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ABSTRACT

We extend our earlier continuous time averaging theorems to the nonlinear

discrete time case. We use theorems for the study of the convergence analysis of

discrete time adaptive identification and control systems. We also derive instabil

ity theorems and use them for the study of robust stability and instability of

adaptive control schemes applied to sampled data systems. As a by product we

also study the effects of sampling on unmodeled dynamics in continuous time sys

tems.
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1 Introduction

In this paper, which we consider partially a review paper, we develop averaging theory for

more general discrete time systems. The results are an extension to the nonlinear discrete time

case of the continuous time results presented by several authors[l,16,17,18,22-24,26-31] and most

recently in our own work Fu et al and Bodson et al [6,9,10].

The novelty of this paper is that the application of these results is not limited to linear or

linearized systems, but allows for the analysis of the full nonlinear systems. We apply these

results to some discrete time adaptive identification and control schemes that have recently

appeared in the literature, namely, projection type and least squares type identifiers, and the d-

step ahead control law with the projection or least squares identifier [12]. We give a bound on the

rate of convergence which is valid for a large region in the parameter space. We use the results to

derive a stability and instability theorem for the G.R.C. (Goodwin, Ramadge and Caines [12])

scheme in the presence of unmodeled dynamics and output disturbances and interpret them in

terms of frequency contents. The application of these results is substantially different from our

earlier work [6,9,10]. Other authors [1,18] have also studied discrete time averaging theory, how

ever, their study has been limited to the linearized systems. Our techniques are general enough to

handle more complicated nonlinear discrete systems. As far as the application to adaptive sys

tems is concerned Praly et al and Riedle & Kokotovic consider either the case with periodic sig

nals [24,26] or the model reference adaptive control scheme(Narendra-Lin scheme) [28].

The detailed outline of our paper is as follows: In section 2, we develop a new discrete time

converse stability theorem which is a counterpart of a well known continuous time theorem

[14,32] and use this to establish the discrete time averaging theorems for systems with one or two

time scales. Section 3 applies these theorems to adaptive identification and control schemes. In

section 4, we apply averaging to the study of the robustness of discrete adaptive control schemes

(largely sampled systems). We first discuss the effectof sampling on the unmodeled dynamics of a

continuous time system in section 4.1. In section 4.2, we discuss how when the adaptive identifier

has insufficient or bad data for identification that the overall system can slowly drift to instabil

ity.

•Research supported by NASA under grant NAG 2*243 and Army Research Office under grant DAAG-29-85-k-
0072
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2 Converse Lyapunov Theorems and Averaging Theory

2.1 Lyapunov Stability and Input-Output Stability

In recent years, several stability theorems have been developed for the analysis of continu

ous time systems. However, results for discrete time systems are not as readily available as their

continuous counterparts. It is our belief that results which have been developed for continuous

systems could equally well be carried through for discrete systems. Of course, some parallels are

fairly evident, while others are not.

In this section, we present several results concerning the relationship between input-output

and exponential stability of discrete time systems. These results are well-known for continuous

time systems [14,32].

Consider a discrete time system described by

and

»(*+lW(M*).0) (2-1-2)

where z£R* ,u£Rm denote the output and input of the system respectively. In what follows, we

assume that f(k,0,0)=0 and f has continuous and bounded first order derivative in x. Further, we

assume that f satisfies the Lipschitz condition

||/(Mi,«iW(*,*2,«2)ll < (Jl*r*alh- '• ll«i—«2I!

Theorem 2.1.1 (The Converse Lyapunov Theorem)

Consider the system (2.1.2), then the following two statements are equivalent.

(1) x=0 is an exponentially stable equilibrium pointof the system (2.1.2), i.e. there exists M>

0 and 0< r< 1 such that

||x(Jb+ n)|F < Mr* \\x(k)\P V M € Z+ (2.1.3)

(2) There exists a Lyapunov function v(x,k), and some positive constants <*! ,a2 ,«3and or4

such that

«ill*(*)IP < »(*(*)»*) < «alW*)lP (2-1-4)

Avk= v(z{k+ 1),*+1M*(*),*)< -OsllsWII2

(2.1.5)

\\dV£$k)\\< «4lM*)ll (2-1-6)
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Proof:

2) to 1)

This direction is straightforward.

l)to2)

Let Sk+i(z(k),k) denote the solution of the system (2.1.2) at time (*+ /) with initial time k and

initial value x(k). Define

•(«(*),*)= Slft+*W*).*)IP (2-1-7)
i-0

where n€^+ and satisfies 1-Mr*>0. It is obvious that Sk(z(k),k)= z(k) and consequently

»(*(*),*)> ll*(*)IF-

Note that

v(z(*),*)<Mr»-*||*(*)|P+ ...+ Mr ||*(*)IP+ \\z(k)\?

= Mr(r**+...+ l)\\z(k)\?+\\z(k)\?

=(Mri^+l)||*(*)|p (2.1.8)
and

aVa= |fo+.(x(*+1),*+ i)|pHI*(*)|p

<Mr»||x(*)|PH|x(Ar)|F=-{l^Wr»)||x(*)|p (2.1.9)

1-r""1This gives (2.1.4) and (2.1.5) with ax= 1,(*2= Mr—- + 1 and a3« (l-AfrB). The proof of

the last inequality is by direct calculation. Observe that

»(*(*),*)= zT(k)z(k)+ S/r(*+ «>(*+ 0,0)/ (k+ t>(*+ 0,0)
»-0

+2(( */(*Vxffy^)-(d'{Ml!),0) ))Tx{k+ "^
Since f has continuous and bounded first order partial derivative, the conclusion follows.

Il^lfc-JK*)!!
for some a4> 0.

Q.E.D.
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Remark:

Theorem 2.1 is a global property. However, if the assumptions are valid locally and we

assume also that x=0 is a stable equilibrium point, then the conclusion holds locally.

Theorem 2.1.2 (Input-Output Finite Gain /„ Stability )

Consider the systems (2.1.1) and (2.1.2). Assume that x=0 is an exponentially stable equili

brium point of the system (2.1.2), then thesystem (2.1.1) is input-output finite gain /«, stable, i.e.

there exists a finite constant r such that whenever tf€/oom i-e- ll«(')lleo= C/m<°° »the resulting

x€foon and satisfies

N-)lloo<r||«()|U

Proof: The hypothesis implies that there exists a Lyapunov function v for the system (2.1.2)

such that inequalities (2.1.4), (2.1.5) and (2.1.6) are satisfied. If we evaluate the difference of v

along the trajectory of system (2.1.1), we get

v(z(k+ 1),A+ l)-t/(x(*),*) = v{f(kfz(k),u{k))M l)-»(/(M(*),0),*+ 1)

+ tK/(MH0),*+l)-t,(*(*),*)

< <>4||X/(M(*),«(*))+ (lA)/(*,ar(*),0)||

•||/(Jb,x(it),tt(*)H(fc,x(A),0)||-a3l|x(Ar)|P

< «4(U|«(*)||+ /,H=rWID'JI«(*)ll^3lK*)IF

(2.1.10)

for some X€[0,l], where in the second step we use inequaUties (2.1.5) and (2.1.6) and also the

mean value theorem. This implies that

AV4<Af1+Af2||x(*)||-a3lWA)IP

with Mj= onlu2Um2,M*= <*4/,/, Vm- From this» we can sav that ll*(*)ll » bounded for any k. In
fact,

«1 a2

Observe now that the right hand side of (2.1.11) is negative whenever v(z(k),k) > vQ, where v0 is

a solution of the equation

v l/2 <*3w
Mx+M£—) —^- = 0

«1 "2

i.e.

