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ABSTRACT

In this paper, we give a global theory of Lyapunov functions for a class of vector fields. This

class is defined in Euclidean space by analogy to Morse functions on a compact manifold. Our class is

more general in that we allow a wider class of attractors. The vector fields in that class are dissipative,

in a sense that is made precise using a generalization of asymptotic stability. It appears reasonable to

state that the dissipative property of a vector field is equivalent to the existence (globally) of Lyapunov

function (cf. the work of J.Willems [15]).

Our theory is more complete than previous works in that it works out the classification of all pos

sible global Lyapunov functions, based on the diagram of the types of orbits of the vector field (called

here the orbit diagram).

We include a general existence theorem for Lyapunov surfaces (i.e. Lyapunov function level

sets), since we believe that this is the more natural concept for an existence theory. The proof is based

on purely geometric arguments that exploit the foliation of a region of attraction by the orbits in it.

Research supported in part by NSF Grant #ECS-8308330.
Submitted for Publication to the IEEETransactions on Circuits andSystems.



Introduction

A Lyapunov function for a dynamical system is a generalization of the energy function of a clas

sical mechanical system. It is a scalar function V on the state space with the property that it is non-

dV
increasing on trajectories of the system, i.e. — £0. When the system is dissipative, the Lyapunov

at

dV
function is strictly decreasing, —<0.

at

In system theory, Lyapunov functions are usually local; in this case the existence of a local

Lyapunov function is equivalent to the local stability of an equilibrium. Only if the equilibrium is glo

bally stable is the Lyapunov function also defined globally.

In general, each stable equilibrium is stable in a region of state-space that we call its region of

attraction . This is the natural domain of definition of a Lyapunov function and in power systems,

Lyapunov functions have been used to estimate the region of attraction of an equilibrium.

In the mathematical theory of dynamical systems, on the other hand, global Lyapunov functions

are considered and have proved very useful in the study of global dynamics for certain classes of flows

(see F.W.Wilson [16],[17], Franks [5] and Pugh and Shub [131). In particular, just as Morse theory

helps to describe the topological structure of manifolds, global Lyapunov functions are used to describe

homological properties of dynamical systems, as in Franks.

Our research was developed with a motivation very different from the above. It generalizes glo

bal Lyapunov theory in two directions: first, the attracting sets are allowed to be arbitrary compact man

ifolds. Second, and more importantly, the class of Lyapunov functions we consider is more general:

roughly speaking, the level sets of Lyapunov functions considered before tend, asymptotically, to the

boundary of the regions of attraction of the critical elements. In our research, these level sets are

transverse to the boundary and hence are not contained in a single region of attraction.

It is important to generalize the notion of an isolated, non-degenerate equilibrium point. The

natural concept that makes an attractor isolated and non-degenerate is that of asymptotic stability.

Furthermore, we allow not only equilibrium points, but general compact manifolds which we call

attracting sets . As in the case of Morse-Smale vector fields, the non-attracting go- and a-limit sets are



required to be hyperbolic equilibria or closed orbits .

To get a complete qualitative picture for the class of dynamics to be defined, we impose a global

condition of dissipativeness. This allows orbit diagrams to be drawn for the flow, assuming a no-cycle

condition is satisfied.

The object of section 2 is to give a generalization of Morse functions: these are the (strict)

Lyapunov functions for the flow. In contrast to the Morse function giving a gradient flow, a Lyapunov

function is not unique for a given flow. It is one of the main contributions of this research that the pre

cise degree of non-uniqueness of Lyapunov functions is found. This leads naturally to a complete

classification of all the possible Lyapunov functions of a given vector field.

The motivation for this work comes from large deviation theory (see [3],[14]). It turns out that

the class of dynamics we define here is a natural one for obtaining global results in large deviations. In

particular, in some special cases desribed in Kappos,Sastry [8] the variational problem in the small-

noise asymptotics is actually solved by a Lyapunov function.

This paper is structured as follows: in section 1 we define a class of dissipative dynamics for

which Lyapunov theory is appropriate. In section 1.1 we define attractors in a way that generalizes

naturally the definition of asymptotically stable equilibria and in section 1.2 we use orbit diagrams to

define globally the class of dynamics we want. Section 2.1 describes Lyapunov surfaces. These are

seen to be global analogs of the transverse neighborhoods to the flow obtained from the flow-box

theorem (see section 2.1.1). Section 22 derives a botany of Lyapunov functions. The most direct kind

that follows from the Lyapunov surface concept is a Lyapunov function defined in the region of attrac

tion of a single attracting set. This is the type of Lyapunov function familiar from system theory and

power systems.

Using the results of section 2.1.3 on Lyapunov surfaces for saddle critical elements, we are led to

global Lyapunov functions whose level sets propagate across saddles in a prescribed order. This allows

the classification scheme of section 2.2.2. Section 2.3 draws some conclusions.
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1. A Class of Dynamical Systems

1.1. Attracting Sets

Let K be a compact, connected, q-dimensional submanifold of R*, q<n . Define the distance

function to K:

d(xJO=inf)x-y\

Since K is compact, d is well-defined and continuous. Now define, for e>0 , the set:

Nf={^eRAW(x^)<£)

For e small enough, we can take this to be an 8- tubular neighborhood of K in R".

