the Thesis

The topics of stability, convergence, and robustness are addressed successively for

identification and control algorithms. Along these lines, the thesis brings the following

contributions

1) In chapter 3. we present a new continuous time, input error adaptive control algo

rithm. Since the connections of this scheme to known schemes, especially in the discrete

time literature, are strong, the main interest is in unifying known results, and explaining

some discrepancies between continuous time and discrete time results. We also present

stability proofs for direct adaptive control schemes, and for an indirect scheme. Thereby,

we show that their stability properties are essentially identical. Although the stability

proofs rely strongly on known results, some new proofs are provided for intermediary

lemmas, and the presenution of the stability proofs is original and unified for the various

schemes. In particular, the stability proof for the indirect adaptive control scheme,

without persistency of excitation conditions is original.

2) A significant contribution of our research is the development of averaging

methods for adaptive systems, and the derivation of results justifying the use of these

methods to determine convergence rates of adaptive systems. We review in chapter 4

results obtained with other coworkers, and published in Fu. Bodson, and Sastry (1985)

and Bodson et al (1986). This research is original in providing convergence rates esti

mates, using a frequency domain analysis in the linear as well as in the nonlinear cases.

3) The connection between exponential convergence and robustness is established in

a general result in chapter 5. This result is then used to establish robustness margins of a

specific adaptive control system. Although the result is more conceptual than practical, it



gives useful insight into mechanisms of instabilities found by Rohrs et al (1982). It also

shows the strong connection between the exponential convergence of the nominal system

and the robustness of the actual system.

4) Besides the original contributions of the thesis, we concentrate on presenting a

reasonably self-contained analysis of the three main topics of the thesis. Therefore, some

known schemes are reviewed, and some known results are presented in a unified frame

work. Sometimes, original or reviewed proofs are given, such as in the study of the con

vergence of identifiers for example. We hope these results will be useful to the reader

unfamiliar with the literature in that area.

Overview of the Thesis

Chapter 1 introduces the notation followed throughout the thesis, and presents basic

definitions and results to be used in the sequel.

Chapter 2 reviews a basic identification scheme for SISO LTI plants, with several

identification algorithms. General properties of the identification algorithms are esta

blished, and the stability of the identifier is proved under general conditions. Conditions

for exponential parameter convergence are also derived, with an analysis of convergence

rates and factors influencing them. Finally, similar properties are established for strictly

positive real error equations arising in other identification and adaptive control schemes.

Chapter 3 presents three model reference adaptive control schemes, among which is

an original input error scheme. The connections between them and their respective advan

tages are discussed. The stability of the adaptive control systems is proved, together with

the convergence of the output error to zero. Exponential parameter convergence is also

deduced for the adaptive control algorithms, under condiditons similar to the

identification schemes.

Chapter 4 introduces averaging techniques for the approximation of adaptive sys

tems by autonomous (i.e. time invariant) systems. Several useful results are established,

together with a general framework serving as a basis for further developments. The

methods are applied to study parameter convergence properties of identification and adap

tive control schemes. In particular, estimates of the exponential convergence rates are

obtained, together with their dependence on the frequency content of the reference input.



Chapter 5 reviews the Rohrs examples of instability in adaptive control systems,

and studies the mechanisms of instability. The relationship between exponential conver

gence and robustness is analyzed, and guaranteed robustness margins are obtained. More
refined methods to guarantee robustness are required however, and the chapter concludes

with a review of some proposed methods to improve robustness of adaptivesystems.

Finally, we present some general conclusions resulting from this work, and sugges

tions for future research.



Chapter 1 Preliminaries

This chapter introduces the notation used in this work, as well as some basic

definitions and results. The notation used in the adaptive systems literature varies

widely. We elected to use anotation close to that of Narendra and Valavani (1978). and
Narendra. Lin and Valavani (1980). since many connections exist between this work, and

their results. We will refer to texts such as Desoer and Vidyasagar (1975). Vidyasagar

(1978) for standard results, and this chapter will concentrate on the definitions used

most often, and on non-standard results.

1.1 Notation

Lower case letters are used to denote scalars or vectors. Upper case letters are used

to denote matrices, operators, or sets. When u(r) is a function of time, u(5) denotes its
Laplace transform. Without ambiguity, we will drop the arguments, and simply write u
and u. Rational transfer functions of linear time invariant (LTI) systems will be denoted

using upper case letters, e.g. 8is) or #. Polynomials in s will be denoted using lower
case letters, for example nis ). or simply n. Thus, we may have fi =fi/ B. where 8 is
both the ratios of polynomials in s, and an operator in the Laplace transform domain.

Sometimes, the time domain and the Laplace transform domain will be mixed, and

parentheses will determine the sense to be made of an expression. For example. 8(u ) or
A u is the output of the LTI system # with input u. fi(u )v is 8 (u ) multiplied by v
in the time domain, while ft (uv ) is 8 operating on the product u(O v(* ).

1.2 Lp Spaces, Norms

We denote by Ix Ithe absolute value ofx if x is a scalar, and the euclidean norm of

x if x is a vector. The notation II will be used to denote the induced norm of an opera

tor, in particular the induced matrix norm

BA 1= sup \A x\ (1.2.1)
1x1=1



and for functions of time, the notation is used for the Lp norm

\u\p={]\u{rydry'P (1-2.2)
o

When p is omitted. Bu Idenotes the L2 norm. Truncated functions are defined as

fs(t) = fU) t Zs

= 0 t >s (I-2-3)

and the extended Lp spaces aredefined by

Lpe^if \ for all s <oo. fs €Lp } (1-2.4)

For example, e' does not belong to !,«,. but e< €L^ . When u €L^ . we have

Dwr L:=suplu(T)l (1-2.5)

Note that / 6 L2 does not imply that / -0 as t -»oo. This is not even guaranteed

if / is bounded. However, note the following results.

Lemma 1.2.1 Barbalat Lemma

t

If / (r ) is auniformly continuous function, such that lim f f (t )dt exists and is

finite

Then f U ) -»0 as t -*eo

Proof of Lemma 1.2.1 cf Popov (1973) p. 211.

Corollary 1.2.2

// /./ €!,«,. and/ € L2

Then f(t)-+Qast -»oo

Proof of Corollary 1.2.2

Direct from lemma 1.2.1. since / . / bounded implies that / is uniformly continuous. D



13 Positive Definite Matrices

Positive definite matrices are frequently found in work on adaptive systems. We

summarize here several facts that will be useful. We consider real matrices. Recall that a

scalar u. or a function of time u(t ). is said to be positive if u >0. or u(t ) £0 for all t.
It is strictly positive if u >0. or. for some a >0. u{t)>a for all r. Asquare matrix
A 6RnXn is positive semidefinite if xT Ax >0 for all x. It is positive depute if. for
some <*>0. xrAxZaxrx=ot\x\i for all x. Equivalently. we can require

xT A x >a for all x such that Ix 1= 1. The matrix A is negative semidefinite if -A is

positive semidefinite and we write A >B if A-B >0. Note that amatrix can be neither
positive semidefinite. nor negative semidefinite. so that this only establishes a partial
order of the matrices.

The eigenvalues of a positive semidefinite matrix lie in the closed right-half plane
(RHP), while those of a positive definite matrix lie in the open RHP. If A >0 and
A=AT . then A is symmetric positive semidefinite. In particular, ifA ^0. then A +A
is symmetric positive semidefinite. The eigenvalues of a symmetric positive semidefinite
matrix are all real and positive. Such matrix also has n orthogonal eigenvectors, so that

we can decompose A as

A = UTAU (1.3.1)

where U is the matrix of eigenvectors satisfying UT U=/ (i.e. U is a wtitary matrix),
and Ais a diagonal matrix composed of the eigenvalues of A. The square root matrix
A1' 2is a diagonal matrix composed of the square roots of the eigenvalues of A. and

Alf2 = Ur AV2U (1.3.2)

is the square root matrix of A,with A=Alf 2.All 2and (A l/ 2Y =All 2.
IfA ^0 and B >0. then A + B £0 but it is not true in general that AS >0. How

ever, if A,B are symmetric positive semidefinite matrices, then AB - although not neces

sarily symmetric, or positive semidefinite - has all eigenvalues real positive.

Another property of symmetric positive semidefinite matrices, following from

(1.3.1). is

Xmi„(A)lxP<xrAx ^WU)!*!2 (1.3.3)

This simply follows from the fact that xT Ax =xr Ur AU x =zT Az and
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lzl2 = zr2=lxl2. We also have that

IAB = Xmax(A) (1-3.4)

and. when A is positive definite

lA-M-l/X^GO d-3-5)

1.4 Stability of Dynamic Systems

This section is concerned with differential equations of the form

x=/(rjc) x(r0) =*o (1.4-1)

where x€R",f >0.

The system defined by (1.4.1) is said to be autonomous, or time-invariant, if / does
not depend on t. and non autonomous, or time-varying, otherwise. It is said to be linear if
/ (r .x)=A(t )x for some A(.) :R+ -R" Xn . and nonlinear otherwise.

We will always assume that f if .x) is piecewise continuous with respect to t. By
this, we mean that there are only a finite number of discontinuity points in any compact

set.

We define by Bh the closed ball of radius h centered at 0 in Rn .

Properties will be said to be true

- locally if true for all x 0 in some ball Bh

- globally if true for all x0 € R"

- in any closed ball if true for all x0 € Bh . with h arbitrary

- uniformly if true for all t0 ^0.

By default, properties will be true locally.

Lipschitz Condition and Consequences

The function / is said to be Lipschitz in x if. for some h >0. there exists I £0
such that

1/ (f ,x,)-/ (t ,x2)l < I lx!-x2l (1-4.2)

for all xlf x2 €Bh . t >0. The constant I is called the Lipschitz constant. This defines
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locally Lipschitz functions. Globally Lipschitz functions satisfy (1.4.2) for all xx.
x2 €Rn . while functions that are Lipschitz in any closed ball satisfy (1.4.2) for all xx.
x2ZBh. with I possibly depending on k. The Lipschitz property is by default assumed
to be satisfied uniformly, i.e. I does not depend on t.

If / is Lipschitz in x. then it is continuous in x. On the other hand, if / has con
tinuous and bounded partial derivatives in x, then it is Lipschitz. We denote

a/,
D2f :=

d*i
(1.4.3)

If QD2f I </. then / isLipschitz with constant I.

From the theory of ordinary differential equations (cf. Coddington and Levinson
(1955)). it is known that / locally bounded, and / locally Lipschitz in x imply the
existence and uniqueness of the solutions of (1.4.1) on some time interval (for as long as

x € Bh ).

By definition, an equilibrium point x satisfies / (r x )=0for all t >0. We will often
assume that, by change of coordinates, the equilibrium point is transformed to be x=0.
The following proposition gives bounds on the solutions of (1-4.1) when / is Lipschitz in

Proposition 1.4.1

// x=0is an equilibrium point of (1.4.1). / is Lipschitz in x with constant /. and
is piecewise continuous with respect to t

Then the solution x (t) of (1.4.1) satisfies

i*0i.,<"»>>l.(Oi>i*J«"'("',> (1"-4)

as long as x (O remains in Bh .

Proof of Proposition 1.4.1

Note that Ix P = xT x implies that

li_ |X (21=21x11-1-'*"dt dt

=21x^x1^21x11^x1 ^*'V
dt dt



so that

Since / is Lipschitz

12

ii-1* iki^-* i (1-4-6)
dt dt

-l\x\Z-L\x\*l\x\ d-4-7)
dt

and there exists a positive function s (t) such that

i-|*| = -Zlxl +J d-4-8)
dt

Solving (1.4.8)

lx(r)l=lx0le"/(r"ro) +j,e- '̂~^(T)JT
o

>lr \p~n'~'o) (l-4-9)

The other inequality follows similarly. D

Proposition 1.4.1 implies that solutions starting inside Bh will remain inside Bh for
at least a finite time interval. Or. conversely, given a time interval, the solutions will

remain in Bh provided that the initial conditions are sufficiently small. Also, / globally
Lipschitz implies that x 6L^ . Proposition 1.4.1 also says that x cannot tend to zero

faster than exponentially.

The following lemma is an important result generalizing the well-known Bellman-
Gronwall lemma (Bellman (1943)). The proof issimilar to the proof of proposition 1.4.1.

and is left to the appendix.

Lemma 1.4.2 Bellman-Gronwall Lemma

Let x (.). a (.). u (.): R+ ->R+. Let T >0.

If

x(t)^fa(T)x(T)dT +u(t) for all r €[0.7] (1.4.10)
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Then

i

xUXraMuMe'^'dT+uit) for all« €[OX] (1.4.11)

When u (.) is differentiate

t «

[a(&)d<r t fa(<r)da
x(O<K(0)e° +/ii(r)eT rfr for all* €[OX] (14.12)

Proof of Lemma 1.4.2 in appendix

Stability Definitions

Definition Stability in the sense of Lyapunov

x =0 is called astable equilibrium point of (1.4.1). if for all €>0. there exists 8 >0 such
that xo€Bbimplies that the solution x(f) €B€ for all t >t0.t0 ^0.

Definition Asymptotic Stability

=0 is called an asymptotically stable equilibrium point of (1.4.1). if it is stable, and for
all x0 €Bh .to £0, the solution x{t )-0 as t -co( i.e. x =0 is attractive).
x

Definition Exponential Stability, Rate of Convergence

x =0 is called an exponentially stable equilibrium point of (1.4.1) if there exist m. a >0

such that the solution x (r ) satisfies

|*(Ol<m<ra('-'o)lx0l (1-4.13)

for all x0 €Bh . t >t0^0. The constant a is called the rate ofconvergence.

Global exponential stability means that (1.4.13) is satisfied for any x06Rn.
Exponential stability in any closed ball is similar except that mand a may be afunction
of h. Exponential stability is assumed to be uniform with respect to t0. It can be shown
that uniform asymptotic stability is equivalent to exponential stability for linear systems

(Vidyasagar (1978). p. 170). but it is not true ingeneral.
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Exponential Stability Theorems

We will pay special attention to exponential stability for two reasons. When con
sidering the convergence of adaptive algorithms, exponential stability means convergence,
and the rate of convergence is a useful measure of how fast estimates converge to their
nominal values. In chapter 5. we will also observe that exponentially stable systems pos

sess at least some tolerance to perturbations, and are therefore desirable in engineering

applications.

The following theorem will be useful in proving several results, and relates
exponential stability to the existence of a specific Lyapunov function.

Theorem 1.43 Converse Theorem of Lyapunov

Consider the system (1.4.1). Assume that / has continuous and bounded first partial
derivatives in x. and is piecewise continuous in t for all x €Bh .t 20. Then, the follow

ing statements are equivalent

(a) x=0 is an exponentially stable equilibrium point of (1.4.1)

(b) there exists a function v(t *). and some strictly positive constants o^j, a3, a4

such that, for all x £Bh . t ^0

ajxl2 ^v(r.x) <a2lxP (1-4.14)

dvit.x)\ * , |2 (1.4.15)-OLZ\X
dt 1(1.4.1)

^L£lUa4W (1.4.16)
ex I

Comments

The derivative in (1.4.15) is a derivative taken along the trajectories of (1.4.1). that

is

dv(t.x)\ _ Qv(r.x) +6v(f.x) f(t ^ (1.4.17)
dt l(Mil) a< e*

This means that we consider x to be a function oft to calculate the derivative along the

trajectories of (1.4.1) passing through x at t. It does not require of x to be the solution
x (t ) of (1.4.1) starting at x (f 0)
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Theorem 1.4.3 can be found in Krasovskii (1963) p. 60. and Hahn (1967) p. 273. It
is known as one of the converse theorems. The proof of the theorem is constructive: it
provides an explicit Lyapunov function v(t ,x). This is a rather unusual circumsUnce.
and makes the theorem particularly valuable. In the proof, we derive explicit values of

the constants involved in (1.4.14)-(1.4.16)

Proof of Theorem 1.4.3

(a) implies (b)

(i) Denote by p(rx X) the solution of (1.4.1) starting at x(t ). t. and define

v(t.x) ='f\p(T.x.t)?dT (1.4.18)

where T>0 will be defined in (ii). From the exponential stability and the Lipschitz con

dition

mlxle-^-'^O-.*.')1^1*'*"'^"0 (1419)

and inequality (1.4.14) follows with

ttl:= (l-e-2'r)/ 21 a2:=m2 (l-e"2^)/ 2a (1.4.20)
(ii) Differentiating (1.4.18) with respect to t. weobtain

dvit.x) =ipit +TtX9t)p _!/,(*.x.OP+7^- \\p(T.x.t)t\dT (1.4.21)

Note that dI dt is a derivative with respect to the initial time t. and is taken along the

trajectories of (1.4.1). Bydefinition of the solution p

p(T,x(t+At).t+At) = p(r.x(t),t) (1.4.22)

for all 6t. so that the term in the integral is identically zero over [t.t +T]. The second
term in the right-hand side of (1.4.21) is simply lx I2, while the first is related to Ix Pby
the assumption of exponential stability. It follows that

dvU.x) ^_f1_m2e-2«r | ,xp (1.4.23)
dt I '

Inequality (1.4.15) follows, provided that T >(1/ a) Inm. and



a3:=l-m2e-2°T

(iii) Differentiating (1.4.18) with respect to x,. we have

&v(t x) ,+/a , No7>;(T.x.r) .^Lfl =2/ ZP^.x.t)-^ dr
Qxi t j=i

16

(1.4.24)

(1.4.25)

Under the assumptions, the partial derivative of the solution with respect to the initial

conditions satisfies

d

dr

dpj(T.X.t)
e*. fa

-jyPjir.x.t) •,£(/i(r.,(r.*.n)

.ta/, Bpk(r.x.t)

(except possibly at points of discontinuity of / (t.x )). Denote

Gy(T.x.O:=d/>,(T.x.O/e*j Atj{x.t):=§fi{t.x)/ $x} (1.4.27)

so that (1.4.26) becomes

J-Q(T.x.t) =A(p(r.x.t).T).Q(T.x.t) (1.4.28)
dr

Eqn (1.4.28) defines Q(t.x ,t). when integrated from r =t to t =t+T. with initial con
ditions Q(t,x ,r )=/. Thus. Q(t.x .f ) is the transition matHx associated with the time

varying matrix A{p (t.x.O.t). By assumption. IA (...)B<fc for some k . so that

!<2(T.x.r)l ^eHr-l)

and. using the exponential stability again. (1.4.26) becomes

|6v('.*) |<o7r-iyl^"°,)(T"f)^T
d* Jt

which is (1.4.16) if we define

a4 := 2m (e<* -«>r-l )/(*-<*) (L4.31)

Note that the function v(r .x) is only really defined for x € Bh. with h' = h/ m. if

we wish to guarantee that /> (t.x .O €5A for all t >t. This is atechnicality which will

have no consequence.

(1.4.26)

(1.4.29)

(1.4.30)



(b) implies (a)

This direction is straightforward, using only(1.4.14)-(1.4.15). and wefind
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m:=(^i)i/2 «:=i— (1-4.32)
«! 2 a2

Comments

The Lyapunov function v (t. x) can be interpreted as an average of the squared

norm of the state along the solutions of (1.4.1). This approach is actually the basis of

exact proofs of exponential convergence presented in sections 2.5-2.6 for identification

algorithms. On the other hand, the approximate proofs presented in chapter 4 rely on

methods for averaging the differential system itself. Then the norm squared of the state

itself becomes a Lyapunov function, from which the exponential convergence can be

deduced.

Theorem 1.4.3 is mostly useful to establish the existence of the Lyapunov function

corresponding to exponentially stable systems. To establish exponential stability from a

Lyapunov function, the following theorem will be more appropriate. Again, the deriva

tive is to be taken along the trajectories of (1.4.1).

Theorem 1.4.4 Exponential Stability Theorem

// There exists a function v(t jc). and strictly positive constants av a2. a3. and 8.

such that for all x £Bh.t >0

a1\x\i<:v(t.x)^a2\x^ (1.4.33)

4-v(r.*(«))! <0 (1.4.34)
dt '(1.4.1)

'+& df _£_ v(t,x(t)) <*t <-a3lx(r)l2 (1.4.35)
J <"* (1.4.1)t dr

Then x(t) converges exponentially to 0.



18

Proof of Theorem 1.4.4

From (1.4.35)

v(f.*(t))-v(*+8.*(r +8)) £(a3/«2)v(f .*(*)) (1.4.36)

for all t ^ 0. so that

v(r+8.*(t+8))<(l-a3/a2)v(t.*(t)) for all t >0 (1.4.37)

From (1.4.34)

viti.xbtiVZvUMO) forall«i€[r.t+8] (1-4-38)

Choosefor* the sequence «0.l0 +8. t0 +28.... so that v(r .*&)) is bounded by astair
case v(r0.*(*<>)). va0 +8.xU0 +8)).... where the steps are related in geometric progres
sion through (1.4.36). It follows that

v(r.xU)) ^•-'l",,,v(«o.x(t,)) forallr ^r0>0 (1.4.39)

where

^ (l-a3/a2;
a,. = -g- In (l-a3/ a2)

(1.4.40)

Similarly

|*(t)l<m«"a,(,-,°Wo)l (1.4.41)

where

m =

a2

«i 1 —ot3/a2
1/ 2

a=2Fln l-a3/ a2
(1.4.42)
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Chapter 2 Identification

2.1 Identification Problem

In this chapter, we review some identification methods for single-input single-output

(SISO) linear time invariant (LTI) systems. We concentrate our attention on recursive

identification methods, where the estimates of the parameters are updated in real-time,

thus leading naturally to adaptive control schemes in the following chapter.

Note that a polynomial in s is called monic if the coefficient of the highest power in

j is 1. and Hurwitz if its roots lie in the open left-half plane. Rational transfer functions

are called stable if their denominator polynomial is Hurwitz, and minimum phase if their

numerator polynomial is Hurwitz. The relative degree of a transfer function is by

definition the difference between the degrees of the denominator and numerator polyno

mials. A rational transfer function is called proper if its relative degree is at least 0, and

strictly proper if its relative degree is at least 1.

We consider the identification problem of SISO LTI systems, given the following

assumptions.

Assumptions

(Al) Plant Assumptions

the plant is a SISO LTI system, described by a transfer function

W-K, )-*,£££ (211)r(s) dpKs)

where r(s ) and yp(s ) are the Laplace transforms of the input and output of the

plant respectively. np(s ) and dp(s) are monic. coprime polynomials of degrees

n and m ^n—1 respectively (m is unknown).
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(A2) Reference Input Assumptions

the input r (.) is piecewise continuous, and bounded on R+.

The objective of the identifier is to obtain estimates of kp and of the coefficients of

the polynomials npis) and a*pis) from measurements of the input rit) and output

yp it ) only. Note that we do not assume that P is stable.

2.2 Identifier Structure

The identifier structure presented in this section is similar to that of Kreisselmeier

(1977). The transfer function Pis) can beexplicitly written as

ris) 5"+^5"-1+ •••+*,

where the 2 n coefficients ai • • • a„ . and ft • • • 0n are unknown. This expression is a

parametrization of the unknown plant, i.e. a model in which only a finite number of

parameters are to be determined. For identification purposes, it is convenient to find an

expresssion which depends linearly on the unknown parameters. For example, the

expression

snypis) = iansn-1+ ••• +<*1)r(5)-(0n5n-1+ •••+0i)y,(*) (2.2.2)

is linear in the parameters a, and 0,. However, it would require explicit differentiations

to be implemented. To avoid this problem, we introduce a monic n th order polynomial

denoted \is ) = sn + \„ sn~* + • • • + Xi- This polynomial is assumed to be Hurwitz. but

is otherwise arbitrary. Then, using (2.1.1)

\is)ypis) =kpnpis)Hs) +ais)-aipis))ypis) (2.2.3)

or. with (2.2.1)

^(5)= X(7) r(')+ XGl *,(*) (2-2.4)

This expression is a new parametrization of the plant. Let

a' is) = an sn~l+ —-al=kpnpis)

b'is) = i\n-pn)sn-1+ ••i\l-fi1) =\is)-dpis) (2.2.5)

so that the new representation of the plant can be written



~ / n a' is) */ \ , &*(<*) r, re\
^(j)=T(7rr(5)+T(7r^(5)

The transfer function from r -*yp is given by

ypis) a'is)
7(77 \is)-t'is)

and it is easy to verify that this transfer function is Pis) when a*is) and h'is) are
given by (2.2.5). Further, this choice is unique when npis) and 2pis) are coprime:
indeed, suppose that there existed a'is )+Ba is ). I*is )+8$ is ). such that the transfer
function is still kp npis)/ dpis). The following equation would then have to be

satisfied

nDis)*5±LL=-k 'll2LL=-Pis)
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(2.2.6)

(2.2.7)

(2.2.8)

However, equation (2.2.8) has no solution since the degree of dpis n. and np. dp are

coprime. while the degree of 86 is at most n —1.

State-Space Realization

A state-space realization of the above representation can be found by choosing

A€R" Xn .bx€Rn in controllable canonical form such that det isl —A) =\is ). and

(5/-A)"16x =x.- ^Us)

1
s

In analogy with (2.2.5). define

a'T :=ialt - • •an) b* := (Xj —ft. • • • X„ —0„ )

and the vectors wp{l\t ). wp{2)it) €R"

w,(1) =Aw,(1) +&xr

w,(2) =Aw,<2) +*xy,

with initial conditions wpll)iO),wf2)iO). In Laplace transforms

wU>(5) = (j/-A)-l&xr(s)

w<2Ks) = isI-/0-1bk$pis)

(2.2.9)

(2.2.10)

(2.2.11)

(2.2.12)
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With this notation, the description of the plant (2.2.6) becomes

5pis) =a'Tw<lKs) +b-TwfKs) (2.2.13)

and. since the plant parameters are constant, the same expression is valid in the time

domain

ypit)= a'Twp<l\t) +b-Tw<2)it):= 9*Twpit) (2.2.14)

where

rr:={a.T b.T) €R2n WpitY :=iwp^Tit).wp^it)) 6R2n (2.2.15)

Eqns (2.2.10M2.2.14) define a realization of the new parametrization. The vector
w is the generalized state of the plant, and has dimension 2n . Therefore, the realization

of Pis ) is not minimal, but the unobservable modes are those of lis ). and are all stable.

The vector 6* is a vector of unknown parameters related linearly to the original

plant parameters a-,. 0, by (2.2.10)-(2.2.15). Knowledge of a set of parameters is
equivalent to the knowledge of the other, and each corresponds to one of the (equivalent)
parametrizations. In the last form however, the plant output depends linearly on the
unknown parameters, so that standard identification algorithms can be used. This plant

parametrization is represented in figure 2.1.

Identifier Structure

The purpose of the identifier is to produce a recursive estimate 0it) of the nominal
parameter 0*. Since r and yp are available, we define the observer

wa) = Aw{1) + bkr

w<2) =Aw<2> +&xy, (2-2-16)

to reconstruct the states of the plant. The initial conditions in (2.2.16) are arbitrary. We

also define the identifier signals

6rit) := iarit).bTit)) €R2" wT it) := (w^r(r ).w<2>r(0) €R2n(2.2.17)

By (2.2.11). (2.2.16). the observer error wit)-wpit) decays exponentially to zero, even
when the plant is unstable. We note therefore that the generalized state of the plant

wpit) is such that it can be reconstructed from available signals, without knowledge of
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the plant parameters.

The plant output can be written

ypit) =9'Tw(t) (€) (2.2.18)

where the notation (e) is to remind one of the presence of an additive exponentially

decaying term

eit) =etTiwpit)-wit)) (2.2.19)

due to the initial conditions in the observer. We will first neglect the presence of the (e)

term, but later show that it does not affect the properties of the identifier.

In analogy with the expression of the plant output, the output of the identifier is

defined to be

yiit) = erit)wit) €R (2.2.20)

We also define the parameter error

<f>it):=9it)-et 6R2n (2.2.21)

and the identifier error

elit):=yiit)-ypit) =<f>rit)wit) ie) (2.2.22)

These signals will be used by the identification algorithm, and are represented in figure

2.2.

23 Linear Error Equation and Identification Algorithms

Many identification algorithms (cf. Eykhoflf (1974). Ljung and Soderstrom (1983))

rely on a linear expression of of the form obtained above, that is

y/,(r) =e*rw(0 (2.3.1)

where ypit), wit) are known signals, and 0* is unknown. The vector wit) is usually
called the regressor vector. With the expression of yp it ) isassociated the standard linear

error equation

e1it) = <f>rit)wit) (2.3.2)
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We arbitrarily separated the identifier into an identifier structure and an

identification algorithm. The identifier structure constructs the regressor w and other sig

nals, related by the identifier error equation. The identification algorithm is defined by a

differential equation, called the update law, of the form

e=<£ =Fiyp.el.9.w) (2.3.3)

where F is a causal operator explicitly independent of 0*. which defines the evolution of

the identifier parameter 0.

2.3.1 Gradient Algorithms

The update law

0 =-g exw g >0 (2.3.4)

defines the standard gradient algorithm. The right-hand side is proportional to the gra

dient of the output error squared, viewed as a function of <f>. that is

-4- ie2i<f>)) =2e1w (2.3.5)

This update law can thus be seen as a steepest descent method. The parameter g is a

fixed, strictly positive gain called the adaptation gain, and allows us to vary the rate of

adaptation of theparameters. The initial condition 0(0) is arbitrary, but can be chosen to

take any a priori knowledge of the plant parameters into account.

An alternative to this algorithm is the normalized gradient algorithm

6=-g "" g.V>0 (2.3.6)
1 +ywT w

where g and y are constants. This update law is equivalent to the previous update law.

with w replaced by w I >J\ + ywT w in (2.3.2) and (2.3.4). The new regressor is thus a

normalized form of w. The right-hand side of the differential equation (2.3.6) is globally

Lipschitz in <j> (using (2.3.2)), even when w is unbounded.

When the nominal parameter 0* is known a priori to lie in a set 8 €R2n (which we
will assume to be closed, convex, and delimited by a smooth boundary), it is useful to

modify the update law to take this information into account. For example, the normal

ized gradient algorithm with projection is defined by



t—g

= Pr

e\W

T1 + yw* w

e\w

i 1 + yw1 w

where int0 and 6*0 denote the interior and boundary of 0. and Pr(z ) denotes the projec

tion of the vector z onto the hyperplane tangent to Q© at 0.

The gradient algorithms, as well as the least-squares algorithms, can be used to iden

tify the plant parameters with the identifier structure described in section 2.2. Using the

normalized gradient algorithm for example, the practical implementation isas follows.

0 € int(e)

0 €06

Identifier - Practical Implementation

Assumptions

(A1)-(A2)

Data

n

Input

rit).ypit)SIi

Output

9it),yiit)€R

Internal Signals

wit)€R2n (*<*>(* ).w(2)(*)€Rn)

0(O€R2n iait).bit)eR")

yi(0.e1(r)€R

Initial conditions are arbitrary

Design Parameters

Choose

• A€ Rnxn ,6X € R" in controllable canonical form such that

detW —A) = \is ) is Hurwitz
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(2.3.7)



• g.y>o

Identifier Structure

w(1) = Aw(1) + 6xr

wi2) = Awi2) +bKyp

9T =iar,bT) estimates of ia\. • • •an .\\ —fa. • • • X„ —fa )

wr=iw<1)T.w™T)

y4=0r*v

ei = yt-yP

Normalized Gradient Algorithm

e\W

D

e =-g —
1 +yw* w
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23.2 Least-Squares Algorithms

Least-squares algorithms can be derived by several methods. An interesting

approach is to connect the parameter identification problem to the state estimation prob

lem of a linear time varying system. The parameter 0* can be considered to be the unk

nown state of the system

0*a) = O (2.3.8)

with output

ypit) =wTit)9\t) (2.3.9)

Assuming that the right-hand sides of (2.3.8)-(2.3.9) are perturbed by zero-mean

white gaussian noises of spectral intensities Q €R2n x2n and r €R respectively, the

least-squares estimator is the well-known Kalman filter (Kalman and Bucy (1961))

0 = —— P w ei = —g P w et
r

P=Q-*-Pwwr P=Q-g Pw wT P Q.g >0 (2.3.10)
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Qand g are fixed design parameters of the algorithm. The update law for 0 is very
similar to the gradient update law, with the presence of the so-called correlation term
wev The matrix P is called the covariance matrix, and acts in the 0 update law as a
time-varying, directional adaptation gain. The covariance update law in (2.3.10) is called
the covariance propagation equation. The initial conditions are arbitrary, except that
PiO) >0. PiO) is usually chosen to reflect the confidence in the initial estimate 0(0).

