

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN ATTACHED PROCESSOR FOR MOS-TRANSISTOR MODEL

EVALUATION

by

Ronald Steven Gyurcsik

Memorandum No. UCB/ERL M86/82

15 October 1986

AN ATTACHED PROCESSOR FOR MOS-TRANSISTOR MODEL EVALUATE

by

Ronald Steven Gyurcsik

Memorandum No. UCB/ERL M86/82

15 October 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN ATTACHED PROCESSOR FOR MOS-TRANSISTOR MODEL EVALUATION

by

Ronald Steven Gyurcsik

Memorandum No. UCB/ERL M86/82

15 October 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN ATTACHED PROCESSOR FOR MOS-TRANSISTOR MODEL EVALUATION

Ronald Steven Gyurcsik

Ph.D. Department of Electrical Engineering
and Computer Sciences

Sponsor: Hewlett-Packard Signature
D. O. Pederson

Committee Chairman

ABSTRACT

The design and implementation of an attached processor for MOS-transistor model

evaluation is presented. The computational time used in evaluating the MOS-transistor

model is a significant amount of the total circuit-simulation time of MOS integrated cir

cuits. A reduction in the total simulation time is achieved by accelerating the MOS-model

evaluation with the attached processor. The attached processor is suitable for use with

electrical circuit-simulation programs, and a prototype has been constructed and inter

faced to an IBM PC-XT computer running the BIASC circuit-simulation program.

The software interaction between the circuit-simulation program and the attached

processor and the hardware interaction between the computer-system architecture and

the attached processor have both been considered. The attached processor and the host

computer work in' parallel. The transistor model data is stored in memory local to the

attached processor to reduce the communication overhead between the host and attached

processor.

Different types of MOS-transistor models have been studied, and an empirical

model based on piecewise-cubic polynomials has been developed for use with the

attached processor. The model evaluation requires only floating-point addition, subtrac

tion, and multiplication operations and is performed without conditional branching.

An architecture has been developed which exploits the properties of the empirical

model. The architecture supports the concurrent evaluation of several transistors and can

be expanded to reduce the effective evaluation time.

A prototype attached processor has been developed for the IBM PC-XT. The proto

type is a board-level design and is comprised of 101 standard parts assembled on two

circuit boards. An order of magnitude decrease in the evaluation time of the MOS-

transistor equations, and amaximum of a30% reduction in circuit-simulation time have

been achieved.

TABLE OF CONTENTS

CHAPTER 1: Introduction and an Overview of Circuit Simulation 1

1.1 Dissertation Outline ~ ~ 2

1.2 Description ofCircuit Simulation - - 2

1.3 MOS-Transistor Representation for Circuit Simulation 5

1.3.1 Physical Description of the MOS Transistor ~ 5

1.3.2 First-Order Device Characteristics ~ 6

1.3.3 Companion Model of the MOS Transistor - 12

1.3.4 MOS-Transistor Evaluation Routine - - - 15

CHAPTER 2: System Overview of the MOS-Model Attached Processor 17

2.1 General Overview of Special-Purpose Attached Processors 17

2.1.1 Definitions ~ - — 18

2.1.2 Concurrent Operation of the Host and Attached Processor 19

2.2 MMAP System Performance 20

2.2.1 MMAP Function and Organization « 20

2.2.2 Function-Usage Percentage of the MMAP ~ ~ 23

2.2.3 Attached-Processor Efficiency Percentage of the MMAP 26

2.2.4 Improvement Percentage Due to the MMAP ~ 27

2.3 Using the MMAP in Conjunction with aCircuit-Simulation Program 28

2.3.1 Interaction Between the Hostand MMAP 28

2.3.2 Accessing the MMAP from a Model-Evaluation Routine 32

2.4 Chapter Summary ~ JO

CHAPTER 3: MOS-Transistor Model Representations 39

11

3.1 Criteria Used in Choosing aTransistor-Model Representation ~ 39

3.1.1 Accurate Modeling ofCurrent and Conductances 40

3.1.2 Meet the Requirements of the Circuit-Simulation Program 41

3.1.3 Efficiently Realized in a Hardware Architecture 41

3.1.4 Unaffected by Changes in MOS-Transistor Process Technology 42

3.2 Types of MOS-Transistor Models - 42

3.2.1 Analytic MOS-Transistor Models ~ 42

3.2.2 Empirical MOS-Transistor Models ~ 45

3.2.3 Comparison Between Analytic and Empirical Models 46

3.2.3.1 Accuracy. Speed and Storage - ~ 47

3.2.3.2 Dependence on Process Technology - ,«• 48

3.2.3.3 Minimizing the Number of Functions and Control Branches 48

3.3 Model Choice - 48

CHAPTER 4: Empirical MOS-Transistor Model Based on Piecewise-Cubic

Polynomials - - ~ • 50

4.1 First-Order MOS-Transistor Dependences - 50

4.1.1 The Dependence of 1<js on Vsb — 51

4.1.2 The Dependence of Ids on Vds and Vgs — 51

4.1.3 First-Order Behavior of Gds and Ggs r 54

4.2 Description of the Empirical Model — — 5$

4.2.1 Overview of the Empirical Model — ^

4.2.2 Piecewise-Cubic Polynomial Equations ~ - ~ 56

4.2.3 Family of Piecewise-Cubic Polynomial Equations 62

4.2.4 Linear Interpolation - ~ — 65

Ill

4.2J Cubic Interpolation - ~ - °9

4.2.6 Modeling the Source-to-Bulk Voltage Dependence ... 74

4.3 Empirical Model - Practical Considerations ~ 7o

4.3.1 P-Channel Transistors - ~ 77

4.3.2 Scaling of Transistor Dimensions 77

4.3.3 Out-of-Range Evaluation 7S

70
4.3.4 Numerical Precision - '7

4.3.5 Data Storage 81

83
4.4 Examples - - - -

4.4.1 Example 1: Data Generated from the Shichman-Hodges Model 83

4.4.2 Example 2: Data Generated from the SPICE Level-2 Model 84

4.4.3 Example 3: Data Generated from Device Measurement 85

4.5 Chapter Summary - - •

CHAPTER 5: Architecture of the MOS-Model Attached Processor 97

5.1 Components of the MMAP Architecture 9S

99
5.1.1 Processor ~

5.1.2 Controller ~ 101

1035.1.3 Interface • ~ iVJ

5.2 Single Transistor-Model Calculation: An Example 104
1065.3 Storage of Transistor-Model Data - 1W

5.4 Pipelined Operation of the MMAP - - 10S
1 AC

5.4.1 Pipelined Floating-Point Unit ~ -

5.4.2 Pipelined Transistor Evaluation ~ 110

5.5 Parallel MPUs 115

IV

5.6 Multiple MMAPs •• — 116
1185.7 Chapter Summary -

CHAPTER 6: Prototype Implementation of the MMAP on the IBM PC-

XT Personal Computer - - • U9

6.1 IBM PC-XT Personal Computer 121

6.2 Design of the Prototype MMAP •• 121

6.2.1 Design Overview 122

6.2.2 Controller ~ 128

6.2.3 Floating-Point Unit 133

6.2.4 Coefficient Cache 136

6.2.5 Coefficient Memory ~ - - - 139

6.2.6 MMAP Clocking 146

6.3 Organization and Access of Data in the Coefficient Memory 147

6.3.1 The Storage and Access of Model Dau Within the Coefficient

Memory - *47

6.3.2 Generation of the Voltage-Dependent Pointers 152

6.3.2.1 Background ~ - - 152

6.3.2.1 Overview of Two-Step Procedure - ~ 153

6.3.2.1 Allowed Measured Voltages ~ 154

6.3.3 Coefficient-Memory Address *58

6.4 MMAP Operation ~ 165

6.5 Microprogramming the Prototype MMAP ~ ~ 1°9

6.5.1 Overview lo9

6.5J2 Description - - - 169

6.6 Performance of the MMAP 175

6.6.1 Microprogram Execution - - *75

6.6.2 Transistor-Evaluation Time - - - - *77

6.6.3 Efficiency of the MMAP Architecture ~ 179

6.7 BIASC Circuit-Simulation Program W/MMAP ~ *81

6.7.1 Model-Evaluation Routine - 181

6.7.2 Attached-Processor Efficiency of thePrototype MMAP 182

6.7.3 Circuit-Simulation Examples - *83

6.8 Chapter Summary - - - 189

CHAPTER 7: Conclusions and FurtherWork 191

APPENDIX A: BIASC A Circuit-Simulation Program for the IBM PC A.l

APPENDIX B: Example Circuit Listings - - - B-1

APPENDIX G Analytic Transistor Models - - - Cl

APPENDIX D: Enhanced Monotonic Piecewise-Cubic Interpolation of 1

Independent Variable ~ - D-*

APPENDIX E: POLYJ40S Source Listing - - - - E1

APPENDIX F: Example Device Data • - - - F1

APPENDIX G: Schematics and Parts Listing of the Prototype MMAP G.l

APPENDIX H: MOS-Model Evaluation Routine - H-1

REFERENCES R1

VI

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Professor D. 0. Pederson for his leadership

and encouragement.

I gratefully acknowledge the Hewlett-Packard Corporation for their generous fund

ing of the research presented in this dissertation. In particular. I wish to acknowledge

Dr. W. McCalla of Hewlett-Packard for his continued interest and support.

The numerous discussions with Jeff Burns which assisted in the formulation of the

empirical model is gratefully acknowledged. I wish to thank Kris Pister for wire-

wrapping the prototype and writing support programs. The assistance I received from

Ferenc Kovac. Joao Wentzcovich and Alex Para of the Elelctronics Shop is gratefully ack

nowledged. I am also very grateful.to Alain Hanover of Viewlogic Systems. Inc. for pro

viding schematic-capture and simulation software.

I wish to thank Karti Mayaram and Jeff Burns for their critique of numerous drafts

of this dissertation, and I wish to thank Karti Mayaram and Theo Kelessoglou for their

assistance in the preparation of figures for this dissertation. I would also like to thank

Jeff Burns. Karti Mayaram. Mark Hofmann. Rick Spickelmeir. Tom Quarles. Theo Keles

soglou. Fabio Romeo. Giorgio Casinovi. Peter Moore. George Jacob. Dave Burnett. Kris

Pister. Mike Klein. Ken Kundert. Tom Laideg. Dierdre Ryan. Chris Marino. Jacob White.

Wayne Christopher and Res Saleh for being great people to work with. I wish to also

thank Professors D. A. Hodges. A. Sangiovanni-Vincentelli and A. R. Newton for their

assistance throughout my time at Berkeley.

I wish to thank my parents. Sarah and Steve Gyurcsik. for instilling in me the

importance of education and for theircontinued assistance throughout my education.

Most of all. I wish to thank Peggy Sue Gyurcsik. my wife, for all the love and sup

port she has given me and all the sacrifices she has made for me.

CHAPTER 1

Introduction and an Overview of Circuit Simulation

Electrical circuit simulation is an integral component of the integrated circuit design

process, where it is used to verify both the function and performance of the integrated

circuit. Electrical circuit simulation is computationally expensive, requiring the numeri

cal solution of the nonlinear differential-algebraic equations(DAEs) modeling the

integrated circuit. Increasing size and complexity of integrated circuits have resulted in a

superlinear increase in the computation time required for their simulation.

The set of nonlinear DAEs can be solved using either direct[Nag75] or

relaxation[New78] methods. Both methods use a numerical integration method to reduce

the set of nonlinear DAEs to a set of nonlinear algebraic equations. The solution of the

nonlinear algebraic equations requires the evaluation of the nonlinear transistor model

equations. Alarge percentage of the computation time used in simulating integrated cir
cuits is spent in the evaluation of the transistor model equations. A reduction in the

time required for transistor model evaluation results in adecrease in computation time

for both direct-based and relaxation-based simulation methods.

A MOS-Model Attached Processor(MMAP). a special-purpose attached processor

that evaluates the DC-MOS transistor equations for use in electrical circuit simulation, is

presented in this dissertation. The motivation for developing the attached processor is to
accelerate the calculation of the MOS transistor equations in order to reduce the overall

time for electrical simulation. Included in the dissertation are descriptions of the inter

face between a simulation program and the MMAP. the DC MOS transistor model

representation, the MMAP architecture and aprototype MMAP design.

1.1. Dissertation Outline

The remainder of this chapter provides an overview of electrical circuit simulation

and the MOS transistor. A qualitative description of the basic structure and electrical

behavior of the MOS transistor are given. The companion model of the MOS transistor is

then described. Finally, the MOS transistor-evaluation routine of a circuit-simulation

program is described.

Chapter 2 describes the computer system interface to the MMAP and the circuit-

simulation program interface to the MMAP. Chapter 3 provides an overview of MOS-

transistor model representations and the relationship between the MMAP architecture

and the transistor model. A new empirical transistor model representation developed for

use in the MMAP is presented in Chapter 4. Chapter 5 provides an overview of the

MMAP's architecture. This includes descriptions of the organization, the storage and

accessing of the model data by the attached processor, and of enhancements made to the

architecture to improve performance. A board-level prototype MMAP is described in

Chapter 6. The prototype MMAP has been designed and built for use with the IBM PC-

XT personal computer. The prototype MMAP's performance, and the performance of the

BIASC1 [Gyu85] circuit simulation program running on the IBM PC-XT with and

without the prototype MMAP. are given.

1.2. Description of Circuit Simulation

In the electrical simulation of MOS integrated circuits, both direct and relaxation

methods require the evaluation of the MOS transistor's device equations. To illustrate the

requirement for transistor model evaluation in electrical circuit simulation, the time-

domain transient simulation of a circuit containing nonlinear devices is described.

Circuit-simulation programs first assemble the nonlinear DAEs representing the

1BIASC - A description of the BIASC electrical circuit-simulation program, including the source-code list
ing, is given in Appendix A.

integrated circuit. The circuit equations are of the form

fi(x1.x2.---xN.x*1.x'2.---xN.t) = 0. i=l N. (l.D

where the x, are the independent variables, the x, are the time derivatives of the indepen

dent variables, and t is the time. The independent variables are the node voltages and

branch currents of the circuit.

A method for solving the nonlinear DAEs is given in Figure 1.1. The nonlinear

DAEs are first discretized in time. A numerical integration formula is used to represent a

variable's time derivative as an algebraic function of that variable and its past time

derivatives. For the specific value of time, the nonlinear DAEs are thus reduced to asys

tem of nonlinear equations. This system of equations.

tfxiJfc. •• •*n) =<>. i=1 N- (1*2)

is a function of only the independent variables. The system of nonlinear equations is

generally solved using the Newton-Raphson iterative method(NR) [DaB74] [Nag75].

The NR requires the semiconductor device equations to be linearized about an

operating point. In general, the terminal currents of an integrated-circuit device are
modeled by nonlinear functions of the device's terminal voltages. The terminal currents

and the derivatives of the terminal currents with respect the terminal voltages are used

in the linearization. The device's linear companion model[ChL75] is formed from the

currents and derivatives. As a result, the system of nonlinear circuit equations is

reduced to a systemof linear equations of the form

Ax = b.

which are then solved for x. The steps of linearizing the device equations followed by

solving the linear circuit equations are repeated until the system of nonlinear equations

converges to a solution.

Once the system of equations is solved for the specific time, the time is incremented.

The differential equations are then discretized at the new time, and the nonlinear equa-

NO

Initial Trial
Operating Point

Dlscretize Differential
Equations in Time

i
Linear ize Semiconductor

Devices About Trial Operating Point

i
Load Linear Conductances

in Circuit Matrix

I
Solve Circuit Equations

i
Convergence Obtained \, NO

(Solution approx. Previous) ?

i
Increment Time

i
End of Time Interval

i
STOP

Transient Simulation
Figure 1.1

tion solution process is repeated.

Define New Trial
Operating Point

13. MOS-Transistor Representation for Circuit Simulation

A brief description of the physical characteristics of the. MOS transistor is first

given in this section. A first-order description of the current-voltage operation of the

MOS transistor is then given. Finally, the MOS transistor's companion model is

described.

1.3.1. Physical Description of the MOS Transistor

The basic structure of an N-channel enhancement-type2 MOS transistor is given in

Figure 1.2. The MOS transistor is a four terminal device. The device is built on a p-type

substrate which is the bulk terminal of the device. Two n+ diffusions3 form the drain

and source terminals of the device. The area between the source and drain diffusions is

covered by a thin insulator, which is referred to as the gate oxide. A contact on the gate

source gate
drain

/ S\if\\ ^j/

•:•'' hE&Mh

V -)
channel —

pbulk
* L * //*

MOS Transistor Diagram
Figure 1.2

^N-chtnnel depletion type and P-channel devices are discussed later.
'Can be formed by either ion-implantation or diffusion.

oxide forms the gate terminal of the device.

In normal operation the source-to-bulk and drain-to-bulk junctions are reverse

biased, negligible DC current flows from either the source or drain terminal to the bulk

terminal, and the bias between the drain and source terminal is nonnegative. Also, since

the gate contact is separated from the other terminals by an insulating material, no DC

current flows through the gate terminal.

A bias applied to the gate terminal is used to control the flow of current between

the source and drain terminals. When there is zero bias applied to the gate terminal rela

tive to the source terminal, no current(neglecting leakage through the reverse-biased p-n

junction) flows through either the source or drain terminals. By applying a sufficiently

large positive bias to the gate, achannel is formed at the surface below the gale insulator.

This channel provides for the conduction of current between the drain and source termi

nals. Positive current flows from the drain to the source if the bias between the drain

and source is positive, and positive current flows from the source to the drain if the bias

between the drain and source is negative.

The above discussion can be extended to the p-channel MOS transistor by exchang

ing the p material with n material and by reversing the polarity of the voltages and

currents. The n-channel depletion-type device differs from the enhancement-type device

in that the channel exists with zero bias applied to the gate. For nonnegative gate bias

the depletion-type device can always conduct current between its drain and source termi

nals. A sufficiently large negative voltage must be applied to the gate to remove the

channel.

13.2. First-Order Device Characteristics

A qualitative discussion of the MOS device operation is illustrated by using the

Shichman-Hodges(SH) analytic model of the MOS transistor. The description is of a n-

channel enhancement-type device, but can be applied to n-channel depletion and p-

channel devices. Throughout this discussion, the drain-to-source voltage is always non-

negative, and the source-to-bulk and drain-to-bulk pn junctions are reversed biased. The

leakage current in the reverse-biased junctions are small and are neglected in this discus

sion. The symbol of the n-channel enhancement-type MOS transistor is given in Figure

1.3.

Gate

\
Vgs

Drain

Vsb

Source

MOS Transistor Symbol
Figure 1.3

Vds

The operation of a four-terminal device can be represented as a function of three

independent differential-terminal voluges. The MOS transistor, in general, is represented

as a function of its drain-to-sourceCVa,). gate-to-sourceCVp) and source-to-bulk(V$b)

differentialrterminal voluges. Since no DC current flows into the gate terminal and the

leakage current from the reverse-biased junctions are neglected, only the current flowing

from the drain terminal to the source terminal, drain-to-source currentClds). is con

sidered. Ids. where

(1.4)
ld,= f(vds.vgs.vsb).

is afunction of the Vds. Vgs and Vsb voltages. |
The SH model equations of Ids are [ShH68]

lds= 0. forVgs < Vx.

MnQx W (y _v)2 (1 +xVds) .
*ds 2 L *

forVgs > Vt and Vd, > Vgs -V,

(1.5)

(1.6)

u-m.q.^cv.-v.-^o +xv,.). ^
for Vp > V, and V* < Vp -V,.

As shown in Figure 1.3. V*. V,, and Vrt are the differential terminal voltages of the dev
ice. ^ is the mobility of electronsCholes for channel) in the channel. C„ is the capaci
tance per unit area of the gate ozide. Xis the channel-length modulation parameter. V, is
the Threshold Voltage, and Wand Lare the channel dimensions as depicted in Figure
1.2. An example of the I* characteristics is shown in Figure 1.4.

Yds « Vgs - Vt

Saturation

Example Ids Characteristics
Figure 1.4

t
Increasing
Vgs

Vds

As mentioned in the previous section, a channel is formed between the MOS

transistor's drain and source when a sufficiently large positive voluge is applied to the

gate terminal with respect to the source terminal. Provided the Vds is positive, apositive

1^will A°w from lhe drain terminal to the source terminal. The V^ at which the chan

nel is formed is referred to as the Threshold Voluge. V». When Vp < Vt no channel is

formed and the Ids current is [MuK77]

1*= 0. forVp < Vt. ^-8)

A transistor operating under these bias conditions is referred to as cut-off.

The value of Vt is dependent on the Vsb. The more negative the bulk voluge iswith

respect to the source voluge. the greater the V|S voluge that must be applied to form the

channel. This isreferred to as the body effect. The Vt is [MuK77]

10

Vt = Vl0 +v(Vvsb +2l^l -V2I(^I). CI.9)

V,o is the Threshold Voltage at Vsb =0. ^ is the Fermi potential and 214\>' is the sur

face potential of the neutral bulk material, y is the bulk threshold parameter.

When the Vgs is greater than the Vt. and Vds is small, the channel extends from the

source to the drain as shown in Figure 1.5. The structure formed by the channel, drain

and source is similar to a voluge-dependent resistor, and the behavior of the Ids on the

Vds is similar to that of anonlinear resistor. The Ids is given by [MuK77]

Ids =*> Cox-£- Vds (V^ -V, --£) .

This is referred to as the ohmic or linear region of transistor operation.

Gate

Drain

MOS Transistor in the Ohmic Region
Figure 1.5

(1.10)

The channel will extend from the source to the drain until the V^ exceeds V,, -Vt.

as shown in Figure 1.6. V|8-Vt is referred to as the drain-to-source saturation

volugeCVd» at), and it is the voluge at which the onset of saturation occurs. The device

is operating in saturation region of operation when the Vds is greater than theVds sit- The

Ids of the transistor in saturation is [MuK77]

Ids = —2 L" gs '

Gate

Source Drain

MOS Transistor at the Onset of Saturation

Gate

Drain

MOS Transistor in the Saturation Region
Figure 1.6

11

(1.11)

The 1^ modeled by Equation (1.10) is independent of V*. In general. MOS transis

tors demonstrate aslight dependence on Vds when the device is in saturation. To model

the linear dependence on V*. Equation (1.10) is changed to [MuK77]

u = "if™ ™(V. -vt)2 (1 +XVd,).ids—2—T 8*

To mainuin continuous current and partial derivatives. Equation (1.9) is changed to

(1.12)

12

i r Wv rv -V -Vd5HUXVJ (1-13)Ids = Mn Cox— Vds (V?s -Vt --j-) U + A\ dsJ-

133. Companion Model of the MOS Transistor

The companion model of the MOS transistor is described in this section. A compan

ion model is a linear represenution of the nonlinear device about a given bias point. The

companion model used with the NR method is derived from the first two terms in the

Taylor series expansion [DaB74] of the device equation about the bias point.

The MOS transistor Ids equation is of the form

Ids= f(Vds.Vgs.Vsb). (114)

The bias-point voluges are V^o. Vg$o and V$b0. The truncated Taylor series about the

bias point is

1^=1,+ |^(Vds-V^) +̂ (V„ -VgsQ) +|^(V$b -VsbQ). (1.15)

where I0 is the current at the bias point and £X. ^-. and ^X are the partial deriva

tives of f with respect to V^. Vgs and V^ evaluated at the bias point. The I^ is thus

represented as a linear function of V*. Vp. and Vsb. The consunt and linear terms in

Equation (1.15) are grouped, and Equation (1.15) is rewritten as

•*=Jfev*+lkv*+lfev»+I- (116)
where Ieq is the consunt term.

Neglecting any drain-to-bulk and source-to-bulk reverse-biased junction current.

Equation (1.15) defines the MOS transistor's DC companion model. The linear model is

illustrated in Figure 1.7. The partial-derivative terms have the dimensions of conduc-

unce (ft""1), and their common symbols and names aregiven in Table 1.1.

Gate

vgs

Vsb

Bulk

Drain

©~0
GsbVsb

Vds

Source

MOS Transistor Companion Model
Figure 1.7

Partial Derivative Symbol Name

dlds

dVds

aids

avP

aid,
dv*

Gds

Gsb

Output Conductance

Gate-to-Source

Transcond ucUnce

Source-to-Bulk

Transconducunce

Table 1.1

13

The components of the companion model are entered into the circuit matrix,

matrices A and b in Equation (1.3). representing the linearized circuit. The matrix loca

tions are specified by the circuit template of the transistor. The template of the MOS

14

transistor used with a nodal-based circuit matrix is given in Figure 1.8. In reference to

Equation (1.3). A is the Nodal-Admittance Matrix and b is the Right-Hand-Side Vector.

Each row represents a circuit equation, and each column specifies the terminal voltage at

that node. For example, the first row in the Nodal-Admittance Matrix template and the

Right-Hand-Side Vector template specify the drain current calculated from the compan

ion model.

Id = Gds Vd +G« Vg -(Gds +Gg$ -Gsb) Vs -Gsb Vb +IE0. (1-17)

Drain

Gate

Source

Bulk

Drain Gate Source Bulk

Gds Gp -Gds ~Ggs + Gsb —Gsb

-Gds -Ggs Gds + G8S-Gsb Gsb

Nodal-Admitunce Matrix Template

Drain

Gate

Source

Bulk

-IE0

lEQ

Right-Hand-Side Vector Template

MOS Matrix Template
Figure 1.8

15

1.3.4. MOS-Transistor Evaluation Routine

A qualiutive description of the model-evaluation routine of the MOS transistor is

presented in this section. In Figure 1.1. the simulation steps represented by the boxes

"Linearize Semiconductor Devices About Trial Operating Point" and "Load Linear Con-

ducunces in Circuit Matrix" are performed by the model-evaluation routines.

For the model-evaluation routine of the MOS transistor, the following procedure is

followed in the evaluation of each transistor.

(1) Limit Terminal Voluges

(2) Calculate the Terms of the MOS Companion Model

(3) Load Companion Model

(4) Check For Device Current Convergence

The differential terminal voluges. V^. V^ and Vsb. are calculated from the terminal

voluges. Once calculated, the terminal voluges are then limited. The differential termi

nal voluges of all nonlinear devices are limited to aid in the convergence of the

Newton-Raphson algorithm and the prevention of numerical overflow4. .

The terms of the companion model are then calculated. As described earlier, the ele

ments of the MOS transistor's companion model are determined from the values of Ids.

Gds. Gg, and G$b. The transistor model represents the current and conducunces as func

tions of the Vds. Vp and Vsb voluges. namely

Ids= IdsCVds.Vp.V*). (LIS)

• Gd,= GdsCVds.Vp.V,,). (1.19)

Gp= GpOVds.Vp.V*). (120)

G,b=Gsb(Vd,.VfS.Vsb). (1-21)

The equations representing the current and partial derivatives are evaluated at the given

Numerical overflow is of greatest concern with bipolar transistors and pn junction diodes because of the
exponential behavior of their current on terminal voltage.

16

voltage values. The companion-model entries are then added into the circuit matrix at

the positions specified by the device's template.

As shown in Figure 1.1. the results of the "Solve Circuit Equations" step are tested

for convergence. If the convergence test fails, the NR process is continued, but if the

convergence test passes, the solution of the DAEs continues for next time point. Gen

erally, the solution of the circuit equations provide node voluges and branch currents of

voluge sources. As given by [Nag75], the current of every nonlinear device must also be

checked for convergence. For the MOS transistor, the accuracy of the Ids is checked in the

model-evaluation routine.

CHAPTER 2

System Overview of the MOS-Model Attached Processor

17

The use of the special-purpose MMAP from the computer-system perspective is

presented in this chapter. The MMAP is shown to be a logical partition from both the

circuit-simulation and computer-architecture perspective, performing extensive compuu-

tion with minimal transfer of dau. First, a general overview of atUched processors is

given. The general overview presents three criteria which must be considered when

developing a special-purpose atUched processor. Next, adeuiled description of the func

tion of the MMAP isgiven, and the three criteria are applied specifically to the MMAP to

demonstrate its validity. Finally, the interaction between the circuit simulation program

and the MMAP is described.

2.1. General Overview of Special-Purpose Attached Processors

A special-purpose atUched processor operating in conjunction with a host processor

is used to improve the speed performance of programs. The atUched processor performs a

small set of functions at a greater speed than the more, general host. A floating-point

coprocessor is one such example. The floating-point coprocessor performs floating-point

operations much faster than they can be done in software by the host processor. In gen

eral, the use of an atuched processor to increase the speed performance of a function(s)

is justified when the following three criteria aremet.

(1) The function(s) performed by the atuched processor comprise a significant per-

cenuge of the overall time of an application program(s) running on the host.

(2) The function to be performed by the atuched processor is a logical "break-off"

point. The overhead required by the host for dau preparation and

18

communication with the attached processor does not negate the speed advantage

of the atuched processor.

(3) The time required to execute the function by the atuched processor is

significantly faster than execution of the function by the host alone.

2.1.1. Definitions

Three definitions. Function-Usage Percentage(FP). Improvement PercenUge(IP) and

Attached-Processor Efficiency(AE). are given in this section. These definitions are used to

characterize the performance of an atuched processor and are related to the above-

mentioned three criteria.

Function-Usage Percentage

The FP is the percenuge of toul time that is used in performing a function.

FP = Tjunction X100 % (2.1)
Ttotal

The larger the FP. the more valid the reason to develop special hardware to perform that

function.

Attached-Processor Efficiency

For a host using an atuched processor, the time required to perform the application

program(s) is the sum of the time required by the host working independently of the

atuched processor, the time required for the atuched processor to work in conjunction

with the host, and the time required by the attached processor working independent of

the host.

Ttotal = Tfcojt + Tattmched processor + Tbeft -stitched processor \&.l)

The effective time to perform the function by the atuched processor is equal to the time

of the attached processor working independently plus the time required by the host to

19

communicate with the atuched processor. The AE is the percenuge of the effective func

tion evaluation time (function evaluation as viewed by the host) that is required by the

atuched processor to perform the function.

AE - Tamcbcd processor x 1QQ % (2 3)
Touched processor "*" 1host —attached processor

The larger the AE. the greater the amount of work that is actually being done by the

atuched processor relative to the communication time between the host and atuched

processor.

Improvement Percentage

The IP is the percenuge of time that is saved in the execution of application

program(s) by using an atuched processor.

_ Ttotal ~~ Ttotal w/ attached processor -qq ^ (2.4)
* total

In the limiting case the function evaluation by the atuched processor becomes

insignificant compared to the evaluation of that function by the host. The difference

between the toul times with and without the atuched processor is then equal to the

time required by the host to evaluate the function. Thus, the maximum IP approaches

the FP.

Maximum Improvement = —= X 100 % (2.5)
1 total

2.1.2. Concurrent Operation of the Host and Attached Processor

The host and atuched processor can both be used concurrently, provided a problem

can be partitioned properly. The toul time is the sum of the host-dependent times, as the

atuched processor will beoperating concurrently with the host processor.

Ttotal = Tbost ^" Tboft —attached processor

20

The time required for the interaction of the host and attached processor is primarily due

to communication between the host and atuched processor. Thus minimizing the

amount of data transferred, and thus the communication time, minimizes the amount of

toul time.

2.2. MMAP System Performance

The use of a MMAP is justified only if it meets the three criteria stated in Section

2.1. In this section, the suiubility of using an attached processor for model evaluation is

presented, on the basis of the definitions given in section 2.1.

2.2.1. MMAP Function and Organization

The terminal voluges. transistor dimensions, and model dau are required for MOS

transistor model evaluation. As shown in Figure 2.1. the evaluation of the model equa

tions provides the transistors current and partial derivatives with respect to the termi

nal voluges.

Terminal

Voltages

Transistor

Dimensions

Current

and

Conductances

Model Evaluation

Figure 2.1

21

In an electrical circuit simulation program, the transistor evaluation is preformed by a

software subroutine. The MMAP replaces the software transistor-evaluation subroutine

and is specifically designed to perform the transistor evaluation. The MMAP isa"slave"

to the host computer it is connected to. The transistor's terminal voluges. dimensions

and model dau are input to the MMAP by the host: the model equations are evaluated

by the MMAP and the results are then returned to the host as shown in Figure 2.2.

y Terminal Voltages
Device Geometry
Model Data

Current

Conductances

MMAP

Figure 2.2

22

From Host

To Host

A transistor's dimensions and model dau remain constant throughout the current

simulation, whereas the transistor's terminal voluges usually change with each iteration.

The model dau are the same for all transistors of the same type. The number of different

transistor models is dependent on the integrated-circuit process and is independent of the

number of transistors in the circuit being simulated. The transistor model data are stored

in the MMAP since they remain constant during the simulation. The transistor's dimen

sions remain consunt and thus they can also be stored in the MMAP. But. since the

geometric dau are unique for each transistor, storage of the geometric data in the MMAP

could become prohibitive for large circuits. As a result, only the model dau are stored

23

local to the MMAP. and a model reference pointer is used to associate a transistor with

the appropriate model dau. The model reference pointer provides the address of the

model data stored in the MMAP. As shown in Figure 2.3. the model reference pointer.

transistor dimensions and differential terminal voluges are sent to the MMAP.

« Terminal Voltages
Device Geometry
Model Pointer

From Host

MMAP

with

Model Data

i Current

Conductances

MMAP With Local Storageof Model Dau
Figure 2.3

To Host

2.2.2. Function-Usage Percentage of the MMAP

The FP. as defined in Section 2.1. is the percenuge of toul compuution time used in

performing a given function. The greater the percenuge is. the more valid the develop-

24

ment of special-purpose hardware to perform that function. In relation to MOS-

transistor evaluation in circuit simulation, the FP is.

Toul Time Used in Model Evaluation x 1Q0 %
" Toul Simulation Time

(2.7)

the percenuge of the toul simulation time that is spent evaluating the MOS transistor

equations. The percenuge is not aconstant, but will vary depending on the size of the

circuit, the size of the circuit relative to the number of MOS transistors, the complexity

of the MOS-model equations and circuit function.

The FPs for three MOS circuits1 are given in Table 2.1. The percenuges are calcu

lated from the time profile of the BIASC program performing the DC-transfer analysis of

three MOS example circuits. The BIASC program is used here since the prototype

MMAP. presented in Chapter 6. isused in conjunction with the BIASC program. The time

profile conuins the evaluation time for the MOS-transistors model equations, the linear-

equation solution time and the time required to perform additional operations (e.g.. con

vergence checking). Both the Shichman-Hodges(SH)[ShH68] and SPICE Level-2[V1L80]

transistor models2 are used in the simulations. The profile information is from the

BIASC program running on a VAX 11/785 with hardware floating-point under the

Berkeley Unix BSD 4.3 operating system.

25 Cascaded NMOS Inverters

27 Circuit Nodes and 50 MOS Transistors

MOS Model % Model Evaluation

Shichman-Hodges

Level 2

59

63

Table 2.1a

!The input listings for these circuits»xegiven in Appendix B.

*Both models are given in Appendix C.

% Matrix Solution

30

27

% other

11

10

25

Low-Power CMOS Operational Amplifier

24 Circuit Nodes and 30 M OS Transistors

MOS Model % Model Evaluation % Matrix Solution % other

Shichman-Hodges 39 39 22

Level 2 46 35 19

Table 2.1b

Worst-Case Path Through Op-Code PLA

65 Circuit Nodes and 116 MOS Transistors

MOS Model % Model Evaluation % Matrix Solution % other

Shichman-Hodges 39 38 23

Level 2 53 43 4

Table 2.1c

For the three circuits simulated, the average FP of SH model evaluation is 44%. and the

average FP of SPICE Level-2 model evaluation is 53%.

The matrix-solution time for the three circuits is also significant. Cohen[Coh8l] has

demonstrated that the use of a "Linear Equation Solution Machine"(LESM) greatly

reduces the matrix solution time. Cohens MOSAMP1 example circuit uses less than 5%

of the toul time for matrix solution, while 90% of the toul time is consumed by MOS

transistor model evaluation[Coh8l].

The percenuge of toul time for transistor model evaluation by relaxation-based

simulation programs is nearly independent of circuit size. [Sal84] contains the profile

information of the SPL1CE1.7 program electrically simulating a MOS digiul filter circuit

conuining 698 MOS transistors and 384 circuit nodes. The MOS transistor models used

are based on the SH model. The program used 37% of the compuution time for transis

tor model evaluation.

26

2.2.3. Attached-Processor Efficiency Percentage of the MMAP

The AE of the MMAP is the time required to perform the transistor model evalua

tion relative to the effective MOS transistor evaluation time, which includes the com

munication lime between the host and MMAP. In relation to the MMAP. Equation 2.3

can be rewritten as

MMAP AE = „t,<oc M^P Evaluation Time x 1<J0%_
MMAP Evaluation Time + Communication Time

The MMAP Evaluation Time is dependent on the number of floating-point operations

required, and the Communication Time is dependent on the number of floating-point

words transferred between the host and MMAP. The AE of an atuched processor per

forming floating-point operations, such as the MMAP. can be characterized by the ratio of

the number of floating-point operations performed to the toul number of floating-point

words transferred. This ratio is referred to as the Performance Ratio(PR). arid the PR

applied to the MMAP is

Performance Ratio = * Floating-Point Operations
Floating-Point words Transferred

The larger the PR. the higher the AE of the MMAP.

The PR of a floating-point atuched processor performing a single two-operand

floating-point operation is .*. since one floating-point operation is performed, two

operands are required and one floating-point result is returned.

The PR of the MMAP is dependent on the MOS transistor model used by the

MMAP. As listed in Table 2.1. a toul of 9 floating-point numbers plus the model-

reference pointer are transferred for each transistor evaluation.

Model Model Reference Pointer

Geometry Width

Length

Terminal

Voltages
Vds

Returned

Results

Ids
Gds

Gsh

27

Table 2.1

If the commonly used SH model is used in the MMAP. the number of floating-point

operations and PR is given in Table 2.2. The PR is calculated assuming a toul of 10

floating-point numbers are transferred. The model dau (Cox. /i, Vl0. X. y and <f>) are

stored in memory local to the MMAP.

Performance Ratio - Current and Partial Derivative Calculation
"Transistor

Operating Region
fpt. Operati(

+.-:X &/

3ns Performance

Ratio

Cutoff 4 2 0.6

Saturation 18 2 2.0

Ohmic 22 2 2.4

Table 2.2

The PR varies from 0.6 to 2.4 with the SH equations. The PR is dependent on the com

plexity of the equations, which vary depending on the transistor's operating region. The

average PR. provided the number of evaluations in each operating region is equal, is 1.6.

This is nearly 5 times greater than the PR of a single two-operand floating-point evalua

tion.

2.2.4. Improvement Percentage Dueto the MMAP

IP. applied to a circuit-simulation, is the percenuge reduction in simulation time

achieved by using a MMAP. Ideally, if the time required by the MMAP to perform the

28

transistor evaluation is negligible when compared to the host's lime, the maximum IP

approaches the FP. Under these assumptions, for the data given in Tables 2.1a. 2.1b and

2.1c. the average maximum improvement is 44% for the SH model and 53% for the

SPICE Level-2 model.

To achieve the maximum IP. the MMAP must perform the transistor evaluation in

much less lime than the host. The architecture of the MMAP and transistor-model

represenution used by the MMAP must be optimized to achieve the largest possible IP.

The MOS transistor model used by the MMAP is presented in Chapter 4. and the archi

tecture of the MMAP is presented in Chapter 5.

23. Using the MMAP in Conjunction with aCircuit-Simulation Program

The interaction between the host and the MMAP required during circuit simulation

and the changes made to the circuit-simulation program's transistor-evaluation routine

are described in this section.

23.1. Interaction Between the Host and MMAP

Throughout the discussion of the MMAPs operation, the host is assumed to be a

simple single-bus architecture as shown in Figure 2.4. The host's RAM memory, disk.

I/O. and MMAP are connected to the hosts bus.

During the initialization phase of the electrical circuit-simulation program, the cir

cuit description is parsed, the sparse-matrix structure is built up. and initial "one-time-

only" calculations are performed. In addition, the dau for the models required by for the

simulation are sent to the MMAP as shown in Figure 2.5. From Figure 2.6. it is seen that

when the simulation program requires the evaluation of a MOS transistor, the appropri

ate dau are sent to the MMAP. the MMAP performs the compuutions. and the results

are returned for use by the host processor.

•

t
System

BUS

Host Architecture

Figure 2.4

29

i i

I/O

Host

Processor
i^ fi>

r

Memory

Model 1
Data

Disk

MMAP

t
System

BUS

One-Time-Only Loading of Model DaU
Figure 2.5

30

Results Returned From MMAP

Data Sent to MMAP

System
BUS

Transistor Evaluation

Figure 2.6

31

32

23.2. Accessing the MMAP from a Model-Evaluation Routine

A qualitative description of a transistor model-evaluation routine is given in

Chapter 1. As shown in Figure 2.7. the steps performed in the evaluation routine are

executed sequentially and repeated for every transistor.

CModel Evaluation)

Limit Terminal Voltages

Calculate Companion-Model Entries

Load Circuit Matrix

Check for Nonlinear-Device Convergence

~~r~
Yes

More Transistors

No

Q Return ^

Model-Evaluation Routine
Figure 2.7

The MMAP's function is to perform the "Calculate Companion-Model Entries" step

in the model evaluation routine. Replacing this step by a call to the MMAP is illustrated

in Figure 2.8. The "Calculate Companion Model Entries" step is replaced by three steps:

"Send Dau to MMAP and Signal Execution". "Calculate Companion Model Entries -

33

MMAP". and "Access Results From MMAP When Ready". The host remains idle while

the MMAP performs the model calculations, and. neglecting the communication time,

only the transistor-evaluation time is reduced.

A more efficient model-evaluation routine, shown in Figure 2.9. allows the host to

perform work in parallel to the MMAP. The core of the model-evaluation proceeds as

follows: while the MMAP evaluates transistor N: the host loads the results of the

evaluation of transistor N -1 in the circuit matrix, checks for convergence of transistor

N -1 . and limits the terminal voluges of transistor N + 1 . The time required by the

host(Thost) to limit the terminal volUges(Thinil). load the circuit matrix(Tmawix_i0ad). and

check for device convergence(TeonVerge) is

Thost = Tiiniit + Tnau-jx-ioad + TCOnverge •

The toul MOS transistor evaluation time(Tev«i) is equal to the MMAP's model-equation

evaluation time(TMMAp) pl«s the communication time between the MMAP and

host(Teoro).