More precisely, a tubular neighborhood of the submanifold K of R" is a pair (f$) , where

B=(pJSJC) is a vector bundle over K and/ is an embedding of E in R" such that

(a) / restricted to AT is the identity map

(b) f{E) is an open neighborhood of K in R".

We shall, by abuse of notation, refer to/(E) as the tubular neighborhood of K (see Hirsch [6] for

details).

Note that the fibre over any xe K can be taken to be the normal space to TJC = NJC which, in R",

is identified with (TJQ1 (see the proof of Theorem 5.1 in [6]). In this case, (f,B) is called a normal

tubular neighborhood (n.Ln.) of Kand we can take/(£) to be the setN%, for some small e.

We use these neighborhoods as the open sets in the definition of an attracting set

Definition 1:

The manifold K is an attracting set if: given a normal tubular neighborhood N§, 5>0 of K, we

can find a e>0 and a n.t.n. N% such that:

(i)for all xeN* . (JvceNaffor all &0 .



(ii)for allxeN* , d(xJC)^>0 as f-»0.

Call A(6) the set of attracting sets of the vector field b.

Remarks:

1) If K=[x] , we are back to the definition of an asymptotically stable equilibrium. If AT is a limit cycle

(the only possible 1-dimensional compact,connected manifold), then we have defined an asymptotically

stable limit cycle.

2) In higher dimensions, when <?>0, the attracting set contains more than one orbit of b (an example is a

two-dimensional torus). We make no assumptions on the behavior of b on K. In particular, the flow of

b may be conservative when restricted to K. However, we require AT to be of dimension stricdy less

than that of the state space, as should be the case for dissipative systems (see Birkhoff [41).

3) If K={x) is a hyperbolic attractor, then it is certainly an attracting set, by the Grobman-Hartman

theorem.

Definition 2:

The region of attraction Rg of the attracting set K is defined as the set ofpointsxeRn satisfying:

(i) dtytXJO-^Q as /-»-k».

(ii)xiK.

Note that for all xeRK , b(x)*0. We have:

Lemma 1:

IfxeRK, the orbit of x : [fyjc, teR} belongs to RK. Also, RK is an open set and there is a normal

tubular neighborhood of K contained in it.

Proof:

If xeRK and y=$fX for some f\

d($tyX) = d($t+,XrK)
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and the first part follows. Now let Nf, A/£ be as in definition 1. If xsRg, there is a time 7i>0

such that $TxeN$. Since (J^ is a diffeomorphism, we can find a neighborhood U of x such that

$rUcN%. It is now clear that for all yeU, yeRg and hence Rg is open.

Finally, it is obvious that the normal tubular neighborhood Af is contained in Rg. •
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1.2. The Class of Flows Considered

First we recall some definitions (see [12] for details) (throughout b(x) is a complete vector field

and <|>,x is its flow).

Definition 3:

A point xe Rn is said to be wandering if there is a neighborhood V of x and a time T>0 such

that: typr\V=0for ld>7\ Otherwise, the point is called nonwandering . Write Q(6) for the set

of nonwandering points of the vectorfield b,for all points outside the set of attracting sets A(b).

Definition 4:

Call a set a critical element if it is a zero of b or a closed orbit (a zero will also be called an

equilibrium). A point p is an a -limit point of the point x if there is a sequence of times tk-*-°°

such that §tjx—*p. It is an on -limit point ofx if the same holds for a sequence of times tk going

to +«o. If for the point x, l<J>,xl-»+o«» as t > «»(+<») we say « is an a-limit point ( ay-limit point)

ofx. Call La(b) andLJjj) the set of o> and co-limit points of b.for x outside A(6) and belonging

to a bounded orbit.

Note that if peLauL^ then p is a non-wandering point Thus, for a general flow, Q(6)3La(6)uL<0(^).

Also note that A(6)cLu(6).

Definiton 5:

An equilibrium is called hyperbolic if its linearization has no eigenvalues with zero real part. A

closed orbit is hyperbolic if the linearization of its local Poincare map has no eigenvalues of

modulus one.

The stable manifold of a hyperbolic critical element a is denoted by W*(a). The unstable manifold of

a by W"(a). For the existence and properties of the stable and unstable manifolds of critical elements

refer to eg. Hirsch etal.[7].



Definiton 6:

The vectorfield b on Rn is a dissipative Morse-Smale vector field if:

(i) there is a finite number of attracting sets and a finite number of critical elements, all hyper

bolic.

(ii) (a) the set of ay-limit points in Rn-A(b) is equal to LJib).

(ii) (b) the set of ct-limit points in Rn-A(b) is equal to La(b)u[oo}.

(Hi) Qpy^OuLoflOuM.

(iv) if C\ and a2 are critical elements, then lV(ai) ond W*(g-£ are transversal.

Remark:

It is a consequence of condition (ii) (a) that every future trajectory {(Mleo of a dissipative

Morse-Smale vector field is bounded. Something stronger is actually true: almost all points in R" have

their co-limit sets in A(&). This is because the stable manifold of a critical element that is not an attrac

ted has dimension strictly less than n and hence has Lebesgue measure 0 in Rn. The past trajectories

{<!>**}<sq of 6, however, generically go to <» or to a critical element of index n.

Definition 7:

Given critical elements or attracting sets Gi , a2 introduce the relation < by: at<CT2 if there is an

orbity that has Gx as its ay-limit point and a2 as its a-limit set.