*2 *4U OjW 40304/,2 ^
2oV a^2 + <*i <*2

VQi/*= -^£JL +(riii- + ^Hl_) ja^r,^ (2.1.12)



Now from (2.1.4), we have that

v(z(k+ l),k+1)< a2||*(*+ l)||2< <*M\z(k)\\+ l% \\u(k)\\f
t/2

JiZJL

<*1

<aMA^^)\i%\\um)

Using the maximum value Vq for v({z(k)}k), we have

v0 «*
Max v< <*2(/,(—) + /. Um) « r2Um2 (2.1.13)

The conclusion then follows from (2.1.13).

M*)ll< (^EJL)1/2= rUm V*6Z+ (2.1.14)

Q.E.D.

Corollary 2.3

Consider the system (2.1.1) and (2.1.2) with all assumptions of theorem 2.2 being satisfied.

Moreover assume that

||«(*)|£ *||*(*)|| V k€Z+

with cts-aAl%2lP-aAltla6>0. Then the system(2.1.1) is also exponentially stable.

Proof: Follows immediately from (2.1.10).

Q.E.D.

2.2 Averaging Theory

hi this section, we will give several discrete time averaging theorems using a converse

Lyapunov stability theorem. The proofs are omitted (however available from authors upon

request) since they are similar to those in the continuous time cases [6,9,10].

Consider the difference equation of the form

*(*+l)=*(*)+£/(M*),€) (2-2.1)

where z£Rn, k£Z+, 0<6<€0 and f is piecewise continuous in k with the limit

/„(*)= lim i '£f f(k,z,0) (2.2.2)
T-°° •* *-t+i

existing uniformly in s and V * € £&, a closed ball in R* of radius h. Assume that / and f„

satisfy the following conditions (V a? € £4, 0 < €< €0 and k£Z+).



(Al) x=0 is an equilibrium point of the equation (2.2.1) i.e. f(k,0,e)= 0 and f is Lipschitz in x

ll/(*,*i,«W(M*«)ll< 'ill*iHC8|| (2.2.3)

(A2) f(k,z,e) is Lipschitz in e, linearly in x

ll/(M,€i)-/(*,*,«a)ll< 'al«r«allMI (2-2-4)

(A3) /at(0)= 0 and f„(z) is Lipschitz in x

ll/..(*ihU*2)ll< /Jl*i-*ll (2-2-5)

(A4) Define d(k,z)- f {k,z,0)-f „(z). Then d(k,x) is piecewise continuous in k and has bounded

and continuous first partial derivative in x and d(k,0)=0. Moreover, there is a non-negative

strictly decreasing function i(k) with the property i(k)—*Q as k—*oo, so that

11-^- 'E d(k,z)\\< !(T)\\z\\ (2.2.6)

and

Il4 S ^^M 4?) (2.2.7)
Tkmm.+ l oz

The averaged system of the equation (2.2.1) is defined as

*„(*+ 1)= *„(*)+ */..(*«.(*)) (2.2.8)

Then we have following theorems.

Theorem 2.2.1 (Basic Averaging Theorem)

Consider the original system (2.2.1) and the averaged system (2.2.8) satisfying the assump

tions (A1)-(A4). For any given T£Z+, further assume that the initial condition zQ is sufficient

small so that z„(k)eB# for some hf <h and ke[0,[T/e]] ( where [T/e] denotes the largest

integer / such that /< T/e). Then there is an «r,0 < eT< €0 and a class K function V(«) (i.e. a

positive nondecreasing function and ^(0)= 0), so that

\\z(k)-«„(k)\\< H€)bT (2.2.9)

for some 6r>0, all k € [0, [T/e]] and 0 < c< €r.

Theorem 2.2.2 (Exponential Stability Theorem)

Consider the original system (2.2.1) and the averaged system (2.2.8) satisfying the assump

tions (A1)-(A4). Further assume that /«,(*) has continuous and bounded first partial derivative in

x. If x=0 is an exponentially stable equilibrium point of the averaged system (2.2.8), then there

exists an e2, 0<€2< eQ, such that x=0 is an exponentially stable equilibrium point of the original

system (2.2.1) for all 0 < £< e2.



Now, let us consider two-time scale systems of the form

z(k+ 1) = «(*) + «/(M(*)»»(*).0 (2-2.10)

y(k+ 1) = A(z(k))y(k)+ £,(*,»(*),*(*),€) (2-2-H)

where z£Rn is the slow state and y£Rm is the fast state.

The averaged system of (2.2.10) is defined by

*..(*+ 1)= z„(k)+ €f„(z„(k)) (2.2.12)

where f„ is the limit (assuming this limit exists uniformly in s and V * 6 Bh )

f„(z)= lim i 'E /(M,0,0) (2.2.13)

Assuming that f and g satisfy the following assumptions (V x£Bh, y£Bh, 0 < e< e0 and

kez+).

(Bl) x=0,y=0 is an equilibrium point of the system (2.2.10) and (2.2.11), i.e.

/(Ar ,0,0,6)= 0, ?(*,0,0,£)=0

and f and g are Lipschitz in x and y

ll/(Mi,2fi,*W(M2,y2,0ll< Ml*i-*2ll+ /«llf r-*all

lk(*,*i,»ii€H(*i*2,»a,«)ll< 'alh-^lh- Mbri-srall

(B2) f(k,z,y,e) and g(k,z,y,€) are Lipschitz in e, linearly in x,y

ll/(*,x,y,£iH(Ar,x,y,£2)||< /6(IM|+ IHDk-^l

IWM,I,«iW(M,».«a)ll£ MIMI+ llfIDI«i-*«l

(B3) /at(0)= 0 and /„(*) is Lipschitz in x

H/a.(*,hU*2)||< Uta^ll

(B4) Let rf(Jfc,ar)= /(Ar,ar,0,0)—/„(ar). Then d(k,x) should satisfy the assumption (A4).

(B5) A(z)£RmXm is uniformly exponentially stable V * 6 £4, i.e. there exist m! , m2>0 and ^

i X2 €[0,1) such that

»n1X1*<||A(x)*||<m2X2* V *€£* (2.2.14)

Moreover

||M(«)

for some iCa>0

. „ < *. t- l,»,n (2.2.15)



(B6) z0 and y0 are small enough that z„€Bki for some h' <h on the time interval considered (
to be specified shortly ).

Remark:

Assumption (B5) implies that there exists a symmetric matrix P(x)€RmXm and some con

stants Pi,p2,?ii92>0 such that

PlI<P(*)<P2l

1h/< AT(x)P(z)+ P(z)A(z)< -q2I

Theorem 2.2.3 (Basic Averaging Theorem for Two-Time Scale Systems)

Consider the system (2.2.10) and (2.2.11) and the averaged system (2.2.12) satisfying the

assumptions (Bl)-(B6). Then for any given T£Z+, there exists bT>0, 0 < eT < e0 and a class K

function V(0 such that

M*HU*)II< *M*r (2-2-16)

Theorem 2.2.4: (Exponential Stability Theorem for Two-Time Scale System)

Consider the original system (2.2.10) and (2.2.11) and the averaged system (2.2.12) satisfying

the assumptions (Bl)-(B6). If the averaged system (2.2.12) is exponentially stable, then there

exists 0 < €i< e0 such that the original system (2.2.10) and (2.2.11) is exponentially stable for all

0<€<€i.

To end this section, let us discuss a mixed time scale system of the form

z(k+ 1) « »(*)+ ef (M*W (*M (2-2-17)

y1 (*+1) = A(z(k)W (*)+MM*))+ *<f (M*W (*).«) (2-2.18)

where h satisfies

(B7) h (k,0)=0 and

II^M-II < h

for some kk > 0 and V x € Bk.