T— T -I- T (2.11)
eval — 'MMAP ^ *com •

provided

" host ^ ' MMAP

Otherwise, the evaluation time is

T £ T.- - (212)1 host *^ ' r

T— T 4. T (2.13)
eval "" J host T * com •

CModel Evaluation }

Limit Terminal Voltages

Send Data To MMAP and Signal
. MMAP to Begin

I
MMAP Operation

Complete

IYes

Access Results From MMAP

Load Circuit Matrix

No

Check for Nonlinear-Device Convergence

Yes
More Transistors

I No
C Return])

Model Evaluation With MMAP
Figure 2.8

34

C Model Evaluation ^

Limit Terminal Voltages of the
First Transistor

I
Send Data To MMAP and 5igna1

MMAP to Begin

35

More Transistors

IYes

Limit Terminal Voltages of the
Next Transistor

MMAP Finished

Yes

No

No

Access Results From MMAP Evaluation

I
Send Data To MMAP and Signal

MMAP to Begin

Load Circuit Matrix

I
Check for Nonll ear-Device Convergence

NO
I

Last Transistor

Yes

<•>

36

©

MMAP Finished

IYes

Access Results From Last

MMAP Evaluation

Load Circuit Matrix

I

No

Check for Nonliear-Device Convergence

C Return])

Improved Model Evaluation With MMAP
Figure 2.9

37

38

2.4. Chapter Summary

The use of a MOS-Model Attached Processor(MMAP) in conjunction with a
circuit-simulation program is shown to be alogical partition from both the circuit-
simulation and computer-architecture p^tive. From the simulation outlook,
transistor-model evasion is shown to comprise asignificant percenuge of the total
circuit-simulation time. In lessening the model-evaluation time by using aMMAP. the
toul simulation time can be reduced. From the architecture view, the MMAP performs a
Urge amount of work with only aminima, transfer of dau to and from the host. With
asmall communication overhead, the MMAP can be efficiently used by the host.

The software model-evaluation routine in the simulation program is changed to
include acall to the MMAP. The MMAP performs the transistor equation evaluation and
the host performs the remaining model-evaluation tasks. The MMAP and host operate
concurrently. The host processes results from the previous MMAP evasion and
prepares dau for the next MMAP evaluation, while the MMAP calculates the dau for
the current MOS transistor.

CHAPTER 3

MOS-Transistor Model Representations

39

In Chapter 2 it is demonstrated that the use of a MOS-Model Atuched

Processor(MMAP) is feasible provided the transistor evaluation can be performed by the

MMAP at a much greater speed than the host processor and provided the communication

between the MMAP and host is fast. On a given computer, the time required for a

transistor evaluation in software is dependent on the type of transistor model. The more

complicated the transistor model, the greater the time used in solving the model equa

tions. The time required for a transistor evaluation by the MMAP is also dependent on

the type of transistor model, but. as sUted in Chapter 2. the speed of the model evalua

tion is primarily dependent on efficiently realizing the transistor model in the architec

ture of the MMAP.

The different types of MOS transistor models are presented in this chapter. The cri

teria for comparing the different types of MOS transistor models are first presented.

Then an overview of both analytic and empirical MOS transistor model represenutions is

given.

3.1. Criteria Used in Choosing a Transistor-Model Representation

In this section, the criteria used in choosing a transistor model for the MMAP are

first given, and then each is described.

As described in Chapter 1. the transistor model represents the current and conduc-

unces as functions of the V*. Vg, and Vsb voluges. namely

Ids= Ids(Vd,.V„.V,b). (3.1)

40

Gds= Gds(Vds.Vgs.Vsb). (3.2)

Ggs= Ggs(Vds.Vgs.Vsb). <3.3)
G*= Gib(Vdf.V|I.Vib). <3.4)

The current and conducunces are used to represent the companion model of the MOS

transistor, and are calculated at every Newton-Raphson iteration.

In general, the choice of a MOS-transistor model is based on the model accurately

representing the transistor's characteristics while also meeting the numerical require

ments of the circuit-simulation program. There areadditional concerns for the transistor

model used by the MMAP. The model must be efficiently realized in the architecture of

the MMAP. and the model should be unaffected by changes in MOS-transistor process

technology. The criteria used in choosing a MOS model are summarized in the following

list.

(1) Accurately model currents and conductances

(2) Meet the requirements of the circuit-simulation program

(3) Efficiently realized in a hardware architecture

(4) Unaffected by changes in MOS-transistor process technology

These four points are further discussed in the remainder of this section.

3.1.1. Accurate Modeling of Currents and Conductances

In electrical circuit simulation, the MOS*transistor model must accurately represent

the transistor currents and conducUncesCpartial derivatives of current with respect to

voluge). The accurate modeling of the transistor currents is required in the simulation

of both analog and digiul integrated circuits. In addition, the simulation of analog

integrated circuits requires the accurate modeling of transistor conducunces.

41

3.1.2. Meet the Requirements of the Circuit-Simulation Program

As described in Chapter 1. the Newton-Raphson(NR) method is used by circuit-

simulation programs to solve the nonlinear circuit equations. To meet the minimum

requirements of NR. the lds. given by Equation (3.1). must be a continuous, monotonic

function of V^. Vgs and (-Vsb). In addition, the first derivatives with respect to voluge.

given by Equations (3.2). (3.3) and (3.4). must be nonzero.

3.13. Efficiently Realized in a Hardware Architecture

As emphasized in Chapter 2. it is essential that the MMAP perform the transistor

evaluation in much less time than the host processor. In general, the model-evaluation

time of a given transistor model is limited by the dau-access time and the floating-point

operation time. As described in Chapter 2. the model dau are stored in memory local to

the MMAP. The storage of model dau in the MMAP reduces the communication over

head between the MMAP and host, and provides direct access to the model dau by the

MMA^ Circuit-simulation programs are floating-point intensive and are primarily run

on computers which have a fast floating-point unit. The MMAP may not be able to per

form the floating-point operations much faster than the host. and. under these cir-

cumsunces. the MMAP may not achieve a significant speed advanuge due to floating

point speed alone. In order for the MMAP to achieve any additional speed-up over the

host, the transistor model must be well suited for its realization in the MMAP's architec

ture.

There are two primary considerations in specifying the form of the transistor model

from the architecture perspective. First, the number of different logical and numeric

operations must be kept to a minimum, and. secondly, the number of control branches

required in the model evaluation must be kept to a minimum. Minimizing the number of

operations reduces the complexity of the hardware, which allows the performance of the

remaining functions to be better optimized, and simplifies the control of the arithmetic

and logic unit. Minimizing the number of control branches simplifies the MMAP's

42

control logic and allows the MMAP's architecture to be further optimized.

3.1.4. Unaffected by Changes in MOS-Transistor Process Technology

The MOS transistor's model equations should not be affected by changes in MOS

transistor processing technology. Without the MMAP. the model-evaluation routine is

executed solely by the host. To change the transistor equations, in general, requires only

the revision of the software model-evaluation routine. With the MMAP. a revision in

the model equations can require a change in the MMAP's programming and. in addition,

may even require a change in the design of the MMAP.

3.2. Typ«s of MOS-Transistor Models

MOS-transistor models may be partitioned into two general groups, analytic and

empirical. Analytic-model equations can be derived directly from the physical properties

of the MOS device. Empirical MOS transistor models calculate the transistor's current

and conducunce from values of device current dau. Discrete values of dau can be

stored, or the dau can be represented by numerical functions which ""curve-fit" the data.

In this section, a comparison of the two model types is made relative to the criteria

stated in Section 3.1 of this chapter.

3.2.1. Analytic MOS-Transistor Models

The Shichman-Hodges[ShH68] and SPICE Level-2[Vli.80] MOS transistor models

are examples of analytic models. The two analytic models are of differing complexities

but both are derived from the MOS transistor's physical properties. A purely analytic

MOS transistor model may not adequately represent the current-voluge relationship of

the device. Analytic MOS transistor models usually are augmented with empirical terms,

allowing the models to fit more readily to device dau. The SPICE Level-3 model[Liu8l]

and the BSIM model[She85] are examples of analytic transistor models augmented by

empirical terms. The accuracy of a given analytic model is dependent on obuining the

43

values of model parameters which produce a"best fit" of the analytic equations to meas

ured data.

Analytic MOS transistor models use separate nonlinear equations to represent each

of the transistor's regions of operation. In the case of the SPICE Level-2 model, four

different sets of equations are required to represent the four different transistor operating

regions(cutoff, subthreshold, saturation and ohmic). The control flow for the evaluation

of the Level-2 MOS transistor model is given in Figure 3.1. The evaluation of the MOS

transistor's model equations requires the solution of several conditional branches, and

the number of compuutional steps is dependent on the transistor's operating region. The

nonlinear equations are. in general, very complicated and require many floating-point

computations for their evaluation. Floating-point logarithm, exponential and square-root

operations, in addition to floating-point addition, subtraction, multiplication and divi

sion, are necessary.

0Transistor Evaluationo

Calculate Vt

<(Vgs>Vt y

No

< Vgs>Vt-Phi >

No

Cutoff

Equations

Yes

Yes

Subthreshold

Equations

Calculate Ydsat

^Vos>Vdsat)>

No

Linear

Equations

Level 2 MOS Model Evaluation Control Flow
Figure 3.1

Yes

Saturation

Equations

44

45

3.2.2. Empirical MOS-Transistor Models

Several approaches have been used in the development of empirical MOS transistor

models [New78] [SSM82] [BNP83] [BVS83] [BVS84] [Bur84] [BVS86]. Empirical MOS

transistor models use discrete values of device current directly in the calculation of the

currents and partial derivatives for use by the circuit-simulation program. The discrete

values of current can be generated from measurements, analytic models, or device simu

lation. The current and partial derivative values are interpolated as needed from the

discrete dau. Empirical models can becompared by the approach in which they store the

empirical dau and by the method of interpolation they use.

The most direct approach to storing the empirical dau is to store the discrete values

of 1^. G^. Gg$ and Gsb from every dau point. Since the current and conducunces are

functions of 3 independent variables(refer to Equations (3.1) through (3.4)). the storage

of enough discrete values to represent the device can be quite large [New8l]. The amount

of dau stored can bereduced by Uking advanUge of the first-order behavior of the MOS

transistor [New78] [SSM82] [Bur84]. For example. [Bur84] reduced the dau stored to

two dimensions. V^ and Vg$e. where Vgse is a function of V^ and Vsb. The 1^ is

represented as

Iris = Ids (Vds.Vjse). (3-5)

To a first order, the Vsb voluge effects only the Threshold Voluge (V,). As demonstrated

by the Shichman-Hodges [ShH68] equations, given in Chapter 1.Vpe can be written as

Vp,= Vp-V^V*). (3.6)

The dependence on the Vlb is embedded in Equation 3.5.

Interpolation between the stored dau points is used to generate the specific values

of current and conductances from the discrete device dau. The most straightforward

approach is to linearly interpolate between the discrete dau. For example. [SSM82] cal

culates the current and conducunces by linearly interpolating in three dimensions from

the discrete current dau. Higher-order interpolation methods can also be used, but their

46

representation of lds may not always be monotonic. [Bur84] combined quadratic and

linear interpolation: quadratic interpolation is used to represent Ids (Vds) when the device

is in the ohmic region of operation, linear interpolation is used to represent Ids (Vds) in

the saturation region, and linear interpolation in Vgs is used for all voltages.

[BVS83] represents Ids by both triquadratic and tricubic splines. The device conduc

unces. Gds. Ggs and Gsb. are generated by Uking the partial derivatives of the polynomial

equations. [BVS83] uses both triquadratic and tricubic splines to represent Ids as a func

tion of Vds. Vgs and Vsb. Anegative aspect of splines is that they are not guaranteed to be

monotonic. The spline method has been improved to guarantee monotonic behavior at

the expense of altering the discrete values of Ids [BVS84] [BVS86].

The accuracy of an empirical model is primarily dependent on the number of

discrete dau points and the order of the interpolation method. For a given interpolation

method, increasing the number of dau points can provide a more accurate represenution

of the device. In general, a distinct model is stored for each device type with a specific

channel length. In most cases an empirical model can be scaled by channel width. The

scaling by channel length is avoided because of the device's nonlinear dependence on

channel length. Empirical models generally, though not always, require less compuution

time for their evaluation than analytic models. Empirical models store only the dau

points, and, thus, they do not conuin any process-dependent parameters.

3.23. Comparison Between Analytic and Empirical Models

There are advantages and disadvanuges to using either an analytic or an empirical

MOS transistor model. A comparison of MOS transistor models is generally based upon

the accuracy of the models and the time required to evaluate their model equations. A

further concern when considering empirical models is the storage and access of the usu

ally large amount of empirical dau necessary for each model. There are additional con

cerns when considering transistor models for use with the MMAP. Both the sensitivity

of the model relative to changes in process technology, and the adapution of the model

47

to the architecture of the MMAP must be considered.

3.23.1. Accuracy, Speed and Storage

Analytical and empirical models can offer comparable accuracy. The accuracy of an

analytical model is primarily dependent oh the complexity of the model equations, and

the accuracy of the empirical model is primarily dependent on the number of dau points

and the order of the interpolation method.

Model accuracy and model-evaluation speed are closely coupled for analytic transis

tor models. Analytic models become more complicated as they are changed to improve

their accuracy. An increase in the complexity of the transistor model results in an

increase in their evaluation time. For example. [BNP83] shows the typical evaluation

time of the SPICE Level-2 model to be 16 times that of the SPICE Level-1 model. The

amount of dau stored also increases with increased model complexity, but the amount of

storage is minimal when compared to an empirical model.

The accuracy of an empirical model is dependent on the number of dau points

stored and the typeof interpolation method used. An increase in either the order of the

interpolation method- or the number of data points can increase the accuracy of the

empirical model. More storage is required as the number of dau points increases. Also,

more storage may be required as the order of the interpolation method increases.

The accuracy of the derivatives of current with respect to voluge is also of concern.

[TsM84] demonstrated that large errors in output conducunce of the MOS transistor.

Gds. can occur even when the current is accurate. The analytic model parameters can be

calculated such that accuracy of both current and output conducunce are optimized

[DAR85]. Empirical models, in general, do not directly address derivative accuracy.

48

3.23.2. Dependence on Process Technology

Analytic transistor models are revised to include physical effects that become prom

inent as the integrated-circuit process changes. Analytical models augmented with

empirical terms are less effected by the changes since their empirical components provide

them with more degrees of freedom. Ideally, empirical models depend only on the

transistor data. The form of the empirical model does not change, only the new device

dau must be obtained.

3.2.33. Minimizing the Number of Functions and Control Branches

Empirical models require fewer types of numerical functions in their evaluation in

comparison to analytic models. Both analytic and empirical models require floating-point

addition, subtraction, multiplication and division, but analytic models may also require

logarithm, exponential and square-root calculation.

Many empirical models can beexecuted without any branching, since their evalua

tion is independent of the transistor's operating region. For example, the empirical

models described in [SSM82] and [BVS83] can be evaluated without any branching. As

described previously and illustrated by Figure 3.1. analytic models use separate equa

tions to represent the transistor's operation in each of the transistor's operating regions.

33. Model Choice

Both analytic and empirical models can accurately represent the 1^. For an analytic

model, the model equations can be improved to better represent the device output charac

teristics. The improved analytic-model equations are usually more complex, resulting in

an increase in their computation time. The accuracy of an empirical model can be

improved by increasing the density of dau points. By increasing the density of data

points the error from the interpolation is reduced, but the amount of dau stored is

increased.

49

The use of empirical models with electrical circuit simulators has been hindered

because of the large amount of memory used in storing the model dau. Electrical

circuit-simulation programs operating on computers with physical memory-size and

address-size constraints are unable to use empirical models because of their large storage

requirements. Even computers supporting a large virtual-address space and cache

memory are hindered. In the normally "tight-looped" model evaluation, the evaluation

may be slowed down by repealed memory accesses since the dau for all the empirical

models used may not fit concurrently in the computer's cache memory. As described in

Chapter 2. the model dau is stored in the MMAP during the simulation, and thus the

system using the MMAP is not hindered by the empirical model dau storage.

Empirical MOS transistor models are generally better adapted for an architecture

specifically designed for MOS transistor model evaluation. The empirical model is less

sensitive to changes in process technology, requires fewer types of arithmetic and logic

operations, and can operate without the execution of conditional branches. The large

amount of dau that must be stored for an empirical model does not tax the host proces

sor and is therefore no longer a primary concern.

CHAPTER 4

Empirical MOS-Transistor Model Based on

Piecewise-Cubic Polynomials

50

This chapter describes the empirical model that has been developed for use with the

MOS-Model Attached Processor(MMAP). Chapter 3 provides an overview of various

MOS transistor models, concluding thai an empirical model is a suiuble choice for the

MMAP. The empirical model described in this chapter is based on piecewise-cubic poly

nomials. This model meets the requirements of the numerical methods used in circuit-

simulation programs, while accurately representing the transistor's current and conduc

unces. In addition, the empirical model is evaluated without conditional branching and

uses only floating-point addition, subtraction, multiplication and division.

Some first-order MOS transistor characteristics, which have been used in the deriva

tion of the empirical model, are first described. The empirical model is then described.

Several practical considerations that must be considered before the model can be used

with a circuit-simulation program are described. Finally, several examples of the MOS-

transistor model are presented.

4.1. First-Order MOS-Transistor Dependences

The empirical represenution of the MOS transistor exploits the first-order behavior

of the transistor. The first-order device behavior can be used both to reduce the amount

of dau stored and to simplify the interpolation method. This section presents the first-

order behavior of I* and the conducunces. G& and G&. The application of this first-

order MOS transistor behavior to the different interpolation methods is described in Sec

tion 4.2 of this chapter.

51

4.1.1. The Dependence of Ids on Vsb

As given in Chapter 1.1^ isa function of the Vds. Vgs and Vsb voluges.

Ids = WVds.Vgs.Vsb) (4-1}

Of the three terminal voluges. the Ids is most "weakly" dependent on the Vsb. To a first

order. Vsb affects only the Threshold Voluge. Vt. and changes in Vt can. to a first order,

be represented as a change in Vgs.

This dependence has been used to reduce the amount of empirical dau stored for

each model [New78] [SSM82] [Bur84] [SSM85]. [Bur84] represented Ids as

Ids = f(Vds.Vgse) (4-2)

The effective gate-to-source voluge. Vgse. includes the weak dependence of the

transistor's current on Vsb. As shown in Chapter 1. the Threshold Voluge is the only

term in the Shichman-Hodges equations dependent on the Vsb. The quantity Vgse is

defined as

Vgse = Vgs-Vx(Vsb). (4'3)

4.1.2. The Dependence of I* on V^ and Vg,

The behavior of the I* is dependent on the transistor's operating region. Typical I*

vs. V^ and 1^ vs. V^ curves are given in Figure 4.1. With respect to V^. I* displays a

nonlinear behavior when the MOS transistor is operating in the ohmic region, and a linear

behavior when the MOS transistor is operating in the saturation region. With respect to

V„. Ids displays a linear behavior when the MOS transistor is operating in the ohmic

region, and a nonlinear behavior when the MOS transistor is operating in the saturation

region. The behavior of Ids is summarized inTable 4.1.

Behavior of Ids

Differential Voltage Ohmic Saturation

vds Nonlinear Linear

V« Linear Nonlinear

Table 4.1

52

This characteristic behavior has been exploited in many empirical transistor models

tNew78][Bur84][Sub85]. The form of order of the interpolation method used is depen

dent on the operating region: For example, in the saturation region only linear interpola

tion of Ids in Vds Is needed, but in the ohmic region a higher-order interpolation and/or a

more dense storage of dau is required to accurately model the device.

53

'ds

Ids VS. V^

54

4.13. First-Order Behavior of Gds and G^

The first-order behavior of the conducunces. Gds and Ggs. can be derived from the

Shichman-Hodges equations. G^ and G^ for a device in ihe saturation region are

mCm w
Gds= X

2 L

W

-£-(vK-vt)2.gs

Ggs =/iCw^ (Vgs -V,) (1 +XV*).

In the ohmic region. Gd$ and Ggs are

Gds =mC„I ((Vgs -Vt -Vds) (1 +XV^) +XV^(vgs -vt —ii)).

Ggs=MC0X^-Vds(l+XVds).

(4.4)

(4.5)

(4.6)

(4.7)

In the saturation region Gris is independent of Vds and displays a quadratic depen

dence on Vgs. and in the ohmic region Gds displays a quadratic dependence on V^ and a

linear dependence on Vgs. In general.

X « 1 . (<•*)

and. with this approximation. Gds displays a linear dependence on both V& and V^ for

the device operating in the ohmic region. The behavior of Gds is summarized in Tables

4.2a and 4.2b.

Behavior of Gds

Differential Voluge Ohmic Saturation

Vd, Quadratic Consunt

v« Linear Quadratic1

Table 4.2a

Behavior of Gds X « 1

Differential Voluge Ohmic Saturation

VHs Linear Consunt

VW Linear Quadratic1

Table 4.2b

55

In the saturation region Ggs displays alinear dependence on both Vds and Vgs. and in

the ohmic region Ggs displays aquadratic dependence on Vds and is independence of Vgs.

Using the approximation given by (4.8). Ggs displays only a linear dependence on V^ in

the saturation region, and a linear dependence on V* in the ohmic region. The behavior

of G^ is summarized in Tables 4.3a and 4.3b.

Behavior of G,s

Differential Voluge Ohmic Saturation

vds Quadratic Consunt

v„ Constant Quadratic

Table 4.3a

Behavior of G« X « 1

Differential Voluge
*S_

Ohmic Saturation

IsSi.

£S

Linear

Constant

Consunt

Linear

Table 4.3b

4.2. Description of the Empirical MOS Model

This section describes the empirical model that has been developed for use with the

MMAP. The description is of an N-channel device. The expansion of the model to P-

channel devices is presented in Section 4.3. An overview of the empirical method is first

given. The represenution of the one-dimensional Ids curves is then given. Next, the gen

eration of the family of Ids curves is presented. Two interpolation methods, linear and

cubic, are then described. Finally, the function representing the dependence of Ids on Vsb

is presented. Several examples of the model described in this section are given in Section

4.4.

^his behavioT of this derivative is observed to be nearly linear for short-channel transistors operating in
the saxuration region [May86j.

56

4.2.1. Overview of the Empirical Model

As described in Chapter 1. the evaluation of the transistor model is required in

circuit-simulation programs. The model evaluation provides the values of Ids. Gds. Ggs

and Gsb for given Vds. Vgs and Vsb terminal voluges. The current and conducunces can

be represented as functions of the three terminal voluges. where

lds= FI(U(Vds.Vgs.Vsb). (4.9)

Gds= FCdj(Vds.Vgs.Vsb). (4.10)

Gg,= FCp(Vris.Vgs.VSb). (4.11)

Gsb= Fc^Vds.V.s.Vsb). (4.12)

The basis for the empirical model is 2 families of Ids curves, similar to those illus

trated in Figure 4.1. One family represents Ids as a function of V^. where each curve is

for a consunt value of Vgs. The other family represents Ids as a function of V^. where

each curve is for a constant value of Vds- Both families are derived for a consunt value

of V,b.

During circuit simulation, operating points arise which do not coincide with either

of the two families of curves. The values of current and conducunces are calculated by

interpolating between curves which bound the operating point. The value of Gsb and the

dependence of Ids. Gds and G^ on Vsb are accounted for by the introduction of V^. as

previously described in Section 4.1. Vgse is the actual Vgs altered to include a dependence

on Vsb. The interpolation is performed for Vgs = Vgse.

4.2.2. Piecewise-Cubic Polynomial Equations

The use of piecewise-cubic polynomials to represent the one-dimensional Ids curves

is presented in this section.

A single, one-dimensional Id, curve is represented by a piecewise-cubic. polynomial

equation. The curves are of either I^asa function of Vd, for a consunt Vp or I* as a

function of V^ for consunt V&. For example. Ids as a function of Vds for a consunt Vgs

57

is

Ids = fields) . Vgs=Vgsk. (4.13)

The function fk is valid over the range [Vds j.Vds,] and iscomposed of several cubic poly

nomials, each of which is valid over a unique part of the range.

Ids= PkiCVd,). Vrisi < V^ < Vris2 (414>

= Pk2(Vris). Vds 2 < Vds < Vds 3

= PkJ-l(Vds) . Vrisj-! < Vds < Vds J

The cubic polynomial is of the form

Pk j= a3 +bj 8Vds +Cj (SVds)2 +dj (SVris)3 . (4.15)

where

SVds = Vds-Vrisj. (416)

The voltages at which the discrete values of Ids and Gds are known, such as Vdsj. are

referred to as measured voluges2. The polynomial's coefficients, aj. bj. Cj. and dj can be

calculated from the values of I* and Gds at the two end points of the polynomial. The

coefficients calculated from the values of currents and conducunces at the endpoints are

aj=Ids(Vdsj). (417)

bj=Gris(Vrisj). (418)

3Wv^i)-WVrisP _2Gds(Vd$p.Gds(Vds^,)
Vdsj+l"*vdsj \4-iyj

Cj= Vrisj+, "Vrisj

*The term measured voltages applies to both drain-to-soutce and gate-to-source voltages.

58

Gds(Vdsj) +Gdst\dsj+1; 2 Vdsj+,-VdsJ (4.20)
J~ (V'risj+i-vdsj)-

where Iris(Vdsj) and G^V^j) are the current and derivative at V^j. and WVrisj+i) and

Gds(Vds j+i) are the current and derivative at Vds j+i-

The cubic polynomial given by Equation (4.15) is continuous with continuous

derivatives. At the boundary between two adjacent cubic polynomials, the value of Ids

and Gds for both polynomials are the same, and their values are equal to the discrete dau

at the measured voluges used to calculate the polynomial's coefficients. For example, the

polynomial pk jevaluated at the point Vd$ j is

pkj<Vrisj)= IdsWds,). (421)

which is equal to the polynomial pk j_i evaluated at Vds j.

pkj-l(Vdsj)=Ids(Vdsj). (422)

Since the cubic polynomials are continuous and the boundary of adjacent polynomials

uses the same dau point, the piecewise-cubic equation given by (4.13) is continuous.

The derivative of the piecewise-cubic function is represented by the derivative of

the cubic polynomial over the specific range. For example, the derivative of (4.13) is

G o dft (V,) V = V v (4-23>
d~V~~ ** **k*

The function -^L is valid over the range [Vdsi.VdsJ and is composed of the derivatives

of the cubic-polynomial equations, each of which is valid for aspecific range.

59

G^-l^iCV*). V,,., <V* <V«. (4-24)
d Vds

l^Vds) . Vds2 < Vds < Vds 3
d v^

d Vds

The derivative of the cubic polynomial is aquadratic polynomial of the form

l*i =b. +2Cj5V* +3dj WJ2 . (4.25)
Vds

where 6Vds and the coefficients are given in Equations (4.16) through (4.20). At the

boundary between two adjacent quadratic polynomials, given by (4.25). the value of Gds

is the same for both polynomials, and that value is equal lo the value of the discrete

derivative for that voluge. For example, the quadratic -g^i evaluated at the point Vdsj

is

l^Kv^j) =C^j) . (4-26)
Vds

and —S^- evaluated atVdsj is

l^£l(VdIj)=GdJ(Vd.p. (4-27)
Vds

Since the quadratic polynomials are continuous, and the value of two adjacent polynomi

als at their common boundary is the same value, the piecewise-cubic equation given by

(4.13) is continuous in the first derivative.

An example of a single, piecewise-cubic polynomial is illustrated in Figure 4.2.

There are 5 dau points, and the piecewise function is composed of 4 cubic polynomials as

shown.

fUU) Separate Polynomial Equations

el wd«2

Piecewise-Cubic Polynomial
Figure 4.2

60

UcteS

The discrete values of Id, can be obuined from actual device measurements, the

results of a device simulation or the solution of analytic model equations [Bur84]. The

values of the derivatives at the measured dau points. Gd$ (G^ for curves of Ids as a func

tion of Vgs). are calculated using the Enhanced-Monotonic. Piecewise-Cubic Interpolation

method (EMPCI)3. The values of derivatives are calculated only once and stored for

further use.

The EMPCI method is similar to a cubic spline in that piecewise-cubic polynomials

are fitted to dau points. The coefficients of the polynomials comprising the cubic spline

'The EMPCI method is presented in detail in Appendix D.

61

are evaluated based on conditions set on the Piecewise-cubic function. For acubic spline,
the piecewise-cubic function and its first two derivatives are everywhere continuous, and
the set of derivatives at the data points can be represented by asystem of n independent
equations in n unknown derivatives. The solution of the system of equations produces
unique values of derivatives. The spline provides asmooth fit to the dau. however the
cubic spline fit to monotone dau is not necessarily monotonic.

The EMPCI method is limitted to monotonic dau. The EMPCI-derived. piecewise-
cubic function is continuous with continuous first derivative. However, unlike the spline
method, the EMPCI method does not constrain the second derivative to be continuous.
As aresult, the system of equations defining the discrete derivatives is underdetermined.
resulting in an infinite number of possible values for them. The derivative values calcu
lated by using the EMPCI method ensure that the piecewise-cubic polynomial is mono
tonic. But. guaranteeing the monotonic behavior of I* may not accuracy represent the
behavior of the derivative^* and Gp). As illustrated by Figure 4.3. even though the
piecewise-cubic polynomial fit through the monotonic dau is monotone, the behavior of
the derivative does not resemble the discrete dau. The incremenul slopes of the discrete
dau are increasing, but the second derivative of the piecewise-cubic function is not
always positive. The EMPCI method, in addition to guaranteeing monotonic behavior,
also ensures that the shape of the piecewise-cubic polynomial's derivative is correct rela-

tive to the discrete dau.

The EMPCI method is developed from the Monotone Piecewise Cubic
InterpolationlFrCSO] method developed by Fritsch et al.. Shima et al. [SYD83] applied
Monotone Piecewise Cubic Interpolation to the interpolation of device simulator dau for
generating dau points for use with their uble look-up empirical model [SSM82].

f(x)

Monotone Fit with Inconsistent Derivative
Figure 4.3

62

4.23. Family of Piecewise-Cubic Polynomial Equations

A set of measured dau points is used to generate the family of Ids curves, similar to

those illustrated in Figure 4.1. where each curve is represented by a piecewise-cubic poly

nomial. The curves representing Ids as a function of Vds and Ids as a function of V^ are

generated from the same measured dau. The Vsb is constant. The derivatives at the dau

points for the piecewise-cubic polynomials are derived from using the EMPCI method.

The piecewise-cubic polynomials of Ids(Vds) intersect the piecewise-cubic polynomials of

Ids(Vgs) at the dau points. The values of I,*. Gds and Ggs are stored for each dau point,

where Gds and Gg$ are the values of derivatives at the endpoints of the cubic polynomials.

As described earlier, the current and partial derivatives at the point (Vd,. Vp) are

calculated by interpolating between the Ids curves, where each Ids curve is represented by

63

piecewise-cubic polynomial. As illustrated in Figure 4.4. four piecewise-cubic polynomi

als.

Ids=fk(VdS). forVgs=Vgsk. U.28)

Ids = WVds) • for Vg$ = Vgsk+1 . (4.29)

Ids=gj(Vgs). for Vris= Vrisj. (4.30)

Ids = gj+i(Vgs) . for Vds = VrisH! . (4-31)

bound the point (Vds. Vgs). The value of Vds is

Vdsj < Vds < Vdsj+1. (4-32)

and the value of V^ is

V v ^ V < V-i,*!. (4.33)vgsk ^ vgs ^ vgsk+l*

A single cubic polynomial from each piecewise-cubic polynomial form a boundary about

the point. The four polynomials are calculated from the values of Ids. Gd$ and G^ at

(Vrisj. Vgsk). (Vd,j* i. V^). (V^jt Vj,^ j) and (V,*j+1. Vj,k+ ,). The values of current

and partial derivatives are calculated by interpolating between the bounding polynomi

als, as shown in Figure 4.4.

64

Ids - gj (Ugs) Ids - gj+1 (Ug«)

Interpolate
Point

Ids - fLxl(Uds)

Ids - fw (Mds)

Udsj Ud«j+1

Interpolation Between Piecewise-Cubic Polynomials
Figure 4.4

65

4.2.4. Linear Interpolation

Ids. G* and Gp can be calculated by linearly interpolating between adjacent
piecewise-cubic equations of WAs given by Equations (4.32) and (4.33). V, and V|s are
bounded by the nearest measured voluges. The values of I*. G* and G„ at (V*,. V^).
(V**,. Vpk). (V*,. V„,+ 1) and (V^,. Vpk+I) are used to calculate the coefficients
for the two cubic polynomials of I* =«Vd.) and the two cubic polynomials of
Id. =g(V„)- The function representing Wwhich is derived from the linear interpola
tion of piecewise-cubic polynomials, mainuins the requirements of monotonicity and
derivative behavior that are ensured by the piecewise-cubic polynomials. In addition. I*.

Gds and G^ are continuous.

Calculation of Ids

!„, can be calculated by linearly interpolating between the two polynomials of
1* =rtV*). which is illustrated by Figure 4.5a. First, the values of WVd.-Vpi) and
ldJ(Vdl.V,.l+,) are calculated. The value of I* is then calculated by linearly interpolat-
ing in V„. yielding

In asimilar manner. I* can also be calculated by linearly interpolating between the two
polynomials of I* =g(V„). which is illustrated by Figure 4.5b. In this case, the values
of WV* >V„> and UCV* „,*„> are first calculated. The value of I* is then calculated
by linearly huerpolating in V*,. producing

Wv^Vp) =Wv* ,v ♦ (wv*„..vP' "Wv. »V>v«.t •-*!»• ("'35}

Both (4.34) and (4.35) can be used to calculate 1*. Since the cubic polynomials are
monotonic. linear inurpolation between them resulu in amonotonic represenution of
V As given in Table 4.1. linear interpolation of current in V* is accurate only if the
device is in the saturation region, and linear inurpolation in V„ is accurau only in the

ohmic region. Therefore, one representation does not have an advantage over the other.

Ida - gj (Ugs)

L i near

Interpolation

Linear Interpolation
Figure 4:5b

66

67

Continuity of Ids

Ids is required to be continuous for all values of Vds and Vgs. The equations

representing Ids are continuous, but they are only valid over the range specified by (4.32)

and (4.33). The border between two adjacent regions is the cubic polynomial. Since the

cubic polynomials are continuous. Ids is continuous for all values of Vds and Vgs.

Calculation of Gds and Ggs

Gds is calculated by linearly interpolating between the derivatives of the two poly

nomials of Ids = f(Vds). First, the values ofGd,(Vd,.Vg8 k) and Gds(Vds.Vgs^ i) are calcu

lated. The value of Gds is then calculated by linearly interpolating in Vgs. resulting in

Ga.CVfc.V =GJLV*.V„J +CG^Vas.V,,^,) - G^V^Y^))^^ J^. (4.36)

The first-order behavior of Gds is given in Table 4.2. Gd, is shown to vary quadratically4

with respect to V^ when the device is operating in saturation and is otherwise linear.

Linear interpolation of Gd,. as given by (4.36). does not represent the quadratic depen

dence of Gds on Vgs-

Ggs is calculated by linearly interpolating between the derivatives of the two poly

nomials of Id, = fCVp). First, the values of Ggs(V*J.V,,) and G^V*»ltVj are calcu

lated. The value ofG^ is then calculated by linearly interpolating in Vj,. resulting in

g^v « c.jcvfcj.v +(g^v^.v -cr(va.rV>v^T=vi7 (4'37)

The first-order behavior of G^ is given in Table 4.3. G„ is shown to be only linearly

dependent on V,*. Linear interpolation of Gv. as given by (4.37). does represent the

behavior of Gp.

4Near linear dependence is observed in small-channel devices [May86].

68

Continuity of Gds and Ggs

Gds and Ggs are continuous for all Vds and Vgs. Equations (4.36) and (4.37) are con

tinuous, but they are only valid over the range specified by Equations (4.32) and (4.33).

The border between two adjacent regions is the cubic polynomial. Since the first deriva

tives of the cubic polynomials are continuous. Gds and G^ are continuous for all values

of Vds and Vgs.

Summary of Linear Interpolation

Linear interpolation is a straightforward method of representing the MOS

transistor's current and partial derivatives as functions of Vds and V^. The method is

executed without any conditional branches. The current obuined from linear interpola

tion is monotonic. but linear interpolation is not always accurate (refer to Table 4.1).

The derivatives produced by linear interpolation are continuous.

69

4.2.5. Cubic Interpolation

The use of cubic interpolation between piecewise-cubic polynomials is described in

this section.

Calculation of Ids

A cubic polynomial, instead of a linear equation, may be used to interpolate
between adjacent cubic polynomials. The cubic interpolation, compared to linear interpo
lation, can better represent the nonlinear behavior of the MOS transistor. Figure 4.6 dep
icts the two possible ways to perform the cubic interpolation between adjacent cubic
polynomials. The first case is depicted in Figure 4.6a. In this case the two polynomials
representing I* as afunction of V„ for aconstant value of V* are first solved. The two
points are the end points of acubic polynomial in V* which interpolates the value of I*.
The second case is depicted in Figure 4.6b! Here the two polynomials representing I* as a
function of V* for aconstant V„ are first solved. The two points are the end points of a
cubic polynomial in Vp which interpolates the value of W

Acubic polynomial interpolating between the two dau points also requires the
values of the derivatives at the end points. For the. inurpolation illustrated in Figure
4.6a. the values of 0* at the end points are required, and for the inurpolation illustrated
in Figure 4.6b. the values of G„ at the end points are required. The information in uble
4.3 showed that G„ is. to afirst order, at most linearly dependent on V*. As previously
suted. representing G„ using linear inurpolation of 0„ in V* does represent the
behavior of G„. and. therefore, the inurpolation depicted in Figure 4.6b is used.

Ids

<*»,

Ids • g. (Ugs) <te "9j*, <y9*)

Cubic

Interpolation

—^—H

Ids - fk+1 (Uds)

Ids - fk(Uds)

V k*l

Uds

7 Uds. Ud.j4>,

Cubic Interpolation
Figure 4.6a

Ids - gj (Ugs^

Cubic

Interpolation

Cubic Interpolation
Figure 4.6b

<te • 9 j*, Wg»>

Ids • fk+| (Uds)

Ids - fk(Uds)

70

71

Assume that the values for Vds and Vgs are in the subintervals [V^/v*^ j+i] and

[Vgsk.Vgsk+i]. The values for lds. Gds and Ggs are known for the data points (V^V^).

(VdsrVgsk+1)'. (Vrisj+i.Vgsk) and (Vdli+1.V|lfc+i). and. they define the polynomials that
border the region to be interpolated. As demonstrated in Figure 4.7. Ids and Ggs are first

obtained at (V^V^) and (Vds.Vgsk+i). The values for I* are obtained by solving the

cubic polynomials atVj,. The values for Ggs are calculated by linear interpolation.

vd —Vd
GpfVV^) =Gp(Vdfj.Vpk) +(G^V^.V^) -0^v«rvi.>))VdIill-vL| <4-38)

G^V^Vp^,) = G^Vfcj.Vp^,) <4-39>
Vj —Vj+(Ggs(Vdl j, „Vpk+ ,) - G^tVds,.Vr k„ i^V^^-V^.

The cubic polynomial representing Idsis

Id, = Co +Q SVgs +C2 SV2gs +C3 SV^. (4.40)

where

SV*s = Vgs-Vgs,.

The polynomial coefficients are calculated using the values of Ids and Ggs at the two end-

points, and they are

Co(Vds) = lds(Vds.VgSs). (4"42)

Cj(Vds) = G^Vris-Vgsk). <443)

_ ^ Ggs(Vris.Vgsk) Ggs(Vds.V8sk+i)
2 ^% " AVgs

(4.41)

^ ,,r ^ Ggs(Vds.Vgsk) Ggs(Vds.Vgsk+1)
<-3^>ds^ - — "r

AV

-2

AVgs = Vgsk+,-Vg$k

WVdsA;gsk^i)~UVds-Vgsk)
uv5

(Uds^gs^
(WVvu9VJ

(Uds^UgsK)

Uds

Figure 4.7

Monotonic Behavior of Ids

The condition for the interpolating function to be monotonic is

*** > 0.
dVdsdVgs

The second derivative is expanded, yielding a quadratic function inVj,,

72

(4.45)

(4.46)

(4.47)

73

1£L + 2±?L(2JL) + 3l^-(-?^-)2 > 0. (4.48)
dVds dV^ AVgs dV^ AVgs

For the interpolation to be monotonic. the above inequality must be true over the range

of Vd, € [Vds j.Vds j+ il. and Vgs € [V„ k.Vgsk+,].

Continuity of 1^

The interpolating function representing Ids &continuous over Vds €[Vds j.Vds j+i]

and Vgs €[Vgsk.Vgsk+ J The function evaluated at aboundary is the cubic polynomial

defining that boundary. Therefore, the cubic polynomial that defines the boundary

between adjacent areas also provides for a continuous functional represenution of Ids

over all Vds and Vgs.

Calculation of of Gds and Ggs

The partial derivatives are calculated directly from Id,. The coefficients Q>. C2. C2

and C3 are functions of V& only. Taking the partial derivative of Ids w»ta respect to Vds

yields

<*'•& +&»•+&"''+£:»'*
The partial derivative of Id, with respect to Vp is

Ggs = C, +2Cz SVg, +3C3 6V2gs. <4-50>

The partial derivative functions are continuous over the range ofVd8 and Vgs.

Ggs. represented by Equation (4.50). is continuous at all of the polynomial boun

daries. At the boundaries defined by consunt Vj,. Vg, = Vj,k and Vj, = Vpjt+i. G^ is

the derivative of the polynomial. At the boundaries defined by constant Vd,. Vd, = Vds i

or Vds = Vdsj+i. the derivative is the linear interpolation of the discrete values of Ggs

which are used in the cubic interpolation.