In the identification literature, the least-squares algorithm referred to is usually the

algorithm with 0=0. since the parameter 0* is assumed to be constant. The covariance
propagation equation is then replaced by

P=-gPwwTP i.e. iP~1) =gwwr g>0 (2.3.11)

where g is a constant.

The new expression for P~l shows that A P~l >0. so that P'1 may grow without

bound. Then P will become arbitrarUy small in some directions, and the adaptation of
the parameters in those directions becomes very slow. This so-called covariance wind-up
problem, can be prevented using the least-squares with forgetting factor algorithm, defined

by

p=-gi-\P+PwwT P)

i.e. ip-1)=gi-\P'1 +wwr) X.g >0 (2.3.12)

Another possible remedy is the covariance resetting, where P is reset to a predeter

mined positive definite value, whenever Xmin(P) falls under some threshold.

The normalized least-squares algorithm is defined (cf Goodwin and Mayne (1985))

by

P w e\

1 +ywd P w

• . PwwTP . (r-n-r wwT , (2.3.13)*—* 1+ywrpw l'e- ^ ; g l +ywl'iP-^w
Again g.y are fixed parameters, and PiO) >0. The same modifications can also be made
to avoid covariance windup.
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The least-squares algorithms are somewhat more complicated to implement, but are

found in practice to have faster convergence properties.

2A Properties of the Identification Algorithms - Identifier Stability

In this section, we establish properties of the gradient algorithm

0 =Q=-geiw g >0 (2-4.1)

and the normalized gradient algorithm

1 + *yw/ w

assuming the linear error equation

ei = <j>rw (2-4.3)

Theorems 2.4.1-2.4.4 establish general properties of the gradient algorithms, and

concern solutions of the differential equations (2.4.1)-(2.4.2). with ev defined by (2.4.3).
The properties do not require that the vector w originates from the identifier described in
section 2.2. but only require that w be a piecewise continuous function of time, to

guarantee the existence of the solutions. The theorems are also valid for vectors wof any
dimension, not necessarily even.

Theorem 2.4.1 Linear Error Equation with Gradient Algorithm

Consider the linear error equation (2.4.3). together with the gradient algorithm (2.4.1).

Let w : R+ -»R2n be piecewise continuous.

Then (a) e1€£2

(b) <f> € £,«,

Proof of Theorem 2.4.1

The differential equation describing <f> is 0 =-g wwr <f>. Let v =4>r<f> so that
v =-2g i<f>Tw )2 =-2ge\ <0. Hence. 0<vit) <v(0) for all t >0. so that v.<f> €IM

Since v is a positive, monotonically decreasing function, the limit v(co) is well-
oo oo

defined, and -1/ 2g f v dt = f e2 dt <oo, i.e. ex €L2. D
n n
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Theorem 2.4.2 Linear Error Equation with Normalized Gradient Algorithm

Consider the linear error equation (2.4.3), together with the normalized gradient algo

rithm (2.4.2). Let w :R+ ->R2n be piecewise continuous.

Then (a) - €Z,2 ClL^
vl+ywTw

(b) 0 6 £« • 4> *L2 ClL^

Proof of Theorem 2^.2

Let v =0r0. so that v =-2g e\I l +ywrw <0. Hence. 0**vit) **viO) for all
t 5*0. so that v.<j>.ej Jl +ywTw .0 CL. . Using the fact that xl 1+* ^1 for all

x >0, we get that 1.0 I^ (g / y)101, and 0 6L^

Since v is a positive, monotonically decreasing function, the limit v(oo) is well-

defined, and - [v dt <co implies that e^ >/l +ywrw €Z,2. Note that

3 =(e!/ Vl + ywrw ) iJl +ywrw I 1+1wt D^). where the first term is in L2. and the
second in £«. so that 0€Z,2. Sincel0l2 <(g2/ ?)(*?/ 1+ywrw). 0 €L2. D

Effect of Initial Conditions and Projection

In the derivation of the linear errorequation in section 2.2. we found exponentially

decaying terms, such that (2.4.3) isreplaced by

Cl(,) =0r(r)w (*) + €(*) (2-4.4)

where eit) is an exponentially decaying term due to the initial conditions in theobserver.

It may also be useful, or necessary, to replace the gradient algorithms by the algorithms
with projection. The following theorem asserts that these modifications do not affect the

previous results.
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Theorem 2.4.3 Effect of initial conditions and projection

// the linear error equation (2.4.3) is replaced by (2.4.4). and/or the gradient algo

rithms are replaced by the gradient algorithms with projection.

Then the conclusions of theorems 2.4.1-2.4.2 are valid.

Proof of Theorem 2.4.3

(a) Effect of initial conditions

oo

Modify the Lyapunov function to v =0r0+ i- f e2ir)dr. Note that the addi-

tional term is bounded, and tends to zero as t tends to infinity. Consider first the gra

dient algorithm (2.4.1). so that

v=-2g (0rw)2-2g (0rw)e-J- €2

=-2g(07"w + ± )2 <0 (2.4.5)

The proof can be completed as in theorem 2.4.1. noting that € €L2 ClL^. and similarly

for theorem 2.4.2.

(b) Effect of projection

Denote by z the right-hand side of theupdate law (2.4.1) or (2.4.2). When 0 € Q0.

z is replaced by Pr (z ) in the update law. Note that it is sufficient to prove that the

derivative of the Lyapunov function on the boundary is less than or equal to its value

with the original differential equation. Therefore, denote by z0 the component of z per

pendicular to the tangent plane at 0. so that z =Pr(z )+z0. Since 0* €0 and 8 is con

vex. (0 —9') .z0 = <f>Tz q^O. Using the Lyapunov function v =0r0. we find that, for

the original differential equation v =20rz. For the differential equation with projection,

vjv =20rPr(z) =v —20r Zq so that vjy <v. i.e. the projection can only improve the

convergence of the algorithm. The proof can again be completed as before. D
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Least-Squares Algorithms

We now turn to the normalized LS algorithm with covariance resetting, defined by

the following update law

0 = O=-g 111 g.y>0 (2.4.6)
1 + ywl P w

and a discontinuous covariance propagation

PwwTP fW-i\-~ w wT
P—g . r, *•*• (i>'1) = «l + ywr Pw """ %~ ' ° l + ywriP~1)-lw

PiO) = Pitr+) = k0I>0

where tr = {t W^iPit)) ^k, <k0} (2.4.7)

This update law has similar propertiesas the normalized gradient update law. as stated in

the following theorem.

Theorem 2.4.4 Linear Error Equation with Normalized LS Algorithm and Covari

ance Resetting

Consider the linear error equation (2.4.3), together with the normalized LS algorithm

with covariance resetting (2.4.6)-(2.4.7).

Let w : R+ -*R2n be piecewise continuous.

Then (a) ' — € L2 OL^
<Jl+ywrPw

(b) 0€Z,OO 0 €Z,2 HZ,..

(e)'-Trn£t:"'nl-

Proof of Theorem 2.4.4

The covariance matrix P is a discontinuous function of time. Between discontinui

ties, the evolution is described by the differential equation in (2.4.7). We note that

dl dt P~l ^0. so that P~litx) —P~Kt2) >0 for all tx ^t2 ^0 between covariance reset-

tings. At the resettings. P'Kt*) = ko1!. so that P~lit) >P~Kt0) = kolI. for all t ZO.
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On the other hand, due to the resetting. Pit ) >k XI for all t >0. so that

k0I >P(«)>*i/ *i_1 / >F-KO>kol I (2-4-8)

where we used results of section 1.3.

Note that the interval between resettings is bounded below, since

^ <g »+,££)•» H
^ g_ „p-iB (2.4.9)

y

where we used the fact that xl 1+x ^1 for all x *0. Thus, the differential equation

governing P'1 is globally Lipschitz. It also follows that [tr} is aset of measure zero.

Let now v =0r P~l 0. so that v = -g e?/ l + ywr P w <*0 between resettings. At

the points of discontinuity of P. v(rr+)-v(*r)= 0r(i>-1(*r+)-i>-1(*r)» <0. It fol
lows that 0<v(r)<v(0) for all * >0. and. from the bounds on P. we deduce that

0.0./SeZ,^. Also-fvdt <oo,sothatei/v/l +ywr/,w €Z,2. Note that
o

0rw = 0rw Vl+ywr/>w (2.4.10)

(2.4.11)

where the first terms in the right-hand sides of (2.4.10)-(2.4.1l) are in Z2. and the last

terms are bounded. The conclusions follow from this observation. •

Comments

a) Theorems 2.4.1-2.4.4 state general properties of differential equations arising from

the identification algorithms described in section 2.3. The theorems can be directly
applied to the identifier with the structure described in section 2.2. and the results inter
preted in termsof the parameter error 0. and the identifier error e x.

b) The conclusions of theorems 2.4.1-2.4.4 may appear somewhat weak, since none

of the errors involved actually converge to zero. The reader should note however that the

conclusions are valid under very general conditions regarding the input signal w. In par

ticular, no assumption is made on the boundedness. or on the differentiability of w.
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c) The conclusions of theorem 2.4.2 can be interpreted in the following way. The

function flit) is defined by

Bit) = *r(<)w(° = *l(° (2.4.12)
P 1+lw, I. l +»wr "oo

so that

le1(Ol =l07*(i)w(r)l= /Stniw^+jSU) (2.4.13)

The purpose of the identification algorithms is to reduce the parameter error 0 to zero, or
at least the error ev In (2.4.12). j3 can be interpreted as a relative error, i.e. exnormalized

by \wt !„. In (2.4.13). 0 can be interpreted as the gain from w to 0rw . From theorem
2.4.2. this gain is guaranteed to become small as t ->ooin an L2 sense.

Stability of the Identifier

We are not guaranteed the convergence of the parameter error 0 to zero. Since only

one output yp is measured to determine avector of unknown parameters, some additional
condition on the signal w (see section 2.5) must be satisfied in order to guarantee parame

ter convergence. In fact, we are not even guaranteed the convergence of the identifier

errorexto zero. This can be obtained under the following additional assumption

(A3) Bounded Output Assumption

Assume that the plant is either stable, or located in a control loop such that r

and yp are bounded.

Theorem 2.4.5 Stability of the Identifier

Consider the identification problem, with (A1)-(A3). the identifier structure of section

2.2. and the gradient algorithms (2.4.1). (2.4.2). or the normalized LS algorithm with

covariance resetting (2.4.6)-(2.4.7).

Then The output error ex € L2 DL^.e^O as t -»oo.and0.0 €£„.
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Proof of Theorem 24.5

Since r and yp are bounded, it follows from (2.2.16)-(2.2.17). and the stability of
A. that w and w are bounded. By theorems 2.4.1 - 2.4.4. 0 and 0 are bounded so that «i

and ci are bounded. Also el£L2, and by corollary 1.2.2. el.el^Lto and et€L2

implies that e i -»0 as t -»oo. D

Regular Signals

Theorem 2.4.5 relies on the boundedness of w.w. guaranteed by (A3). It is of

interest to relax this condition, and to replace it by a weaker condition. We will present

such a result using a regularity condition on the regressor w. This condition guarantees a

certain degree of smoothness of the signal w. In discrete time, such a condition is not
necessary, because it is automatically verified. The definition presented here corresponds

to a definition in Narendra. Lin. and Valavani (1980).

Definition Regular Signals

Let z : R+ -•R" . such that z. i € £„,,.

z is called regular if, for some kx. k2 ^0

li(r)K*ilrl|BD+*2 for all r £0 (2.4.14)

The class of regular signals includes bounded signals with bounded derivatives, but
also unbounded signals (e.g. e'l It typically excludes signals with "increasing frequency"
such as sin(e'). We will also derive some properties of regular signals in chapter 3. Note

that it will be sufficient for (2.4.14) to hold everywhere except on a set of measure zero.

Therefore, piecewise differentiable signals can also be considered.

This definition allows us to state the following theorem, extending the properties

derived in theorems 2.4.2-2.4.4 to the case when w is regular.

Theorem 24.6

Let 0. w: R+ -»R2n be such that w.w €£«*.and 0,0 €LM.

// ia) w is regular

1 + I w, b
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Then 0.0 € !„, and 0-+O as t -oo.

Proof of Theorem 24.6

Clearly. 0€Lw. and since 0.0 €L«,and 0€L2 implies that 0-0 as t ->oo(corollary

1.2.2). we are left to show that 0 € L^.

We have that

r l+iw.iui
07

w

1+Bwr L

The first and second terms are bounded, since 0.0 6 L„, and w is regular. On the other

hand

i'"' = L_ sup Iw(t)I
\dt r<t

d^_iw(Oik
dt I £"fc)

• 0rw gf/*iwfU| (2415)
|l+lw, k l + Bw,^ I

(2.4.16)

The regularity assumption then implies that the last term in (2.4.15) is bounded, and

hence 0 6Z,*,. D

Stability of the Identifier with Unstable Plant

Theorem 2.4.6 shows that when w is possibly unbounded, but nevertheless satisfies

the regularity condition, the relative error exI 1+iwt^ or gain from w—0rw tends to

zero as t —oo.

The conclusions of theorem 2.4.6 are useful in proving stability in adaptive control,

where the boundedness of the regressor w is not guaranteed a priori. In the identification

problem, we are now allowed to consider the case of an unstable plant with bounded

input. i.e. to relax assumption (A3).

Theorem 24.7 Stability of the Identifier - Unstable Plant

Consider the identification problem with (Al)-(A2). the identifier structure of section 2.2.

and the gradient algorithms (2.4.1). (2.4.2). or the normalized LS with covariance reset

ting (2.4.6M2.4.7).



<hT wThen 0= -^ =- €L2 C\LW. 0 —0 as t —oo , and 0.0 €Lt
1 + I wt Ho,,
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Proof of Theorem 2.4.7

It suffices to show that w is regular, to apply theorem 2.4.4 followed by theorem

2.4.6. Combining (2.2.16) - (2.2.18). it follows that

Kr) =w
A 0

b^a* A+b^b*'
wit) +

0
rit) (2.4.17)

Since r is bounded by (A2). (2.4.17) shows that w is regular. D

2.5 Persistent Excitation and Exponential Parameter Convergence

In the previous section, we derived results on the stability of the identifiers, and on

the convergence of the output error ex = 9Tw —9* w = 0rw to zero. We are now con

cerned with the convergence of the parameter 9 to its nominal value 9*. i.e. the conver

gence of the parameter error 0 to zero.

The convergence of the identification algorithms is related to the asymptotic stability

of the differential equation

0(r) = _g wit)wTit)<f>it) g >0 (2.5.1)

which is of the form

0(O = _i4(r)0(O (2-5.2)

where A it ) 6 R2n *2b is a positive semidefinite matrix for all t. Using the Lyapunov

function v = 0r 0. v = —<f>T iA +Ar)<f>. When A it) is uniformly positivedefinite, with

^min(A +AT) >2a, then v <- 2 a v. which implies that system (2.5.2) is exponentially

stable with rate a. For the original differential equation (2.5.1), such is never the case,

however, since at any instant the matrix wit) wTit ) is of rank 1. In fact, any vector 0

perpendicular to w lies in the null space of w wT, and results in 0 =0. However, since

w varies with time, we can expect 0 to still converge to 0 if w completely spans R" as t

varies. This leads naturally to the following definition
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Definition Persistency of Excitation (PE)

Avector z: R+ —R" ispersistently exciting if there exist av a2. 8 >0 such that

r0 + 6

a2I> f zir)zTir)dr>alI forallr0>0 (2.5.3)

Although the matrix zir)zTir) is singular for all r. the PE condition requires that

z rotates sufficiently in space that the integral of the matrix zir)zTir) is uniformly

positive definite over any interval of some length 8.

The condition has another interpretation, by re-expressing the PE condition in scalar

form

a2Z f izTir)x)2dr>ax forall 10 >0.1x1= 1 (2.5.4)
'o

which appears as a condition on the energy of z in all directions.

With this, we establish the following convergence theorem. For consistency, the

dimension of w is assumed to be 2n . but it is in fact arbitrary.

Theorem 2^.1 PE and Exponential Stability

Let w: R+ —R2n be piecewise continuous.

// w isPE

Then (2.5.1) is globally exponentially stable

The proof of theorem 2.5.1 can be found in various places in the literature (Sondhi
and Mitra (1976). Morgan and Narendra (1977a&b). Anderson (1977). Kreisselmeier

(1977)). The proof by Anderson has the advantage of leading to interesting interpreta

tions, while those by Sondhi and Mitra. Kreisselmeier give estimates of the convergence

rates. We will present here a combined proof. Before proving the theorem, it is suitable

to recall a few definitions and results.
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Uniform Complete Observability - Definition and Results

Consider a linear time-varyingsystem [A. C] defined by

xit) = Ait)xit)

yit) =Cit)xit) (2.5.5)

where x € Rn . A € RnXn . C € RmXn . and y € R".

Definition Uniform Complete Observability (UCO)

The system [A.C] is uniformly completely observable if there exist positive constants

01,02,8. and a positive function 03 €L^ . such that, for all t .t0 >0

fal7*Nit0.t0+ S)ZfaI (2.5.6)

\\Q(t.t0)\\ <03O'-'oD (2-5-7)

where Qit.t0) is the transition matrix associated with Ait), and Nit0.t0 +8) is the

observability grammian

JV(to.to +*)= / <&r(*.*o)Cr(f)C(0<I>a.*<>)<" (2-5.8)
'o

Note that condition (2.5.6) can be rewritten as

r0+6

fa\xit0)\2>f \Cit)xit)^dt^fa\xitQ)\2 forall*(*o)€Rn.*o^O (2-5.9)
'o

where x it ) is the solution of (2.5.5) starting at x it 0).

Similarly, condition (2.5.7) can be written

\xit )l **fai\t -*0l)l*('o)l for all xit0) € R" .t ,t0 >0 (2.5.10)

The following lemma is a result by Anderson and Moore (1969). stating that the
UCO of the system [A.C] is equivalent to the UCO of the system with output injection

[A+KC.C]. The proof is given in the appendix. It is an alternate proof to the original

proof, and relates the eigenvalues of the associated observability grammians. thereby
leading to estimates of the convergence rates in the proof of theorem 2.5.1 given after

wards.
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Lemma 2.5.2 Uniform Complete Observability under Output Injection

Assume that, for all 8 >0. there exists kb ^0 such that, for all tQ ^0

r0+5

flKir)l2dr**kb (2-5.11)

Then The system [A.C] is uniformly completely observable if and only if the system

[A+KC.C] is uniformly completely observable.

Moreover, if the system [A.C] satisfies inequalities (2.5.6) and (2.5.7) with fa. fa.
8. and 03(.). then the system [A+KC.C] satisfies these inequalities with identical

8. and

fa = fa/ (1 + v7^)2 (2'5-12)

02' = 02exp(*602) (2-5.13)

33'(U-r0l)-ft(lt-rol)+̂^Jfc(l^(*^l+l^l)fc,)1/2(2J.14)

Proof of Lemma 2.5.2 in appendix.

With these preliminaries, we are now ready to return to the proof of theorem 2.5.1.

The idea of the proof of exponential stability is to note that the PE condition is a UCO

condition on the system

e'U) = o

yit) =writ)9'it) (2-5.15)

which is the system described earlier in the context of the least-squares identification

algorithms (cf (2.3.8)-(2.3.9)). We recall that the identification problem is equivalent to
the state estimation problem for the system described by (2.5.15). We now find that the

persistency of excitation condition, which turns out to be an identifiability condition, is
equivalent to auniform complete observability condition on system (2.5.15).

Proof of Theorem 2.5.1

Let v =0r 0. so that v =- 2g (wr0)2 <0 along the trajectories of (2.5.1). For all

t0>0



40

fn + 6 f„ + 6

/ vdr =-2g / iwTir)<f>ir))2dr (2.5.16)

By the PE assumption, the system [0. wTit)] is UCO. Under output injection with
Kit )=- g wit), the system becomes [- g wit) wT it ). wT it )]. with

fn + 6 fn + 6

kb= f \gwir)tdr =g2\xi / wir)wrir)dr)**2ng2fa (2.5.17)
'o 'o

where 2n is the dimension of w. By lemma 2.5.2. the system with output injection is

UCO. Therefore, for alW0 >0

fn + 6

7 vdr <- ?A?1 o,2 I0(*o) "Jtn il + J2n gfaY
(2.5.18)

Exponential convergence then follows from theorem 1.4.4.

The constants a and m are related to the PE constants «i. a2. 8 (equal here to fa.

fa. 8). and the adaptation gain g through

1

a=2o"ln 2 ,gtt!
m = 1____2£«i

(1 + V2n g a2)2 (1+V2n g a2)2

Exponential Convergence of the Identifier

Theorem 2.5.1 can be applied to the identification problem as follows.

17 2 (2.5.19)

Theorem 2^3 Exponential Convergence of the Identifier

Consider the identification problem with assumptions (A1)-(A3). the identifier structure

of section 2.2. and the gradient algorithms (2.4.1) or (2.4.2). or the normalized LS algo
rithm with covariance resetting (2.4.6)-(2.4.7).

// w isPE

Then the identifier parameter 9 converges to the nominal parameter 9' exponentially

fast.
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Proof of Theorem 2^.3

This theorem follows directly from theorem 2.5.1. Note that when w is bounded, w

PE is equivalent tow/ v\+ywTw PE. so that the exponential convergence is guaranteed

for both gradient update laws. The bounds on P obtained in the proof of theorem 2.4.4

allow to extend the proof of exponential convergence to the LS algorithm. D

Exponential Convergence Rates

Estimates of the convergence rates can be found from the results in the proof of

theorem 2.5.1. For the standard gradient algorithm (2.4.1) for example, the convergence

rate is as given in (2.5.19). The influence of some design parameters can be studied with

this relationship. The constants a\, a2, 8 depend in a complex manner on the input signal

r and on the plant being identified. However, if r is multiplied by 2. then a1# a2 are

multiplied by 4. In the limiting case when the adaptation gain g or the reference input r

are made small, the rate of convergence a —g a\/ 8. In this case, the convergence rate is

proportional to the adaptation gain g. and to the lower bound in the PE condition.

Through the PE condition, it is also proportional to the square of the amplitude of the

reference input r. This result will be found again in chapter 5, using averaging tech

niques.

When the adaptation gain and reference input get sufficiently large, this approxima

tion is not valid anymore, and (2.5.19) shows that above some level, the convergence rate

estimate saturates, and even decreases (cf. Sondhi and Mitra (1976)).

It is also possible to show that the presence of the exponentially decaying terms due

to initial conditions in the observer do not affect the exponential stability of the system.

The rate of convergence will however be as found previously only if the rate of dacay of

the transients is faster than the rate of convergence of the algorithm (cf. Kreisselmeier

(1977)).

2.6 Strictly Positive Real Error Equation and Identification Algorithms

In previous sections, we derived properties of identification algorithms for the linear

error equation

elit) = 4>Tit)wit) (2.6.1)
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A more general error equation encountered in identification and adaptive control problems

is the strictly positive real (SPR) error equation

e1it) = ltii<f>rit)wit)) (2.6.2)

where $ is a stable, strictly positive real transfer function. For uniformity with previ

ous discussions, we assume that w:R+— R2n. but the dimension of w is in fact com

pletely arbitrary.

Definition Strictly Positive Real Function (SPR)

A rational function Mis) of the complex variable s =o~+ j<a is positive real (PR), if

M i&) € R. Re(M is )) >0 for o~ >0. and Reti ij <a) ^0, for all o» >0. It is strictly positive

real (SPR) if. for some € >0, Mis-e.) is PR.

SPR transfer functions form a rather restricted class. In particular, an SPR transfer

function must be minimum phase, and its phase may never exceed 90°. An important

lemma concerning SPR transfer functions is the Kalman-Yacubovitch-Popov lemma, of

which a form is given below.

Lemma 2.6.1 Minimal Realization of an SPR Transfer Function

Let [A ,b ,cT] be a minimal realization of a strictly proper, stable, rational transfer func

tion /ft is ). Then, the following statements are equivalent

(a) Mis) is SPR

(b) there exist symmetric positive definite matrices P.Q. such that

PA+ATP=-Q

Pb=c (2.6.3)

Proof of Lemma 2.6.1 cf. Anderson and Vongpanitlerd (1973).

SPR Error Equation with Gradient Algorithm

A remarkable fact about SPR transfer functions is that the gradient update law

j>it) = 9it) = -geiit)wit) g >0 (2.6.4)

has properties similar to the SPR error equation (2.6.2), as with the linear error equation
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(2.6.1).

Using lemma 2.6.1. a state-space realization of Mis ) with state em can be obtained

so that

emit)= Aemit) + b<f>Tit)wit)

elit) = crit)emit)

<j>it) =-gcTemit)wit) g >0 (2.6.5)

Theorem 2.6.2 SPR Error Equation with Gradient Algorithm

Let w:R+-R2n be piecewise continuous. Consider the SPR error equation (2.6.2) with
A?is) SPR. together with the gradient update law (2.6.4). Equivalently. consider the
state-space realization (2.6.5) where [A Jb .cr] satisfy the conditions of lemma 2.6.1.

Then

(a) em.ei^L2

(b) em.ei. 0€LOO

Proof of Theorem 2.6.2

Let P. Q be as in lemma 2.6.1. and v =g eTmP em +0r0. Along the trajectories of

(2.6.5)

v=geTPA em +g eTmPb<f>Tw+geTATPem +g <f>rw bTPem -2g cTem <f>Tw

=-ge'Qem<0 (2.6.6)

where we used (2.6.3). The conclusions follow as in theorem 2.4.1. since P and Q are

positive definite. D

Modified SPR Error Equation

The normalized gradient update law presented for the linear error equation is not

usually applied to the SPR error equation. Instead, a modified SPR error equation is con

sidered

elit)=Mi<f>Tit)wit)-ywTit)wit)elit)) y>0 (2.6.7)
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where y is a constant. The same gradient algorithm is applied to this error equation, so

that in state-space form

emit) = Aemit)+bi<f>rit)wit)-ywTit)wit)cTemit))

elit) = cremit)

4>it) =-gcremit)wit) g.y>0 (2-6.8)

Theorem 2.63 Modified SPR Error Equation with Gradient Algorithm

Let w: R+ —R2n be piecewise continuous. Consider the modified SPR error equation

(2.6.7) with ifiis) SPR. together with the gradient update law (2.6.4). Equivalently.

consider the state-space realization (2.6.8). where [AJ>.cr] satisfy the conditions of

lemma 2.6.1.

Then

(a) em.ei.4> €L2

(b) cm.e1.0€Z.oo

Proof of Theorem 2.6.3

Let P. Q be as in lemma 2.6.1. and v = g eTmP em +0r0. Along the trajectories of

(2.6.8)

v =-g elQ em - 2g yie ,w Y.(«xw ) <0 (2.6.9)

Again, it follows that em.ex.<j> are bounded, and em. ex €L2. Moreover, it also follows

now that Cjw € L2. so that 0 € L2. D

Exponential Convergence of the Gradient Algorithms with SPR Error Equations

As stated in the following theorem, the gradient algorithm is also exponentially con

vergent with the SPR error equations, under the PE condition.
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Theorem 2.6.4 Exponential Convergence of the Gradient Algorithms with SPR

Error Equations

Let w: R+ —R2" . Let [A .b .cT] satisfy the conditions of lemma 2.6.1.

// w is PE. and w . w 6 /,„

Then (2.6.5). (2.6.8) are globally exponentially stable.

The proof given hereafter is similar to the proof by Anderson (1977) (with some
differences however). The main condition for exponential convergence is the PEcondition,

as required previously. The additional boundedness requirement on w guarantees that PE
is not lost through the transfer function M (cf. lemma 2.6.6 hereafter). It is sufficient
that the boundedness conditions hold almost everywhere, so that piecewise difFerentiable

signals may be considered.

Auxiliary Lemmas on PE Signals

The following auxiliary lemmas will be useful in proving the theorem. Note that

the sum of two PE signals is not necessarily PE. On the other hand, an L2 signal is neces

sarily not PE. Lemma 2.6.5 asserts that PE is not altered by the addition of a signal
belonging to L2. In particular, this implies that terms due to initial conditions do not

affect PE. Again, we assume the dimension of the vectors to be 2n . for uniformity, but

the dimension is in fact arbitrary.

Lemma 2.6.5 PE and L2 Signals

Let w .e : R+ —R2n be piecewise continuous.

// w isPE

e €Z,2

Then w + e is PE.

Proof of Lemma 2.6.5 in appendix.

Lemma 2.6.6 shows that PE is not lost if the signal is filtered by a stable, minimum

phase transfer function, provided that the signal issufficiently smooth.
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Lemma 2.6.6 PE Through LTI Systems

Letw:R+—R2n .

// w is PE. and w . w € L^

6 is a stable, minimum phase, rational transfer function

Then Hiw)is PE.

Proof of Lemma 2.6.6 in appendix.

We now prove theorem 2.6.4.

Proof of Theorem 2.6.4

As previously, let v = g eTP em + 0r0. so that for both SPR error equations

fvdr<-g f eTmQemdr <-g ™JJ fefdr^O (2.6.10)

By theorem 1.4.4. exponential convergence will be guaranteed if. for some a3 >0

r0 + 6

/ e\ir)dr £a3( Iemit0)\2+ \<f>it0)\2) (2.6.11)

for all t0. emit0). 0(*o)-

Derivation of (2.6.11)

This condition can be interpreted as a UCO condition on the system

em -A em +b<f>Tw

0 = _g cT€m w

ei = cTem (2.6.12)

An additional term —bywTw cTem is added in the differential equation governing em in

the case of the modified SPR error equation. Using lemma 2.5.2 about UCO under output

injection, we find that inequality (2.6.11) will be satisfied if the following system

em =A em +607w

0=0

ei = crem (2.6.13)



is UCO. For this, we let

*-"°gw
or K =

bywT w
gw
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(2.6.14)

for the basic SPR. or modified SPR error equations respectively. The condition on K in

lemma 2.5.2 is satisfied, since w is bounded.

We are thus left to show that system (2.6.13) is UCO. i.e. that

elit)=cTeMt-t°)emit0)+fcTeA<<-^bwrir)dr<t>it0)

:=Xlit) + x2it)

satisfies, for some fa. fa. 8 >0

fai Iemit0)\2+ I0Uo)l2) > J efir)dr Zfai Iemit0)\2+ I0(ro)I2)(2.6.16)

(2.6.15)

fn + 6

for all t o. em it 0).<f>it 0).

Derivation of (2.6.16)

By assumption, w is PE. and w.w €L^ . Therefore, using lemma 2.6.6. we have

that, for all t0 ^0. the signal

wfit)=fcreAi'-T)bwir)dr
'o

is PE. This means that, for some ait a2. o* >0

a2\<f>it0)\2^ f x22ir)dr ^ax \ <f>it0)\2

for all 11 >t o ^0. and 0(r 0).

On the other hand, since A is stable, there exist yx. y2 >0. such that

/ xiir)dr^yi\emit0)\2e2 ~>2'

r « + m a

(2.6.17)

(2.6.18)

(2.6.19)

for all to. <?„,(*o). and an arbitrary integer m >0 to be defined later. Since [A ,c ] is
observable, there exists y3(m cr) >0, with y3(m cr) increasing with m o\ such that
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tn + m <r

f x}iT)dr>y3im(r)\emito)\2 (2.6.20)
'o

for all to, emit0). and m >0.

Let n >0 be another integer to be defined, and let 8 = im+n )o~. Using the triangle

inequality

f0 +6 l0+raff r0+ma f0+6 r0+6

f efir)dr> f x2ir)dr- f xiir)dr+ f x22ir)dr- f xfir)dr
t0 t0 t0 tQ+m<J t0+m<r

^y3(m <r)\emit0)\i-m(x2\<t>ito)P

+ nal\<f>it0)?-y1e-y>m<r\emit0)rt (2.6.21)

Let m be large enough to get

y3(m cr)-yie~y2ma >y2im or)/ 2 (2.6.22)

and n sufficiently large to obtain

na\ —ma2^a\ (2.6.23)

Further, define

fa =min (a^On cr)/ 2) (2.6.24)

The lower inequality in (2.6.16) follows from (2.6.21). with fa as defined, while the

upper inequality is easily found to be valid with

/32 =max(y1.(m+n)o!2) (2.6.25)

D

Comments

a) Although the proof of theorem 2.6.4 is somewhat long and tedious, it has some

interesting features. First, it relies on the same basic idea as the proof of exponential con

vergence for the linear error equation (cf. theorem 2.5.1). It interprets the condition for

exponential convergence as a uniform complete observability condition. Then, it uses

lemma 2.5.2 concerning UCO under output injection to transform the UCO condition to a

UCO condition on a similar system, but where the vector 0 is constant (cf. (2.6.13)). The

UCO condition leads then to a PE condition on a vector wf . which is a filtered version of
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w, through the LTI system A? (s).

b) The steps of the proof can be followed to obtain guaranteed rates of exponential

convergence. Although such rates would be useful to the designer, the expression one

obtains is quite complex, and examination of the proof leaves little hope that the estimate

would be tight. A more successful approach is found in chapter 4. using averaging tech

niques.