A set of critical elements satisfies the no-cycle condition // we cannotfind distinct critical ele

ments G:,G:,..,Gi such that: a,- <c?; <..<a,- <a,-.

Now construct the orbit diagram of a dissipative Morse-Smale vector field that satisfies the no-cycle

condition as follows:

Distinguish (n+1) levels, according to the index k of a critical element (i.e. the dimension of its

unstable manifold). Thus 0<k<n. The attracting sets are at the index-0 level. List all the critical ele

ments and attracting sets at each level. Include the repellor at <» at the index-n level. Call these the

nodes of the orbit diagram.
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Connect node a to node t by an arrow pointing from g to x if x<g.

Lemma:

x<c if and only if index x < index G.

Proof:

This follows from transversality, by keeping track of the dimensions of the stable and unstable

manifolds of the critical elements. •

Note that the above lemma shows there are no homoclinic orbits (i.e. g<g does not happen).

We are now in a position to define the class of dynamical systems for which the global Lyapunov

theory of chapter 2 will be developed.

The Class D(R*):

A complete vectorfield b on R* belongs to the class D(R") if:

(a) b is a dissipative Morse-Smale vectorfield and

(b) the no-cycle condition is satisfied.

From now on, the vector fields under consideration will be assumed to be in D(R").

Discussion of the Class D(R"):

D(R") is a general enough class of dynamics to include many familiar examples of interest for

example, the Josephson junction models away from bifurcation, multi-machine models in power systems

etc. The sense in which a vector field in D(R") is dissipative is consistent with previous attempts to

formalize this notion (see G.Birkhoff [4] and, more recendy, J.Willems [15]).

As Birkhoff requires ([4],pp.31-32), asymptotically as t-**>, the motion of a dissipative system

takes place close to bounded sets of dimension lower than that of the state space. On such a set the

motion is assumed conservative. In our formulation, the attracting sets are compact manifolds of

dimension strictly less than n.
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According to Willems, dissipativeness has to do with the existence of a function which decreases

with the forward (in time) evolution of the system dynamics. This is captured in our theory by the con

cept of a global Lyapunov function. Our theory goes further than that in specifying exacdy how many

such functions we can find and how they are related.

The members of D(R") are structurally stable In fact, if we compactify the state space using the

point at infinity, we see that the class we defined is very similar to the Morse-Smale vector fields,

except for the existence of the more general class of asymptotic attractors.

In Figure 1.1, we give some simple examples of orbit diagrams.
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2.1. Existence of Lyapunov Surfaces

2.1.1. Basic Definitions and Properties

The region of attraction of an attracting set K is foliated in an obvious way by the 1-dimensional

orbits of the vector field b: each xinRg belongs to a unique orbit and the vector field is non-singular in

all of Rg.

The global Lyapunov theory we are developing gives foliations dual to the above: there are folia

tions of Rg with leaves which are (n-l)-dimensional submanifolds (hypersurfaces), which we call

Lyapunov surfaces and which are transverse to the 1-dimensional foliation by the orbits of b.

The construction of Lyapunov surfaces has two steps: first, relying on the flow-box theorem, we

get local Lyapunov surfaces. Then, the properties of the attracting set K are used to patch together the

local surfaces to obtain a Lyapunov surface intersecting all orbits of b in Rg.

Definition 1:

A Lyapunovsurface Sfor the vector field b is a hypersurface ofRn, bounded as a subset of R".

with the property thatat all pointsxeS:

<b(x)>+T£=TJLn

(i.e. S is transverse to the flow of b) and such that each orbit of b intersects S at most once.

We shall be interested in Lyapunov surfaces that are contained in Rg, for KeA(b). In this case we

have:

Definition 2:

A Lyapunov surface S is complete for the attracting set K if S is contained in Rg and if all

orbits of b in Rg intersect S (exactly once).

A Lyapunov surface may have more than one connected component Each component of S has an

orientation induced on its normal bundle NS by the flow: we say that the vector n(x)zNJi points
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inwards if b(x)-n(x)>0.

Every non-singular point x of the vector field b has a Lyapunov surface locally: just find a hyper-

surface whose tangent space at x is transverse to <b(x)>; then a neighborhood of x on the hypersurface

is transverse to the vector field by openness of transversality.

We shall need the above result in a stronger form, where we simultaneously rectify the vector

field aroundx. This is given by the flow-box theorem (for a proof, see Arnord [2],p.227):

Theorem 1 (Flow-Box):

Let b be a C vector field.(r>\). Let xeR* be such that b(x)*Q. Then there is a C-

diffeomorphism Vf mapping a neighborhood U of x onto an open ballB5(0)<zRn, with y(x)=0 and

the vector field b to the constant vectorfield:

where [ex en] is a standard Euclidean basisfor T^Rn.

Corollary 1:

Let b(x)*Q; then there exists a Lyapunov surface containing x.

Proof:

Let V-{yGB6(0\yi=0] where 58(0) is as above. Then V=\j/~l(V) is the desired Lyapunov surface.

A basic property of Lyapunov surfaces is that they can be moved along the flow in an arbitrary

manner, while remaining transverse to the flow. We can use the diffeomorphisms <{), of the flow or gen

eral maps that move each point on the Lyapunov surface by a variable amount along its orbit

We summarize the above in the two basic lemmas:
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Lemma 1:

Let S be a Lyapunov surface and re R be given. Then the image of S under <j>f is again a

Lyapunov surface.