74

Gds. represented by Equation (4.49). is continuous only al the boundaries defined by

consunt Vgs. where Gds is defined by the derivative of the polynomial. At the boundary

defined by constant V^. G& is not continuous, but differs by a consunt.

Gds is calculated by linear interpolation, where Gds is

5VGds = Gds(Vri,.Vg$k) +(Gris(Vd,.Vg,k+1) -GristVdsAfgsk))^. <4-5D

which is continuous over all voluge.

4.2.6. Modeling the Source-to-Bulk Voltage Dependence

The empirical interpolation methods described in this chapter represent Ids as a

function of V& and Vg, for a consunt value ofVsb. This relationship can be written as

Ids = FmtWris.Vp) . for Vsb = Consunt. (4-52)

where FIm represents the interpolation of the piecewise-cubic polynomials. During circuit

simulation, operating points occur which do not coincide with (4.52). As previously

described. Ws dependence on Vsb is accounted for by augmenting the value of Vgs. A

general represenution of the dependence on Vsb is

Vgse = Vgs + Fvib(Vsb.Vds). <4-53>

The function Fv is dependent on Vds and Vsb. Equation (4.52) is evaluated using
SO .,

Vg, = Vg,.. As previously mentioned. Vg« is the effective gate-to-source voluge and is

used in the calculation of Id*. Gd,. Ggs and Gsb.

To represent the function FVjb. a cubic polynomial is defined for each measured

value of Vd,.

(4.54)Vgsej = Vg, + Aj +BjV,b +qV2sb +DjV3,b . for Vd, = Vd,j

The coefficients Aj. Bj. Cj and Dj are solved using aleast-squares[LaH74][Str76] fit of

dau. Vgs, iscalculated by a linear interpolation in Vds-

the

75

Equation (4.52) evaluated at V^ = V* j. where VdsJ is a measured voluge. is the

piecewise-cubic equations of 1^ as a function of Vgs for Vds = Vds y The Ids can be writ

ten as

Id^g/V. for Vds = Vdsj. (4'56)

where gj is the piecewise-cubic polynomial equation for Vds = Vds j. Since Equation

(4.52) is evaluated at Vg, = VgSe. Equation (4.56) is evaluated at Vgs = Vgsej.

Ids = g/Vgse P. for Vds =Vdsj. (4'57)

Equation (4.57) can also be represented as

Vgse j= g^jClds) . for Vds =Vds j. (4J8)

where g"1 is the inverse of function g. As given by Equation (4.9). Ids can be written in

terms of its three independent terminal voluges. Substituting Equation (4.9) into Equa

tion (4.58) and setting Vds = Vdsj. VgSej is

Vgse j- g-^JVris j.Vgs.V$b)) . (4-59)

The combination of Equation (4.54) and Equation (4.59) is

\v + A, +B, V* +C, V^ +Dj V^ =g-VF,di(Vdl j.Vp.V^,)). for Vdf a Vd,, (4.60)

Equation (4.60) can then be used to solve for Aj. Bj. Cj. and Dj.. Given Ids data for several

different combinations of Vgs and V* at Vds = Vd, j. the coefficients can be solved using a

least-squares fitting of dau. For Mcombinations of Vg, and V,b. the matrix equation is

1 * V'2 *3
1 vsb«' » sb (• * sb o

1 Vsb i V sb i V sb j

Bj

1 VsbM V2sbM V sbM
Dj|

Vgso -g'KF^Vds j.Vgs0.Vsbo))
Vgsi-g-1(Flds(Vdsj.Vgs1.Vsbl))

VgsM -g-HF^Vdsj.VgsM.VsbM))

Equation (4.61) is then in the form to solve for the coefficients, and must be applied for

all measured Vds.

The calculation of the partial derivatives include Vg,e's dependence on the

differential terminal voluges.

aids aids 6v8se
* " evdl avg« dVds

r _ aids
°*s - av"

_ a!ds aVgse
Gah =

aVgse avsb

s 0

76

(4.61)

(4.62)

(4.63)

(4.64)

43. Empirical Model - Practical Considerations

Several practical considerations must be addressed before the empirical model can

be used with a circuit simulation program. The description of the empirical model given

in the previous section only addressed a N-channel MOS transistor with specific channel

dimensions. In this section, the modeling of P-channel enhancement transistors using the

empirical model is first described. Then, the scaling of currents and conducunces of

model transistors with channel dimensions different from the stored model is presented.

The "out-of-range" evaluation of a transistor operating point which is outside of the

limit defined by the families of curves is described next. The issue of numerical precision

77

necessary for the model evaluation is then presented. Finally, the data storage require

ments for the polynomial-based model aresummarized.

4.3.1. P-Channel Transistors

The description of the empirical model given in Section 4.2 is based on an n-channel

enhancement transistor. P-channel transistors are evaluated in the same manner as N-

channel transistors. As a circuit device, the two transistor types operate the same, except

that the the signs of the Vds. the Vgs. the Vsb and the I* of the P-channel transistor are

opposite those of the N-channel transistor. For the P-channel transistor, the Vds is nega

tive and the Ids becomes increasingly negative as the Vgs becomes more negative.

The empirical data of the P-channel device are generated in the same manner as an

N-channel transistor by changing the sign of the Id,, the Vd,. the Vgs and the Vsb from

the P-channel dau to correspond to an N-channel transistor. The dau are then stored as

if the P-channel transistor is an N-channel transistor. When a P-channel transistor is

evaluated, the signs of the voluges are changed and the evaluation continues as if it were

an N-channel device. The current and conducunces calculated correspond in sign to an

N-channel device, and the signs of the current and conducunces are changed to represent

the P-channel transistor.

43.2. Scaling of Channel Dimensions

Dau for an empirical MOS transistor model are derived from a MOS transistor with

specific channel dimensions. The daU for several empirical models of different dimen

sions are stored. To model transistors with channel dimensions that differ from those of

the measured measured device, the current and conducunces are multiplied by the scale

factor Sc.

Id, = Se X U (465)

Gri, = Sc X Gri, (4-66>

78

Ggs = Scx Ggy (4-67)

Gsb = Scx Gsb (4oS)

The scaling of currents and derivatives in this manner is valid for variations in channel

width and. in some cases, for small changes in channel length.

433. Out-of-Range Evaluation

The family of piecewise-cubic polynomials used in both linear and cubic interpola

tion represent the normal operating range of the transistor. However, a transistor

evaluation outside of the range defined by the polynomials may be required by the

circuit-simulation program. As shown in Figure 4.8. the two families of polynomials are

valid for

V, . < v, < Vj (4.69)
v ds min ^ v ds ^» v ds m»x •

V , ^ V < V (4.70)vgsmin *^ vgs ^ Vgs max-

In this "out-of-range" case, one or both of the variables V* and Vg, are outside of the

range defined by the cubic polynomials. The "out-of-range" case is solved by calculating

the function at the nearest boundary point. Therefore. Vris and Vg, are represented by

the following two equations.

Vd, • Min(Vdsm,x.Max(Vds.Vd,min)) (471)

Vg, = Min(VgSin„.Max(Vgs.Vg,!alll)) <4-72)

and the same evaluation as is required in the "in-range" case is performed.

Ugs

U9*M

Ugs.tn

•

Out of Range

Nona 1

!

Range
i

|
!

Uds.
tin

Out-of-Range
Figure 4.8

Uds Uds

79

43.4. Numerical Precision

Single precision and double precision are the two accepted floating-point word sizes.

As defined by the IEEE, the single-precision word size is 32 bits including a 24-bit

mantissa, and the double-precision word size is 64 bits including a 54-bit mantissa.

Double-precision operations require a greater amount of time to compute and/or more

hardware to implement compared to single precision.

The calculated value of Ids niay include an error due to the finite precision of the

floating-point calculation. Ids can be written as

Ids= Ids. +Slds. (4*73)

where Ids. is the answer computed with infinite precision and Sid, is the error due to the

inaccuracy of the mantissa as a result of the calculation. Provided the order in which the

80

calculation occurs does not change, the error is constant for the same inputs. 81ds can

effect an electrical simulation program in two ways-as an error in the simulation results

and as a discontinuity in the representation of Ids.

81^ can be directly reflected as an error in the simulation results. If the

linearized-circuit equations are calculated with infinite precision, the fraction of error in

the circuit variables is of the same order as the fraction of error in Ids- But. 8lds is gen

erally a small fraction of the actual value. A floating-point number whose mantissa is

accurate to only 12 bits still has less than 0.025% percent error. Based on this concern,

single-precision, floating-point arithmetic is adequate for computing Id,.

8Ids can produce a discontinuity in Ids at the boundaries of polynomials. Even

though the error due to the discontinuity is only a small fraction of the actual value, a

discontinuity in 1^ can prohibit the circuit from being simulated. To illustrate the cause

of the discontinuity, consider the example shown in Figure 4.9. The function is com

posed of two cubic polynomials, po and pi. where

p0 (x) = ao +bo (x-x0) +Co (x-x0)2 +d0 (x-x0)3 Xo < x < xx (4.74)

and

p, (x) = a, +bi (x-X!) +C! (x-x,)2 +d, (x-x,)3 x, < x < x2. (4.75)

With infinite-precision calculation the composite function is continuous at xj. the boun

dary between the two polynomials.

PoUl)= Pl(*l)«*l (4-7*)

With finite precision calculation, the piecewise function can be discontinuous at Xj.

p, (x^ remains equal to ax. but p0 (»i) contains an error due to the finite precision of its

compuution. The piecewise function is then discontinuous at Xj. As shown in Appendix

D. the piecewise-cubic function is always continuous provided

(x, -x0) X (xx -xo)-1 = 1 <4-77>

is exact. By applying this to the calculation of lri». the measured values of Vd, and Vgs

are restricted such that

(VdsJ+i-Vdsj)x (Vdsj+i-Vdsp-1= 1

and

81

(4.78)

(V^-, -Vgsk) X(Vgsk+1 -V^)"1 = 1 <4-79)

are exact. If Equations (4.78) and (4.79) are met using single-precision calculation. Ids

can be calculated using only single-precision, floating-point arithmetic.

Error

Piecewise-Cubic Polynomial Discontinuity
Figure 4.9

433. Data Storage

The amount of dau that is stored for each empirical model is dependent on the

number of measured voluges. 1^. Gds and Ggs must be stored for all of the combinations

of Vd, and Vgs measured voluges. The Vsb-dependence coefficients are also stored, where

there are 4 coefficients for each measured Vds voluge. In addition, the measured voluges

must also be stored. If J is equal to the number of Vds measured voluges. and K isequal

to the number of Vgs measured voluges. then the amount of dau that must be stored is

82

equal to

3 J K + 5 J + K. <4-80)

Typically J and K will both be greater than 10. and thus the first term in Equation

(4.80) dominates. For J = K = 10. 360 floating-point numbers must be stored.

There are only two division operations required by the transistor evaluation for

both interpolation methods. In both cases, the inverse of the difference between adjacent

measured voluges is calculated. These values have been represented as

and

1
v _ vvds j+l vds j

Vg$k+i ~vgsk

in the preceding discussions. For both general-purpose processing units and specifically

designed floating-point units, floating-point division typically requires a larger amount of

computation time in comparison to floating-point addition, subtraction and multiplica

tion [Man82]. For example, the Intel 8087 Numeric Dau Processor chip requires Alfts to

perform a floating-point division, compared to 28/is for multiplication and 18/*s for addi

tion [Su83]. and the Cray-1 supercomputer requires 14 clock cycles to perform an inver

sion5, compared to 7 cycles for a multiplication and 6 for an addition.

The inverse of the difference between adjacent measured voltages is precalculated

and stored with the other transistor model information instead of being calculated dur

ing the transistor evaluation. An additional J-l and K-l terms are stored, and including

these terms, the amount of dau stored is

3JK + 6J + 2K-2. <4-83>

(4.81)

(4.82)

^The Cray-1 does not directly support division. The Cray-1 inverts the divisor and then multiplies that
result with the dividend (SBN82).

83

The first term still remains dominant. For use with the MMAP. the primary advantage

is not speed, since there are only two division operations. The primary advantage is that

the MMAP does not need to support the division operation, thus simplifying the design

of the MMAP. For J = K = 10. the amount of storage increases by 5% to 378 floating

point numbers.

4.4. Examples

Three examples of the empirical model are given in this section. The operating-

point dau for the first two examples are generated from the Shichman-Hodges and SPICE

Level-2 transistor model respectively. The data for the third example is from a meas

ured device.

The empirical model parameters are generated by the POLY_MOS program, which is

listed in Appendix E. The input to the program are the discrete current data. The pro

gram calculates the values of G^ and Ggs to produce the family of curves, and the pro

gram also calculates the Vsb-dependence parameters. The data for the three examples are

given in Appendix F.

4.4.1. Example 1: Data Derived from the Shichman-Hodges Model

The Ids current data used in this example are generated from the Shichman-

Hodges(SH) model. The model parameters and current data are listed in Appendix F.

The two families of I-V curves are shown in Figures 4.10 and 4.11. In both figures,

the solid lines are the piecewise-cubic polynomials, and the dotted lines are generated

from the SH model. The family of curves represented by piecewise-cubic polynomials

coincides with the corresponding SH curves. The difference is only visible for the curve

of Ids as a function of Vds for Vgs = 6.0.

Linear interpolation between two curves of constant V^ is given in Figure 4.12.

The four curves. Vp = 3.6. Vp = 3.7. V^ = 3.8. and V,, = 3.9. are derived by linearly

84

interpolating between the piecewise-cubic curves at Vgs = 3.5 and Vgs = 4.0. The dotted

lines are the output of the SH model. The difference between the SH curves and the

linearly interpolated curves is a result of the linear interpolation. The linear interpola

tion between curves of constant Vgs provides for only a linear dependence on Vgs. while,

as given by the SH equations, the SH model is quadratically dependent on Vgs in the

saturation region.

Figure 4.13 displays the results of applying cubic interpolation between the curves.

Vgs = 3.5 and Vgs = 4.0. The cubic interpolation reproduces the behavior of the SH

model, with the only variation evident at the border between the saturation and ohmic

regions of operation. The agreement between the result ofcubic interpolation and the SH

model is expected since the basis of the cubic-interpolation method is derived from first-

order device behavior represented by the SH equations.

4.4.2. Example 2: Data Derived from the SPICE Level-2 Model

The Ids current data used in this example is generated from the SPICE Level-2

model, and the model parameters and current data are listed in Appendix F.

The two families of I-V curves are shown in Figures 4.14 and 4.15. In both figures,

the solid lines are the piecewise-cubic polynomials, and the dotted lines are generated

from the Level-2 model. The family of curves represented by piecewise-cubic polynomi

als coincide with the corresponding Level-2 curves.

Linear interpolation between two curves of constant V^ is given in Figure 4.16.

The four curves. V^ = 3.6. Vp= 3.7. Vg$ = 3.8. and Vgs = 3.9. are derived by linearly

interpolating between the piecewise-cubic curves at Vp = 3.5 and V^ = 4.0. The dotted

lines are the output of the Level-2 model. As with the SH model given in the previous

example, the difference between the SH curves and the linearly interpolated curves is a

result of the linear interpolation. The linear interpolation between curves of constant Vgs

provides for only a linear dependence on Vp. while the Level-2 equations demonstrate a

85

nonlinear (quadratic to a first order) variation in Ids due to varying Vgs in the satura

tion region.

Figure 4.17 displays the results of applying cubic interpolation between the curves.

Vgs = 3.5 and Vgs = 4.0. The cubic interpolation reproduces the behavior of the Level-2

model, with the only variation evident at the border between the saturation and ohmic

regions of operation.

4.43. Example 3: Data Generated from Device Measurement

The Ids current data used in this example is from measurement of an N-channel

MOS transistor with a channel width of 1.4 microns and a length of 1.4 microns [Dec84].

The ^ data for this example are listed in Appendix F.

The application of linear interpolation to the measured data is illustrated in Figure

4.18. and the application of cubic interpolation to the measured data is illustrated in Fig

ure 4.19. The curves for Vp = 2.0. 3.0 and 5.0 volts comprise the family of piecewise-

cubic polynomial curves of 1^ as a function of V,,,. The fourth curve. Vgs = 4.0. is

derived from interpolating between the curves Vgs = 3.0 and Vgs = 5.0.

iM0*4)

300 -

200

100

Example 1: Family of Ids vs. Vds
Figure 4.10

86

10 Vos(V)

300

Wm-*)

200-

100-

Example 1: Family of Ids vs. Vgs Curves
Figure 4.11

87

V«(V)

130

/m(m4)

100-

Example 1: Linear Interpolation - Ids vs. Vds
Figure 4.12

88

/osU4)

Example 1: Cubic Interpolation - Ids vs. Vds
Figure 4.13

89

300

/«(/*)

200-

Example 2: Family of Ids vs. Vd, Curves
Figure 4.14

90

Vm(V)

250f

/M0«4)

200-

100-

Example 2: Family of Ids vs. V^ Curves
Figure 4.15

91

Example 2: Linear Interpolation - Ids vs. Vd,
Figure4.16

92

120

IdsImA)

100"

50-

Example 2: Cubic Interpolation - Ids vs. Vds
Figure 4.17

93

Vgi • u»

Viw(V)

150

7M0«4)

Example 3: Linear Interpolation - Ids vs. Vd$
Figure 4.18

94

6 VM(V)

/j»(m4)

Example 3: Cubic Interpolation - Id, vs. Vd,
Figure 4.19

95

96

4.5. Chapter Summary

An Empirical MOS transistor model based on piecewise-cubic polynomials is

described in this chapter. The modeling of an N-channel MOS transistor is first

presented, and is then later expanded to include aP-channel MOS transistor. Two varia

tions on the empirical method are presented, one using linear interpolation and the other

using cubic interpolation, are presented. Both of the interpolation methods developed

make use of first-order MOS transistor behavior, and provide a continuous and mono-

tonic representation of the transistor's drain-to-source current.

Three examples are given to illustrate the empirical model. The data for the first

two examples are generated from the Shichman-Hodges and SPICE Level-2 models

respectively. The dau for the third example is from direct measurement of a 1.4^ m-

channel device. As demonstrated by the examples, the empirical model reproduced the

behavior of the Shichman-Hodges and SPICE Level-2 models. In addition, the third

example demonstrated that the empirical model can represent the behavior of an actual

device from measured data. As illustrated by the three examples, cubic interpolation

more accurately models the behavior of the device, however, as earlier stated, the cubic

interpolation is not guaranteed to be monotonic.

The evaluation of the empirical model equations requires only single-precision

floating-point addition, subtraction, multiplication and division, provided the restrictions

presented in Section 4.3 are met. For a small increase in data storage, the division opera

tion can be precalculated and stored along with the other model data. and. thus, no divi

sion operation is used during the evaluation. The equations and interpolation are con

sistent over all transistor operating regions, allowing the model equations to be executed

without conditional branching.

CHAPTER 5

Architecture of the MOS-Model Attached Processor

97

The MOS-Model Attached ProcessoKMMAP) is used in conjunction with a host

computer running an electrical circuit-simulation program. The MOS transistor's equa

tions areevaluated by the MMAP instead of the host computer. For the MMAP to be an

effective attached processor, it must evaluate the transistor equations at a much greater

speed than the host processor could do by itself.

The system-level description of the MMAP is given in Chapter 2. It is shown that

the data for the transistor models are stored in the MMAP in order to minimize the com

munication between the host and MMAP. In addition, the host does not remain idle

while the MMAP is evaluating the transistor equations but performs additional opera

tions in parallel with the MMAP. The empirical MOS-transistor model developed for use

with the MMAP is described in Chapter 4. This empirical model uses only single-

precision floating-point addition/subtraction1 and multiplication, and the equations are

evaluated without conditional branching.

The architecture of the MMAP is described in this chapter. The architecture is

designed to efficiently evaluate the empirical model described in Chapter 4. The com

ponents of the MMAP are first described. An example of a transistor evaluation is then

given, illustrating the operation of the MMAP's components. Next, a further description

of the organization and accessing of transistor-model dau within the MMAP is given.

The MMAP architecture is shown to support the pipeline evaluation of several transistors

since the evaluation of the MOS model does not require any conditional branching.

*For the remainder of this chapter, floating-point addition refers to both addition and subtraction.

98

Finally, the MMAP's architecture is shown to be expandable. The expansion provides an

increase in the number of transistors that can be evaluated at the same time.

5.1. Components of the MMAP Architecture

The organization of the MMAP's architecture and adescription of the different com

ponents are given in this section.

As described in Chapter 2. the MMAP is a"slave" to the host processor, performing

a transistor evaluation when requested by the host. The host sends the appropriate dau

to the MMAP and then signals the MMAP to begin a transistor evaluation. While the

MMAP performs the transistor evaluation the host is able to perform other operations.

Once the MMAP has completed the evaluation, the host can accesses the results of the

evaluation and initiate another transistor evaluation.

The basic structure of the MMAP is shown in Figure 5.1. The MMAP consists of

the Controller. Interface and Processor components. The communication between the

MMAP and host is done through the Interface component. The MOS transistor equations

are evaluated by the MMAP's Processor component. The program defining the MMAP's

operation is stored in the Controller, and the program defines the operation of the Inter

face and Processor components necessary to perform the transistorevaluation.

A

Commands

Host Bus

Controller

Control Signals

1

99

Processor

Status

Processor

MMAP Organization
Figure 5.1

5.1.1. Processor

The Processor component conuins the dau path used in evaluating the transistor

equations. As described in Chapter 2. the model dau are stored in the MMAP. and. as a
result, the memory used to store the dau isalso a part of the Processor component.

100

The Processor component, shown in Figure 5.2. is composed of the Coefficient
Memory(CM) and the Model-Processing Unit(MPU). where the MFC is composed of the
Floating-Point Unit(FPU) and the Coefficient Cache(CC). Three data buses connect the
function* units. The Aand Bbus lines connect the data outputs of the dual-output CC
to the inputs of the FPU. providing the FPU with input operand, The Cbus connects
the output of the CM and FPU with the input of the CC. From the Cbus. dau from the
CM or results from the FPU can be written into the CC.

The transistor model dau are stored in the CM. The CM is large since it must store
the dau for all models required by the simulation. For example, if the MMAP is to store
amaximum of 16 different models, and each model required 4K-bytes> of storage, the
CM must be at least 64 K-bytes in size.

The transistor evaluation requires the access of dau from the CM. but the amount
of dau required for the evaluation is only asmall fraction of the toul transistor-model
dau. The necessary dau are accessed from the CM for each transistor simulation and
arestored in the CC for the calculation.

The CC is aset of registers which store the necessary dau for the current evalua
tion and the intermediate results from the calculations. The CCs two outputs are
addressed independently. The CC provides both input operands for the FPU and stores
the results of the FPU's floating-point calculations. Once the required model dau have
been read from the CM and stored in the CC. the CM is no longer accessed for the
remainder of the calculation. The dau path, comprised of the FPU and CC. is used in the
floating-point calculations. The CC operates at the same clock speed as the FPU.

The FPU performs the floating-point operations of the input operands presented on
the Aand Bbuses. The result is placed on the Cbus for storage in the CC. As described
in Chapter 4. only single-precision floating-point addition and multiplication are needed

21 K-byte is equalto 1024 bytes.

101

in the transistor evaluation. Therefore, the FPU supports only these floating-point

operations. The FPU is described in further detail in Section 5.4. "Pipelined Operation of

the MMAP".

Coefficient

Memory

MMAP Processor3
Figure 5.2

5.1.2. Controller

In general, aprocessor can be divided into adau part and acontrol part [SBN82].
A computer program is translated into a sequence of machine-language instructions,

where the instructions specify the operations that have to be performed on the dau part.

For example, the instruction may specify the moving of dau between internal registers

or the addition of two numbers. In order to perform amachine-language instruction, the

control part executes an ordered sequence of control signals which dicute the operation
qf the dau part necessary to perform the instruction. The control of the dau part of the
MMAP can be viewed in the same manner as the general case. The Controller executes an

'Control signals and interface connection are not shown.

102

ordered sequence of control signals which direct the Processor and Interface components

to perform the transistor evaluation.

The Controller component of the MMAP can be organized in either of two ways:

(1) A machine-language instruction set for the MMAP can be developed, and the

Controller executes a sequence of machine-language instructions representing the

transistor model.

(2) The transistor model can be embedded directly into the Controller as a single

machine-language instruction.

(1) is the more flexible than (2). For (l). if the transistor model changes, only the

sequence of machine-language instructions must change, but for (2). the machine-

language instruction must change, necessiuting a change in the Controller component.

The transistor model developed for use with the MMAP is empirical. As described in

Chapter 3. empirical models are generally unaffected by changes in process technology.

Therefore, the advanuge of greater flexibility that (l) has over (2) is negated. The

implemenution given in (2) is generally more efficient than (l) since each step in the

machine-language instruction of (2) is uilored to a step in the model evaluation. As pre

viously stated, for the MMAP to be an effective atuctied processor, it must perform the

evaluation at as great a speed as possible. Therefore, the transistor model is embedded

directly into the Controller as a single machine-language instruction.

The Controller is microprogram based, composed of a microprogram sequencer and

control memory4 as shown in Figure 5.3. The instructions defining the MOS-transistor

model are stored directly in the control memory. The microprogram sequencer is used to

calculate the instruction address of the Controllers control memory. All operations per

formed by the Interface and Processor components are controlled by the Controller com

ponent.

^Control memory is also referred to as microstore.

Microaddress

Register

Microstore

(Read-only Memory)

^r

Microinstruction Register

-

Data

Next

Microaddress

Logic

Path

Control

4 Processor

Status

M[MAP Controlh
Figure 5.3'

sr

103

5.13. Interface

The Interface component is connected to the host processor's bus and is used to

communicate between the MMAP and the host processor. Model coefficients are sent

from the host processor to the MMAP for storage in the CM. For each transistor evalua-

104

tion, the transistor data is sent to the MMAP and the Controller is signaled to begin com

putation. Once the evaluation is completed, the results from the evaluation are returned

to the host through the Interface.

5.2. Single Transistor Model Calculation: An Example

In this section, the operation of the MMAP is demonstrated by the evaluation of a

piecewise-cubic polynomial of one independent variable.

Id$=f(Vds). (5.1)

The piecewise-cubic polynomial represents the one dimensional behavior of the MOS

transistor's Ids as a function of its V^. The function f(V^) is composed of piecewise-

cubic polynomials as shown in Figure 5.4. Each cubic polynomial interpolates between

two consecutive dau points. The function of the MMAP is to calculate Ids and G^ at a

specified value of V^. For this example, the value of V^ is within the range

Vd,2 < V^ < Vd,3. (5-2)

The cubic polynomial, valid for the region specified by (5.2). is

Ids = a2 + b2 6Vds + c2 6Vd,2 + d2 oV*3. (5.3)

where

6Vds= Vds -V^2. <5-4>

As described in Chapter 4. the polynomial's coefficient^ a2. t^. c2 and d2) are algebraic

functions of the values of current and derivative at the polynomial's endpoints. How

ever, for this example the polynomial's coefficients are assumed to be stored in the CM.

To calculate the value of Ids at a given Vd,. only the coefficients of the appropriate poly

nomial are necessary. As shown in Figure 5.5. the values of a2.. 02. c2 and d2 are read

from the CM and stored in the CC. The polynomial equation is then evaluated. Horner's

rule[HoS84] is used to minimize the number of floating-point operations.

105

Ids = a2 + 5V*(b2 + 8V* (c2 + d2 5V'ds)) <5-5)

First d2 and Vds are input to the FPU from the CC. The FPU multiplies the two

floating-point numbers and returns the intermediate result to the CC. Next, the inter

mediate result and the coefficient c2 are sent to the FPU. The FPU performs the addition

of the two operands and returns the result to the CC. This procedure is continued until

the calculation of Ids and then Gds are completed.

ds

"dsl "d*2

'(Ud*>

+~ 1
ds3 "dsf uds5 u <»»«

Piecewise-Cubic Example
Figure 5.4

a1

bl

cl

d!

a2

D2

c2

d2

a3

b3

c3

d3

a4

t)4

c4

d4

a5

D5

c5

d5

Coefficient

Memory
Access Coefficients

Figure 5.5

Vds

a2

D2

c2

d2

Coefficient

Cache

106

53. Storage of Transistor-Model Data

The storage and organization of the transistor-model daU are described in this sec

tion.

107

The CM is divided into equal-sized sections, where each section stores the dau for a

single MOS transistor model. As given in Chapter 4. the following dau are stored for

each model:

(1) Ids. Gds and GJS at the measured terminal voluges.

(2) Measured Vd, and Vgs.

(3) Values of (AVds)"1 and (AV,,)"1. which are the inverses of the difference

between adjacent measured voluges.

vdsi+l vdsi

(A V r1 = * . (5.8)
•vgsi+l vgsi

(4) Vsb-dependent parameters.

As described in Chapter 2. the information passed to the MMAP for each transistor

evaluation includes a unique model pointer. The model pointer is a unique label that

corresponds to the transistor model name given in the entered circuit description, and

references the model dau that is stored in the CM. The model pointer and differential

terminal voluges are used to retrieve the required information from the coefficient

memory.

The address for the CM is divided into Model. Subsection and Offset fields.

MODEL I SUBSECTION I OFFSET |

Coefficient Memory Address
Figure 5.6

The Model field specifies the part of CM conuining the dau for amodel. The size of the

Model field is dependent on the number of transistor models stored. The Subsection field

108

is two bits wide, specifying four equalized subsections. As depicted in Figure 5.7. one
subsection is used to store each of the values of 1., C and Ggs at the measured vo.uges.
and one subsection is used for the storage of the V* dependence parameters, measured
voluges. and inverse differential voluges. The Offset field specifies the appropriate data
within a subsection.

Dau Storage in the Coefficient Memory
Figure 5.7

Measured

Voltages

Inverse

Differential

Voltages

Vsb

Parameters

5.4. Pipelined Operation,of the MMAP

As described earlier, the dau path formed by the CC and the FPU is used to per
form the floating-point addition and multiplication needed for the transistor evaluation.
In this section, the concurrent evaluation of several transistors by pipelining the dau

path is described.

109

5.4.1. Pipelined Floating-Point Unit

Pipelining is a technique which can be used to increase the concurrency in a

floating-point unit. The technique decomposes the floating-point operation into a

sequence of sub-operations with each sub-operation executed by aspecial dedicated stage

of the floating-point unit that operates concurrently with all other suges in the floating

point unit. Registers placed between suges are used to buffer between suges which

allows each stage to operate on different dau simuluneously. For example, the addition

of two floating-point numbers can be done using the following three-step procedure

[Man82].

(1) Align the mantissas.

(2) Add the mantissas.

(3) Normalize the result.

As shown in Figure 5.8. the hardware for the floating-point addition can be structured as

a three-stage pipeline, where each suge performs one step of the addition procedure.

Assuming each suge is executed in a single clock cycle, an addition operation is per

formed in three clock cycles, and. once the pipeline is full, a result is available every

clock cycle.

Most fast floating-point units are pipelined. The floating-point add and floating

point multiply units of the CRAY-1 require 6 and 7clock cycles, respectively, to per
form their operations, and each unit is pipelined into single-clock segments [SBN82]. As
aresult of pipelining, each unit can return aresult with adelay of 6cycles for addition
and 7 cycles for multiplication. A floating-point unit which is not pipelined can gen

erally perform asingle floating-point operation faster than apipelined floating-point unit.
But. the calculation ofalarge number of floating-point operations can be performed more

efficiently using apipelined floating-point unit since the pipelined unit can return aresult

every clock cycle once all its segments are full.

I
Input

Operands

Register

i
Alllgn

Mantissas

Register

i
Add

Mantissas

Register

i
Normalize

Result

Register

Output
Dacnlr

Pipelined Floating-Point Addition
Figure 5.8

110

5.4.2. Pipelined Transistor Evaluation

The pipelined FPU must be efficiently utilized to achieve the greatest possible speed

for model evaluation. Each empirical transistor model evaluated by the MMAP requires

the calculation of several cubic polynomials. But. cubic-polynomials are not well suited

for pipelined evaluation. Consider the cubic polynomial

y = a+bx +ci2+dx3. (5-9)

Horner's Rule [HoS84], which minimizes the number of floating-point operations, is used

to evaluate (5.9). The order of compuution is

(1) dx

Ill

(2) c + (dx)

(3) x(c + dx)

(4) b + (cx + dx2)

(5) x (b + cx + d x2)

(6) a+(x b +cx2 + d x3)

Each step in the procedure cannot begin until the previous step is completed, and. thus.
only one segment in the FPU's pipeline is used at any time during the evaluation. For
example, c+(d x) cannot be computed until (d x) is first computed.

(5.11) can be evaluated in an alternative fashion which does not minimize the
number of floating-point operations but allows for the most efficient use of the pipelined
FPU. The steps used in the compuution are given below, where each step conuins the
set of compuutions which can be in the pipeline at the same time.

(1) bx ,x2 and dx

(2) a+(b x) .c(x2) and (d x) (x2)

(3) (a + b x) + (c x2)

(4) (a +bx+cx2) +(d x3)

,„ this case, three operation, can be in the pipeline in steps (1) and (2). but only one
operation in the pipeline during steps (3) and (4).

The MMAP. instead of evaluating one transistor, performs the evaluation of N
transistors concurrently/where Nis equal to the number of segments in the FPU's dau
path. The transistor evaluation can be pipelined in this manner since the transistor equa
tions are executed without any conditional branching. The pipelined evaluation of N
transistors is illustrate by the evaluation of the following S polynomial equations.

,. (5.10)
yi = at +xi (bi +xx (ci +di x^;.

112

vr = a2 + x2 (b2 + x2 (c2 + d2 x2)).

ys = aN + xN (bN + xN (cK + dN x*)).

As shown in Figure 5.9. dj and x are input to the FPU. followed by d2 and x on the next

clock cycle. After N cycles, the pipeline is full, and the first result, d, xlt is returned

from the the FPU. As illustrated in Figure 5.10. the results of the first step are applied

to the next step in the evaluation. Ideally, once the pipeline is full, there are no breaks

in the pipeline.

Loading the FPU's Pipeline
Figure 5.9

113

stage

1

2

3

♦ (d2x2) c2

♦
♦ (dlxl) cl

♦
x dN xN

T

(d3 X3)

C3

i

i t
|N-1 x d6 x6

| N x d5 x5

1FPU t
V*« •«»•••••••«••••»««••••••«• »•••••*»*•••••)•»• ••»••#•••*•«•••»•«••••••••••••»•••••••rt

(d4 x4)

Cycling Dau Through the Pipeline
Figure 5.10

Coefficient

Cache

114

115

5.5. Parallel MPUs

The amount of communication between the CM and the MPU is a fraction of the

MMAP's toul MOS transistor model evaluation time. Several MPUs can share the same

CM to improve the overall performance of the MMAP. The expanded MMAP can be

configured with a single Controller as shown in Figure 5.11. A single Controller is used

to control all the MPU's. The total MOS transistor evaluation time for a MMAP with a

single MPU(Tangle) is the sum of the time required for reading dau(Tre,d). evaluating the

transistor equations(TCvti). and writing the results(Twrile)-

Tsingle = Tread + T^ai + Twrjte

With a single Controller and N MPUs. each MPU evaluates the transistor equations

simuluneously. but reading from the coefficient memory and writing results are per

formed serially. The toul evaluation time is the sum of the time to evaluate the transis

tor equations by asingle MPU plus the sum of read and write times for all MPUs. For N

MPUs. the toul evaluation time(Tmuitipie) is

Tmultiple = Teval + N X (Tmd +TWf jte) •

The toul evaluation time increases linearly with the sum of the read and write time.

The evaluation time per MOS transistor(Twan) decreases with an increasing number of

MPUs

_ Teval Tre>d + Twfite (5.13)
Twmn" N~x~P P '

where P is the number of transistors evaluated concurrently by a single MPU. As the

number of MPUs increases, the Tuan becomes limited by the sum of the dau read and

result write tiroes.

Coefficient

Memory

Processor with Multiple MPUs
Figure 5.11

116

5.6. Parallel MMAPs

The number of different transistor models that can be used in the simulation is lim

ited by the size of a MMAP's CM. The maximum number of MOS transistor models can

be increased by using multiple MMAPs as shown in Figure 5.12. The overall evaluation

time per MOS transistor model can also be reduced by having multiple MMAPs. The

reduction in time is dependent on being able to utilize all additional MMAPs. When all

MMAPs are fully utilized and there is no conflict in communication, the time per MOS-

transistor evaluation is equal to the time per MOS-transistor evaluation of a single

MMAP divided by the number of MMAPs.

T,
Toul Time per Model Evaluation = -g—. MMAPs (5.14)

A

~

MMAP 1

Host

Processor

MMAP 2

I/O

MMAP 3

Memory

Disk

MMAPN

1

Syi
B

Multip
Figu

f..

stem

US

le MMAPs
re 5.12

117

118

5.7. Chapter Summary

The MMAP evaluates the MOS transistor model equations. The architecture of the

MMAP is designed to evaluate the transistor operation based on the cubic polynomial

represenution. The MMAP is composed of an Interface unit, a Controller unit and a

Processing unit. Dau is communicated to and from the host through the MMAPs Inter

face unit. The Controller unit governs the operation of the Processor and Interface units.

The MMAP executes the polynomial equations without branching, allowing for the con

current pipelined evaluation of several transistors. It is demonstrated that the architec

ture of the MMAP can be further optimized to allow for several Model Processing Units

to be connected to a single Coefficient Memory to increase transistor-evaluation

throughput. In addition, several MMAPs can be used in parallel to improve the

throughput.

CHAPTER 6

Prototype Implementation of the MMAP

on the IBM PC-XT Personal Computer

119

The design of a board-level prototype of the MOS-Model Atuched

Processor(MMAP) is presented in this chapter. The prototype's design isa practical reali

zation of the architecture described in Chapter 5 and is optimized for the evaluation of

the empirical MOS transistor model described in Chapter 4. As described in Chapter 4.

the empirical model is shown to reproduce the behavior of both the Shichman-Hodges

and SPICE Level-2 transistor models and dau from device measurements.

The prototype MMAP is built using at toul of 101 "off-the-shelf" SSI. MSI and LSI

components on two wire-wrapped circuit boards which are connected through a common

interface. The prototype has asingle Model-Processing Unit(MPU) and can evaluate four

MOS transistors concurrently. The prototype is interfaced to the IBM PC-XT personal

computer through the IBM PC-XT's bus. as shown in Figure 6.1. and is used in conjunc

tion with the BIASC circuit simulation program running on the IBM PC-XT.

A description of the IBM PC-XT personal computer and the reasons for implement

ing the prototype MMAP on the IBM PC-XT are first given. Next, the prototype's

hardware design is described. This includes a description of the MMAP's components

and the MMAP's hardware interface to the IBM PC-XT. The schematics and parts listing

of the prototype MMAP are given in Appendix G. Next, the performance of the proto

type is presented. Included are the measured MOS transistor-evaluation times of the

MMAP and IBM PC-XT. Finally, the performance of the BIASC circuit-simulation pro

gram running on the IBM PC-XT using the MMAP is presented, and results from two

example circuits are given.

j8"" '»'•'•

|
I •r- 1

6068
>

<r
<

I*
c j

8087
>

if

l
j! J

t

J
1

Memory i
\

J l
\

•

t PC BUS (62)

IBM PC-XT With Prototype MMAP
Figure 6.1

120

121

6.1. IBM PC-XT Personal Computer

The IBM PC-XT personal computer is based on the Intel 8088 16-bit

microprocessor[ReA80]. The PC-XT has an 8-bit-wide memory dau bus and a 20-bit-

wide address bus. The 20-bit address provides a lM-byte address range, of which a

maximum of 640K is available for random-access memory(RAM). The In8088 operates

in conjunction with the Intel 8087 Numeric Dau Processor(NDP)[Int84]. The In8087

performs all the floating-point compuutions and conforms to the IEEE floating-point

standard[Kah84]. In addition, the In8087 has an 8-word suck. The stack word is 80

bits wide and conforms to the IEEE standard for intermediate storage of double-precision

floating-point numbers. The suck provides storage for the intermediate results of

floating-point calculations which reduces the time required for the calculations by

minimizing the amount of dau transferred.

The prototype MMAP is implemented for use with the IBM PC-XT. [GMP84].
[Gyu85] and [Blu85] demonstrated that the IBM PC-XT is effective in performing electri

cal circuit simulation. The IBM PC-XT's In8087 provides fast evaluation of "in-line"

floating-point equations such as the MOS transistor equations. Since the IBM PC-XT is
effective in performing circuit simulation and efficient in solving "in-line" floating-point

equations, the IBM PC-XT provides a fair test of the MMAP's performance.

6.2. Design of the Prototype MMAP

The design of the prototype MMAP is presented in this section. An overview of the

MMAP architecture is first given followed by a description of the board-level organiza

tion of the prototype. Next, the design of the MMAP's Controller and Processor com

ponents are presented. In the prototype design, the Interface component is part of the
Coefficient Memory and is discussed in the section describing the design of the Coefficient

Memory. The schematics of the prototype are given in Appendix G.

122

6.2.1. Design Overview

As described in Chapter 5. the MMAP is composed of the Processor. Interface and

Controller components. The Processor component stores the model dau and performs

the calculations required in the model evaluation. The communication between the host

and the MMAP is done through the MMAP's Interface component. A sequence of signals

generated by the Controller, direct the operation of the Processor component in perform

ing the transistor evaluation.

The MMAP's Processor component is composed of the Coefficient Memory(CM) and

Model-Processing Unit(MPU). The CM provides storage for the transistor model data,

and the MPU conuins the dau path used in the equation evaluation. The MPU is com

posed of the Floating-Point Unit(FPU) and the Coefficient Cache(CC). The FPU performs

the floating-point operations, and the CC stores the dau and intermediate results

required for the current evaluation. Both the FPU and CC operate at the same clock

speed.

As described in Chapter 5. the MMAP architecture can support the concurrent

evaluation of several MOS transistors. The prototype is designed to simuluneously

evaluate 4 transistors.