2.7 Conclusions

In this chapter, we derived a simple identification scheme for SISO LTI plants. The

scheme involved a generic linear error equation, relating the identifier error, the regressor.

and the parameter error. Several gradient and least-squares algorithms were reviewed,

and common properties were established, that are valid under general conditions. It was

shown that for any of these algorithms, and provided that the regressor was a bounded

function of time, the identifier error converged to zero as t approached infinity. The

parameter error was also guaranteed to remain bounded. When the regressor was not

bounded, but satisfied a regularity condition, then it was shown that a normalized error

still converged to zero.

The exponential convergence of the parameter error to its nominal value followed

from a persistency of excitation condition on the regressor. Guaranteed rates of exponen

tial convergence were also obtained, and showed the influence of various design parame

ters. In particular, the reference input was found to be a dominant factor influencing the

parameter convergence.

The stability and convergence properties were further extended to strictly positive

real error equations. Although more complex to analyze, the SPR error equation was

found to have similar stability and convergence properties. In particular. PE appeared as

a fundamental condition to guarantee exponential parameterconvergence.

Most results derived in this chapter are known, but scattered in the literature. We

presented here these results in a unified framework, and established the basis for subse

quent developments.
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Chapter 3 Adaptive Control

3.1 Model Reference Adaptive Control Problem

The motivation for adaptive control arises from applications where plant parameters

are unknown, or vary with time to a sufficient degree that robust control is not satisfac

tory. Initial interest appears to have been concentrated on applications to advanced

aerospace vehicles, which experience substantial changes in dynamical behavior as altitude

and velocity are varied. Current and potential applications span a large class of problems,

including process control, robotics, and others.

Model reference adaptive control consists in designing an adaptive controller such

that the behavior of the controlled plant remains close to the behavior of a desirable

model, despite uncertainties or variations in the plant parameters. More formally, a

reference model M is given, with input rit) and output ymit). The unknown plant P

has input uit) and output yp it ). The control objective is to design uit) such that yp it)

asymptotically tracks ymit). with all generated signals remaining bounded. In this

chapter, we consider the problem of attaining this objective under the following assump

tions.

Assumptions

(Al) Plant Assumptions

the plant is a SISO LTI system, described by a transfer function

uis) dpis)

where npis ). dpis ) are monic, coprime polynomials of degree m and n respec

tively. The plant is strictly proper, and minimum phase. The sign of the so-

called high-frequency gain kp is known, and without loss of generality, we will

assume kp >0.
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(A2) Reference Model Assumptions

The reference model is described by

i£L «*(,)«*. i£l (3.1.2)
ris) dmis)

where nmis). dmis ) are monic. coprime polynomials of degree m and n respec

tively (i.e. the same degrees as the corresponding plant polynomials). The refer

ence model is stable, minimum phase, and km > 0.

(A3) Reference Input Assumptions

The reference input r(.) is piecewise continuous, and bounded on R+.

Note that Pis ) is assumed to be minimum phase, but is not assumed to be stable.

3.2 Controller Structure

Toachieve the control objective, we consider the controller structure shown in figure

3.1. By inspection of the figure, we see that

where c0 is a scalar, cis). dis). and lis) are polynomials of degrees n-2. »—1. and

n—1 respectively. From (3.2.1)

«- * (c,r +£-(y,)) (3.2.2)
\—C A

which is shown in figure 3.2. Since

v =* Zf-iu) (3.2.3)
a p

the transfer function from r to yp is

yp _ c0fcp\np (3 2 4)
r k\-c)dp-kpnp d

Note that the derivation of (3.2.4) relies on the cancellation of polynomials \is ).

Physically, this would correspond to the exact cancellation of modes of cis)/ Xis ) and
Bis)/ Xis). For numerical considerations, we will therefore require that \is) is a

Hurwitz polynomial.
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The following proposition indicates that the controller structure is adequate to
achieve the control objective, i.e. that it is possible to make the transfer function from r
to yp equal to iftis ). For this, it is clear from (3.2.4) that lis)must contain the zeros of
n mis ). so that we write

\is) =\0is)nmis) (3-2.5)

where \0is ) is an arbitrary minimum phase polynomial of degree n-m-1.

Proposition3.2.1 Matching Equality

There exist unique c'0. c*is ). d' is ) such that the transfer function from r -y, is Mis ).

Proof of Proposition 3.2.1

Existence

The transfer function from r to yp is /ft if and only if the following matching

equality is satisfied

(\-c* )dp -kp np r =c'0 ^- X0n, *m (3.2.6)

The solution can be found by inspection. Divide \02 mby 3,. let 5 be the quotient (of
degreen-m-l).and-*,r the remainder (of degreen-1). thus d' is given by

r=*Cqdp-\am) (3-2-7)
kp

Let c* (of degree n - 2). c*0 be given by

(3.2.8)
c =K—qn

p

K (3.2.9)
Co=T"Kp

Eqns (3.2.7M3.2.9) define a solution to (3.2.6). as can easily be seen by substituting c0.

c'.d' in (3.2.6).

Uniqueness

Assume that there exist c0 =ci +$c0. c =c' +83.2 =5' +85 satisfying (3.2.6).
The following equality must then be satisfied
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«sa.+*,A,»a—8e.i-v>M. (3.2.10*.p »p «- vk

Recall that 5,. np. X0. 5m have degrees n. m. n-m-1. and n respectively, with
m <n-l. and 8c. hd have degrees at most n-2. and n-1. Consequently, the right-
hand side is a polynomial of degree 2n-l. and the left-hand side is a polynomial of
degree at most 2n-2. No solution exists unless 8c0 =0. so that cj is unique. Let then
8c0= 0. so that (3.2.10) becomes

fic __* nP =_p (3.2.11)
83"" *'?7

This equation has no solution since n,. 2, are coprime. so that c* and 5* are also
unique. D

Comments

a) The coprimeness of n,. 5, is only necessary to guarantee aunique solution. If
this assumption is not satisfied, asolution can still be found using (3.2.7)-(3.2.9). Equa
tion (3.2.11) characterizes the set of solutions in this case.

b) Using (3.2.2). the controller structure can be expressed as in figure 3.2. with a
forward block \/\-c. and a feedback block dt/\. When matching with the model

occurs. (3.2.7M3.2.8) show that the compensator becomes
A A

X _ X0nm (3.2.12)
n. m

A »

X-c qn

and

A A A A

** = _L qd?~ (3.2.13)
X kp Kq n m

Thus the forward block actually cancels the zeros of P.and replaces them by the zeros of

/ft.

c) The transfer function from r to yp is of order n. while the plant and controller
have 3n-2 states. It can be checked (see section 3.5) that the 2n-2 extra modes are

unobservable. and that they are those of \. \0. and np. The modes corresponding to \.X0
are stable by choice, and those of npare stable by assumption (Al).
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d) The structure of the controller is not unique. In particular, it is equivalent to the

familiar structure found, e.g. in Callier and Desoer (1982) p. 164. and represented in

figure 3.3. The polynomials found in this case are related to the previous ones through

nv=c0\ <?c=X-c »,--J (3-2.14)

The motivation in using the previous controller structure is to obtain an expression that is
linear in the unknown parameters. These parameters are the coefficients of the polynomi
als c. 5. and the gain c0. The expression in (3.2.1) shows that the control signal is the

sum of the parameters multiplied by known or reconstructible signals.

State-Space Representation

To make this more precise, we consider astate-space representation of the controller.

Choose A6 R""1^"1. and bx €R"""1. such that iAbk) is in controllable canonical form,

and detisl-A) =\is ). It follows that

G/-A)-16X=T
Xis)

1
s

.b'-2

Let c € Rn_1 be the vector of coef&cients of the polynomial cis ). so that

cis) _= cTisI-A)-1bk
Us)

Consequently, this transfer function can berealized by

w(1)= Aw(1) + M

i(*) =crw(1)

(3.2.15)

(3.2.16)

(3.2.17)

where the state w^CR""1. and the initial condition w(1)(0) is arbitrary. Similarly,

there exist d0 € R. and d €Rn _1 such that

(3.2.18)l$L>=d0 +dTisI-A)-lb}
XU)

and

w(2) = Aw(2) +ixyP
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d („\^A.« ±*t w(2) (3.2.19)^iyp) =d0yP+d< w

where the state w(2) €R""1. and the initial condition w(2)(0) is arbitrary. The controller

can be represented as in figure 3.4. with

u=c0r+crww +d0yp +dTw{2)

.-qtw (3.2.20)

where

9r:=ic0.9T):=ic0.cT.d0.dT) €R2" (3.2.21)

is the vector of controller parameters, and

wT :=(r .wT ):=(r .w(1)T.yp.w^ ) €R2" (3.2.22)

is a vector of signals that can be obtained without knowledge of the plant parameters.

Note the definitions of 9 and w which correspond to the vectors 0 and w with their first

components removed.

In analogy to the previous definitions, we let

9tT:=ico.9'T):=ic'0.c'T.do.d'z) €R2" (3.2.23)

be the vector of nominal controller parameters that achieves a matching of the transfer

function r -*yp to the model transfer function /ft. We also define the parameter errors

<f>:=9-9' €R2n $:=9-9' CR2"-1 (3.2.24)

The linear dependence of u on the parameters is clear in (3.2.20). In the sequel, we

will consider adaptive control algorithms, and the parameter 9 will be a function of time.

Similarly, cis). Bis) will be polynomials in s whose coefficients vary with time. Eqns

(3.2.17) and (3.2.19) give a meaning to (3.2.1) in that case.

33 Adaptive Control Schemes - Identifier Structure

In section 3.2. we showed how a controller can be designed to achieve tracking of the

reference output ym by the plant output yp. when the plant transfer function is known.

We now consider the case when the plant is unknown, and the control parameters are

updated recursively using an identifier. Several approaches are possible. In an indirect
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adaptive control scheme, the plant parameters (i.e. kp. and the coefficients of npis).
dpis)) are identified using a recursive identification scheme, such as the one described in
chapter 2. The estimates are then used to compute the control parameters through

(3.2.7M3.2.9).

In a direct adaptive control scheme, an identification scheme is designed that directly
identifies the controller parameters c0. c d0. d. A typical procedure is to derive an

identifier error signal which depends linearly on the parameter error <f>. The output error

e0it) =ypit)-ymit ) is the basis for output error adaptive control schemes such as those
of Narendra and Valavani (1978), Narendra, Lin and Valavani (1980). and Morse (1980).
An output error direct adaptive control scheme, and an indirect adaptive control scheme
will be described in sections 3.3.2 and 3.3.3. but wewill first turn to an input error direct

adaptive control scheme in section 3.3.1.

Note that we made the distinction between controller and identifier, even in the case

of direct adaptive control. The controller is by definition the system that determines the
value of the control input, using some controller parameters as in a nonadaptive context.

The identifier obtains estimates of these parameters - directly or indirectly.

As in chapter 2. we also make the distinction, within the identifier, between the

identifier structure and the identification algorithm. The identifier structure constructs

signals which are related by some error equation, and are to be used by the identification
algorithm. The identification algorithm defines the evolution of the identifier parameters,
from which the controller parameters depend. Given an identifier structure with linear

error equation for example, several identification algorithms exist from which we can

choose (cf. section 2.3).

Although we make the distinction between controller and identifier, we will see that,

for efficiency, some internal signals will be shared by both systems.

33.1 Input Error Direct Adaptive Control

Define

rp=/ft-Kyp) =M-lPiu) (3-3-1}

and let the input error et be defined by
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ei :=rp-r

=^-1(y,-ym) =A?-1(e0) (3-3-2)

where e0 = yP " v/n is lne output error.

By definition, an input error adaptive control scheme is a scheme based on this error.

or an approximation of it.

Preliminaries

Since the relative degree of /ft is at least 1, its inverse is not proper. /ft~K.) is
well-defined, provided that the argument is sufficiently smooth. However, in the fre

quency domain, the gain of the operator M~l is arbitrarily large at high frequencies.
Therefore, due to the presence of measurement noise, the use of /ft'1 is not desirable in
practice. Although we will use a£-1(.) in the analysis, we will consider it not imple-
mentable. so that rp and e, are not available. Instead, we will construct an approximate

inverse of /ft as follows.

Since /ft is minimum phase with relative degree n-m, for any stable, minimum

phase transfer function L~l of relative degree n-m. the transfer function /ft L has a
proper and stable inverse. For example, we can let I be aminimum phase polynomial of
degree n—m. The signal L~Krp ) isavailable since

L-Krp) = i/ft Lrliyp) (3.3-3)

where i/ftL )"' is a proper, stable transfer function.

Approximate Input Error

To obtain the identification scheme of chapter 2. it was useful to derive an expres

sion in which a known signal depended linearly on the unknown parameter 9*. We now

derive such an identity based on the matching equality (3.2.6).

First transform (3.2.6). by dividing both sides by \dp L so that it becomes, using

(3.2.5)

*.»

A-c' t-i_l. n'£_f-i= c'k t' . . I-1 (33.4)

and. with the definition of P./ft
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t-^+coi/ftir1
A

(3.3.5)

(3.3.5) is an equality of two polynomial ratios, but also an equality of two LTI operators.
The right-hand side is a stable transfer function, while the left-hand side is possibly
unstable (since P is not assumed to be stable).

To transform (3.3.5) into an equality in the time domain, care must be taken of the

effect of the initial conditions related to the unstable modes of P. These will be unob-
servable or uncontrollable, depending on the realization of the transfer function. If the

left-hand side is realized by Pfollowed by L~l 1^ +c'oi/tiL)~l. the unstable modes of
P will be controllable, and therefore unobservable.

The operator equality (3.3.5) can be transformed to a signal equality by applying

both operators to u . so that

£-i£L(y,) +ci(itf£)-Ky,)= l-Ku)-l-1^- («)
A

ie) (3.3.6)

where (e) reminds us of the presence ofexponentially decaying terms due to initial condi

tions. These are decaying because the transfer functions are stable, and the unstable
modes are unobservable. Therefore. (3.3.6) is valid for arbitrary initial conditions in the

realizations of L_1.X. and i/ftL)~l.

Now, recall that w € R2""1 is given by

w =

isI-ATlb>!,u)

yP
isI-ATlbkiyp)

and. since 9' is constant. 9* L-1(w ) is given by

rrZ-1(w)= L-K9'Tw)

= x-1
A , £ *

= Z-KiO-cJOtfZrKy,)

(3.3.7)

(€) (3.3.8)

where we used (3.3.6). Define now

vr .= \l-Krp).L-KwT) )= \i/ftLTliyp).L-KwT)\ €R2" (3.3.9)
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so that (3.3.8) can be written

Z-i(u)= 9'Tv (€) (3.3.10)

where 9' is defined in (3.2.23). (3.3.10) is essential to subsequent derivations, so that we

summarize the result in the following proposition.

Proposition 33.1 Fundamental Identity

Let P. /ft satisfy assumptions (A1)-(A2). Let L"1 be any stable, minimum phase transfer
function of relative degree r =n-m. Let v and wbe as defined by (3.3.9). and (3.3.7).
with arbitrary initial conditions in the realizations of the transfer functions. Let 9' be
defined by (3.2.7)-(3.2.9). with (3.2.23).

Then for all piecewise continuous u € /,««.. (3.3.10) is satisfied.

Input Error Identifier Structure

Equation (3.3.10) is of the form studied in chapter 2 for recursive identification.
Both the signal L~Ku) and v are available from measurements, and the expression is
linear in the unknown parameter 9 .

Therefore, we define the approximate input error to be

c2:=Orv-X-1(u) (3.3.11)

so that, using (3.3.10)

,2 =^v (€) (3.3.12)

which is of the form of the linear error equation studied in chapter 2. Although we con

sidered the input error et not to be available, because it would require the realization of a
nonproper transfer function, the approximate input error e2. and the signal v are avail
able, given these considerations.

We also observed in chapter 2 that standard properties of the identification algo
rithms are not affected by the (e) term. For simplicity, we will omit this term in subse

quent derivations.
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Relationship Between the Approximate Input Error and the Input Error
The approximate input error e2 in (3.3.11) can be related to the input error «, in

(3.3.2) by assuming that u=9T w= c0r +F w. and that the controller parameter «
is constant. Then

e2= c0L-Krp) +9n-K*)-L-l(cor)-L-K9Tw)

= c0L-Krp) +9TL-liw)-c0L-Kr)-FL-Kw)

= c0X-1(r,-r)= CoL-Ke,) <33-13)
Equation (3.3.13) shows the relationship between the approximate input error e2. and the
input error et. It should be remembered that it is only valid under the conditions that
u = 9Tw. and that 9 is constant, but this is not necessary for previous derivations.

Assumptions

The algorithm relies on assumptions (A1)-(A3). and the following additional
assumption.

(A4) Bound on the High-Frequency Gain

Assume that an upper bound on kp is known, i.e. that kp < fcraax for some *max.

The structure of the controller and identifier is shown in figure 3.5. while the com
plete algorithm is summarized hereafter. The need for assumption (A4). and for the pro
jection of c0 will be discussed later, in connection with alternate schemes. It will be more
obvious from the proof of stability of the algorithm in section 3.7.

Input Error Direct Adaptive Control Algorithm - Practical Implementation

Assumptions

(A1MA4)

Data

n ,m. /ft (i.e. km.nm.dm ). kmz%

Input

r(r).y,(*)€R



Output

u(r)€R

Internal Signals

wit) 6 R2n ( w(1)(f ). w(2)(r ) € R"-1)

9it) 6R2n (c0(O. </<>(') €R.c(* ).<*(*) CR""1)

v(r) € R^.ez^) € R

Initial conditions are arbitrary, except c0(0) ^cmin = kmf kmax > 0

Design Parameters

Choose

• A€ R"-1*"-1, bk € R"'1 in controllable canonical form, such that

det(5/—A) is Hurwitz, and contains the zeros of n m(5 )

• L _1 stable, minimum phase transfer function of relative degree n —m

• g,y>0

Controller Structure

w(1) = Awa) + bku

w(2) =Aw(2) + &xy,

9r=ic0.cT.d0.dr)

wT=ir.w<l\yp.w<2))

u =9T w

Identifier Structure

vr=((^Zr1(y,).l-1(w<1)r).Z-1(y,).Z-1(w<2>r))

e2= 9Tv-L~Hu)

Normalized Gradient Algorithm with Projection

• e t v
9 = —g ,— if c0 = cmin and c0 <0. then let c0 = 0.

1 +yv* v

61
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Adaptive Observer

The signal generators for w(1) and w<2> ((3.2.17) and (3.2.19)) are almost identical
to those used in chapter 2 for identification of the plant parameters (their dimension is
now n-1 instead of n previously). They are shared by the controller and the identifier.
The signal generators for w(1) and w(2) form a generalized observer, reconstructing the
states of the plant in a specific parametrization. This parametrization has the characteris
tic of allowing the reconstruction of the states without knowledge of the parameters. The
states are used for the state feedback of the controller to the input in what is called a cer

tainty equivalence manner, meaning that the parameters used for feedback are the current
estimates multiplying the states as if they were the true parameters. The identifier with
the generalized observer is sometimes called an adaptive observer since it provides at the
same time estimates of the states and of the parameters.

Separation of Identification and Control

Although we derived a direct adaptive control scheme, the identifier and the con

troller can distinguished. The gains c0. c.d0.d serving to generate u are associated with
the controller, while those used to compute e2 are associated with the identifier. In fact,

it is not necessary that these be identical for the identifier error to be as defined in

(3.3.12). This is because (3.3.12) was derived using the fundamental identity (3.3.10).
which is valid no matter how u is actually computed. In other words, the identifier can

be used off-line, without actually updating the controller parameters if necessary. This is

also useful for example in case of saturation of the input (cf Goodwin and Mayne

(1985)). If the actual input to the LTI plant is different from the computed input

u = 9T w (due to actuator saturation for example), the identifier will still have consistent

input signals, provided that the signal u entering the identifier is the actual input entering

the LTI plant.

33.2 Output Error Direct Adaptive Control

An output error scheme is based on the output error e0 = yp —ym. Note that by

applying /ft L to both sides of (3.3.10). we find

/ftiu) =c-0yp+/fti9*Tw) (3.3.14)
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As before, the control input u is set equal to u =6r w. but now. this equality is

used to derive the identifier error equation

eo =yP -y.4< (« -rrw )-M (r)
c0

=itf((c0-Co)r+(F-rr)w)
Co

=itf(**•*) (3-3.15)
Co

which has the form of the basic SPR error equation of chapter 2. The gradient

identification algorithms of section 2.6 can therefore be used, provided that /ft is SPR.
However, since this requires /ft to have relative degree at most 1. this scheme does not

work for plants with relative degree greater than 1.

The approach can however be saved by modifying the scheme, as for example in
Narendra. Lin. and Valavani (1980). We now review their scheme for the case when the

high-frequency gain kp is known, and we let c0=c0.

The controller structure of the output error scheme is identical to the controller

structure of the input error scheme, while the identifier structure is different. It relies on

the identifier error

e1=J^£(?>rv-yvrve1) (3.3.16)
Co

which is now of the form of the modified SPR error equation of chapter 2. As previously,

v is identical to v. but with the first component removed. Practically. (3.3.16) is not

implemented as such. Instead, we use (3.3.10) to obtain

e1=X/ftt(9rv-L'1iu) +Cci/ftL)-1iyp)-yvrvel)
Co

=yp - X /ft iu)+ X /ft Li9r l-H^-y^ *eO (3.3.17)
c0 c0

As before, the control signal is set equal to u=9Tw =c0 r +9T w. and the equal

ity is used to derive the error equation for the identifier

€l =y -/ftir)--L/fti9rw)+X /ft Li9T L-xiw)-yvT ve^)
p Co c0
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=v _v -iiil£((Z-Iffr-F£-l)(w) +yvrv«i) (3-3.18)yp ym -^

Again, the identifier error involves the output error e0 =yP -y«. The additional term,
which appeared somewhat mysteriously starting with the work of Monopoli (1974). is
denoted

ya=JJ-^Z((Z-1F-F£-1)(w) +yv7"ve1) (3.3.19)
Co

and the resulting error «!-?,-*.-** called the augmented error, in contrast with
the original output error e0 = yp —ym-

The error (3.3.16) is of the form of the modified SPR error equation of chapter 2
provided that Mlisa strictly positive real transfer function. If this condition is
satisfied, the properties of the identifier will follow, and are the basis of the stability
proof of section 3.7.

Assumptions

The algorithm relies on assumptions (Al)-(A3). and the following assumption.

(A5) High-Erequency Gain and SPR Assumptions
Assume that *, is known, and that there exists L'K a stable, minimum phase
transfer function of relative degree n-m-1. such that /ft L is SPR

The practical implementation of the algorithm is summarized hereafter.

Output Error Direct Adaptive Control Algorithm -Practical Implementation

Assumptions

(A1MA3). (A5)

Data

n,m./ft (i.e. km ,nm . d m ).kp

Input

rit).ypit) 6R

Output



uit) €R

Internal Signals

wit) € ^-Hw^itlw^it) € R""1)

9it ) 6 R2""1 icit ). d it) € R1*-1. d0it) 6 R )

vXOeR2"-1

ei(0.ya(').ym(0 €R

Initial conditions are arbitrary

Design Parameters

Choose

• A6 R"-1**-1, bK eJ?""1. in controllable canonical form, such that

det(*/—A) is Hurwitz. and contains the zeros of nmis )

• L~l stable, minimum phase transfer function of relative degree n-m-1.

such that /ft L is SPR

• g.y >0

Controller Structure

w(1)= Aw(1) + K"

w{2) = Aw{2) + bkyp

9T=icT.d0,dT)

wr=iw^T.yp.w^2)T)

c'o=km/kp>0

u =c*q r +0r w

Identifier Structure

vr=Z-1(w)

ym=A?(r)

ya =-i-jtfZ (£->(r vv )-9T L'liw )-yvrve,)
co

e i = y, - ym — ya

65
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Gradient Algorithm

9=-g eYv

D

Differences between input and output error

Traditionally, the starting point in the derivation of model reference adaptive con
trol schemes has been the output error e0 =yp -ym. Using the error between the plant
and the reference model to update controller parameters is intuitive. However, stability
considerations suggest that SPR conditions must be satisfied by the model, and that an
augmented error should be used when the relative degree of the plant is greater than 1.
The derivation of the input error scheme shows that model reference adaptive control can
in fact be achieved without formally involving the output error, and without SPR condi

tions on the reference model.

Important differences should be noted between the input and output error schemes.
The first is that the derivation of the equation error (3.3.18) from (3.3.16) relies on the
input signal u being equal to the computed value u=9T w. at all times. If the input
saturates, updates of the identifier will be erroneous. When the input error scheme is
used, this problem can be avoided, provided that the actual input entering the LTI plant is
available and used in the identifier. This is because (3.3.12) is based on (3.3.10). and does
not assume any particular value of u. If needed, the parameters used for identification
and control can also be separated, and the identifier can be used "off-line".

Asecond difference appears between the input and output error schemes when the
high-frequency gain kp is unknown, and the relative degree of the plant is greater than 1.
The error e, derived in (3.3.16) is not implementable if c0 is unknown. Although an
SPR error equation can still be obtained in the unknown high-frequency gain case, the
solution proposed by Morse (1980) (and also Narendra. Lin. and Valavani (1980))
requires an overparametrization of the identifier which excludes the possibility of asymp
totic stability even when PE conditions are satisfied (cf. Boyd and Sastry (1984). Ander
son. Dasgupta. and Tsoi (1985)). In view of the recent examples due to Rohrs. and the
connections between exponential convergence and robustness (see chapter 5). this appears
to be a major drawback of the algorithm.
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Another advantage of the input error scheme is to lead to a linear error equation for

which other identification algorithms, such as the least-squares algorithm, are available.

These algorithms may be an advantageous alternative to the gradientalgorithm.

Output Error Direct Adaptive Control - The Relative Degree 1 Case

The condition that M L be SPR is considerably stronger than the condition that

A? L simply be invertible (as required by the input error scheme, and guaranteed by

(A2)). The relative degree of L~l however is only required to be n —m —1. as compared

to n —m for proper invertibility. In the case when the relative degree n —m of the

model and of the plant is 1, L-1 is unnecessary along with the additional signal ya. The

output error direct adaptive control scheme then has a much simpler form, in which the

error equation used for identification involves the output error e0 = yp —ym only. The

simplicity of this scheme makes it attractive as an example of adaptive control. We

assume now

(A6) Relative Degreee 1 Assumption

n — m = 1

Output Error Direct Adaptive Control Algorithm, Relative Degree 1 - Practical

Implementation

Assumptions

(A1MA3). (A6)

Data

n . $ ( i.e. km.nm,am \kp

Input

r(0.yp(f)€R

Output

u U ) € R

Internal Signals

*v(r)€R2/l (w(1)(r).w(2)(0 CR""1)
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0(0 € R2" ( c0(t ). d0(t ) € R. c(0. </ (O 6 R""1)

ym(r).e0(O ^R

Initial conditions are arbitrary

Design Parameters

Choose

• A€ j?"-1*"-1, 6X € tf"""1 in controllable canonical form, and such that

det (si—A) = nm(s)

•g >o

Controller Structure

w(1) = Aw(1) + fcX"

w(2) = Aw{2) + bxyp

9r = (c0.cT.d0.dT)

wT=(rw(irrtyptW(2f)

u = 0r w

Identifier Structure

eo=yP -ym

Gradient Algorithm

9 =-g e0w

D

Output Error Equation

The identifier error equation is (3.3.15). and is the basic SPR error equation of

chapter 2. The high-frequency gain kp (and consequently c0) can be assumed to be unk

nown, but the sign of kp must still be known to ensure that c'0 >0. so that (1/ c*0 )M is

SPR.
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333 Indirect Adaptive Control

In the indirect adaptive control scheme presented in this section, estimates of the
plant parameters kp. n,. and dpare obtained using the standard identifier of chapter 2.
The controller parameters c0.c.d are then computed using the relationships resulting

from the matching equality (3.2.6).

Note that the dimension of the signals w(1). w(2) used for identification in chapter 2

is n. the order of the plant. For control, it is sufficient that this dimension be n-1.
However, in order to share the observers for identification and control, we will let their
dimension be n. Proposition 3.2.1 is still true then, but the degrees of the polynomials
become respectively: fr=n. $\o =n-m. dq=n-m, $d=n-l. and Qc=n-l.
Since e^ =n -1. it can be realized as dT (si -A)"1*, without the direct gain d0 from
yp. This a (minor) technical difference, and for simplicity, we will keep our previous
notation. Thus, we define

qT .= {crdr) €R2n wr .= (w(i>r.w(2)r) eR2« (3.3.20)

and

er:=(coer)€R2«+i wr:=(r.vvr)€R2n+1 (3.3.21)

The controller structure is otherwise completely identical to the controller structure

described previously.

The identifier parameter is now different from the controller parameter 9. We will

denote, in analogy with (2.2.17)

^:=(a^):=(Gl. ••am+1.0. •••.^. -bJeR2" (33.22)

Since the relative degree is assumed to be known, there is no need to update the
parameters am+2.... so that we let these parameters be zero in (3.3.22). The corresponding
components of Ware thus not used for identification. We let wbe equal to wexcept for
those components which are not used, and are thus set to zero, so that

~r := (wp). •••w^Vi.O ••• .w(2)T) €R2" (33.23)

Aconsequence (that will be used in the stability proof in section 3.7) is that the
relative degree of the transfer function from u -w is at least 1. while the relative degree
of the transfer function from u -»w is at least n —m.
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The nominal value of the identifier parameter it can be found from the results of

chapter 2 through the polynomial equalities in (2.2.5). that is

a'(s) = a\ +a'2 s + ••a^+i sm =kpnp(s)

V(s)=b\+b2s+ •Ks"-1 =\(s)-ap(s) (33.24)

The identifier parameter error is now denoted

*:=7r-V 6R2" (3-335)

The transformation tt-0 is chosen following acertainty equivalence principle to be
the same as the transformation w* -tf\ as in (3.2.7M3.2.9). Note that our estimate of
the high-frequency gain kp is am+1. Since c*0 =kml kp,w will let c0 =km/ am+1. The
control input u will be unbounded if am+1 goes to zero, and to avoid this problem, we
make the following assumption.

(A7) Bound on the High-Frequency Gain

Assume kp ^km\n >0.

The practical implementation of the indirect adaptive control algorithm is summar

ized hereafter.

Indirect Adaptive Control Algorithm - Practical Implementation

Assumptions

(A1MA3). (A7)

Data

n . m. M (i.e. km,nm,dm ). km\u

Input

r(t),yp(t)€R

Output

u(t)eR

Internal Signals

w(t) € R2"+1 (w(1)(r). w(2)(r) € R" )



9(t) € R2"*1 (c0(t ) € R. c(t ). d(t ) € R" )

7Kr)€R2n (a(f).6(r)€Rn)

w(t)€R2n

yi(t),e3(t) 6R

Initial conditions are arbitrary, except am+i(0) >A: min

Design Parameters

Choose

• A€ R"^ . ^\ €Rn in controllable canonical form, such that

det(^7 - A)=\(s ) is Hurwitz. and \(s) =X0(* )nm(* )

• g,y>0

Controller Structure

w(1) = Aw(1)+ fcxu

w{2) = Aw{2) + bkyp

9T =(c0.cr.dr) =(c0.C1. ••€„.<*!. ' ••<*„)

w7-=(riW(l)r,w(2)r)

Identifier Structure

irr=(ar.6r) =(a1. ••• am+1.0 ••• .61. •••6,)

w=(wi1>. ..•wflSV1.0---.w<2)r)

€3 =7/ w—y,

Normalized Gradient Algorithmwith Projection

7T =-a *3Z ~ if cfll+i =*minanda/n+i <0. then let am+1 =0
l+ywrw

Transformation Identifier Parameter-* Controller Parameter

Let the polynomials with time-varying coefficients

a(s) =al+..Mm+1sm c(s)= cx +...c„ 5""1
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t(s) = b1 + ...bnsn-1 d(s)= rf1 + ..^„5n-1

Divide X0 ^ mby (X - S). and let g be the quotient

9 is given by the coefficients of the polynomials

- « 1 - ~
c = A — q a

G/n+l

(S\--ql —Xo^m)

and by

c0=-
Gm+1
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Transformation Identifier Parameter -»Controller Parameter

We assumed that the transformation form the identifier parameter 7r to the con

troller parameter 0 is performed instantaneously. Note that X-S is a monic polynomial,
so that q is also a monic polynomial (of degree n - m). Its coefficients can be expressed

as the sum of products of coefficients of \02mand X- h. The same is true for c. d. and
c0 with an additional division by am+i. Therefore, given n and m. the transformation

consists of a fixed number of multiplications, additions, and a division.

