Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

‘AN ATTACHED PROCESSOR FOR MOS-TRANSISTOR MODEL
EVALUATION

by

Ronald Steven Gyurcsik

‘Memorandum No. UCB/ERL M86/82
15 October 1986

AN ATTACHED PROCESSOR FOR MOS-TRANSISTOR MODEL EVALUATION

by

Ronald Steven Gyurcsik

Memorandum No. UCB/ERL M86/82

15 October 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

AN ATTACHED PROCESSOR FOR MOS-TRANSISTOR MODEL EVALUATION

by

Ronald Steven Gyurcsik

Memorandum No. UCB/ERL M86/82
15 October 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

AN ATTACHED PROCESSOR FOR MOS-TRANSISTOR MODEL EVALUATION

Ronald Steven Gyurcsik

Ph.D. ‘ Depariment of Electrical Engineering
and Computer Sciences

Sponsor: Hewlett-Packard Signature W/m

D. O. Pederson
Committee Chairman

ABSTRACT

The design and implementation of an atiached processor for MOS-transistor model
.waluatibn is presented. The computational time used in evaluating the MOS-transistor
model is a significant amount of the total circuit-simulation time of MOS integrated cir-
cuits. A reduction in the total simulation time is achieved by accelerating the MOS-model
evaluation with the attached processor. The attached processor is suitable for use with
electrical circuit-simulation programs. and a prototype has been constructed and inter-

faced to an IBM PC-XT computer running the BiASC circuit-simulation program.

The software interaction between the circuit-simulation program and the attached
processor and the hardware interaction between the computer-system architecture and
the attached processor have both been considered. The attached processor and the host
computer work in’ parallel. ’i‘he transistor mode] data is stored in memory local to the
attached processor to reduce the communication overhead between the host and attached
Pprocessor.

Different types of MOS-transistor models have been studied. and an empirical
model based on piecewise-cubic polyn(;mials has been developed for use with the
attached processor. The model evaluation requires only floating-point addition. subtrac-

tion, and multiplication operations and is performed without conditional branching.

An architecture has been developed which exploits the properties of the empirical
model. The architecture supports the concurrent evaluation of several transistors and can

be expanded to reduce the effective evaluation time.

A prototype attached processor has been developed for the IBM PC-XT. The proto-
type is a board-level design and is comprised of 101 standard parts assembled on two
circuit boards. An order of magnitude decrease in the evaluation lime of the MOS-
transistor equations, and a maximum of a 30% reduction in circuit-simulation time have

been achieved.

TABLE OF CONTENTS

CHAPTER 1: Introduction and an Overview of Circuit Simulation

1.1 Dissertation QULIINEc.ccccerrvememeeccrenessissssmesensees

1.2 Description of Circuit Simulation
1.3 MOS-Transistor Representation for Circuit Simulation

1.3.1 Physical Description of the MOS Transistor .

oooooo

.......................

.....

1.3.2 First-Order Device Characteristics

1.3.3 Companion Model of the MOS Transistor

1.34 MOS-Transistoi' Evaluation Routine

CHAPTER 2: System Overview of the MOS-Model Attached Processor

2.1 General Overview of Special-Purpose Attached Processors ..

2.1.1 Deﬁnit'ions

.......................

.....

2.1.2 Concurrent Operation of the Host and Attached Processorc........

2.2 MMAP System Performance

2.2.1 MMAP Function and Organization

2.2.2 Function-Usage Percentage of the MMAP

2.2.3 Attached-Processor Efficiency Percentage of the MMAP

2.2.4 Improvement Percentage Due to the MMAP ...

.......................

2.3 Using the MMAP in Conjunction with a Circuit-Simulation

2.3.1 Interaction Between the Host and MMAP

.....

Program

2.3.2 Accessing the MMAP from a Model-Evaluation Routine

2.4 Chapter Summary

CHAPTER 3: MOS-Transistor Model Representations

12
15
17.
17
18
19
20
20
23
26
27
28
28
32
38

39

3.1 Criteria Used in Choosing a Transistor-Model Representationce..e....

3.1.1 Accurate Modeling of Current and Conductances

3.1.2 Meet the Requirements of the Circuit-Simulation Programc..cceee...

3.1.3 Efficiently Realized in a Hardware Architecture

3.1.4 Unaffected by Changes in MOS-Transistor Process Technology

3.2 Types of MOS-Transistor Models

3.2.1 Analytic MOS-Transistor Models

3.2.2 Empirical MOS-Transistor Modelscecieiiiininmesisseciscnnssecsnnesiesecas

3.2.3 Comparison Between Analytic and Empirical Models ..ccccouevecrcicccnena.

3.2.3.1 Accuracy. Speed and Storage

3.2.3.2 Dependence on Process Technology

3.2.3.3 Minimizing the Number of Functions and Control Branches

3.3 Model Choice

CHAPTER 4: Empirical MOS-Transistor Model Based on Piecewise-Cubic

Polynomials .