Lemma 2:

Let a be a smooth, real-valued function on S. Define the map %from S to Rg by:

X(x)=Wa(xU)

Then the image of S under %is again a Lyapunov surface.

Proof of Lemma 1:

Let i be the embedding map of S. Then <JVi is the embedding map of <J>,(S) and it is clear that

4>((S) is a hypersurface, since <(>, is a diffeomorphism.

To prove transversality, choose a basis [e\{x\..,en.i{x)) for Tg , viewed as a subspace of TxRn,

for ;ceS. Since b(x) is trasverse to S , [el(x\..£m-l(x)tb(x)) is a basis for TxRn. The vectors

[(Tj^d(ei(x)\..XTx^d(e^i(x)),(Tx^i)(b(x))} are linearly independent since T^t is an isomorphism.

Furthermore; we have the identity:

PAdbVHKM

It suffices to show that (T^(et{x))s T^^S). Since:

TpQffcTupfaTpi, /wsR"-1 , i(p)=xeS

if g,(;c)=(rpi)v for some veT^R""1, we have:

Tp(^toi)(yy=Ti(p)^toTpi(v)=

-Titpfl&fayssCTAdififa))

and so (TAXtf.-Cx)) is in Tp^fii)R^l=T^i(p))^(S). •

Proof of Lemma 2:
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We distinguish two cases:

(i) x(x)*0 and (ii) %(x)=0.

Case (i): Pick a neighborhood U of x in S such that x is non-zero on U. Rescale the vector field b

locally:

b'(z)=%(y)b(z) ,yell,zeorbit of y

It is easily seen that the map defined in the lemma is the map $\h where <j>' is the flow of b'. By

Lemma 2.6, ^\U is transverse to b' and therefore to b.

Case (ii): Pick a neighborhood U of x and a time x such that x>supx(x). tyxU is tranverse to b at x, by

Lemma 22. If we define x'teHcOM)-'* for ze^, then v/(z)*0 and (KxW^^Oc'C^).^)- We are

now back to case (i). •
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2.1.2. Complete Lyapunov Surfaces for Attracting Sets

Consider the equivalence relation - in R":

x~y «£* 3 re R such that y=$t*

In the region of attraction Rg of an attracting set K, this equivalence will yield a quotient space Q that

is a compact manifold and is diffeomorphic to any complete Lyapunov surface for AT. As a result, Rg is

diffeomorphic to QxR and Lyapunov functions are easily obtained from functions on <2xR.

Theorem: (Existence of Complete Lyapunov Surfaces for Attracting Sets)

Let K be an attracting setfor the vector field 6eD(R*). Let an open neighborhood of K be given

in Rg.

Then there is a complete Lyapunov surfacefor K in that neighborhood.

Corollary:

The quotient space Q of Rg under the equivalence relation - is a compact, manifold. Moreover,

Rg is diffeomorphic to the productspace QxR.

Proof:

There is no loss in generality in assuming that the open neighborhood of K is an e-normal tubular

neighborhood #£, such that N%cRK. The setBN$=[x:d(xJO=e) is closed and bounded and hence

compact It is in fact a manifold, diffeomorphic to KxS"~<t~l (Where q is the dimension of K).

The equivalence relation - in RK yields the quotient space Q'.-Rg/-,which has a manifold struc

ture. This is because each element of Q is an orbit y of b in RK: ^(^sR) and, by the flow-

box theorem, we can find a neighborhood U of x in RK (since RK is open) mapped onto £5(0).

The equivalence relation in fl5(0) is simple: it yields the quotient space V o£ Corollary 2.1 and

hence a coordinate map J3 for a neighborhood of y (see Fig.l) (since jwjf* maps V to

n(V)=noy~l(y) diffeomorphically and hence the inverse p of tcu/-1 exists).
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The canonical map tvJig-^Q, sending each point to its orbit in Q is locally onto since, when

transformed via \jf to a flow-box, it can be written as:

where rc' is the canonical projection in Rn, taking Cyi0^2»-0'#J t0 O^oO and is clearly onto.

The equivalence relation - is called a regular equivalence and Q the quotient manifold (see Abra

ham etal.[l],pl73).

Next, we want to show that Q is compact First, we claim that every orbit of b in Rg intersects

3iV*£. This is because Rg, and therefore n£, contains no a-limit points of b. Suppose, otherwise,

that there is an orbit y=[$,xyteR} that is contained in N$. Define ^H>-**»^0» the sequence

[Z>i)Zi has a limit point in N% because N% is compact This is a contradiction, since N% contains

no a-limit points. Ail points of RK tend to K as /-•+<» and they are eventually in N%. On the

other hand, the orbits of all points ofN% intersect 3A/J. Thus, all orbits in Rg hit 3iVf.

If we restrict the canonical projection map to 9Wf we get, by the above, that n(dN^)=Q. Since

3/Vf is a smooth manifold and rc a smooth map, we get that the image of the continuous map

7claiVic is compact because ctfvf is. Thus Qis compact (see Munkres [11], p.167).