Note also that if the coefficients of a and I are bounded, and if am+i is bounded
AAA

away from zero (as is guaranteed by the projection), then the coefficients of q. c. d . and

c0 are bounded. Therefore, the transformation is also continuously differentiable. and has

bounded derivatives.

33.4 Connections to Alternate Schemes

The input error scheme is closely related to the schemes presented in discrete time

by Goodwin and Sin (1984). and in continuous time by Goodwin and Mayne (1985).
Their identifier structure is identical to the structure used here, but their controller struc

ture is somewhat different. In our notation. Goodwin and Mayne choose

ti(s) =k "^ (3.3.26)
MUJ m\(s)l(s)

where n. X and L are polynomials of degree <n . n. and n—m respectively. The
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polynomials X. L are used for similar purposes as in the input error scheme. However.
except for possible pole-zero cancellations. \L now also defines the model poles in

(33.26)! The filtered reference input

r=k ?(*} (r) (33.27)

is used as input to the actual controller. Then, the transfer function r -+yp is made to
match X"1. so that the transfer function from r -+yp is A?. Thus, by prefiltering the

input, the control problem of matching atransfer function iti is altered to the problem of
matching the arbitrary all-pole transfer function L~l.

The input error adaptive control scheme of section 3.3.1 can be used to achieve this
new objective, and is represented on figure 3.6. This scheme is the one obtained by
Goodwin and Mayne (up to a small remaining difference described hereafter). Since the
new model is L'1. the new transfer function ^ Z is equal to 1. Note that, in this

instance, the input and output errors are identical, and the input and output error

schemes are verysimilar. The analysis isalso considerably simplified.

Goodwin and Mayne's algorithms essentially control the plant by reducing the

transfer function to an all-pole transfer function of relative degree n-m. The additional

dynamics are provided by prefiltering the reference input. Thus, the input error scheme
presented in section 33.1 is amore general scheme, allowing for the placement of all the
closed-loop poles directly at the desired locations without prefiltering.

Note that since identification and control can be separated in the input error scheme,

we may identify 1/ c0 and 0/ c0. rather than c0 and 0. This is shown in figure 3.6. By
dividing the identifier error e2 byc0, the appropriate linear error equation may be found

and used for identification.

The problems encountered are different depending whether we identify c0 or 1/ c0.
If we identify 1/ c0. as we did in the indirect scheme, the control input u=c0r +9 w
will be unbounded if the estimate of 1/ c0 goes to zero. To avoid the zero crossing, we

require knowledge of the sign of 1/ c0 (i.e. of kp ). and of a lower bound on 1/ c0. i.e. a
lower bound on kp to be used with the projection algorithm.

If we identify c0 directly, as we did in the input error scheme, a different problem

appears. If c0 =0. and 0=0. then u=0. and e2 =0 (cf. figure 3.5). No adaptation will
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occur (<£ =0) although yp -ym does not tend necessarily to zero, and may even be
unbounded. This is an identification problem, since we basically lose information in the

regression vector. To avoid it. we require the knowledge of the sign of c0 (i.e. of kp ). and
a lower bound on c0. i.e. an upper bound on kp. to be used by the projection algorithm.

3.4 The Stability Problem in Adaptive Control

Stability Definitions

Various definitions and concepts of stability have been proposed. A classical

definition for systems of the form

x=f(t.x) (3-4.1)

is the stability in the sense of Lyapunov defined in chapter 1.

The adaptive systems described so far are of the special form

x=f(t.x.r(t)) (3-4.2)

where r is the input to the system, and x is the total state of the system, including the
plant, the controller, and the identifier. For practical reasons, stability in the sense of
Lyapunov is not sufficient for adaptive systems. As we recall, this definition is a local
property, guaranteeing that the trajectories will remain arbitrarily close to the equili
brium, when started sufficiently close. In adaptive systems, we do not have any control on
how close initial conditions are to equilibrium values. Anatural stability concept is then

the bounded-input bounded-state stability (BIBS): for any r (.) bounded, and x0 €Rn . the
solution *(.) remains bounded. This is the concept of stability that will be used in this

chapter.

The Problem of Proving Stability in Adaptive Control

The stability of the identifiers presented in chapter 2 was assessed in theorem 2.4.5.
There, the stability of the plant was guaranteed independently. In adaptive control, the
stability of the plant must be guaranteed by the identifier, which seriously complicates
the problem. The stability of the overall adaptive system, which includes the plant, the
controller, and the identifer. must then be considered.
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To understand the nature of the problem, we will take a general approach in this

section, and consider the generic model reference adaptive control system shown in figure

3.7. The signals and systems defined previously can be recognized. 0 is the controller
parameter, and tt is the identifier parameter. In the case of direct control. 0=ir. i.e. the
parameter being identified is directly the controller parameter. The identifier error may be
the output error e0 =yP -y*. the input error e, =r, -r. or any other error used for

identification.

The problem of stability can be understood as follows. Intuitively, the plant with

the control loop will be stable if 0 is sufficiently close to the true value 0*. However, as
we saw in chapter 2. the convergence of the identifier is dependent on the stability and

persistent excitation of signals originating from the control loop.

To break this circular argument, we must first express properties of the identifier

that are independent of the stability and persistency of excitation of these signals. Such
properties were already derived in chapter 2. and were expressed in terms of the identifier
error. Recall that the identifier parameter error *•- if does not converge to zero, but that

only the identifier error converges to zero in some sense. Thus, we cannot argue that for t
sufficiently large, the controller parameter 0 will be arbitrarily close to the nominal value

that stabilizes the plant-control loop.

Instead of relying on the convergence of 0 to 0* to prove stability, we can express

the control signal as anominal control signal - that makes the controlled plant match the

reference model -. plus acontrol error. The problem then is to transfer the properties of

the identifier to the control loop, i.e the identifier error to the control error, and prove sta

bility. Several difficulties are encountered here. First, the transformation 0(ir) is usually
nonlinear. In direct adaptive control, the transformation is the identity, and the proof is

consequently simplified. Another difficulty arises however from the different signals v
and w used for identification and control. A major step will be to transfer properties of

the identifier involving v to properties of the controller involving w. Provided that the

resulting control error is a "small" gain from plant signals, the proof of stability will
basically be a small gain theorem type of proof, ageneric proof to assess the stability of

nonlinear time varying systems (cf. Desoer and Vidyasagar (1975)).
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3.5 Analysis of the Model Reference Adaptive Control System

We now return to the model reference adaptive control system presented in sections

3.1-3.3. The results derived in this section are the basis for analyses presented in this and

following chapters. Most identities involve signals which are not available in practice

(since P is unknown), but are well-defined for the analysis. Most results also rely on the

control input being defined by

u=9T w

9T =(c0.cr.d0,dr)

wr = (r.w<1)T.yp.w™T) (3.5.1)

Error Formulation

It will be useful to represent the adaptive system in terms of its deviation with

respect to the ideal situation when 0 = 0*, i.e. <f> = 0. This step is similar to transfering

the equilibrium point of a differential equation as (3.4.1) tox = 0 by a change of coordi

nates.

Recall that we defined rp in (33.1) as

rp=ti-l(yp) (3.5.2)

while

ym=M(r) (3.5.3)

Applying L to (3.3.10). it follows, since 0* is constant, that

u =c*0rp +0*7iv (3.5.4)

and. since u is given by (3.5.1),

rp =r + X- 4>T w (3.5.5)
c0

Further, applying & to both sides of (3.5.5)

y =;ym +J^G^w) (3.5.6)
CO
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The signal <f>rw will be called the control error. We note that the input error

et -rp —r is directly proportional to the control error <f>r w (cf (3.5.5)). while the output
error e0 =yp —ym is related to the control error through the model transfer function A?
(cf (3.5.6)).

Since yp =P (u) =M(rp), the control input can also be expressed in terms of the

control error as

u=p-lti(rp)=p-1M(r+X<f>rw)
F c0

and the vector w is similarly expressed as

w
(l)

w =

w 6) (si-Ar^iti
(r +4-*rw)

c0

while v (cf. (3.3.9)) is given by

v=Z"1
(sI-Aylbkp-lM

M
(sI-A)~1bkM

For the purpose of the analysis alone, we will define

(r + X<f>Tw)
Co

z :=L(v) = L
w

bI-Arlbx,P-lI&

(sI-A^b^
(r +4-<£rw)

Co

(3.5.7)

(3.5.8)

(3.5.9)

(3.5.10)

Note that the transfer functions appearing in (3.5.6)-(3.5.10) are all stable (using

assumptions (A1)-(A2). and thedefinitions of Aand L~l).

Model Signals

The model signals are defined as the signals corresponding to the plant signals when

0=0*. i.e. <f> = 0. As expected, the model signals corresponding to yp and rp are ym and

r respectively (cf (3.5.6) and (3.5.5)). Similarly, we define

Wm «—

(1)
n

m

(2)

:= &.* (r)

A?
(jz-Ar^xtf

(r)

(3.5.11)



and

vm-L-Kzm)-L-1
(sI-AT^^P-^M

M
(sI-AYxbkti

By defining

Wm .—
Wr

we note the remarkable fact that

wm =z,
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(r) (3.5.12)

(3.5.13)

(3.5.14)

Since the transfer functions relating r to the model signals are all stable, and since r

is bounded (assumption (A3)), it follows that all models signals are bounded functions of
time. Consequently, if the differences between plant and model signals are bounded, the

plant signals will be bounded.

State-Space Description

We now show how a state-space description of the overall adaptive system can be

obtained. In particular, we will check that no cancellation of possibly unstable modes

occurs when 0=0.

The plant has a minimal state-space representation [Ap.bp,cp ] such that

dp\s )
(3.5.15)

With the definitions of w(1). w(2) in (3.2.17)-(3.2.19). the plant with observer is

described by

xp =Apxp+bpu

w(1) = Aw(1) + ^«

w<2> =Aw(2) +&ov=Aw(2) +&xc,r*, (3.5.16)

The control input u can be expressed in terms of its desired value, plus the control

error <f> w , as



so that

u =0r w =9'Tw +<f>T w

x

w

w

p

(1)

(2)

Ap+bpd'0cpT bpcT bpd'T
bkdoCpr A+bKctT bkd'r

bkcl 0 A

h K
bK <f>r w + bk

0 0

c0 r

yp —cp xp

3n-2

p

(i)

(2)
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(3.5.17)

(3.5.18)

Defining xpw €R3n "2 to be the total state of the plant and observer, this equation is

rewritten

xpw =Am xpw +bm4>T w +bmcQr

_ T (3.5.19)

where Am €R3«-2x3n-2 ^ 6R3n~2 and cm €R3n"2 are defined through (3.5.18). Since

the transfer function from r ->yp is M when <f> =0. we must have that

d (si - Am r1 *m =(1/ c0 ) A?(j ). i.e. that [Am.6m.c£] is a representation of the model

transfer function, divided by c0. Therefore, we can also represent the model and its out

put by

Xm — Am Xm T Dm C0 ~

_ T
ym "— Cnj Xfi

(3.5.20)

Note that although the transfer function A? is stable, its representation is non-

minimal, since the order of A? is n, while the dimension of Am is 3n —2. It can be

checked, using the Popov-Belevitch-Hautus rank test (Kailath (1980). p. 136). that

(Am .£/n ) »s a controllable pair. We can find where the unobservable modes are located by

noting that the representation of the model is that of figure 3.8. Using standard transfer

function manipulations, but avoiding cancellations, we get

kp np \

c/J(5/-^m)-16m =
a-~c')d

1-
kHnn\
"p '*p

(k-c')dp T



kp \np Xonm
X((X-c )dD-kpnpd )

"p "p

and. using the matching equality (3.2.6)

T( t a Y-iA - * ir *m hhlL.= 1 A?cm r (si -Am) lbm -s- km -t— , » « - -i- iw
C0 «m AAo/lp C0
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(3.5.21)

(3.5.22)

Thus, the unobservable modes are those of \. \0. and n,. which are all stable by choice of

\,\0. and by assumption (Al). In other words. Am is a stable matrix.

Since r is assumed to be bounded and Am is stable, the state vector trajectory xm is

bounded. We can represent the plant states as their differences with the model states, let

ting the state error e =xpw —xm €R3n ~2. so that

e = Am e + bm <f>T w

and

eo = yP "ym =c£e

e0 =yP-ym =X^(4>rw) =l(i(X<f>r^)
c0 c0

(3.5.23)

(3.5.24)

which is (3.5.6). derived above through a somewhat shorter path.

Note that (3.5.23) is not a linear differential equation representing the plant with

controller, because w depends on e. This can be resolved by expressing the dependence of

w on e as

where

(2 =

0 0 0

0/0

cpT 0 0 fc

0 0/

w = wm + Q e

plXn plXn-1 |^lXn-l

pn —lXn |V»-lXn -1 j^n —lXn —1

plXn j^lXn-1 j^lXn-1

jnn—lXn pn -lXn -1 pn —lXn —1

= w* 2n X3/I—2

A differential equation representing the plant with controller is then

e =Ame +bm<f>Twm+bm<f>rQe

e i = cL e

(3.5.25)

(3.5.26)

(3.5.27)
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where wm is an exogeneous. bounded input.

Complete Description - Output Error, Relative Degree 1Case
To completely describe the adaptive system, one must simply add to this set of

differential equations the set corresponding to the identifier. For example, in the case of
the output error adaptive control scheme for relative degree 1plants, the overall adaptive
system (including the plant, controller, and identifier) is described by

e =Ame + bm<f>T wm+bm<f>T Qe
t t no (3.5.28)4> = -g cmewm-g cmeQe

As for all adaptive control schemes presented in this work, the adaptive control scheme is
described by anonlinear time varying ordinary differential equation. This specific case
will be used in subsequent chapters as aconvenient example.

3.6 Useful Lemmas

The following lemmas are useful to prove the stability of adaptive control schemes.
Most lemmas are inspired from lemmas that are present in one form or another in existing
stability proofs. In contrast with Sastry (1984). and Narendra. Annaswamy. and Singh
(1985). we do not use any ordering of signals (order relations o(.) and 0(.)). but keep
relationships between signals in terms of norm inequalities.

The systems considered in this section are of the general form

y=tf(u) (3.6.1)

where HiL^-L,* is aSISO causal operator, that is. such that

yt=(H(u,n <3-6'2)

for all ti €/,„ .and for all t *0. Lemmas 3.6.1-3.6.5 further restrict the attention to LTI
systems with proper transfer functions n (s ).

Lemma 3.6.1 is astandard result in linear system theory, and relates the Lp norm

of the output to the Lp norm of the input.
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Lemma 3.6.1 BIBO Stability

Let y=#(«). where tf is a proper, rational transfer function. Let h be the impulse
response corresponding to H.

// 6 is stable

Then for all p € [1.oo], and for all u € Lp

|yB, ^B/iUuBp+BeB, (3.6.3)

for all «€/,„«

ly(Ol^fcU«rk+'€(')' forall< **° (3>6'4)
where e(t ) is an exponentially decaying term due to the initial conditions.

Proof of Lemma 3.6.1 cf. Desoer and Vidyasagar (1975). p. 241.

It is useful, although not standard, to obtain a result that is the converse of lemma
3.6.1. i.e. with u and y interchanged in (3.6.3)-(3.6.4). Such a lemma can be found in
Narendra. Lin. and Valavani (1980). Narendra (1984). Sastry (1984). Narendra.
Annaswamy. and Singh (1985). for />=« . Lemma 3.6.2 is a version that is valid for
p €[l.oo], with acompletely different proof (see appendix).

Note that if A is minimum phase, and has relative degree zero, then it has a proper

and stable inverse, and the converse result is true by lemma 3.6.1. If 6 is minimum
phase, but has relative degree greater than zero, then the converse result will be true pro
vided that additional conditions are placed on the input signal u. This is the result of

lemma 3.6.2.

Lemma 3.6.2 BOBI Stability

Let y=6 (u ), where tfis aproper, rational transfer function. Let p6[l, oo].

// /? is minimum phase

For some ktJc 2>0, and for allt >Q,u,.ut 6 L^ . and

ll2rl<*ll«rl+*2 (3>6-5)

Then there exist a i. a 2 >0 such that

lut\p <al\ytlp+a2 &*&
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for all t >0.

Proof of Lemma 3.6.2 in appendix.

It is also interesting to note the following equivalence, related to £„ norms. For all

a . b € L^e

\a(t)\**k1Wtleo+k2 »ff lflfk<*ll*ri»+*2 <3'6-7)

The same is true if the right-hand side of the inequalities is replaced by any positive,
monotonically increasing function of time. Therefore, for p=00 . the assumption (3.6.5)
of lemma 3.6.2 is that u is regular (cf. definition in (2.4.14)). In particular, lemma 3.6.2
shows that if u is regular and y is bounded, then u is bounded. Lemma 3.6.2 therefore

leads to the following corollary.

Corollary 3.6.3 Properties of Regular Signals

Let y=H(u). where fi is a proper, rational transfer function. Let 6 be stable and
minimum phase.

(a) if u is regular

then lu(r)l<aifly, 800+^2 for all r £0

(b) if u is bounded, and 6 is strictly proper

then y is regular

(c) if u is regular

then y is regular

The properties are also valid if u and y are vectors such that each component y-g of y is
related to the corresponding u, through y,=H ("i )•

Proof of Corollary 3.6.3 in appendix.

In chapter 2. a main property of the identification algorithms was obtained in terms
of a gain belonging to L2. Lemmas 3.6.4 is useful for such gains appearing in connection
with systems with rational transfer function H.
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Lemma 3.6.4

Let y =6 (u ). where i? is a proper, rational transfer function.

// A is stable, u €/,„,. and for some xGI.e

luCOKfrCOlx, (.+ &(*) (3-6-8)

for all t >0. and for some fa. fa € £2

TTicn there exist V1.V2 € Z,2 such that, for all* ^ 0

iy(Oi*yi(Oi*,l.+ y*(0 (3'6*9)

// in addition, either # is strictly proper.

or fa.fa €/,«. and fr(f ). fcfc ) -*0 as t - 00

77ien y1.y2£Loo.&ndyl(t).y2(t)-*0ist -00

Proof of Lemma 3.6.4 in appendix.

The following lemma is the so-called swapping lemma (Morse 1980). and is essential
to the stability proofs presented in section 3.7.

Lemma 3.6.5 Swapping Lemma

Let <f>. w:R+ -Rn . and <f> be differentiable. Let # be a proper, rational transfer func

tion.

// A is stable, with a minimal realization

£=cr(sI-A)-lb+d (3.6.10)

Then

#(w'»-.0(wr)*=J?c(#»(»'7'>* ) (3611)

where

/?„ =(,/-.4)-6 rf.-c'W-iir1 (3.6.12)

Proof of Lemma 3.6.5 in appendix.

Lemma 3.6.6 is the so-called smaVL gain theorem (Desoer and Vidyasagar (1975)).
and concerns general nonlinear time-varying systems connected as shown in figure 3.9.
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Roughly speaking, the small gain theorem states that the system of figure 3.9. with

inputs ui.u2. and outputs y\.y2 is BIBO stable, provided that Hi and H2 are BIBO stable.

and provided that the product of the gains of Hx and H2 is small enough (less than l).

Lemma 3.6.6 Small Gain Theorem

Consider the system shown in figure 3.9. Let p € [l.oo]. Let H\. H2:Lpt -*L^ be

causal operators. Let e l# e 2 € Lp, . and define u j, u2 by

«i = ei+H2(e2)

u2 = e2-#i(ei) (3.6.13)

Suppose that there exist constants fa, fa. and y\. y2 ^0. such that

l/f1(e1)rKy1Bcltl +/31

\H2(e2\ \ <v2 >e2i I+ fa for all t >0 (3.6.14)

If Vi?2<l

Then

\elt\ ^(l-Vi^)"1 (B"itl+?2l«2tl+/32 +V2l3i)

le2tl<(l-yiy2)"1(>«2t,+ Vi>"ie' +/5i +yi/82) for all r £0 (3.6.15)

// in addition. U|. u2 € Z,^

T/ien «!. e2, yi = H^eO. yi = H2(e2) € Zp. and (3.6.15) is valid with all subscripts

t dropped.

Proof of lemma 3.6.6 cf. Desoerand Vidyasagar (1975). p. 41.

3.7 Stability Proofs

3.7.1 Stability - Input Error Direct Adaptive Control

The following theorem is the main stability theorem for the input error direct adap

tive control scheme. It shows that, given any initial condition, and any bounded input

r (t), the states of the adaptive system remain bounded (BIBS stability), and the output

error tends to zero, as t -»co. Further, the error is bounded by an L2 function.
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We also obtain that the difference between the regressor vector v and the

corresponding model vector vm tend to zero as t -»oo, and is in L2. This result will be

useful to prove exponential convergence in section 3.8.

We insist that initial conditions must be in some small Bh, because although the

properties are valid for any initial conditions, the convergence of the error to zero, and the

L2 bounds are not uniform globally. For example, there does not exist a fixed L2 func

tion that bounds the output error, no matter how large the initial conditions are.

Theorem 3.7.1

Consider the input error direct adaptive control scheme described in section 3.3.1. with

initial conditions in an arbitrary Bh .

Then

(a) all states of the adaptive system are bounded functions of time.

(b) the output error e0 = yp —ym € L2. and tends to zero as t ->oo

the regressor error v —v,„ € L2, and tends to zero as t -»oo.

Comments

The proof of the theorem is organized to highlight the main steps that we described

in section 3.4.

Although the theorem concerns the adaptive scheme with the gradient algorithm,

examination of the proof shows that it only requires the standard identifier properties

resulting from theorems 2.4.1-2.4.4. Therefore, theorem 3.7.1 is also valid if the normal

ized gradient algorithm is replaced by the normalized LS algorithm with covariance reset

ting.

Proof of Theorem 3.7.1

(a) Derive properties of the identifier that are independent of the boundedness of the

regressor

These results were obtained in theorems 2.4.1-2.4.4. and led to

l#t)v(Ol = 0(t)lvrU+0(*)
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^€L2n/,eo

<£€/,« * SLiM^

c0(O^cmin>0 forallr^O (3-7.1)

The inequality for c0(t) follows from the use of the projection in the update law.

(b) Express the system states and inputs in term ofthe control error

This was done in section 3.5. and led to the control error <f>r w . with

rp = r + -r <pl w

u=p-lti(rp)

yP
=i^(rp) =ym+i^(0rw)

w —

(sI-ATlbkP~lM
M

(sI-AYlbkM

m C0
= w

(r, )=#„-:(rp)

(3.7.2)

where the transfer functions A? and fi r* are stable and strictly proper.
at

(c) Relate the identifier error to the controlerror

The properties of the identifier are stated in terms of the error <f>T v =<f>T L~l(z ).
while the control error is 4>r w. The relationship between the two can be examined in

two steps,

(cl) Relate <f>T w to <f>r z

Only the first component of w.namely r. is different from the first component of z ,

namely rp. The two can be related using (3.5.4), that is

u=car0+FTw (3.7.3)•0 rp

and using the fact that the control input u =c0r +9 w to obtainusing

r. =4- (c0r +$rw)=r +X-<t>T w (3.7.4)

Co Co

and
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r =J- (c0 rp -<? w) =rp - -L tf w (3.7.5)
c0 " r p Co

It follows that

<j>T w =(c0 —c0)r +$r w

that is

= —- c0 r. & w + $' w
c0 p c0

=£i((co-co)r,+?rw)=f°0rz (3.7.6)
c0 co

J^ 02" w=J- 0r 2 (3.7.7)
c0 c0

(c2) Relate <f>r z to <f>r v = <f>T L _1 (z )

This relationship is obtained through the swapping lemma (lemma 3.6.5). We have,

with notation borrowed from the lemma

L-H±.<f>T z)=±4>Tv+lc-l(Lr1(zn(-£-)) (3.7.8)
c0 c0 c0

and. using (3.7.7) with (3.7.8)

JjrM(0rw) =^Z(X-1(4r07"w)) =A?Z(Z-1(i-0rr))
c0 c0 co

=^X(-1.07'v)+^£Zc-1(Xr1(zO(i-)) (3.7.9)
c0 Co

With (3.7.2). this equation leads to figure 3.10. It represents the plant as the model

transfer function with the control error <f>T w in feedback. The control error has now

been expressed as a function of the identifier error <f>r v using (3.7.9).

The gain <f>T operating on v is equal to the gain 0 operating on 1v, ^ . and this gain

belongs to L2. On the other hand. 0 €L2. so that any of its component is in L2. In par

ticular c0 €L2. Also. c0(t )£cmin. so that 1/ c0 €/,„ .Thus. (-£- )€L2. Therefore, in
figure 3.10. the controlled plant appears as astable transfer function ift with an L2 feed
back gain.
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(d) Establish the regularity of the signals

The need to establish the regularity of the signals can be understood from the fol
lowing. We are not only concerned with the boundedness of the output yp. but also of
all the other signals present in the adaptive system. By ensuring the regularity of the sig
nals in the loop, we guarantee, using lemma 3.6.2. that boundedness of one signal implies
boundedness of all the others.

Now. note that since 0 €/,„. the controller parameter 9 is also bounded. It fol
lows, from proposition 1.4.1. that all signals belong to L^ .

Recall from (3.7.4) that

r 4r+i?rw (3.7.10)
p c0 c0

Note that c0 and r are bounded, by the results of (a), and by assumption (A3), w is
related to rp through astrictly proper, stable transfer function (cf (3.7.2)). Therefore,
with (3.7.10). and lemma 3.6.1

Iwl^* l(0rw), !«,+ *

\ *-w\^ki(<f>r *),*„+k (3'711)

for some constant k ZO. To prevent proliferation of constants, we will hereafter use the

single symbol k. whenever such inequality is valid for some positive constant.

Since 0 is bounded, the last inequality implies that

\*-w\^klwtlV)+k (3.7.12)

i.e. that w is regular.

Similarly, since 0 and 0 are bounded, and using (3.7.11)

l-!(0rw)l<l(4-£r)*l+l0r(^-*)l
dt dt ***

^kKtfwl^+k (3.7.13)

so that <f>T w is also regular.
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The output yp is given by. using (3.7.10)

(3.7.14)
Co

where ti(cQr) is bounded. Using lemma 3.6.2. with the fact that 0r w is regular, and

then (3.7.14)

I0rwl <*HOtf(0rw)), L+*

<* lyft l^+k l(M(c0r))t L+*

hence, with (3.7.10) and (3.7.11)

\rp KJH($riF)f IL+* <*>yftH-+*

(3.7.15)

(3.7.16)

Inequalities in (3.7.16) show that the boundedness of yp implies the boundedness of
r .w.u. " • therefore of all the states of the adaptive system.

It also follows that v is regular, since it is the sum of two regular signals,

specifically

v=X"1(z) = L~lw

co

0

L-lX$r w
Co

L~lw
(3.7.17)

where the first term is the output of L~l (a stable and striclty proper, minimum phase

LTI system) with bounded input, while the second term is the output of L~l with areg
ular input (cf. corollary 3.6.3).

(e) Stability proof

Since v is regular, theorem 2.4.6 shows that 0 -»0 as t -»oo. From (3.7.2) and

(3.7.9)

yp
=y/n+i^(0rw)

Co

=y/n+A?Z(J_0''v)+^£Zr1(Zr1(zr)(i)) (3.7.18)
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We will now use the single symbol 0 in inequalities satisfied for some function satisfying

the same conditions as 0. that is 0 € L2 HL^. and 0(*) -»0. as t -»oo.

The transfer functions M L. Lb~l. Zc-1. are all stable, and the last two are strictly

proper. The gain — is bounded by (3.7.2). because of the projection in the update law.
Co

Therefore, using results obtained so far, and lemmas 3.6.1 and 3.6.4

<0lrft|BO+0lwl|B8+/S

<0«y„,ioo+0

<0Q(y,-y^U-fl (3.7.19)

Recall that since 9 €/,«,. all signals in the adaptive system belong to £«,«. . On the

other hand, for T sufl&ciently large. 0(* ^T) < 1. Therefore, application of the small gain

theorem (lemma 3.6.6) with (3.7.19) shows that yp—ym is bounded for t >7\ But since

yp ,ym € L^t. it follows that yp €/,« . Consequently, all signals belong to £«,.

From (3.7.19). it also follows that e0 = yp —ym € L2. and tends to zero as t -»co.

Similarly, using (3.5.9). (3.5.12). and (3.7.9)

v = v* +

1

(sI-AT'biP-1**

(sI-A)-lbkti
(± 0rv+Z<r1Ur1G:r)(i-))) (3.7.20)

Co c0

so that v —vm also belongs to L2. and tends to zero, as t -*oo.

3.7.2 Stability - Output Error Direct Adaptive Control

Theorem 3.7.2

Consider the output error direct adaptive control scheme described in section 3.3.2. with

initial conditions in an arbitrary Bh .

Then

(a) all states of the adaptive system are bounded functions of time.
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(b) the outputerror e0= yp ~ym €L2 and tends to zero as t -*co

the regressor error L~l(w )-L~l(wm) €L2 and tends to zero as t -oo.

Proof of Theorem 3.7.2

The proof is very similar to the proof for the input error scheme, and is just

sketched here, following the steps of the proof of theorem 3.7.1.

(a) we now have, instead

ej,0 €L2

o xti (3.7.21)

Note that these results are valid, although the realization of M is not minimal (but is

stable).

(b) as in theorem 3.7.1.

(c) since Co = c0. (3.7.9) becomes

X #(#• ^)4^L(^ v) +X ML arHLD-KwT)$)) (3.7.22)
c0 c0 c0

(d) as in theorem 3.7.1.

(e) Recall, from (3.3.16) and the definition of thegradient update law. that

±tiL($rv)=e1+XtiL(vrveO=el-^tiL($TV (3.7.23)
7^ c0 8co

so that, with (3.7.22)

yp -ym =X ti t (0r V)+ X ti t (L^d^Hwnm )
Co c0

=e1--^-^X(0v)+i^X(Xc-1(X6-1(wr)0) (3.7.24)
g Co c0

Recall that ex is bounded (part (a)), and that ^ Z is strictly proper (in the output error

scheme). The proof can then be completed as in theorem 3.7.1. D
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3.73 Stability - Indirect Adaptive Control

Theorem 3.73

Consider the indirect adaptive control scheme described" in section 3.3.3. with initial con

ditions in an arbitrary Bh .

Then

(a) all states of the adaptive system are bounded functions of time.

(b) theoutputerror e0 = yp —ym € L2. and tends to zero as t ->co

the regressor error w— wm € L2. and tends to zero as t -*oo.

Comments

Compared with previous proofs, the proof of theorem 3.7.3 presents additional com

plexities due to the transformation ir -*9. A major step is to relate the identification error

0r w to the control error 0r w .

To understand the idea of the proof, assume that the parameters ir and 9 are fixed in

time, and that kp is known. For simplicity, let kp =am+1 = km =1. The nominal values

of the identifier parameters are then given by

A , A

a =np

V=\-2P

The controller parameters are givenas a function of the identifier parameters through

A A «fc A

c =A—qa

2 =ql-qo-\02m (3.7.25)

while the nominal values are given by

c =X—q* a* =X—q* np

2* =q'\-q' V -\0d-m =$' dp -\02m (3.7.26)

It follows that

A A A A g -A A - A A -A A » V /«* A • \ A A

qa—qa =(\-c) —qnp=-(c—c )+ (X—c )-q np

= -(c-c*) + (5* -q)np (3.7.27)



and

q h —q h* =q\ —B—\02m—q\ + qSp

=-G-a*) + (-r-\o2m+idp)

Therefore

a —a , 6 —6 i/>
A A , A A « "

c —c , a —a **,
« I * -jr-
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(3.7.28)

(3.7.29)

This equality of polynomial ratios can be interpreted as an operator equality in the

Laplace transform domain, since we assumed that the parameters were fixed in time. If

we apply the operator equality to the input u. it leads to (with the definitions of section

3.3)

and consequently

q($r w) = —0r w

yP -ym =--i- &q (*r w)
c0

(3.7.30)

(3.7.31)

Since the degree of J isat most equal to the relative degree of the plant, the transfer

function ]& q is proper and stable. The techniques used in the proof of theorem 3.7.1.

and the properties of the identifier would then lead to a stability proof.