By defining the function,

*(*,*)= EAM*"MM*» (2-2-19)
»-o

we may construct the transformation

y(*)= l/ (*)-•(*.*) (2-2.20)
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to transform the mixed time scale system (2.2.17) and (2.2.18) into the form of the two time scale

system

z{k+ 1) = »(*)+ €/(*,»(*),*(*),«) (2-2-21)

y(k+ 1) = A(z(k))y(k)+ €g(k,z(k),y(k),€) (2.2.22)

with

/(M,2M)= f (*,*,*+ «(MM (2-2.23)

and

?(M,y,«)= ^ (*,x,?+ w(M),*)

/4^*+ 1|ax(*+ i)+ (l-4)*{k))is \f (k,z,y+ w(k,z),e) (2.2.24)
KO dx )

Assuming that assumptions (Bl)-(B6) are satisfied, the two-time scale averaging theorems

may be applied to mixed-time scale systems.
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3 Applications of Averaging Theory to Adaptive Systems

3.1 The Adaptive Identifier

In this section, we apply averaging theory to adaptive identifiers, particularly to the conver

gence analysis of the projection type algorithm and the least squares type algorithm.

Consider a discrete time system in the standard form [12]

y(k)=<l>T(k-l)e0 (3.1.1)

where B0T=(aiJ..,an,bi,..,bm) is an unknown parameter vector with n,m known and

0r(Jt-l)= (y(k-L),..,y(k-n),u{k-!),..«(k-m)) the regressor vector.

For the identifier using the projection type algorithm

The parameter error equation may be written as

with 0(k)= 0(k)-#Q denoting the parameter error. To apply averaging theory developed in the pre

vious section, we need the existence of the averaged system of equation (3.1.3). For this purpose,

we assume that the system (3.1.1) is stable and the input u(k) is stationary that the following

limit exists uniformly in s

Then, the averaged system of (3.1.3) is defined by (forsmall £> 0)

0„{k)^{I^R)0„(k-i) (3.1.5)

Denoting by ?(A) (a(A)) the maximum (minimum) singular value (or eigenvalue) of

matrix A, we observe that

*(I-€R)=l-<diR) (3.1.6)

Thus by the averaging results of the last section, we may conclude that the convergence rate of

the projection algorithm (3.1.2) is faster than (l-€a(R)) (up to high order terms in e) for small

€>0. i.e.

\\9{k)\\<M(l-€a(R))k\$(0)\\

for some M > 0.
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Now, we relate the convergence rate to the spectrum of the input. Notice that the input-

output relation can be written as

y(z)= G(z)u(z) (3.1.7)

consequently,

z*G{z)

0(zH
,-«+iG(z)

1
u{z) — n(z)u(z) (3.1.8)

,-m+l

From the Herglotz Theorem, we may write R in terms of the input spectrum and the transfer

function n(z) as

R=^!ri(e^)nT(e^)S9(dw) (3.1.9)

where S%(dw) stands for the spectral measure of the input u. For optimum convergence, the spec

trum of the input needs to lie in the region where a[R) is large.

For the analysis of the slowed-down least squares type algorithm, we write the algorithm as

follows (for small «>0)

6{k)= 6(k-l)-eP(k-l)<l>(k-l)(y{k)-<i>T(k-L)6(k-l)) (3.1.10a)

P-*(*-i)= P"l(Jt-5)^(pP-1(Jb-2)+ 0(*-l)0r(*-l)) (3.1.10b)

where 0< p< 1. As before, we may approximate equation (3.1.10) by its averaged system (assume

that v(k) is sufficiently rich so that R is nonsingular (see Bai & Sastry [5]))

~B„(k)= (l-*P„(k-l)R)9„(k-±) (3.1.11a)

P<S(k)= Pa,A(k-l)+ t(PP„*(k-l)+ R) (3.1.11b)

R is defined in (3.1.4). Equation (3.1.11b) may be explicitlysolved to give

P„*(k)= (l-^)*Pat-*(0)+ i?i(l-{l-£,)*) (3.1.12)

In turn, using this in equation (3.1.11a) and noting that P,,,-1^) converges to P— as *-*oo.

we see that the tail behavior of (3.1.11a) is

M*)= (l^p)M*-4) (3-l-l»)

so that the tail convergence rate is a function of p and gain £ alone and not the input spectrum!
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3.2 Application to Adaptive Control

We apply the averaging theory to the discrete-time adaptive control scheme of Goodwin,

Ramadge and Caines ( Our results are extensions of Praly [22-24,26] ).

Consider a plant modeled by

A(q*)y(k)= q-<B(q*)u(k) (3.2.1)

where

Afa-4)^ 1+ aiq*+ •" + anq-a (3.2.2)

B{qA)= b0+ biq*+ '" + bmq-m (3.2.3)

and d is a pure time delay. To facilitate direct control, the model (3.2.1) is converted into its d-

step-ahead predictor form

j,(*+ d) - afo-* )»(*)+ #?"*)«(*) (3-2-4)

where

«(<T*) = a0+«i?"l+ •••ttft^g^-4) ' (3.2.5)

«»"*)- A>+ 0i«"*+ • • • A-n-i«^m+i_l) (3-2-6)

and

A- 6o5* 0 (3.2.7)

The objective of the adaptive control scheme is to get y(k) to track a given reference trajectory

y*(it). The conditions on A(q~i) andB(q"i) are identical to those in [12].

Denoting

*<f= («o,«i» ' ' ' .«•-!»*>» *** .A.+*-i) (3-2-8)

(3.2.4) can be written as

f(*+i)= *r(*)-*0 (3.2.9)

where

<f>(k)T « (y(Jb), - • - ,,(*-*+1),«(*), • • • ,«(*-«-*+1)) (3.2.10)

The control law is implemented as:

y'(k+d)= <l>T(k)-0(k) (3.2.11)

where 0{k) denotes an estimate of 0q at time k.

Goodwin, Ramadge and Caines have shown that, under the projection type parameter adap

tation law:
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w-^^^^yy" (3212)
the following are true.

(i) (y(k)} and (u(k)} are bounded sequences.

(ii) lim [»(*)-»'(*)]« 0.

(iii) if <f>(k) is persistently exciting, then [0(k)-0Q) -* 0 exponentially.

To facilitate the averaging analysis of such adaptive control system, we convert the system

(3.2.1), (3.2.11) and (3.2.12) into its state space form ( as in [24,26] ).

x(*+ 1) = A(0(k))z(k)+ B(0(k))y0(k+ d) (3.2.13)

y(*)= cTz(k) (3.2.14)

and

0{k) = *(*-!)+ «/' {z(k-L),0(k-L),e) (3.2.15)

where z(k) is the state vector containing all the elements of 0(^-J+1) and satisfying

4>(k-d+ 1) = Q z(k) for a suitable constant matrix Q.

As implied by the fact (ii), there exists a compact set B{0Olh) in Rm+n+i such that A(0O)
is uniformly exponentially stable as in (2.2.14). Define the state error z(k) and parameter error

0(k) respectively by

*(*) = *(*)-*,,(*) (3.2.16)

*(*) = *(*)-*<, (3.2.17)

where zg(k) is the state that would be obtained if 0(k) were frozen at 0O. Obviously,

y*(Jfe) = cT zt0(k). Now the error model can be formulated as:

z{k+ 1)= A(0)z(k)+ h{k,0{k)) (3.2.18)

0(k) = *(*-4)+ ef{k,z(k^),0(k^L),e) (3.2.19)

where

h(k,0(k)) = [A(0{k)+ 0o)-A(0o)] z9o(k)