4.1 First-Order MOS-Transistor Dependences

4.1.1 The Dependence of lI4s on Vy, .. .-

4.1.2 The Dependence of l4s on V45 and Vi

4.1.3 First-Order Behavior of Ggs and Gy,

4.2 Description of the Empirical Model

4.2.1 Overview of the Empirical Model

4.2.2 Piecewise-Cubic Polynomial Equations

4.2.3 Family of Piecewise-Cubic Polynomial Equations

4.2.4 Linear Interpolation ..

il

39

40

41

41

42

42

42

45

46

47

48

48

48

50

50

51

51

54

55

56

56

62

65

4.2.5 Cubic Interpolation

4.2.6 Modeling the Source-to-Bulk Voltage Dependence

4.3 Empirical Model - Practical Considerations

4.3.1 P-Channel Transistors ...

4.3.2 Scaling of Transistor Dimensions .

4.3.3 Out-of-Range Evaluationccceeueea.

4.3.4 Numerical Precision

4.3.5 Data Storageceeeecemsnscscccniniisessneanmacanes

4.4 Examples

4.4.1 Example 1: Data Generated from the Shichman-Hodges Model

4.42 Example 2: Data Generated from the SPICE Level-2 Model

4.4.3 Example 3: Data Generated from Device Measurement

4.5 Chapter Summary

esecsscscsccccne

................

' CHAPTER 5: Architecture of the MOS-Model Attached Processor

5.1 Components of the MMAP Architecture

................

5.1.1 Processor

5.1.2 Controller

5.1.3 Interface

5.2 Single Transistor-Model Calculation: An Example

5.3 Storage of Transistor-Model Data

5.4 Pipelined Operation of the MMAP

5.4.1 Pipelined Floating-Point Unit

5.4.2 Pipelined Transistor Evaluation

5.5 Parallel MPUs

i

69

74

76

77

77

78

79

81

83

83

84

85

96

97

98

99

101

103

104

106

108

108

110

115

5.6 Multiple MMAPs e vis

5.7 Chapter Summary

CHAPTER 6: Prototype Implementation of the MMAP on the IBM PC-

XT Personal Computer

6.1 IBM PC-XT Personal COMPULETcocccrcersmieiennismiesmannasessossssssunssssnassacesenss

6.2 Design of the Prototype MMAP ... iiimiinicictcnsesminssninsnsssssecasssssacaees

6.2.1 Design Overview eseassrsssesanseressonsesessasass

6.2.2 Controller

6.2.3 Floating-Point Unit

6.2.4 Coeflicient Cache

6.2.5 Coefficient Memory .

6.2.6 MMAP ClIOCKING .oeorrrecsmuraransnsescssrasemssssssssmminsasnsssasasasssssusssasasonsansaass
6.3 Organization and Access of Data in the Coefficient Memorycceceeeeunees

6.3.1 The Storage and Access of Model Data Within the Coefficient

6.3.2 Generation of the Voltage-Dependent PoIinters ...cceeeenseesemicasnccocreccenne

6.3.2.1 Background

6.3.2.1 Overview of Two-Step Procedure .

6.3.2.1 Allowed Measured Voltages

6.3.3 Coefficient-Memory Address .

6.4 MMAP Operation

6.5 Microprogramming the Prototype MMAP

6.5.1 Overview

6.52 Description .

iv

116

118

119
121
121
122
128
133
136
139
146

147

147
152
152
153
154

158

165 -

169

169

169

6.6 Perforn?ance of the MMAP

6.6.1 Microprogram EXecutionccccceeeccecenccnenanes

6.6.2 Transistor-Evaluation Time .
6.6.3 Efficiency of the MMAP Architecture
6.7 BIASC Circuit-Simulation Program W/MMAPc..ccc...
6.7.1 Model-Evaluation Routine ..
6.7.2 Attached-Processor Efficiency of the Prototype MMAP
6.7.3 Circuit-Simulation Examples
6.8 Chapter Summary

CHAPTER 7: Conclusions and Further Work

APPENDIX A:

APPENDIX B:

APPENDIX C

...............

.........

BIASC: A Circuit-Simulation Program for the IBM PC

Example Circuit Listings ..

Analytic Transistor Models

APPENDIX D: Enhanced Monotonic Piecewise-Cubic Interpolation of 1

Independent Variablecccccueeee.

APPENDIX E:

APPENDIX F:

APPENDIX G:

APPENDIX H:

POLY_MOS Source Listing .

Example Device Data .