Two difficulties arise when using this approach to prove the stability of the indirect

adaptive system. The first is related to the unknown high-frequency gain, but only

requires more complex manipulations. The real difficulty comes from the fact that the

polynomials q .a.h.c. and d" vary as functions of time. Eqn (3.7.29) is still valid as a

polynomial equality, but transforming it to an operator equality leading to (3.7.30)

requires some care.

To make sense of time varying polynomials as operators in the Laplace transform

domain, we define

s„ = (3.7.32)

.n-i
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'iU)-aT"sm 5^I=ar(^-) (3.7.33)
\(s) X

Consider the following equality of polynomial ratios

g(j) - fo) (3.7.34)
I(7T 1(77

where a and h vary with time, but \ is aconstant polynomial. Equality (3.7.34) implies

the following operator equality

aT(i?-(.)) =br(?JLO) (3-7.35)
X X

Similarly, consider the product

gO) &(*) (3.7.36)
x(7T'IoT

This can be interpreted as an operator by multiplying the coefficients of the polynomials
to lead to a ratio of higher order polynomials, and then interpreting it as previously. We

note that the product of polynomials can be expressed as

a(syb(s) = arCsnsj[)b (3-7.37)

so that the operator corresponding to (3.7.36) is

8r(i.,iL (.))*> (3.7.38)
X A

i.e. by first operating the matrix transfer function on the argument, and then multiplying
bya and b in the time domain. Note that this operator is different from the operator

aT( !jL(fjL(.)b)) (3.7.39)
A A

but the two operators can be related using the swapping lemma (lemma 3.6.5).
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Proof of Theorem 3.7.3

The proof follows the stem nf tK« * ,*> me sieps ol the proof of theorpm 1 n 1
(a) 7W h and v onlv sketched here

2.4.1-2.4.4

*€£- <Mz2nz„

<"m+i(O»*mlll>0 forallf^O

The mequality for ara+I(0 follows from the use of,H •
We also „„, „ • Pr°,eCli0n mthe W" "w.We also noted. msection 3.3. that if , is ^^

»». then 0 is also bounded, and the tra„cf • ' +' " *" *Way from
fof coelncients of the pol^a, • ^ *" *""**«^ T* -or
•<*)-•. wore ;r; ;?;;runded-Bydefi——_,„.

ov y ^*«/ *min. for all t ^0

As in theorem 3.7.1.

^t^etn* identifier error to the contra error
we first establish an eoualit^ «<•

that PP Ch UM̂ commen* before the proof, we have

- £ ~t. .. ' ' (3.7.41)

^-"m+lG -<?*) + (-<, ^'13
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(3.7.42)

(3.7.43)

where we divided by XX0 to obtain proper stable transfer functions. The polynomial X0 is
Hurwitz. and q is bounded, so that the operator qT srI X0 is abounded operator.

We now transform this polynomial equality into an operator equality as in the com

ments before the proof. Applying both sides of (3.7.43) to u

-?rii(wn^ =—
Co

(co-co)ti-12-(u) +<l>T X(w)
X0 A0

(3.7.44)

The right-hand side is very reminiscent of the signal z obtained in the input error

scheme. A filtered version of the signal M~lP(u) = rp appears, instead of r. with the

c0 —c0. From proposition 3.3.1. with L =A0 (cf. (3.3.10))error

Co tf-i* J_ (u)= J- («)- X (0'r w)
Xq Xo Aq

(3.7.45)

T .TTand since u =c0r +0 w.it follows that

M-i *L (u) =X (X (c0r)+ X(?T *))
Xq Cq Xq Aq

(3.7.46)

The right-hand side of (3.7.44) becomes, using (3.7.46) followed by the swapping lemma
(and using the notation of the swapping lemma)

f£Zfl J-(Cor)+,L (?rw) +fi (?r „L (*)-J- (?rw))
Aqc0 Xo Xo ' co Xo

•

J-((c0-c0)r)-Xc('Aoc(cor)(^-^-
X0 c°"cT

))



+X($T W)-— Xe OUC"7")*)
X0 c0

98

(3.7.47)

On the other hand, using again the swapping lemma, the left-hand side of (3.7.44)

becomes

qT SJ_ (wT)^ =qT IL (^<r/)-?r$rc (&rt (&W
X0 A0

(3.7.48)

where the transfer functions X^. A^. Sr6. and Src result from the application of the

swapping lemma. The output error is then equal to (using (3.7.2). (3.7.44). (3.7.47).
(3.7.48))

yP -ym =Xti ((co-c'o)r +$r w)
co

1
MXr

J-ATXo

^_ X((c0-c0)r)+X(^rw)
c0 X0 *o

-qr ij_(wTii,) +qTsrc($rb(wT)<j>)
Xo

+^- \c (a* (e.r)( fi-fi))+i=- "^ (X»c«r)?)
c0 co co

(3.7.49)

(d) Establish the regularity of the signals

As in theorem 3.7.1.

(e) Stability Proof

MX0 is astable transfer function, and since qT is bounded. qT srl X0 is abounded
operator. We showed that i/r. $> c0 €L2. so that, from (3.7.49) and part (a), an inequal
ity such as (3.7.19) can be obtained. As before wregular implies that 0-♦0 as t -*©o. The
boundedness of all signals in the adaptive system then follows as in theorem 3.7.1. Simi-
larlyt yp -ym €l2 and tends to zero as t -co. Since the relative degree of the transfer
function from u -+w is the same as the relative degree of P. M. and therefore L~K the

same result is true for w—wm.
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3.8 Exponential Parameter Convergence

Exponential convergence of the identification algorithms under persistency of excita
tion conditions was established in sections 2.5 and 2.6. Consider now the input error

direct adaptive control scheme of section 3.3.1. Using theorem 2.5.3. it would be straight
forward to show that the parameters of the adaptive system converge exponentially to

their nominal values, provided that the regressor v is persistently exciting. However,

such result is useless, since the signal v is generated inside the adaptive system, and is

unknown a prion. Theorem 3.8.1 shows that it is sufficient for the model signal wm to be

persistently exciting to guarantee exponential convergence.

Note that in the case of adaptive control, we are not only interested in the conver

gence of the parameter error to zero, but also in the convergence of the errors between
plant states and model states. In other words, we are concerned with the exponential sta

bility of the overall adaptive system.

Theorem 3.8.1

Consider the inputerror direct adaptive control scheme of section 3.3.1.

// wm is PE

Then the adaptive system is exponentially stable in any closed ball.

Proof of Theorem 3.8.1

Since wm. wm are bounded, lemma 2.6.6 implies that vm = L" (zm )=L (wm) is

PE. In theorem 3.7.1. we found that v - vm € L2. Therefore, using lemma 2.6.5. vm PE

implies that v is PE. Finally, since v is PE. by theorem 2.5.3. the parameter error <f> con

verges exponentially to zero.

Recall that in section 3.5. it was established that the errors between the plant and

the model signals are the outputs of stable transfer functions with input <f>Tw. Since w is
bounded (by theorem 3.7.1). <f>rw converges exponentially to zero. Therefore, all errors

between plant and model signals converge to zero exponentially fast. D
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Comments

Although theorem 3.8.1 establishes exponential stability in any closed ball, it does
not prove global exponential stability. This is because v- vm is not bounded by aunique
L2 function for any initial condition. Results in section 4.5 will actually show that the
adaptive control system is not globally exponentially stable.

The various theorems and lemmas used to prove theorem 3.8.1 can be used to obtain

estimates of the convergence rates of the parameter error. It is. however, doubtful that
these estimates would be ofany practical use. due to their complexity and to their conser

vatism. Amore successful approach is that of chapter 4. using averaging techniques.

The result of theorem 3.8.1 has direct parallels for the other adaptive control algo

rithms presented in section 3.3.

Theorem 3.8.2

Consider the output error direct adaptive control scheme of section 3.3.2 (or the indirect

scheme of section 3.3.3)

// wm is PE (wm is PE)

Then the adaptive system is exponentially stable in any closed ball.

Proof of Theorem 3.8.2

The proof of theorem 3.8.2 is completely analogous to the proof of theorem 3.8.1.
and is omitted here. D

3.9 Conclusions

In this chapter, we derived three model reference adaptive control schemes. All had
a similar controller structure, but had different identification structures. The first two
schemes were direct adaptive control schemes, where the parameters updated by the
identifier were the same as those used by the controller. The third scheme was an indirect
scheme, where the parameters updated by the identifier were the same as those of the
basic identifier of chapter 2. Then, the controller parameters were obtained from the
identifier parameters through a nonlinear transformation resulting from the model refer
ence control objective.
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We investigated the connections between the adaptive control schemes, and also with

other known schemes. The difficulties related to the unknown high-frequency gain were

also discussed. The stability of the model reference adaptive control schemes was proved,

together with the result that the error between the plant and the reference model con

verged to zero as t approached infinity. Although the proofs relied strongly on known

results, we used a unified framework, and an identical step-by-step procedure for all

three schemes. We proved - with original or reviewed proofs - basic lemmas that are

fundamental to the stability proofs, and we emphasized a basic intuitive idea of the proof

of stability, that was the existence of a small loop gain appearing in the adaptive system.

The exponential parameter convergence was established, with the additional assump

tion of the persistency of excitation of a model regressor vector. This condition was to be

satisfied by an exogeneous model signal, influenced by the designer, and was basically a

condition on the reference input.

An interesting conclusion is that the stability and convergence properties are identi

cal for all three adaptive control schemes. Further, the normalized gradient identification

algorithm can be replaced by the least squares algorithm with projection without altering

the results. Differences appear between the schemes however, in connection with the

high-frequency gain, and with other practical considerations.

The input error direct adaptive control scheme and the indirect scheme are attractive

because they lead to linear error equations, and do not involve SPR conditions. Another

advantage is that they allow for a decoupling of identification and control useful in prac

tice. The indirect scheme is quite more intuitive than the input error direct scheme,

although more complex in implementation, and especially as far as the analysis is con

cerned. The end result shows however that stability is not an argument to prefer one

over the other.

The various model reference adaptive control schemes also showed that the model

reference approach is not bound to the choice of a direct adaptive control scheme, to the

use of the output error in the identification algorithm, or to SPR conditions on the refer

ence model.



Chapter 4 Parameter Convergence Using Averaging
Techniques
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4.1 Introduction

The method of averaging is a method of analysis of differential equations of the

form

x=ef(tjc) (4.1.1)

and relates properties of the solutions of system (4.1.1) to properties of the solutions of

the so-called averaged system

Xav ~• c J av \Xav ) v . • /

where

t0+r

/flv(x)=liml f f(tx)dt (4.1.3)

provided that the parameter € is sufficiently small. The method was proposed originally,

by Bogoliuboff and Mitropolskii (1961). developed subsequently by Volosov (1962),

Sethna (1970). Balachandra and Sethna (1975). Hale (1980). and stated in a geometric

form in Arnold (1982). and Guckenheimer and Holmes (1983).

Averaging methods were introduced for the stability analysis of deterministic adap

tive systems in the work of Astrom (1983). Astrom (1984). Riedle and Kokotovic (1985)

and (1986). Mareels et al (1986). and Anderson et al (1986). We also find early informal

use of averaging in Astrom and Wittenmark (1973). and, in a stochastic context, in Ljung

and Soderstrom (1983).

Averaging is very valuable to assess the stability of adaptive systems in the presence

of unmodeled dynamics, and to understand mechanisms of instability. However, it is not

only useful in stability problems, but in general as an approximation method, allowing
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one to replace a system of nonautonomous differential equations by an autonomous sys

tem. This aspect was emphasized in Fu. Bodson. and Sastry (1985), Bodson et al (1986),

and theorems were derived for one-time scale, and two-time scale systems such as those

arising in identification and control. These results are reviewed here, together with their

application to the adaptive systems described in previous chapters.

4.2 Averaging Theory - One-Time Scale

In this section, we consider differential equations of the form

x=ef(tjc,e) x(0)=x0 (4.2.1)

where x €Rn , t ^0. 0 <€ ^€0. and / is piecewise continuous with respect to t. We will

concentrate our attention on the behavior of the solutions in some closed ball Bh of

radius h. centered at the origin.

For small 6. the variation of x with time is slow, as compared to the rate of time

variation of / . The method of averaging relies on the assumption of the existence of the

mean value of f (t jc .0) defined by the limit

/av(x)=lim i f f(ijc.0)di (4.2.2)

assuming that the limit exists uniformly in 10 and x. This is formulated more precisely

in the following definition.

Definition Mean Value of a Function, Convergence Function

The function / (t jc.O) is said to have mean value f av(x) if there exists a continuous

function y(T): R+-»R+, strictly decreasing, such that y(T) -+0 as T -♦oo, and

li / f(i*.0)di-fav(x)\^y(T) (4.2.3)
'o

forallr0^0.r ^O.x €5A.

The function y(T ) is called the convergence function.

Note that the function f (t jc .0) has mean value /„,. (x ) if and only if the function

d (t jc ) = / (tjc .0) - fav (x ) (4.2.4)
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has zero mean value.

The following definition (Hahn (1967). p. 7) will be useful.

Definition Class K Function

A function a(€):R+-»R+ belongs to class K (a(e)€K). if it is continuous, strictly
increasing, and a(0)=0.

It is common, in the literature on averaging, to assume that the function f (t jc.e) is

periodic in t. or almost periodic in t. Then, the existence of the mean value is guaranteed,

without further assumption (Hale (1980). theorem 6, p. 344). Here, we do not make the

assumption of (almost) periodicity, but consider instead the assumption of the existence

of the mean value as the starting point of our analysis.

Note that if the function d(t jc) is periodic in t. and is bounded, then the integral of

the function d (t jc) is also a bounded function of time. This is equivalent to saying that

there exists a convergence function y(T)=at T (i.e. of the order of It T) such that

(4.2.3) is satisfied. On the other hand, if the function d(t jc) is bounded, and is not

required to be periodic but almost periodic, then the integral of the function d(t jc) need

not be a bounded function of time, even if its mean value is zero (Hale (1980). p. 346).

The function y(T) is bounded (by the same bound as d (t jc)). and converges to zero as

T -*oo. but the convergence function need not be bounded by a / T as r-»co(it may be of

order 1/ y/T for example). In general, a zero mean function need not have a bounded

integral, although the converse is true. In this paper, we do not make the distinction

between the periodic, and the almost periodic case, but we do distinguish the bounded

integral case from the general case, and indicate the importance of the function y(T) in

the subsequent developments.

System (4.2.1) will be called the original system and. assuming the existence of the

mean value for the original system, the averaged system is defined to be

xav = € fav (xav) xav (0)=x o (4.2.5)

Note that the averaged system is autonomous and. for T fixed and € varying, the solu

tions over intervals [OJTt e] areidentical, modulo a simple time scaling by €.
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We address the following two questions

(a) the closeness of the response of the original and averaged systems on intervals

[0.7/ €].

(b) the relationships between the stability properties of the two systems.

To compare the solutions of the original and of the averaged system, it is convenient

to transform the original system in such a way that it becomes a perturbed version of the

averaged system. An important lemma that leads to this result is attributed to Bogo-

liuboff and Mitropolskii ((1961), p. 450. and Hale (1980). lemma 4. p. 346). We state a

generalized version of this lemma.

Lemma 4.2.1 Approximate Integral of a Zero Mean Function

// d (t jc): R+X5/, -»RB is a bounded function, piecewise continuous with respect to

t. and has zero mean value with convergence function y(T )

Then there exists g(e) € K. and a function wt(t x ): R+X5A -»Rn such that

lew€(r.x)l<£(6) (4.2.6)

iaWf'x) -<f(t.s)!<«€) (4.2.7)

for all t ZO.x €Bh. Moreover. w€(0jc )=0. for all x €5A .

//, moreover y(T)=a I Tr for somea >0. r €(0.l].

Then the function £(e) can be chosen to be 2a €r.

Proof of Lemma 4.2.1 in appendix.

Comments

The construction of the function wf(t jc ) in the proof is identical to that in Bogo-

liuboff and Mitropolskii (1961). but the proof of (4.2.6). (4.2.7) is different, and leads to

the relationship between the convergence function y(T} and the function £(e).

The main point of lemma 4.2.1 is that, although the exact integral of d (t jc) may be

an unbounded function of time, there exists a bounded function w€(t jc ), whose first par

tial derivative with respect to t is arbitrarily close to d(t jc). Although the bound on

w€(t jc) may increase as €-»0. it increases slower than |(e)/ €. as indicated by (4.2.6).



106

It is necessary to obtain a function we(t jc), as in lemma 4.2.1. that has some addi

tional smoothness properties. A useful lemma is given by Hale ((1980). lemma 5. p.
349). At the price of additional assumptions on the function d(tx). the following

lemma leads to stronger conclusions that are useful in the sequel.

Lemma 4.2.2 Smooth Approximate Integral of a Zero Mean Function

// d(t .x ): R+X5A -»Rn is piecewise continuous with respect to t. has bounded and
continuous first partial derivatives with respect to x. and d(t ,0)=0 for all t >0.
Moreover. d(t jc) has zero mean value, with convergence function y(T)\x I. and

$d (* '* ^ has zero mean value, with convergence function y(T)
6*

Then there exists £(e)£K. and a function w€(t jc): R+X2?A -»Rn . such that

l€w€(*.x)l^(€)lxl (4.2.8)

|Q^(^) -d(tx)\Z£(e)\x\ (4.2.9)

|€*^f!l<«6) (4.2.10)
d*

for all t ^0. x ZBh. Moreover. w€(0,x )=0. for all x €Bh .

//, moreover y(T)=a I Tr for some a ^0. r €(0.1],

Then the function £(e) can be chosen to be 2a €r.

Proof of Lemma 4.2.2 in appendix.

Comments

The difference between this lemma and lemma 4.2.1 is in the condition on the partial

derivative of w<(t jc) with respect to x in (4.2.10). and the dependence on Ix Iin (4.2.8).

(4.2.9).

Note that if the original system is linear, i.e.

x=A(t)x x(0)=x0 (4.2.11)

for some A(t ): R+ -* R" *" . then the main assumption of lemma 4.2.2 is that there exists

Aav such that A (t )-Aav has zero mean value.
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The following assumptions will now be in effect.

Assumptions

For some h >0, e0 >0

(Al) x=0 is an equilibrium point of system (4.2.1). i.e. / (t .0.0)=0 for all t >0.
f (t jc ,e) is Lipschitz in x. i.e. for some ^ ^ 0

\f(tx1.6)-f(tx2.e)\**l1\xl-x2\ (4.2.12)

for all t >0. X!.x2 € Bh .€ <€0.

(A2) / (t ,x .€) is Lipschitz in €. linearly in x , i.e. for some l2 >0

\f(t,x.e1)-f(t.x.e2)\^l2\x\\ei-62\ (4.2.13)

for all t ZO.x € 3„ . €!.€2 ^€0.

(A3) fav (0)=0. and fav (x) is Lipschitz in x . i.e. for some lav >0

\fav(x1)-fay(x2)\^lav\Xl-X2\ (4.2.14)

for all Xi.x2€Bh .

(A4) the function d(t jc )=/ (t jc ,0)-/flV (x ) satisfies the conditions of lemma 4.2.2.

Lemma 4.23 Perturbation Formulation of Averaging

// the original system (4.2.1) and the averaged system (4.2.5) satisfy assumptions

(A1MA4)

Then there exist functions w€(t .x). g(e) as in lemma 4.2.2. and ex >0 such that the

transformation

x-z +€w€(r^) (4.2.15)

is a homeomorphism in 5/, for all € ^€i, and

l*-*l<#€)lzl (4.2.16)

Under the transformation, system (4.2.1) becomes

i=€/ov(z) +€?(r^.€) z(0)=x0 (4.2.17)

where p (t, z . €) satisfies
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\P(t.z.€)\^(e)\z\ (4.2.18)

for some \ft(e)€K. Further. 0(e) is of the order of €+£(e).

Proof of Lemma 4.2.3 in appendix.

Comments

a) A similar lemma can be found in Hale (1980) (lemma 3.2. p. 192). Inequality

(4.2.18) is aLipschitz type of condition on p(t .z.e). which is not found in Hale (1980).
and results from the stronger conditions and conclusions of lemma 4.2.2.

b) Lemma 4.2.3 is fundamental to the theory of averaging presented hereafter. It

separates the error in the approximation of the original system by the averaged system
(x-xav) into two components: x-z and z~-xav. The first component results from a
pointwise (in time) transformation of variable. This component is guaranteed to be small
by inequality (4.2.16). For € sufficiently small (e ^ej). the transformation r-x is
invertible, and as e-Q, it tends to the identity transformation. The second component is

due to the perturbation term p(t .z.e). Inequality (4.2.18) guarantees that this pertur

bation is small as € -»0.

c) At this point, we can relate the convergence of the function y(T) to the order of
the two components of the error x-xav in the approximation of the original system by
the averaged system. The relationship between the functions y(T) and £(e) was indicated
in lemma 4.2.1. Lemma 4.2.3 relates the function £(e) to the error due to the averaging.

If d(t .x ) has a bounded integral (i.e. y(T) -1/ T). then both x-z and p(t * ,e) are of
the order of € with respect to the main term fav(z). If d(t.x) has zero mean but

unbounded integral, these terms go to zero as €-0, but possibly more slowly than
linearly ( as V¥ for example). The proof of lemma 4.2.1 provides a direct relationship
between the order of theconvergence to themean value, and the order of the error terms.

We now focus attention on the approximation of the original system by the averaged

system. Consider first the following assumption.

(A5) x0 is sufficiently small so that, for fixed T. and some h'<h. xav(t )£Bh> for all
t €[0J7 e] (this is possible, using the Lipschitz assumption (A3), and proposition

1.4.1).
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Theorem 4.2.4 Basic Averaging Theorem

// the original system (4.2.1) and the averaged system (4.2.5) satisfy assumptions

(A1MA5)

Then there exists ^(€) as in lemma 4.2.3 such that, given T^0

\x(t)-xav(t)\^(e)br (4.2.19)

for some bT >0. eT >0. and for all t € [0.77 e], and € <€r .

Proof of Theorem 4.2.4

We apply the transformation of lemma 4.2.3. so that

\x-z\^i(e)\z\^(e)\z\

for € <€i. On the other hand, we have that

(4.2.20)

± {z _ Xgv) =e ifav (z )- fav (Xav )) +€/> (ta .6 ) z(0) - xav (0)=0 (4.2.21)
dt

for all t € [0.Tl e]. xav €Bh:h'<h.

We will now show that, on this time interval, and for as long as x.z €Bh. the

errors (z -x^ ) and (x-xav ) can be made arbitrarily small by reducing €.

Integrating (4.2.21)

\z(t)-xav(t)\^€lavf\z(i)-xav(T)\di +e^(e)f\z(i)\di (4.2.22)
0 o

Using the Bellman-Gronwall lemma (lemma 1.4.2)

\z(t)-xav(t)\^^(€)f\z(i)\e'lav°~T)di ^(e)h e€/~r-l

:=xff(e)ar

Combining (4.2.20). (4.2.23)

\x(t)-xav(t)\<\x(t)-z(t)\+\z(t)-xav(t)\

^(€)lxfll,(r)l + (l+^(€))lra)-xav(r)l

<*(€)(* +(1+^(6 !))ar)

(4.2.23)
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:=*(e)&r (4-2.24)

By assumption. Ixav(*)l **h' <h. Let €r (with 0 <er <€j) such that
^(€r )bT <h —h \ it follows, from a simple contradiction argument, that x(f) €Bh . and

that the estimate in (4.2.24) is valid for all t € [0.7/ e], whenever € <€r. D

Comments

Theorem 4.2.4 establishes that the trajectories of the original system and of the

averaged system are arbitrarily close on intervals [0.7/ €]. as € is sufficiently small. The
error is of the order of 0(e). and the order is related to the order of convergence of y(7).
If d(t .x) has a bounded integral (i.e. -y(7)-l/ 7). then the error isof the order of€.

It is important to remember that, although the intervals [0.7/ e] are unbounded,

theorem 4.2.4 does not state that

\x(t)-xav(t)\^(e)b (4.2.25)

for all t ^0. and some b. Consequently, theorem 4.2.4 does not allow us to relate the

stability of the original and of the averaged system. This relationship is investigated in

theorem 4.2.5.

Theorem 4.2.5 Exponential Stability Theorem

// the original system (4.2.1) and the averaged system (4.2.5) satisfy assumptions
(A1)-(A5). the function f av(x ) has continuous and bounded first partial deriva

tives in x . and x =0 is an exponentially stable equilibrium point of the averaged

system

Then the equilibrium point x=0 of the original system is exponentially stable for €

sufficiently small.

Proof of Theorem 4.2.5

The proof relies on the converse theorem of Lyapunov for exponentially stable sys

tems (theorem 1.4.3). Under the hypotheses, there exists a function v (xav ):R" -»R+. and

strictly positive constants ai.o2.a3.a4 such that, for all xav €5A

a!lxai.P<v(xaJ<a2lxol,P (4.2.26)



vUav)
(4.2.5)

J2Lk
(}Xav I

a3\xav 9

ot4\xav I

Ill

(4.2.27)

(4.2.28)

The derivative in (4.2.27) is to be taken along the trajectories of the averaged system

(4.2.5).

The function v is now used to study the stability of the perturbed system (4.2.17).
where z(x) is defined by (4.2.15). Considering v(z). inequalities (4.2.26) and (4.2.28)
are still verified, with z replacing xav. The derivative of v(z) along the trajectories of

(4.2.17) is given by

v(z)\ =v(z) +
1(4.2.17) 1(4.2.5)

(ep(t ,z,e))

and. using previous inequalities (including those from lemma 4.2.3)

v(z)\ ^-eaJzP +eotjIrteyz ?
1(4.2.17)

a3—^f(e)a4
<-€

«2

v(z)

(4.2.29)

(4.2.30)

for all €<6la Let e'2 be such that a3 - *(6'2)a4 >0. and define €2 =min(€ y&'J. Denote

a3-1,(e)ot4 (4.2.31)
<*(e):=

20L'A

Consequently. (4.2.30) implies that

-2«o(€)(f-r0)
v(z)^v(z(t0))e (4.2.32)

and

\z(t)\^( — )1,2\z(t0)\e
-€«(€ )U-tQ) (4.2.33)

Since a(e) >0 for all 6<e2. system (4.2.17) is exponentially stable. Using (4.2.16). it

follows that

ror(0(r-r0) (4.2.34)\x(t)\<]+%e\(¥-)1,2\x(to)\e
1-£U) on

for all t 2t0>0. 6 <e2. and x(t0) sufficiently small that all signals remain in Bh. In
other words, the original system is exponentially stable, with rate of convergence (at
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least) ea(e). D

Comments

a) Theorem 4.2.5 is a local exponential stability result. The original system will be

globally exponentially stable, if the averaged system is globally exponentially stable, and

provided that all assumptions are valid globally.

b) The proof of theorem 4.2.5 gives a useful bound on therate of convergence of the

6 a3original system. As € tends to zero. 6a(e) tends to y —. which is the bound on the rate

of convergence of the averaged system that one would obtain using (4.2.26M4.2.27). In
other words, the proof provides a bound on the rate of convergence, and this bound gets

arbitrarily close to the corresponding bound for the averaged system, provided that 6 is

sufficiently small. This is a useful conclusion because it is in general very difficult to

obtain a guaranteed rate of convergence for the original, nonautonomous system. The

proof assumes the existence of a Lyapunov function satisfying (4.2.26)-(4.2.28). but does
not depend on the specific function chosen. Since the averaged system is autonomous, it is

usually easier to find such a function for it than for the original system, and any such

function will provide a bound on the rate of convergence of the original system for e

sufficiently small.

c) The conclusion of theorem 4.2.5 is quite different from the conclusion of theorem

4.2.4. Since both x and xav go to zero exponentially with t, the error x —xav also goes to

zero exponentially with t. Yet. theorem 4.2.5 does not relate the bound on the error to 6.

It is possible, however, to combine theorem 4.2.4 and theorem 4.2.5 to obtain a uniform

approximation result, with an estimate similar to (4.2.25).

43 Application to Identification

To apply the averaging theory to the identifier described in chapter 2. we will study

the case when g =6 >0. and the update law isgiven by (cf. (2.4.1))

j>(t) = -ee1(t)w(t) <f>(0) = <f>o (4.3.1)

The evolution of the parameter error is described by

4>(t) = -ew(t)wT(t)<l>(t) #O) =0O (4.3-2)
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In theorem 2.5.1. we found that system (4.3.2) is exponentially stable, provided

that w is persistently exciting, i.e.. there exist constants ai. a2. 8 >0, such that

r0 + 6

a2I> f w(i)wT(i)di>alI forallr0^0 (4.3.3)
'o

On the other hand, the averaging theory presented above leads us to the following

definition.

Definition Stationarity, Autocovariance

Asignal z :R+ -»Rn is said to be stationary if the following limit exists, uniformly in t0

R2(t):= lim i f z(i)zT(t+i)di €RnXn (4.3.4)
T— T r0

in which instance, the limit Rz (t) is called the autocovariance of z.

Frequency Domain Analysis

We now review some results from Boyd and Sastry (1984) and (1985). Many

results have direct parallels with results in the stochastic literature, but are obtained in a

completely deterministic framework.

The autocovariance matrix of a stationary signal w is a positive semidefinite func

tion of t. Therefore. Rw (t ) can be written as the inverse Fourier transform of the posi

tive spectral measure Sw (d o>)

Rw (t) =Xfe1"' Sv (d o>) (4.3.5)

If the input r of a proper stable transfer function 8 rw is stationary, then the out

put w is also stationary. Its spectrum is related to the spectrum of r through

Sw(do)=Hrv(jo>)H£(j<o)sr(dQ>) (4.3.6)

and. using (4.3.5) and (4.3.6). we have that

Rw(0) =J-f£rAjo>)A^(j«>)sr(d<o) (4.3.7)
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In the context of the identifier considered here, fi rw is given by (cf. (2.2.16)-

(2.2.17))

Arw(s) =
(sI-AYlbK

(sI-ATlbkP(s)
€ R2n(s) (4.3.8)

It can beshown (cf. Boyd and Sastry (1984) and (1985)) that when w isstationary, w is

PE if and only if Rw(0) is positive definite. From (4.3.7) and (4.3.8). it follows that this

is true if the support of sr (d w) is greater than orequal to 2n points (thedimension of w

= the number of unknown parameters = 2n ). Note that a DC component in r(t) contri

butes one point to the support of sr (do>). while a sinusoidal component contributes two

points.

With these definitions, the averaged system corresponding to (4.3.2) is simply

&,. =-6 Rw (0) <f>av 4>av (0) = <f>0 (4-3.9)

This system is particularly easy to study, since it is linear.

Convergence Analysis

When w is persistently exciting. RW(Q) is a positive definite matrix. A natural

Lyapunov function for (4.3.9) is

V(♦„ )=y l«W I' = Y*£ *m <4-3-10>

and

-€Xmin(2UO))l0flt, I2 <-v(*«J ^-eXmax(tf„(O))l0a, I2 (4.3.11)

where Xmin and Xmax are respectively the minimum and maximum eigenvalues of R„(0).
Thus, the rate of exponential convergence of the averaged system is at least €Xmin(^w(0)).
and at most e\max(Rw (0)). We can conclude that the rateof convergence of the original

system for 6 small enough is close to the interval [6Xmin(^u. (0)).€Xmax(^w(0))J.

Equation (4.3.7) gives an interpretation of Rw (0) in the frequency domain, and also

a mean of computing an estimate of the rate of convergence of the adaptive algorithm,

given the spectral content of the reference input. If the input r is periodic or almost

periodic

r(r) =Ir4e;"*' (4.3.12)
k
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then the integral in (4.3.7) may be replaced by a summation

Rw(0) = ZAr»(j<*k)filial rk2 (4.3.13)
k

Since the transfer function 6rw depends on the unknown plant being identified, the

use of (4.3.11) to determine the rate of convergence is limited. With knowledge of the

plant, it could be used to determine the spectral content of the reference input that will

optimize the rate of convergence of the identifier, given the physical constraints on r.

Such a procedure is very reminiscent of the procedure indicated in Goodwin and Payne

(1977) (chapter 6), for the design of input signals in identification. The autocovariance

matrix defined here is similar to the average information matrix defined in Goodwin and

Payne (1977) (p. 134). Our interpretation is, however, in terms of rates of parameter

convergence of the averaged system rather than in terms of parameter error covariance in

a stochastic framework.