+ [B{0{k)+ 0O)-B(0O)] y'(k+ d) (3.2.20)

f(k,z(k-L),0(k-L),e) = /'(*(*-!) + *>0(*-l), *(*-!) + 0o,e) (3.2.21)

satisfying assumptions (Bl)-(B7) in section 2 for all £< €2, €2>0. System (3.2.18), (3.2.19)
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appear in the same form as those in (2.2.17) and (2.2.18) which allows for the direct application of

mixed-time scale averaging results, namely, the slow state 9(k) can be approximated by its aver

aged system

*-(*+ 1) - U*)+ «/-(*..(*)) (3-2-22)

where /M is defined by the limit

/„(*) = Urn i '|f /(i,.Mf*t0) (3.2.23)
r—°° l t-«+i

and

w(k,0)= S^W*"*"1 *(•"»') (3'224)
• -0

To simplify the expression of fn(0) in (3.2.23), we assume that the reference trajectory sig

nal y*(k) is stationary. Referring to (3.2.12), / canbe expressed as:

f(k,*(*-*),H*-l),*)=> *(*-*) ffi-*)fe-l) (3.2.25)

and (3.2.24) implies 4>{k-d) may be replaced by <f>e(k-d), a regressor signal that would be obtained

if parameter 0(k) were fixed at 0, which results in the following expression of f„{0):

f„(0) = - lim ± S Mk-*)*7^-*) \* «> ^-1 (3-226)

Using a little algebra, one can show that

*«(*) = ^fj. y*(*+rf) (3-2-27)
where

Cr(g^)= (^^g"1), •'• ,**+'-*B{q*),A{q*), ••• ,«^+WU(g-»))

Consequently, by Herglotz's theorem, /at(0) can be reexpressed as:

/ (5)= Jlf^'I^^^NtK) \z*l \cT(e^u)'0f WU)y

:=-P,(O)0 {0=0+0o) (3.2.28)

If y*(k) contains only finite numberof spectral lines, then the integral above is replaced by sum

mation, i.e.

RJO) = J_ y\ C(^",>,,') cT{eJWl) r2 (3.2.29)
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Similarly, averaging results can also be applied to the adaptive scheme with a least squares

type adaptation algorithm which is of the form

i/M - »+ , WW-l)^)(lW-«r(H)-#-<» (3.2.30)

!>(«)- i(p(W4,.^iffi^S^l (3.2-3!)
v P { p+ €0r(*-rf)P(*-J-4)0(*-rf) J

where 0 < /> < 1. Direct application of averaging to the system (3.2.30) and (3.2.31) is almost the

same as before with the only difference being that 0(k) and P(k) now constitute the slow state

variable. As a result, the averaged system of (3.2.30), (3.2.31) can be formulated as:

M*)= 9„{k-l)^P„(k-4^)RsJO)0„(k^) (3.2.32)

P„(k-d) =1\p„(k^)-jPaAk^)R*JO)Pav(k-d-l) J (3.2.33)
when Rf{0) is as defined in (3.2.29).

To study the tail behavior of 0at(*) and P„(k), one can see that Ptft(*-<f) will be close to

pRj (0)"1 when 0„ is sufficiently close to zero, while the slowly evolving dynamics of 0„ becomes:

M*)« M*-i)+ *{pR»0(or)-(-RiJS>))K{k-i)

- (l-€/0 *«(*-*) (3.2.34)

Remark:

It has been shown in [5] that the parameter error will converge to zero exponentially if

y*(k) contains no less than (n+ m+ d) spectral lines. For the projection type adaptation algo

rithm, the convergence rate of the averaged system (3.2.22) is guaranteed to be at least (1 —e a2)

where

<*2<X[P,(0)] V 0eB{0o,h) (3.2.35)

The rate of convergence of the original system can be estimated by the same value for e

sufficiently small. It is interesting to note that, from (3.2.29), as ||0|| increases, X^-R^O)) tends

to zero in some directions. This indicates that the adaptive control system is not globally

exponentially stable ( with uniform convergence rate ).

For the least squares type adaptation, the tail convergence rate of 0„(k) doesn't rely on the

exogenous reference trajectory ( when \\0„ || is small enough ) as indicated in (3.2.34).
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4 Averaging Analysis of Robustness in The Presence of Unmodeled Dynamics and

Bounded Output Disturbances

4.1 Unmodeled Dynamics in Discrete and Sampled Systems

Unmodeled dynamics in continuous time systems have been well documented ( see, for

instance, Doyle & Stein [8] for a good discussion). They are usually assumed to be of the form

G(«)= G(a)(l+&GM)* AG2(a) (4.1.1)

where G(a) and G(a) are true and nominal systems. AG^) and AG^a) are called additive

uncertainty and multiplicative uncertainty respectively. For most adaptive systems, it has been

further assumed that AGj(a) and AG^a) ^ finite order, proper stable rational functions. This

implies implicitly that the system G(a) is a finite order linear time invariant system and the nom

inal system G{a) captures all unstable modes. Motivated by this, some authors [15,21] define

uncertainty in discrete time systems by

H(z)= H(z)(l+ A^(z))+ AH&z) (4.1.2)

H{z), AHx(z) and A#2(z) denote the nominal system, additive uncertainty and multiplicative

uncertainty respectively. As in the continuous time case, AHx(z) and AH^z) are assumed to be

finite order, proper stable rational functions in z.

Under these assumptions, the overall system may be drawn as in Fig. 1.

^H,(z)
^(t)

^H,(z) y0&
u(t)i y0(t)

H(z)

^(t)

%
y(t)

Fig. 1 H (z)
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Define the nominal output y0(*) by

y0(k)= H(z)u(k) (4.1.3)

and the error term n(k) by

V(k)= y(k)-y0(k) (4.1-4)

It follows that

Fact 1.

Consider the discrete system (4.1.2). Suppose that AHi(z) and AH^z) are finite order,

properstable, rational functions in z. Then, the error term n(k) satisfies

\v(k)\<M(l+ EX*^(|ti(i)|+ |yo(i)l)+ l«(*)|+ \vo(k)\) (4.1.5)
i-O

for some M>0, 0<X<1 and all k£Z+.

Proof: Notice that

t,(k)= Vi(k)+ *&)= AHMyM-r ±H2(z)u(k)

Let (Ai,Bi,Ci,Di) denote the state space realization of AHi(z) (i=l,2), then rji(k) and r}2(k) may

be considered as the outputs of the following stable systems

*i(*+l)= Aizx{k)+ Biyo(k)

tntfhCMV+DMk) (4-1-6)

and

z2{k+1)= A2x2(*)+ B2u(k)

%(*)= CW*)+ D2u{k). (4.1.7)

Hence

M*)|< |C71Al*x1(0)|+ |C1SAi*-1",'Piy0(OI+ \DiVo(k)\

M*Ol<l<Wx2(0)|+ |C2EV-i^2«(i)|+ |Z>2«(*)I
• -0

and this implies that

Wk)\<\vi(k)\+\V2(k)\

<M(1+ EX*-*"'(|ii(0|+ |y0(0l)+ l«(*)l+ lyo(*)l) (4.1.8)

for some Af>0 and some 0<X<1. This completes the proof.
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Q.E.D.

Remarks:

(1) The bound on n(k) is similar to that on the normalizing signal ofPraly [25] or the modeling
error of Kreisselmeier & Anderson [20]. The difference is that the upper bound on \r}(k) |

here depends not only on \v(i)\ ,|yo(OI f°r «'<*» but also on the current values of

\u(k) | and |?o(&) |. By doing so, the effect of an unmodeled dynamics due to additive and

multiplicative uncertainty may be interpreted as a disturbance acting on the nominal out

put, which depends on the input and the nominal model. Notice that n(k) may grow

without bound.

(2) If AHx(z) and AH2(z) are strictly proper, then (4.1.5) may be modified as

\v(k) \<M(i+ kt,\M( |«(«) |+ |y0(0 I)
•-I

(3) The discrete systems of the form (4.1.2) are not contrived. An example is a near pole-zero

cancellation

1 Z+0+€
z+ct z+0 z+a

(1+ z+0

A large class of discrete systems arises from sampling of continuous systems as shown in

Fig.2 (h is the sampling interval.)

(u(kh)}
zero-order

hold
Plant

(y(kh)}

Fig.2

Consequently, it is important to study the effect of sampling on the uncertainty in continuous

time systems.