Schematics and Parts Listing of the Prototype MMAP

MOS-Model Evaluation Routine

175

175

177

179

181

181

182

183

189

191

A.l

B.1

Ci1

D.1

E.1

F.1

G.1

H.1

R.1

vi

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Professor D. O. Pederson for his leadership

and encouragement.

I gratefuly acknowledge the Hewlett-Packard Corporation for their generous fund-
ing of the research presented in this dissertation. In particular, I wish to acknowledge

Dr. W. McCalla of Hewlett-Packard for his continued interest and support.

The numerous discussions with Jeff Burns which assisted in the formulation of the
empirical model is gratefully acknowledged. 1 wish to thank Kris Pister for wire-
wrapping the prototype and writing support programs. The assistance I received from
Ferenc Kovac. Joao Wentzcovich and Alex Para of the Elelctronics Shop is gratefully ack-
nowledged. I am also very grateful.to Alain Hanover of Viewlogic Systems. Inc. for pro-

viding schematic-capture and simulation software.

I wish to thank Karti Mayaram and Jeff Burns for their critique of numerous drafts
of this dissertaiion. and I wish to thank Karti Mayaram and Theo Kelessoglou for their
assistance in the preparation of figures for this dissertation. I would also like to thank
Jeff Burns. Karti Mayaram. Mark Hofmann, Rick Spickelmeir, Tom Quarles. Theo Keles-
soglou, Fabio Romeo, Giorgio Casinovi, Peter Moore, George Jacob. Dave Burnett. Kris
Pister. Mike Klein, Ken Kundert. Tom Laideg. Dierdre Ryan. Chris Marino. Jacob White,
Wayne Christopher and Res Saleh for being great people to work with. I wish to also
thank Professors D. A. Hodges. A. Sangiovanni-Vincentelli and A. R. Newton for their

assistance throughout my time at Berkeley.

1 wish to thank my parents, Sarah and Steve Gyurcsik. for instilling in me the

importance of education and for their continued assistance throughout my education.

Most of all. I wish to thank Peggy Sue Gyurcsik. my wife, for all the love and sup-

port she has given me and all the sacrifices she has made for me.

CHAPTER 1

Introduction and an Overview of Circuit Simulation

Electrical circuit simulation is an integral component of the integrated circuit design
process. where it is used to verify both the function and performance of the integrated
circuit. Electrical circuit simulation is computationally expensive, requiring the numeri-
cal solution of the nonlinear differential-algebraic equations(DAEs) modeling the
integrated circuit. lncreasing.size and complexity of integrated circuits have resulted in a

superlinear increase in the computation time required for their simulation.

The set -of nonlinear DAEs can be solved using either direct[Nag75] or
relaxation[New78] methods. Both methods use a numerical integration method to reduce
the set of nonlinear DAEs 1o a set of nonlinear algebraic equations. The solution of the
nonlinear algebraic equations requires Lhe evaluation of the nonlinear transistor model
equations. A large percentage of the computation time used in simulating integrated cir-
cuits is spent in the evaluation of the transistor model equations. A reduction in the
time required for transistor model evaluation results in a decrease in computation time

for both direct-based and relaxation-based simulation methods.

A MOS-Model Attached Processor(MMAP). .a special-purpose attached processor
that evaluates the DC-MOS transistor equations for use in electrical circuit simulation. is
presented in this dissertation. The motivation { or developing the attached processor is 10
accelerate the calculation of the MOS u'a_nsistor. equations in order to reduce the overall
time for electrical simulation. Included in the dissertation are descriptions of the inter-
face between a simulation program and the MMAP. the DC MOS transistor model

representation. the MMAP architecture and a protolype MMAP design.

1.1. Dissertation Outline

The remainder of this chapter provides an overview of electrical circuit simulation
and the MOS transistor. A qualitative description. of the basic structure and electrical
behavior of the MOS transistor are given. The companion model of the MOS transistor is
then described. Finally. the MOS transistor-evaluation routine of a circuit-simulation

program is described.

Chapter 2 describes the computer system interface to the MMAP and the circuit-
simulation program interface to the MMAP. Chapter 3 provides an overview of MOS-
transistor model representations and the relationship between the MMAP architecture
and the transistor model. A new empirical transistor model representation developed for
use in the MMAP is presented in Chapter 4. Chapter 5 provides an overview of the
MMAP's architecture. This includes descriptions of the organization, the storage and
accessing of the model data by the attached processor. and of enhancements made 1o the
architecture 10 improve performance. A board-level prototype MMAP is described in
Chapter 6. The prototype MMAP has been designed and built for use with the IBM PC-

XT personal computer. The prototype MMAP's performance. and the performance of the

BIASC! [Gyu85] circuit simulation program running on the IBM PC-XT with and

without the prototype MMAP, are given.