The prototype MMAP is built on two circuit boards, and the components on the cir

cuit boards are wire-wrapped. Board A. shown in Figure 6.2. conuins the FPU. the CC.

and the CM's dau and address registers. Board B. shown in Figure 6.3. conuins the

CM's memory chips and memory control logic, the MMAP's Controller, and the interface

to the IBM PC-XT. The two boards are connected by three buses. The first bus (see Fig

ures 6.2 and 6.3) connects the CM's dau input/output and address, the second bus con

nects the clock and sutus signals, and the third busconnects the MMAP's Controller on

Board B to control points on Board A. Board B. as shown in Figure 6.4. is connected

123

directly to the IBM PC-XTs bus1. The PC-XT's bus is 62-bits wide and includes

address, data, control, status, and clocking signals in addition to several supply voluges

and ground reference. The bus diagram is shown in Figure 6.5. The signals that are used

by the MMAP and referred to later in this chapter are marked with an asterisk. All of

the components used by the MMAP are TTL or TTL compatible and require only a+5 V

power supply. The MMAP is powered by a single +5 V power supply that is separate

from the power supply of the IBM PC-XT.

^e PC bus is also referred to as the I/O channel.

Board A
Figure 6.2

124

Board B

Figure 6.3

125

Connected to the IBM PC-XT
Figure 6.4

126

Diagram of the IBM PC Bus [IBM84]
Figure 6.5

127

128

6.2.2. Controller

The operation and design of the Controller component of the prototype MMAP is

presented in this section.

As described in Chapter 5. the Controller is microprogram based. The Controller

consists of control logic used to generate the microaddress. amicrostore used to store the

microinstructions2, and a microinstruction register used to store the current microin

struction. The instructions for the transistor evaluation are stored directly as microin

structions in the Controller's microstore. The sequencing of the microinstructions by the

Controller define the transistor-evaluation operation.

The block diagram of the Controller is shown in Figure 6.6. The microinstruction

address is generated by an AM2910 [AMD83] microcontroller. The AM2910 outputs a

12-bit-wide address which can address up to 4K microinstructions. The microinstruc

tions are stored in a 4K X 64 ROM. A new address is generated every clock cycle, and

the corresponding microinstruction is latched into the microinstruction register on the

rising clock edge.

The AM2910 can generate an address from an internal source or use the address

supplied to its Dinputs. Two of the internal sources are a microprogram counter and a

five-level deep, last-in. first-out suck. The microprogram counter conuins the value of

the previous address incremented by one. Sequential access to microinstructions is

obuined by repeated use of the address stored in the microprogram counter. Uncondi

tional, conditional and subroutine branching are also supported. Unconditional branch

ing within the control program is accomplished by using the address supplied by the

external input as the next microinstruction address. With conditional branching, the

address from the external input is used if the condition test passes, otherwise the address

is given by the microprogram counter. Subroutine branching is similar to unconditional

instructions stored in the microstore ate refcTTed to as microinstructions.

129

branching, except the return address is stored in the stack. The subroutine return is thus

accomplished by using the address stored on the stack as the next microinstruction

address. The stack is five levels deep, allowing up to five levels of subroutine nesting.

As shown in Figure 6.6. the inputs to the AM2910 are the 12-bil external address

(Dll-DO). the 4-bit instruction (13-10). condition-code (CC). and condition-code enable

(CCEN) inputs. The I inputs provide the instruction used by the AM2910 in determin

ing the next microinstruction address. For example, an instruction of binary value 0010

instructs the AM2910 to unconditionally branch to the address given by the D inputs.

The CC and CCEN inputs determine the conditional branching. The conditional test

always passes, independent of the ^ input, if the CCEN input is set at a logic "1". If

the CCEN input is set at a logic "0". the conditional test is determined by the CC input.

Conditional branching is required in two insunces. both of which are illustrated in

Figure 6.7. The MMAP remains idle after completing an evaluation, only beginning

another operation when signaled by the IBM PC-XT. The IBM PC-XT signals the MMAP

to begin evaluation by setting the BEGIN signal to a logic "0". Once signaled, the MMAP

performs the evaluation until completion. Also, as described in Section 6.2.5. the com

munication between the CM's internal memory storage and input/output registers is

asynchronous. Since the communication is asynchronous, the Controller must wait for a

signal from the CM before continuing. The CM signals the Controller that the memory

operation is complete by setting the MRC (Memory Reference Complete) signal to a logic

"0"

As shown in Figure 6.6. the BEGIN and MRC signal are connected to 2 inputs of a

741sl51 l-of-8 multiplexor, and the output of the multiplexor is connected to the CC

input of the AM2910. The three CCS signals specify which one of the eight inputs to the

multiplexor is input to theCC input of the AM2910. The BEGIN signal is selected as the

input to the CC input when the MMAP is waiting to be begin another evaluation, and the

MRC signal is selected as the input to the CC input when the MMAP is checking for the

completion of a memory operation.

130

The microstore is composed of Read-Only Memory(ROM) which can store up to 4K

microinstructions, and the width of the microinstruction is 64 bits. The address gen

erated by the AM2910 is used to address the ROM. The ROM is composed of eight

4K X 8-bit ROM(Read-Only Memory) chips. The eight ROMs share the common address

input and providea combined 64-bit-wide output.

As shown in Figure 6.6. the output of the microstore is directed to the input of the

instruction register. One instruction is generated per clock cycle, and the microinstruc

tion that is currently being executed is stored in the instruction register. New microin

structions are loaded into the instruction register on the rising edge of the clock signal.

The output of the instruction register is connected to control points throughout the

remainder of the MMAP and to control points within the Controller. The signals fed

back to the Controller select the appropriate condition code, providing the D. I and CCEN

inputs to the AM2910 and the CCS signals to the 741sl51 multiplexor. The instruction

register is composed of 8 AM2954 [AMD83] ocul register chips.

BEGIN

ROM

(4K X 64)

Data Out

I jMicroinstruction Register^

44 16

To

Control
Points

Block Diagram of the Controller
Figure 6.6

131

Clk

Completed Previous
Evaluation

1

BEGIN «T

BEGIN = "O*

Conditional Branches
Figure6.7

Dynamic
Memory
Operation

132

MRC = "0"

The format of the microinstruction is shown in Figure 6.8. Each microinstruction is

logically divided into 4 fields, one each for the Controller. CM. FPU and CC.

FPU | CM I CC I Controller 1

Microinstruction Fields
Figure 6.8

41 of the 64 instruction bits are used for control points throughout the MMAP and are

described in the following sections on the FPU. CC and CM and 20 instruction bits are

used in the determination of the microcontroller's next address. 3 instruction bits are

not used.

A complete list of the microinstruction bits are listed in Table 6.1. The list includes

the signal name, the name of the component (eg. FPU) it controls, and ashort description

133

of the signal.

Control Signals

Micro Signal Component
instruction Name name Description

0-11 D0-D11 Controller Explicit Address
12-15 10-13 Controller /^-controller Function

16 CCEN Controller Condition-Code Enable

17-20 DPA0-DPA3 CC Dual-port Address
21 DPW CC Dual-port Write
22 DPL CC Output Low
23 CMA CM Memory Request

24-29 AFL0-AFL5 CM Address Formation Logic Control
30-34 LA0-LA4 CM Load Address Register-
35-37 CCS0-CCS2 Controller Condition Code Select

38 CMR CM CM Read by MMAP
39 CMW CM CM Write by MMAP
40 LDATA CM Load Data-Input Register
41 ENBLE CM Enable Dau-Output Register
42 TOP CM

43-45 FP FO-FP F2 FPU FPU Function

46 FPALU Ul FPU Unload ALU

47 FPMULJJ1 FPU Unload Multiplier
48 FP UO FPU

49.50 FP_L0.FP.L1 FPU Load FPU

51 - unused -

52 - unused -

53 SRW CC Sutic Ram Write

54-61 SRA0-SRA7 CC Sutic Ram Address

62 - unused -

63 AFL6 CM Address Formation Logic Control

Table 6.1

6.23. Floating-Point Unit

As described in Chapter 5. the FPU performs floating-point addition, subtraction

and multiplication. The two input operands are entered at the same time from the

MMAP's A bus and B bus. The FPU performs the floating-point operation and outputs

the result to the MMAP's C bus. The architecture of the FPU is pipelined. Pairs of

operands can be sent continually to the FPU. with the FPU performing the calculation

and returning the results in order.

The FPU is built using the Weitek 1032 32-bit multiplier[Wei84] and Weitek 1033

32-bit floating-point ALU[Wei84]. The Weitek chip-set is used since it performs all the

134

quired floating-point orations, has apipelined daU path, and executes the floating
point operations very quickly. The WTL1033 performs floating-point addition and sub- j
traction, and the WTL1032 performs floating-point multiplication. Both the Weitek j
WTL1032 and WTL1033 are pipelined. New operands can be input to the WTL1032 and j
WTL1033 every 2clock cycles, and both the WTL1032 and WTU033 have apipeline ,
.atency of 10 clock cycles. Operating in pipeline mode at adock speed of lOMhz. the
Weiteks can execute all floating-point operations in 1M-second and output results every
200 n-seconds. As acomparison, the IBM PCs Intel 8087 operating at 4.47Mhz executes
afloating-point add on dau stored in its own registers in 18 ^-seconds.

The dau inputs and outputs of the WTL1032 and WTL1033 are connected in
parallel, as shown in Figure 6.9. One input of each Weitek is connected to the MMAPs A
bus and the other to the MMAP's Bbus. The outputs of the WTL1032 and WTL1033
are connected to the Cbus. The Weitek's two dau inputs and one dau output are each
16 bits wide, requiring 2clock cycles to load the 32-bit input operands and two clock
cycles to unload the 32-bit result of the floating-point operation. In both loading and
unloading of dau. the 16 most-significant bits of the floating-point number are entered

... , . ., , ,.;.. Th» ifi-bit-wide dau inputs define thefirst followed by the 16 least-significant bits. The 10 mi wicre u

width of the MMAPs A.Band Cbuses to be 16 bits.

The WTL1032 and WTL1033 each have 8control inputs[Wei84l. On each Weitek
chip, the LI and LO inputs control the loading of input dau. the Ul and UO inputs con
trol the unloading of results, and the F3-F0 inputs select the appropriau floating-point
function. The dau and control inputs are latched into internal registers on positive going
dock transitions, but only the function entered along with the most-significant portion
of the input operands is used.

As shown in Figure 6.9. acommon set of control signals from the Controller is
shared by the two Weitek chips. The load inputs are both connected to the FPJ.0 and
FPJ.1 control lines. The F0-F2 function inputs are both connected to the FP_F0-FP_F2
control lines, and the UO unload input of both chips are connected to the FPJJO control

135

line. The MMAP uses only asubset of the floating-point functions available from the
Weiteks. and. for these operations, the F3 signal is always alogic "0". The F3 input to
both Weitek chips is connected to ground. The same data is loaded into both Weiteks at
the same time, but only the result from the appropriate output is accessed. The Ul
unload input for each chip is connected to separate signals from the Controller.
FPMUL_U1 for the WTL1032 and FPALUJJl for the WTL1033. Ul enables the tri-
sute output of aWeitek chip. Since only one output can be enabled at atime, there are
separate Ul signals to each Weitek.

FPJ.1.FPJ.0

FP-F2 - FP-FO

FPJUO

FPMUL-U1

A BUS

*LO

CK

Weitek

1032

<«

>L0

F3

*F2

-*F1

FO

«J0

1
FPALUJJl

CK

Weitek

1033

<

MUL Output ALU Output

16

CBUS

Block Diagram of the Floating-Point Unit
Figure 6.9

16

136

CLK

6.2.4. Coefficient Cache

The CC is used to store daU for use with the FPU. The CC has 2 output ports and a

single input port. Separate dau can be accessed from two locations within the CC and

output to the Aand Bbuses at the same time. The CC's input port is connected to the C

bus. The CC and the FPU operate synchronously, with the CC performing read and write

operations in a single clock cycle.

137

The CC. shown in Figure 6.10. stores 256 16-bit words. Since four transistors are
evaluated simultaneously. 64 16-bit words are available for each transistor. The CC is
composed of a256 X16 sutic memory and a16 X16 dual-ported memory register. The
output of the sutic memory is input to the dual-ported memory register, which allows
dau to be read from the Cbus and written to the Aand Bbuses concurrently.

The 16 x 16 dual-port register can store eight 32-bit floating-point numbers, pro
viding direct access to four pairs of operands by the FPU. In general, the same floating
point operation is performed on the four pairs of operands, and each pair is specific to one
of the four transistors being evaluated.

The dual-port register has aseparate 4-bit address for each of the two dau outputs.
During aread operation, the A-address port addresses the dau-output port connected to
the Abus. and the B-address port addresses the dau-output port connected to the Bbus.
During awrite operation, the A-address port specifies the location within the dual-port
register in which the dau from the sutic memory is written.

The four DPA signals are the address of both ports. As shown in Figure 6.10. the
,owest three A-address and B-address inputs are connected to the DPA2-DPA0 control
signals. The fourth A-address input is connected to the DPA3. and the fourth B-address
input is connected to grounddogic V). The four DPA signals provide the address in a
write operation since only the A-address port is used. In aread operation, all 16 words
can be output to the Abus. but only the lowest 8words can be output to the Bbus.
DPW is the wriu signal to the dual-port memory and is active low. DPL signal is active
low and forces the outputs of the dual-port register to alogic *0'.

For floating-point operations, operands for the Bbus are stored in the lower 8loca
tions, and operands for the Abus are stored in the uPr*r 8locations. The two operands
for afloating-point operation are stored in locations with the same lowest three address
bits, but with adifferent fourth address bit. For example, the Aopercnd is stored in the
dual-port location specified by binary address 1001. and the Boperand is stored in the

138

0001 is output to the B bus.

The eight SRA control signals specify the sutic memory address. The SRW control

^ present on the Cbus is written into the sutic memory location specified by the
SRA.

The 16 x 16 dual-port register consists of 4 >6 x4 AM29705 Dual-port
RegisterstAMD83]. The 256 x16 static memory consists of 4256 x4AM91122^0
sutic RAMIAMD83].

^

DPA2 - DPAO

DPW 1

Wl 1

SRW->

CLK^

SRA

63

W

r

Data Output
PortB

PortB

"*^ &2 Address

->B1

A BUS

16X 16

Dualpot
Memory

Data Input

I 16

-Data Output
Port A

Port A

Address

Write

Timing W
Data Output

V-

256 X 16

Data Input

—z—

16

CBUS

Block Diagram of the Coefficient Cache
Figure 6.10 .

<j
A3

A2

A1

AO

139

CLK

DPA3 - DPAO

6.2.5. Coefficient Memory

The CM conuins 128K bytes of dynamic, random-access memory(DRAM). As

shown in Figure 6.11. the CM is dual-ported, accessed by both the MMAPs Processor

component and the IBM PC-XT. The CM is part of the IBM PC-XTs memory address

140

space, and also acts as the interface to the IBM PC-XT. The PC's data and address bus are

connected to the CM. and the PC performs memory-read and memory-write operations

to the CM. Logic within the CM controls the reading and writing of dau since the CM

can only perform memory operations from one port at a time.

The IBM PC-XT has a1M-byte(220) jiddress space, of which 640K-bytes are avail

able for random-access memory. The remainder of the address space is reserved. As

shown by the memory map in Figure 6.12. the CM is located in the last 128K bytes of

the IBM PC-XTs 640K memory address space. The first 5l2K-bytes are available only

to the PC. and the remaining 128K-bytes are shared between the PC and MMAP.

The block diagram of the CM is given in Figure 6.13. In addition to the dynamic

memory, the CM is composed of amemory controller. daU-input and dau-output regis

ters for the two ports, address registers for both ports, and combinational logic used by

the MMAP to generate an address in the CM. The PC's 8-bit dau bus is connected to the

CM's dau input and dau output through 2 8-bit latches. The 16-bit A and Cbuses of

the MPU are connected to two 16-bit registers. Of the PC's 20-bit address, the three

most-significant bits specify the CM and the lower 17 bits are the address within the

CM. The CM's address from the MMAP is stored in a 17-bit register. The PCs and

MMAP's read and write signals are connected to the memory controller. The memory

controller selects the daU and address from the requesting port and performs the

memory operation.

The CM detects a memory request from the PC by detecting if the address is valid

and within the range of the the CM's memory space(512K to 640K). The three most

significant bits of the PC's 20-bit address, if at binary 100. initiate amemory operation

with the CM. For all CM memory read and write operations requested by the PC. the

CM sets the PC's I/O Channel Ready(iOCR) signal to a logic "0". causing the PC to idle

while mainuining valid dau(in write operations) and address signals. In a read opera-

lion, the dau is read from the dynamic memory location specified by the PC's address

and stored in the dau-output register connected to the PC's dau bus. The tri-state

141

output of the register is enabled, allowing the data stored in the register to be present on
the PCs dau bus. The memory controller then sets the JOCR signal to alogic M". caus
ing the PC to latch the data from the data bus. In awrite operation, the dau on the PCs
dau bus is written to the memory location in the CM specified by the lowerJ7 bits of
the PCs address. When the write operation is complete, the CM sets the IOCR signal to
alogic ' 1" allowing the PC to continue with its next operation.

The two 16-bit wide dau registers buffer the transfer of dau between the CM and
the MPU. The Processors dau paths are 16 bits wide, but the dynamic memory is byte
oriented. Dau is written from the MPU to the CM by storing the dau in the 16-bit
dau-input register, and then writing the two bytes of dau into the dynamic memory
one byte at atime. The MPU reads the dau from the CM by first performing two
separate memory reads from the byte-oriented dynamic memory, storing the two bytes
in the 16-bit dau-output register, and then writing the 16-bit dau into the CC. The CM
signals the Controller that the memory operation is complete by setting the Memory
Reference Complete(MRC) signal to alogic "0". The MRC signal is reset to alogic l"
prior to the next memory reference.

The 128K-bytes of the CMs RAM are composed of 16 64K-bit dynamic memory
chips. The memory is structured into two 64K-byte memory banks, with each bank
composed of 864K-bit chips. The Intel 8207 Dual-Port Memory Controller[Int83] and
additional logic control the operation of the CM. The ln8207 provides all the timing sig
nals for memory reads, writes and refreshes. The lowest 17 bits of the PCs address is
buffered using three 741s244[T«75] ocul buffers. The MMAPs address register is 17-
bits wide and is built using 6 741sl 73[Tei75] 4-bit registers. The outputs of the
MMAPs address register and the PCs address buffer are connected, forming the internal
address bus used by the CM. Only one output is enabled at agiven time. The 16-bit
dau registers connected to the MMAPs internal buses are each made of 4741sl73 4-bit
registers. The dau-input and the dau-output registers that are connected to the PCs
dau bus are made of 2 741s373[Tex75] ocul registers.

142

Eighteen control points within the CM are operated by the Controller. The seven

AFL signals control the formation of the MMAP's address from the combinational logic

and the five LA signals enable the loading of the address in the MMAP's address register.

The CMA. CMW and CMR are connected to the ln8207. All three are active low. The

CMA requests a memory operation. The CMR and CMW are the read and write request

signals respectively The TOP signal differentiates between the high and low 8-bits of the

16-bit dau-input and data-output registers. The TOP signal specifies which byte is to be

read from the data-input register during a memory write, and which byte of the dau-

output register is to receive the dau during amemory read. The LDATA signal enables

the loading of the data-input register, and the ENBLE signal enables the output of the

data-output register. Both signals are active low.

A19-A0

D7-D0

Coefficient

Memory
(128K)

IBM PC MMAP
Port Port

c

Address

Data in

Data out

W

Address

Data in

Data out

W

MEMR

MEMW

PC BUS

Dual-Access Coefficient Memory
Figure 6.11

143

A BUS

CBUS

CMR

CMW

PC-XT Address
0

MMAP Address

PC-XT

RAM

512K

£.Af\1f

MEMORY

• n

COEFFICIENT
MEMORY

u

• 1?RK

IBM PC-XT Memory Configuration
Figure 6.12

144

128KX8

Dynamic
Memory

Dout Din
Address

Timing w

X

145

LDATA

16

^"T"
8-bit

data

register

T 16-bit

•data"

register
<-/;

A BUS

D7-D0

8 L

D7-D0

8-bit

data

register

MEMW

MEMR

IOCR

20

A19-A0

Address

Latch

and

Select

Logic

PC BUS

Memory
Controller

+

Additional Logic
Address Input

I 17

CMW

CMR

CMA

MRC

Address

Register
and

Formation

Logic

Block Diagram of the Coefficient Memory
Figure 6.13

ENBLE

CBUS

16

A BUS

y-AFL5-0

* LA4-0

146

6.2.6. MMAP Clocking

The MMAP's Controller. FPU and CC operate synchronously using a common clock

signal and all operations are executed on the rising clock edge. The maximum designed

frequency of the MMAP's clock is 10MHz. which can only be achieved when high-

speed(< 50ns delay time) fuse-linked Programmable ROMs(PROMs) are used in the

Controller. The frequency of the MMAP's clock is then limited by the speed of the

Weitek ALU and multiplier. If PROMs with access times > 50ns are used, the max

imum clock frequency is limited by the Controller's microinstruction access time.

Erasable PROMs (EPROMs) are used instead of the fuse-linked PROMs. EPROMs

are more practical for use in the development of a prototype. EPROMs can be erased and

reprogrammed. while fuse-linked PROMs can only be programmed once. and. in general,

the cost of fuse-linked PROMs are prohibitive in a development project. 450ns access-

time EPROMs are used.

The 450ns EPROMs restrict the maximum clock frequency to 2Mhz. Instead of

using aclock signal generated external to both the IBM PC-XT and MMAP. the MMAPs

clock signal is derived from the IBM PC's clock signal present on the PC's bus. The clock

frequency of the IBM PC-XT used with the prototype is 4.77 Mhz. The PC's clock signal

is divided by 4. providing a 1.2Mhz clock frequency for the MMAP (reducing the PCs

clock by 2 would result in a frequency of 2.38Mhz. which is greater than the maximum

allowed clock frequency).

Communication between the CM and both the IBM PC-XT and remainder of the

MMAP is performed asynchronously. The CM uses a clock separate from the remainder

of the MMAP. and the CM clock frequency is equal to the frequency of the IBM PC-XT

clock.

147

63. Organization and Access of Data in the Coefficient Memory

The organization of data within the CM. and the access of the data stored in the CM

bv both the MMAP and IBM PC-XT are described.

63.1. The Storage and Access of Model Data Within the Coefficient Memory

The data that is stored in the CM is listed in Chapter 5. All floating-point numbers

are stored in single-precision format, requiring 4 bytes of storage per floating-point

number. In this design there are a maximum of 16 measured values of V^. Vdsmeas. and

16 measured values of Vgs. Wpmeas. for each model. 3K bytes are used to store the values

of Ids. Gds and G^ for the 256 combinations of measured voltages. The 32 measured vol

uges require 128 bytes of memory, the 30 values of the inverse of the difference between

adjacent measured voltages require 248 bytes of memory, and the 64

(4 coefficients X 16 measure V*) Vsb-dependent parameters require 256 bytes of

memory. In addition. 256 1-byte voltage-dependent pointers. 128 each for V^ and Vgs.

and 3 floating-point constants are stored. The function of the pointers is described in

Section 6.3.3. The following table summarizes the data storage requirements.

Data Stored # bytes

Ids
Gds
GP
Vds

(av^)-1
(AVp)-1

Vsb-Dependence Parameters
Vd$ Pointers
Vgg Pointers

Fpt. Constants

1024

1024

1024

64

64

60

60

256

128

128

12

Table 6.2

As described in Chapter 5. the CM is partitioned into equal sections, each of which

stores the data for a single transistor model. Within one section the memory is further

partitioned into four subsections; three subsections store the values of Ids. Gd, and Ggs

148

respectively, and the fourth subsection stores the remainder of the model data. The Ids-

Gds and Ggs are stored in sequential memory locations within their subsection. The

storage order of the data is illustrated by Figures 6.14 and 6.15. In Figure 6.14. the data

are represented by points in the plane with Vds as the x-axis and Vgs as the y-axis. The

points correspond to the dau at the different combinations of VdSnieas and Vgsroeas- The

storage of the dau illustrated in Figure 6.14 is given in Figure 6.15. The first values

stored of Ids. Gds. and Ggs correspond to the combination of the first (lowest value)

Vdsme«o and the first (lowest value). Vgsme«o. The next value stored corresponds to the

combination of the second VdsmtMSl and the first Vgs „,«<>• The ordering continues

through to the combination of the last Vdsmeasi5 and the first Vgsmeaso. The above is

repeated using the remaining values of Vgsmeas in order of smallest to largest value.

With 16 measured values of both Vds and Vgs. the offset from relative to the first

location, within the subsection of either Ids. Gd$ of G^ can be given as

offset = 16k + j. forO < j < 16 and 0 < k < 16. (6.1)

where both j and k are integers. VdSm«sj and Vgsmast are ordered in increasing value.

For example, the Ids. Gds. and Ggs corresponding to (Vdsm«s2.Vgsm«si) « accessed from

the appropriate subsection using an offset of value 18.

(6.1) can be represented in an alternative fashion when the offset term is used

directly as part of the address. Since j and k are within the limits given in (6.1) . they

can each be represented by a 4 bit binary number. Multiplying k by 16 is the same as

adding four zeros to the right of the binary represenution of k. The offset can then be

represented as a 8-bit binary number, where the four most-significant bits are the binary

represenution of k and the four least-significant bits are the binary represenution of j.

With j-2 and k-1. the offset, in binary, is 00010010. which is 18 decimal. The binary

represenutions of j and k are referred to as theVds and V^ pointers respectively.

As described in Chapter 4. the model evaluation uses the values of ld$. Gds and Ggs

from 4 dau points to calculate the device's opeTaling-point information. For the given

149

values of Vds and Y.s. each voltage is bound by two measured voltages.

V„«, < Vds < V (6.2)

and

Vgsk < Vg, < V^. (6.3)

j and k are restricted to the range given in Equation (6.1). and their binary values are the

Vds and Vgs pointers. The values of Ids. Gds and Ggs for the dau points (VdSj.V8,k).

(Vds j+i.Vgsk). (Vdsj.Vgsk+i). and (Vdtj+1.VIfk+1) are accessed. The offset for the four

points are:

(Vd.j.V,.,,)
(Vdsj.Vg,k+1)
(Vdtj+i.Vpk)
(Vdsj+i- Vpk+i)

k+1

k+1

-L

J±L
J±L

(15,0) (15,15)

Vgs-k

(0,0) (0,15)

Vds - j

Storage of Ids* Gds and Ggs
Figure 6.14

150

Ids kj Gds kj Ggs kj

Ids 0,0

Ids 0, 1

Ids 0,2

Ids 1,0

Ids 1, 1

Gds 0, 0

Gds 0, 1

Gds 0, 2

Gds 1,0

Gds 1,1

Ggs 0, 0
Ggs 0, 1

Ggs 0, 2

Ggs 1,0
Ggs 1, 1

Ids 15,15 Gds 15,15 Ggs 15,15

Storage of Ids. Gds and Ggs
Figure 6.15

151

152

6.3.2. Generation of the Voltage-Dependent Pointers

.As described in Chapter 4. the data required for atransistor evaluation is dependent

on the values of Vds and Vgs. This dependence is represented by the Vds and Vgs pointers

introduced in the previous section. This section describes the generation of these pointers

from the given voluge values.

63.2.1. Background

There are several methods by which the pointers can be generated. A straightfor

ward approach is to directly map the voluge into apointer using combinational logic, as

shown in Figure 6.16. The advantage of this approach is that the operation can be per

formed in one clock cycle. The primary disadvantage to this approach is that the values

of the measured voluges. 16 in the case of the prototype, are restricted to always being

the same value. A change in the value of ameasured voluges would require achange in

the combinational logic generating the pointer.

A more general approach is to derive the pointer value by doing repeated comparis

ons of the voluge value with the measured voluges. The voluge value would be com

pared to the different measured voluges until the valid range is determined. For example.

Voltage Voltage-to-Polnter
Logic

Pointer

Direct Transformation of Voluge into a Pointer
Figure 6.16

153

if

Vd, ^ Vdsmeasa and Vds < Vdsmeas4. (6-4)

the pointer would be 3. This approach is very general, but would require additional

hardware to perform the floating-point comparison and use many additional memory

references in accessing the values of measured voltage from the CM to use in the com

parison.

63.2.2. Overview of Two-Step Procedure

A two-step procedure, illustrated in Figure 6.17. is used to generate the voluge-

dependent pointers in the prototype. The floating-point number representing the voluge

is first transformed into a unique offset address. This transformation is performed the

combinational logic within the CM. The offset is then used to access the appropriate

pointer for the transistor model stored in the CM.

The first step in the procedure, the transformation of a voluge into a unique

address, is similar to the direct approach since the transformation is "hardwired" directly

into the combinational logic within the CM. Unlike the direct approach, the result isnot

a pointer, but an address in the CM conuining a pointer. The intermediate address

represents a possible measured voluge. referred to as an allowed measured voluge.

There are 128 allowed measured voluges. and they comprise the set of voluges from

which the 16 measured voluges can be Uken.

Vds measured * Vds allowed

Vgsmeasured * Vgftiiowed

The pointer stored at this address references the nearest Vd, me«s(Vg, mns) that does not

exceed Vds (Vg,).

Voltage

Address

Voltage-to-Address
Logic

i
m

Coefficient

Memory

Pointer

Generate Voluge-Dependent Pointers
Figure 6.17

154

Pointer

63.23. Allowed Measured Voltages

The single-precision, floating-point number representing either Vds or Vgs is mapped

into an address which represents the allowed measured voluge value that is nearest to

the floating-point number without exceeding it. The format of the floating-point number

is given below.

31 30 23 22 0

Sign Exponent I Mantissa

The most significant bit of the floating-point number is the sign bit. the following 8 bits

store the exponent and the remaining 23 bits store the mantissa. A leading 1 is implicit

in the mantissa, giving the mantissa 24 bits of accuracy. Since the dau paths and storage

of the MPU is 16-bits wide, the 32-bit wide floating-point numbers are represented by 2

16-bit words.

15 14

Sign I Exponent | Mantissa

Most-Significant Word

15 0

Mantissa

155

Least-Significant Word

The 16 most-significant bits of the floating-pint number, sign bit. exponent field and 7

leading bits of the mantissa are stored in one word, and the 16 least-significant bits of

the mantissa are stored in the other.

The empirical model described in Chapter 4 represents the MOS transistor only over

the range of measured voluges. The set of allowed measured voluges must span a wide

range, allowing a transistor to be represented over a large voluge range. In addition,

exponential variations in transistor current can occur in the device's subthreshold region

of operation. To better represent the subthreshold behavior, the differences between

adjacent measured voluges must be small in this region to better approximate the

exponential behavior by a cubic polynomial.

A further restriction is imposed on the values of measured voluges. As described

in Chapter 4. the inverse of the difference between adjacent measured voluges must be

calculated exactly since single-precision, floating-point arithmetic is used. As shown in

Chapter 4. an error in this compuution can produce discontinuities in the transistor

characteristics which can result in the nonconvergence of the circuit-simulation program.

The floating-point number's exponent field and the first 4 bits of the mantissa, not

including the implicit leading 1. are used to derive the voluge-dependent component of

the CM's address. The allowed measured values of Vds and Vp are restricted to be

between 0 and 256 volts.

0.0 < Measured Voluges < 256.0 (6.7)

156

The total range is divided into eight sub-ranges, and in each sub-range there are 16

allowed voltages. The sub-ranges are given in Table 6.3.

Voltage Sub-Range<volts) Increment volts) Address(Voltage)

0.0 < v < 2.0 0.125 111WW

2.0 < v < 4.0 0.125 000VVVV

4.0 < V < 8.0 0.25 001WW

8.0 < V < 16.0 0.5 OlOVVVV

16.0 < V < 32.0 1.0 OilWW

32.0 < V < 64.0 2.0 100VVVV

64.0 < V < 128.0 4.0 101WW

128.0 < V < 256.0 8.0 llOVVVV

Table 6.3

The Address(VolUge) is the lowest 7 bits of the Offset field. The first 3 bits of the

Address(Voltage) specify the range, and the remaining 4 bits(WW as used in Table

6.3) represent one of the 16 allowed voluges within that range. The size of the incre

ments increase as the voluge increases. This results in a fine granularity of allowed

measured voltages at small voltages, and increasing granularity as the voluge increases.

The minimum value of allowed measured voluge is 0.0 and the maximum value of

allowed measured voluge is 248.0. For voluges that are less than 0.0 the combinational

logic generates the AddressCVoluge) representing 0.0 volts, and for voluges that are

greater than 248.0 the combinational logic generates the Address(Voluge) representing

248.0 volts.

For example, over the sub-range

2.0 < v < 4.0. (6.8)

the allowed voluges are in increments of 0.125 volts. The allowed voluges and

corresponding Address(VolUge) are given in the following Uble.

Allowed Measured Voltage Address(Voltage)

2.0 0000000

2.125 0000001

2.25 0000010

2.375 0000011

2.5 0000100

2.625 0000101

2.75 0000110

2.875 0000111

3.0 0001000

3.125 0001001

3.25 0001010

3.375 0001011

3.5 0001100

3.625 0001101

3.75 0001110

3.875 0001111

157

Table 6.4

In this sub-range the allowed voltages begin with 2.0 volts and continue to 3.875 volts
in 0.125 volt increments. The first 3 bits of the Address(VolUge) component of the
Offset field is 000. the value for the sub-range given in Table 6.3. The remaining 4bits
begin at avalue of 0000. corresponding to avoltage of 2.0. For each 0.125 increase in
voluge. the remaining 4bits are incremented by 1. For avoluge value of 2.7. the com
binational logic generates an Address(Voluge) of 0000101. This address corresponds to
the allowed measured voluge of 2.625 volts, the allowed voluge that is nearest to 2.7

without exceeding it. ,

The inverse of the difference between adjacent measured voluges. (AV)"'. are pre-
calculated and stored as model dau. As suted in Chapter 4. it is necessary for these
values to be exact in order to guarantee continuity of the transistor output characteris
tics. If the floating-point number representing (AV) is an integral power of 2.

AV=1X2». «•'>

then its inverse. (AV)"1. is

(AV)"1 =1X2"°.
(6.10)

which can be stored exactly by asingle-precision, floating-point number. The allowed

158

measured voltages, as represented in Table 6.3. allow for the difference between adjacent

measured voltages to be equal to an integral power of 2. and. therefore. (AV)~ can be

represented exactly. For example, if the first measured voltage is 0.0 and the second is

0.25. their difference is 0.25 (2"2). The inverse of 0.25 is 4 (22). which can be stored

exactly.

633. Coefficient-Memory Address

The CM's address is 17 bits wide, allowing for the complete addressing of the 128K

bytes of CM. As described in Chapter 5. the address is composed of the Model. Subsec

tion and Offset fields. The Model field comprises the highest 5 bits, the Subsection field

is the next 2 bits, and the Offset field is the lowest 10 bits.

Model Subsection Offset

16 12 11 10 9 0

Coefficient Memory Address

The 5-bit Model field provides the address for 32 4K-byte sections. Dau for a single

transistor model is stored in a 4K-byte section.

The CM functions as the interface between the MMAP and IBM PC-XT. The first

4K-byte section (Model field set to 00000). as shown in Figure 6.18. is used by the PC

to transfer dau and commands to the MMAP. As described in Chapter 2. the IBM PC-

XT (host machine) sends the MOS transistor's terminal voluges. scale factor and model

pointer to the MMAP. the IBM PC-XT then signals the MMAP to begin evaluation, the

MOS transistor's current and conductances are then calculated, and the results are

returned to the IBM PC-XT. The input dau and output results are transferred through

the lowest 4K-byte section. lK-byte of the the lowest 4K-byte section is used for each

transistor being evaluated. Given in Table 6.5 is the configuration of the lowest 4K-byte

section.

4K-Byte
Section

30

31

Data Transfer

Model 1

Model 2

Model 30

Model 31

Coefficient Memory as the Interface to the MMAP
Figure 6.18

159

CM Memorv Map for Data Transfer and Commands
PC Address(Hex) Data

0x80000 Model Reference Transistor 1

0x80003 0x80007 Vds Transistor 1

0x80008 0x8000B Vgs Transistor 1
0x8000C 0x8000F Vsb Transistor 1
0x80010 0x80013 Channel Scale Transistor 1

0x80014 0x80017 1^ Transistor 1
0x80018 0x800IB Gjs Transistor 1
0x800lC 0x8001F Ggs Transistor 1
0x80020 0x80023 GSb Transistor 1
0x80024 0x803FF Unused

0x80400 Model Reference Transistor 2

0x80403 0x80407 Vds Transistor 2
0x80408 0x8040B Vgs Transistor 2
0x8040C 0x8040F Vsb Transistor 2
0x80410 0x80413 Channel Scale Transistor 2

0x80414 0x80417 Ids Transistor 2
0x80418 0x804IB G^ Transistor 2
0x804lC 0x8041F Gp Transistor 2
0x80420 0x80423 G$b Transistor 2
0x80424 0x807FF Unused

0x80800 Model Reference Transistor 3

0x80803 0x80807 Vds Transistor 3
0x80808 0x8080B Vgs Transistor 3
0x8080C 0x8080F VSb Transistor 3
0x80810 0x80813 Channel Scale Transistor 3

0x80814 0x80817 Ids Transistor 3
0x80818 0x808IB Gds Transistor 3
0x808lC 0x8081F Ggs Transistor 3
0x80820 0x80823 G$b Transistor 3
0x80824 0x80BFF . Unused

Ox8OC0O Model Reference Transistor 4

0x80C03 0x80C07 Vds Transistor 4
0x80C08 0x80C0B Vds Transistor 4
0x80C0C - 0x80C0F Vgs Transistor 4
0x80Cl0 0x80Cl3 Channel Scale Transistor 4

0x80C14 0x80C17 Ids Transistor 4
0x80C18 0x80ClB Gds Transistor 4
0x80ClC - 0x80ClF Ggs Transistor 4
0x80C20 0x80C23 GSb Transistor 4
0x80C24 0x80FFD Unused

0x80FFE Check Completion
0x80FFF Begin Evaluation

Table6.5

160

161

u«« ,ka irm PC-XT writes to locationThe MMAP is signaled to begin operation when the IBM Pt- M writes
OxSOFFF. the last byte in the lowest 4K-byte section. The MMAP notifies that the
current transistor evaluation is finished by setting byte OxSOFFE. The IBM PC-XT polls
this memory location to check if the MMAP has completed the evaluation.

The remaining 31 sections are used to store model dau. As described in Chapter 5.
each 4K-bvte section storing model dau is logically partitioned into 4equal-sized subsec
tions. The 256 discrete values of W0* and G„ are stored in their individual IK-byte
subsection. The remainder of the dau(refer to Table 6.2) is stored in the remaining 1K-
byte subsection. The 2-bit wide Subsection field differentiates between the 4IK-byte
subsections. The memory map of a4K-byte s«tion of the CM used to store mode! dau
is given inTable 6.6.

Subsection

0x000
0x400
0x800
OxCOO
0xC40
0xC80

OxCCO

OxDOO
OxEOO
0xE80
OxFOO
0xF04

0xF08

CM Memory Mao for Model Data
Offset Address(Hex) Hata Stored

Ids
Gas
Ggs
Vds

(AVdl)"1
unused

(AVgs)"1
unused

V,b-Dependent Parameters
Vds Pointers
Vgs Pointers

±1.0 Constant
2.0 Constant
3.0 Constant

OxCBF

OxCFF

0x3FF

0x7FF

OxBFF

0xC3F

0xC7F
OxCBE

OxCFE

OxDFF
0xE7F
OxEFF
0xF03
0xF07
OxFOB

Table 6.6

The floating-point values of 2.0 and 3.0 are stored and are required in the evaluation of
U,e derivative of the polynomial equations. Either +1.0 or -1.0 is also stored. Ava,ue of
+1 0is stored if the model dau is for an-channel device, and avalue of -1.0 is stored ,f

162

the model data is for a p-channel device. The values of the terminal voltages and scale

factor3 sent to the MMAP are multiplied by this term. Therefore.' if the device is a p-

channel transistor the appropriate change of sign is performed.

The values of Ids. Gds and Ggs are stored as 4-byte. single-precision, floating-point

numbers. The configurations of the CM's address for accessing them are given in Figure

6.19a.

Model Subsection Offset

Model # 00 V- Ptr. 1 Vds Ptr.
16 12 11 10 9 6 5

Address to Access Ids

BB 1
1 0

Model Subsection Offset
Model # 01 Vr Ptr. VH* Ptr. BB
16 12 11 10 9 6 5 2 10

Address to Access Gds

Model Subsection Offset

Model # 10 V^Ptr. | Vds Ptr.

16 12 11 10 9 6 5

Address to Access G gs

Figure 6.19a

BB

The most-significant 8 bits of the Offset field consists of two 4-bit voluge-dependent

terms which can address 256 floating-point numbers. The pointers are dependent on Vds

and V^ respectively. The 2 lowest bits in the Offset field(BB) specify the byte of the

floating-point number.

The discrete values of Vd,. Vgs. (A Vds)"1. and (A Vgs)"1 are stored as single-precision

floating-point numbers. The configurations of the CM's address for accessing them are

given in Figure 6.19b

s Multiplying the scale factor by ± 1.0 results in the correct sign for the current and derivatives.

Model Subsection Offset

V* P^r. BB 1
Model # 11 0000

16 12 11 10 9 6 5 2 1
Address to Access Discrete Values of Vds

Model Subsection Offset

V»s Ptr. BB 1
Model # 11 0001

76 \2 11 "10 9 6 5 2 1
Address to Access Discrete Values of Vgs

Model Subsection Offset

0010 VdS Ptr. BB
Model # 11

76 lT 11 10 9 6 5
Address to Access Discrete Values of (Vds)

2 1 0
-l

Model Subsection Offset

VgjPtr. BB
Model # 11 0011

16 12 11 10 9 6 5
Address to Access Discrete Values of (Vgs)

Figure 6.19b

2 10
-l

163

When accessing V. and (AV.)-. the most-significant 4bits of the Offset field define
which of the floating-point entries is to be accessed. The ne« 4bits contain the V.
voluge-dependent pointer, and the 2lowest bitsCBB) specify the byte of the floating
point word. When accessing Vp and (AV,)"'. the most-significant 4bits of the Offset
field define which of the floating-point entries is to be accessed. The next 4bits conuin
U,e V, voluge-dependent pointer, and the two lowest bits(BB) specify the byte of the
floating-point word.