For the additive uncertainty in continuous systems

G(«)= G{a)+ AG^a)
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the sampled systems become

H{z)= H(z)+AH2(z)

with H(z) nominal model (sampling of G(s)) and AH2(z) additive uncertainty (sampling of

AG2{a)). Since the poles pt- of a continuous time system are transformed, under sampling, as

ft - ePik (4.1.9)

the stability of AH2(z) follows from that of AG2(a). Moreover if A(?2(a) contains only fast

dynamics (poles are far away from /w axis), AH^z) will only have poles close to the origin. In

this sense, we may say that fast unmodeled dynamics in continuous time systems are transformed

to fast unmodeled dynamics in sampled systems.

For multiplicative uncertainty in continuous time systems

G(a)= G{a)(l+AGM) (3.1.10)

the sampled systems are more complicated. It has been suggested that sampled systems are of the

form

Hiz^HizXl+AHM)

where H(z) is a nominal model (sampling of G(s)). It would appear that AH\(z) be stable because

of the stability of AGi(a). This is unfortunately not true.

Fact 2.

Consider the continuous system (4.1.10), then

(1) The sampled system H(z) of G(a) may be written as

H(z)= H(z){l+ AHx(z)) (4.1.11)

where H(z) is the sampling of G(s).

(2) AHi(z) in (4.1.11) is not necessarily stable. A sufficient condition for AH^z) to be stable is

that H(z) be minimum phase.

Proof: Write

wi \ Wff(') m \ n*(*)

then we have

^'J-^'Xi+ gpj^pj )

-HizKl+AHM)

This completes the first part. Now from the relation (4.1.9) and the assumption that AGi(a) is
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stable, we have

<*h(z)= MzHz)

Pl*\ / P*A<where i(z)= (z-ePl )...(*-« k ), a stable polynomial with the p,«'s poles of AG^a). This implies

that

.__,. nw(z)^(z)nH(z) n$(z)
AHi(z)= Y~T j-? = -T^r—r-Y -1 (4.1.1JJ

V ' T(*)*ff(*) 7(^)n/f(«)

Then conclusion follows readily.

Q.E.D.

Remarks:

(1) If the relative degree of G(s) is greater than 2 and (1+ AG^a)) is strictly proper (for exam-
1 £a

pie, fast unmodeled dynamics = (1 )), then AHAz) is always unstable for h is
r l+€* l+€«

small (see Astrom [3]).

(2) Notice that nH(z) depends only on G(s), but n%(z) depends on G(s) and AGi(a). Conse

quently, in most cases, cancellations between njj(z) and njj(z) are unlikely. This implies

that unstable nH(z) usually gives rise to unstable AHx(z).

(3) From this fact, we see that theassumption of stability on multiplicative uncertainty AHi(z)
may not be reasonable for sampled systems and the result of fact (1) may not be applicable

to sampled systems.

Now let us focus on the effect of two special but important classes of unmodeled dynamics

in continuous systems, fast mode uncertainty and near pole-zero cancellations, on sampled sys

tems. Consider the continuous time systems of the form

G(a)= G(a)--^- €>0

and

G(a) = G(a) a~"+€ a<0,£>0

with G(s) being the nominal model.

To begin with, consider the simple system

<?(«)= -i- (4.1.13)
a-p

By calculation, its sampled system is

p z-*J
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— k
The sampled system corresponding to G(a )= -. rr- r- is

{a-p){l+ea)

H(z)^H{z)A{€)^L (4.1.15)

where H(z) is defined in (4.1.14) and

Notice that A(e)—-1, B(£)—*Q as c—»0. By observing this fact and equation (4.1.15), it is seen that

fast mode uncertainty in continuous time system becomes near pole-zero cancellation around the

origin for the sampled system.

We now extend this to the high order case

^l-T^rT (m<n,pt^py for «>y) (4.1.18)
(a-f i)..\a -pa)

*-P\ *~fn

From equation (4.1.14), we obtain

Jfc, *?ih-i k. *p«*_j

Pi zV1* '" P» zV'*

nx(z)+ ...+ nn{z) a1zs-l+ ...+ af

(z-ePl*)...(z-«P**) **+ A*""^ -+ Al

where n{(z) is defined as

Pi /-W#<

Similar to the first order case, if there is a fast mode uncertainty (?(«)= <?(«) , we have
1+ea

*w= 77 TZmAM T^tt +.«+ 77 —kt *Mt^

(4.1.19)

"i(^i(»^i(» •..+ nB(z)An(6)(z-^tt(£))

(z^Pl*)...(z-€P-A)(z-«-*/e)

For £—*0, A,(£)—+1, £,(€)—♦O, this implies that there are near pole-zero cancellations between

(z-«"*/') and {z-Bi) (i=l,..n). In summary, we have shown that the fast mode uncertainty

in the continuous system becomes a near pole-zero cancellation around the origin in the sampled
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system.

Now we study the effect of near pole-zero cancellation in continuous systems on the sampled

systems. First consider the simple system

G(a)= _*_ ±2±± „<o
a-p 8-<x

its sampled system is

H{z)= H(z) C{<) ±2®- (4.1.22)

H(z) is defined as before by (4.1.14) and

CW= 1+ «_(J- +JUL + _E«!L) (4.1.23)

»«- ——^ , .*'"„« "^— <"•">e*_l+ <(.!-+ -£_+ -21—.)
xa p-or or(a-p)

Notice that C(e)—>1, /)(«)—*** as «-*0, then comparing equations (4.1.14) and (4.1.22), it is

seen that the near pole-zero cancellation at or in continuous systems becomes near pole-zero can

cellation in sampled systems around eak. Similarly, we extend this to the more general case.

Consider

^M*3 "T w \ (m<n, pi* py, for t?s ;) (4.1.25)
(«-Pi)...(«-P») «-«

From equation (4.1.22), we have

H{2)= 7T 77^Cl(} ^~+-+ ^ Tv^"Ca(€) T^r
nl(z)Cl(€)(z-Z>M)+ »•+ na(z)(7a(£)(z-£)tt(€))

(zV^MzV^Xz-**4)

where n,(z)'s are defined by (4.1.20). Since (7;-h»1 and Df-*e°* as 6—»0, it can be interpreted as

near pole-zero cancellations between (z-eak) and (z-£,) (i=l,..n). In summary, we have shown
that the near pole-zero cancellation at a in the continuous system becomes near pole-zero cancel

lation around eah for the sampled system.

Remark:

Notice that in both cases, the effect of unmodeled dynamics is related to the sampling inter

val A . When h is large, then

(4.1.26)
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i.e. the near pole-zero cancellations will be close to the origin.

We have discussed the uncertainty in sampled systems due to fast mode unmodeled dynam

ics and near pole-zero cancellations in continuous time systems. We give the interpretations in

terms of the poles and zeros of discrete transfer functions. In the following, we will give an expla

nation using the ARMA model (or equivalently, the state space model).

Consider the continuous system described by (4.1.18)

<?(*)= *"&'}'--} (m <«, ft* py, for ,V /) (4.1.27)

The sampled system is, by equation (4.1.19)

nl(z)+...+ n.(z) . «^+_r+«" (4.1.28)
K (zVlA)...(zV**) Z°+f}xZ»*+...+ 0n ^

i.e. the ARMA model may be written as

y(k)=-0Mk^)--..-0»y(k-«)

+ o^ti(*-!)+ ...+ aBtf(*-n) (4.1.29)

In the presence of fast mode unmodeled dynamics , the sampled system is

7j, x («i+ Qi(g))*B+ (<*2+ *&))*"*+ -+(«,+ o»(€))*+ Qn+M u t ,nx
H{Z)=. z-^(^^z»+...+(^^^)z^C^ l"M)

where 0|(O~*0 as €r-*0.