An open cover of Q is obtained as follows: first find another neighborhood N% such that

<|>r(N£)crV£ for all r>0. For all points xeN%, find a neighborhood Ux in N%K and a local Lyapunov

surface Vx as in Cor.2 that is mapped diffeomorphically to ^(V,), a neighborhood of n(x) in Q.

The 7t(V,) cover Q:

Since Q is compact, we can find a finite subcoven

fi=yrc(Vi)
(=1

where the Vt are neighborhoods of the points x,-, i=l,..,/n.



- 17-

This finite cover will be used to get a global section of the quotient "fcRg—>Q, i.e. a smooth map

siQ-tRg such that n(s(x))=x on Q.

Note that we already have local sections (sections defined on open subsets of Q). These are

obtained (see Fig.2) by mapping back to Rg, using the rectifying diffeomorphism \j/,-, the neigh

borhoods of the Xii

SF*Vll$i

SiixW-tVicRg

To get the global section, we need to patch together the local ones; this is accomplished using a

partition of unity subordinate to the open sets {7c(Vi),i=l,..,m} and the following transition maps :

On a non-empty intersection n(ydniz(Vj)*0 the map:

y^sfit^pnnfYt)) -» R

sending x to:

ykfr^inflUtyxeVk)

is smooth and satisfies:

SkiPr^iy^sfy)))^)), /?ejc(V})njt(V*)

When j=kt we have: yjfip)=Q*<j. On triple intersections we have the consistency condition:

yu<st<p))^dSk(p))+yki(Si(p)) • *

Let {a,-,i=l,..,/n} be the functions that define the partition of unity (i.e. supp<xjcx,(y!) and

m

£a,(p)=l;Yp€(2). The expression for the global section s can now be given on each open set

n(Yd:

provedusing the group propertyof the flow:

SF^(ydSk)^t)^ydsidMyh<sdrSd>^ydSk)nki<sdrSd
and on the other hand Sf=$(yii(Si)tSi). Comparing, we getthe desired result
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s(p)=$( S <*j<PYfji(Si<P))A<p)) forpentyd

We claim that this gives a consistendy defined s on all of Q. To show this, take a non-empty

intersection n(y^r\it(y^dj.^k. We have two expressions for sip) for points p in the intersec

tion:

s(p)^(Js^(pY(ik^k(p))^kip)) (b)

We must show that the expressions (a),(b) for s(p) are equal:

(bW(Zal(py(lk(sk(p))jk(p))=

^(Z^i(py^dSk(p))Myh<st<p)Ui(p)))=

=<l>(Zaj(P)7tt(^jk(p))+YA,(^(p))A(p))=

substituting for ytt using the consistency relation:

^(Ia*(p)[Y&<*(p)Mj^

and the result follows from the partition of unity:

^(ZcLi(pyYu<Si(p))^i(p)Ma)

It is clear that s is smooth and one-to-one. It remains to show that the image of Q under s is

transverse to the flow. We know the local sections are transverse to b by construction of the

local Lyapunov surfaces Vr On each Vt, s modifies the local section st using the flow <j> and a

smooth function / that moves each point of st{it(Vd) along the orbit Here:

J

Therefore, Lemma 2 applies and the modified section is also transverse to the flow. D
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Proof of Corollary:

It has been proved that Q is a compact manifold. To show Rg is diffeomorphic to QxR, assume

given a global section s, constructed as in the previous proof. Then, the flow (j> gives the required

diffeomorphism $; we have:

$:QxR->RK

(pj)\-»b(tj(p))

and <|> is obviously smooth.

It is onto, since, for any yeRK, we can find a f'sR such that foy=x'e5; then (-f^O goes to y,

where sip*)=x'.

It is one-to-one since if WiPr^tyifp') we must have p=p' since s is one-to-one and orbits do not

intersect Then t=tf, by uniqueness of solutions to the flow. Q
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2.13 Lyapunov Surfaces of Critical Elements

Before we can define global Lyapunov functions, we must discuss Lyapunov surfaces for critical

elements.

A critical element a is a repellor if its stable manifold is trivial. By reversing the flow direc

tion, a repellor becomes an attracting set Thus we have:

Lemma 3:

If Gis a repellor, there is a complete Lyapunov surface for g in anygiven neighborhood of it.

A critical element a is called a saddle if it has non-trivial stable and unstable manifolds. We dis

tinguish saddle equilibria and saddle orbits . A saddle's region of attraction is its stable manifold,

which is not an open subset of R"; thus there is no concept of complete Lyapunov surfaces for saddles.

However, the 'future' orbits of points close to the stable manifold pass close to the unstable manifold of

G. We are therefore interested in Lyapunov surfaces in neighborhoods of the stable and unstable mani

folds. We give separately the cases of a being an equilibrium and a closed orbit

Saddle Equilibria:

Let a be a hyperbolic equilibrium of index k,Q<k<n. W*(a), its unstable manifold, is k-

dimensional and W(g), the stable manifold, is (n-k)-dimensional. The two manifolds are invariant

under b and intersect transversely at a:

TaW«(G)QTaW(G)=TaR*

As we saw in the previous section, on W(g) we can find a complete Lyapunov surface Ss(g) for

a as an attracting set on W(g). Similarly, we can find a complete Lyapunov surface Su(g) on W"(g),

since a is a repellor on W"(g).