Note that the proof of exponential stability of theorem 2.5.1 was based on the

Lyapunov function of theorem 1.4.1. that was an average of the norm along the trajec

tories of the system. In this chapter, we averaged the differential equation itself, and

found that the norm becomes a Lyapunov function to prove exponential stability.

It is also interesting to compare the convergence rate obtained through averaging

with the convergence rate obtained in chapter 2. We found, in the proof of exponential

convergence of theorem 2.5.1. that the estimate of the convergence rate tends to g aj 8

when the adaptation gain g (denoted 6 in this section) tends to zero. The constants alt 8

resulted from the PE condition (2.5.3). i.e. (4.3.3). By comparing (4.3.3) and (4.3.4). we

find that the estimates provided by direct proof and by averaging are essentially identical

for g = e small.

Example

To illustrate the conclusions of this section, we consider the following example

P(s )=-^L- (4.3.14)
s +ap

The filter is chosen to be \(s )-l\t s +l2 (where l\ = 10.05. l2 = 10 are arbitrarily

chosen such that I\(j 1) I = 1). Although X is not monic. the gain lx can easily be taken
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into account.

Since the number of unknown parameters is 2. parameter convergence will occur

when the support of sr(d<o) is greater than or equal to 2 points. We consider an input of

the form r = rosin(cj0* )• so that the support consists of exactly 2 points.

The averaged system can be found by using (4.3.8).

1

apkp

apkp
-2 ;2 <og + ap2

k2Kp*~ 2 Z!+o,o2
<ao + ap2 (Do +ap2

<t>c <^av(O)=0o (4.3.15)

With r0 = 1. o>o —1. ap —1. kp =2, the eigenvalues of the averaged system (4.3.15)

3 + -J5 3 —VJ
are computed to be — - 6 = —1.309 e, and — - 6 = —0.191 6. The nominal

,»rparameter 9 = (kpl l^(l2-ap)/ lx). We let 9(0) = 0. so that 0r(O) = (-0.199.-0.9).

Figures 4.1 to 4.4 show the plots of the parameter errors <f>\ and (f>2. for both the ori

ginal and averaged systems, and with two different adaptation gains 6 = 1. and 6 = 0.1.

We notice the closeness of the approximation for 6 = 0.1.

Figures 4.5 and 4.6 are plots of the Lyapunov function (4.3.10) for € = 1 and

6 = 0.1. using a logarithmic scale. We observe the two slopes, corresponding to the two

eigenvalues. The closeness of the estimate of the convergence rate by the averaged system

can also be appreciated from these figures.

Figure 4.7 represents the two components of fj>. one as a function of the other when

e = 0.1. It shows the two subspaces corresponding to the small and large eigenvalues: the

parameter error first moves fast along the direction of the eigenvector corresponding to

the large eigenvalue. Then, it slowly moves along the direction corresponding to the

small eigenvalue.

AA Averaging Theory - Two-Time Scales

We now consider a more general class of differential equations arising in the adaptive

control schemes presented in chapter 3.
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4.4.1 Separated Time Scales

We first consider the system of differential equations

x=6/(r.x.y) (4-4'1)

y=^(x)y+6g(r^c.y) (4-4.2)

where x(0) = x0. y (0) = y0. x €Rn. and y €Rm.

The state vector is divided in a fast state vector y . and a slow state vector x. whose

dynamics are of the order of 6 with respect to the fast dynamics. The dominant term in

(4.4.2) is linear in y. but is itself allowed to vary as a function of the slow state vector.

As previously, we define

t0+T

/av(x)=lim I / f(i.x.0)di (4.4.3)
'o

and the system

xav = fav (xav) xav(0) = x0 (4.4.4)

is the averaged system corresponding to (4.4.1 )-(4.4.2). We make the following addi

tional assumption.

Definition Uniform Exponential Stability of a Family of Square Matrices

The family of matrices A(x)€RmXm is uniformly exponentially stable for all x€Bh, if

there exist m. X. m'. X' >0. such that, for all x €Bh and t >0

m'e-v' ^ieMx)t I ^me^ (4.4.5)

Comments

This definition is equivalent to require that the solutions of the system y =A(x )y
are bounded above and below by decaying exponentials, independently of the parameter

x.

It is also possible to show that the definition is equivalent to requiring that there

exist px. p2. qi. q2>0. such that for all x €5A. there exists P(x) satisfying

PlI ^P(x)^p2I.and-q2I ^Ar(x)P(x) + P(x)A(x)^-qlI.
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We will make the following assumptions.

Assumptions

For some h >0

(Bl) The functions / and g are piecewise continuous functions of time, and continu

ous functions ofx and y. Moreover. / (t .0.0) =0. g(t .0.0) =0 for all t >0. and

for some l\,l2Az. 14 ^0

l/(*.xi.yi)-/(*.x2.y2)l Zli\xi-x4 +l2\yi-y4

[gb.x^yJ-gU.x^yJl^Xi-xJ +l^yi-yJ (4-4-6)

for all t >0. Xl x2€£„. y1. y2€5A . Also assume that f (t jc .0) has continuous

and bounded first partial derivatives with respect to x . for all t >0. and x €5A .

(B2) The function / it jc.O) has average value /av(x). Moreover. /av(0)=0. and
/ai.(x) has continuous and bounded first partial derivatives with respect to x.

for all x €Bh . so that for some lav ^0

\fav(xl)-fav(x2)\$lav l*i-*2l (4-4-7)

for all xj . x2€£A.

(B3) Let d (tjc) =/ (t jc.O)-f„(x). so that d(tjc) has zero average value. Assume

that the convergence function can be written as y(7)lxl, and that —p has

zero average value, with convergence function y(T ).

(B4) A(x) is uniformly exponentially stable for all x £Bh and. for some ka ZO

tdA(x) t^k f0r all x €5, (4-4.8)
8x

(B5) For some h' <h . Ixav (t )l €Bh •on the time intervals considered, and for some h0.
y0€5A (where h\ h0 are constants to be defined later). This assumption is

technical, and will allow us to guarantee that all signals remain in Bh .

As for one-time scale systems, we first obtain the following preliminary lemma.

similar to lemma 4.2.3.
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Lemma 4.4.1 Perturbation Formulation ofAveraging - Two-Time Scales

// the original system (4.4.1)-(4.4.2) and the averaged system (4.4.4) satisfy
assumptions (B1)-(B3)

Then. there exist functions w,(t jc). {(e) as in lemma 4.2.2. and e, >0. such that the
transformation

x=z+6w€(f.z) (4-4.9)

isa homeomorphism in Bh for all 6 <elf and

\x-z\*k£(e)\z\ (4.4.10)

Under the transformation, system (4.4.1) becomes

i=6/a,(z) +6/>1(^.6) +ei>2(^.y.6) z(0) =x0 (4.4.11)

where

\pl(t*.e)\**£(e)k1\z I and \p2(t j .y .e)\<:k2\y I (4.4.12)

for some kx.k2 depending on I1.12. lav

Proof of Lemma 4.4.1 in appendix.

We are now ready to state the first averaging theorem concerning the differential
system (4.4.l)-(4.4.2). Theorem 4.4.2 is an approximation theorem similar to theorem
4.2.4. and guarantees that the trajectories of the original and averaged system are arbi
trarily close on compact intervals, when e tends to zero.

Theorem 4.4.2 Basic Averaging Theorem

// the original system (4.4.1)-(4.4.2) and the averaged system (4.4.4) satisfy
assumptions (B1)-(B5)

Then there exists \ff(e) as in lemma 4.2.3 such that, given 7 >0

\x(t)-xav(t)\^(e)bT (4.4.13)

forsome&j- >0.eT >0. and for all* €[0.7/e].and e <er.
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Proof of Theorem 4.4.2

The proof assumes that for all t €[0.7/ e], the solutions x(t). y(t ). and z(t ) (to be
defined) remain in Bh. Since this is not guaranteed a priori, the steps of the proof are

only valid for as long as the condition is verified. By assumption, xav (t)€Bh •. with
h' <h . We will show that by letting e and h0 sufficiently small, we can let x(t) be arbi

trarily close to xav(t). and y(t ) arbitrarUy small. It then follows, from a contradiction
argument, that x(t). y(t)€Bh for all t €[0.7/e], provided that 6 and ho are

sufficiently small.

Using lemma 4.4.1, we transform the original system (4.4.1 ).(4.4.2) into the system
(4.4.11).(4.4.2). A bound on the error \z(t )-xav(t )l can be calculated by integrating

the difference (4.4.11)-(4.4.4). and by using (4.4.7) and (4.4.12)

t r

\z(t)-xav(t)\^€lavf\z(i)-xav(i)\di +€^(e)k1J\z(i)\di
0 °

+6k2'[\y(i)\di (4.4-14)
Jo

Bound on I y (t ) I

To obtain abound on ly (t )I. we divide the interval [0.7/ 6] in intervals [tt.ri+1] of
length AT (the last interval may be of smaller length, and A7 will be defined later). The
differential equation for y is

y=A(x)y +eg(tjc.y) (4.4.15)

and is rewritten on the time interval [tt ,fi+i]as follows

y=AXly+eg(t.x.y) +(AXt-AXi)y (4.4.16)

where Ax =A(x(f )). and AXi =A(x(t{)). so that the solution y(t). for t €[*,-.ti+iL is

given by

y(t) =e ' yt+efe ' gd.x.y)di
h

+feAx>{"T)(AXr-AXi)y(i)di (4.4.17)

where y,- =y (*,•). From the assumptions, it follows that
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{A -Ax Kk^xKi-t^^eQi+lJhka AT (4.4.18)

and. using the uniform exponential stability assumption on A(x )

\y(t)\<m\yi\e-ki"i) +e™h((h-rl4)+(l1 +l2)kaAr) (4.4.19)

Let the last term in (4.4.19) be denoted by 6 kb, and use (4.4.19) as a recursion formula

for y,-. so that

ly,l <(m e-** )l lyol +6*6 £ (m e"XAr V (4.4.20)

Choose A7 sufficiently large that

mc"w ^e"**7 2 i.e. AT ZA In m (4.4.21)
A

It follows that

;=0 * ' j=0 v ' x e

Combining (4.4.20)-(4.4.22). and using the assumption y0€5Ao

ly,l^e-^^2/io+ '̂ M/a :=g"XV2/io+6A:c (4.4.23)

Using this result in (4.4.19). it follows that for all t € [rf .*J+i]

ly(r)Kmc-Xr'/2/io^"X('"ri) +m6itce-X(r"ri) +6^

<m/ioe-x,/2 +e(mitc+ik6) (4.4.24)

Since the last inequality does not depend on i. it gives a bound on ly(f)l for all

t €[0.7/6].

Bound on z(t) —xav (t)

We now return to (4.4.14). and to the approximation error, using the bound on

\y(t)\

\z(t)-xav(t)\**elavf\zd)-xav(T)\di +€£(e)k1fhdi
o o

+ek2f(mh0e-KT/2 +e(mkc +kb))di (4.4.25)
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so that, using the Bellman-Gronwall lemma (lemma 1.4.2)

\z(t)-xav(t)\^f(£(e)klh+k2mh0e-kT/2 +k2e(mkc+kb))ee€lw{t-T)dT

and, using (4.4.10)

/ T

A/ 2. -T 6 Lav '-av

:=+(€) aT (44.26)

lx(*)-xflV(r)l<*(6)*7- (4A27)

for some bT.

Assumptions

We assumed in the proof that all signals remained in Bh. By assumption.

xavU )€£„.. for some h'<h. Let h0. and er be sufficiently small so that, for all
€^€r^€l, We have that mh0 +e(m kc -rkb) *sh (cf (4.4.24)). and that
$(e)br </i -h' (cf (4.4.27)). It follows, from a simple contradiction argument, that the
solutions x(t). y(t). and z(t ) remain in Bh for all t €[0.7/ 6], so that all steps of the
proof are valid, and (4.4.27) is in fact satisfied over the whole time interval. D

Theorem 4.4.3 Exponential Stability Theorem

// the original system (4.4.1 )-(4.4.2) and the averaged system (4.4.4) satisfy
assumptions (B1)-(B5). the function fav(x) has continuous and bounded first
partial derivatives in x.and x =0is an exponentially stable equilibrium point of
the averaged system

Then the equilibrium point x =0. y =0 of the original system is exponentially stable

for 6 sufficiently small.

Proof of Theorem 4.4.3

The proof relies on the converse theorem of Lyapunov for exponentially stable sys
tems (theorem 1.4.3). Under the hypotheses, there exists a function v(xav):Rn -R+.

and strictly positive constants ct\. a2. a3. a4 such that, for all xav € Bh
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«,!*„? SvUaJ^OfclXavl2 (4-4.28)

v (xav )
(4.4.<

$a4 I xav I (4.4.30)

<-ea3l^vl2 (4.4-29)
(4.4.4)

I Oxav

The derivative in (4.4.29) is to be taken along the trajectories of the averaged system

(4.4.4).

We now study the stability of the original system (4.4.1).(4.4.2). through the

transformed system (4.4.11).(4.4.2). where x(z) is defined in (4.4.9). Consider the fol

lowing Lyapunov function

Vl(z.y) =v(2)+— yT P(x(z))y (4.4.31)
Vi

where P(x ). p2 are defined in the comments after the definition of uniform exponential

<*2**2 "vstability of A(x ). Defining a\ =TD\n(oLX. — Pi), it follows that

a'xOzP+lyP) Wz.y^azOzP +lyP) (4-4.32)

The derivative of vx along the trajectories of (4.4.11 )-(4.4.2) can be bounded, using above

inequalities

v1(z.y)^-€a2\z? + e£(e)kla4\zr' + ek2a4\z\\y\

p2 $X flz P2

+4eZ3a2lz Myl +26/4a2ly F (4.4.33)

for 6 <6j (so that the transformation x -»z is well-defined, and Ix l<2lz I). We now

calculate bounds on the terms in (4.4.33).

Bound on I QPt Qx I

Note that P(x ) can be defined by

P(x) = feAT{x)tQeA(x)tdt (4.4.34)

so that



QP(x ) _ r B eAT(x)t
d*«

QeA(x)t +eAT(x)t q B eA{x)t
dxi

The partial derivatives in parentheses solve the differential equation

= A(x)d_
dt

B eA(x)t
dx,

with zero initial conditions, so that

B eA(x)t
Bxi

+ BA JX ) eA(x)t
Bxi
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dt (4.4.35)

(4.4.36)

B eA(x)t _ tfeA(x)(t-r) BA(x) eA(x)rdT (4.4.37)
Bxi J0 Bxi

From the boundedness of ^ . and from the exponential stability of A(x ). it fol-
Bxi

lows that

8A. eMx)t I**m2ka t e'kt (4.4.38)
Bx

With (4.4.35). this implies that 8$P(x )/ Qx I is bounded by some kp >0.

Bound onlftxt flz 8, and Iz I

On the other hand, using (4.4.9). (4.2.8) and (4.4.12)

Bil|<l +£(€)<2 and \z I^6 h (lav +£(e)kl -rk2) (4.4.39)
Bz

Using these results in (4.4.33). and noting the fact that, for all y. z € R

6lzllyl<I(64/3lzl2 +e2/3lyl2) (4.4.40)

it follows that

v1(z.y)<-e(a3-Z(e)k1a4-€l/3!^p--2€1,3ha2)\z?

-(^qi-2el4«2-e2<3^-2e2<*l3a2
p2 z

+ 2e — kph(lav+£(e)k1 + k2))\y?
V2 p

:=-26a2a(6)lz P-*(e)ly P (4.4.41)

1 a3 f \ a2
Note that, with this definition. a(e) -»_— as e-»0. while q (e) -•— qx.

2 a2 P2
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Let 6 <6X be sufficiently small that a(e) >0. and 26 a2a(e) <?(e). Then

v1(z .y ) **- 26a(6 )vx(z .y ) (4.4.42)

so that the z,y system is exponentially stable with rate of convergence 6a(e) (vx being
bounded above and below by the square of the norm of the state). The same conclusion
holds for the x ,y system, given the transformation (4.4.9). with (4.4.10). Also, for 6. h0
sufficiently small, all signals are actually guaranteed to remain in Bh so that all assump

tions are valid. D

Comments

As for theorem 4.2.5. the proof of theorem 4.4.3 gives a useful bound on the rate of
€ a3convergence of the nonautonomous system. As 6-0. the rate tends to y —. which is

the bound on the rate of convergence of the averaged system that one would obtain using
the Lyapunov function v(xfll.). Since the averaged system is autonomous, it is usually
easier to obtain such a Lyapunov function for the averaged system than for the original
nonautonomous system, and conclusions about its exponential convergence can be applied
to the nonautonomous system for 6 sufficiently small.

4.4.2 Mixed Time Scales

We now discuss a more general class of two-time scale systems, arising in adaptive

control

x=6/'(r.x.y) (4-4-43)

y' =A(x)y' +h(tjc) +eg'(tJc.y') (4-4-44)

We will show that system (4.4.43)-(4.4.44) can be transformed into the system (4.4.1)-
(4.4.2). In this case, x isa slow variable, buty' has both a fast, and a slow component.

The averaged system corresponding to (4.4.43). (4.4.44) is obtained as follows.

Define the function

v(*.x):= JV^X'-^Mt.x^t (4.4.45)
o

and assume that the following limit exists uniformly in t and x
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/„(*)= lim ± / f'(uc.v(ijc))di
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(4.4.46)

Intuitively, v (t jc ) represents the steady-state value of the variable y' with x frozen and
€=0 in (4.4.44). Then. / is averaged with v(tjc) replacing y' in (4.4.43).

Consider now the transformation

y =y'-v(r.x) (4.4.47)

Since v (t jc ) satisfies

A v(t jc)=A(x)v(t jc)+h(t jc)
B*

v(t.0)=0

we have that

y =i4(x)y +6 _ 8v(r.x) / .(t jc.y+v(tjc)) +g'(t jc ,y +v(t jc ))
Bx

so that (4.4.43). (4.4.49) isof the form of (4.4.1). (4.4.2) when

f(tjc.y) = f'(tjc.y+v(tjc))

g(r ^ ,y) =-B^S±L f'{t jc.y+v(t jc)) +g'(t jc .yrv(t jc))
Bx

(4.4.48)

(4.4.49)

(4.4.50)

(4.4.51)

The averaged system is obtained by averaging the right-hand side of (4.4.50) with y-0.
so that the definitions (4.4.46). and (4.4.3) (with / given by (4.4.50)) agree.

To apply theorems 4.4.2 and 4.4.3. we require assumptions (B1)-(B5) to be satisfied.
In particular, we assume similar Lipschitz conditions on f'.g'. and the following

assumption on h (t jc)

(B6) h(t ,0)=0 for all t ZO. and 16*/* (t jc )/ 3* •is bounded for all t^O.x €Bh.

This new assumption implies that v(t ,0)=0. It also implies that \ v̂ * Bis
bounded for all t ^0, x € Bh . since

Bv(tJc) , f ^(x)(,-r)9^£l+ JL \eAixHt-T)\h(iJc) di (4.4.52)
Bxi ~J0 Bx> Bxi 1 '

and using the fact that eMx){t-r) and A-eA<x){'-T) are bounded by exponentials

((4.4.5) and (4.4.38)).
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4.5 Applications to Adaptive Control

For illustration, we apply the previous results to the output error direct adaptive

control algorithm for the relative degree 1 case.

We established the complete description of the adaptive system in section 3.5 with

(3.5.28). i.e.

e(t) =Ame(t)+ bm<f>r(t)wm(t) +bm<l>T(t)Qe(t)

4>(t) =-ecm'e(t)wm(t)-ec!'e(t)Qe(t) (4-5.1)

where 6 is the adaptation gain. With the exception of the last terms (quadratic in e and
0). (4.5.1) is aset of linear time varying differential equations. They describe the adaptive
control system, linearized around the equilibrium e =0. <f> = 0. We first study these

equations, then turn to the nonlinear equations.

4.5.1 Linearized Equations

The linearized equations, describing the adaptive system for small values of e and <j>.

are

e(t) = Ame(t) + bmwHl(t)<f>(t)

4>(t) =-€wm(t)cmre(t) (4.5.2)

Since wm is bounded, it is easy to see that (4.5.2) is of the form of (4.4.43). (4.4.44) with
the functions / *and h satisfying the conditions of section 4.4. Recall that Am is a stable

matrix.

The function v (t .<f>) defined in (4.4.45) is now

v(< .0) =[/ /'"-"im»I(r)<iT J* (4.5.3)
0

and fav is given by

/„(0)=-lim »'"/wmU)cmn'f eA«U-T)bm»fa)dTUt <t> (4.5.4)
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Frequency Domain Analysis

To derive frequency domain expressions, we assume that r is stationary. Since the
transfer function from r -wm is stable, this implies that wm is stationary. The spectral

measure of wm is related to that of r by

SWm(do)=ArWn (ja>)A;!.a(jo>)sr(da>) (4.5.5)

where the transfer function from r -*wm is given by (using (3.5.11))

H rw —

(si-Ar'b^-1^
M

(sI-AT^xM

which is a stable transfer function.

Define now a filtered version of wm to be

(4.5.6)

w, ,f(t) =fcmreA»('-%mwm(i)di =XtiM (4-5-7)

where the last equality follows from (3.5.22). Note that the signal wf was also used in
the direct proof of exponential convergence in chapter 2(cf. (2.6.17)).

Since cm T(si - Am Tlbm =4- ^ (* ) is stable. wmf (t ) is stationary. We let
c0

.. 1
tn + T

Rw „ ,(0):=limi / wm(t)wTmf(t)dt (4.5.8)

which is called the cross correlation between wm and wmf evaluated at 0. Consequently,

we may use (4.5.7) and (4.5.8) to obtain afrequency domain expression for **,„,, (0) as

Rw „,(o)=-U]nrVm OoOtfAJ.u*)* (;«)*r(rf«) (4-5-9)

With (4.5.7) and (4.5.8). (4.5.4) shows that the averaged system is a LTI system

4>av =-6*,.„.,«» <f>av 4>av(0) =0o (4-5.10)
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Convergence Analysis

Since A? (s) is strictly positive real, the matrix R„m w (0) is a positive semidefinite

matrix (cf. (4.5.9)). Unlike the matrix Rw(0) of section 4.3. Rw w (0) need not be sym-
n at/

metric, so that its eigenvalues need not be real. However, the real parts are guaranteed to

be positive, and a natural Lyapunov function is again

v(0aJ = l0fl,l2=0flrv0av (4-5.11)

and

-v(4>av) =€<f>[v(RVm.af(0) +RSmVn/ (0))<f>av (4.5.12)

The matrix in parentheses is symmetric positive semidefinite. As previously, it is positive

definite if wm is PE.

When the reference input r is almost periodic, i.e.

r(r) =£rifce^*r (4.5.13)
k

an expression for R„m w (0) is

*-„-,,«» =i L*n,m (M )££(/»*)# (M)rk2 (4.5.14)
c0 *

Example

As an illustration of the preceding results, we consider the following example of a

first order plant with an unknown pole and an unknown gain

P(s)= kp (4.5.15)
s +ap

We will choose values of the parameters corresponding to the "Rohrs example" (Rohrs

(1982). see also section 5.1) . when no unmodeled dynamics are present.

The adaptive process is to adjust the feedforward gain c0 and the feedback gain d0

so as to make the closed-loop transfer function match the model transfer function

ti(s) = *" (4.5.16)
s +am
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To guarantee persistency of excitation, we use a sinusoidal input signal of the form

r(t) = r0sin(o0O (4.5.15)

Thus. (4.5.2) becomes

e(t) = -ame(t) + kp (<f>r(t)r(t) + <f>y(t)ym(t))

4>r(t) = -€e(t)r(t)

$y(t) = -€e(t)ym(t) (4.5.18)

where

<f>r(t) = c0(t) -c0

<f>y(t) = d0(t)-d'0 (4.5.19)

It can be checked, using (4.5.14). that the averaged system defined in (4.5.10) is now

. _ r02 kp
amkm k2(a2-(aS)

(a' + ut) («£ + *><!)'
k2 a k3

(a2 + a>$) (am2 + o>o2)2

4>0 (4.5.20)

With am=3, &m=3. a^=l, £,=2. r0= 1. a»0= 1. 6 = 1. the two eigenvalues of the

averaged system are computed to be —0.0163 € and —0.5537 6. and are both real negative.

The nominal parameter fr*r =(kmt kp ,(ap -am)l kp). We let 0(O) =O. so that

0r(O) = (-1.5.1).

Figures 4.8. 4.9 and 4.10 show the plots of the parameter errors <f>y (<f>r) for the ori

ginal and averaged system, with three different frequencies (<a0 = 1.3.5). Figure 4.10

corresponds to a frequency of the input signal ci>0 = 5. such that the eigenvalues of the

matrix Rwmwmf(0) are complex: (-0.0553±y*0.05076)e. This explains the oscillatory

behavior of the original and averaged systems observed in the figure, which did not exist

in the previous examples of section 4.3.
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4.5.2 Nonlinear Equations

We now return to the complete, nonlinear differential equations

e(t) = Ame(t) + bm<f>r(t)wm(t) + bm<f>r(t)Qe(t)

4>(t) =-€wm(t)cZe(t)-eQe(t)cTme(t) (4.5.21)

From (4.4.45)

v(t.4>)-feiA^b^QHt^bm4>r wmMdr (4.5.22)
o

so that the averaged system is

0Ov =6/„ (0av) 0a, (0) = 0(0) (4.5.23)

where fav is defined by the limit

/flv(0) =-lim * / (wm(t)clv(t ,4>)^Qv(t .<f>)cTmv(t .<f>))dt (4.5.24)

The assumptions of the theorems will be satisfied if the limit in (4.5.24) is uniform
in the sense of (B3). and provided that the matrix Am+bm<f>rQ is uniformly exponen

tially stable for 0€jB/, . This means that if the controller parameters are frozen at any
point of the trajectory the resulting time invariant system must be closed-loop stable.
Naturally, this precludes consideration of adapUtion from initial parameter values which

define an unstable closed-loop system.

Frequency Domain Analysis

The expression of fav in (4.5.24) can be translated into the frequency domain, not-

ing that wm is related to r through the vector transfer function HrWm

/flV(0) =-^L J [jfr^OHfl 0«/ -Am -bm <t>TQTlbm <f>rHrWm(j<o) ]

.[c£ (-;*>/ - Am -bm 0r QT1 bm <f>T8r„m(-j<*) ]sr(d «) (4.5.25)

where sr (d<a) is thespectral measure of r. Note that fav can be factored as

/av(0) = -^(0).0 (4-5.26)
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where A^iR2" ->R2nX2n is similar to #„„*./<» in section 4.5.1. but now depends non-

linearily on 0. The expression in (4.5.25) is more complex than in the linear case, but

some manipulations will allow us to find amore interesting result.

Recall that (4.5.21) was obtained from the differential equation

e(t) = Ame(t) + bmif>T(t)w(t)

4>(t) = -6w(t)c'e(t) (4-5.27)

by noting that w(t) = wm(t) +Qe(t). In general. (4.5.27) is of limited use. precisely
because w depends on e. The signal w is not an external signal, but depends on internal
variables. On the other hand. wm is an exogeneous signal, related to r through a stable

transfer function.

In the context of averaging, the differential equation describing the fast variable (i.e.
e) is averaged, assuming that the slow variable (i.e. 0) is constant. However, when 0 is
constant, w is related to r through a linear time invariant system, with a transfer func

tion depending on 0. If det (si -Am -bm<j>TQ ) is Hurwitz (as we assume to apply

averaging), this transfer function is stable. Therefore, assuming that 0 is fixed, we can

write

; = ^(M«.? (4-5.28)

so that using (4.5.27). (4.5.25) can be replaced by (4.5.26). with an expression similar to

the expression ofRwmwmfw m(4.5.9). i.e.

Aav(<f>) = -^ f Ar~lju.4»A£tj».&tiU»)srid*>) (4.5.29)
27TC0 Zoo

Explicit expression of 6 rw ( j o>. 0)

Recall that wm is related to r through the transfer function 8 r*m . whose poles are

the zeros of det (si —Am). Let

Xm(s) = det(sl-Am) (4.5.30)

and write the transfer function firz as the ratio of a vector polynomial n(s). and a
at

characteristic polynomial Xm (s )• i«e.
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#r-(,)= JL<£> (4.5.31)

We found in section 3.5 (cf. (3.5.8), (3.5.11)) that

w= J!^Xr (r +i 0r w) (4.5.32)
XmU) C0

Denote 0C = c0—c0 . so that <f>rw = 0C r + 0riv. Assuming that 0 is constant. (4.5.32)

becomes

w=CXm(s).I- X n(s)<f>r r1 n(s)((l +̂ ) r)
Co Cq

n(s) ((1 +̂ i)r) (4.5.33)

Denote

Xm(*)-^$Tn(s)
co

X*(s ):=Xm(s)-X?Tn(s) (4.5.34)
c0

X^is) is closed-loop characteristic polynomial, giving the poles of the adaptive system

with feedback 0. i.e. the poles of the model transfer function with feedback 0. Therefore.

X4>(s ) is also given by

%(s) = det(sl -Am -bm<f>TQ) (4.5.35)

With this notation. (4.5.33) can be written

w= -, fi - (r + —?-r)
X* ~m

Co

iH

= (wffl
<f>c

(—*-w,
Co

r =

Xm

~X*
(1-

0rn
—r*

CoXm
).(r)

On the other hand

(4.5.36)

=^L(r)-^L(Cwm) (4J.37)
X<t> X* c0



Define

5(0):=

0
Co

0
<f>c

Co

plXl plX2n-l

p2n-lxl p2n-lX2n—1

so that (4.5.36M4.5.37) can be written

w =
r

w

A

_ Am r

W~m

A

+^15(0).
X<t>

r

wm
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- R2nX2n (4.5.38)

(4.5.39)

The vector transfer function £ rw can therefore be expressed in terms of the vector

transfer function 8 rv by

firw(s.<f>) = *^(/+2K0)).#ru, (s)
X<t>(s )

and. as expected

Arw(s,0)= fir* (S)

Convergence Analysis

With (4.5.40). Aw can be written

Xm(jo)) I2*•*<*>- T±rf2ttc0 4J x*0*w)
(/ + B(<f>))Hrw(j<o>

AX (yo)(7 + 2?r(0)) J0(ya>) sr(da>)

(4.5.40)

(4.5.41)

(4.5.42)

Consider now the trajectories of the averaged system, and let

v (0av) = I0av P = 0i0flv • Note that by choice of B (0). it follows that

07\5(0) = O for all 0 (4.5.43)

Denote

<*->== =r72rrc0 re

Xm(y^) #ru, (j<o)fi;Z (ja})ti(j<o)sr(da) (4.5.44)

It follows that the derivative of v is given by
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-V(0av) =60i(i?(0aJ +i?r(0av))^v (4.5-45)

which is identical to the expression for the linear case (4.5.12). provided that R(<f>av)
given in (4.5.44) replaces *Vm/«>) given in (4.5.9). It is remarkable that this result
differs from the expression obtained by linearization followed by averaging in section
4.5.1 only by the scalar weighting factor l^ / X«l2- This term is strictly positive, given
any 0 bounded, and it approaches unity continuously as 0 approaches zero.

Since Ifi(s ) is strictly positive real. R(<f>av) is at least positive semidefinite. As in
the linearized case, it is positive definite if wm is persistently exciting. Using the
Lyapunov function v(0av). this argument itself constitutes aproof of exponential stabil
ity of the averaged system, using (4.5.45). By theorem 4.4.3. the exponential stability of
the original system is also guaranteed for e sufficiently small.

Rates of convergence can also be determined, using the Lyapunov function v(0av).
so that

-v=€0i;.(i?(0av)+i?r(0flv)))^v

£e inf (Xmin(i?(0av) +i?r(0a,)))v:=26av (4.5.46)

and the guaranteed rate of parameter convergence of the averaged adaptive system is 6a.
The rate of convergence of the original system can be estimated by the same value, for e

sufficiently small.

It is interesting to note that, as \<f>av Iincreases. Xmin (R(<t>av )+RT (to* ))) tends t0
zero in some directions. This indicates that the adaptive control system is not globally

exponentially stable.