1.2. Description of Circuit Simulation

In the electrical simulation of MOS integrated circuits. both direct and relaxation
methods require the evaluation of the MOS transistor’s device equations. To illustrate the
requirement for transistor model evaluation in electrical circuit simulation, the time-
domain transient simulation of a circuit containing nonlinear devices is described.

Circuit-simulation programs first assemble the nonlinear DAEs representing the

IBIASC - A description of the BIASC electrical circuit-simulation program, including the source-code list-
ing, is given in Appendix A.

integrated circuit. The circuit equations are of the form
f(X)X2. " * - XNX X200 Xnt) = 00 i=1.... N. (1.1)

where the x, are the independent variables. the X, are the time derivatives of the indepen-
dent variables. and t is the time. The independent variables are the node voltages and

branch currents of the circuit.

A method for solving the nonlinear DAEs is given in Figure 1.1. The nonlinear
DAEs are first discretized in time. A numerical integration f ormula is used to represent a
variable's time derivative as an algebraic function of that variable and its past time
derivatives. For the specific value of time, the nonlinear DAEs are thus reduced to a sys-

tem of nonlinear equations. This system of equations.
fi(xllz.‘ : 'XN) = 0, i=1,....N, (1.2)

is a function of only the independent variables. The system of nonlinear equations is

generally solved using the Newton-Raphson iterative method(NR) [DaB74] [Nag75].

The NR requires the semiconductor device equations to be linearized about an
operating point. In general. the terminal currents of an integrated-circuit device are
modeled by nonlinear functions of the device's terminal voltages. The terminal currents
and the derivatives of the terminal currents with respect the terminal voltages are used
in the linearization. The device's linear companion model[ChL75] is formed from the
currents and derivatives. As a result. the sysiem of nonlinear circuit equations is

reduced 10 a system of linear equations of the form
Ax=b, (1.3)

which are then solved for x. The steps of linearizing the device equations followed by
solving the linear circuit equations are repeated until the system of nonlinear equations
converges to a solution.

Once the system of equations is solved for the specific time. the time is incremented.

The differential equations are then discretized at the new time. and the nonlinear equa-

Initial Trial
Operating Point

_

Discretize Differential
Equations in Time
‘r —

Linear ize Semiconductor
Devices About Triel Operating Paint

!

Load Linear Conductances Define New Trial
in Circuit Matrix Operating Point

Solve Circuit Equations

v

Convergence Obteined NO
 csarions e,

(Solution approx. Previous)/

!

Increment Time

!

NO :)
—4——< End of Time Interval >

STOP

Transient Simulation
Figure 1.1

tion solution process is repeated.

9.}

1.3. MOS-Transistor Representation for Circuit Simulation

A brief description of the physical characteristics of the MOS transistor is first
given in this section. A first-order description of the current-voliage operation of the
MOS transistor is then given. Finally, the MOS transistor's companion model is

described.

1.3.1. Physical Description of the MOS Transistor

The basic structure of an N-channel enhancement-type’ MOS transistor is given in
Figure 1.2. The MOS transistor is a four terminal device. The device is built on a p-type
substrate which is the bulk terminal of the device. Two n+ diff usions® form the drain
and source term.inals of the device. The area between the source and drain diffusions is

covered by a thin insulator, which is referred to as the gate oxide. A contact on the gate

source gate

channel
L
p bulk ,/w'
MOS Transistor Diagram
Figure 1.2

?N-channel depletion type and P-channel devices are discussed later.
3Can be formed by cither ion-implantation or diffusion.

oxide forms the gate terminal of the device.

In normal operation the source-to-bulk and drain-to-bulk junctions are reverse
biased. negligible DC current flows from either the source or drain terminal to the bulk
tern"xinal. and the bias between the drain and source terminal is nonnegative. Also, since
the gate contact is separated from the other terminals by an insulating material. no DC

current flows through the gate terminal.

A bias applied to the gate terminal is used to control the flow of current between
the source and drain terminals. When there is zero bias applied to the gate terminal rela-
tive to the source terminal, no current(neglecting leékage through the reverse-biased p-n
junction) flows through either the source or drain terminals. By applying a sufficiently
large positive bias 10 the gate, a channel is formed at the surface below the gate insulator.
This channel provides for the conduction of current between the drain and source termi-
nals. Positive current flows from the drain to the source if the bias between the drain
and source is positive, and positive current flows from the source 10 the drain if the bias

between the drain and source is negative.

The above discussion can be extended to the p-channel MOS transistor by exchang-
ing the p material with n material and by reversing the polarity of the voliages and
currents. The n-channel depletion-type device differs from the enhancer;xent-type device
in that the channel exists with zero bias applied to the gate. For nonnegative gate bias
the depletion-type device can always conduct current between its drain and source termi-
nals. A sufficiently large negative voltage must be applied to the gate to remove the

channel.