For each measured value of V. there are 4V*-dependence parameters stored as
single-precision floating-point numbers. The configuration of the CM's address for access-
ing them is given in Figure 6.19c.

Model Subsection Offset

Model # 11 01 PP VdsPtr. BB |

16 12 11 10 9 8 7 6 5 2

Address to Access Vsb Parameters

Figure 6.19c

1 0

164

In this case, the 2 highest bits of the Offset field specify the Vsb-dependent terms, and

the next 2 bits of the Offset field specify one of the 4 parameters(PP). The next 4 bits

contain the V^ voltage-dependent pointer, and the two lowest bits(BB) specify the byte

of the floating-point word.

Each pointer requires 1 byte of storage. The configurations of the CM's address for

accessing the Vds and Vg, pointers are given in Figure 6.19d.

Model Subsection

Model # 11

Offset

100 | Address(Vds)
016 12 11 10 9 7 6

Address to Access Vds Pointers

Model Subsection Offset
Model # 11 101 Address(V„)
16 12 11 10 9 7 6

Address to Access Vgs Pointers

Figure 6.19d

In this case, the 2 highest bits of the Offset field specify the pointers, the next bit

differentiates between the Vds orVp pointers, and the remaining 7 bits of the Offset field

are generated from either the Vds or Vv voluges.

165

The addresses used to access the floating-point constants are given in Figure 6.19e.

Model Subsection Offset

Model # 11 1100 0000

16 12 11 10 9 6 5 2

Address to Access "±1.0

Model Subsection Offset

Model # 11 1100 0001

BB

BB |
16 12 11 10 9 6 5 2 1

Address to Access 2.0

Model Subsection Offset

Model # 11 1100 0010

16 12 11 10 9 6 5 2

Address to Access 3.0

Figure 6.19e

BB

The two lowest bits(BB) specify the byte of the floating-point word.

As described earlier, the CM's address register is composed of 6 741s173 4-bit regis

ters. The Model field composed of 2 4-bit registers, the Subsection field is composed of a

single 4-bit register, and the Offset field is composed of 3 4-bit registers. The 3 registers

comprising the Offset field can be loaded independent of each other.

6.4. MMAP Operation

The movement of dau within the MMAP's Processor is described by the eight

dau-transfer operations listed below and illustrated in Figure 6.20.

(1) CC's dual-port register-* FPU

(2) CC's dual-port register— Dau-input register

166

(3) CC's dual-port register— CM's address register

(4) CC's static RAM — CC's dual-port register

(5) FPU - CC's static RAM

(6) Data-Output register -♦ CC's sutic RAM

(7) CM -» Data-Output register

(8) Dau-input register — CM

The first entry in each of the dau-transfer operations is the datum's source and the

second is the datum's destination. For example, dau-transfer operation (5) designates

the transfer of dau from the output of the FPU to a specified memory location in the

CC's static memory. The floating-point operations are associated with the data-transfer

operation (1). the transfer of dau to the FPU from the CC's dual-port register.

Several of the dau-transfer operations can be performed concurrently. For example.

dau can be transferred from the CC's dual-port register to the input of the FPU at the

same time as dau is being written into the CC's sutic memory from the output of the

FPU. Table 6.7 lists the operations that can be performed concurrently.

Operation 1 2 3 4 5 6 7 8
*

1 * * * *

2 * * * »

3 s * * * s

4
*

5 * » * *

. 6 * a * *

7 * * * * * *

8 * * * * *

Table 6.7

The numbers in theeight rows and eight columns represent the eight dau-transfer opera

tions. An asterisk(«) in a row of the Uble indicates that the operation associated with

that column can be performed at the same time as the row operation. Concurrent dau-

transfer operations using the same dau path require the transfer of the same dau.

167

Operations 1-6 are executed in a single cycle of the MMAP clock. Operations 7 and 8. the

CM-read and write operations, are performed-asynchronously. Provided there is no con

tention for the DRAM memory from either the PC-XT or memory refresh, the CM read

and write operations require 4 PC-XT clock cycles.

©

®

4
©

Data

Input

Coefficient

Cache

s>

••£* if)

©

FPU

Dynamic L
memory' ™l

©

i
r

Data

Output

Coefficient Memory

Dau-Transfer Operations
Figure 6.20

168

169

6.5. Microprogramming the Prototype MMAP

The two variations of the empirical MOS transistor model are described in Chapter

4. Both require the same dau for their calculations, but differ only in their interpolation

method. As described in Chapter 5. the procedure defining the transistor operation is

stored directly as microinstructions in the Controller's microstore. The programming of

the MMAP's microinstructions are presented in this section.

6.5.1. Overview

As described earlier, the lowest 4K bytes of the CM are used as the interface

between the IBM PC-XT and the MMAP. The input dau for a transistor evaluation are

sent by the IBM PC-XT to the lowest section of the CM. Once the transfer of dau by the

PC to the MMAP is complete, the IBM PC-XT signals the MMAP to begin the transistor

evaluation. The transistor dau and necessary model daU are read in from the CM into

the CC. The floating-point compuutions are performed by the dau path comprising the

FPU and CC. The CC is used as a set of registers for the storage of the intermediate

results of the floating-point compuutions. in addition to providing storage for the

transistor and model dau. After the MMAP performs the evaluation, the results are

returned to the specified memory locations in the CM. The results are then available for

use by the IBM PC.

6.5.2. Description

A description of the microprogram is given in this section. First, the organization of

the CC's static memory is presented. The partitioning of the microprogram into seven

steps is then presented, and the operation performed in during each step is described.

The dau stored in the CC after completion of each step is is used to illustrate the opera

tions performed during each step.

170

As described in Section 6.2. the CC contains a 256 x 16 sutic memory. The sutic

memory is logically partitioned as four 64 x 16 sections, one for each transistor. Single-

precision, floating-point numbers are stored in two consecutive memory locations, with

the most-significant 16 bits stored first and the least-significant 16 bits stored in the fol

lowing location.

The procedure followed for the transistor evaluation can be partitioned into seven

steps. The seven steps are listed below and are performed in sequence. A more deuiled

description of each step follows.

(1) Access the transistor dau(differential terminal voluges. transistor dimensions

and model reference pointer) from the CM. This data is originally sent by the

PC-XT.

(2) Use the value of V^ to access the the model dau dependent only on Vds- This

dau includes the voluge-dependent pointer, the nearest measured voluge.

inverse differential voluge and Vsb-dependence parameters. Also read in the

three floating-point constants.

(3) Multiply V^. V^. V,b and Se by ±1.and then compute the effective value of
ay ay

Vgs. Vgse. In addition, compute the values of -™Si and -^.

(4) Use the value of Vg$e to access the model dau dependent only on Vgs. These are

the voluge-dependent pointer, the nearest measured voluge and inverse

differential voluge.

(5) Access the discrete values of Ids. Gds and G^. Four values of each areread.

(6) Calculate I*. Gd,. Ggs and Gsb using either the linear or cubic interpolation

methods. Multiply the results by Se.

(7) Store the results in the Coefficient Memory for use by the IBM PC-XT.

A more deUiled description of the steps are given below. The data stored for one transis

tor in the CC is given in Table 6.8. Table 6.8 gives the dau at every memory location at

171

the completion of each step.

Step 1

The first step in the procedure is to access the dau sent by the PC to the MMAP. As

given earlier, this dau consists of a model pointer (Model #). the Vds. Vff. and Vsb ter

minal voluges. and Se. The IBM PC-XT first sends the input dau to the MMAP and

then signals the MMAP to begin a transistor evaluation. The MMAP then reads the

input data from the CM. which is acting as the interface for this operation, and stores the

data in the CC. The exact memory locations within the CM are given in Table 6.5.

Step 2

Once the transistor dau is read into the CC. the daU is then used to access the three

consunts and the model dau that is dependent only oh Vds- First, the three consunts

are read in from the CM. Then, the Vsb voluge-dependent pointer, j. for the model is

accessed from the CM. The pointer is then used to access the appropriate measured vol

tage. Vdsj. and inverse differential voluge. (AVds)"1. Also, the eight Vsb terms are read

in corresponding to Vdsj and Vdsj+i-

Step 3

The values of the terminal voluges and scale factor are multiplied by ±1. The

value of8Vd, is then calculated, where 8Vds is equal to Vds -Vdsj. Finally, the value of

Vg« and the partial derivatives of V^. |^ and |^ .are calculated.

Step 4

The value of V^ is first used to access the voluge-dependent pointer, k. from the

CM. The value of k is stored in the CM. k is then used in the formation of the address

used to access the appropriate measured voluge. Vgsk. and inverse differential voluge.

172

(A VgS)_1 from the CM and store them in the CC.

Step 5

The combination of the j and k pointers is used to access the discrete values of Ids.

Gds and Ggs required for the evaluation. Four values of each the Ids. Gds and GgS are

accessed from the CM and stored in the CC.

Step 6

The value of 8Vgs is first calculated, where SVgs = Vgs -Vgsk. The values of the

current and conducunce are then calculated. Either linear or cubic interpolation can be

used. The results then are multiplied by Sc. Since Se is positive for n-channel transistors

and negative for p-channel transistors, the sign of the current and derivatives are

changed for the p-channel transistor.

Step 7

The resulting values of current and conductances are then sent to the CM from the

CC. In this case the CM is acting as the interface between the MMAP and IBM PC-XT.

The results are stored in the lowest 4K section of the CM at the memory locations

specified in Table 6.5.

Memorv Data Stored in CM After Completion of Step

Location 1 2 3 4 5 6 7

0 Model # - - - - - -

1 -. - - - - - -

2 V* . 8V,,, - - -

-3 vd, - 6vdI - - -

4 v« - vi» - -
8vM

5 v« - vi- - -
6v„ -

6 v,b - - - - -

7 v,b - - - - - -

8 Sc - - - - - -

9 Sc - - - - - -

A . j - - - -

.

B . - - k - -

C (AV*,)-" - - - - - -

D (AVdli)"> - - - - - -

E - - - (Av„kr» - - -

F - - - (Av^r1 - - -

10 - At - - Ids i.k - -

11 - A1 - - Ids Lit - -

12 . B1 - - IdfH-l.k - -

13 - B1 - - Idtf-l.k - -

14 . C| - - Ids i.k-1 - -

15 - Ci - - Ids i.k-1 - -

16 - Dl - - IdsH-l.k-*-! - -

17 . Dj - - IdSH-l.kt-1 - -

18 - Ah-i - - Gds i.k - -

19 - Ahi - - Gd.i.k - -

1A . Bj-i - - G<isr*l.k - -

IB - Bh-i - - GdsH-l.k - -

1C - C^i - - Gdsi.k+I - -

ID . Ch-i - - Gdsi.k*l -

IE - Dhi - - GdsH-l.k^l -

IF - Dri - - GdsH-l.k-1 1 - -

173

Memory Data Stored in CM After Completion of Step

Location 1 2 3 4 5 6 7

20 - - - - GKi.k - -

21 - - - - G„ik - -

22 - - - - G«W.k - -

23 - - - - GfsKl.k - -

24 - Vdsi G« i.k+i - -

25 - V'dsi G„i.k+i - -

26 - - - vrk G«j*l.k»l - -

27 - - - vph GesH-l.k+1 - -

28 - -

dVp.
6Vsb

- - -

29 - -

dVp,

dVsb
- - - -

2A - -

"FdT
- - - -

2B - -

dVp,
"o^dT

- - - -

2C - - - - - Ids -

2D - - - - - Ids -

2E - - - - - Gds -

2F . - - - - Gd, -

30 2.0 - - - . - G„ -

31 2.0 - - - - G„ -

32 3.0 - - - - GIb -

33 3.0 - - - - Gsb -

34 ±1.0 - - - - - -

35 ±1.0 - - - - - -

• 36 Temporary Register

37 Temporary Register

38 Temporary Register

39 Temporary Register

3A Temporary Register

3B Temporary Register

3C Temporary Register

3D Temporary Register

3E Temporary Register

3F Temporary Register

Table 6.8

174

175

The microinstructions are written in a symbolic format specific to the MMAP. Each

instruction defines a set of data transfer operations and/or floating-point operation. The

symbolic format is translated into the binary-encoded microinstructions.

6.6. Performance of the MMAP

The performance of the MMAP is presented in this section.

The prototype MMAP is separately programmed for both linear and cubic forms of

the empirical transistor models, both of which aredescribed in Chapter 4. The prototype

is connected to the IBM PC-XT as shown in Figure 6.4 and is operated at a 1.12Mhzclock

frequency. For both empirical models, four transistors are evaluated simuluneously by

the prototype.

6.6.1. Microprogram Execution

The performance of the prototype is derived by measuring the time required by the

MMAP to perform 10.000 executions of the microprogram, where four transistors are

evaluated during each microprogram execution. The resulting time is divided by 10.000

to provide the time for a single execution of the MMAP microprogram.

The time-per-execution of the microprogram is given in Table 6.9.

MMAP MicroDroeram Execution 1 'ime

Model Clock Frequency Time (ms)

Linear 1.12Mhz 4.6

Cubic 1.12Mhz 4.5

Linear (Simulated) lO.OMhz 0.65

Cubic (Simulated) lO.OMhz 0.64

Table 6.9

For the MMAP operating at a clock speed of 1.12 Mhz. the execution of the microprogram

using the linear-interpolation method requires 4.6ms. and the execution of the micropro

gram using the cubic-interpolation method requires 4.5ms. The microprogram using the

176

linear-interpolation method requires 0.1ms (2.2?<) more time to execute than the

microprogram using the cubic-interpolation method.

As described earlier, the MMAP can operate at a maximum clock rate of lOMhz if

the ROM memory is based on fast access (<50ns) fuse-linked PROMs. The performance

of the MMAP is simulated operating at a clock frequency of lOMhz. The simulation is

performed at the register-transfer level using 1 cycle of the MMAP clock for each opera

tion except for CM read/write operations which requires 2 cycles of the MMAP clock.

(As described earlier, four IBM PC-XT clock cycles are required for a read/write opera

tion to the CM's dynamic memory. With the IBM PC-XT operating at 4.47 Mhz and the

MMAP at lOMhz. the read/write operations require approximately two MMAP clock

cycles.) The simulated microprogram-evaluation time of the MMAP operating at lOMhz

is included in Table 6.9. With the MMAP operating at a clock frequency of lOMhz. the

simulation of the MMAP gives 0.65ms for the evaluation of the microprogram using the

linear-interpolation method and 0.64 for the evaluation of the microprogram using the

cubic-interpolation method.

The graph in Figure 6.21 illustrates the profile of the execution of the microprogram

based on linear interpolation. Each bar in the graph corresponds to one of the seven

microprogram steps described in the previous section. Floating-point compuutions are

performed in steps 3 and 6. and the execution of these two steps requires 60% of the

total execution time. The remaining steps are used to access transistor and model dau

from the CM and return results to the CM. and they comprise the remaining 40%af the

toul execution time.

40

30
a?

o

te 20

X
LU

6? 10

39

V.«.>iK>.>>>>>'

mtmmm.19 18

8

Step

Profile of the MMAP's Microprogram
Figure 6.21

6.6.2. Transistor-Evaluation Time

The time-per-transistor evaluation is given in Table 6.10.

177

178

Time-per-transistor evaluation

Model

Linear

Clock Frequency

1.12Mhz

Time (ms)

1.15

Cubic 1.12Mhz 1.13

Linear (Simulated) lO.OMhz 0.162

Cubic (Simulated) lO.OMhz 0.160

Table 6.10

The evaluation time is based on the MMAP evaluating four transistors simultaneously.

From the measured performance of the MMAP given in Table 6.9. the time per transistor

evaluation by the MMAP is 1.15ms using linear interpolation and 1.13ms using cubic

interpolation. The time-per-transistor-model evaluation for the MMAP simulated

operating at lOMhz is 0.162ms using linear interpolation and 0.160ms using cubic inter

polation.

A comparison between the transistor-evaluation time of the MMAP and the

transistor-evaluation time of the IBM PC-XT is given in Table 6.11.

Time per Transistor Model Evaluation
Time(ms)Model

Linear

Computer

MMAP@1.12MHz 1.15

Cubic MMAP@1.12MHz 1.13

Linear(Simulated)
Cubic(Simulated)

MMAP@10.0MHz

MMAP@10.0MHz

0.162

0.160

Shichman-Hodges

Level-2

IBM PC-XT@4.47MHz
IBM PC-XT@4.47MHz

12

24

Table 6.11

The models evaluated by the IBM PCJCT are the Shichman-Hodges(SH) and SPICE

Level-2 MOS models4. The IBM PC-XT operates at a clock speed of 4.47MHz and uses

the In8087 Numeric Dau Processor. The model routines are written in the C program

ming language and compiled using the large program/dau version of the Lattice C

compiler[Lat84]. The dau given for the analytic models evaluated on the IBM PC-XT

are the average of the times required for the evaluation of the transistor in the

*The equations for both analyticmodels are given in Appendix B.

179

saturation, ohmic and cutoff regions. The evaluation includes the calculation of both

current and derivatives. The evaluation of the SH MOS-transistor model by the IBM

PC-XT requires 12ms. and the evaluation of the SPICE Level-2 MOS-transistor model by

the IBM PC-XT requires 24ms. The measured transistor-evaluation time from the

MMAP operating at 1.12 Mhz is 1.15ms and 1.13ms respectively for linear and cubic

interpolation. For both interpolation methods, the MMAP. operating at a clock fre

quency of 1.12Mhz. performs a transistor evaluation a factor of 10 times faster than the

IBM PC-XT performs an evaluation of the SH model and a factor of 20 times faster than

the IBM PC-XT performs an evaluation of the SPICE Level-2 model. In comparison to

the simulated performance of the MMAP operating at lOMhz. the MMAP performs a

transistor evaluation using either interpolation method 75 times faster than the IBM

PC-XT performs an evaluation of the SH model and a factor of 150 times faster than the

IBM PC-XT performs an evaluation of the SPICE Level-2 model.

6.63. Efficiency of the MMAP Architecture

The time required by the IBM PC-XT to evaluate the empirical model used with the

MMAP is given in Table 6.12 The model routines are written in the C programming

language and compiled using the large program/dau version of the Lattice C

compiler[Lal84].

Time-per-Transistor- Model Evaluation
Time(ms)"Model

Linear

Computer

MMAP@1.12MHz 1.15

Cubic MMAP@1.12MHz 1.13

LinearCSimulated) MMAP@10.0MHz 0.162

Cubic(Simulated) MMAP@10.0MHz 0.160

Linear IBM PC-XT@4.47MHz 39

Cubic IBM PC-XT@4.47MHz 38

Table 6.12

The IBM PC-XT require 39ms to evaluate the model using linear interpolation and 38ms

to evaluate the model using cubic interpolation. The MMAP operating at a clock

180

frequency of 1.12 Mhz evaluates the two empirical models a factor of 30 times faster

than the IBM PC-XT performing the evaluation.

As presented in Chapter 2. the MMAP must efficiently evaluate the MOS transistor

model. To verify this, the evaluation times of the linear empirical model in ms are nor

malized with respect to the floating-point operation time in ijs.

== Model Evaluation Time (ms) (6.11)
"" Floating-Point Operation Time {fis)

T is a gauge of the performance of the transistor-model evaluation independent of the

floating-point operation time. The smaller T is. the more efficient the processor is in per

forming the model evaluation.

The IBM PC-XT's 8087 NDP performs floating-point addition and subtraction on

operands stored in its stack in 18/zs. and it performs floating-point multiplication on

operands stored in its stack in 28/us[Su83]. The prototype MMAP operating at 1.12MHz

performs floating-point addition, subtraction and multiplication in 8.9pts. From Table

6.12. the time required by the IBM PC-XT to evaluate the empirical model bassed on

linear interpolation is 39ms. This time is normalized with respect to the floating-point

multiplication time of the ln8087. yielding

T«m-§.-M. (6.12)

The normalized time for the MMAP operating at 1.12MHz is

mmap — 1,15 = 0.13. (6.13)
8.9

The value of TMMAP is 10-times smaller than T|BM. Since TMMAP and f iBM are normalized

with respect to the floating-point operation time, the order-of-magnitude difference is due

to the specifically designed architecture of the MMAP and thus demonstrates that the

MMAP architecture efficiently represents the transistor model.

181

6.7. BIASC Circuit-Simulation Program W/MMAP

The operation and performance of the BIASC circuit-simulation program running on

the IBM PC-XT using the prototype MMAP is presented in this section.

6.7.1. Model-Evaluation Routine

The prototype MMAP is used in conjunction with the BIASC circuit-simulation pro

gram running on the IBM PC-XT. BIASC's MOS-transistor evaluation routine is modified

for use with the MMAP. As described in Chapter 2. the model .routine is altered such

that the IBM PC-XT does not remain idle while the MMAP is evaluating transistors, but

the IBM PC-XT works in parallel with the MMAP. The MMAP evaluates the transistor

equations: but the the IBM PC-XT limits the terminal voltages, transfers data to and

from the MMAP. checks convergence, and loads the results from the MMAP into the cir

cuit matrix. Since the MMAP evaluates four transistors at the same time, the IBM PC-

XT performs its operations on four transistors at a time.

The organization of the transistor-model routine is described in Chapter 2. While

the MMAP is evaluating the current set of four transistors, the IBM PC-XT loads the

results from the evaluation of the previous four transistors and limits the terminal vol

uges of the next four transistors for the following evaluation. The model-evaluation

routine is listed in Appendix H.

The lime for the evaluation of the different parts of the model evaluation routine

performed by the IBM PC-XT are listed in Table 6.13. The dau is for an IBM PC-XT

operating at a clock frequency of 4.47Mhz.

BIASC Model Evaluation - 4 Transistors

IBM PC-XT Operations Time(ms)

Access and Limit 2.5

Check Convergence and Load Matrix 11.1

Load MMAP 0.65

Unload MMAP 0.50

Toul 14.75

182

Table 6.13

The sum of the times required to access, limit, check convergence and load matrix is

13.6ms for 4 transistors, and the total time for the IBM PC-XT operations is 14.75ms for

4 transistors. The sum of the times required to access, limit, check convergence and load

matrix for the 4 transistors. 13.6ms. is greater than the time required by the MMAP to

evaluate the 4 transistors. 4.6ms for linear interpolation and 4.5ms for cubic interpola

tion. Therefore, the MMAP remains idle after completing an evaluation while waiting

for the IBM PCJXT to complete its operations. For both linear and cubic interpolation

the MMAP remains idle for approximately 9ms. greater than 60% of the time. Once the

model-evaluation routine is in the evaluation loop the toul time to evaluate four transis

tors is equal to the toul time used by the IBM PC-XT to perform its operations.

14.75ms. and the resulting time per transistor is 3.7ms. The speed of the model evalua

tion is limited by the IBM PC-XT.

6.7.2. Attached-Processor Efficiency of the Prototype MMAP

The Atuched-Processor Efficiency of the MMAP. as defined in Chapter 2. is the ratio

of the MMAP evaluation time to the sum of the MMAP evaluation time plus the com

munication time. From the dau given in Table 6.13. 0.65ms are required to input data

for four transistors to the MMAP from the IBM PC-XT. and 0.5ms are required to

unload the results of the four transistor evaluations from the MMAP by the IBM PC-

XT. The prototype MMAP operating at a clock frequency of 1.12Mhz and used with the

IBM PC-XT has an attached-processor efficiency of

183

AP Efficiency = -——^Lr7rrrx 10° = 80<7c • (6'14)
4.6 -r \).j + O.Oj

and thus only a 20%. communication overhead. However, for the MMAP operating at

lOMhz. the attached-processor efficiency is

AP Effiden£y = o.65 +°<ff+ o.6j x 10° -36% • (615)
resulting in a 64% communication overhead. As described in Chapter 2, the amount of

dau transferred between the MMAP and the IBM PC-XT (host) is small relative to the

amount of floating-point compuution performed by the MMAP. However, the transfer of

dau by the IBM PC-XT is limited by the PC-XT's 8-bit dau bus. requiring four memory

operations to transfer a single-precision floating-point number.

6.73. Circuit-Simulation Examples

The performance of two example circuits running on the IBM PC-XT using the

MMAP are presented in this section. The two example circuits are first presented in

Chapter 2. The first circuit is a cascade of 25 NMOS depletion-load inverters, and the

second circuit is a low-power CMOS operational amplifier. The third example circuit

presented in Chapter 2 can not be evaluated by the IBM PC-XT using the MMAP due to

the reduction in maximum memory available for the IBM PC-XT from 640K-bytes to

512K-bytes as a result of the MMAP.

Example 1: 25 Inverter Circuit

A circuit composed of a cascade of 25 depletion-load inverters is simulated on the

IBM PC-XT using the BIASC circuit-simulation program. The circuit schematic is given

in Figure 6.22. and the BIASC input listing is given in Appendix B. The circuit contained

a toul of 50 MOS transistors. 25 n-channel enhancement transistors and 25 n-channel

depletion transistors. The enhancement and depletion transistors are represented by

separate models.

184

The chain of inverters is simulated for a DC sweep of the input voltage from 0 to 5

volts in 0.1 volt increments. The simulation is performed using the BIASC program with

and without the MMAP. Without the MMAP. the evaluation is performed using both

the SH and SPICE Level-2 models. With the MMAP. the evaluation is performed using

both linear and cubic interpolation. The time, number of iterations, and time per itera

tion for the simulation are listed in Table 6.14.

50 Point DC Transfer of the
25 Cascaded NMOS Depletion-Load Inverter Circuit

Configuration Time5 (sec) # Iterations Time (secVlteration

BIASC Shichman-Hodges 390 197 1.95

BIASC SPICE Level-2 458 198 2.2

BIASC w/MMAP Linear 335 202 1.65

BIASC w/MMAP Cubic 330 199 1.65

Table 6.14

The simulation of the circuit without the MMAP and using the SH model is per

formed in 390 seconds requiring 197 iterations, and the simulation of the circuit without

the MMAP and using the Level-2 model is performed in 458 seconds requiring 198 itera

tions. The simulation of the circuit with the MMAP and using the linear-interpolation

model is performed in 335 seconds requiring 202 iterations, and the simulation of the

circuit with the MMAP and using the cubic-interpolation model is performed in 330

seconds requiring 199 iterations. The time per iteration is 1.65 seconds for both linear

and cubic interpolation, and the time per iteration for the SH model is 1.95 seconds, and

for the Level-2 model is 2.2 seconds. The time per iteration is reduced by 16% with the

use of the MMAP in comparison to the circuit simulated without the MMAP using the

SH model, and the time per iteration is reduced by 25% with the use of the MMAP in

comparison to the circuit simulated without the MMAP using the Level-2 model.

sContains only theanalysis time for the DC-transfer operation and is rounded to thenearest second.

25 Cascaded NMOS Depletion-Load Inverters
Figure 6.22

185

186

Example 2: Low-Power CMOS Operational Amplifier

A low-power CMOS operational amplifier is simulated on the IBM PC-XT using the

BIASC circuit-simulation program. The circuit schematic is given in Figure 6.23. and the

BIASC input listing is given in Appendix B. The circuit contained a toul of 30 MOS

transistors. 15 n-channel and 15 p-channel enhancement transistors. The n-channel and

p-channel transistors are represented by separate models.

The DC operating-point of the CMOS amplifier is simulated. The simulation is per

formed using the BIASC program with and without the MMAP. Without the MMAP.

the evaluation is performed using both the SH and SPICE Level-2 models. With the

MMAP. the evaluation is performed using both linear and cubic interpolation. The time,

number of iterations, and time per iteration for the simulation are listed in Table 6.15.

Low-Power CMOS Operational Amplifier

Confi juration Time6 (sec) # Iterations Time (sec)/lteration

BIASC Shichman-Hodges 19.5 12 1.63

BIASC SPICE Level-2 23.0 11 2.1

BIASC w/MMAP Linear 17.5 12 1.46

BIASC w/MMAP Cubic 19.0 13 1.46

Table 6.15

The simulation of the circuit without the MMAP and using the SH model is per

formed in 19.5 seconds requiring 12 iterations, and the simulation of the circuit without

the MMAP and using the Level-2 model is performed in 23.0 seconds requiring 11 itera

tions. The simulation of the circuit with the MMAP and using the linear-interpolation

model is performed in 17.5 seconds requiring 12 iterations, and the simulation of the cir

cuit with the MMAP and using the cubic-interpolation model is performed in 19.0

seconds requiring 13 iterations. The time per iteration is 1.46 seconds for both linear and

cubic interpolation, and the lime per iteration for the SH model is 1.63 seconds, and for

^Contains only the analysis time for the DC operating-point operation. The timing data for this example
aTe generated by repeating the"simulation of the circuit 10 times in a program loop, and dividing the total time
by 10 and rounding to the nearest 0.5 second.

187

the Level-2 model is 2.1 seconds. The time per iteration is reduced by 10% with the use
of the MMAP in comparison to the circuit simulated without the MMAP using the SH j
model, and the time per iteration is reduced bv 30* with the use of the MMAP in com
parison to the circuit simulated without the MMAP using the Level-2 model.

OS •*" 1 2 ©

Low-Power CMOS Operational Amplifier
Figure 6.23

188

189

6.8. Chapter Summary

This chapter described a board-level prototype of the MOS-Model Attached

Processor(MMAP) which is developed for use with the IBM PC-XT. The prototype is

composed of 101 "off-the-shelf" SSI. MSI and LSI components, and implements the

MMAP architecture described in Chapter 5. The prototype is wire-wrapped and built on

two circuit boards.

The Coefficient Memory is dual-ported, accessed by both the MMAP and the IBM

PC-XT. and also acts as the interface between the MMAP and the IBM PC-XT. The

Coefficient Memory is 128K-bytes in size, and the 128K-bytes are divided into 32 4K-

byte sections. Data for asingle MOS transistor model is stored in a4K-byte section. The

prototype transfers dau to and from the IBM PC-XT through the lowest 4K-byte section

of Coefficient Memory. The remaining 31 4K-byte sections store dau for 31 MOS

transistor models. The design supports the concurrent evaluation of four MOS transis

tors.

The prototype MMAP operates at a clock frequency of 1.12Mhz. limited by the

access time of the EPROMs comprising the Controller's control memory. The use of

high-speed fuse-linked PROMs would allow a maximum clock frequency of lOMhz.

however, fuse-linked PROMs are not used because their cost is prohibitive and they can

not be reprogrammed.

Operating at a clock frequency of 1.12MHz. the MMAP performs 4 transistor

evaluations in 4.6ms using the model based on linear interpolation and 4.5ms using the

model based on cubic interpolation. The time per transistor evaluation performed by the

MMAP operating at 1.12Mhz is a factor of 10 times faster than the evaluation of the

Shichman-Hodges transistor equations in software by the IBM PC-XT and a factor of 30

times faster than the evaluation of the Level-2 equations. A profile of the execution of

the MMAP's microprogram shows that the floating-point compuutions comprise approxi

mately 60% of the toul execution time, and the communication of data between the

190

Coefficient Memory and Coefficient Cache comprises the remaining 40%. A comparison of

the model-evaluation times normalized to the the floating-point multiplication time

demonstrates that the prototype MM.AP operating at 1.12Mhz is 10 times more efficient

than the IBM PC-XT w/ln8087 operating at 4.47Mhz performing the evaluation of the

empirical model equations.

The prototype MMAP is operated with the BIASC circuit-simulation program run

ning on the IBM PC-XT. BIASC's model-evaluation routine is altered to use the MMAP

for transistor model-evaluations. The model routine is similar to that described in

Chapter 2. except that four transistors are evaluated at the same time. Operating at a

clock frequency of 1.12 Mhz. the MMAP is shown to have an Attached-Processor

Efficiency of 80%. however, simulation of the MMAP operating at lOMhz shows that the

Attached-Processor Efficiency would decrease to less than 40%. The low Attached-

Processor Efficiency isa result of the IBM PC-XT's slow clock speed and 8-bit dau bus.

The time per iteration of the DC-transfer simulation of a cascade of 25 NMOS

inverters is reduced by 16% when the MMAP is used in comparison to the simulation

without the MMAP using the Shichman-Hodges transistor model and is reduced by 25%

when the MMAP is used in comparison to the simulation without the MMAP using the

Level-2 model. The time per iteration of the DC operating-point simulation of a low-

power CMOS amplifier is reduced by 10% when the MMAP is used in comparison to the

simulation time without the MMAP using the Shichman-Hodges transistor model and is

reduced by 30% when the MMAP is used in comparison to the simulation time without

the MMAP using the Level-2 model.

CHAPTER 7

Conclusions and Further Work

191

The electrical simulation of MOS integrated circuits is compuutionally expensive,

and a significant percentage of the compuutional time is comprised of MOS-transistor

model evaluation. The purpose of the research presented in this disserution is the

development of a special-purpose processor, referred to as a MOS-Model Atuched Pro

cessor (MMAP). to accelerate the evaluation of the MOS-transistor equations. The

MMAP is designed specifically to evaluate the DC MOS-transistor equations and is used

in conjunction with a host computer running a circuit-simulation program. The MMAP

evaluates the transistor equations which would otherwise have been evaluated by the

host computer.

The transistor model information is stored in the MMAP. Transistor input dau.

consisting of a model reference, terminal volugesand channel scale factor, are sent to the

MMAP. The model pointer is used by the MMAP to access the correct model dau. The

MMAP evaluates the operating point of the device and returns the result to the host pro

cessor.

The MMAP. used in conjunction with a circuit-simulation program, has been shown

to be a logical partition from both the circuit-simulation and the system-architecture

perspective. From the circuit-simulation perspective, the MOS-transistor evaluation

comprises a significant percenuge of the toul circuit-simulation time. From the system-

architecture perspective, the MMAP performs a large amount of work while requiring

only a minimal transfer of dau. In addition, the host can perform operations in parallel

to the MMAP.

192

A novel empirical model has been developed for use with the MM.AP and is based

on one-dimensional piecewise-cubic equations. The interpolation method used is based

on the first-order behavior of the MOS transistors drain-to-source current and partial

derivatives of current with respect to drain-to-source voltage and gate-to-source voltage.

The empirical model reproduced the behavior of the Shichman-Hodges and SPICE Level-2

models, in addition to modeling the behavior of a device from measured dau. The model

is suited for use with the MMAP. The model can be evaluated without conditional

branching and uses only floating-point addition, subtraction and multiplication. In addi

tion, only single-precision floating-point compuution is required.

The architecture of the MMAP exploits the characteristics of the empirical model.

The floating-point hardware that is necessary for the model evaluation is readily seg

mented into a multiple sUge pipeline, where each sUge operates independent of all the

others. Several transistors can be evaluated simuluneously. fully utilizing the pipelined

floating-point hardware. In addition, since the transistor evaluation is performed

without conditional branching the pipelined floating-point can be operated at maximum

throughput.

The MMAP utilizes an internal memory hierarchy. The dau for all of the transistor

models are stored in the MMAP. however, only a subset of the models are used during

one evaluation. A single-cycle memory is provided for the storage of model and device

dau required for the current transistor evaluation. This memory can be read from and

written to at the same clock speed as the floating-point hardware, supplying the input

operands and reading the results at the maximum possible rate.

A board-level prototype of the MMAP has been developed for use with the IBM

PC-XT. The prototype is designed to evaluate 4 transistors concurrently. The MMAP

has been shown to efficiently perform the transistor evaluation. The prototype MMAP is

used in conjunction with a circuit-simulation program on the IBM PC-XT. A reduction

in overall simulation times of up to 30% have been obuined. With the MMAP working

in parallel to the IBM PC-XT. the MMAP remained idle half of the time waiting for the

193

IBM PC-XT to complete its operations. From the performance measurements of the
MMAP the prototype, is shown to have acommunication overhead of 207, however,
simulation of the prototype MMAP operating at its maximum clock frequency is shown
to have acommunication overhead in excess of 60%. The high overhead is aresult of the
relatively slow transfer of floating-point data over the IBM PC-XTs S-bit data bus.
Future work should include the testing of the prototype MMAP with other computers
that support both afaster processor and afaster memory-cycle time.

The work presented in this dissertation addressed the DC-MOS represenmion.
Future work in the area of extending the capabilities of the MMAP to include the model
ing of the MOS transistor capacitors is necessary. The most promising approach is to use
charge as the state variable. The use of charge as the state variable is necessary to
guarantee the conservation of charge in the MOS transistor [YEC83]. In addition to cal
culating the current and derivatives of current with respect to voltage, the MMAP would
also calculate the charge associated with each of the four terminals and the partial
derivatives of the charge with respect to voltage. The MMAP would store the charge
representations of three of the four terminals (the fourth is dependent on the other 3due
to charge conservation), and perform the evaluation of .the charge and the derivatives of
charge.using the same method that is used to represent the DC current.

The prototype MMAP described in this dissertation was used in conjunction with a
direct-method circuit-simulation program. Future work should include the investigation
of the use of the MMAP with relaxation-based simulation programs and design-
optimization programs. For use with adesign-optimization program, the sensitivity of a
transistors current with respect to its geometry (eg- channel width and length) would be
calculated by the MMAP. In addition, the use of the MMAP with both direct and
relaxation-based circuit-simulation programs on multiprocessor architectures should be

investigated.

The implementation of the Model-Processing Unit (MPU) of the MMAP in asingle
VLSI component should be further considered. The MPU of the MMAP contains the

194

same functional components, although organized differently, as aspecial-purpose digital
signal processor. Adigital signal processor with 32b floating-point support has been real
ized in asingle. 155.000 transistor, integrated circuit [KBFS5]. With asingle-chip ver
sion of the MPU. several MPU could be connected in parallel, as described in Chapter 5.
The single-chip realization should emphasize the access of model data as well as the pro
cessing speed of the floating-point computations. The profile of the prototype MMAPs
microprogram illustrated that 40% of the total time is used in the reading/writing of
data between the MPU and the Coefficient Memory. To achieve the maximum increase in
performance with multiple MPUs connected in parallel, the percentage of time required
in reading/writing of data between the MPU and the MMAPs Coefficient Memory must

be reduced.

A.1

APPENDIX A

The User's Manual and the Source Listing of the Program BIASC: a Circuit-Simulation Program

for the IBM PC is available from the Software Distribution Office, Industrial Liaison Program, Electri

cal Engineering and Computer Science Department, University of California, Berkeley, CA 94720.

APPENDIX?