Example

We consider the previous two parameter example. The adaptive system is described

by

e(t) =-ame(t) +kp(4>r(t)r(t) +<l>y(t)e(t) +<t>y(t)ym(t))

4>r(t) = -€e(t)r(t)

4>y(t) =-ee2(t)-ee(t)ym(t) (4-5-47)
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Consider the case when r =r0sin(ft>0O. The averaged system can be computed

using (4.5.42). We can also verify the expression using (4.5.47). and the definition of the
averaged system (4.5.22). After some manipulations, we obtain, for the averaged system
(dropping the "av" subscripts for simplicity)

r2 1 ](am-kp<l>y)(f>r

r2ro

L,am—w0 , n, kpOmkm .2
oiS + a* w0 + am<*o

<f>y=-€kp -^-
2 Wo + (flm - ^p <f>y y

am km

a>o+an
0

kp Q-m *m
p 0)$+ aj

Using this result, or using (4.5.42)-(4.5.43). we find that for v =0r 0

— v =26
O)« + a2

a>o2+ (am-kp<f>yY

&m *m k2(a2-u>g)

v2 Ir
LL -f-d>r2 km *

o>o+am

k2*m

t»i+a*r

^•m *m

0*0+am W + a*T

(4.5.48)

(4.5.49)

0(4.5.50)

It can easily be checked that when the first term in brackets is equal to 1(i.e. with
<f>y replaced by zero), the result is the same as the result obtained by first linearizing the
system, then averaging it (cf. (4.5.20)). In fact, it can be seen, from the expressions of
the averaged systems ((4.5.10) with (4.5.9). and (4.5.23) with (4.5.26). (4.5.38). and
(4.5.42)) that the system obtained by linearization followed by averaging is identical to
the system obtained by averaging followed by linearization. Also, given any prescribed
Bh (but such that det(5/ -Am -bm <f>T Q) is Hurwitz). (4.5.50) can be used to obtain
estimates of the rates of convergence of the nonlinear system.

We reproduce here simulations for the following values of the parameters: am =3.
jrm=2.a =1. kp =2. r0 =1. <*o =1. 6=1. The first set of figures is asimulation for ini
tial conditions 0r(O) =-O.5. and 0,(O) =O.5. Figure 4.11 represents the time variation
of the function ln(v =0r0) for the original, averaged, and linearized-averaged systems

(the minimum slope of the curve gives the rate of convergence). It shows the close
approximation of the original system by the averaged system. The slope for the
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linearized-averaged system is asymptotically identical to that of the averaged system,

since parameters eventually get arbitrarily close to their nominal values. Figures 4.12 and

4.13 show the approximation of the trajectories of 0r. and <f>y.

Figure 4.14 represents the logarithm of the Lyapunov function for a simulation with

identical parameters, but initial conditions 0r(O)=0.5, <f>y(0) = —0.5. Due to the change

of sign in 0y(O). the rate of convergence of the nonlinear system is less now than the rate

of the linearized system, while it was larger in the previous case. These simulations

demonstrate the close approximation by the averaged system, and it should be noted that

this is achieved despite an adaptation gain 6 equal to 1. This shows that the averaging

method is useful for values of 6 which are not necessarily infinitesimal (i.e. not neces

sarily for very slow adaptation), but for values which areoften practical ones.

Figure 4.15 shows the state-space trajectory 0y(0r). corresponding to figure 4.10.

that is with initial conditions 0r(O)= —1.5.0^ (0) = 1. and parameters as above except

(«>o = 5. Figure 4.15 shows the distortion of the trajectories in the state-space, due to the

nonlinearity of the differential system.

4.6 Conclusions

Averaging is a powerful tool to approximate nonautonomous differential equations

by autonomous differential equations. In this chapter, we introduced averaging as a

method of analysis of adaptive systems. Although averaging was studied previously as a

method of analysis of differential equations, we have established here results that are

better suited to our purposes.

The approximation of parameter convergence rates using averaging was justified by

general results concerning a class of systems including the adaptive systems described in

chapter 2 and chapter 3. The analysis had the interesting feature of considering nonlinear

differential equations, as well as linear ones. Therefore, the application was not restricted

to linear or linearized systems, but extended to all adaptive systems considered in this

work, including adaptive control systems. The results were also interesting in that they

did not require the traditional almost periodicity condition, but instead a stationarity con

dition.
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The application to adaptive systems included useful parameter convergence rates
estimates for identification and adaptive control systems. The rates depended strongly on
the reference input, and afrequency domain analysis related the frequency content of the
reference input to the convergence rates, even in the nonlinear adaptive control case.
These results are useful for the optimum design of reference input. They have the limita
tion of depending on unknown plant parameters, but an approximation of the complete
parameter trajectory is obtained, and the understanding of the dynamical behavior of the
parameter error is much increased using averaging. For example, it was found that the
trajectory of the parameter error corresponding to the linear error equation could be
approximated by an LTI system with real negative eigenvalues, while for the SPR error
equation it had possibly complex eigenvalues.

Besides requiring stationary of input signals, averaging also required slow parame
ter adaptation. We showed however, through simulations, that the approximation by the
averaged system was good for values of the adaptation gain that were close to 1(that is.
not necessarily infinitesimal), and for acceptable time constants in the parameter varia
tions. In fact, it appeared that abasic condition is simply that parameters vary slower
than other states and signals of the adaptive system.
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Chapter 5 Robustness

5.1 The Rohrs Examples

Despite the existence of stability proofs for adaptive control systems (cf. chapter 3).

Rohrs. et al (1982). (1985) showed that several algorithms can become unstable when

some of the assumptions required by the stability proofs are not satisfied. Especially con

cerned are the assumptions of the knowledge of

• the order of the plant

• the relative degree of the plant

In practice, plants cannot be modeled exactly with finite dimensional models, and

the robustness problem is to guarantee that the adaptive system remains stable despite

the presence of high frequency dynamics, and measurement noise.

While Rohrs. et al considered several continuous and discrete time algorithms, the

results are qualitatively similar for the various schemes. We consider one of these

schemes here, which is the output error direct adaptive control scheme of section 3.3.2,

assuming that the degree and the relative degree of the plant are 1.

Rohrs Examples

The adaptive control scheme of Rohrs examples is designed assuming a first order

plant with transfer function

P(s)= _^— (5.1.1)
s +ap

and the SPR reference model

*(,)- -4=—- -xt i5A2)s +am 5+3
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The output error adaptive control scheme (cf. section 3.3.2) is described by

u = c0r +d0yp (5.1.3)

e0 = y,-y,n (5-1-4)

Co = -gr Co (5.1.5)

d0 = -g yP *o (5.1.6)

In a first step, we assume that the plant transfer function is given by (5.1.1). with

kp -2,ap =1. The nominal values of the controller parameters are then

c0 =%L =1.5 (5.1.7)
kp

d$v - aP~Qm ^-i (5.1.8)
kp

The behavior of the adaptive system is then studied, assuming that the actual plant

does not satisfy exactly the assumptions on which the adaptive control system is based.

The actual plant is only approximately a first order plant, and has the third order transfer

function

2 229

5 + 1 52 + 305+229
(54.9)

In analogy with nonadaptive control terminology, the second term is called the

unmodeled dynamics. The poles of the unmodeled dynamics are located at —15 ±j2. and.

at low frequencies, this term is approximately equal to 1.

In Rohrs examples, the measured output yp (t) is also affected by a measurement

noise n(t). The actual plant with the reference model and the controller are shown in

figure 5.1.

An important aspect of Rohrs examples is that the modes of the actual plant and

those of the model are well within the stability region. Moreover, the unmodeled dynam

ics are well-damped, stable modes. From a traditional control design standpoint, they

would be considered rather innocuous.

At the outset, Rohrs. et al (1982) showed through simulations that, without meas

urement noise or unmodeled dynamics, the adaptive scheme is stable, and the output
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error converges to zero, as predicted by the stability analysis.

However, with unmodeled dynamics, three different mechanisms of instability appear.

(Rl) With a large, constant reference input, and no measurement noise, the output

error initially converges to zero, but eventually diverges to infinity, along with

the controller parameters c<> and d 0.

Figures 5.2 and 5.3 show asimulation with r(t) =4.3. n(t )=0. that illustrates
this behavior (c0(0) =1.14. d0(0) =-0.65. and other initial conditions are zero).

(R2) With a reference input having a small constant component, and a large high fre
quency component, the output error diverges at first slowly, and then more

rapidly to infinity, along with the controller parameters c0 and d0.
Figures 5.4 and 5.5 show asimulation with r(t )=0.3 +1.85 sinl6.1r .n{t )=0
(Co(0) = 1.14. d0(0) =-0.65. and other initial conditions are zero).

(R3) With a moderate constant input and a small output disturbance, the output error

initially converges to zero. After staying in the neighborhood of zero for an
extended period of time, it diverges to infinity. On the other hand, the controller

parameters c0 and d0 drift apparently at a constant rate, until they suddenly

diverge to infinity.

Figures 5.6 and 5.7 show a simulation with r(r)=2. n(t) =0.5 sinl6.1f
(Co(0) =1.14. d0(Q) =—0.65. and other initial conditions are zero).
Although this simulation corresponds to a comparatively high value of n{t).
simulations show that when smaller values of the output disturbance nU) are

present, instability still appears, but after alonger period of time. The controller
parameters simply drift at a slower rate. Instability is also observed with other

frequencies of the disturbance, including aconstant n(t ).

Rohrs examples stimulated much research about the robustness of adaptive systems.

Examination of the mechanisms of instability in Rohrs examples show that the instabili

ties are related to the identifier. In identification, such instabilities involve computed sig

nals, while in adaptive control, variables associated with the plant are also involved. This
justifies a more careful consideration of robustness issues in the context of adaptive con

trol.
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5.2 Robustness of AdaptiTe Algorithms with Persistency of Excitation

Rohrs examples show that the BIBS stability property obtained in chapter 3 is not
robust to uncertainties. In some cases, an arbitrary small disturbance can destabilize an
adaptive system, which is otherwise proved to be BIBS stable. In this section, we will
show that the property of exponential stability is robust, in the sense that exponentially
stable systems can tolerate a certain amount of disturbances. Thus, provided that the
nominal adaptive system is exponentially stable (guaranteed by aPE condition), we will
obtain robustness margins, i.e. bounds on disturbances and unmodeled dynamics that do
not destroy the stability of the adaptive system. Of course, the practical notion of
robustness is that stability should be preserved in the presence of actual disturbances
present in the system. Robustness margins must include actual disturbances for the adap-
tive system to be robust in that sense.

The main difference from classical LTI control system robustness margins is that
robustness does not depend only on the plant and control system, but also on the refer
ence input, which must guarantee persistent excitation of the nominal adaptive system
(i.e. without disturbances or unmodeled dynamics).

5.2.1 Exponential Convergence and Robustness

In this section, we consider properties ofa so-called perturbed system

x =/(*.*.u) x(0) =x0 (52l)

and relate its properties to those of the unperturbed system

x=f(t.x.O) x(0) =x0 <5-2'2)

where t £0. x €R" .u €Rm. Depending on the interpretation, the signal u will be con

sidered either a disturbance, or an input.

We restrict our attention to solutions x and inputs u belonging to some arbitrary

balls Bh € Rn and Bc € Rm.
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Theorem 5.2.1 Small Signal I/O Stability

Consider the perturbed system (5.2.1) and the unperturbed system (5.2.2). Let x =0 be
an equilibrium point of (5.2.2). i.e. / (* .0.0) = 0. for all t Z0. Let / be piecewise con
tinuous in t. and have continuous and bounded first partial derivatives in x. for allt ^0,

x €Bh . u €Bc. Let / be Lipschitz in u. with Lipschitz constant lu . for all * >0. x €Bh .

u €BC. Letw €Z,oo.

// x =0 is an exponentially stable equilibrium point of the unperturbed system

Then (a)

the perturbed system is small-signal L^-stable, i.e. there exist yoo.c„>0. such

that lu Be<ceoimplies that

IxBoo^vJuloo (5.2.3)

where x is the solution of (5.2.1) starting at x0=0;

(b)

there exists m >1 such that, for all \x0\<h/ m. lul^Kc^ implies that x(t)

converges to a Bb ball of radius 8=y0Olul0O<h. that is: for all € >0. there exists

T ^0 such that

lx(*)l<(l+e)S (5.2.4)

for all t ^T. along the solutions of (5.2.1) starting at x0.

Also, for all t >0.x(t)£Bh.

Comments

Part (a) of theorem 5.2.1 is a direct extension of theorem 1 of Vidyasagar & Van-

nelli (1982) (see also Hill & Moylan (1980)) to the non autonomous case. Part (b)

further extends it to non zero initial conditions.

Theorem 5.2.1 relates internal exponential stability to external input/output stabil

ity (the output is here identified with the state). In contrast with the definition of BIBS
stability of section 3.4. we require a linear relationship between the norms in (5.2.3) for

L^ stability.

Although lack of exponential stability does not imply input/output instability, it is

known that simple stability, and even (non uniform) asymptotic stability are not
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sufficient conditions to guarantee I/O stability (see e.g. Kalman & Bertram (1960) Ex. 5 p.

379).

Proof of Theorem 5.2.1

The differential equation (5.2.2) satisfies the conditions of theorem 1.4.3. so that

there exists a Lyapunov function v (t jc ) satisfying the following inequalities

aJxF <v(r.x) ^o^lxl2 (5.2.5)

dvQ.x)
dt (5.2.2)

dv(* .x)

a*
^a4\x\

(5.2.6)

(5.2.7)

for some strictly positive constants a1...a4, and for all t >0. x € 5/, .

If we consider the same function to study the perturbed differential equation (5.2.1).

inequalities (5.2.5) and (5.2.7) still hold, while (5.2.6) is modified, since the derivative is

now to be taken along the trajectories of (5.2.1). instead of (5.2.2). The two derivatives

are related through

dt l/c»t\ nt ;_i nX:'(5.2.1) &

_ dv(t

i=l Bxi

llll +±dv(''x)\fi{t.x.u)-fi(t.x.0)1 (5.2.8)
'(5.2.2) i=l 0*' » '

Using (5.2.5)-(5.2.7). and the Lipschitz condition on /

dv (t. x)
</r

<-a3lxl2 + a4lxlZu lulu

Define

(52.1)

4 , , <*2 m/ 2Of

<*3 <*1

S:=yJwL

Inequality (5.2.9) can now be written

dv (r jc ) I
<fc

<-a3lxl(lxl-_ )
m"(52.1)

(5.2.9)

(5.2.10)

(5.2.11)

(5.2.12)

(5.2.13)
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This inequality is the basis of the proof.

Part (a) Consider the situation when lx0l^8/m (this is true in particular if

x0=0). We show that this implies that x{t )655 for all t >0 (note that 8/ m <8. since

m >1).

Suppose, for the sake of contradiction, that it was not true. Then, by continuity of the

solutions, there would exist T(i.T1{Tl >T0 >0). such that lx(r0)l= 8/ m. \x(T1)\>8.

and for all t €[T0.Ti\ ' lx(f )l ^8/ m. Consequently, inequality (5.2.13) shows that, in

[T0.Ti\. dvI dt <0. However. this contradicts the fact that

v(ro.x(ro))<a2(8/^)2 = «i52'andv(r1.x(r1))>a1S2.

Part (b) Assume now that lx0l >8/ m. We show the result in two steps.

(bl)forall€ >0. there exists T ^0 such that Ix(7)1= (8/ m)(l+e).

Suppose it was not true. Then, for some € >0. and for all t ^0. Ix(r)l>(8/ m)(l+€)

and. from (5.2.13). dvI dt <—a3(8/ m)2(l+€)€. which is a strictly negative constant.

However, this contradicts the fact v(0. x0) ^o>2 \x012, and v (t ,x (t)) >ati (8/ m)2(1+e)2

for all t ^0.

(b2) for all t >7\ \x{t )K8(l+e). This follows directly from (bl). using an argument

identical to the one used to prove (a).

Finally, recall that the assumptions require that x(t )€Bh . u(t )€5C. for all t >0.

This is also guaranteed, using an argument similar to (a), provided that IxqI <hl m and

flu t^<cm, where m is defined in (5.2.12). and

c-:=nun(c.&/y€D) (5.2.14)

(5.2.14) implies that 8 <h . and \x^<hl m ^h implies that \x(t )l <m IxqK/i for all

t >0.

Note that although part (a) of the proof is, in itself, a result for non zero initial con

ditions, the size of the ball B^t m involved decreases when the amplitude of the input

decreases, while the size of Bh/ m is independent of it. D
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Additional Comments

a) The proof of the theorem gives an interesting interpretation of the interaction

between the exponential convergence of the original system, and the effect of the distur

bances on the perturbed system. To see this, consider (5.2.9): the term —a3lx Pacts like

a restoring force bringing the state vector back to the origin. This term originates from

the exponential stability of the unperturbed system. The term aA\x\lulu loo acts like a

disturbing force, pulling the state away from the origin. This term is caused by the input

u (i.e. by the disturbance acting on the system). While the first term is proportional to

the norm squared, the second is only proportional to the norm, so that when Ix I is

sufficiently large, the restoring force equilibrates the disturbing force. In the form

(5.2.13). we see that this happens when Ix 1= 8/ m = yd rn \u !!«,.

b) If the assumptions are valid globally, then the results are valid globally too. The

system remains stable, and has finite I/O gain, independent of the size of the input. In the

example of section 5.2.2. and for a wide category of nonlinear systems (bilinear systems

for example), the Lipschitz condition is not verified globally. Yet. given any balls Bh ,BC.

the system satisfies a Lipschitz condition with constant la depending on the size of the

balls (actually increasing with it). The balls Bh 3C are consequently arbitrary in that

case, but the values of ym (the £«, gain) and cm (the stability margin) will vary with

them. In general, it can be expected that c^wiH remain bounded despite the freedom left

in the choice of h and c. so that the I/O stability will only be local.

c) Explicit values of >«, and cM can be obtained from parameters of the differential

equation, using equations (5.2.10) and (5.2.14). Note that if weused the Lyapunov func

tion satisfying (5.2.5)-(5.2.7) to obtain a convergence rate for the unperturbed system,

this rate would be a3/ 2«i. Therefore, it can be verified that, with other parameters

remaining identical, the Lm gain is decreased, and the stability margin cn is increased.

when the rate of exponential convergence is increased.

5.2.2 Robustness of an Adaptive Control Scheme

For the purpose of illustration, we consider the output error direct adaptive control

algorithm of section 3.3.2. when the relative degree of the plant is 1. This example con

tains the specific cases of the Rohrs examples.
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In section 3.5. we showed that the overall output error adaptive scheme for the rela

tive degree 1 case is described by (cf. (3.5.28))

«(«) = Ame(t) + bm<f>r(t)wm(t) + bm<t>rU)Qe(t)

*(*)= -gcle{t)wm{t)-gcle{t)Qe{t) (5.2.15)

where e{t ) €R3n "2. and <f>(t) 6R2n . Am is a stable matrix, and wm (t) €R2n is bounded
for all t >0. (5.2.15) is a nonlinear ordinary differential equation (actually it is bilinear)

of the form

x=fUx) x(0)= x0 (5.2.16)

which is of the form (5.2.2), where

x:=(£J el?5""2 (5.2.17)
Recall that we also found, in section 3.8. that (5.2.15) (i.e. (5.2.16)) is exponentially

stable in any closed ball, provided that wm is PE.

Robustness to Output Disturbances

Consider the case when the measured output is affected by a measurement moise

n(O. as in figure 5.1. Denote by y'p the output of the plant P(s ) (i.e. the output without
measurement noise), and by yp (t). the measured output, affected by noise, so that

y,(0= y;(t) +n{t) =P(u) +n(t) (5.2.18)

To find a description of the adaptive system in the presence of the measurement

noise n(t). we return to the derivation of (5.2.15) (that is (3.5.28)) in section 3.5. The

plant P has a minimal state-space representation [Ap ,bp ,c/l such that

xp = Ap xp +bp u

• = erx (5.2.19)yp cp xp

The observers are described by

w{1) = Awa) + bku

w™ =AwM +bkyp =Aw<2> +*x<tT*, +*x» (5-2-20)

and the control input isgiven byu = 0r w =<f>r w +9* w.



As previously, we let x/u. =(x/V1)T\w™TX Using the definition of A,
cm in (3.5.18H3.5.19). the description of the plant with controller is now

xpw = Am xpw +bm <f>rw +bmc'0 r +bn n

• — Typ "~ ^m xpw

where we defined tf =(0.0.6D € (R» .R^R""1) =R3n"2-

As previously, we represent the model and its output by

xm = Am xm +bmc'0 r

"Jin = cm xm

and we let e = xpw —xm.

The update law is given by

4>--i (yP-ym)w

= -gc!ew -gnw

and the regressor is now related to the state e by

w —

r

f«
= W/n +

= wm + Q e + qn n

w^-wP
yP-yjp Jm
(2)_w(2)

w W„

.

0

+
0
n

I

0
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bm, and

(5.2.21)

(5.2.22)

(5.2.23)

(5.2.24)

where we defined ql=(0.0.1.0) €(R. R" -1. R. R" -1) =R2" •

Using these results, the adaptive system with measurement noise is described by
e(0= Ame{t) +bm<f>Ht)wm{t) +bm<f>nt)Qe(t) +bm4>T(t)qnn(t) +bnn{t)

<*>(*)= -ge£e(Owm(r)-gc£«(Ofi«(0-gc£«(r)«JIn(t)

-gn(t)wm(t)-gn(t)Qe(t)-gn2U)q„ (5-2.25)

which, with the definition of x in (5.2.17). and the definition of / in (5.2.15)-(5.2.16)
can be written

x =/ it* )+Plit) +PjLt )xit) (5-2.26)



where px(t )€R5"-2. and P2(t )€R5n-2x5"-2, are given by

bn n it )
/>i(') =

Piit) =

-g n(t)wm(t)-gn2U)qn

0 bmn{t)q*

-gn(t)qnc?-gn(t)Q 0
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(5.2.27)

Note that if n €£«, , then px and P2^L00 . Therefore, the perturbed system

(5.2.26) is a special form of system (5.2.1). where u contains the components of p\ and

P2. Although pi(t) depends quadratically on n . given a bound on n. there exists kn >0

such that

l#>il»+l*A.<*« •"»- (5.2.28)

From these derivations, we deduce the following theorem.

Theorem 5.2.2 Robustness to Disturbances

Consider the output error direct adaptive control scheme of section 3.2.2. assuming that

the relative degree of the plant is 1. Assume that the measured output yp of the plant is

given by (5.2.18). where n € L^. Let h >0.

// wm is PE

Then there exists yn ,cn >0 and m ^1. such that In I^^Cn and lx(0)l <h/ m implies

that x(t ) converges to a B& ball of radius B= ynlnt00. and Ix(t )I<m lx0l <h

for all t >0.

Proof of Theorem 5.3.2

Since wm is PE. the unperturbed system (5.2.15) (i.e. (5.2.16)) is exponentially

stable in any Bh by theorem 3.8.2. The perturbed system (5.2.25) (i.e. (5.2.26) is a spe

cial case of the general form (5.2.1), so that theorem 5.2.1 can be applied with u contain

ing the components of px(t ).P2(t ). The results on pi(t). P2(t ) can be translated into

similar results involving n Q ). using (5.2.28).



150

Comments

a) A specific bound cn on In ^ can be obtained such that, within this bound, and

provided the initial error is sufficiently small, the stability of the adaptive system will be
preserved. For this reason. c„ is called a robustness margin of the adaptive system to

output disturbances.

b) The deviations from equilibrium are locally at most proportional to the distur

bances (in terms of £„ norms), and their bounds can be made arbitrarily small by reduc

ing the bounds on the disturbances.

c) The Loo gain from the disturbances to the deviations from equilibrium can be
reduced by increasing the rate of exponential convergence of the unperturbed system (pro
vided that other constants remain identical).

d) Rohrs example (R3) of instability of an adaptive scheme with output distur

bances on a non persistently excited system, is an example of instability when the per

sistency of excitation condition of the nominal system is notsatisfied.

Robustness to Unmodeled Dynamics

The approach adopted here is similar to that used by Doyle &Stein (1981) to study
the robustness of non adaptive control systems. We assume again that there exists a

nominal plant Pis ). satisfying the assumptions on which the adaptive control scheme is

based, and we define the output of the nominal plant to be

y'p=Piu) (5.2.29)

The actual output is modeled as the output of the nominal plant, plus some additive

uncertainty represented by a bounded operatorHa

yp(t)=y;it) +Haiu)it) (5.2.30)

The operator Ha represents the difference between the real plant, and the idealized plant
Pis ). In the terminology of Doyle & Stein (1981). we refer to it as an additive unstruc

tured uncertainty, and it constitutes all the uncertainty, since it is the purpose of the

adaptive scheme to reduce to zero the structured or parametric uncertainty.

We assume that Ha'.L^ -*£«,«> is a causal operator satisfying

\Haiu ), loo <ya 8u, HOO+ & (5.2.31)
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for all t £0. 0a may include the effect of initial conditions in the unmodeled dynamics.

and the possible presence of bounded output disturbances.

The following theorem guarantees the stability of the adaptive system in the pres

ence of unmodeled dynamics satisfying (5.2.28).

Theorem 5.23 Robustness to Unmodeled Dynamics

Consider the output error direct adaptive control scheme of section 3.3.2. assuming that
the relative degree of the plant is 1. Assume that the nominal plant output and actual
measured plant output satisfy (5.2.29M5.2.30). where P satisfies the assumptions of sec

tion 3.3.2. and#a satisfies (5.2.31).

// wm is PE

Then for x0.ya. A sufficiently small, the states trajectories of the adaptive system

remain bounded.

Proof of Theorem 5.2.3

Let n = Ha(u ). so that, by assumption

In, loo<ya«Moo+Pa (5-232)

for all t >0. On the other hand, by theorem 5.2.2. there exists yn .0„ ^0 such that

Ix, !«<?., I»i I-+A. **h (5-233)

for all t >0. provided that In, !„ <cn (so that x €Bh ).

The input u is given by

= 0'Twm+e'TQe+etTqnn+<f>Twm+<f>rQe+ +4>rqnn (5.2.34)

where we used (5.2.24). Define u := B'Twm . Assuming that x €Bh . there exists * £0

such that

lu, l.^luX+JfcOx, Bco+Bn, I.) (5.2.35)

for all t >0. so that, with (5.2.33)

It* I <y.lnrla.+ 0„+Bi<;BaD (5.2.36)
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for some yu . 0U ^0, and for all t ^0.

Applying the small gain theorem (lemma 3.6.6). we find that all signals are bounded

if

%.* <1 <5-237)

and. to guarantee that In !„, ^c„ (so that x € Bh )

Pq+y«(P«+ '"''-> <_ (5.2.38)

Although the proof in its form appears circular, since we assume that x €Bh to
establish the inequalities used to prove the result, this can be resolved by imposing condi

tions (5.2.37)-(5.2.38). then show that x must remain in Bh for all t >0 by acontradic

tion argument. D

Comments

Condition (5.2.24) is very general, since it includes possible nonlinearities, unmo

deled dynamics, etc. provided that they can be represented by additive, bounded-input

bounded-output operators.

If the operator Ha is linear time invariant, the stability condition is a condition on

the Loo gain of Ha. One can use

ya=*hah =f\haiT)\dT (5.2.39)
o

where ha (t) is the impulse response of fia. The constant |3a depends on the initial con

ditions in the unmodeled dynamics.

The proof of theorem 5.2.3 gives some margins of unmodeled dynamics that can be
tolerated without loss of stability of the adaptive system. Given ya . ft, it is actually pos

sible to compute these values. The most difficult parameter to determine is possibly the
rate of convergence of the unperturbed system, but we saw in chapter 4 how some esti
mate could be obtained, under the conditions of averaging. Needless to say the expression

of these robustness margins depends in acomplex way from known parameters, and it is
likely that the estimates would be conservative. The importance of the result is to show
that if the unperturbed system is persistently excited, it will tolerate some amount of
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disturbance, or conversely that an arbitrary small disturbance cannot destabilize the sys

tem, such as in example (R3).

S3 Analysis of the Rohrs Examples

By considering the overall adaptive system, including the plant states, observer
states, and the adaptive parameters, we showed in section 5.2 the importance of the
exponential convergence to guarantee some robustness of the adaptive system. This con
vergence depends especially on the parameter convergence, and therefore on conditions on

the input signal r it).

Aheuristic analysis of the Rohrs examples gives additional insight into the mechan

isms leading to instability, and suggest practical methods to improve robustness. Such an
analysis can be found in Astrom (1983). and its success relies mainly on the separation of
time scales between the evolution of the plant/ observer states, and the evolution of the

adaptive parameters. This separation of time scales is especially suited for the application
of averaging methods (cf. chapter 4).

Following Astrom (1983). we will show that instability in the Rohrs examples are

due to one or more of the following factors

(a) the lack of PE signals to

- allow for parameter convergence in the nominal system,

- prevent the drift of the parameters due to unmodeled dynamics or output disturbances.

(b) the presence of significant excitation at high frequencies, originating either from
the reference input, or from output disturbances. These signals cause the adaptive loop to
try to get the plant loop to match the model at high frequencies, where it results in a

closed-loop unstable plant.

(c) a large reference input with a non-normalized identification algorithm and
unmodeled dynamics, resulting in the instability of the identification algorithm.

Analysis

Consider now the mechanisms of instability corresponding to these three cases.
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(a) Consider first the case when no unmodeled dynamics or output disturbances are

present.

In the nominal case, the output error tends to zero. When the PE condition is not

satisfied, the controller parameter does not necessarily converge to its nominal value, but

to a value such that the closed-loop transfer function matches the model transfer func

tion at the frequencies of the reference input. Consider for example Rohrs example,
without unmodeled dynamics. The closed-loop transfer function from r ->yp. assuming

that c0 and d0 are fixed is

yj_= 2c° (5.3.1)
r 5+1 —2d0

If a constant reference input is used, only the DC gain of this transfer function must be

matched with the DC gain of the reference model. This implies the condition that

_i^L_= i (5.3.2)
l-2d0

Any value of c0. d0 satisfying (5.3.2) will lead to yp -ym -0 as t -oo for aconstant
reference input. Conversely, when e -0. so do c0. and dQ. so that the assumption that

Co, d0 are fixed is justified.

If an output disturbance n it) enters the adaptive system, it can cause the parame

ters c0.do to move along the line (more generally the surface) defined by (5.3.2). leaving
«o = yp-ym at zero. In particular, note that when output disturbances are present, the
actual update law for d0is not (5.1.6) anymore, but

do =-* yP' (y', -ym)-gy<nn-zn2 (5-33)

where we find the presence of the term -gn2. which will tend to make d0 slowly drift

towards the negative direction.

In example (R3). unmodeled dynamics are present, so that the transfer function

from r —yp is in fact given by

yP _ 458co (5.3.4)
T" is +1) is* + 30s +229) -458<f0

which is identical to (5.3.1) for DC signals, but which is unstable for d0>l/ 2 and

d 0<-l7.03.
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The result is observed in figures 5.6 and 5.7. where d0 slowly drifts in the negative

direction, until it reaches the limit of stability of the closed-loop plant with unmodeled

dynamics.

This instability is called the slow drift instability. The error converges to a neighbor

hood of zero, and the signal available for parameter update is very small and unreliable,

since it is indistinguishable fron the output noise n it ). It is the accumulation of updates

based on incorrect information that leads to parameter drift, and eventually to instabil

ity-

In terms of the discussion of section 5.2. we see that the constant disturbance —gn2

is not counteracted by any restoring force, as would be the case if the original system was

exponentially stable. For example, consider the case where n = 0.1 sin 16.11. Figure 5.8

shows the evolution of the parameter dQ in a simulation where r(t) = 2 and where

r it ) = 2 sin t. In the first case, the parameter slowly drifts, leading eventually to insta

bility. When r it) = 2 sin t. so that PE conditions are satisfied, the parameter d0 deviates

from d o. but remains close to the nominal value.

(b) Consider now the case when the reference input, or the output disturbance, contain a

large component at a frequency where unmodeled dynamics are significant.

Let us return to Rohrs example, with a sinusoidal reference input rit) = r0 sin

(coo*). With unmodeled dynamics, there are still unique values of c0. d0 such that the

transfer function from r -*yp matches A? at the frequency of the reference input £•><>.

Without unmodeled dynamics, these would be the nominal c*0. d0. but now they are the

values cq .do , which are usually called the tuned values, such that

458c 0+

is +l)(52 + 305 +229)-458<f0+ j+3 •
(5.3.5)

where o>0 is the frequency of the reference input. Note that the tuned values depend on

M ,P, the unmodeled dynamics, and also on the reference input r.

On the other hand, it may be verified through simulations, that the output error

tends to zero, and that the controller parameters converge to the following values c0jj and

dQ (cf. Astrom (1983))
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1 1.69 -1.26

2 1.67 -1.44

5 1.53 -2.72

10 1.04 -7.31

It may be verified that these values are identical to the tuned values defined above.