1.3.2. First-Order Device Characteristics

A qualitative discussion of the MOS device operation is illustrated by using the
Shichman-Hodges(SH) analytic model of the MOS transistor. The description is of a n-

channel enhancement-type device. but can be applied to n-channel depletion and p-

channel devices. Throughoﬁl this discussion. the drain-to-source voliage is always non-
negative. and the source-to-bulk and drain-to-bulk pn junctions are reversed biased. The
leakage cﬁ;'fent in the reverse-biased junctions are small and are neglected in'this discus-
sion. The symbol 6f the n-channel enhancement-type MOS transistor is given in Figure

1.3.

Gate

Source

MOS Transister Symbol
Figure 1.3

The operation of a four-terminal device can be represented as a function of three
independent differential-terminal voltages. The MOS transistor. in general, is represented
as a function of its drain-to-source(Vgs). gate-to-source(V,,) and source-to-bulk(Vy,)
differential-terminal voltages. Since no DC current flows into the gate terminal and the
leakage current from the reverse-biased junciions are neglected. only the current flowing
from the drain terminal to the source terminal, drain-to-source current(ly,). is con-

sidered. l4;. Where

1y = f(Vas Vs Vib). (1.4)
isa function of the Vs, Vs and Vg voliages.

The SH model equations of las are [ShH68]

lg= 0. for Vg € Vi, (1.5)
#nCox W
Iy = 2°".l__(vzs V)2 (1 +AVy). (1.6)

for Vgs > Vi and Vs 2 V=V

v
Ly = F‘ncox'“'l- Vs (Vgs -Vi ‘-—gi) a+)\Vds) . (1.7)

for Vi > V, and Vys € Vg =Vi.

As shown in Figure 1.3, Vs, Vg and Vj, are the differential terminal voltages of the dev-
ice. u, is the mobility of electrons(holes for p-channel) in the channel. C,x is the capaci-
tance per unit area of the gate oxide. \ is the channel-length modulation parameter. V,is
the Threshold Voltage. and W and L are the channel dimensions as depicted in Figﬁre

1.2. An example of the Iy characteristics is shown in Figure 1.4.

crm——c

lds Yds = ¥gs - V¢t
ohmic : Saturation
: T |
Increasing
Vgs :
Vds

Example I4; Characteristics
Figure 1.4

As mentioned in the previous section. 5 channel is formed between the MOS
iransistor’'s drain and source when a sufficiently large positive voltage is applied to the
gate terminal with respect to the source terminal. Provided the Vg, is positive, a positive
I4s will flow from the drain terminal to the source terminal. The V at which the chan-

nel is formed is referred to as the Threshold Voltage. V.. When Vg < Vino channel is

formed and the Iy, current is [MuK77]
(1.8)

Igs= 0. forVg, < Vi
A transistor operating under these bias conditions is referred 10 as cut-off.

The value of V, is dependent on the V.. The more negative the bulk voltage is with
respect to the source voltage, the greater the V,s voltage that must be applied to form the

channel. This is referred to as the body effect. The V, is [MuK77]

10

Vi= Vig+y (Ve + 2161 =211). (1.9)

V., is the Threshold Voliage at Vs, = 0. ¢ is the Fermi potential and 2l¢, | is the sur-

face potential of the neutral bulk material. Yy is the bulk threshold parameter.

When the Vg, is greater than the V.. and Vs is small, the channel extends from the
source to the drain as shown in Figure 1.5. The structure formed by the channel, drain
and source is similar 1o a voltage-dependent resistor, and the behavior of the I on the

Vg, is similar to that of a nonlinear resistor. The Iy is given by [MuK77]

\ .
Iy, = p,,co,ll*_'_ Vs (Vg =V, ==2). ' (1.10)

This is referred to as the ohmic or linear region of transistor operation.

Gate

channel

o] Bulk

MOS Transistor in the Ohmic Region
Figure 1.5

The channel will extend from the source to the drain until the Vg exceeds Vg —V;,
as shown in Figure 1.6. V., —V, is referred to as the drain-to-source saturation
voltage(Vys mi). and it is the voltage at which the onset of saturation occurs. The device
is operating in saturation region of operation when the Vg is greater than the Vyg - The

I4s of the transistor in saturation is [MuK77]

11

lis = — '1_—(\3‘—\")2' (1.11)

Gate

channel

p Bulk

MOS Transistor at the Onset of Saturation

Gate

qhannel

P Bulk

MOS Transistor in the Saturation Region
Figure 1.6

The 1., modeled by Equation (1.10) is independent of Vas. In general. MOS transis-
tors demonstrate a slight dependence on V4 When the device is in saturation. To model

the linear dependence on Vg, Equation (1.10) is changed 1o [MuK77]

. c *
Iy, = ”‘"2 ox % (Vg =V (1 + A Vas). (1.12)
To maintain continuous current and partial derivatives. Equation (1.9) is changed to

12

\Y
log = o cox_vl_i Vas (Vs =V, —_2"1) (14 A Vag). (1.13)

1.3.3. Companion Model of the MOS Transistor

The companion model of the MOS transistor is described in this section. A compan-
ion model is a linear representation of the nonlinear device about a given bias point. The
companion model used with the NR method is derived from the first two terms in the

Taylor series expansion [DaB74] of the device equation about the bias point.