The equation (4.1.30) implies that the ARMA model becomes

y(*)= (e'*^l)y(k^)+ O?i«-*/e-02)y(*-2)+...+

(fin^/<-0n)y(k-«)+0n^/€y(k-«-L)+ («i+ *iMW*-0

+ ...+ (ctn+ Oa(€))«(*-n)+ oB+1(£)«(fc-n-l) (4.1.31)

In the presence of near pole-zero cancellation , we have
8—01

m x (*i+ <>(€))*»+ («2-«l«°A+ aw** ...+ (a.-or.-^Jz-o^0'4
{Z)~ :fl+1+(^oA)2s+(M«8*>"1+...+(jJ,^e«i)z^eflA l" '

The ARMA model is given by

y(*)= (eah^l)y(k^)+ (0ieah^2)y(k-2)+ ....+ (/W4^BM*-«)

+ i?tteo4y(A-n-4)+(«!+o(€))«(*-l)+...+

{<xa-*n-ieak+ o^ttfJt-nJ-a^^K^-fi-l) (4.1.33)
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where o(c) represents the high order term in e.

Compare equations (4.1.28) with (4.1.31) and (4.1.33), we have found that the true ARMA

model is just a perturbation of the nominal one in the coefficients by 0{(e) and fte""4'6 in the case

of fast mode unmodeled dynamics and fte04 and o.-e04^ o(e) in the case of near pole-zero cancel

lation case. Also there are extra high order terms in the ARMA model, say, 0ne"*/ey(£-n-l) and
on+1(€)ti(Jb-n-l) in the case of fast mode unmodeled dynamics and pneaky(k-n-l) and
-aaeahu(k-n-l) in the case of near pole zero cancellation.

4.2 Slow Drift Instability of Adaptive System

Before analyzing slow drift instability of the adaptive system we present instability

theorems for one, two and mixed-time scale dynamic systems. The proofs rely on the results in

section 2 and an analysis in the continuous time case.

Consider the difference equation of the form

z(k+l) = z{k)+ €f(k,z{k),€) x(0)= z0£R* (4.2.1)

where z£R*, keZ+, 0 < £< «0 and / is piecewise continuous with respect to time k. For small

€, the variation of z with time is slow as compared to the variation of /. Suppose that the aver

aged system of (4.2.1) exists

*„(*+ 1) - z„(k) + €/„(*.,(*)) *«(<>)- *0 (4'2-2)

then we have the following theorem:

Theorem 4.2.1: (Instability of an Unaveraged One-Time Scale System )

If: the original system (4.2.1) and the averaged system (4.2.2) satisfy assumptions (A1)-(A4) in

section 2 along with the additional assumption that there exists a continuously differentiable

decrescent function v(k,z) such that

(i) v(k,0) = 0

(ii) v(k,z) > 0 for some z arbitrarily close to the origin

(iii) || *»(*'*) ||< k, \\z || for some *t > 0
ox

(iv) the difference of v(k,z) along the trajectory (4.2.2) satisfies

v(k+ l,z) -v(k,z) > €k21|* |P (4.2.3)

Then: the unaveraged system (4.2.1) is unstable provided e < c0 for some €0 > 0-
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The system of the form (4.2.1) studied is to be thought of as a one-time scale system in that

the entire state variable z varies slowly in comparison with the rate of variation of /. We also

study for the case when only some of the state variables are slowly varying.

Consider the system

*(*+l) = z(k)+€f(k,z(k),y(k),e) *(0)=x0 (4.2.4)

y(*+l) = Ay(k)+ eg(k,z(k),y(k),e) y{0)= yQ (4.2.5)

where z€Ru, yeRm and A €-Rmjm as appearing in (2.2.10), (2.2.11) except that A is a constant

matrix independent of state variable z. The averagedsystem is similarly defined as:

z„(k+ 1) = *„(*)+ ef„(z„(k)) *„(0)= x0 (4.2.6)

Theorem 4.2.2: (Instability of an Unaveraged Two-Time Scale System )

If: the original system (4.2.4), (4.2.5) and its averaged system (4.2.6) satisfy assumptions (Bl)-

(B6) in section 2 with the additional assumption that there exists a continuously differentiable

decrescent function v(k,z) such that

(i) v(k,0) = 0

(ii) v(k,z) > 0 for some x arbitrarily close to the origin.

(iii) ||^&^-1| < *3 II* || for some *3 >0.

(iv) the difference of v(k,z) along the trajectory (4.2.6) satisfies

v{k+ l,x) -v(k,z) > €*4 ||x |F . (4.2.7)

for some &4 > 0.

Then: the unaveraged system (4.2.4), (4.2.5) is unstable provided £< €0 for some e0 > 0.

In adaptive systems, the frequently encountered two-time scale system has the following

form:

x(*+l)= z(k)+ef(k,z(k),y'(k),e) (4.2.8)

j,'(Jfc+l)= Ay'(k)+ A(*,x(*))+€ir'(*,x(*),y'(*),6) (4.2.9)

As shown in section 2, the above system can be transformed into the system (4.2.4), (4.2.5)

through the use of the coordinate change

y(k)= y'(k)-w(k,z) (4.2.10)

where w(k,z) is denned to be
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«(*,*)= kt,AMh(i,z) (4.2.11)
i-O

The averaged system of (4.2.8), (4.2.9) will exist if the following limit exists uniformly in a and x,

i.e.

/„(»)= Jim JL jf /(Jb,,,«(*f*),0) (4.2.12)

Theorem 4.2.2 is applicable to this case with one more condition (B7) as in section 2.

The proofs of theorem 4.2.1 and 4.2.2 which are omitted here can be obtained through the

results in section 2 and [10].

Remark:

The system that appears in (4.2.8), (4.2.9) corresponds to a linearized adaptive system since

A is a constant matrix.

To apply the results to the adaptive system, we consider the case where unmodeled dynam

ics and bounded output disturbances are present. To begin with, we define the equation error

<(*) . y(k)-<l>T(k-d)0(k-l)+ n(k) (4.2.13)

where rj(k) represents the bounded disturbance, as well as the tuned error e*(k)

e*(*)= f(70> *)-/(*) (4-2.14)

where y{0Q,k) denotes the tuned output obtained as if the controller parameter 0(k) were fixed at

d0 (tuned parameter value).

Before we proceed further, we concretize the concept of tuned plant as the leading step in

the analysis of stability/instability of adaptive system.

From the discussion of subsection 4.1, we will consider plant with unmodeled dynamics of

the form

HK) (A^-M+AAOf*)) y)

where g^5(^"1)/A(g"1) is considered to be nominal plant and AA(g"1), AB(g"*) are polynomi
als of g"1 with small coefficients. Denote by Hg(q'i) the closed loop transfer function from

y*(fc+ d) to y(0, k). One canthen show that

«--) 1+ AN^ _ f (4.2.16)
nM ' l+AW2(,-')+AW3(?-l)+AAf4U-1)
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where AN!, AN2 and AN$ are stable, perturbed rational function of g-1

AiVl(g^)=^lI (4.2.17)
ANi(q+) = A{q*)AP{q*)+q-fB{q*)Aa(q-*) (4 218)

AWf-i) = ^(^)^)+^*(^M^) (4>2>19)

Aiyr (<-*) = AA(g^)A^g^)+g^A^(g^)Aa(g^) (42 20)
4W J B(g-*)

with a(g"*) and ^(g-1) are as defined in (3.2.5), (3.2.6) corresponding to the nominal parameter 0Q,
whereas Aajg-1) and Ap(qA) are perturbed polynomials corresponding to the frozen parameter 0.

By the small gain theorem, the transfer function Hg(q~i) is stable provided the controller

parameter 0 ( fixed ) and plant uncertainties AA(g"*) and AB(q~i) are such that

w€7-^r]l^(«'">l<7 '=2.3'4 <4-2-21)
Thus, the collection of such 0 constitutes a robust parameter set as denoted by U{d0) ( the con

tinuous counterpart appears in [10,19] ).

As a result, the tuned error e*(k) defined in (4.2.14) can be evaluated through the difference

of transfer functions, i.e.