Example Circuit Listings

B.l

25 Cascaded NMOS Inverters

vdd vdd 0 5
vin 1 0 0 pulse 0 5 In In In 40n lOOn
mle 2 10 0 mmode 1 3u w 6u
m2e 3 2 0 0 mmode 1 3u w 6u
m3e 4 3 0 0 mmode 1 3u w 6u
m4e 5 4 0 0 mmode 1 3u w 6u
m5e 6 5 0 0 mmode 1 3u w 6u
m6e 7 6 0 0 mmode 1 3u w 6u
m7e 8 7 0 0 mmode 1 3u w 6u
m8e 9 8 0 0 mmode 1 3u w 6u
m9e 10 9 0 0 mmode 1 3u w 6u
mlOe 11 10 0 0 mmode

mile 12 11 0 0 mmode

ml2e 13 12 0 0 mmode

ml3e 14 13 0 0 mmode

ml4e 15 14 0 0 mmode

ml5e 16 15 0 0 mmode

ml6e 17 16 0 0 mmode

xnl7e 18 17 0 0 mmode

ml8e 19 18 0 0 mmode

rol9e20 19 0 0 mmode

m20e 21 20 0 0 mmode

m21e 22 21 0 0 mmode

m22e 23 22 0 0 mmode

m23e 24 23 0 0 mmode

m24e 25 24 0 0 mmode

m25e 26 25 0 0 mmode

mid vdd 2 2 2 mmodd

m2d vdd 3 3 3 mmodd

m3d vdd 4 4 4 mmodd

m4d vdd 5 5 5 mmodd

m5d vdd 6 6 6 mmodd

m6d vdd 7 7 7 mmodd

m7d vdd 8 8 8 mmodd

m8d vdd 9 9 9 mmodd

m9d vdd 10 10 10 mmodd 1 6u w 3u

mlOd vdd 11 11 11 mmodd 1 6u w 3u
mild vdd 12 12 12 mmodd 1 6u w 3u
ml2d vdd 13 13 13 mmodd 1 6u w 3u

ml3d vdd 14 14 14 mmodd 1 6u w 3u

ml4d vdd 15 15 15 mmodd 1 6u w 3u

ml5d vdd 16 16 16 mmodd 1 6u w 3u
ml6d vdd 17 17 17 mmodd 1 6u w 3u

ml7d vdd 18 18 18 mmodd 1 6u w 3u

ml8d vdd 19 19 19 mmodd 1 6u w 3u
ml9d vdd 20 20 20 mmodd 1 6u w 3u

m20d vdd 21 21 21 mmodd 1 6u w 3u

m21d vdd 22 22 22 mmodd 1 6u w 3u

m22d vdd 23 23 23 mmodd 1 6u w 3u

m23d vdd 24 24 24 mmodd 1 6u w 3u

rn24d vdd 25 25 25 mmodd 1 6u w 3u

1 3u w 6u

1 3u w 6u

1 3u w 6u

1 3u w 6u

1 3u w 6u

1 3u w 6u

1 3u w 6u

1 3u w 6u

I 3u w 6u

1 3u w 6u

1 3u w 6u

1 3u w 6u

1 3u w 6u

1 3u w 6u

1 3u w 6u

1 3u w 6u

1 6u w 3u

1 6u w 3u

1 6u w 3u

1 6u w 3u

1 6u w 3u

1 6u w 3u

1 6u w 3u

1 6u w 3u

B.2

m25d vdd 26 26 26 mmodd 16u w 3u
model mmode level=2 vto-1 kP=20u phi=.S lambda=,0l5 cox=0
model mmodd level=2 vto=-2 kp=20u phi=.8 lambda=.02 cox=0
print dc v 2 3 4 5
set maxit=100
dctr vin 0 5 0.02
quit

B.3

Low-Power CMOS Amplifier

vcc vcc 0 5

vss vss 0 -5

vp vp 0 0
dl 1 vss dmodl

d2 2 vss dmodl 2
rb 3 2 1350

mlb 4 4 11 mmodn w 128u 1 12u

m2b 5 4 3 3 mmodn w 128u 1 12u

m3b 4 5 vcc vcc mmodp w 128u 16u
m4b 5 5 vcc vcc mmodp w 128u 1 6u
m5b 6 5 vcc vcc mmodp w 128u 1 6u
m8b 6 6 vss vss mmodn w 128u 1 12u
mil 8 5 vcc vcc mmodp w 128u 1 6u
mi2 12 5 vcc vcc mmodp w 128u 16u
mi3 7 6 vss vss mmodn.w 128u 1 12u
mi4 15 6 vss vss mmodn w 128u 1 12u
ml 10 8 14 14 mmodn w 200u 1 3u

m2 11 12 13 13 mmodn w 200u 1 3u
m3 22 7 13 vcc mmodp w 200u 1 3u
m4 16 15 14 vcc mmodp w 200u 1 3u
m5 vss vp 8 vcc mmodp w 200u 1 3u
m6 vss vn 12 vcc mmodp w 200u 1 3u
m7 vcc vp 7 7 mmodn w 200u 1 3u
m8 vcc vn 15 15 mmodn w 200u 1 3u

m9 9 9 vcc vcc mmodp w 18u 1 3u
mlO 10 10 vcc vcc mmodp w 180u 1 7.5u
mil 1111 vcc vcc mmodp w 180u 1 7.5u
ml2 9 22 vss vss mmodn w 90u 1 7.5u

ml3 22 22 vss vss mmodn w 90u 1 7.5u

ml4 16 16 vss vss mmodn w 90u 1 7.5u

ml5 17 10 vcc vcc mmodp w 180u 1 7.5u
ml6 17 17 vss vss mmodn w 9u 1 3u

ml7 19 11 vcc vcc mmodp w 180u 1 7.5u
ml8 vn 9 19 vcc mmodp w 72u 1 3u
ml9 vn 17 18 18 mmodn w 36u 1 3u

m20 18 16 vss vss mmodn w 90u 1 7.5u
model dmodl is»le-16

model mmodn kp»70u level«2 vto«.7 lambda=.01 gamma«.3 phi«.56
model mmodp kp»35u level»2 type=pmos vto=-.7 lambda=.01 gamma=.3 phi=.56
set maxit=100

print dc v vn
dctr vp -0.5 0.5 0.01
bias

quit

B.4

Worst-Case Path Through Op-Code PLA

vbbl 0-3.59

vdd 2 0 4.50
ml 3 4 2 1 md 1 6u w 8u
m2 2 5 5 1 md 1 6u w 8u
m3 5 6 0 1 mn 1 3u w 14u

m4 7 8 0 1 mn 1 3u w lOOu
m5 4 8 0 1 mn 1 3u w lOu

m6 2 8 8 1 md 1 6u w 8u
m7 8 9 0 1 mn 1 3u w 18u
m8 7.4 2 1 md 1 5u w 30u
m9 7 4 2 1 mn 1 3u w 120u
mlO 3 4 3 1 md 1 20u w 20u
mil 0 10 0 1 md 1 7u w 7u
ml2 2 4 3 1 mn 1 3u w 30u
ml3 3 10 0 1 mn 1 3u w 20u
ml4 2 2 10 1 me 1 lOu w 5u
ml5 10 4 0 1 mn 1 3u w 7u
ml6 9 2 4 1 mn 1 3.5u w 25u
ml7 11 11 2 1 md 1 6u w 9u
ml8 11 12 0 1 mn 1 3u w 120u
ml9 11 13 0 1 mn 1 3u w 20u
m20 2 14 0 1 mn 1 3u w 150u
m21 2 15 0 1 mn 1 3u w 150u
m22 2 16 0 1 mn 1 3u w 250u
m23 0 17 0 1 mn 1 3u w 400u
m24 17 2 12 1 mn 1 3.5u w I60u
m25 0 18 0 1 mn 1 3u w 20u
m26 18 2 13 1 mn 1 3.5u w 8u
rl 19 20 Ik
m27 21 22 0 1 mn 1 3u w lOu
m28 2 22 22 1 md 1 8u w 6u
m29 22 23 0 1 mn 1 3u w 8u
m30 2 24 24 1 md 1 8u w 6u
m31 24 25 0 1 mn 1 3u w 8u
m32 26 24 0 1 mn 1 3u w lOu
m33 27 0 0 1 me 1 4u w 30u
m34 15 15 2 1 md 1 lOu w 4u
m35 14 14 2 1 md 1 lOu w 4u
m36 28 0 0 1 mn 1 3u w 750u
m37 29 0 0 1 mn 1 3u w 600u
m38 7 30 26 1 mn 1 3u w 60u
m39 7 31 21 1 mn 1 3u w 60u
m40 2 32 32 1 md 1 6u w 9u
m41 32 13 0 1 mn 1 3u w 15u
m42 29 33 2 1 mn 1 3u w 15u
m43 29 16 0 1 mn 1 3u w 15u
m44 34 34 2 1 md 1 8u w 5u
m45 6 35 34 1 mn 1 3u w 20u
m46 36 33 2 1 mn 1 3u w 30u
m47 37 33 2 1 me 1 4u w 8u
m48 39 33 2 1 mn 1 3u w 20u

B.5

m49 12- 33 2
m50 12 19 0
m51 36 40 0
m52 36 41 0
m53 34 12 0
m54 42 43 21
m55 28 33 2
m56 28 16 0
r2 42 16 .7k
m57 43 44 37
m58 31 4.4 23
r3 48 0 .Ik
m59 48 20 47
m60 47 33 2
r4 49 48 .Ik
m61 49 20 46
m62 46 33 2
r5 50 49 .Ik

m63 50 20 45
m64 45 33 2

r6 51 50 .10k

m65 30 44 25
m66 9 5 0
m67 9 6 2

m68 9 6 2
m69 34 13

m70 6 6 2
m71 51 20

m72 13 33

m73 19 52
m74 54 44
m75 44 44

m76 38 55
m77 56 57

m78 2 57

1 me 1 4u w 160u
1 mn 1 3u w 180u
1 mn 1 3u w lOOu
1 mn 1 3u w lOOu
1 mn 1 3u w 120u

1 mn 1 3u w 30u
1 mn 1 3u w 15u
1 mn 1 3u w 15u

1 mn 1 3.5u w 8u
1 mn 1 3.5u w 12u

1 mn 1 3u w 9u
1 me 1 4u w 8u

1 mn 1 3u w 9u

1 me 1 4u w 8u

1 mn 1 3u w 9u
1 me 1 4u w 8u

1 mn 1 3.5u w 12u
1 mn 1 3u w 15u
1 md 1 6u w 9u
1 me 1 4u w 45u
0 1 mn 1 3u w 20u
1 md 1 6u w 9u
13 1 mn 13u w 9u
2 1 me 1 4u w 8u

1 mn 1 3u w 50u
1 mn 1 3.5u w lOu
1 mn 1 3.5u w lOu
1 mn 1 3u w 50u
1 ml 1 12u w 4u

1 md 1 8u w 8u
1 3u w 8u

1 6u w 9u

1 3u w 15u
1 4u w 8u

1 me 1 4u w 12u
1 md 1 6u w 9u
1 mn 1 3u w 20u
1 me 1 4u w 12u
1 mn 1 3u w lOu
1 mn 1 3u w 15u
1 mn 1 3u w lOu

1 mn 1 3u w 45u
13uw 45u

1 3u w 45u

1 3u w 30u
1 6u w 9u
1 3u w 15u

65 1 mn 1 3u w 30u
0 1 mn 1 3u w 30u

53

52

55

53

57

57

m79 57 54 0 1 mn
m80 2 54. 54 1 md
m81 54 56 0 1 mn
m82 39 58 56 1 mn
m83 29 2 27
m84 2 59 59
m85 59 60 0
m86 28 2 60
m87 2 33 15
m88 15 61 0
m89 2 33 14

m90 14 59 62
m91 62 27 63 1 mn

m92 63 64 0 1 mn
m93 62 0 0 1 mn
m94 2 61 61 1 md
m95 61 60 0 1 mn
m96 61 27

m97 65 64
m98 61 0 0 i mn 1 3u w 15u
m99 2 40 40 1 md 1 6u w 12u

B.6

mlOO 40 14 0 1 mn 1 3u w 25u

mlOl 40 33 0 1 mn 13uw 25u
ml02 40 0 0 1 mn 1 3u w 25u
ml03 40 0 0 1 mn 1 3u w 25u
ml04 2 41 41 1 md 1 6u w 12u

ml05 41 15 0 I mn 1 3u w 25u

ml06 41 33 0 1 mn 1 3u w 25u
ml07 41 0 0 1 mn 1 3u w 25u

ml08 41 0 0 1 mn 1 3u w 25u
ml09 2 25 25 1 md 1 6u w 9u
mllO 25 32 0 1 mn 1 3u w 15u
mill 25 0 0 1 mn 1 3u w 15u

mll2 2 23 23 1 md 1 6u w 12u
ml 13 23 0 0 1 mn 1 3u w 25u
mll4 23 13 0 1 mn 1 3u w 25u
mll5 23 0 0 1 mn 1 3u w 25u

ml 16 23 0 0 1 mn 1 3u w 25u
daxl 1 65 da 330.00p
dpxl 1 65 dp 156.00u
dax2 1 61 da 456.00p
dpx2 1 61 dp 210.00u
dax3 1 63 da 450.00p
dpx3 1 63 dp 216.00u
dax4 1 62 da 6l5.00p
dpx4 1 62 dp 294.00u
dax5 1 60 da 93.00p
dpx5 1 60 dp 42.00u
dax6 1 59 da 206.00p
dpx6 1 59 dp 94.00u
dax7 1 57 da 243.00p
dpx7 1 57 dp 94.00u
dax8 1 56 da I62.00p
dpx8 1 56 dp 60.00u
dax9 1 38 da 245.00p
dpx9 1 38 dp 118.00u
daxlO 1 55 da 85.00p
dpxlO 1 55 dp 38.00u
daxll 1 44 da 85.00p
dpxll 1 44 dp 38.00u
daxl2 1 52 da 85.00p
dpxl2 1 52 dp 38.00u
daxl3 1 54 da 271.00p
dpxl 3 1 54 dp 122.00u
daxl4 1 53 da 490.00p
dpxl4 1 53 dp 236.00u
daxl5 1 19 da 245.00p
dpxl5 1 19 dp 118.00U
daxl6 1 51 da 81.00p
dpxl6 1 51 dp 36.00u
daxl7 1 20 da lp
dpxl7 1 20 dp lu
dax18 1 40 da 414p
dpxl 8 1 40 dp 128u
daxl9 1 25 da 384.00p
dpxl 9 1 25 dp 174.00u
dax20 1 30 da 93.00p

B.7

dpx20
dax21

dpx21
dax22
dpx22
dax23

dpx23
dax24

dpx24
dax25

dpx25
dax26
dpx26
dax27

dpx27
dax2S

dpx28
dax29

dpx29
dax30

dpx30
dax31

dpx31
dax32

dpx32
dax33
dpx33
dax34

dpx34
dax35

dpx35
dax36

dpx36
dax37

dpx37
dax38

dpx38
dax39

dpx39
dax40

dpx40
dax41

dpx41
dax42

dpx42
dax43

dpx43
dax44

dpx44
dax45

dpx45
dax46

dpx46
dax47

dpx47
dax48

30

45

45

50

50

49

49

48

48

46

46

47

47

23

23

31

31

43

43

42

42

39

39

37

37

36

36

6

6

34

34

41

41

32

32

29

29

28

28

14

14

15

15

27

27

26

26

24

24

22

22

21

21

13

13

18

dp 42.00u
da 645p
dp 288u
da 81.00p
dp 36.00u
da 81.00p
dp 36.00u
da 81.00p
dp 36.00u
da 645p
dp 288u
da 645p
dp 288u
da 766.00p
dp 356.00u
da 93.00p
dp 42.00u
da 81.00p
dp 34.00u
da 165.00p
dp 78.00u
da 206.00p
dp 92.00u
da 162.00p
dp 68.00u
da 900p
dp 220u

da 206.00p
dp 94.00u
da 735p
dp 300u
da 414p
dp 128u
da 186.00p
dp 84.00u
da 2425p
dp HOOu
da 2425p
dp HOOu
da lp
dp lu
da lp
dp lu
da 258.00p
dp 120.00u
da 1800p
dp 800u
da 162.00p
dp 64.00u
da 162.00p
dp 64.00u
da 1800p
dp 800u
da 645p
dp 288u
da 81.00p

B.8

dpx48
dax49
dpx49
dax50
apx50
dax51
dpx51
dax52
dpx52
dax53
dpx53
dax54
dpx54
dax55
dpx55
dax56
dpx56
dax57

dpx57
dax58
dpx58

18

12

12

17

17

11

11

9

9

10

10

8

8

4

4

7

7

5

5

3

3

model mn level

dp 34.00u
da 12900p
dp 5760u
da 685.00p
dp 338.00u
da 735p
dp 300u

da 735p
dp 300u
da I62.00p
dp 60.00u

da 198.00p
dp 88.00u
da 230.00p
dp 106.00u
da 3500p
dp lOOOu
da 182.00p
dp 80.00u
da 621.00p
dp 286.00u . «,« , LJ

moaei mn «v«-2 vto«.880 kp=5.07e-5 gamma=.l pl"-.561 lambda*
moSel me level-2 vto-.49 kp-5.33e-5 gamma».l ^56*l™™£™02model ml level-2 vto-1.95 kp-4.79e-5 gamma- 1̂ 561^^.02
model md level=2 vto-2.1 kp-4.65e-5 gamma-.l ph,-J61 lambda=.02
model da is=7.242e-6
model dp is=6.234e-ll
print tran v 33 58 53 13 21
print dc v 33 58 53 13 21
vprech 33 0 0.5 pulse 0.5 4.5 lln 7n 6n 35n
vpw 58 0 OJ pulse 0.5 4.5 60n 7n 6n 35n
vqmux07 39 0 0
viso 44 0 4.5
vpd 53 0 pulse 0.0 4.5 90n lOn 6n 200n
vqf 64 0 4.5

s^fao^o?-l2n2maxit-20 dcit-200 dctrit-200 dctotal-10000
bias
dctr vprech0.5 4.5 0.15
quit

.02

B.9

APPENDIX C

Analytic Transistor Models

Shichman-Hodges Equations:

ForVgs > Vt and V* ^ V^-Vt

1^= ik.^.Vd.CVp-Vt-^Dd+XV*)

ForVg, ^ Vt and V* > Vgs-Vt

*n W

2 L
!ds = li-rLcvp-v^u +xv*)

ForVp < Vt

Ids = 0

Vt « Vt0 +v(Vv8b +21^,1 -V2l^,l

CI

SPICE Level-2 Equations:

ForVgs > Vt and V* < V^*,,

(Vgs-VFB-2l^l-^-)Vds

2V2€^qNA |(2 ,^, +Vds +v$b)i.5 -(21^1+ V$b)"]

i - r w*ds — /% ^ox y

ForVgs £ Vt and V* > V^^

i - r W
*ds — Pn ^ox -T^- (v„ -Vra -214,1 -Z^L)v^

2V2MN* 1(214,1 -t-V^ +V*)"-(214,1 +V*)»|

ForVgs < Vt

Ids = 0

'tear = Vgs-Vra-2 l<fc>

«sqNA

ox
•J 1 +

€sqN>
(Vgs + Vsb-VFB)-1

Vt= Vra+ 2 1^,1 +
V26INA(2 1(^,1 +Vsb)

C.2

APPENDIX D

Enhanced Monotonic Piecewise Cubic Interpolation(EMPCI)

of 1 Independent Variable

D.l

Enhanced Monotonic. Piecewise-Cubic Interpolation(EMPCI) is an interpolation

method that fits piecewise. cubic-polynomial equations to monotone data: producing a
composite function that is monotonic. whose composite derivative conforms to the shape
of the data points. In addition, the difference in the second derivatives of adjacent poly
nomials at their boundaries is minimized. The values of derivatives at the data points

are calculated to meet the specified criteria. Fritsch and Carlson's monotone piecewise

cubic interpolation method[FrC80] provides the basis for the work presented in this

appendix.

The EMPCI method is derived to represent one-dimensional MOS transistor I-V

characteristics. This appendix provides the basis for the EMPCI method as applied to one

independent variable. Adescription of the EMPQ method is first presented, followed by
adescription of the method. Then, examples of the EMPQ method are given. Finally,
the problems related to function discontinuities at the boundaries of adjacent polynomi

als due to finite numerical precision are described.

D.l. Overview

Interpolation of monotone data with the further restrictions of the MOS transistor
current-voltage characteristics is accomplished by use of the EMPQ method. EMPQ is
an interpolation method that constructs a monotonic function composed of piecewise
cubic equations interpolating between monotone data. The function f(x). illustrated by
Figure D.l. is the composite function, composed of piecewise cubic polynomial segments.

D.2

f(x)= Pi(x). i= l.N (D.l)

There is a unique cubic polynomial segment for each value of x.

Pi(x)= ai + biCx-x^ + qCx-x^ + diCx-Xi)3 for x> ^ x < xi+1 (D.2)

The coefficients a*, b,. c4 and dj are calculated from the values of f(xj). f Cx*). f(x1+1) and

f'(xi+1).

a4 = f(xi) (D.3)

b^fW (D.4)

= SF^rtx.WUj.n) (D 5)
1 AXi

Ax?

F= few)"^J (D.7)
' AXj

Ax4 = xi+1 - xs (D.8)

The composite function is continuous.

Pi(xi+1) = pi+1(xl+1) . i=l.N (D.9)

and continuous in first derivative.

Pi(xl+1) = pi+1(xi+1) . i-l.N (D.IO)

The discrete values of the function f(x) are known. The EMPCI method calculates the

derivative values at the data points such that the composite curve is monotonic.

p'i(x) £ 0 for Xj < x < xi+1 (D.ll)

The derivative of the polynomial has either no local minima, no local maxima, a single

minima, or a single maxima over the range of a cubic polynomial. The shape of the

derivative characteristic of a piecewise cubic polynomial is dependent on the measured

data points at the polynomial's end points. f(Xj) and f(xi+1). and the the data points

before and after the polynomial's end points. f(xj_i) and fCx^X

D.3

The piecewise-cubic equations representing the transistor's I-V characteristics are

solved using iterative techniques. The Newton-Raphson iterative method is generally

used because of it's quadratic convergence. The Newton-Raphson iterative method

requires that the nonlinear function have continuous first and second derivatives for

maximum rate of convergence. Since only the first derivative is continuous at boundaries

of polynomials, the difference between second derivatives at boundaries of piecewise

polynomials is minimized.

-. . . I d2p, d2pK1 I
Minimize I —=• - _, , I x =

dx2 dx2

f(x)

*H-1

Piecewise Cubic Function
Figure D.l

(D.12)

D.2. The Set of Equations Denning EMPQ Polynomials

The values of derivatives at measured data points are derived by the requirements

of EMPCI polynomials. A set of inequalities as functions of data point derivatives are

defined. The inequalities are based on the monotonic behavior of the cubic polynomials,

the sign of the second derivative at the boundaries of the cubic polynomials, and the

D.4

limits on the magnitude of derivative values. Also a set of equations representing the

difference in second derivative at polynomial boundaries as a function of derivative is

defined.

D.2.1. Inequalities Constraining Value of Derivative

The slope of line segments joining adjacent data points. rx \ rt = — _^— J. is

calculated for each interval. Since the data is monotonic. F4 is always positive. Dependent

on the values of F,. each segment is classified dependent on its relationship to neighboring

Fs.

Casel: F^i < h < Fi+1 (D.13)

Case 2: FH > F* > Fl+1 (D.14)

Case 3: F« ^ F> > Fi+1 (D.15)

Case 4: F^ > F4 < Fi+1 (D.16)

The four different cases are illustrated in Figures D.2a. D.2b. D.2c and D.2d.

Case 1
Figure D.2a

Fs
M

l-t

Case 2

Figure D.2b

D.5

Fi.,

Case 3

Figure D.2c

F,M

Case 4
Figure D.2d

D.6

i+1

D.7

Each case specifies the sign of second derivative of the cubic polynomial over the interval

with respect to x. The second derivative of the cubic polynomial is a linear function of x.

•2

—£.0 2q +6^ (x -Xi) (D.17)
d sr

(coefficients c, and d, are given in Equations D.5 and D.6) Only the sign of the second

derivative at the end points of the polynomials are considered since the second derivative

is a linear function of x. The second derivative at the polynomial end points are linear

functions of derivative.

d2Pl | a 3F, -lfW -f(x^) (D 18)
d x2 x= x» ~ Axj

d2Pi | o -3F, +f'(xj +2f(x^) (D19)
dx2 x = x*! Axj

The four cases represent the four different forms of the first derivative. The slope

of the line segments joining data points are increasing in Case 1. and therefore the

polynomial's first derivative must increase over the segment(the second derivative of the

function is positive). In Case 2. the slope of line segments joining data points are

decreasing, and therefore the polynomial's first derivative must decrease(the second

derivative of the function is negative). Cases 3 and 4 represent a transition in derivative

behavior. In Case 3. the function's second derivative is initially positive, and then

becomes negative over the segment: representing a maximum in the polynomial's first

derivative. The function's second derivative is initially negative in Case 4. and then

becomes positive over the segment, representing a minimum in the polynomial's first

derivative.

The monotone behavior of a polynomial segment of type Case 4 is also limited by

the following inequality.

f'(x|) + f'(xi+i) - 3 Fj < 0 (D.20)

(D.20)

D.8

The above inequality is not the exact limit on the monotonicity of the polynomial seg

ment but is the conservative lower bound that can be represented as a linear function of

derivative.

A final restriction is placed on the range of values of derivative. The derivative is

constrained to be no greater than the maximum of the slopes of the two adjacent line

segments and no less than the minimum of the slopes of the two adjacent line segments.

Minimum (Fj-i. Fi) < f-Cxj) (D.21)

Maximum (Fi-j. Fi) ^ f'jCxj) (D.22)

These inequalities are used to prohibit large changes in derivative over the range of a the

segment.

The inequalities for the four cases are summarized in the following tables.

Case 1

3 Fi-2 f'Cxj)-f (xi+1) £ 0
-3 Fj + f'(xj) + 2 f'(xi4.i) > 0

Case 2

3Fi-2f*(xi)-f(xI+1) < 0
-3Fi + f,(xi) + 2f,(xi+1) < 0

Case 3

3 Fj -2 f'(Xi) -f'(xi+1) > 0
•3Fi + f'(xi) + 2f'(xi+1) < 0

Case 4

SFi^fdiWCxn.,) < 0
•3 F4 + f'Cxj) + 2 f'(xl+1) £ 0

f'Cxj* f'(xi4i)-3Fi ^ 0

A graphic represenution of these inequalities are given in Figures D.3a. D.3b. D.3c and

D.3d. In each figure, the hatched area represents the valid range of derivative values.

Case 1 Inequalities
Figure D.3a

Case 2 Inequalities
Figure D.3b

D.9

Case 3 Inequalities
Figure D.3c

Case 4 Inequalities
Figure D.3d

The complete set of inequalities is represented in matrix form.

D.10

D.ll

Gf'-h > 0 (D.23)

Matrix G consists of all the linear coefficients of the derivatives, and the vector b con

tains the constant terms, f is the vector of unknown derivatives.

D.2.2. Minimizing The Error in Second Derivative

The second derivative is not guaranteed to be continuous at the boundaries of adja

cent polynomials. The EMPCI method imposes additional constraints such that the sum

of the errors in second derivatives of adjacent polynomials is minimized. The difference

in second derivative at point i is a linear function of f.

A Second = 2 ct + 6 djAXj -2 ci+i (D.24)

= f\ + 4fj+, + f'i+2 -3(F4 + Fi+1) (D.25)

The linear system of error equations are presented in matrix form as

Se » Ef'-d. (D.26)

where the error in second derivative for each polynomial boundary is contained in the

vector Se. The total error due to mismatch in second derivatives is set equal to the posi

tive square root of the sum of the squares of the errors at the individual polynomial

boundaries.

Total Error in Second Derivative = I I Se I I (D.27)

The limiting of error in second derivative is represented by minimizing the total error in

second derivative.

D.3. Solution of the System of Equations Denning the EMPCI Polynomials

The system of equations defining the f s is

Minimize I IEf'-d I I subject Gf' > h . (D.28)

which is a linear least squares problem with linear equality constraints [LaH74]. The

problem defined is of the form that can be solved using the Modified Simplex

EU2

Method[Str76], a linear programming method. The computation time of the solution of

the system of equations grows in nonpolynomial time[Adl84] and is not feasible for use

with problems an arbitrary number of segments.

D3.1. Solution for f' Using an IterativeHeuristic - Preliminaries

The form of the E and d matrices are known, and thus the error due to difference in

second derivative (Sc) can be derived.

I ISell2 = (Ef-d)T (Ef'-d) (D.29)

The matrices E and d are expanded in terms of F and f.

| | Se I 12 = (fo+ 4fj + f2-3 F0 -3 FO2 (D.30)

+ (fj + 4f'2 + f'3 -3FX -3F2)2

+ (fN_3 + 4f'N.* + f'^ -3FN.* -3FN-2)2

The change in I ISe II due to small changes in f' can be calculated by expanding the

function about f.

, - i=MAl IS-1 I2
IISe(f +Af')ll2 = IISe(f')ll2 + Z^-^ Afi (D.31)

i=0 OM

The values of the partial derivatives are easily calculated, and the effect of small changes

in f'i on the error is provided.

D3.2. Algorithm to Calculate f'

The matrices representing inequality constraints and error in the second derivative

are set up. These matrices are constant, dependent only on the values of the data points.

Next, the initial values of f are calculated. The initial values are derived from a cubic

spline[DaB74] fit of the data points. The cubic spline guarantees the continuity of the

second derivative, and therefore the initial error in second derivative is zero. The follow

ing is then repeated until the error in second derivative has reached a suitable minimum

D.13

and the inequality constraint is satisfied: First, the set of inequalities is checked. Then, if

an inequality is not satisfied, the f's which effect the inequality are noted. Those fs are

then changed in the direction which allows the inequality to be satisfied. The change in

f's are small. As a result, the inequality may remain unsatisfied, but with the difference

reduced. Finally, the remaining f's that were not changed to meet the inequality con

straints are changed to reduce the error in second derivative. The values of f calculated

meet the inequality requirements and limit the total error in second derivative. (The

total error in second derivative is not guaranteed to be the minimal solution.)

D.4. Example

Data for a MOS transistor's drain-to-source current as a function of drain-to-source

voltage are given in the following table.

v*
Ids

Vr= 1.0 v Vr = 1.9 v Vr o 2.7 v Vr= 4.2 v V?s = 6.3 v
0.0 0.0 0.0 0.0 0.0 0.0

1.0 9.091e-7 1.414e-5 3.030e-5 6.061e-5 1.030e-4

2.0 9.184e-7 1.469e-5 4.082e-5 1.020e-4 1.878e-4

3.0 9.278e-7 1.485e-5 4.124e-5 1.237e-4 2.536e-4

4.0 9.375e-7 1.500e-5 4.l67e-5 1.276e-4 3.000e-4

5.0 9.474e-7 1.516e-5 4.211'e-5 1.290e-4 3.263e-4

6.0 9.575e-7 1.532e-5 4.255e-5 1.303e-4 3.336e-4

7.0 9.677e-7 1.548e-5 4.301 e-5 1.317e-4 3.372e-4

8.0 9.783e-7 1.565e-5 4.348e-5 1.332e-4 3.409e-4

9.0 9.890e-7 1.582e-5 4.396e-5 1.346e-4 3.446e-4

10.0 1.000e-6 1.600e-5 4.444e-5 1.361e-4 3.484e-4

Table D.l

The constraint matrix and second derivative error matrix are set up. The initial deriva

tives are calculated using cubic splines, as shown in Figure D.4. The system of equations

are iteratively solved for each value of V^. The monotonic requirements are met while

minimizing the error in second derivatives. The current and derivative of the piecewise

polynomial functions are plotted in Figures D.5 and D.6.

Cubic Spline - Initial Solution
Figure D.4

D.14

Final Solution Ids vs- vds
Figure D.5

D.15

Final Solution G^ vs. V^
Figure D.6

D.16

D.17

The square root of S« for the five piecewise polynomial functions is given in Table
D.2. In addition, an approximate maximum erroH < true maximum) for the five piece-
wise polynomial functions, where the functions meet all the constraint requirements is

also given in Table D.2.

~7sTv £S_

1.0

1.9

2.7

7.39e-9

5.81e-8

7.12e-6

Max VSt
1.33e-6

1.78e-5

1.55e-5

4.2

6.3

7.45e-6

1.71e-6

2.69e-5

3.78e-5

Table D.2

D.5. Numerical Accuracy

The accuracy of the polynomial calculation is limited by the finite precision of the
numerical calculations. The finite precision of numeric operations result in errors due to
both roundoff and truncation. The errors are only of concern at the boundaries of adja
cent polynomials where they can cause discontinuities in the overall function.

, n t ^ (°-32)

The cubic polynomial can be rewritten in the following form for computation. Here the

value of fixj = x —Xj.

Pi(x) =ftWll -3(8* Axf1)2 +2(6* Axf1)3] <D-33)
+ fi(xi+1)[3 -2(6* Axfl)K&i Axf1)2

+(l*$\ -2(5* Axf1) +(&i Axf!)2]S*

+ f'i(xi+1)[-l +(a* Axf^jax^Axr1

For the polynomial to be continuous at its boundaries, the following limit must be

satisfied.

D.18

lim — — = 1 (D.34)
*—xi-l Xj+i Xj

The polynomial ps(x) evaluated at x = xi+1 is then equal to f(xi4>1). and the composite

function is continuous.

D.6. Summary

Piecewise cubic polynomials are used to interpolate between discrete values of MOS

transistor drain-to-source current. The piecewise polynomials provide a function that is

continuous with continuous first derivatives. Values for the derivatives at the data

points are chosen such that the composite function is monotonic. the "shape" of the

derivative is correct, and the sum of the errors in second derivatives at the boundaries of

adjacent polynomials are minimized.

APPENDIX E

POLY_MOS Program Listing

E.l

This appendix contains a listing of the POLYJMOS program written in the C

language.

int *area_ds. *area_gs. num_ds. numj»s. num_sb;
int *ca. *da:

int *cb. *db:

double *lds. *Gds. *Ggs:
double *Vds. *Vgs. *Vsb:
double *DVds. *DVgs:
double **G_d. *F_d. *B_d:
double **G_g. *F_g. *B_g;
double **SB;

#undef f abs()
#undef max()
#undef min()
#define fabs(x) (x >- 0.0 ? (x) : -(x))
#define max(x.y) (x >- y ? (x) : (y))
#define min(x.y) (x < y ? (x) : (y))
main()
I

int poly, i:
extern int num_ds:
extern double *B_d. *B_g. *Ids. *Gds:

/* read-in data */
read_in():

/* solve for polynomials Ids vs Vds */
for(poly-0 : poly < num_gs : poly++) {

ids_ys_yds(poly):
for(i « 0 : i < num_ds : i++) {

Gds[poly*num_ds + i] - B_d[i]:
}

}

for(poly=0 : poly < num_cls : poly++) {
ids_ys_ygs(poly):
for(i - 0 : i < num_gs : i++) {

Ggs[i*num_ds +poly] - B_g[i]:

I
ids_vs_ysb():
dump_result():

}

dump_result()

RLE *fp. *fopen():
int i. j. k. 1:
extern int numjds. num_gs. num_sb:
extern double *Vds. *Vgs. *Vsb:
extern double *Ids. «Gds. »Ggs. **SB:

fp - fopen(" results" ."w"):
fprintf(fp."%d %d 7od0.num_cls.num_gs.num_sb);

for(k»0;k<num_sb:k++) {

E.2

for(j=0:j<num_gs:j++) {
for(i-0:i < num_ds:i++) {

l=i+num_ds*(j+num_gs*k):
fprintf(fp."%e %e %e %e %e 9be0.Vds[i].Vgs[j].Vsb[k].lds[l].Gds[l].Ggs[l]);

for(i«0:i<num_ds:i++) {
for(j=0:j<4:j++) {

fprintf(fp."%e".SB[i][j]):
}
fprintf(fp."0):

fclose(fp):
}
read_in()
{

int i. j. k. 1:
double tl. t2. t3. t4:
extern int num_ds. num_gs. num_sb:
extern ini *area_ds. *area_gs:
extern int *ca. *da:
extern int *cb. *db:
extern double *Ids. *Gds. *Ggs:
extern double *Vds. *Vgs. *Vsb:
extern double *DVds. *DVgs:
extern double **G_d. *F_d. *B_d:
extern double **G_g.*F_g. *B_g:
extern double **SB:

scanf("%d %d %dO.&num_ds.&num_gs.&num_sb):

/* ««»*«»*»**»«*******»*»»»****»*»**»*****«************** */

/* Allocate Memory */

area_ds - (int *) malloc(num_ds*sizeof(int)):
area_gs - (int *) malloc(num_gs*sizeof(int)):
ca - (int *) malloc(num_£s*sizeof(int)):
da » (int *) malloc(num_£s*sizeof(int)):
cb - (int *) malloc(num_gs*sizeof(int)):
db - (int *) malloc(num-gs*sizeof(int)):

Vds - (double *) malloc(num_ds*sizeof(double)):
Vgs - (double *) malloc(num_gs*sizeof(double)):
DVds = (double *) malloc(num_cls*sizeof(double)):
DVgs - (double *) malloc(num_gs*sizeof(double)):
Vsb » (double *) malloc(num_jb*sizeof(double)):
Ids - (double *) malloc(num_ds*num_gs*num_sb*sizeof(double)):
Gds - (double *) malloc(num_cls*num_gs*num_sb*sizeof(double)):
Ggs - (double *) malloc(num_o,s*num_gs*num_sb,sizeof(double)):
FJ - (double *) malloc(4*num_cls*sizeof(double)):
B_d - (double *) malloc(num_ds*sizeof(double)):
G_d - (double **) malloc(4*num^ds*sizeof(double)):
F_g • (double *) malloc(4*num_gs*sizeof(double)):
B_g - (double *) malloc(num_gs*sizeof(double)):

E.3

G_g - (double **) malloc(4*num_gs*sizeof(double)):
SB » (double **) malloc(num_ds*sizeof(double)):

for(i=0:i<4*num_ds:i++) {
G_d[i] » (double *) malloc(num_ds*sizeof(double)):

for(i«0:i<4*num_gs:i++) {
G_g[i] =(double •) malloc(num_gs*sizeof(double)):

}
for(i-0:i<num_ds:i++) {

SB[i] - (double *) malloc(4*sizeof(double)):
}

* ** */
/

/* ** */

/* Store Data */
for(i=0:i<num_sb:i++) {

for(j=0:j<num_gs:j++) {
for(k»0:k<num_ds:k++) {

scanf("%e %e %e %e0.&tl.&t2.&t3.&t4):
1- k +num_ds*(j + i*num_gs):
Vds[k]-tl:
Vgs[j]=t2:
Vsb[i]-t3:
Ids[l]-t4:

1
}

return:

}
init_deriv_yds()
I

int i. j. k:
extern double *Vds. *Vgs. *DVds:
extern int *ca. *da. *area_£s. num_ds:
extern double *B_d:

/* was** */

/* zero out B matrix */
forG-0:i<num_ds:i++) {

B_d[i] - 0.0:

for(i-l :i<num_ds-l :i++) {
B_rfi] - (DVds[i-l] + DVds[i])/2.0:

}

if(area_ds[0] — 1) {

E.4

<TH

{
![2-sS"uinu]sSAa«60-[l-srumup-g

}asp

:[t-s?"uinu]s8Aa«Il-[l-sS-uxnup-g
j(z«=[j-s3"uxnu]s8~TOJB)ji

{
[o]s2Aa«6o-[o]~a

}9S[9

{
'[0]sSAa»fl-[op~a

}(l—[o]srraJB)ji

{
:0T/([!]s8Aa+[l-qsSAd)-[?Fa

I(++r.i-sS~uinu>t:i=i)joj

/***»/

:oo-[*F~a
}(++i:sy"uinu>i:o»!)«xoj

/»xuiuuigwooiaz»/

:3~gsajqnopuisixd
:s8~umu#sS"tojb»*Bp»•*>»iuiu»ix9

:spaO**sSA«*SPA«»iqnopiu9ix9
:^•[*iiin

I
QsS/wuiapiiui

:iunidj

/**"/

(
:[£-sp"umu]spACI*6'0-[l~sPranu]P9

{
:[^-S|Tuinu]spAa*l'l-[l'sP«nu]p3

}(j==[£-spuinujspTOJU)JI

_{
:[0]sPAa*6'0»[0]P8

JdSja

{
:[0]sPAG*ri=[o]pa

return:

save_deriv(version.poly)
int version.poly:
I

FILE*fp. *fopen():
char *s:

int i. j. k. 1:

extern int num_ds. num_gs. num_sb:
extern double *Vds. *Vgs. *Vsb. *B_d:
extern double *Gds. *Ggs. *Ids:

s - (char *) malloc(15*sizeof(char)):

sprintf(s." vrs_%d_%d" .poly.version):

fp » fopen(s."w"):

fprintf(fp."%d %d %d0.num_£ls.num_gs.num_sb);
for(i - 0 : i<num_ds : i++) {

fprintf(f p." %e %e %e %e %e0.
Vds{i].Vgs[poly].Vsb[0].Ids[poly*num^ls+iJ.B_d[i]):

}

fclose(fp):
}
ids_ys_yds(poly)
int poly:
{

int i. j. k. bad:
double tmp. err. raerr. delta, mdelta. ddelta:
double del. dc2:

extern int *ca. *da. num_as:
extern double «*G_d. *F_o\ *B_p\ *DVds:

mdelta - 10.0:
ddelta - 1.0:

load_matrixJds_ys_yds(poly):

init_deriv_yds():

for(k«0.delta«mdelta:k <1000:k++.delta+«ddelta) {

for(i-0:i<num_ds:i++) {
ca[i]-0:
da[i]-0:

I

for(i-0.err»0.0:i<4«num_ds-l:i-H-) {

E.6

I

for(j=0.tmr» 0.0:j<num_jds:j++) {
tmp +- G_d[i][j]*B_d[j];

}
tmp — F_d[i]:
if(tmp<0.0) {

err — tmp:
for(j«0:j<num_ds:j++) {

if(G_d[i][j]!- 0) {
++ca[jj:
if(G^l[i][j] > 0.0) -H-dafj]:
if(G_d{i][j] < 0.0) -da[j];

I

}

for(j=0.bad=0:j<num_ds:j++) {
if(j = num_ds - 1) {

del » 0.1*DVds[j-l]:
dc2 - 0.0:

}
else if(!j) I

del - 0.1*DVds[j]:
dc2 - 0.0:

}
else {

del - DVds[j]:
dc2 - DVds[j-l]:

}

if(ca[j]) {
++bad:

if(da[j] > 0) {
B_^[j] +- fabs(dcl-dc2)/delta:

I
if(da[j] < 0) {

B_o*[j] — fabs(dcl-dc2)/delta:
}

}
}

ifObad) break:

for(i»0:i<num_ds:i++) {
if(ca[i]) {

printf("ERROR:deriv[%d] is badO.i):
exit(O):

I
}

ids_ys_ygs(poly)
int poly:
I

E.7

int i. j. k. bad:
double tmp. err. merr. delta, mdelta. ddelta:
double del. dc2:

extern int *cb. *db. num_gs:
extern double **G_£. *F_g. *B_g. «DVgs:

mdelta - 10.0:

ddelta = 1.0:

load_matrix_ids_ys_ygs(poly):

init_deriv_ygs():

for(k=0.delta=mdelta:k < 1000;k++.delta+«ddelta)

for(i=0:i<num_gs:i++) {
cb[i]=0:
db[i]=0:

I

for(i=0.err=0.0:i<4*num_gs-l;i++) {

for(j=0.tmp» 0.0:j<num_gs:j++) {
tmp +- G_g[i][j]*B_g[j]:

}
tmp — F_g[i]:
if(tmp<0.0) {

err — tmp:

foKj»0:j<num_gs:j++) {
if(G_g[i][i]!- 0) {

++cb[jj:
if(G_g[i][j] > 0.0) ++db[j]:
if(G_g[i][j] < 0.0) -db[j]:

}
}

}
}

foKj-0.bad=0:j<num_gs:j++) {
if(j — num_gs - 1)T

del - 0.1*DVgs[j-l3:
dc2 - 0.0:

}
else if(!j) {

del - 0.1*DVgs[j]:
dc2 - 0.0:

}
else!

del - DVgs{j]:
dc2 - DVgs{j-l]:

if(cblj]) {
-H-bad:

if(db[j] > 0) {

E.S

B_g[j] +- fabs(dcl-dc2)/delta:

if(db[j] < 0) {
B_g[j] — fabs(dcl-dc2)/delta:

}
}

I

if(Jbad) break:

}

for(i=0:i<num_gs:i-H-) I
if(cb[i]){printf("ERROR:deriv[%d] is bad0.i):

exit(0):

I
)

}
ids_ys_ysb()

{

int i.jJclji: •A.w—«fdouble "amat. "atmat. **atamat. *bmat. *atbmat.
double Vgse(). temp:
extern int numjs. num_gs. num_sb:
extern double *Vds. *Vgs. *Vsb. "SB:

*/
/* Allocate memory

amat - (double ") malloc (numj;s*num^b*sizTO^
bmat - (double •) malloc (num_gs*num_sb*sizeof(double)).

atbmat - (double ») malloc (4*sizeof(double)):
atmat - (double *») malloc (4*sizeof(double)):
atamat - (double ~) malloc (4«sizeof(double)):

for(i-0:i<num_gs«num^b:i-H-) I
amat[i] - (double *) malloc (4*sizeof(double)).

1

^ImrflT^bl.•) malloc (num_*s-num_sb*sizeof(double)):
I

for(i-0:i<4:i++) { >v
atamatti] - (double •) malloc (4*sizeof(double)).