The MOS transistor l4s equation is of the form
ldS = f(VGSUVQS'VSb)’ (1-14)

The bias-point voltages are Vgsq. Vg and Vg oo The truncated Taylor series about the

bias point is
ol) ol ol
= Ig+ FV%(V"’ V) + W"‘;(vg, Vo) + a_\:T(v"’ ~Vago). (1.15)
where g is the current at the bias point and a . 8 and -éli are the partial deriva-
: Ve Ve Ve

tives of f with respect 10 Vgs. Vg and Vg, evaluated at the bias point. The l4 is thus
represented as a linear function of Vg V. and V,,. The constant and linear terms in

Equation (1.15) are grouped. and Equation (1.15) is rewritten as

Olas olas Olas

lys = ———Vas + 50— Ves + =—Vao + Igq - (1.16)

where Igq is the constant term.

Neglecting any drain-to-bulk and source-to-bulk reverse-biased junction current,
Equation (1.15) defines the MOS transistor’s DC companion model. The linear model is
illustrated in Figure 1.7. The partial-derivative terms have the dimensions of conduc-

tance (271). and their common symbols and names are given in Table 1.1.

13

Gate Drain
® ®
+ +

Gds Ggs Ygs Gsb Ysb
vgs
vds
® ®
+
Vsb Source
®
Bulk
MOS Transistor Companion Model
Figure 1.7
Partial Derivative | Symbol Name
|
a"l Gas Output Conductance
OVas
1
-Q-di G,. Gate-to-Source
Vs
al Transconductance
ds
G, Source-to-Bulk
Ve >
Transconductance

Table 1.1

The components of the companion model are entered into the circuit matrix,
matrices A and b in Equation (1.3), representing the linearized circuit. The matrix loca-

tions are specified by the circuit template of the transistor. The template of the MOS

14

transistor used with a nodal-based circuit matrix is given in Figure 1.8. In reference to
Eguation (1.3). A is the Nodal-Admitiance Matrix and b is the Right-Hand-Side Vector.
Each row represents a circuit equation. and each column specifies the terminal voltage at
that node. For example. the first row in the Nodal-Admitlance Matrix template and the
Right-Hand-Side Vector template specify the drain cunént calculated from the compan-

ion model.

Drain Gate Source “Bulk

Drain Gds Ggs -Gds -Ggs + Gsb -Gsb
Gate

Source —Gds '-st Gds + Ggs -Gsb Gsb

Bulk

Nodal-Admittance Matrix Template

Drain | —lgq
Gate

Source | Igq
Bulk

Right-Hand-Side Vector Template

MOS Matrix Template
Figure 1.8

15

1.3.4. MOS-Transistor Evaluation Routine

A qualitative description of the model-evaluation routine of the MOS transistor is
presented in this section. In Figure 1.1, the simulation steps represented by the boxes
"Linearize Semiconductor Devices About Trial Operating Point” and "Load Linear Con-

ductances in Circuit Matrix”" are performed by the model-evaluation routines.

For the model-evaluation routine of the MOS transistor, the following procedure is

followed in the evaluation of each transistor.
(1) Limit Terminal Voliages
(2) Calculate the Terms of the MOS Companion Model
(3) Load Companion Model
(4) Check For Device Current Convergence

The differential terminal voltages, V4. Vi and Vy,, are calculated from the terminal
voltages. Once calculated. the terminal voltages are then limited. The differential termi-

nal voltages of all nonlinear devices are limited to aid in the convergence of the

Newton-Raphson algorithm and the prevention of numerical overflow?. .

The terms of the companion model are then calculated. As described earlier. the ele-
ments of the MOS transistor's companion model are determined from the values of I
Gus. Gg; and G;p. The transistor model represents the current and conductances as func-

tions of the Vg, Vs and Vg, voltages, namely

las = 1 (Vas. Vgs. Vi) . ' (1.18)

. Ggs = Gas (Ve Vs Vi) (1.19)
Gg = Ggs (Vg Voo Vip) - (1.20)
Gy = Gy (Vs Vs Vis) - (121)

The equations representing the current and partial derivatives are evaluated at the given

“Numerical overflow is of greatest concern with bipolar transistors and pn junction dicdes because of the
exponential behavior of their current on terminal voltage.

16

voltage values. The companion-model entries are then added into the circuit matrix at

the positions specified by the device's template.