Consider the normal bundle NW(a) and its restriction to Ss, NW(g)\^ We can find a tubular

neighborhood of Ss in NWCc?)!^ of size e; this means that all points on the neighborhood are a distance

less than e from Ss. This neighborhood Nz(Ss) can be made transverse to the flow, since Ss is transverse
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and it is also compact (since transversality holds on a neighborhood of any given point we cover Ss

with finitely many such neighborhoods and make e small enough so that Ne(S*) is inside the union of

these neighborhoods). A similar construction gives a transverse neighborhood of 5", N^S") in

NW"(a)l5ll. The two neighborhoods are then Lyapunov surfaces for b. Note, finally, that we can

assume that they are disjoint, by making them sufficiendy small.

Saddle Orbits:

Let o* be a hyperbolic closed orbit It has a k-dimensional unstable manifold W*(c?) , (0</:<n-l)

and a (nHfc-l)-dimensional stable manifold W(g). We have the splitting: TJR*=TxVlrM(a}*TxW'(p) where

TxWu(G)r\TxW(G)=<b(x)>.

The construction above for equilibria extends to the present case with minor changes.
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2.2 Lyapunov Functions

We are now ready to define Lyapunov functions globally. First, we find Lyapunov functions

defined in a region of attraction of an attracting set K. This is a simple application of the existence

theory of section 2.1. Then, Lyapunov functions on the whole of Rn are obtained using the propagation

of Lyapunov surfaces past saddle critical elements which is given in section 2.2.2.

2.2.1. Lyapunov Functions from Complete Lyapunov Surfaces

Corollary 2.1 establishes that, for an attracting set K, its region of attraction RK is diffeomorphic

to QxR, where Q is the quotient manifold Rg/- under the regular equivalence of belonging to the same

orbit The diffeomorphism $:QxR->RK can then be used to map functions on QxR to Lyapunov func

tions on Rg.

Definition 3:

A continuous function V defined on an open subset CAzR" is a Lyapunov function for the vector

field beD(R") if:

(i) V is constant on each attracting set and on each critical element,

(ii) V is smooth on U-Q.(b) and

(Hi) dV(b)<0 everywhere on U-Q.QJ) (alternatively, ify=^xyt>0, then V(y)<V(x)).

Fix an attracting set K. Consider the following class of functions L(£) on QKxR:

aeL(£) iff

(i) a is smooth and maps QgxR-^R: (p,x)-*a(p,x).

(ii) for everype Qg#(p,.):R-*R is a diffeomorphism and let us assume that -r-(p,x)>0.
dx

Also consider a smooth stricdy monotone increasing function kR-^R^
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Theorem 3:

To every ae L(K) and v as above, there corresponds a Lyapunov function V defined on Rg. Con

versely, if V is a Lyapunov function on Rg, we can find functions a of class L(K) and v as above

such that V is obtained from them.

Proof:

For each xe R, a(.,t) is a smooth function from Qg to R and as x varies, we foliate QgxR with

the graphs of the functions a(.,x). The map:

QgxR -> QgxR

(p,x)\->(p,a(p,x))

is a diffeomorphism which we call a".

We also have the diffeomorphism <j> mapping QgxR to Rg. Now simply define, for xeRg.

V(x)=v<,K*Zrl4-\x)

where 7Ct is the projection (p,x)->x. V is obviously a smooth function from Rg to R+.

To check that it is a Lyapunov function, note that the level sets [V=constant] are the images

under <1> of a(.,x) for each x. These, as we can see from Lemma 2.2, are transverse to the flow

and hence are complete Lyapunov surfaces. D
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2.2.2 Classification of Global Lyapunov Functions

In section 2.12 Lyapunov surfaces were obtained for saddle critical elements in neighborhoods of

their stable and unstable manifolds. The flow of the vector field can be used to propagate the Lyapunov

surfaces near the stable manifold to the Lyapunov surface near the unstable one. With this technique

we can then discuss global Lyapunov functions whose level sets intersect more than one region of

attraction and are defined globally, on the whole of R*.

Propagation of Lyapunov Surfaces past a Saddle:

The flow close to the unstable manifold of a saddle a passes near the saddle and then stays close

to the stable manifold of g (see Fig.2). This allows us to define a diffeomorphism between the "punc

tured" Lyapunov surfaces N(S*)-S* and N\SW}-SU. The Lyapunov surfaces Ss and Su have to be

removed since W* and W" are invariant under the flow.

Theorem 4:

Let G be a saddle critical element. We can find punctured Lyapunov surfaces N{S>y-Ss and

NXSy-S" and a smooth positive real function aJV(.S0-S*-»R+ such that NXSy-S" is the

diffeomorphic image ofNiS'y-S* under the map:

x-#b(a(xU)

Proof:

We do separately the cases of a an equilibrium and a closed orbit

Case 1: Saddle Equilibrium:

Let cr have index k,0<k<n. It is known ([12]) that there is a homeomorphism h that takes a

neighborhood U of or to an open set of Rn, sending g to O and on which the push-forward h'b of

the vector field b is the simple linear vector field:

§=
h 0
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The general solution of the above linear equation is:

WO
eUO)

*-k, ^(0)6R*,^2(0)eR

We can assume that the neighborhoods of S* and Su found in section 2.2.2, NZ(S*) and N^iS") are

in U and do not intersect Also suppose that the image under h of U is a ball around 0,

h(l»=B^0),T\>0.