/» ««»*•*«**»»««»*«**«***«*****»**************** */

/« *«»«*«*»»*««*»**«»«««**««**********»******** */
I* step through for each measured voltage */
foKi»0:i<num_cls:i++) {

E.9

/» Load a matrix (amat) V
for(j=0:j<num_gs:j++) {

for(k=0:k<num_sb:k++) {
amat[ksnum_gs+j][0]= 1.0:
amat[k*num_gs+j][l] =Vsb[k]:
amat[k*num_gs+j][2] =Vsb[k]*Vsb k :
amat[k*num_gs+j][3] =Vsb[k]*Vsb[k]*Vsb[k]:
bmat[k*num_gs+j] - Vgse(i.j.k) - Vgslj]:

/* ** */

/* ***««»»«*»»**«*»*********»******»********* */

/* calculate the transpose of the a matrix */
foKj - 0: j < 4: ++j) {

for(k =0: k < num 2S*num_sb: ++k) {
atmat[j][k] - amat[k][j]:

}
}

/* ****«*»»»«*»*»«««»***»*«»***«****«******** */

/* «««***«««««»»»«»*»»************************ */

/* calculate the a transpose times a matrix */
for(j - 0: j < 4: ++j) {

for(k - 0: k < 4: ++k) {
aumat[j][k] - 0.0:
foKl - 0:1 < num_gs*num_sb: ++1) {

atamat[j][k] - atamat[j][k] +atmat[j][lj*amat[ljlkj:
1

I

/* it*** */

1% ** */
/* calculate the a transpose times the b matrix •/
for(j - 0: i < 4: ++j) {

atbmatlj] - 0.0:
for(l - 0:1 < num_gs*num_sb: ++1) {

atbmat[j] - atbmat[j] +atmat[j][l]*bmat[l]:
}

/» ** */

/* perform the LU factorization on the ata matrix */
for(n - 0: n < 4: ++n) {

for(j - n: j < 4: ++j) {
temp-0.0:
foKk - 0. temp-0.0:k < n:++k) {

temp +- atamat[n](k]*atamat[k][j]:

atamat[n][j] - atamat[n][j] - temp:
1

E.10

for(j = n+1: j < 4: ++j) {
temp=0.0:
for(k - 0.temp=0.0: k < n: ++k) {

temp += atamat[j][k]*atamat[k][n]:

atamat[j][n] =(atamat[j][n] - temp)/atamat[n][n];

/* ** •/

j% ********«»»*******«»»******«**«»*»«»***»»«• */

/* perform foreward and backward substitution for answers V
for(n - 0: n < 4: ++n) {

temp=0.0:
for(k - 0: k < n: ++k) {

temp += atamat[n][k]*atbmat[k]:
I
atbmat[n] = atbmat[n] - temp:

}
for(n = 3: n >» 0: —n) {

temp=0.0:
for(k - 3: k > n: ~k) {

temp +« atamat[n][k]*atbmat[k]:

atbmatln] - (atbmat[n] - temp)/atamat[n][n]:
}
/* ** */

j* ** •/

foKj =0: j< 4: ++j) {
SB[i][j]=atbmat[j]:

}

double

Vgse(p_$ls.p_gs.p_sb)
int p_ds.p_gs.p_sb:

int cur_pos. iter. i. j. k:
double real_ids. c_ids:
double gl. g2. il. i2. dv. vg. ovg:
double a. b. c. d:

extern int num_ds. num_gs. num_sb:
extern double *Vgs. *Ids. *Ggs:

f* **»*«*«**»»**»«»«***««*»»**««***»****»*»****** »/

/* get discrete current */
cur_pos - p_sb*num_ds*num_gs + p_gs*num_ds+ p_ds:
real_ids - Ids[cur_pos]:

/* ** */

/* find which section are we in */
for(i!=0:i<num_gs:i++) {

E.ll

if(lds[i*num_ds+p_ds] > realjds) break:
}
if(i == num_gs) {

return(Vgs[—i]):
}
if(i — 0) {

return(Vgs[0]):

J* ***S********9*********************************** */
/* access data necessary and calculate coefficients */
—i:
il » Ids[i*num_ds+p_ds]:
gl » Ggs[i*num_ds+p_ds]:
dv - Vgs[i+l] - Vgs[i]:
++i:

i2 = Ids[i*num_ds+p_ds]:
g2 =Ggs[i*num_ds+p_ds]:
—i:

a-il:

b-gl:
c - (3*(i2-il)/dv - 2*gl - g2)/dv.
d - (gl +g2 - 2*(i2-il)/dv)/(dv*dv):

/» ** */

/* use a fixed-point iteration */
vg=dv/2.0:
ovg - dv/4:
iter - 0: •
while(fabs(vg-ovg) > (1.0e-4)*max(fabs(vg).fabs(ovg)) +1.0e-7)

ovg - vg:
if(vg>»0.0 && vg<=dv)

vg - (realjds - a - c*vg*vg - d*vg*vg*vg)/b:
else if (vg > dv)

vg • (real_ids - i2)/g2:
else :
cjds » a + vg*(b + vg*(c + d*vg)):

}

return(Vgs{i]+vg):

} *
load_matrixJds_ys_yds(poly)
int poly:
{

int i. j:
extern double «Ids. *Vds. *DVds:
extern int *area_ds. num_ds:
extern double **G_o\ *F_d:

I* ** •/

/* calculate delta */
for(i - 0. j - num_ds*poly : i < num_ds - 1: i++. j++) {

DVds[i] - (Ids[j+1] - Ids[j])/(Vds{i+l] - Vds[i]):
}

E.12

/* ** */

/* ** */

/* Classify Area */
for(i = 1 : i < num_ds - 2 : i++) {

if(DVds[i] <= DVds[i-l] && DVds[i+l] <= DVds[i]) {
area_ds[i] = 1:

else if(DVds[i] > DVds[i-l] &&DVds[i+l] > DVds[i]) {
area_ds[i] - 2:

else if(DVds[i] <= DVds[i-l] &&DVds[i+l] > DVds[i])
area_ds[i] = 3:

}

else {
area_ds[i] » 4:

if(area_ds[l] = 1 «area_ds[l] = 3) {
area_ds[0] = 1:

I
else {

area_ds[0]» 2:
}

if(area_ds[num_ds-3] =- 2 II area_ds[num_ds-3]«— 3) {
area_ds[num_ds-2]» 2:

}
else {

area_cte[num_ds-2]» 1:

/* ** */

1% ** */
/* Zero out matrix */
foKi=0:i<4*num_ds:i++) {

F_d[i] - 0.0:
for(j»0:i<num_ds:j++) {

G_d[i][j] - 0.0:
)

f* ** */
/* Load Matrix With Inequality Terms V
forG«l:i<num_cls - l:i++) {

/* condition 1 */
if(area_ds[i]—l II area_ds[i]»-3) {

G_ji[2«i][i] - 2.0:
G_£i[2*i][i+1] - 1.0:
F_d[2*i] - 3.0*DVds[i]:

}

E.13

}

else {
G_d[2*i][i] - -2.0:
G_d[2«i][i+1] = -1.0:
F_d[2*i] =-3.0*DVds[i]:

/* condition 2 */
if(area_ds[i]=l II area_ds[i]=4) {

G_cl[2«i+l][i] - -1.0:
G_a,[2*i+l][i+1] - -2.0:
F_d[2»i+1] - -3.0*DVds[i]:

}
else {

G_a'[2*i+l][i]= 1.0:
G_d[2*i+l][i+l] =2.0:
F_d[2*i+l] = 3.0*DVds[i]:

for(i =2*num_ds - 2. j - 0 : j < num_ds : i++. j++) {
G_d[i][j] - 1.0:
if(!j) i

if(area_ds[0] — 1) {
F__i[i] - DVds[0];

}
else {

F_d[i] - 0.0:
}

}
if(j mm num_ds - 1) {

if(area_ds[num_ds-2] — 1) {
F_ci[i]«0.0;

}
else {

F_d[i] - DVds[j-l]:
}

}
else {

F_d(i] - min(DVds[j-l].DVds[j]):
I

}

for(i « 3*num_ds - 2. j - 0 : j < num_ds - 1 : i-H-. j-H-) {
G_d[i][j] - -1.0:
ifOj) I

if(area_ds[0] — 1)1
F_c![i]--1.0el0:

}
else {

F_$i[i] - -DVds[0]:
\

}

if(j — num_ds - 1) I
if(area_ds[num_ds-2] — 1) {

F_p*[i] - -DVds{j-l]:

E.14

}

I
else {

F_d[i] = -1.0el0:

else {
F_d[i] =- max(DVds[j-l].DVds[j]):

I

foK i - 4*num_ds - 2. j - 0 : j < num_ds - 1 : j-H-) {
if(area_ds[j] = 3) {

G_d[i][j] = -1.0:
Gjd[i][j+1] = -1.0:
F_d[i] = -3.0*DVds[j]:
i++:

}

/* ** */

return:

load_matrix_ids_ys_ygs(poly)
int poly:
I

int i. j:
extern double *Ids. *Vgs. *DVgs:
extern int *area_gs. num_gs. num_cls:
extern double **G_g.*F_g:

/* ****»*«**«*»»»»*»«**««»»»««*****»»****«********»*«»»**»» */

/* calculate delta */
foK i - 0. j » polv : i < num_gs - 1: i++. j+-num_cls) {

DVgs[i] - (Ids[j+num_ds] - Ids[j])/(Vgs[i+l] - Vgs[i]):

I* ** */

I* ** */

/* Classify Area */•
foK i - 1 : i < num_gs - 2 : i++) {

if(DVgs[i] <= DVgsli-1] && DVgsli+l] <- DVgs[i]) {
area_gs[i] - 1:

else if(DVgs[i] > DVgs[i-l] && DVgs[i+l] > DVgs[i]) {
area_gs[i] = 2:

else if(DVgs[i] <- DVgs[i-l] && DVgs[i+l] > DVgs[i]) {
area_gs[i] =3:

}
else {

E.15

area_gs[i] = 4:

if(area_gs[l] —» 1 II area_gs[l] = 3) {
area_gs[0] = 1:

}
else {

area_gs[0] = 2:
}

if(area_gs[num_gs-3] — 2 II area_gs[num_gs-3] -= 3) {
area_gs[num_gs-2] - 2:

}
else {

area_gs[num_gs-2]» 1:
}
/* ** */

f* ** */

/* Zero out matrix */
for(i-0:i<4*num_gs:i++) {

F_g[i] - 0.0:
for(j«0:i<num_gs:j-H-) {
• G_g[i][j]-0.0:

1% ** */

I* ** */
/* Load Matrix With Inequality Terms V
for(i-1 :i<num_gs - 1:i++) {

/* condition 1 */
if(area_gs[i]=«-l II area_gs[i]«—3) {

G_g[2*i][i] - 2.0:
G_g[2*i][i+1] - 1.0:
F_g[2»i] - 3.0*DVgs[i]:

else {
G_g[2*i][i] - -2.0:
G_g[2*i][i+1]--1.0:
F_g[2*i] - -3.0*DVgs[i]:

/* condition 2 */
if(area_gs[i]=-l II area_gs{i]»»4) {

G_g[2*i+l][i]--1.0:
G_g[2*i+l][i+l] - -2.0:
F_g(2»i+l]--3.0*DVgs[i]:

I
else {

G_g[2*i+l][i]«1.0:
G_g[2«i+l][i+l] - 2.0:

E.16

F_g[2*i+l]=3.0*DVgs[i]:

for(i « 2*num_gs - 2. j - 0 : j < num_gs : i++. j++) {
G_g[i][j]-1.0:
if(!j) {

if(area_Bs[0]=» 1) {
F_g[l] - DVgs[0]:

else {
F_g[i] - 0.0:

}
if(j = num_gs - 1) {

if(area_gs[num_gs-2] «» 1) {
F_g[i] - 0.0:

}
else {

F_g[i]-DVgs[j-l]:
}

}
else {

F_g[i] - min(DVgs{j-l]X>Vgs{j]):

foK i - 3*num_gs - 2. j - 0 : j < num_gs - 1 : i++. j-H-) {
G_g[i][j] - -1.0:
ifCSj) {

if(area_gs[0] — 1) {areaeslOJ =

F_g[iJ = -1.

}

OelO:

else {
F_g[i]--DVgs[0]:

ifCj — num_gs - 1) {
if(area_gs[num_gs-2] = 1) {

F_g[lJ- -DVgs[j-l]:

else{
F_g[i] --l.OelO:

I
}

else{
F_g[i] - - max(DVgslj-l].DVgs[j]):

}

for(i - 4*num_gs - 2. j - 0 : j < num_gs - 1 : j++) {
if(area_gs{j] ~ 3) {

G_g[iJ[jJ--1.0:
G_g[i][j+1] - -1.0:

E.17

St'3

turnisj

/*WW***f

I

:[nsSAa*o*£-=[?Fi

APPENDIX F

Example Data

F.l

This appendix contains a listing of the data used to generate the examples presented

in Chapter 4.

Data Generated from the Shichman-Hodges Model

VDS VGS VSB IDS

0 00OO00e+OO l.OOOOOOe+00 O.OOOOOOe+OO 2.000000e-08
1.250000e-01 l.OOOOOOe+00 O.OOOOOOe+OO 2.014062e-08
2.500000e-01 l.OOOOOOe+OO O.OOOOOOe+OO 2.031250e-08
3 750000e-01 l.OOOOOOe+OO O.OOOOOOe+OO 2.051562e-08
5.000000e-01 l.OOOOOOe+OO O.OOOOOOe+OO 2.075000e-08
7 500000e-01 l.OOOOOOe+OO O.OOOOOOe+OO 2.131250e-08
l.OOOOOOe+OO l.OOOOOOe+OO O.OOOOOOe+OO 2.200000e-08
1 250000e+00 l.OOOOOOe+OO O.OOOOOOe+OO 2.281250e-08
1.500000e+00 l.OOOOOOe+OO O.OOOOOOe+OO 2.375000e-08
2 OOOOOOe+OO l.OOOOOOe+OO O.OOOOOOe+OO 2.600000e-08
2.500000e+00 l.OOOOOOe+OO O.OOOOOOe+OO 2.875000e-08
3 OOOOOOe+OO l.OOOOOOe+OO O.OOOOOOe+OO 3.200000e-08
4 OOOOOOe+OO l.OOOOOOe+OO O.OOOOOOe+OO 4.000000e-08
5.000000e+00 l.OOOOOOe+OO O.OOOOOOe+OO 5.0O00O0e-O8
l.OOOOOOe+Ol l.OOOOOOe+OO O.OOOOOOe+OO 1.300000e-07
2.000000e+01 l.OOOOOOe+OO O.OOOOOOe+OO 4.400000e-07
O.OOOOOOe+OO 1.500000e+00 O.OOOOOOe+OO 3.750000e-08
1.250000e-01 1.500000e+00 O.OOOOOOe+OO 1.134132e-06
2.500000e-01 1.5OO0O0e+0O O.OOOOOOe+OO 1.922235e-06
3.750000e-01 UOOOOOe+OO O.OOOOOOe+OO 2.399477e-06
5.000000e-01 1.500000e+00 O.OOOOOOe+OO 2.563503e-06
7!500000e-01 1.500000e+00 O.OOOOOOe+OO 2.576884e-06
l.OOOOOOe+OO 1.500000e+00 O.OOOOOOe+OO 2.590520e-06
1.250000e+00 1.500000e+00 O.OOOOOOe+OO 2.604415e-06
1.500000e+00 1.500000e+00 O.OOOOOOe+OO 2.618570e-06
2.000000e+00 1.500000e+00 O.OOOOOOe+OO 2.647667e-06
2.500000e+00 1.500000e+00 O.OOOOOOe+OO 2.677829e-06
3.00O00Oe+OO 1.500000e+00 O.OOOOOOe+OO 2.709074e-06
4.000000e+00 1.500000e+00 O.OOOOOOe+OO 2.774891e-06
5,OOOOOOe+00 1.500000e+00 O.OOOOOOe+OO 2.845278e-06
l.OOOOOOe+Ol 1.5000O0e+O0 O.OOOOOOe+OO 3.272500e-06
2 OOOQOOe+Ol 1.500000e+00 O.OOOOOOe+OO 4.624l67e-06
O.OOOOOOe+OO 2.000000e+00 O.OOOOOOe+OO 6.000000e-08
1.250000e-01 2.0O0O00e+00 O.OOOOOOe+OO 2.409765e-06
2.500000e-01 2,OOOOOOe+00 O.OOOOOOe+OO 4.457297e-06
3.750000e-01 2-OOOOOOe+OO O.OOOOOOe+OO 6.200314e-06
5.0OOOOOe-Ol 2.OOOO00e+OO O.OOOOOOe+OO 7.636508e-06
7.5OO0OOe-Ol 2.000000e+00 O.OOOOOOe+OO 9.579079e-06
l.OOOOOOe+OO 2.000000e+00 O.OOOOOOe+OO 1.026608e-05
1.250000e+00 2.0O00O0e+O0 O.OOOOOOe+OO 1.031922e-05
1.5O00OOe+OO 2-OOOOOOe+OO O.OOOOOOe+OO 1.037303e-05
2.0OO0O0e+OO 2.000000e+00 O.OOOOOOe+OO 1.048267e-05
2.500000e+00 2.000000e+00 O.OOOOOOe+OO 1.059507e-O5
3.000000e+00 2.000000e+00 O.OOOOOOe+OO 1.071030e-05
4.000000e+00 2.000000e+00 O.OOOOOOe+OO 1.094957e-05
5-OOOOOOe+OO 2.000000e+00 O.OOOOOOe+OO 1.1201lle-05
l.OOOOOOe+Ol 2.000000e+00 O.OOOOOOe+00 1.267000e-05
2.000000e+01 2.000000e+00 O.OOOOOOe+OO 1.714667e-05
O.OOOOOOe+00 2.500000e+00 O.OOOOOOe+OO 8.750000e-08
1.250000e-01 2.500000e+00 O.OOOOOOe+00 3.690398e-06

F.2

2.500000e-01 2.500000e+00 O.OOOOOOe+00 6.997360e-06
3.750000e-01 2.500000e+00 O.OOOOOOe+00 1.000615e-05
5.000000e-01 2.500000e+00 O.OOOOOOe+00 1.271451e-05
7.500000e-01 2.500000e+00 O.OOOOOOe+00 1.722079e-05
l.OOOOOOe+00 2.500000e+00 O.OOOOOOe+00 2.049766e-05
1.250000e+00 2.500000e+00 O.OOOOOOe+00 2.252621e-05
UOOOOOe+00 2.500000e+00 O.OOOOOOe+00 2.328713e-05
2.000000e+00 2.500000e+00 O.OOOOOOe+00 2.353100e-05
2.500000e+00 2.500000e+00 O.OOOOOOe+00 2.378046e-05
3.000000e+00 2.500000e+00 O.OOOOOOe+00 2.403567e-05
4.000000e+00 2.500000e+00 O.OOOOOOe+00 2.456402e-05
5.000000e+00 2.500000e+00 O.OOOOOOe+00 2.511750e-05
l.OOOOOOe+Ol 2JOOOOOe+00 O.OOOOOOe+00 2.832250e-05
2.000000e+01 2.5000O0e+O0 O.OOOOOOe+00 3.800750e-05
O.OOOOOOe+00 3.000000e+00 O.OOOOOOe+00 1.200000e-07
1.250000e-01 3.000000e+00 O.OOOOOOe+00 4.976030e-06
2.500000e-01 3.000000e+00 O.OOOOOOe+00 9.542423e-06
3.750OO0e-Ol 3.000000e+00 O.OOOOOOe+00 1.38l699e-05
5.000000e-01 3.000000e+00 O.OOOOOOe+00 1.779752e-05
7.500000e-01 3.000000e+00 O.OOOOOOe+00 2.486751e-05
l.OOOOOOe+00 3.000000e+00 O.OOOOOOe+00 3.073424e-05
1.250000e+00 3.000000e+00 O.OOOOOOe+00 3.537922e-05
1.500000e+00 3.000000e+00 O.OOOOOOe+00 3.878354e-05
2.000000e+00 3.000000e+00 O.OOOOOOe+00 4.179267e-05
2.500000e+00 3.000000e+00 O.OOOOOOe+OO 4.223401e-05
3,OOOOOOe+00 3.000000e+00 O.OOOOOOe+OO 4.268519e-05
4.000000e+00 3.000000e+00 O.OOOOOOe+OO 4.361826e-05
5.000000e+00 3,OOOOOOe+00 O.OOOOOOe+OO 4.459444e-05
l.OOOOOOe+Ol 3.0O0OOOe+OO O.OOOOOOe+OO 5.023O00e-O5
2.00O0O0e+Ol 3.000000e+00 O.OOOOOOe+OO 6.720667e-05
O.OOOOOOe+OO 3.500000e+00 O.OOOOOOe+OO 1.575000e-07
1.250000e-01 3JOOOOOe+OO O.OOOOOOe+OO 6.266663e-06
2.500000e-01 3.500000e+00 O.OOOOOOe+OO 1.209249e-05
3.750000e-01 3.500000e+00 O.OOOOOOe+OO 1.763283e-05
5-OOOOOOe-Ol 3.500000e+00 O.OOOOOOe+OO 2.288552e-05
7.500000e-01 3.500000e+00 O.OOOOOOe+OO 3.251922e-05
l.OOOOOOe+OO 3.500000e+00 O.OOOOOOe+OO 4.097583e-05
1.250000e+00 3.500000e+00 O.OOOOOOe+OO 4.823724e-05
1.500000e+00 3.5000O0e+O0 O.OOOOOOe+OO 5.428496e-05
2.000000e+00 3.500000e+00 O.OOOOOOe+OO 6.266350e-05
2.500000e+00 3.500000e+00 O.OOOOOOe+OO 6.595572e-05
3.00OOOOe+OO 3.500000e+00 O.OOOOOOe+OO 6.665886e-05
4.000000e+00 3.500000e+00 O.OOOOOOe+OO 6.81l228e-05
5.000000e+00 3.500000e+00 O.OOOOOOe+OO 6.963194e-05
l.OOOOOOe+Ol 3.500000e+00 O.OOOOOOe+OO 7.839250e-05
2.000000e+01 3.500000e+00 O.OOOOOOe+OO 1.047442e-04
O.OOOOOOe+OO 4.000000e+00 O.OOOOOOe+OO 2.0O000Oe-O7
1.250000e-01 4.000000e+00 O.OOOOOOe+OO 7J62296e-06
2.500000e-01 4.0O00O0e+OO O.OOOOOOe+OO 1.464755e-05
3.750000e-01 4.000000e+00 O.OOOOOOe+OO 2.145366e-05
5.000000e-01 4.0O00O0e+0O O.OOOOOOe+OO 2.797853e-05
7.500000e-01 4.000000e+00 O.OOOOOOe+OO 4.017593e-05
l.OOOOOOe+OO 4.000000e+00 O.OOOOOOe+OO 5.122241e-05
1.250000e+00 4.000000e+00 O.OOOOOOe+OO 6.110025e-05
1.500000e+00 4.000000e+00 O.OOOOOOe+OO 6.979138e-05
2.00OOO0e+OO 4.0O00O0e+0O O.OOOOOOe+OO 8.353933e-05

F.3

2JO00O0e+0O 4.000000e+00 O.OOOOOOe+00 9.231401e-05
3.000000e+00 4.000000e+00 O.OOOOOOe+00 9.595668e-05
4.000000e+00 4.000000e+00 O.OOOOOOe+00 9.804609e-05
5.000000e+00 4.000000e+00 O.OOOOOOe+00 1.002300e-04
l.OOOOOOe+01 4.000000e+00 O.OOOOOOe+00 1.128100e-04
2.000000e+01 4.000000e+00 O.OOOOOOe+00 1.506200e-04
O.OOOOOOe+00 4.500000e+00 O.OOOOOOe+00 2.475000e-07
1.250000e-01 4.500000e+00 O.OOOOOOe+00 8.862929e-06
2.500000e-01 4.500000e+00 O.OOOOOOe+00 1.720761e-05
3.750OO0e-Ol 4.500000e+00 O.OOOOOOe+00 2.527950e-05
5.000000e-01 4.500000e+00 O.OOOOOOe+00 3.307653e-05
7.500O00e-Ol 4.500000e+00 O.OOOOOOe+00 4.783764e-05
l.OOOOOOe+00 4.500000e+00 O.OOOOOOe+00 6.147399e-05
1.250000e+00 4.500000e+00 O.OOOOOOe+00 7.396826e-05
1.500000e+00 4.500000e+00 O.OOOOOOe+00 8.530280e-05
2.000000e+00 4.500000e+00 O.OOOOOOe+00 1.044202e-04
2.50OOO0e+OO 4.500000e+00 O.OOOOOOe+00 1.186773e-04
3.000000e+00 4.500000e+00 O.OOOOOOe+00 1.279191e-04
4.000000e+00 4.500000e+00 O.OOOOOOe+00 1.334197e-04
5.000000e+00 4.500000e+00 O.OOOOOOe+00 1.363886e-04
l.OOOOOOe+01 4.500000e+00 O.OOOOOOe+00 1.534825e-04
2.000000e+01 4.500000e+00 O.OOOOOOe+00 2.048342e-04
O.OOOOOOe+00 5.000000e+00 O.OOOOOOe+00 3.000000e-07
1.250000e-01 5.000000e+00 O.OOOOOOe+00 1.016856e-05
2.500000e-01 5.000000e+00 O.OOOOOOe+00 1.977267e-05
3.750000e-01 5.000000e+00 O.OOOOOOe+00 2.911034e-05
5.000000e-01 5.000000e+00 O.OOOOOOe+00 3.817954e-05
7.500000e-01 5.000000e+00 O.OOOOOOe+00 5.550436e-05
l.OOOOOOe+00 5.000000e+00 O.OOOOOOe+00 7.173057e-05
1.250000e+00 5.000000e+00 O.OOOOOOe+00 8.684127e-05
1.500000e+00 5.000000e+00 O.OOOOOOe+00 1.008192e-04
2.000000e+00 5.000000e+00 O.OOOOOOe+00 1.253060e-04
2.500000e+00 5.000000e+00 O.OOOOOOe+00 1.450456e-04
3.000000e+00 5.000000e+00 O.OOOOOOe+00 1.598865e-04
4.000000e+00 5.000000e+00 O.OOOOOOe+OO 1.742330e-04
5.000000e+00 5.000000e+00 O.OOOOOOe+QO 1.781078e-04
l.OOOOOOe+01 5.000000e+00 O.OOOOOOe+00 2.004100e-04
2.000000e+01 5.000000e+00 O.OOOOOOe+00 2.673867e-04
O.OOOOOOe+00 6.000000e+00 O.OOOOOOe+OO 4.200000e-07
1.250000e-01 6.000000e+00 O.OOOOOOe+OO 1.279483e-05
2.500000e-01 6.000000e+00 O.OOOOOOe+00 2.491780e-05
3.750000e-01 6.000000e+00 O.OOOOOOe+00 3.678701e-05
5.000000e-01 6.000000e+00 O.OOOOOOe+00 4.840055e-05
7.500000e-01 6.000000e+00 O.OOOOOOe+00 7.085278e-05
l.OOOOOOe+00 6.000000e+00 O.OOOOOOe+00 9.225873e-05
1.250000e+00 6.000000e+00 O.OOOOOOe+OO 1.126023e-04
1.500000e+00 6.000000e+00 O.OOOOOOe+00 1.318670e-04
2.000000e+00 6.000000e+00 O.OOOOOOe+OO 1.670927e-04
2.500000e+00 6.000000e+00 O.OOOOOOe+00 1.977972e-04
3.000000e+00 6.000000e+00 O.OOOOOOe+00 2.238363e-04
4.000000e+00 6.000000e+00 O.OOOOOOe+00 2.613096e-04
5.000000e+00 6.000000e+00 O.OOOOOOe+00 2.782278e-04
l.OOOOOOe+01 6.000000e+00 O.OOOOOOe+00 3.130300e-04
2.000000e+01 6.000000e+00 O.OOOOOOe+OO 4.175067e-04

F.4

Data Generated from the SPICE Level-2 Model

VDS VGS VSB IDS

O.OOOOOOe+OO l.OOOOOOe+OO O.OOOOOOe+OO 2.0000O0e-O8
1.2500O0e-Ol l.OOOOOOe+OO O.OOOOOOe+OO 2.014062e-08
2.500000e-01 l.OOOOOOe+OO O.OOOOOOe+OO 2.031250e-08
3.750000e-01 l.OOOOOOe+OO O.OOOOOOe+OO 2.051562e-08
5.000000e-01 l.OOOOOOe+OO O.OOOOOOe+OO 2.0750OOe-08
7.500000e-01 l.OOOOOOe+OO O.OOOOOOe+OO 2.131250e-08
l.OOOOOOe+OO l.OOOOOOe+OO O.OOOOOOe+OO 2.200000e-08
1.25O0O0e+OO l.OOOOOOe+OO O.OOOOOOe+OO 2.281250e-08
1.500O00e+0O l.OOOOOOe+OO O.OOOOOOe+OO 2.375000e-08
2.000000e+00 l.OOOOOOe+OO O.OOOOOOe+OO 2.600000e-08
2.500000e+00 l.OOOOOOe+OO O.OOOOOOe+OO 2.875000e-08
3,OOOOOOe+00 l.OOOOOOe+OO O.OOOOOOe+OO 3.200000e-08
4.000000e+00 l.OOOOOOe+OO O.OOOOOOe+OO 4.0OO000e-O8
5.000O00e+OO l.OOOOOOe+OO O.OOOOOOe+OO 5,OOOOOOe-08
l.OOOOOOe+Ol l.OOOOOOe+OO O.OOOOOOe+OO 1.300000e-07
2.000000e+01 l.OOOOOOe+OO O.OOOOOOe+OO 4.400000e-07
O.OOOOOOe+OO 1.500000e+00 O.OOOOOOe+OO 3.750000e-08
1.250000e-01 1.500000e+00 O.OOOOOOe+OO 1.104777e-06
2.500000e-01 1.500000e+00 O.OOOOOOe+OO 1.807945e-06
3.750000e-01 UOOOOOe+OO O.OOOOOOe+OO 2.148528e-06
5,OOOOOOe-01 1.500000e+00 O.OOOOOOe+OO 2.186923e-06
7.500000e-01 1.500000e+00 O.OOOOOOe+OO 2.198392e-06
l.OOOOOOe+OO 1.500000e+00 O.OOOOOOe+OO 2.210098e-06
1.250000e+O0 1.500000e+00 O.OOOOOOe+OO 2.222042e-06
1.500000e+00 1.500000e+00 O.OOOOOOe+OO 2.234225e-06
2.000000e+00 1.50O0OOe+OO O.OOOOOOe+OO 2.259319e-06
2.500000e+00 1.500000e+00 O.OOOOOOe+OO 2.285393e-06
3.000000e+00 1.500000e+00 O.OOOOOOe+OO 2.312464e-06
4.000000e+00 1.500000e+00 O.OOOOOOe+OO 2.369659e-06
5.000000e+00 1.500000e+00 O.OOOOOOe+OO 2.431040e-06
l.OOOOOOe+Ol 1.500000e+00 O.OOOOOOe+OO 2.806483e-06
2.000000e+01 1.500000e+00 O.OOOOOOe+OO 4.002810e-06
O.OOOOOOe+OO 2.000000e+00 O.OOOOOOe+OO 6.000000e-08
1.250000e-01 2.000000e+00 O.OOOOOOe+OO 2.380410e-06
2.500000e-01 2.0OO0OOe+OO O.OOOOOOe+OO 4.343008e-06
3.750000e-01 2.000000e+00 O.OOOOOOe+OO 5.949365e-06
5.000000e-01 2.000000e+00 O.OOOOOOe+OO 7.200208e-06
7.500000e-01 2.0O000Oe+O0 O.OOOOOOe+OO 8.635408e-06
l.OOOOOOe+OO 2,OOOOOOe+00 O.OOOOOOe+OO 8.841920e-06
1.250000e+00 2.OOOOOOe+OO "O.OOOOOOe+OO 8.887758e-06
1.50O0O0e+OO 2.00OOO0e+OO O.OOOOOOe+OO 8.934185e-06
2.000000e+00 2-OOOOOOe+OO O.OOOOOOe+OO 9.028835e-06
2.500000e+00 2.000000e+00 O.OOOOOOe+OO 9.125931e-06
3.000000e+00 2-OOOOOOe+00 O.OOOOOOe+OO 9.225534e-06
4.00O000e+OO 2.000000e+00 O.OOOOOOe+OO 9.432524e-06
5.000000e+00 2.000000e+00 O.OOOOOOe+OO 9.650357e-06
l.OOOOOOe+Ol 2.000000e+00 O.OOOOOOe+OO 1.092540e-05
2.000000e+01 2.OOOOOOe+OO O.OOOOOOe+OO 1.482054e-05
O.OOOOOOe+OO 2.500000e+00 O.OOOOOOe+OO 8.750000e-08
1.250000e-01 2.500000e+00 O.OOOOOOe+OO 3.661043e-06

F.5

2.500000e+00 4.000000e+00 O.OOOOOOe+OO 8.351983e-05
3.0OOOOOe+O0 4.000000e+00 O.OOOOOOe+OO 8.481835e-05
4.000000e+00 4.000000e+00 O.OOOOOOe+OO 8.666562e-05
5,OOOOOOe+00 4.000000e+00 O.OOOOOOe+OO 8.859664e-05
l.OOOOOOe+Ol 4.00iKX)Oe+00 O.OOOOOOe+OO 9.972247e-05
2.00O0O0e+Ol 4.000000e+00 O.OOOOOOe+OO 1.331700e-O4
O.OOOOOOe+OO 4.500000e+00 O.OOOOOOe+OO 2.475000e-07
1.25O0O0e-Ol 4.500000e+00 O.OOOOOOe+OO 8.833574e-06
2.500000e-01 4.500000e+00 O.OOOOOOe+OO 1.709332e-05
3.750000e-01 4.500O00e+O0 O.OOOOOOe+OO 2.502855e-05
5.00O0OOe-Ol 4.500000e+00 O.OOOOOOe+OO 3.264023e-05
7JOOOOOe-Ol 4.500000e+00 O.OOOOOOe+OO 4.689397e-05
l.OOOOOOe+OO 4.500000e+00 O.OOOOOOe+OO 5.985275e-05
1.250000e+00 4.500000e+00 O.OOOOOOe+OO 7.151023e-05
1.500000e+00 4.5O00O0e+OO O.OOOOOOe+OO 8.185707e-05
2.0O0OOOe+OO 4.500000e+00 O.OOOOOOe+OO 9.857089e-05
2.500000e+00 4.500000e+00 O.OOOOOOe+OO 1.098831e-O4
3,OOOOOOe+00 4.5000O0e+OO O.OOOOOOe+OO 1.156634e-04
4.000000e+00 4.500000e+00 O.OOOOOOe+OO 1.184485e-04
5.00OOOOe+O0 4.500000e+00 O.OOOOOOe+OO 1.210848e-04
l.OOOOOOe+Ol 4.500000e+00 O.OOOOOOe+OO 1.362657e-04
2.00O0OOe+Ol 4.500000e+00 O.OOOOOOe+OO 1.818784e-04
O.OOOOOOe+OO 5.000000e+00 O.OOOOOOe+OO 3.000O0Oe-O7
1.250000e-01 5.000OOOe+O0 O.OOOOOOe+OO 1.013921e-05
2.500000e-01 5.000000e+00 O.OOOOOOe+OO 1.965838e-05
3.750000e-01 5.000000e+00 O.OOOOOOe+OO 2.885939e-05
5.0OOOOOe-Ol 5,OOOOOOe+00 O.OOOOOOe+OO 3.774324e-05
7JOOOOOe-Ol 5.000000e+00 O.OOOOOOe+OO 5.456069e-05
l.OOOOOOe+OO 5.0OOOOOe+OO O.OOOOOOe+OO 7.010933e-05
1.250O0Oe+O0 5.000000e+00 O.OOOOOOe+OO 8.438324e-05
1.500000e+00 5.000000e+00 O.OOOOOOe+OO 9.737349e-05
2.00OOO0e+O0 5.000000e+00 O.OOOOOOe+OO 1.194567e-04
2.500000e+00 5.000000e+00 O.OOOOOOe+OO 1.362514e-04
3.0OOOOOe+0O 5.0000OOe+O0 O.OOOOOOe+OO 1.476308e-04
4.0O0OOOe+O0 5.0O00OOe+OO O.OOOOOOe+OO 1.552803e-04
5.000000e+00 5.000000e+00 O.OOOOOOe+OO 1.587338e-04
l.OOOOOOe+Ol 5.000000e+00 O.OOOOOOe+OO 1.786143e-04
2.000000e+01 5.00O0O0e+OO O.OOOOOOe+OO 2.383257e-04
O.OOOOOOe+OO 6.000000e+00 O.OOOOOOe+OO 4.200O0Oe-O7
1.250000e-01 6.000000e+00 O.OOOOOOe+OO 1.276547e-05
2.5000O0e-Ol 6.000OOOe+O0 O.OOOOOOe+OO 2.480351e-05
3.750000e-01 6.000000e+00 O.OOOOOOe+OO 3.653607e-05
5.000000e-01 6.000000e+00 O.OOOOOOe+OO 4.796425e-05
7JOOOOOe-01 6.000000e+00 O.OOOOOOe+OO 6.990911e-05
l.OOOOOOe+00 6.000000e+00 O.OOOOOOe+00 9.063749e-O5
1.250000e+00 6.000000e+00 O.OOOOOOe+00 1.101443e-04
1.500000e+00 6.000000e+00 O.OOOOOOe+OO 1.284213e-04
2.000000e+00 6.000000e+00 O.OOOOOOe+00 1.612434e-04
2.500000e+00 6.000000e+00 O.OOOOOOe+OO 1.890030e-04
3.000000e+00 6.000000e+00 O.OOOOOOe+00 2.115806e-04
4.000000e+00 6.000000e+00 O.OOOOOOe+00 2.406419e-04
5.000000e+00 6.000000e+00 O.OOOOOOe+OO 2.495963e-04
l.OOOOOOe+Ol 6.000000e+00 O.OOOOOOe+00 2.808196e-04
2.000000e+01 6.000000e+00 O.OOOOOOe+OO 3.745595e-04

F.7

Measured Dau From a 1.4mu channel device

VDS VGS VSB IDS

0.0 1.0 0.0 l.Oe-9
0.25 1.0 0.0 1.01e-9
0.5 1.0 0.0 1.03e-9
0.75 1.0 0.0 1.06e-9
1.0 1.0 0.0 1.10e-9
1.25 1.0 0.0 1.15e-9
1.5 1.0 0.0 1.21e-9
1.75 1.0 0.0 1.28e-9
2.0 1.0 0.0 1.36e-9
2.25 1.0 0.0 1.45e-9
2.5 1.0 0.0 1.55e-9
3.0 1.0 0.0 1.78e-9
3.5 1.0 0.0 2.08e-9
4.0 1.0 0.0 2.48e-9
4.5 1.0 0.0 3.00e-9
5.0 1.0 0.0 3.60e-9
0.0 2.0 0.0 l.Oe-9
0.25 2.0 0.0 9.717e-6
0.5 2.0 0.0 15.815e-6
0.75 2.0 0.0 18.734e-6
1.0 2.0 0.0 19.850e-6
1.25 2.0 0.0 20.349e-6
1.5 2.0 0.0 20.655e-6
1.75 2.0 0.0 20.904e-6
2.0 2.0 0.0 21.109e-6
2.25 2.0 0.0 21.305e-6
2.5 2.0 0.0 21.489e-6
3.0 2.0 0.0 21.814e-6
3.5 2.0 0.0 22.l35e-6
4.0 2.a 0.0 22.455e-6
4.5 2.0 0.0.. 22.835e-6
5.0 2.0 0.0 23.355e-6
0.0 3.0 0.0 2.1e-9
0.25 3.0 0.0 l?.035e-6
0.5 3.0 0.0 30.040e-6
0.75 3.0 0.0 38.840e-6
1.0 3.0 0.0 44.035e-6
1.25 3.0 0.0 46.760e-6
1.5 3.0 0.0 48.149e-6
1.75 3.0 0.0 48.969e-6
2.0 3.0 0.0 49.524e-6
2.25 3.0 0.0 49.969e-6
2.5 3.0 0.0 50.355e-6
3.0 3.0 0.0 51.008e-6
3.5 3.0 0.0 51.595e-6
4.0 3.0 0.0 52.145e-6
4.5 3.0 0.0 52.735e-6
5.0 3.0 0.0 53.499e-6
0.0 5.0 0.0 4.6e-9
0.25 5.0 0.0 29.225e-6

F.8

0.5 5.0 0.0 54.294e-6
0.75 5.0 0.0 74.469e-6
1.0 5.0 0.0 89.735e-6
1.25 5.0 0.0 100.630e-6
1.5 5.0 0.0 108.150e-6
1.75 5.0 0.0 113.000e-6
2.0 5.0 0.0 116.100e-6
2.25 5.0 0.0 118.200e-6
2J5 5.0 0.0 119.600e-6
3.0 5.0 0.0 121.550e-6
3.5 5.0 0.0 122.900e-6
4.0 5.0 0.0 124.050e-6
4.5 5.0 0.0 125.050e-6
5.0 5.0 0.0 126.100e-6

F.9

APPENDIX G

Prototype MMAP Schematics and Parts List

G.l

Package # Part # Description

Ul Intel 2164A 65,636 X 1 Bit Dynamic RAM
U2 Intel 2164A 65,636 X 1 Bit Dynamic RAM

U3 Intd 2164A 65,636 X 1 Bit Dynamic RAM
U4 Intel 2164A 65,636 X 1 Bit Dynamic RAM

U5 Intel 2164A 65,636 X 1 Bit Dynamic RAM
U6 Intel 2164A 65,636 X 1 Bit Dynamic RAM
U7 Intel 2164A 65,636 X 1 Bit Dynamic RAM
U8 Intel 2164A 65,636 X 1 Bit Dynamic RAM
U9 Intel 2164A 65,636 X 1 Bit Dynamic RAM

U10 Intel 2164A 65,636 X 1 Bit Dynamic RAM

Ull Intel 2164A 65,636 X 1 Bit Dynamic RAM
U12 Intel 2164A 65,636 X 1 Bit Dynamic RAM