As shown in Figure 1.1, the results of the "Solve Circuit Equations” step are tested
for convergence. If the convergence test fails. the NR process is continued. but if the
convergence test passes. the solution of the DAEs continues for next time point. Gen-
erally. the solution of the circuit equations provide node voliages and branch currents of
voltage sources. As given by [Nag75). the current of every nonlinear device must also be
checked for convergence. For the MOS transistor. the accuracy of the l4 is checked in the

model-evaluation routine.

17

CHAPTER 2

System Overview of the MOS-Model Attached Processor

The use of the special-purpose MMAP from the computer-sysiem perspective is
presented in this chapter. The MMAP is shown to be a logical partition from both the
circuit-simulation and computer-architecture perspective, performing extensive computa-
tion with minimal transfer of data. First. a general overview of attached processors is
given. The general overview presents three criteria which must be considered when
developing a special-purpose attached processor. Next. a detailed description of the func-
tion of the MMAP is given, and the three criteria are applied specifically to the MMAP to
demonstrate its validity. Finally. the interaction between the circuit simulation program

and the MMAP is described.

2.1. General Overview of Special-Purpose Attached Processors

A special-purpose attached processor operating in conjunction with a host processor
is used to improve the speed performance of programs. The attached processor performs a
small set of functions at a greater speed than the more general host. A ﬂoatin;—point
coprocessor is one such example. The floating-point coprocessor performs floating-point
operations much faster than they can be done in software by the host processor. In gen-
eral, the use of an attached processor 10 increase the speed performance o.f a function(s)

is justified when the following three criteria are met.

(1) The function(s) performed by the attached processor comprise a significant per-

centage of the overall time of an application program(s) running on the host.

(2) The function to be performed by the attached processor is a logical ® break-off”

point. The overbead required by the host for data preparation and

18

communication with the attached processor does not negate the speed advantage

of the attached processor.

(3) The time required 1o execute the function by the attached processor is

significantly faster than execution of the function by the host alone.

2.1.1. Definitions

Three definitions. Function-Usage Percentage(FP). Improvement Percentage(IP) and
Attached-Processor Efficiency(AE), are given in this section. These definitions are used 10
characterize the performance of an attached processor and are related to the above-

mentioned three criteria.

Function-Usage Percentage

The FP is the percentage of total time that is used in performing a function.

T .
FP = _function + 100 % . (2.1)
Teom .

The larger the FP, the more valid the reason to develop special hardware to perform that

function.

Attached-Processor Efficiency

For a host using an attached processor. the time required to perform the application
program(s) is the sum of the time required by the host working independently of the
attached processor. the time required for the attached processor to work in conjunction
with the host. and the time required by the attached processor working independent of

the host.

Twtat = Thost + Tanacked processor + Thos =strached processor 2.2)

The effective time to perform the function by the attached processor is équal to the time

of the attached processor working independently plus the time required by the host to

19

communicate with the attached processor. The AE is the percentage of the effective func-
tion evaluation time (function evaluation as viewed by the host) that is required by the

attached processor to perform the function.

AE = Tatached processor x 100 % (2.3)

Tatacbed processor + Thost —attached processor

The larger the AE. the greater the amount of work that is actually being done by the
attached processor relative to the communication time between the host and attached

Pprocessor.

Improvement Percentage

The IP is the percentage of time that is saved in the execution of application

program(s) by using an attached processor.

P = Total = Tiotal w/ sttached processor o 100 % (2.4)

Toow

In the limiting case the function evaluation by the attached processor becomes
insignificant compared to the evaluation of that function by the host. The difference
between the total times with and without the attached processor is then equal to the
time required by the host to evaluate the function. Thus. the maximum IP approaches

the FP. -

Trunction
Maximum Improvement = ,‘I'.m"“ X 100 % (2.5)

total

2.1.2. Concurrent Operation of the Host and Attached Processor

The host and attached processor can both be used concurrently, provided a problem
can be partitioned properly. The total time is the sum of the host-dependent times. as the

attached processor will be operating concurrently with the host processor.

Twul = Thost + Tbon —attached processor (2-6)

20

The time required for the interaction of the host and atiached processor is primarily due
to communication between the host and attached processor. Thus minimizing the
amount of data transferred. and thus the communication time. minimizes the amount of

total time.

2.2. MMAP System Performance

The use of a MMAP is justified only if it meets the three criteria stated in Section
2.1. In this section. the suitability of using an attached processor for model evaluation is

presented. on the basis of the definitions given in section 2.1.

2.2.1. MMAP Function and Organization

The terminal voltages, transistor dimensions, and model data are required for MOS
transistor model evaluation. As shown in Figure 2.1, the evaluation of the model equa-
tions provides the transistor’s current and partial derivatives with respect to the termi-

nal voltages.