If we have an initial condition close to 5*, i.e. £2(0) is close to Ss and !£t(0)l is non-zero and small

relative to l$2(0)l, then we can find a time T>0 such that e'^O) is arbitrarily smalll and ^(O)

is larger than T).

Thus it is clear that if ^(0) is sufficiendy small, the orbit of *i<0)
$2(0)

intersects h(Nz<(Su)-S't). It

also follows that for the linear vector field, a small punctured neighborhood of /*(£") is mapped by

the flow onto a small neighborhood of h(S*). Thus KNiSy-S") is mapped by the homeomorphism

h onto a neighborhood A(N'(S*)-S*) of h(S").

Having established that there is a continuous 1-1 and onto map between the two neighborhoods,

we can map back using h and get a diffeomorphism between them in R", by the flow

diffeomorphism $(tj:).

Case 2: Saddle Closed Orbit:

Let G have index k , 0<k<n-l.

The Poincare map P% on a local Lyapunov surface Z of a pointxe g is locally equivalent to one

of the following maps (see Theorem 5.5 of [12],p.72):

Al =

Al =

5+0
0C+

5+0
oc_

. AU

, aU

0C+

B-0
0C_

where B+=Wk where Ik is the k-dimensional identity matrix, C+=2/„_1_t and fl_ and C_ differ from

2?+ and C only in that their (1,1) elements have a negative sign. Thus, A{eR(nr~lMn~l), £=1,2,3,4.
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The solution of the discrete system:

is ^j=(A)y^0. In particular, there are contracting and expanding directions as in the case if the

linear flow above. And just as in case 1, a point close to the stable manifold of a on I gets

mapped close to the unstable manifold of a on I (see Fig.3). Reasoning as in the previous case,

we get a diffeomorphism between the sets ZnQf(F}-S?) and In(/V(S")-S"). D

Remark:

In Morse theory, one is interested in describing how the maps given above for saddle elements

contribute to the relative cohomology of the level sets of Morse functions. Although the homological

aspects of this transformations of Lyapunov surfaces around saddles is interesting and may lead to a

deeeper understanding of optimal control for dynamics of class D(R") (see chapter 3), we shall leave

the topic for future research.

Classification of Global Lyapunov Functions:

First, we motivate the basis for our classification method by an example. Consider a vector field

in the plane with the phase portrait of Fig.5(a) (its orbit diagram is shown in Fig.5(b)). There are three

attractors and two saddles. In Figs.5(c) and (d) we show two possible global Lyapunov functions by

plotting a few of its Lyapunov surfaces. In chapter 3 we shall see how for some optimal control prob

lems (and related large deviation problems) a Lyapunov function is the optimal cost functional starting

from a given attractor. It is easy to see that in case (c) optimal exit is from saddle j2 while in case (d)

it is from saddle S\, since it is less costiy to take those paths (one should view the Lyapunov surfaces as

isocost surfaces).

We would like a classification scheme that differentiates between these two types of Lyapunov

function on the basis of the qualitative feature that exit paths go through different critical elements.

The aim is then to generalize this to all vector fields of class D(R").
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In order to get different kinds of Lyapunov functions than those obtained in section 2.2 we need

to abandon complete Lyapunov surfaces. In particular, we will use Lyapunov surfaces that are global

sections of Qg but with the unstable manifolds of some critical elements removed (Fig.4).

A global Lyapunov function is always increasing as we move on a stable manifold from the co-

limit set to the a-limit set of the manifold. The converse holds for an unstable manifold. As we move

on a chain of manifolds starting from an attractor, we want to define a Lyapunov function consistendy.

To do this, we have imposed the no-cycle condition in Chapter 1. The best way to book-keep the

different possible global Lyapunov functions is to look at the orbit diagram of b. There, we can clas

sify all the global Lyapunov functions by specifying an order on the set of critical elements of each

index level. We now make precise the above ideas.

Definition 4:

Let G be a critical element of index k , k>0 such that W\G)nRg*4d, where Rg is the region of

attraction of some KeA(b). We call g a k-ancestor ofK.

Similarly, if G\ and g2 are critical elements with kx<k2 and are such that Wu{G2)r\Ws{G\)i4d, we

call g2 a k-ancestor of G\ and gx a k-descendant of G2.

Let the orbit diagram of the vector field beH<J3L") have fo>0 attracting sets and /j£0 critical elements of

index k (\<k<n) (all numbers are finite). In numbering critical elements and attractors, we shall use

superscripts to denote index and subscripts for ordering. Let mi be the number of ^-ancestors of the

critical element (or attractor) erf1 of index kx.

Define the sets:

^={1,2,..^}

cMcioi..,oft} , keN

vV^={^\a£\.,a &} , kxJc2eN , k2>kx , G-'ec*1
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c* is the set ofcritical elements of bof index k while v,-' counts the ^-ancestors of ov Finally, vy is

the set of all ancestors of oy'. Note that

w S

^=0 p=1

Since an orbit diagram, considered as a set with the order relation < is not even a partially-

ordered set, we shall need to proceed inductively. This will require examining generalized orbit

diagrams, where the nodes are not single attracting sets or critical elements but groups of them. The

price we pay in added complexity of the relevant statements is offset by the sharpness of the results.