Therefore, the adaptive control system updates the parameters, trying to match the

closed-loop transfer function - including the unmodeled dynamics - to the model refer

ence transfer function. Note that the parameter d0 = d$ quickly decreases for oj0>5.

On the other hand, the closed-loop system is unstable when d0 ^—17.03. and

d0+ <—17.03. when 6>0 ^16.09. Therefore, by attempting to match the reference model

at a high frequency, the adaptive system leads to an unstable closed-loop system, and

thereby to an unstable overall system.

This is the instability observed in example (R2). In contrast, figure 5.9 shows a

simulation where r = 0.3 +1.85 sin t. that is where the sinusoidal component of the

input is at a frequency where model matching is possible. Then, the parameters converge

to values c0+. d0+ close to c0. d0. and the adaptive system remains stable, despite the

unmodeled dynamics.

Finally, note that instabilities of this type can be obtained even without unmodeled

dynamics, and can lead to the so-called bursting phenomenon (cf. Anderson (1985)).

(c) Consider finally the mechanism of instability observed in example (Rl).

This mechanism will be called the high-gain identifier instability. Although we do

not have explicitly a high adaptation gain g, we recall that the adaptation law is given by

Co ——g r e (5.3.6)

d0 = ~gype (5-3.7)

Therefore, multiplying r by 2, means multiplying ym.yp and e by 2. and therefore is

equivalent to multiplying the adaptation gain by 4.

The instabilities obtained for high values of the adaptation gain are comparable to

instabilities caused by high gain feedback in LTI systems with relative degree greater than
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2 (cf. Astrom (1983) for a simple root-locus argument). Asimple fix to these problems

is to replace the identification algorithm by a normalized algorithm.

5.4 Methods to Improve Robustness

From the discussions in the previous sections, we deduce some basic guidelines to

improve the robustness of adaptive systems.

Persistency of Excitation

Persistency of excitation should be used to ensure that parameters converge to the

neighborhood of their nominal values, and track these values if the plant is slowly vary
ing. PE should be achieved by injecting inputs in the frequency range of interest (i.e. the
frequency where model matching is achievable). PE has the advantage of directly increas

ing the information available to the identification algorithm. The disadvantage is that it
may not be practical, since inputs are generally restricted by external constraints. Some
times, small signals may be added to the reference input with acceptable disturbance of

the system, and with sufficient excitation to ensure convergence of the parameters.

Another disadvantage of this method is however to lead to a robustness that is not inter

nal (or "structural" ), but instead depends on external signals.

Deadzone

This method consists in turning off the adaptation law when the identifier error is

below the threshold under which it only consists of measurement noise. The parameters

are therefore not updated if the identifier error issufficiently small. A more complex ver

sion of this is to monitor the frequency content of the control input, and to turn-off

adaptation when PE conditions are not met.

The useof a deadzone is simple and practical, but it absolutely requires the measure

ment noise to be bounded. Otherwise, occasional disturbances may cause parameter drift,

and eventually instability.
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Slow Adaptation

As we saw in the previous section, fast adaptation can lead to instability of the

identifier, and is in general nonrobust. Slow adaptation reduces the influence of noise by

averaging it. To some extent, this is therefore a method to increase robustness. In this

category, we can also include modifications of the update law where some signals are

replace by averaged or filtered signals.

Although fast adaptation is not recommended, very slow adaptation is not either.

First, slow adaptation goes against a basic performance consideration, which is to track

parameter variations. Second, the effect ofslow adaptation on drift instabilities is only to

delay instabilities, not to prevent them.

Prior Information

Prior information is useful to constrain adaptive parameters to some arbitrary set

(with the use of projection in the update law for example). Drift instability can be

prevented in this manner. Also, if an approximate value Ba of the adaptive parameter 9
is known, the update law may be replaced by

0 = —cr(0-0fl) + (previous update law) (5.4.1)

This modification includes the o~ modification proposed by Ioannou & Kokotovic (1984).

It has the advantage of being simple and efficient, but its efficiency depends strongly on

the approximate 9a. Note also that, even without unmodeled dynamics, the output error

and the parameter error do not tend to zero unless 9a = 9 .

References

Research work along these lines (and others) can be found in Kreisselmeier and

Narendra (1982). Peterson and Narendra (1982). Anderson and Johnstone (1983). Sastry

(1984). Riedle. Cyr. and Kokotovic (1984). Kosut and Johnson (1984). Ortega. Praly. and

Landau (1985). Kokotovic. Praly. and Landau (1985). Kreisselmeier (1986). Kreisselmeier

and Anderson (1986). Narendra and Annaswamy (1986).



159

5.5 Conclusions

In this chapter, we studied the problem of the robustness of adaptive systems, that
is their ability to maintain stability despite modeling errors and measurement noise.

We first reviewed the Rohrs examples, illustrating several mechanisms of instability.
Then, we derived ageneral result relating exponential stability to robustness. We also
showed how it could be used to compute robustness margins of an adaptive control
scheme in the presence of measurement noise or unmodeled dynamics. The result indi
cated that the property of exponential stability is robust, although examples show that
the BIBS stability property is not (that is. BIBS stable systems can become unstable in the
presence of arbitrarily small disturbances). In practice, the amplitude of the disturbances
should be checked against robustness margins to determine if stability is guaranteed. The
complexity of the relationship between the robustness margins and known parameters,
and the dependence of these margins on external signals unfortunately made the result
more conceptual than practical.

The mechanisms of instability found in the Rohrs examples were discussed in view

of the relationship between exponential stability and robustness. Further explanations of
the mechanisms of instability were presented. Finally, various methods to improve

robustness were briefly reviewed.

Much research is still needed in the area of robustness. As for traditional control,
we confront the problem of the tradeoff between robustness and performance. It is also
necessary to develop useful methods of analysis of robustness of adaptive systems, and
methods to quantify robustness to allow comparison between different approaches.
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Conclusions

Specific Conclusions

In this thesis, we addressed three issues of prime importance to adaptive systems:

the stability under ideal conditions, the convergence of the adaptive parameters, and the
robustness to modeling errors and to measurement noise. Identification and model refer
ence adaptive control schemes were considered, but the attention was focused on single-
input single-output, continuous time, linear time invariant systems.

New results were presented, as well as simplified and unified proofs of existing
results. Therefore, connections between different schemes, and apparently different issues

were found: for example, between input error and output error schemes, between direct
proofs of exponential convergence and proofs using averaging techniques, and between
parameter convergence and robustness.

First, some identification algorithms were reviewed, and their stability and parame

ter convergence properties were established. It was shown that, under general conditions,
the identifier parameter was a bounded function of time, and the identifier error con
verged to zero as time approached infinity. Similar results were found for gradient and
least-squares algorithms, and for linear as well as SPR error equations. Parameter con
vergence followed from an additional persistency of excitation condition.

Three model reference adaptive control schemes were presented. One was the output

error adaptive control scheme of Narendra. Lin. and Valavani. Another was asimple
indirect adaptive control scheme. The third was anew. input error, direct adaptive con
trol scheme, that was an alternate scheme to the Narendra. Lin. and Valavani algorithm.

It did not require a strictly positive real condition on the reference model, and no over-
parametrization was needed when the high-frequency gain was unknown.

Useful lemmas were presented, and unified stability proofs were derived for the
input and output error schemes, as well as for the indirect adaptive control scheme. The
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results showed that all three schemes had similar stability properties: the state trajec

tories were bounded functions of time, and the error between the plant and the reference

model converged to zero as time approached infinity. Therefore, stability was not an

argument in selecting one scheme instead of the other. In practice however, differences
appeared. The input error and the indirect schemes had the advantage of leading to a
linear error equation, and of allowing for a useful separation between identification and
control. Parameter convergence was also established for the adaptive control schemes,

under persistency of excitation conditions on model signals.

The parameter convergence of the adaptive schemes was further analyzed using
averaging techniques. For this, we assumed that the reference input possessed some sta-
tionarity properties, and that the adaptation gain was sufficiently small. It was shown

that the nonautonomous adaptive systems could be approximated by autonomous sys

tems, thereby considerably simplifying the analysis. In particular, estimates of the rates
of exponential convergence of the parameters were obtained for the linear identification

scheme, as well for a nonlinear adaptive control scheme.

Although the class of inputs under consideration was restricted to stationary inputs.

this class was quite large (more general than almost periodic inputs), and resulting
expressions in the frequency domain were especially appealing. The assumption of slow
adaptation was not really restrictive, and it appeared to simply require that adaptive
parameters vary slower than other states and signals in the adaptive system. Practical
considerations in chapter 5 suggested that this should be the normal operation of adaptive

systems, and that fast adaptation was essentially non robust. It should not be deduced
however that very slow adaptation would be desirable for robustness, or required for the

applicability of averaging methods.

Finally, the robustness of adaptive algorithms was investigated. The Rohrs exam

ples were first reviewed. A connection between exponential convergence and robustness

was established in a general framework. The result was applied to a model reference

adaptive control scheme, and stressed the importance of the persistency of excitation con

dition for robustness. Robustness margins were also obtained. An important parameter

of the analysis was the rate of exponential convergence of the adaptive algorithm, which
can be obtained - or approximated - using methods described earlier. The mechanisms of

instability observed in the Rohrs examples were explained, and methods to improve
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robustness were briefly investigated.

General Conclusions

Appropriate techniques are needed for the analysis of the nonlinear time varying

dynamics of adaptive systems. Among these, averaging methods constitute a very suc

cessful, and promising approach. The success of the application of averaging methods to

adaptive systems partially relies on the separation between the adaptive parameters and

the remaining states of the adaptive system. This is probably due to the fact that we can

exploit the linearity of the underlying system for fixed adaptive parameters. In fact, we

saw in chapter 4 that, by this mean, we could eventually deal with the nonlinear dynam

ics without linearization of any type, and even obtain frequency domain results. Using a

similar decomposition in chapter 5. we found interesting explanations of the mechanisms

of instability observed in Rohrs examples.

In general, it is curious to note that many results, besides those using averaging,

were proved by relying on a fixed parameter approximation. This was found in the

proofs of exponential convergence in chapter 2. and in the proofs of stability in chapter 3

(swapping lemma). It is therefore likely that successful approaches will keep in mind the

separation between the adaptive parameters and the other states of the adaptive system.

Robustness is a very important topic that needs to be better understood to stimulate

practical applications. Again, averaging methods are a very promising approach in this

direction. Practical solutions are needed to enhance the robustness of adaptive systems,

but some methods to quantify robustness and compare different methodologies of control

would be desirable. We hope that the basic work of this thesis will help to strengthen

the foundations on which such research can be built.

Suggestions for Future Research

The thesis suggests several avenues for future research. As mentioned above, an

important area is that of the robustness of adaptive systems to measurement noise and

unmodeled dynamics. We need practical methods to improve robustness, tools for the

analysis of robustness, and in general a better understanding of what the problem is.

The relationship between reference input, nominal plant, unmodeled dynamics, and tuned
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parameters is a particular topic of interest in that regard.

The development of averaging methods, and their application to specific problems is

worth special interest. Among these problems is the robustness of adaptive systems, but

also the optimum input design for parameter convergence, and the comparison of adaptive

algorithms (gradient vs. least squares. MIT rule vs. others), etc.

We did not address numerical considerations in this thesis. It is clear that the choice

of structure, parametrization. and identification algorithms will strongly influence the

numerical stability of the algorithms, and research in that area would definitely be

beneficial.



Proof of Lemma 1.4.2

Let

so that, by assumption
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Appendix

rit) =faiT)xir)dT (Al.4.1)

rit) = ait)xit)$ait)rit) + ait)uit) (Al.4.2)

i.e. for some positive sit)

rit)-ait)rit)-ait)uit) + sit) = 0 (Al.4.3)

Solving the differential equation with r (0) = 0

t

t fa(o)dv
rit)=feT iairUiT)-sir))d7 (Al.4.4)

o

Since exp(.) and s(.) are positive functions

t

t fa (<rW o-fa (<r)d
rit)^fer air)uiT)dr (Al.4.5)

Jo

By assumption xit) ^rit) +uit) so that (1.4.11) follows. Inequality (Al.4.12) is

obtained by integrating (Al.4.11) by parts. D

Proof of Lemma 2J5.2

We consider the system

xit) = Ait)xit)

yit) =Cit)xit) (A2.5.1)
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and the system, under output injection

wit) = iAit )+Kit X it )V it )

zit) = Cit)wit) (A2.5.2)

where x .w €R" . A 6RnXn . C €RmXn . K €Rn »". and y ,z CR™.

It is sufficient to derive equations the inequalities giving j3i'. fi2- Pi

ta) Derivation of Pi'

Consider the trajectories x(t) and w(t). corresponding to systems (A2.5.1) and

(A2.5.2) respectively, with identical initial conditions x (*0)=w(*o)- Then

T

w(t )- x(t )=/ <Kt .o~Xfir (a)C (cr)w (o-) da (A2.5.3)
'o

Let ei&) = Ki<r)Ci&)w (cr) / IKi<r)Cicr)w i&) I€ Rn . so that

T

IC (t )(w (t )-x(t ))l2 =I/ C(t)<Kt ,cr)A- (<r)C (aV i&)d cr?
'o

r

^if\CiTMT.a)eia)\lKia)l\Cicr)wicr)\d&)2

T T

^/iCOOwOOl2^ /lC(T)*(T.cr)e((r)l2lir(cr)ll2<f a (A2.5.4)
<o 'o

using the definition of the induced norm, and Schwartz inequality. On the other hand,

using the triangular inequality

t0+6 t0+6

(/lC(rV(r)l2rfT)1/2>(/lC(T)x(T)l2rfT)1/2
'o ro

f0+6

- ( / IC(t)(w(t)-x(t))P</t )1/2 (A2.5.5)

so that, using (A2.5.4), and the UCO of the original system

r0+6

(/ IC(t)w(t)I2<*t)1/2

>Vfrlw('o)l-( / /lC(v)w(i/)l2rfv/lC(T)<KT.a-)e(o-)l2ii:(<7)a2^cr</T)1/2
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^VJSTlwfco)!

t0+B t0+h T

-if \Civ)wiv)\2dp)1/2if flKi&)l2\CiT)Q(T.<T)eicf)\2d<TdT)1'2 (A2.5.6)
»0 'o 'o

Changing the order of integration, the integral in the last parenthesis becomes

*0+6 f0+6

/ Ur(cr)li2 / IC(T)<KT.cr)e(cr)l2rfTrfo- (A2.5.7)

Note that t0+ 8— <r^8, le(cr)l= 1, while <KT.cr)e(oO is the solution of system (A2.5.1)

starting at e i&). Therefore, using the UCO property on the original system, and the con

dition on Ki.). (A2.5.7) becomes

r0+6 r0+6

/ IAr(o-)02 / \Cir)<b(T.&)ei&tfdTd<r**kbfa (A2.5.8)

Inequality (2.5.12) follows directly from (A2.5.6) and (A2.5.8).

(b) Derivation of /32'

We use a similar procedure, using (A2.5.4)

T

IC(t)w (t)I2 <IC (t)x(t)I2 +\JC (T)<KT.cr)iT(cr)C i&)w i&)d cH2

T

<IC(T)x(T)l2 +(/lC(o-)w(cr)IIC(T)*(T.(r)e(cr)liJS:(o-)l<for)2

<IC(t)x(t)I2

+/lC(i/)w(i/)l2</i//lC(T)*(T.cr)e(cr)P \Ki&)fd<T (A2.5.9)
'o ro

and, forallfo^t <*o+8

, 'o+8

f\CiT)wi7^dT < f \CiT)xir)\2dT

+Jf\Civ)wiv)?dvf\CiT)<XT.<T)eiayiKi&)Pd<rdTiA2.5.10)
tnt0 (0
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and. using the Bellman-Gronwall lemma (lemma 1.4.2). together with the UCO of the

original system

t

/lC(r)w(T)PrfT

^2\wito)\2ezpiff\CiTMT.<T)ei(T)? \Ki&)l2d<rdr ) (A2.5.11)
0 r0

for all t. and in particular for t -t 0+8.

The integral in the exponential can be transformed, by changing the order of integration.

as in (A2.5.8). Inequality (2.5.13) follows directly from (A2.5.8) and (A2.5.11).

(c) Derivationof /33'(.)

Using (A2.5.3)

r

\wit)\^\xit)\ +fK&t.&)MKi<r)MCi&)wio-)\d<r
'o

i

<j33(l* -r0l)Mfo)l+ ^P fci\r\) hKi<ry\\Ci<T)wi&)\d<T
t€[0./-/0) ?0

t

*kfai\t-to\)\wito)\+ sup 03(lTl)a,_. /lC(crV(cr)l2</o-)1/2 (A2.5.12)
t€[0/-/0] °Yo

Inequality (2.5.14) follows directly from (A2.5.12). D

Proof of Lemma 2.6.5

We wish to prove that for some 8, ax. ot2 >0. and for all x with 1x1=1

r0+6

<x2> f iiwr +er)x)2dr>al forallf0>0 (A2.6.1)
'o

oo

By assumption, e €L2. so that J ieTx)2dr <m for some m>0. Since w is PE. there
o

exist <r. 0i. 02 >0 such tnat

r0+a

P2> f iwrx)2dr>^ forallr0>0 (A2.6.2)



Let 8 ><ril+ £- ). <*i =0i. a2 =m+02 (1+-J- ) so that
0i Pi

r0+6 t0+b t0+b
f iiwr+er)x)2dr> f iwTx)2dr- J ierx)2dT
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^j3l(l+^-)-m=ai (A2.6.3)
Pi

and

t0+B 'o+8 ro+8
/ iiwT+er)x)2dT**f iwrx)2dr+ f ieTx)2dr
In »0 '0

^32(l +JZL) +m=a2 (A2.6.4)
HI

Proof of Lemma 2.6.6

We wish to prove that for some 8. aj. a2 >0. and for all x with 1x1=1

r0+6

a2>/ (^(w7')x)2rfT^ai for all 10>0 (A2.6.5)
'o

Denote « =wrx. and y =Hiu)=HiwTx) = HiwT)x (where the last inequality is true

because x does not depend on t). We thus wish to show that

r0+6

<*2> f y2(T)rfT^aj foralWo^O (A2.6.6)

Since w is PE, there exists <r. 0i, 02 >0 such that

r0+a

02 £ / u2ir)dr ^0! for all t0 **° (A2.6.7)

In this form, the problem appears on the relationship between truncated L2 norms of the

input and output of a stable, minimum phase LTI system. Similar problems are
addressed in section 3.6. and we will therefore use results from lemmas in that section.

Let 8=m <r. where m is an integer to be defined later. Since u is bounded, and

y =#(z/). it follows that y is bounded (lemma 3.6.1). and the upper bound in (A2.6.6)
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is satisfied. The lower bound is obtained now. by inversing 6 in a similar way as is used

in the proof of lemma 3.6.2. We let

2is)= f a" ^r uis) (A2.6.8)
is +a)r

where a > 0 will be defined later, and r is the relative degree of 6 is ). Thus

y(5)=(j+c)r fijsyzis) (A2.6.9)
ar

The transfer function from zis) to yis) has relative degree 0. Being minimum phase, it

has a proper and stable inverse. By lemma 3.6.1. there exist klt k2^0 such that

/0+8 'o+8

f z2ir)dr^kl f y2ir)dT +k2 (A2.6.10)
'o '0

Since u is bounded

r0+6

f u2iT)dr^k38 (A2.6.11)
'o

for some k3 ^0. Using the results in the proof of lemma 3.6.2 ((A3.6.14)). we can also

show that, with the properties of the transfer function ar I is+a)r

r0+6 f0+8

Ju2ir)dT^f z2iT)dT +Lk38 +k4 (A2.6.12)
'o 'o a

where k4 is another constant due to initial conditions. It follows that

r«+6 r0+5

f y2ir)dT>-jL ifu2iT)dr-Lk38-k2-k4)

£_L(m (0i-- kz&)-k2-kA) (A2.6.13)
k\ a

Note that r / a is arbitrary, and although ki depends on rl a . the constants 0i. Ar3. and o~

do not. Consequently, we can let r I a sufficiently small that 0X —(r/ a)fc3cr>0i/ 2.

We can also let m be sufficiently large that m0i/2-*2-*4^0i. Then the lower bound

in (A2.6.6) is satisfied with

ttl =|i (A2.6.14)
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Proof of Lemma 3.6.2

The proof of lemma 3.6.2 relies on the auxiliary lemma presented herafter.

Auxiliary Lemma

Consider the transfer function

Kjs)= , °r . a >0 (A3.6.1)
is +a Y

where r is a positive integer.

Let k it ) be the corresponding impulse response and define

oo r

git-r)= fki<r)d<r= fkit-cr)dcr t-r^O (A3.6.2)
t—r —eo

Then

*(*)=/ *\\t tr-le-<" t^O (A3.6.3)
(r—1)!

and k it ) = 0 for t <0. It follows that k it) ^0 for all f. and

<£> t

lkll =fki&)d(r=fkit-<T)da'=l (A3.6.4)
0 —oo

Similarly

git) =e~« £ ^llL a'"* t >0 (A3.6.5)

and g (f ) = 0 for t <0. It follows that g it) ^0 for all r. and

igh =fgi<r)d<r=fgit-&)d<r=L (A3.6.6)
0 -oo a

D

We are now ready to prove lemma 3.6.2. Let r be the relative degree of6, and

zis)=T-?L-ruis) (A3.6.7)
is +a y

where a >0 is an arbitrary constant to be defined later. Using (A3.6.7)
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yis)=is+aY fijs)zis) (A3.6.8)
ar

Since the transfer function from zis) to yis) has relative degree 0. and is minimum

phase, it has a proper and stable inverse. By lemma 3.6.1

\z,\p ^>iBy, l,+&2 (A3.6.9)

We will prove that

lu,!, ^cil2f \p+c2 (A3.6.10)

so that the lemma will be verified with a^cfi^ a2=Cib2+c2.

Derivation of (A3.6.10)

We have that

t

zit) =eit)+ fkit-r)uir)dr (A3.6.11)

where €(r) is an exponentially decaying term due to the initial conditions, and kit) is the

impulse response corresponding to the transfer function in (A3.6.7) (derived in the auxili

ary lemma). Integrate (A3.6.11) by parts to obtain

r o

zit) =eit)+uit) fkit-&)do—uiO) fkit-<r)d<r

t T

- / ( fkit-<r)dcr)uiT)dT (A3.6.12)
—oo —oo

Using the results of the auxiliary lemma

i

zit) =eit) +uit)-uiO)git)- fgit-r)uiT)dT (A3.6.13)

Since g it) is exponentially decaying, u(0)g it ) can be included in eit ). Also, using again

the auxiliary lemma, together with lemma 3.6.1. and then the assumption on u . it follows

that

\ut \ ^\zt lp + l€r lp + — Bii, I,

<i\zt lp +l€r I, + - kx\ut lp + - k2 (A3.6.14)



Since a is arbitrary, let it be sufficiently large that Lki<l. Consequently

Ien, + - k2
lut L < - »2, \P + -2

a cl

:=cilz, L +c:
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(A3.6.15)

Proof of Corollary 3.6.3

(a) From lemma 3.6.2.

(b) Since fi is strictly proper, both y and y are bounded.

(c) We have that y =£(«) and y =8iu). Using succesively lemma 3.6.1. the regularity

of u . and lemma 3.6.2. it follows that for some constants * !....**

\y \^kxUt |08+*2

<7 • . .«. (3.6.16)
^5jyr loo+*6

The proof can easily be extended to the vector case. D

Proof of Lemma 3.6.4

Let

rf(5) =*0 +#ik) (A3.6.17)

where A i is strictly proper (and stable). Let hxbe the impulse response corresponding to

A i- The output y it) is given by

r

yit)=eit)+h0uit) +fh1it-T)uiT)dr (A3.6.18)
o

where eit ) is due to the initial conditions. Inequality (3.6.9) follows, if wedefine

y1it):=\ho\fiiit)+'f\h1it-T)\(iliT)dT (A3.6.19)
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and

t

y2it):=\eit)\ +\ho\^it) +f\hlit-r)\^2ir)dT (A3.6.20)
o

Since €€L2. and h^Lx CiL^ . we also have that le I€L2. \hx\ €LY nZ,«, . Since
0L02 6I.2. it follows that the last term of (A3.6.19). and similarly the last term of
(A3.6.20) belong to L2 (\Lm . and go to zero as *—o (see e.g. Desoer and Vidyasagar
(1975). exercise 5. p. 242). The conclusions follow directly from this observation. D

Proof of Lemma 3.6.5

Let [A .b.cr.d] be a minimal realization of A. with A €*">*" . b€R". c 6R" .
and d € R. Let x: R+-R"1. and y f.R+-R such that

x =A x +6 (wr0)

yi=crx (A3.6.21)

and W:R+-R,nXn . y2:R+-R such that

W =A W +bwT

y2 =crW(f> (A3.6.22)

Thus

Since

Hiwr<t>) =yi +diwr<l>) Hiwr)<t> =y2 +<<dwr)<f> (A3.6.23)

±_ (u/0) ="/<£+«/<£ =AW<l> +bwr <f> +W<)> (A3.6.24)
dt

it follows that

i_(x-W0)=A(x-W0)-W<£

y1-y2 =cr(x-W<^) (A3.6.25)

The result then follows since



Proof of Lemma 4.2.1

Define

and

From the assumptions

w€itx) =fdirjc)e-*it~r)dT

w0it jc) =fdiTjc)dr

\woit+t0jc)-w0itoJc)\^yit ).t

for all t ,t o>0. x €5A . Integrating (A4.2.1) by parts

t

weit *) =w0it *)-* f e-«'-T)WoiT*)dT
0

Using the fact that

efe~€it-T)w0itx)dT =w0it x)-w0itx)e~*f
o

(A4.2.4) can be rewritten as

t

w€it x) =w0it *)e-*' +efe-*{t-T)iwoit Jc)-wQiTx))dT
o

and. using (A4.2.3) and the fact thatw0(0,x ) = 0

\weitjc)\^yit)t e-*'+6/^(,"T)a-T)y(f-TVT

Consequently

oo ,

\€weit*)\$suvyi!r)t,e-'' +fyi?r)T'e-T'dT'
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(A4.2.1)

(A4.2.2)

(A4.2.3)

(A4.2.4)

(A4.2.5)

(A4.2.6)

(A4.2.7)

(A4.2.8)

Since, for some 0. \d it ,x)l <0. we also have that yit ) ^0. Note that, for all t' ZO,
t'e~r <e_1. and t 'e~r <*'. so that

lew€(*.x)l< sup_
/•€[oy«]

yiL)fe-' + susup. yi^)t'e-''
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+fyi lL)T'e^'dT'+]_yi ^-)T'e-r'dT' (A4.2.9)

This, in turn, implies that

t^->/;\ew€its)\^e +yi-^)e-l +(}j +yi-j=)il+J€)e

:=£(e)

From the assumption on y. it follows that £(e)€K. From (A4.2.1)

$wtit jc)

(A4.2.10)

^
-dit ,x) = -€ weit jc) (A4.2.11)

so that the first part of the lemma is verified.

If yiT)=a/ Tr . then the right-hand side of (A4.2.8) can be computed explicitly

supaerit ')l-re-t' =aeril-r)1-rer-l<aer (A4.2.12)

and. with T denoting the standard gamma function

[aeriT')1-re-T'dT' =aerTi2-r)**aer

Defining |(e)=2a er . the second part of the lemma is verified. D

Proof of Lemma 4.2.2

Define w€it jc ) as in lemma 4.2.1. Consequently.

Qw€jtjc) Q
dx a*

Jdir^e^'^dT =f -Z-diTjc)
dx

(A4.2.13)

e-*(<-r)dT (A4.2.14)

Since **d * is zero mean, and is bounded, lemma 4.2.1 can be applied to j-

and inequality (4.2.6) of lemma 4.2.1 becomes inequality (4.2.10) of lemma 4.2.2. Note

that since fr*(r>x) is bounded, and dit ,0)=0 for all t >0.ditjc) is Lipschitz.

Since dit .x) is zero mean, with convergence function y(7)lxl. the proof of lemma

4.2.1 can be extended, with an additional factor Ixl. This leads directly to (4.2.8) and

(4.2.9) (although the function £ie) may be different from that obtained with —
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these functions can be replaced by a single £ie )). •

Proof of Lemma 4.2.3

The proof proceeds in two steps.

Step 1: for € sufficiently small, and for t fixed, the transformation is a homeomorphism.

Apply lemma 4.2.2, and let €! such that £(€j) <1. Let € <€i. Given z €Bh. the

corresponding x such that

x=z+ew€itj) (A4.2.15)

may not belong to Bh . Similarly, given x €5A , the solution z of (A4.2.15) may not exist
in Bh. However, for any x.z satisfying (A4.2.15). inequality (4.2.8) implies (4.2.16)

and

(l-£(e))lzl<lxl<(l+£(€))lzl (A4.2.16)

Define

h'ie) = min *(1-*(€))-_ltiy = /* (!-!(€)) (A4.2.17)

and note that h '(e)->/i as €-*0.

We now show that

- for all z €2?/,.. there exists a unique x €£A such that (A4.2.15) is satisfied,

- for all x €5A., there exists a unique z €Bh such that (A4.2.15) is satisfied.

In both cases. Ix —zK£(€)/* •

The first part follows directly from (A4.2.15), (A4.2.16). The fact that

Ix -z\ ^£ie)h also follows from (A4.2.15). (4.2.8). and implies that, if a solution z

exists to (A4.2.15). it must lie in the closed ball U of radius gie)h around x. It can be

checked, using (4.2.10). that the mapping Fx iz ) =x -€w6(f z ) is a contraction mapping

in U. provided that gie) <1. Consequently. F has a unique fixed point z in U. This

solution is also a solution of (A4.2.15). and since it is unique in U. it is also unique in Bh

(and actually in Rn ). For x €5A . but outside Bh: there is no guarantee that a solution z

exists in Bh . but if it exists, it is again unique in Bh. Consequently, the map x -*z

defined by (A4.2.15) is well-defined. From the smoothness of w€it z ) with respect to z.
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it follows that the map is a homeomorphism.

Step 2: the transformation of variable leads to the differential equation (4.2.17)

Applying (A4.2.15) to the system (4.2.1)

il+e^-)z=efavi2) +eifita.0)-faviz)-^-)
QZ Oz

+ eifitz +ew€.e)-f it* ,e)) + €(/ it j, .€)-/ it * .0))

:=€/fll.(z) + €/>'(* x*.e) (A4.2.18)

where, using the assumptions, and the results of lemma 4.2.2

\p'itz.e)\<:iie)\z\-riie)l1\z\ + el2\z\ (A4.2.19)

Aw
For € ^€i. (4.2.10) implies that U+e—--^-) has a bounded inverse for all t ^O.z€Bh.

QZ

Consequently, z satisfies the differential equation

z= 7+e^i- iefaviz) +ep'it*.e))

where

and

&

= efaviz) + epitz.e) z(0)=x0

pit ,z.€) = /+€
dz

-l
Hw

p'ita.e)-e—?-faviz)
oz

\pitz.e)\ * I s iiie)Hie)li+€l2+iie)lav )\z\

:=^(e)lzl

for all t >Q. e <€,. z €Bh . D

(A4.2.20)

(A4.2.21)

(A4.2.22)
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Proof of Lemma 4.4.1

The proof is similar to the proof of lemma 4.2.3. We consider the transformation of

variable

x=z+ew€itj) (A4.4.1)

with € <€j. such that £(€i) <1. (4.4.1) becomes

or

where

and

D

Qz
faviz) +ifitz.O)-faviz)-^)

+ ifit.z +ewe.O)-f it j. ,0))

+ ( / (r ,z+€we.y )-/(* ,z+€w6,0)) (A4.4.2)

i =efaviz) + eplit*,e) + ep2itz.y.e) z(0)=x0 (A4.4.3)

|^1(^.€)l<_^--T(^(€)/a,+^(€)+^(€)Z1)lzl:=^(€)*ilzl (A4.4.4)
1—s\ei)

l^2(^.y.€)K---^ryZ2lyl:=A2lyl (A4.4.5)
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Figure 3.5 Controller and Input Error Identifier Structures
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Figure 3.6 Alternate Input Error Scheme
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Figure 3.10 Representation of the Plant for the Stability Analysis
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Figure 5.1 Rohrs Example - Plant. Reference Model, and Controller
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Figure 5.3 Controller Parameters (r = 4.3. n = 0)
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Figure 5.4 Plant Output (r = 0.3 + 1.85 sin 16.11. n = 0)
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Figure 5.6 Plant Output (r = 2. n = 0.5 sin 16.11)
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Figure 5.7 Controller Parameters (r = 2. n = 0.5 sin 16.11)
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