JWJ-T*- ff-'Sfo"1) (4-2-22)

where

{9 ' l+AAf2(,-l)+AJVa(,-')+AW1(i-1)

Also

JXOM - / IE(e*) ?S9.(doj) (4.2.24)
-* -*

where St0(d(ti) denotes the spectral density function of e*(k).

As illustrated in the previous discussion in subsection 4.1, the unmodeled error of a

sampled-data system | AA(cJW) | and | AB(eJU) | tend to be smaller as the sampling period gets

to be larger in both the case of fast mode unmodeled dynamics and near pole-zero cancellation (

provided the unmodeled pole in the 1st case is high enough and the pole & zero in the 2nd case

are close enough ).
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To relate the input frequency with the aforementioned unmodeled error | AA(eJU) | and
| AB(eJU) |, we consider only the case of fast mode unmodeled dynamics and refer to the follow

ing diagram

u(kh)
rero-order

told

U(t)
p

* Plant

Fig. 3

<y(kh)}

Suppose the input u(t) is a pure sinusoidal signal, say, ain(w0t) with u/0< —w, where w, is the

sampling frequency which will be assumed large enough in our case. By sampling theory, the

immediate input to the plant, vp(t), which is also the output of the zero-order-hold device, con

tains spectral lines at frequencies w0+ mu,, however, with magnitudes decaying as m tends to be

large. In particular, if w0/w, «1, then up(t) will have the spectral line at frequency w0 as the

only significant frequency content. This implies that y9(t) will be closer to the nominal plant out

put and, in turn, that | AA(c/w) | and | AB(e3'u) | are smaller as w0 decreases.

Due to these facts, given p > 0, there exist a sampling frequency and a reference trajectory

signal with appropriate frequency support such that

SSe(f(du>)<pJSv.(du) (4.2.25)

and with 0€lI(^o) ( i-e- H9(q^) remains stable ) where et(k) = y{0,k)-y'(k). The collection of
such 0, corresponding to such a sampling frequency and reference trajectory signal, will then be

called tuned parameter set as defined in [10,19].

Let ^o be chosen, such that (4.2.25) is satisfied, as a tuned value, then Hj will be defined as

the tuned plant transfer function. We rewrite the equation error e(k) in (4.2.13) as:

«(*)= {y(k)-y$o,k)}+ {«*(*)+ r}(k)}

+ {/(*Wr(*-<0 *(*-!)} (4-2-26)



-29-

As shown in [l], the 1st term can be reexpressed as:

l(*)-f(*o,*)= -{Hio(q+)qd}+T{k-d)9{k-d) (4.2.27)

where 0(Jfc) = 9{k)-40 and the 3rd term

y'(k)-<j>T(k-d)0(k-L)= tT{k-d)(0(k-d)S(k-L)) (4.2.28)

, by which equation (4.2.26) becomes

<(*)- -{HjQ(q-*)qd}<f>T(k-d)0(k-l)+ (e.(k)+ n(k))

+ {l-BlJ,q-*)q4}*Tp-*){*(k-i)-*(*-t)) (4-2-29)

As a result of (4.2.29), parameter adaptation of the projection type becomes

<Kk-d){Hlo(q*)qi}(<l>T(k-d)0(k-L))
1+ €

<K*-*) (««(*)+*(*))
l+€<f>T(k^l)<f>{k^l)

**>-**-*>-« d«nk-*r *(*-*)

+ €

*(k-d) { 1-&«' ) (<f>T(k-d) (0(k-d) -*(*-!))
+ £ ; (4.2.30)

l+£0r(*-<f)#*-<O V '

Notably, the analysis of local stability/instability of system (4.2.30) can be confined to just

studying the 1st term on the Ril.S. of eq. (4.2.30) of € order provided «•(&), rj(k) are sufficiently

small so that the 2nd term can be discarded, and provided € is sufficiently small such that the last

term of e2 order can be neglected.

In order to make the system (4.2.30) ready for averaging analysis, we formulate the error

model analogous to (3.2.18), (3.2.19) except for the aforementioned truncation and linearization,

i.e.

x(*+l) - A$0)z(k)+ **&?L|,_0.*(*) (4.2.31)

Mk^){Bi(q*)q'}{tfft-d)e(k+))

where <pj is similarly defined in (3.2.27). By averaging results in section 2, the averaged system of

(4.2.31) is

*„(*)= (I-€Rlo(Q))9„(k-L) (4.2.33)

where

Rjq(0)= ki'l {<70(«-rf){fi70(g-|)*'}(^(»^))|
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* > d-L (4.2.34)

If Rj (0) has eigenvalues with negative real part, then the simplest Lyapunov function that

satisfies the additional assumptions (l)-(iii) has the form

•(*«)- *ZpK (4-2-35)

where P is the matrix containing at least one positive eigenvalue , satisfying

(7-£fl7o(0))rP(/-£i?7o(0))-P= Q (4.2.36)

for some positive definite Q. Applying Theorem 4.2.2, we immediately conclude that linearized,

truncated adaptive system (4.2.30), (4.2.31) and hence the original adaptive system are unstable.

Remark:

In fact, the averaged system (4.2.33) is exponentially stable if Hj(q"i)qi is strictly positive

real (discrete) and ^j(Ar) is persistently exciting for sufficiently small €, which implies that the ori

ginal adaptive system is BIBO stable around the tuned parameter 0Q.

Suppose that the reference trajectory y* {k) is stationary with finite number of spectral

lines, then the frequency domain expression of (4.2.34) assumes the form

*70(0) =£ | «*-*•") Htf.**) .-*' »70(«'"i) r?

+£ 2 sy.**)ay.**) .-** iy.**) tf («•»)
where njfg"1) and njfg-1) are column transfer functions from y' (k) and n(k) to 0Jo(fr) respec

tively provided y*(k) and q(&) don't contain common spectral lines.

Remark:

To comply with the old notation in (3.2.27), we have

^}- o$fc and a^,--5^r (4-238)
where

ar(g"1)= (g^S(g"1), ••• ^^(g^Mtg-1), ••• ,g"(-+'-1,A(g"1))

(4.2.39)

and



-31-

^g"1)- (0 O,^)^),-- ,*J0(q*)q4m+'-i)A{q*)) (4.2.40)

where ^(g"1) is as defined in (3.2.5) with a,-,«= 0,l,...,n-l corresponding to the tuned parame

ter 0O, which result in

Rl (0) =-L S 0(«*").gy*) B, (.**) .*" r?

_Ljj Q(ry(t") (e,x}^ ? (4241)

Before we state a theorem which relates the instability behavior with the frequency content

of the reference trajectory signal, we make the following definitions.

Definition 4.2.3: Good Signals, Bad Signals

A stationary signal is said to be good signal if its spectral support C

w|-90a < /-H-g (c*u) e3'ud < 90* LAstationary signal is called bad if the spectral support C

«|/-tf7o(e*V'w' <-90* or l-H-t^e>'«)e>»d >90* i

Theorem 4.2.4:

Suppose the linearized, truncated system described by (4.2.31) and (4.2.32) is not per

sistently excited by good signals, then a bad signal with sufficiently small or large magmtude, will

result in the instability of the adaptive system.

Proof: The proof of the theorem follows from the fact that

X(J-€*,o(0))= l-«X(S7o(0)) (4.2.42)

where Xrepresents eigenvalue, and the results in [10].

Q.E.D.

Incidentally, the least squares type adaptation algorithm also possess similar instability pro

perty. The following corollary may be easily proven by the theorems similar to those of section of

[10].

Corollary 4.2.5:

If all conditions in Theorem 4.2.4 are satisfied with the adaptive law changed to be least

squares type with forgetting factor plus the total spectral lines due to either input or output
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disturbance are more than n+ m+ d, then a bad signal with sufficiently small magnitude will

result in the instability of the adaptive system.