To see this we first remark that a given global Lyapunov function orders all members of

QtfO^atfM^):

Remark:

Suppose a global Lyapunov function V is given for the vector field be D(R"). Then the members

of Q(6) (attracting sets and critical elements) and hence the sets c* and v(a) for all GeQ(p) are

ordered in a unique way by the Lyapunov function: given any two a,-, Gje£l(b), Gt<(<)Gj if and

onlyifV(Gd<<)V(Gj).

We now arrive at the general scheme by giving a number of steps that will lead to the desired

classification theorems.

Step 1: Identify clusters {C,}t- of nodes. These are subsets such that if c?eC, of index k, then there is a

path down from g to K, different from itself, passing nodes of the same cluster and each C, is con

nected as a graph.

Step 2: For each attractor, look at the set v(K) , KeA(b). Discard any node o* that is such that there is

a chain of nodes (other than itself) joining a to K. (This is because a Lyapunov function strictiy

increases as we move up a branch of the orbitdiagram; e.g. in Fig.6 we cannot ever have K(a1)>Vr(o2).)



-29-

Step 3: Call the nodes in v(K) remaining after the discarding process in each cluster a proper-ancestor

set (p.a. set). Fix orderings on the proper-ancestor sets of all attractors that is consistent. This means

that if Cx and C2 are proper-ancestor sets of two attractors such that Cxr\C2 * 0, then the intersection

the two orderings coincide.

Step 4: After discarding elements of each cluster and ordering select the first node for each p.a. set of

each attractor. This is the first saddle critical element to be swept by Lyapunov surfaces starting from

each Rg. For every attractor look at all attractors that adjoin it by these selected saddle elements.

Order the attractors by looking at the order of the selected first elements (there may be more than one

first attractors). We have the Lemma:

Lemma:

Consider the set K^^xjK^W^g^g composed of a saddle critical element that is ordered first

according to steps 1-4 above, its unstable manifold and attractors that are connected to G in the

orbit diagram. Then Kc is an attracting set (with boundary) and hence has Lyapunov functions

defined in its region of attraction.

The proof follows from the results on the propagation of Lyapunov surfaces past saddles. It consists of

patching together the neighborhoods that yield a complete Lyapunov surface (see proof of existence

theorem) except the ones that intersect W"(g) with a local Lyapunov surface N(Wu(g))-Wu(g).

Step 5: Consider the sets Ka (by convention, K& means that attractor K was not ordered first in step 4.

There is a generalized orbit diagram associated with this new set of attractors. Its nodes are the sets Ka

and the remaining critical elements and the branches are formed in the obvious way: connect node a,- to

node Gj if there was at least one arrow connecting them in the original orbit diagram.

Step 6: Repeat steps 1-4 for the new diagram.

Step 7: Apply step 5 again and continue with step 6 until all critical elements are taken care of.

Example: In Fig.*7 we give the steps of this procedure until we exhaust the critical elements of b.
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The previous discussion has proved the two fundamental theorems on the. classification of global

Lyapunov functions:

Theorem 5:

Fix an ordering of the proper-ancestor sets.

Then any two global Lyapunov functions with the same ordering yield the same qualitative

behavior of exit paths, i.e. exit from each attractror goes through the same sequence of saddle

critical elements for both Lyapunovfunctions.

Conversely, there exists a global Lyapunov function such that the ordering it induces on the

proper-ancestor sets according to its value on the elements ofQ(b) coincides with the given one.
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23. Conclusions

We have derived a global existence theory of Lyapunov functions and we have been able to clas

sify all Lyapunov functions for a class of dissipative dynamics which is quite general.

The information that is contained in this classification is substantial. It gives not only qualitative

results on stability problems, but also leads to quantitative results once the geometric insight contained

in this complete description is put to work in solving nonlinear optimal control problems (see

Kappos,Sastry [9]).
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FIGURE CAPTIONS

Fig.1.1: Phase-space flows and orbit diagrams for two examples of dissipative dynamics in the plane.

Fig.2.1: Mapping a neighborhood of x on Q by the projection n and on Rn by the flow-box

diffeomorphism y.

Fig.2.2: Flow near a saddle equilibrium: W*(g) and W*(a) are the stable and unstable manifolds, Su and

S* are Lyapunov surfaces on them and the flow maps the punctured neighborhood of Su to the punctured

neighborhood of Ss.

Fig.2.3: Flow near a saddle limit cycle: on the Poincare surface I, a point close to the unstable mani

fold W"(g) is mapped to a point close to the stable manifold W*(a).k

Fig.2.4: Propagation of a complete Lyapunov surface past a saddle: the Lyapunov surface is no longer

complete: it misses the unstable manifold of g.

Fig.2.5: A two-dimensional example of a vector field of class D(R") that has two different Lyapunov

functions: (a) gives the phase-portrait (b) the orbitdiagram and (c) and (d) the two Lyapunov functions

(by showing some of their Lyapunov surfaces).

Fig.2.6: Part of an orbit diagram that shows that if Gx is at a higher index level than g2, then V(Gi)

must be greater than V(Gi).

Fig.2.7: Demonstration of the selection procedure among proper ancestor sets and the iterative collaps

ing of orbit diagrams: here we ordered g2 before G\ and we obtained the Lyapunov function of

Fig.2.5(c).
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