U13 Intel 2164A 65,636 X 1 Bit Dynamic RAM

U14 Intel 2164A 65,636 X 1 Bit Dynamic RAM

U15 Intel 2164A 65,636 X 1 Bit Dynamic RAM

U16 Intel 2164A 65,636 X 1 Bit Dynamic RAM
U17 Intel 8207 Dual-Port Memory Controller

U18 Weitek 1033 32-Bit ALU

U19 Weitek 1033 32-Bit Multiplier

U20 AMD 2910 Micro-Controller

U21 74LS173 Quad Register w/clear, elk enable & tri-state output
U22 74LS173 Quad Register w/dear, elk enable & tri-state output
U23 74LS173 Quad Register w/dear, elk enable & tri-state output
U24 74LS173 Quad Register w/dear, dk enable & tri-state output
U25 74LS173 Quad Register w/clear, elk enable & tri-state output
U26 74LS173 Quad Register w/clear, dk enable & tri-state output
U27 74LS173 Quad Register w/dear, dk enable & tri-state output
U28 74LS173 Quad Register w/dear, dk enable & tri-state output
U29 74LS173 Quad Register w/dear, dk enable & tri-state output
U30 AMD 29705A 16 X 4 Dual-Port Register

U31 AMD 29705A 16 X 4 Dual-Port Register

U32 AMD 29705A 16 X 4 Dual-Port Register

U33 AMD 29705A 16 X 4 Dual-Port Register

TJ34 AMD 91122 256 X 4 Static Memory

U35 AMD 91122 256 X 4 Static Memory

U36 AMD 91122 256 X 4 Static Memory

U37 AMD 91122 256 X 4 Static Memory

U38 EPROM 4KX 8 EPROM

U39 EPROM 4K X 8 EPROM

U40 EPROM 4K X 8 EPROM

U41 EPROM 4K X 8 EPROM

U42 EPROM 4K X 8 EPROM

U43 EPROM 4K X 8 EPROM

U44 EPROM 4KX 8 EPROM

U45 EPROM 4KX 8 EPROM

U46 AMD 2954 Octal Register

U47 AMD 2954 Octal Register

U48 AMD 2954 Octal Register

U49 AMD 2954 Octal Register

U50 AMD 2954 Octal ReRister

G.2

Package # Part # Description

U51 AMD 2954 Octal Register

U52 AMD 2954 Octal Register
U53 AMD 2954 Octal Register
U54 741s00 Quad Two-Input Nand
U55 741s00 Quad Two-Input Nand
U56 741&00 Quad Two-Input Nand
U57 741s00 Quad Two-Input Nand
U58 741s00 Quad Two-Input Nand
U59 741s00 Quad Two-Input Nand
U60 741s00 Quad Two-Input Nand
U61 741s00 Quad Two-Input Nand
U62 741s00 Quad Two-Input Nand
U63 741s00 Quad Two-Input Nand
U64 741s00 Quad Two-Input Nand
U65 741s01 Open-Collector Quad Two-Input Nand
U66 741s04 Hex Inverters

U67 741s04 Hex Inverters

U68 741s04 Hex Inverters

U69 741s04 Hex Inverters

U70 741s04 Hex Inverters

U71 741s04 Hex Inverters

U72 741slO Triple Three-Input Nand
U73 741sl0 Triple Three-Input Nand
U74 741s 10 Triple Three-Input Nand
U75 741sl0 Triple Three-Input Nand
U76 741sl0 Triple Three-Input Nand
U77 741s20 Dual Four-Input Nand

U78 741s30 Single Eight-Input Nand
U79 741s32 Quad Two-Input Nor
U80 741s74 Dual Clocked D Flip-Flops

U81 741sl33 Single Thirteen-Input Nand
U82 741sl51 8-to-l Demultiplexer

U83 741sl57 Quad 2-to-l Data Select
U84 741sl65 Parallel-Load 8-bit Shift Register

U85 741s244 Octal Non-Inverting Buffer
U86 741s244 Octal Non-Inverting Buffer
U8'7 741s244 Octal Non-Inverting Buffer
U88 741s30 Single Eight-Input Nand
U89 741sl65 Parallel-Load 8-Bit Shift Register

U90 741sl65 Parallel-Load 8-Bit Shift Register

U91 741s31 Delay Block

U92 741sl73 Quad Register
U93 741sl73 Quad Register
U94 741sl73 Quad Register

U95 741sl73 Quad Register

U96 741sl73 Quad Register
U97 74s287 256 X 4 ROM

U98 74s287 256 X 4 ROM

U99 741s245 Octal Bus Tranceiver

inoo 741s373 Octal D-Type Latches

U101 741s373 Octal D-Type Latches

G.3

G.4

Schematic: 1/34 Controller: 1/5

Schematic: 2/34 Controller: 2/5

s

1 Tr •fc It— I 1
•1 1

1 9
—c

i
K •
•-

8 8
« -

8 8
8 8
8 - 2
8 $ 8
8 CS
8 * 8
m
m

s

•

•

—i

1 : 1

1 * 1 • 8 3
e «
3 *
- 8HI •

s s
8 5

§ ft
: *

8

1 - i
• * 8

6 •
i
•

•»

a i
•

• m
M

s
i r

•

a* •
N

I » •

U~
a*

N

s -n
*
• -ir

8tf • n

s •
' A 1* S

8 1
w

N

N

s
1 1 I

3
a

5—=
•

6 k
•*

8 8
8 8
8 8
8 8
8 8
8 5 2

8 §5
8 8 8
8
8

•

s

1

-m •

9 i a I

8
i
*
r— --S- 8 8

e 1!
8 •» •
8 B

5 *

5 f
n s

8 1
—8

•

•

I—
•

8 1
1 ' J

• m i«

1 1
1- "
•

m § 1
• 1

> w

m 1
•

•

1
"-T"

m i

1 »
~~ ™.

m

•|_8 L_ •—-

• •

W

M

1

1 ! I

G.5

Schematic: 3/34 Controller: 3/5

8

X 8
-18

8
m
m

8
a-

8

f
i "

9 J
a

•

•

1 • 4

* •

1 I

1 ' ? 1

! •

8 <1

1 a 1

1 s •

1 2 1

B-

88 |E _
a * it

8 5
m

mg £

8

8 •
S S
Si

11

rtj

I

8
e

3
o
w

8
8

8
R
3
8
9
8
8

3**1
a*

G.6

11=

Schematic: 4/34 Controller: 4/5

3

9 i i -a

•'-

l
3 !

•
•

•

4

9
i
3

1 •* •

1 «

1 * i

1 ' »

1 8 i

1 * •

1 S »

• * i

I

a

8
8

- 8

a

3 t

8 *
8

- 8

i s
I Si

8 ••

m

8
I!

8
8
8
8
8

8

3

8

3

G.7

• I T

Schematic: 5/34 Controller: 5/5

22S Ml« v « « 8* m

G.8

Schema"C:S/3< FPV:1/2

G.IO

Schematic: 7/34 FPU: 2/2

G.ll

Schematic: 8/34 Coefficient Cache: 1/5

G.12

Schematic: 9/34 Coefficient Cache: 2/5

Schematic: 10/34 Coefficient Cache: 3/5

s

71

I

St

-E ft

2s« a a a i » i «-=
n in • *

3 1 •

i !

SS

rlHI

s
J-*

mO •• M W *m » m
« « *

* m

i \

w» t* Mt m *

i M

,.1

G.13

Schematic: 11/34 Coefficient Cache: 4/5

I

= s_a aa_

8 2

- 8

n
i •

rfi

t « N A # H

S!
• •

ffft

""J- O •* M in Jl M
« « « c c -

•^ w ^1

G.14

•41

\ *

5 _

CC"1

Schematic: 12/34 Coefficient Cache: 5/5

*t3

S _
Ft
28-

II

•

6

A

G.15

Schematic: 13/34 Coefficient Memory and Interface: 1/22

$

«iHiaji

• in
HI — N

M •

00

iiiisnsnnsi

: t * m m_±t I s t * K a
mm il il^fesiSiSiSHiiH

33

i 1 ? U P ^ TO:

1 k 1 1

SSiSiSliiiiiSnSSiHi 2 i S

G.16

Schematic: 14/34 Coefficient Memory and Interface: 2/22

!
BJ

sM U

m P
- 2

U j M

• 8

s

• 3

M
m m

<•
M •

m

m

N

0

I

1 1

•a

1 1

O

•

a

1

i '

G.17

G.18

Schematic: 15/34 Coefficient Memory and Interface: 3/22

i I

8 8

»» i

Schematic: 16/34 Coefficient Memory and Interface: 4/22

n

h
«-1

•I^IKl*

dj

S SSS S S S8S88

If

A
M

k

'6
•a i

I

3

• i

6

Ai
il ii

G.19

G.20

Schematic: 17/34 Coefficient Memory and Interface: 5/22

0 0

A

G.21

Schematic: 18/34 Coefficient Memory and Interface: 6/22

BlBINt
B1BM1B -•
BOVI

|_
•~"T~

""1 1
1M

•» 1111-»iim
88888888
888888!

.-

•
-
i•

—
1 14

- 1•—

1-?.—
1•

•si t&=o
M

8•• 88••
l» T

—•
-Ao -1——ir- -_=LsJ;.-2._

*J;*Ji&M

'1

IH
i

iiim
88888888

888888
•••

—i—r-
iBJl£ Ssis

—
i----n

1,I.

1n— 1
.,•

:<> I1\l.
-<>

it

9—4i
5 888
8HSi

G.22

Schematic: 19/34 Coefficient Memory and Interface: 7/22

ii
• •

" TJ
« d * M - . 0 m

L-Jl—J —_

: U ^ s 1M P
ssu sssi s ja asjs «s

N i m 9 m m

i
4 —

--A "1

1 > — 1

L
-4—

1 '"

>

• •

Is

i i

M

5 i

T T
! * 1 1

• • •

T 1

-iiJj. " j
—i

»[Sl d

i§

888S

m n

8 888 8 888

Ml
•

DIM! N
C « « 1 « »

1 « 222 - »- -J
«

<* m • - «

o

- — HI

•4 1

II Hf

. -4 O

<•— o

o

smssn

G.23

Schematic: 20/34 Coefficient Memory and Interface: 8/22

M

if

II

lit -
II • U-,*-. 1

__ , L
m d * 2 n ~ 2 * - •

H^h i mm

N
W K II m

* a m t* m 9 m2 2"- k»ki««---

-A)

! 1
1 4-

4—

» ——-

4-—
4

eiMB
IAN*

-mbini HiMBIl
>

I 1

--o

* —»

T
-U -A ,

888!

(8 | * Hm
S8 8 88 888888

• ••

8 8
, • 3 3d

ft
8iS

—# H>

1 i
1 4-

H> - — HI

L '> Hi

1 •— 0

SissiSSi

G.24

Schematic: 21/34 Coefficient Memory and Interface: 9/22

MM
BOVIB

—BDIN7 —•
BOBI

t

IIBJ-j.'
T

.

«d*>S>"V,
r-^^Ufflm

iA__i

88888888
88888888

«„„2222-
Mk.2
»*om_

•

HB
BINE -m

BOBIS

•
S

m

•• T

,1
is

»
s
i-..

a
l

4
us#2-

iIMN-5

88888888
888

1
.

m«w•
_

i-•-.
«

«•««a•<
V

H>

IIH>

_<
k
.

SHHHi

Schematic: 22/34 Coefficient Memory and Interface: 10/22

8SSSS8S8
MilM

ib
susnn

h ^ 28 88 88^8

iiiiHH

ra ^HHtil

-nssses

G.25

Schematic: 23/34 Coefficient Memory and Interface: 11/22

f S 8 8
8 8 8 S

m 0 m

2 5 B 5

HN M ?S8B8

G.26

8 8 8 8

M # W <•

2 8 » 5

i ^^M.

HI » *

§s.i£

G.27

Schematic: 24/34 Coefficient Memory and Interface: 12/22

S 2 2 5
9 9 9 9.

2 8 8 5

2 ^M'sjij
V V V V

t

&

B

HI W

w —

8 8 8
8 8 8 8

8 8 ! &
8 8 8 8

• a

2 8 8

| k k tk» 3 » g 8 ?
*—7

+—A>

• • • •

m m 0 m
m m m m

8 8 8 8
8 8 8 8

Schematic: 25/34 Coefficient Memory and Interface: 13/22

! n
3 • •

G.28

1 i f V II
• • • •

m Jl M M
m # M «

8 8 8

1 |b |r t |3 3 o g

8

. 8 8

8 8 8 8

w
N

r—tj

• ^ * — Ml m
—1 **

it*
m N _JB

« « m n ••
m N m m m m

i i—-49— —f9~—

r

II

1 i

«

5 i

M

• 1 • • 1 1
„Hll

A 2^ f S 8 S f S S5

Schematic: 26/34 Coefficient Memory and Interface: 14/22

nil
u m 0 m
m m •• H

e i i 1

G.29

1' T T '
i

1 1 fj • •

PI # » a
M 0 M H

'

2 8 8 or

8 8

2 8 8 or
0

5 8 8

M

r—« i y •
• 0 m Ml m\ Ht

«a N _JB
•T _ * 2 N «•

(1—HH
i » w

o

L 1
•

S

a .Il .1 11
l l iiaa

S 8 8 8 k
""999 P

I 8 S 8 5
8 8 8 8

Schematic: 27/34 Coefficient Memory and Interface: 15/22

! ! 5 S I • • IP I

AAAA
PI •

Qdod

- • • S n •[

00000 0

S.

a

Q

o

•

o

rn

0

• i

6
-tu

6

G.30

2

fie

• • s

000

i
nill 11111 1 1

8 88 8 8 88 8 8 8 8 8

Schematic: 28/34 Coefficient Memory and Interface: 16/22

a

aU0t

u m

G.31

0
A

iiip QQQQQ Q
B>4>

+ •>

tZT3

A
N

A

111 si it

G.32

Schematic: 29/34 Coefficient Memory and Interface: 17/22

f 8 f 8 8 8

A

0

• - "

000

A) »

0_ A
in

a

|J,J^

M M •• 9

Uii

8 8 5 £

? « a « • «
« m •• n m m

s |8 fa I * I

G.33

Schematic: 30/34 Coefficient Memory and Interface: 18/22

3 3

hi m

2 8 8 8

3 FFts|SiJgooo
V-—V—T

E

8 1 33

3 3 3 3

0 m

or or or or
m h m 0

1 n» Is fe 3 a o o o
c X M " *

c—o—y y

B>—B>

rnj
M •

A
till

M

WW

Schematic: 31/34 Coefficient Memory and Interface: 19/22

3 3 I I
i i

pi 0 m
m 0 m m

8 8 8 8 8 8

a Ffcbk32aaj g k fc b N 3 o a
M

v—V V V

11
si

i 8 2 S

pp

rf#"M I IJ IJ M9 S « • f»| Ji W W M -

L4 —1>-14hi

55

G.34

Schematic: 32/34 Coefficient Memory and Interface: 20/22

i 1 ! 5

B 1

| k k p p 3 s s a
If Y-If J -

\\—B>

1
SB m m m 0 m

I S S i i 33

s a

0 M

sins

1 i-^Mss
N

7 7

B> B>

G.35

G.36

Schematic: 33/34 Coefficient Memory and Interface: 21/22

3 3 3 3 3 3 3 3

g g|SI8l"l-I-I -

i S S S s S S £
g 5 a a £2 2 2 2 *

£4JL

111111111
5 31 2 8 S3 2

1 S i i S S s i

2 S 2 8 • b- • «

2222S888

g 3 ! SS2 2 ESP
-M#ai|aiS-.«, «••

11111111
M PI J> M

i! illi11

Schematic: 34/34 Coefficient Memory and Interface: 22/22

* SIS IS

• I" * m m h m

S 1 s s s s 8 s
g § » S S 2 2 2 § P

1
m

I

+ + + '»

G.37

]
1

APPENDIX H

BIASC Model-Evaluation Routine Adjusted for the MMAP

H.l

C-Program Routine

m . anl. with MMAP-• Update MOS elements wi
•/

#include <«****include <maih.h>
include "wdefs.h"
#include"vyP«sh „
#include -nextem.h
♦define VM>X 30.0

struct send^ataA
char modelj4l.
float vdsl4|:
float vgsl4\.
float vsbl41:
float scalel4].

V.
suuctreceive-datal

float idsl41.
float gdsl41.
float ggsW
float gsbl41;

U , ^bstol reltol. vntol. trtol:
extern double abstol.

fl Update mos elements.

I

*/

hupmosO

ssrsas---
^ct mosfet Hj. «*••,c,n:

extern int nocon:
extern struct mosiei , „f less transistors */ .

for(i-0. ro«mos. pm

va«o.o:

H.2

}

vg=0.0:
vs-O.O:

vb-O.O:
if (mi->ndvalue) vd = mi->ndvalue->ovalue;
if (mi->ngvalue) vg = mi->ngvalue->ovalue:
if (mi->nsvalue) vs » mi->nsvalue->ovalue:
if (mi->nbvalue) vb - mi->nbvalue->ovalue:
if (vd < vs) {

rev[i] - 1:
mosl.vdsli]- min(vs-vd.VMAX):
mosl.vgsfi] » max(min(vg-vd.VMAX).0.0):
mosl.vsbli] - max(vd-vb.-0.6):

I
else {

rev[i] - 0;
mosl.vdsli] = min(vd-vs.VMAX):
mosl.vsb[i] = max(vs-vb.-0.6):
mosl.vgs[i] =max(min(vg-vs.VMAX).0.0):

mosl.scale[i] = m-> scale:
mosl.model[i] *» m->modnum:

/* send data to MMAP and signal MMAP to begin */
loadd(&mosl):
startO;
cm-m:

/* begin internal loop */
whileCcm) {

forU-0. m=cm : m && i<4 : m-m->nextmos. i++) {
/* limit terminal voltages of first four transistors */

mi-m->mim:

vd=0.0:

vg=0.0:
vs-0.0;

vb=0.0:
if (mi->ndvalue) vd - mi->ndvalue->ovalue:
if (mi->ngvalue) vg - mi->ngvalue->ovalue:
if (mi->nsvalue> vs » mi->nsvalue->ovalue:
if (mi->nbvalue) vb - mi->nbvalue->ovalue:

orev[i] - rev[i];
if (vd < vs) {

rev[i]-l:
mosl.vdsli]- min(vs-vd.VMAX):
mosl.vgsfi] - max(min(vg-vd.VMAX).0.0);
mosl.vsb{i] - max(vd-vb.-0.6):

}
else {

rev[i] - 0;
mosl.vdsli] - min(vd-vs.VMAX):
mosl.vsbli] - max(vs-vb.-0.6):
mosl.vgsfr] - max(min(vg-vs.VMAX).0.0);

mosl.scale[i] - m-> scale:
mosl.modelfi] - m->modnum;

H.3

/* access results from mmap */
unloadd(&mosr):

/* send dau to MMAP and signal MMAP to begin */
loadd(&mosl):
startO:

cm-m:

/* Load Circuit Matrix and check convergence */
forG=0. m=pm: pm && i<4 :m=m->nextmos.i++) {

mi=m-> mim:

idn » mosr.idsli] - mosr.gds[i]*mosl.vds[i]:
idn -= mosr.ggs{i]*mosl.vgsli] +mosr.gsb[i]*mosl.vsbli]:

/* check for convergence */
if (abs(mi->oids-mosr.ids[i])

>= abstol + reltol * min(abs(mosr.ids[i]).abs(mi->oids)))
++nocon:

mi->oids - mosr.idsli]:

if (!orev[i]) {
if (mi->mptll)

mi->mptl l-> value+» mosr.gdsti];
if (mi->mptl2)

mi->mptl2- >value+- mosr.ggsli];
if (mi->mptl3)

mi->mptl3->value +- mosr.gsbli] - mosr.gdsti] -mosr.ggsli]:
if (mi->mptl4)

mi->mptl4->value— mosr.gsbli]:
if (mi->mpt31)

mi->mpt31- >value — mosr.gdsti]:
if (mi->mpt32)

mi->mpt32->value— mosr.ggsli];
if (mi->mpt33)

mi->mpt33-> value +- mosr.gdsti] +mosr.ggsli] - mosr.gsbli]:
if (mi->mpt34)

mi->mpt34->value+- mosr.gsbli]:
if (mi->mrhsl)

mi->mrhsl->rhvalue — idn;

if (mi->mrhs3)
mi-> mrhs3- > rhvalue +- idn:

}

else {
if (mi->mptll)

mi->mptll-> value +- mosr.gdsti] +mosr.ggsli] - mosr.gsbli]:
if (mi->mptl2)

mi->mptl2-> value — mosr.ggsli]:
if (mi->mptl3)

mi->mptl3- >value — mosr.gdsti];
if (mi->mptl4)

mi->mptl4-> value+» mosr.gsbli]:
if (mi->mpt3l)

H.4

}

}

}

mi->mpt31->value — mosr.gdsti] +mosr.ggsli] - mosr.gsbli];
if (mi->mpt32)

mi->mpt32-> value +«= mosr.ggsli]:
if (mi->mpt33)

mi-> mpt33-> value+= mosr.gdsti];
if (mi->mpt34)

mi->mpt34-> value -• mosr.gsbli]:
if (mi->mrhsl)

mi->mrhsl->rhvalue +•» idn:

if (mi->mrhs3)
mi->mrhs3->rhvalue — idn;

pm - m:

/* access results from mmap */
unloadd(&mosr):

for(i«0. m=pm: pm && i<4 :m=m->nextmos.i++) {
mi°»m- > mim;

idn - mosr.idsli] - mosr.gds[i]*mosl.vdsti];
idn — mosr.ggsli]*mosl.vgsti] +mosr.gsb[i]*mosl.vsb[i]:

/* check for convergence */
if (abs(mi->oids-mosr.idsti])

>- abstol + reltol * min(abs(mosr.ids[i]).abs(mi->oids)))
-H-nocon:

mi- > oids - mosr.idsli]:

if (!rev(i]) {
if (mi->mptl 1)

mi->mptl 1->value +- mosr.gdsti]:
if (mi->mptl2)

mi-> mptl2-> value+- mosr.ggsli]:
if (mi->mptl3)

mi->mptl3->value +- mosr.gsbli] - mosr.gdsti] - mosr.ggsli]:
if (mi->mptl4)

mi->mptl4->value— mosr.gsbli]:
if (mi->mpt31)

mi->mpt31->value — mosr.gdsti]:
if (mi->mpt32)

mi- >mpt32->value — mosr.ggsli];
if (mi->mpt33)

mi->mpt33-> value +« mosr.gdsti] +mosr.ggsli] - mosr.gsbli];
if (mi->mpt34)

mi->mpt34->value+- mosr.gsbli]:
if (mi->mrhsl)

mi->mrhsl->rhvalue— idn:

if (mi->mrhs3)
mi->mrhs3->rhvalue +- idn:

}

else {

H.5

startO
{

if (mi->mptll)
mi->mptll-> value += mosr.gdsli] +mosr.ggsli] - mosr.gsblij:

if (mi->mptl2)
mi->mptl 2->value— mosr.ggsli]:

if (mi->mptl3)
mi->mptl 3->value— mosr.gdsti]:

if (mi->mptl4)
mi->mptl4->value+- mosr.gsbli]:

if (mi->mpt3l)
mi->mpt31->value— mosr.gdsti] +mosr.ggsli] - mosr.gsbli]:

if (mi->mpt32)
mi->mpt32-> value+» mosr.ggsli];

if (mi->mpt33)
mi->mpt33->value+= mosr.gdsti];

if (mi->mpt34)
mi->mpt34->value—mosr.gsbli]:

if (mi->mrhsl)
mi->mrhsl->rhvalue +• idn:

if (mi->mrhs3)
mi->mrhs3->rhvalue — idn:

char *ibuffer-0:

/* Load check character */
poke(0x8000.0x0FFE.ibuffer.l):

/* Load start character */
peek(0x8000.0x0FFF.ibuffer.4);

return:

H.6

Assembly-Language Routines

TITLE LOAD ROUTINE ASSEMBLER
NAME LOADD
INCLUDE DOS.MAC

DSG EQU 8000H

PSEG

PUBLIC LOADD

LOADD PROC FAR

; Save stale of registers to be used
PUSH AX

PUSH CX

PUSH SI

PUSH DI

PUSH DS

PUSH ES

; Qear D flag so the SI register will be incremented
CLD

; Load Extra Segment Via AX register
MOV AX.DSG
MOV ES.AX

; Load pointer address that is passed to function
PUSH BP

MOV BP.SP
MOV SI.[BP+18]
POP BP

; Transfer dau via the lower 8 bits of the AX register
; Model

LODSB
MOV ES:[OH].AL
LODSB
MOV ES:[100H].AL
LODSB
MOV ES:t200H].AL
LODSB
MOV ES:[300H].AL

:Vds
LODSB
MOV ES:[7H].AL
LODSB
MOV ES:[6H].AL
LODSB
MOV ES:t5H].AL
LODSB
MOV ES:[4H].AL
LODSB

H.7

Vgs

MOV ES:[107H].AL
LODSB
MOV ES:[106H].AL
LODSB
MOV ES:[105H].AL
LODSB
MOV ES:[104H].AL
LODSB
MOV ES:[207H].AL
LODSB
MOV ES:t206H].AL
LODSB
MOV ES:[205H].AL
LODSB
MOV ES:[204H].AL
LODSB
MOV ES:[307H].AL
LODSB
MOV ES:[306H].AL
LODSB
MOV ES:[305H].AL
LODSB
MOV ES:[304H].AL

LODSB
MOV ES:l0BH].AL
LODSB
MOV ES:t0AH].AL
LODSB
MOV ES:t9H].AL
LODSB
MOV ES:[8H].AL
LODSB
MOV ES:[10BH].AL
LODSB
MOV ES:[10AH].AL
LODSB
MOV ES:tl09H].AL
LODSB
MOV ES:[108H].AL
LODSB
MOV ES:[20BH].AL
LODSB
MOV ES:t20AH].AL
LODSB
MOV ES:[209H].AL
LODSB
MOV ES:t208H].AL
LODSB
MOV ES:[30BH].AL
LODSB
MOV ES:[30AH].AL
LODSB
MOV ES:t309H].AL
LODSB

H.8

Vsb

: Scale

MOV ES:[308H].AL

LODSB
MOV ES:[OFH].AL
LODSB
MOV ES:[OEH].AL
LODSB
MOV ES:[ODH].AL
LODSB
MOV ES:[OCH].AL
LODSB
MOV ES:tlOFH].AL
LODSB
MOV ES:[10EH].AL
LODSB
MOV ES:[10DH].AL
LODSB
MOV ES:[lOCH],AL
LODSB
MOV ES:t20FH].AL
LODSB
MOV ES:[20EH].AL
LODSB
MOV ES:[20DH].AL
LODSB
MOV ES:[20CH].AL
LODSB
MOV ES:t30FH].AL
LODSB
MOV ES:[30EH].AL
LODSB
MOV ES:[30DH].AL
LODSB
MOV ES:[30CH].AL

LODSB
MOV ES:[13H].AL
LODSB
MOV ES:tl2H]j\L
LODSB
MOV ES:[11H].AL
LODSB
MOV ES:tlOH].AL
LODSB
MOV ES:lll3H].AL
LODSB

MOV ES:[112H].AL
LODSB
MOV ES:[lllH].AL
LODSB
MOV ES:[110H].AL
LODSB

MOV ES:t213H].AL
LODSB

H.9

MOV ES:[212H].AL
LODSB
MOV ES:[211H].AL
LODSB
MOV ES:[210H].AL
LODSB
MOV ES:[313H].AL
LODSB
MOV ES:[312H].AL
LODSB
MOV ES:[311H].AL
LODSB
MOV ES:[310H].AL

: Return the sute of the machine
POP ES
POP DS
POP DI
POP SI
POP CX
POP AX

RET

LOADD ENDP
PAGE

ENDPS
END

H.10

TITLE UNLOAD ROUTINE
NAME UNLOADD

INCLUDE DOS.MAC

DSG EQU 8000H
CNT EQU OFH
INDO EQU OH

PSEG

PUBLIC UNLOADD

UNLOADD PROC FAR

; Save sute of registers to be used
PUSH CX
PUSH SI
PUSH Dl

PUSH DS

PUSH ES

;Clear D flag so the SI register will be incremented
CLD

; Load Extra Segment Via AX register
MOV AX.DS
MOV ES.AX
MOV AX.DSG
MOV DS.AX

; Load pointer address that is passed to function
PUSH BP

MOV BP.SP
MOV DI.tBP+16]
POP BP

:Ids
MOV AL.DS:[3H]
STOSB
MOV AL.DS:[2H]
STOSB
MOV ALJDS:tlH]
STOSB
MOV AL.DS:tOH]
STOSB
MOV AL.DS:t403H]
STOSB

MOV AL.DS:[402H]
STOSB
MOV AL.DS:[401H]
STOSB
MOV ALX>S:[400H]
STOSB
MOV AL.DS:[803H]
STOSB

MOV AL.DS:t802H]
STOSB

Hill

Gds

Ggs

MOV AL.DS.1801H]
STOSB
MOV AL.DS:l800H]
STOSB
MOV AL.DS:tOC03H]
STOSB
MOV AL.DS:[0C02H]
STOSB
MOV AL.DS:[0C01H]
STOSB
MOV AL.DS:[0C00H]
STOSB

MOV AL.DS:[7H]
STOSB
MOV AL.DS:[6H]
STOSB
MOV AL.DS:[5H]
STOSB
MOV AL.DS:[4H]
STOSB
MOV ALJ>S:[407H]
STOSB

MOV AL.DS:[406H]
STOSB
MOV ALDS:t405H]
STOSB
MOV ALJ)S:[404H]
STOSB
MOV AL.DS:[807H]
STOSB
MOV AL.DS:[806H]
STOSB
MOV AL.DS:t805H]
STOSB
MOV AL.DS:[804H]
STOSB
MOV AL.DS:[0C07H]
STOSB
MOV ALJ>S:[0C06H]
STOSB
MOV AL.DS:tOC05H]
STOSB
MOV AL.DS:t0C04H]
STOSB

MOV AL.DS:t0BH]
STOSB
MOV AL.DS:[0AH]
STOSB

MOV ALJ>S:t9H]
STOSB
MOV ALJ>S:[8H]
STOSB

H.12

Gsb

MOV AL.DS:[40BH]
STOSB
MOV AL.DS:[40AH]
STOSB
MOV AL.DS:[409H]
STOSB
MOV AL.DS:[408H]
STOSB
MOV AL.DS:[80BHJ
STOSB
MOV AL.DS:[80AH]
STOSB
MOV AL.DS:t809H]
STOSB
MOV AL.DS:[808H]
STOSB
MOV AL.DS:[OCOBH]
STOSB
MOV AL.DS:[OCOAH]
STOSB
MOV AL.DS:[0C09H]
STOSB
MOV AL.DS:[0C08H]
STOSB

MOV AL.DS:[OFH]
STOSB
MOV AL.DS:[OEH]
STOSB
MOV AL.DS:[ODH]
STOSB

MOV AL.DS:tOCH]
STOSB

MOV AL.DS:t40FH]
STOSB
MOV AL.DS:[40EH]
STOSB
MOV ALJDS:[40DH]
STOSB
MOV AL.DS:[40CH]
STOSB
MOV AL.DS:[80FH]
STOSB
MOV AL.DS:[80EH]
STOSB
MOV AL.DS:[80DH]
STOSB
MOV AL.DS:[80CH]
STOSB
MOV AL.DS:tOCOFH]
STOSB

MOV AL.DS:tOCOEH]
STOSB

MOV AL.DS:[OCODH]
STOSB

H.13

MOV AL.DS:[OCOCH]
STOSB

; Return the sute of the machine
POP ES

POP DS

POP Dl

POP SI

POP CX

RET

UNLOADD ENDP
PAGE

ENDPS

END

H.14

R.l

REFERENCES

[Adl84] P. Adler. IEOR262A Class Notes. University of California. Berkeley.

California. 1984.

[AMD83] Bipolar Microprocessor Logic and Interface. Advanced Micro Devices Co..

1983.

IBVS83] J. Barby. J. Vlach and K. Singhal. ''Polynomial Splines for FET Models". Proc.

1983 International Symposium on Circuits and Systems. May 1983.

[BVS84] J. Barby. J. Vlach and K. Singhal. "Optimized Polynomial Splines for FET

Models". Proc. 1984 International Symposium on Circuits and Systems. May

1984.

lBlu85] W. Blum. "The PSPICE Simulation Program". Wescon/85 Professional Program

Session Record 32/2 (November 1985).

tBur84] J. L. Bums. "Empirical Mosfet Models for Circuit Simulation". Memo No.

UCB/Electronics Research Lab. M84/43. Electronics Research Laboratory.

University of California. Berkeley. California. May 1984.

[ChL75] L. Chua and P. Lin. Computer Aided Analysis of Electronic Circuits; Algorithms

and Computational Techniques. Prentice Hall. New Jersey. 1975.

tC6h76] E. Cohen. "Program Reference For SPICE2". Memo No. Electronics Research

Lab.-M592. Electronics Research Laboratory. University of California.

Berkeley. June 1976.

[Coh8l] E. Cohen. "Performance Limits of Integrated Circuit Simulation on a Dedicated

Minicomputer System". Memo No. UCB/Electronics Research Lab. M81/29.

Electronics Research Laboratory. University of California. Berkeley. California.

May 1981.

R.2

tD'R85] J. L. D'Arcy and R. C. Rennick. "Mosfet Paramter Optimization for Accurate

Output Conductance Modeling". Proc. 1985 IEEE Custom Integrated Circuits

Conference. Portland. Oregon. May 1985.

lDaB74] G. Dahlquist and A. Bjorck. Numerical Methods. Prentice-Hall. 1974.

[Dec84] P. Decher. Private Communication. 1984.

[Deu85] J. T. Deutsch. "Algorithms and Architecture for Multiprocessor-Based Circuit

Simulation". Memo No. UCB/Electronics Research Lab. M85/39. Electronics

Research Laboratory. University of California. Berkeley. California. May 1985.

[FrC80] F. N. Fritsch and R. E. Carlson. "Monotone Piecewise Cubic Interpolation".

SIAM Journal of Numerical Analysis 17. 2 (April 1980).

[Gyu8l] R. S. Gyurcsik. BIASB: Circuit Simulation Program For The Hewlett-Packard

9845. University of California. Berkeley. December 1981.

[GMP84] R. S. Gyurcsik. K. Mayaram and D. 0. Pederson. "Language Comparison For

Circuit Simulation On Desktop Computers ". Proc. IEEE International

Symposium on Circuits and Systems, Montreal. Canada. May 1984.

[GBP84] R. S. Gyurcsik. R. Brown and D. O. Pederson. "Circuit and Logic Simulation on

the IBM Personal Computer". Proc. IEEE International Symposium on Circuits

and Systems. Montreal. Canada. May 1984.

lGyn8S] R. S. Gyurcsik. "BIASC: A Circuit Smulation Program for the IBM PC**.

Wescon/85 Professional Program Session Record 32/4 (November 1985).

tHoS84] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Computer

Science Press. 1984.

[IBM84] Technical Reference Personal Computer XT. IBM. 1984.

[Int83] Memory Components Handbook. Intel Co.. 1983.

[Int84] Microsystem Components Handbook. Intel Co.. 1984.

R.3

IJNP86] G. Jacob. A. R. Newton and D. O. Pederson. "Direct-Method Circuit Simulation

Using Multiprocessors". Proc. 1986 Internaltional Symposium on Circuits and

Systems. May 1986.

[Kah84] W. Kahan. CS278 Class Notes. University of California. Berkeley. California.

1984.

IKBF85] R. Kershaw. L. Bays. R. Freyman. J. Klinkowski. C. Miller. K. Mondal. H.

Moscovitz. W. Stocker. L. Tran. W. Hays. J. Boddie. E. Fields. C. Garen and J.

Tow. "A programmable Digital Signal Processor with 32b Floating-Point

Arithmetic". Proc. 1985 IEEE International SOlid-State Circuits Conference.

New York. New York. February 1985.

lLaH74] C. Lawson and R. Hanson. Solving Least Sqares Problems. Prentice-Hall. 1974.

[LRS81] E. Lelarasmee. A. E. Ruehli and A. L. Sangiovanni-Vincentelli. "The Waveform

Relaxation Method for Time Domain Analysis of Large-Scale Integrated

Circuits". Memo No. UCB/Electronics Research Lab. M81/75. Electronics

Research Laboratory. University of California. Berkeley. California. June 1981.

[Liu8l] S. Liu. "A Unified CAD Model for MOSFETs". Memo No, UCB/Electronics

Research Lab. M81/31, Electronics Research Laboratory. University of

California. Berkeley. California. May 1981.

[Man82] M. Mano. Computer System Architecture. Prentice-Hall. 1982.

[May86] K. Mayaram. Private Communication. 1986.

[McC] W. J. McCalla. Computer-Aided Circuit Simulation Techniques, pre-

publication manuscript.

lNag75l L. W. Nagel. "SPICE2 - A Computer Program to Simulate Semiconductor

Circuits". Memo No. Electronics Research Lab.-M52'0. Electronics Research

Laboratory. University of California. Berkeley. California. May 1975.

R.4

tNev78] A. R. Newton. "The Simulation of Large-Scale Integrated Circuits". Memo No.

UCB/Electronics Research Lab. M78/52. Electronics Research Laboratory.

University of California. Berkeley, California. July 1978.

[NeS84] A. R. Newton and A. L. Sangiovanni-Vincentelli. "Relaxation-Based Electrical

Simulation". IEEE Transactions on Computer Aided Design CAD-3,4 (October

1984). 308-329.

[Qua85] T. L. Quarles. Private communications. 1985.

[ReA80] R. Rector and G. Alexy. The 8086 Book. McGraw-Hall. 1980.

tSal84] R. Saleh. "Iterated Timing Analysis and SPLICEl". Memo No. UCB/Electronics

Research Lab. M84/2. Electronics Research Laboratory. University of

California. Berkeley. California. January 1984.

[San80] A. L. Sangiovanni-Vincentelli. "Circuit Simulation". NATO Advanced Study

Institute on Computer Design Aids for VLSI Circuits. SogesU-Urbino. Iuly.

July 1980.

[She85] B. J. Sheu. "MOS Transistor Modeling and Characterization for Circuit

Simulation". Memo No. UCB/Electronics Research Lab. M85/85. Electronics

Research Laboratory. University of California. Berkeley. California. October

1985.

[ShH68] H. Shichman and D. A. Hodges. "Modeling and Simulation of Insulated-Gate

Field-Effect Transistor Switching Circuits". IEEE Journal of Solid-State

Circuits SC-3 (September 1968). 285-289.

[SSM82] T. Shima. T. Sugawara. S. Moriyama and H. Yamada. "Three-Dimensional

Table Look-Up MOSFET Model for Precise Circuit Simulation". IEEE Journal

of Solid-State Circuits CAS-22. 12 (June 1982). 901-909.

ISYD83] T. Shima. H. Yamada and R. Dang. "Table Look-Up MOSFET Modeling System

Using a 2-D Device Simulator and Monotonic Piecewise Cubic Interpolation".

IEEE Transactions onComputer Aided Design CAD-2. 2 (April 1983). 121-126.

R.5

ISBN82] D. Siewiorek. C. Bell and A. Newell. Computer Structures Principles and

Examples. McGraw Hill. 1982.

[Sia83] R. Starz. 8087 Application and Programming for the IBM PC and Other PCs.

Brady.1983.

tStr76] G. Strang. Linear Algebra and its Applications. AcademicPress. 1976.

lSub85] P. Subramaniam. "Modeling MOS Circuits for Timing Simulation". Proc. 1985

IEEE Custom Integrated Circuits Conference. Portland. Oregon. May 1985.

lTex76] The TTL Data Book for Design Engineers. Texas Instruments Co.. 1976.

lTsM84] Y. Tsividis and G. Masetti. "Problems in the Precision Modeling of the MOS

Transistor for Analog Applications". IEEE Transactions on Computer Aided

Design CAD-1,4 (January 1984). 72-79.

IVZN80] A. Vladimirescu. K. Zhang. A. R. Newton. D. O. Pederson and A.

Sangiovanni-Vincentelli. SPICE Version 2G User's Guide. University of

California. Berkeley. October 1980.

[V1L80] A. Vladimirescu and S. Liu. "The Simulation of MOS Integrated Circuits Using

SPICE2". Memo No. UCB/Electronics Research Lab. M80/7. Electronics

Research Laboratory. University of California. Berkeley. California. October

1980.

[Vla82] A. Vladimirescu. "LSI Circuit Simulation on Vector Computers". Memo No.

UCB/Electronics Research Lab. M82/75. Electronics Research Laboratory.

University of California. Berkeley. California. October 1982.

[WJM73] W. T. Weeks! A. J. Jimenez. G. W. Mahoney. D. Mehu. H. Qassemzadeh and T.

R. Scott. "Algorithms for ASTAP - A Network Analysis Program". IEEE

Transactions on Circuit Theory CT.-20 (November 1973). 628-634.

[Wei84] WTL 1032/1033 High-Speed 32-Bit Floating-Point Multiplier/ALU. Weitek Co..

1984.

R.6

tWhS83] J. White and A. L. Sangiovanni-Vincentelli. "Relax2: A New Waveform

Relaxation Approach for the Analysis of LSI MOS Circuits". Proc. 1983

International Symposium on Circuits and Systems. May 1983.

[WSS85] J. White. R. Saleh. A. L. Sangiovanni-Vincentelli and A. R. Newton.

"Accelerating Relaxation Algorithms For Circuit Simulation Using

Waveform-NewtonJterative Step Size Refinement, and Parallel Techniques".

Proc. IEEE International Conference on Comuter Aided Design. Santa Clara.

California. September 1985.

[YEC83] P. Yang. B. Epler and P. Chatterjee. "An Investigation of the Charge

Conservation Problem for MOSFET Circuit Simulation". IEEE Journal of

Solid-State Circuits SC-18 (February 1983). 128-138.

	Copyright notice1986
	ERL-86-82 (1 of 3)
	ERL-86-82 (2 of 3)
	ERL-86-82 (3 of 3)