To illustrate the slow drift phenomena we discussed above, consider an example due to

Rohrs, namely a continuous 1st order nominal plant along with a pairof fast unmodeled modes as

follows

G(a)= -2— 229
K} a+1 a2+30«+229

The nominal and true sampled systems (with h =0.5 ) are given by H(z) and H(z) respec

tively.

H(z>

m*\= 0J87

0.612(g2+ 0.286*+ 3.9-1Q-*)
(z-0.607)(*2-5.977-10-4*+3.059-10-7)

We choose the tuned parameter value 0O to be (0.61, 0.80)r. Here, we examine the slow

drift instability in the case where y*(Ar)= 0 and output disturbance d(k)= ain(wk). It is not hard

to show that the conditions of the theorem 4.2.2 are satisfied when w=ir due to the fact that

d(k) is a bad signal by definition (4.2.3). The slow drift of parameters is verified by the simulation

as shown in Fig.4.

5TZ»

Fig. 4 Parameter Drifting (6=(a,b)T)
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5. Concluding Remarks:

There were two important parts to our paper: (1) The complete extension of averaging

results from the continuous time to the discrete time situation. (2) An initiation of the discussion

of the effect of sampling on unmodeled dynamics in a continuous time plant and the effects of

these on the overall robustness of the adaptive system. This second part, we feel, is the start of a

larger program on the systematic study of the adaptive control of sampled datasystems, which is

initiated in Bai &Sastry [4], Goodwin et al [11] and Praly et al [25].



-34-

6 References

(1) B.D.O. Anderson, R.R.Bitmead, C.R.Johnson,Jr., P.V.Kokotovic, R.L.Kosut,

I.M.Y.Mareels, L.Praly, and B.D.Riedle 'Stability of Adaptive System: Passivity and

Averaging Analysis' 1986 The MIT Press Cambridge,MA

(2) K. J. Astrom, "Interactions Between Excitation and Unmodeled Dynamics," IEEE Trans, on

AC, Volume AC-30, No. 9, September 1985, pp 889-891

(3) K.J-Astrom, PJIagander and J.Sternby "Zeros of Sampled Systems' Automatica Vol.20.No.l

1981 pp31-38

(4) E.W. Bai and S.S.Sastry 'Adaptive Stabilization of Sampled Systems' Mem. No. UCB/ERL
M86/52 University of California, Berkeley

(5) E.W. Bai and S.S.Sastry 'Persistency of Excitation, Sufficient Richness and Parameter Con

vergence in Discrete Time Adaptive Control' Systems and Control Letters Vol.6 1985

ppl53-163

(6) Marc Bodson, S. Sastry, B.D.O. Anderson, I. Mareels and R. Bitmead, "Nonhnear Averaging

Theorems, and the Determination of Parameter Convergence Rates in Adaptive Control,"

System and Control Letters 7 (1986), pp 145-157

(7) S. Boyd and S. Sastry, "Necessary and Sufficient Conditions for Parameter Convergence in

Adaptive Control," Proc. of the Ames-Berkeley Conf. on Non-Linear Dynamics and Control,

Math-Sci Press, Brookline, Massachusetts, 1984, pp 81-101

(8) J.C. Doyle and G.Stein 'Multivariable Feedback Design: Concept for a Classical Modern

Synthesis' IEEE Trans, on Ac Vol Ac-25 1981 pp4-6

(9) L.C. Fu, M. Bodson and S. Sastry, "New Stability Theorems for Averaging and Their Appli

cation to Convergence Analysis of Adaptive Identification and Control Schemes," Proc. 24th

IEEE Conf. on Decision and Control, Ft. Lauderdale, FL, 1985, pp 473-477

(10) L.CFu and S.S.Sastry 'Slow Drift Instability in Model Reference Adaptive System-an

Averaging Analysis' to appear in Int. J. of Contr.

(11) G.C.Goodwin, R.L.Leal,D.Q.Mayne and R.H.Middleton 'Rapproachment Between Continu

ous and Discrete Model Reference Adaptive Control' Automatica Vol.22 No.2 ppl-9

(12) G.C.Goodwin,P.J.Ramadge and P.E.Caines 'Discrete Time Multivariable Adaptive Control'

IEEE Trans, on AC Vol. AC-25 1980 pp449-456

(13) J. K. Hale, "Ordinary Differential Equations," Kreiger, Molaban (Florida), 1980

(14) D.J.Hill and P.J.Moylan 'Connections Between Finite-Gain and Asymptotic Stability' IEEE

Trans, on AC Vol. AC-25 1980 pp931-936



-35-

(15) P. Ioannou and K. Tsakalis 'A Robust Discrete Time Adaptive Controller' submitted to

25th Conf. on Decision and Control

(16) P.V.Kokotovic,B.D.Riedle and L.Praly 'On a Stability Criterion for Slow Adaptation' Sys

tems and Contr. Letters Vol.6 pp7-14 1985

(17) R.Kosut *Method of Averaging for Adaptive Systems' Research paper

(18) R. Kosut, B. D. O. Anderson and I.M.Y.Mareels "Stability Theory for Adaptive Systems:

Method of Averaging and Persistency of Excitation," IEEE Trans, on AC, to appear

(19) R. Kosut and C.R. Johnson 'An Input-output View of Robustness in Adaptive Control'

IFAC 1984, pp569-581

(20) G.Kreisselmeier and B.D.O. Anderson *Robust Model Reference Adaptive Control' IEEE

Trans, on AC Vol AC-31 1986 ppl27-133

(21) W.E.Larimore, S-Mahmood and RICMehra 'Adaptive Model Algorithmic Control ' Proc.

IFAC Workshop on Adaptive Systems in Control and Signal Processing, June 1983 San

Francisco

(22) L.Praly 'Reduction Principle in Slowly Adaptation Discrete Time Systems' Research paper

(23) L.Praly'A geometric Approach for The Local Analysis of a One Step Ahead Adaptive Con

troller' Proc. 4th Yale Workshop on Applications of Adaptive System Theory, Yale

University,CT

(24) L.Praly 'Local Stability/Instability of Slowly Adapted System in Presence of Periodic

Inputs' Research paper

(25) L.Praly, S.T.Hung and D.S.Rhode 'Towards a Direct Scheme for a Discrete -Time Control

of a Minimum Phase Continuous Time System' Proc. of 24th Conf. on Decision and Control

FtXauderdale 1985 ppll88-1191

(26) L.Praly and D.Rhode 'A Local Analysis of a One Step Ahead Adaptive Controller'

Proc.24th Conf.on Deci. and Contr. 1985 FtXauderdale, ppl862-1867

(27) B.D. Riedle 'Integral Manifolds of Slow Adaptation' Ph.D. Thesis 1986 University of

Illinois,Urbana-Champaign

(28) BD.Riedle 'Stability Bounds for Slow Adaptations Integral Approach' Proc. of 2nd IFAC

Workshop on Adaptive Systems in Control and Signal Processing, Lund, Sweden,1986

pp61-66

(29) B. D. Riedle and P. V. Kokotovic, "Stability Analysis of An Adaptive System with Unmo

deled Dynamics," Int. J. Control, Vol.41 No.2 1985, pp.389-402

(30) B. D. Riedle and P.V. Kokotovic, 'A Stability-Instability Boundary for Disturbance-Free

Slow Adaptation and Unmodeled Dynamics' IEEE Trans, on AC. Vol.AC-30 No. 10 1985 pp



-36-

1027-1030

(31) B.D. Riedle and P.V. Kokotovic 'Integral Manifold Approach to Slow Adaptation' Proc.of
24th Conf. on Dec. and Contr. Ft. Lauderdale,FL Dec.1985 ppl47-151

(32) M.Vidyasagar and A.Vannelli 'New Relationships Between Input-Output and Lyapunov Sta

bility' IEEE Trans, on AC VolAC-27 1982 pp481-483


	Copyright notice1986
	ERL-86-67