21

Transistor
Terminal Dimensions
VO]t@eS Model

date

Model
Evaluation

Current -
~and
Conductances

Model Evaluation
Figure 2.1

In an electrical circuit simulation program, the transistor evaluation is preformed by a
software subroutine. The MMAP replaces the software transistor-evaluation subroutine
and is‘speciﬁcally designed to perform the transistor evaluation. The MMAP is a *slave’
to the host computer it is connected to. The transistor’s terminal voliages. dimensions
and model data are input to the MMAP by the host: the model equations are evaluated

by the MMAP and the results are then returned to the host as shown in Figure 2.2.

22

Terminal Voltages

Device Geometry From Host
Model Data
MMAP Host
Current
Y Conductances l To Host
MMAP
Figure 2.2

A transistor's dimensions and model data remain constant throughout the current
simulation. whereas the transistor’s terminal voltages usually change with each iteration.
The model data are the same for all transistors of the same type. The number of different
transistor. models is dependent on the integrated-circuit process and is independent of the
number of transistors in the circuit being simulated. The transistor model data are stored
in the MMAP since they remain constant during the simulation. The transistor's dimen-
sions remain constant and thus they can also be stored in the MMAP. But. since the
geometric data are unique for each transistor. storage of the geometric data in the MMAP

could become prohibitive for large circuits. As a result. only the model data are stored

23

local to the MMAP. and a model reference pointer is used to associate a transistor with
the appropriate model data. The model reference pointer provides the address of the
model data stored in the MMAP. As shown in Figure 2.3. the model reference pointer.

transistor dimensions and differential terminal voltages are sent to the MMAP.

Terminal Voltages

Device Geometry A From Host
Model Pointer
MMAP
Model Data :
Current
Conductances 4 ToHost

MMAP With Local Storage of Model Data
Figure 2.3

2.2.2. Function-Usage Percentage of the MMAP

The FP. as defined in Section 2.1, is the percentage of total computation time used in

performing a given function. The greater the percentage is. the more valid the develop-

24

ment of special-purpose hardware 10 perform that function. In relation to MOS-

transistor evaluation in circuit simulation. the FP is.

FP = Total Time Uscfd in Model .Evaluation x 100 % . Q.7
Total Simulation Time

the percentage of the total simulation time that is spent evaluating the MOS transistor
equations. The percentage is not a constant. but will vary depending on the size of the
circuit. the size of the circuit relative to the number of MOS transistors. the complexity

of the MOS-model equations and circuit function.

The FPs for three MOS circuits® are given in Table 2.1. The percentages are calcu-
lated from the time profile of the BIASC program performing the DC-transfer analysis of
three MOS example circuits. The BIASC program is used here since the prototype
MMAP., presented in Chapter 6. is used in conjunction with the BIASC program. The time
profile contains the evaluation time for the MOS-transistors model equations, the linear-
equation solution time and the time required to perform additional operations (e.g.. con-
vergence checking). Both the Shichman-Hodges(SH){ShH68] and SPICE Level-2[VIL80]
transistor models? are used in the simulations. The profile information is from the
BIASC program running on a VAX 11/785 with hardware floating-point under Athe

Berkeley Unix BSD 4.3 operating system.

25 Cascaded NMOS Inverters
27 Circuit Nodes and 50 MOS Transistors

MOS Model 9% Model Evaluation | % Matrix Solution | % other
Shichman-Hodges 59 30 11
Level 2 63 27 10
Table 2.12

1The input listings for these circuits are given in Appendix B.
2Both models are given in Appendix C.

25

Low-Power CMOS Operational Amplifier
24 Circuit Nodes and 30 MOS Transistors

MOS Model % Model Evaluation | % Matrix Solution | % other
Shichman-Hodges 39 39 22
Level 2 46 . 35 19
Table 2.1b

Worst-Case Path Through Op-Code PLA
65 Circuit Nodes and 116 MOS Transistors

MOS Model % Mode! Evaluation | % Matrix Solution | % other
Shichman-Hodges 39 38 23
Level 2 53 43 4
Table 2.1¢

For the three circuits simulated. the average FP of SH model evaluation is 44%, and the

average FP of SPICE Level-2 model evaluation is 53%.

The matrix-solution time for the three circuits is also significant. Cohen[Coh81] has
demonstra‘ted‘ that the use of a "Linear Equation Solution Machine"(LESM) greatly
reduces the matrix solution time. Cohen's MOSAMP1 example circuit uses less than 5%
of the total time for matrix solution, while 90% of the total time is consumed by MOS

transistor model evaluation[Coh81].

The percentage of total time for transistor model evaluation by relaxation-based
simulation programs is nearly independent of circuit size. [Sal84] contains the profile
information of the SPLICE1.7 program electrically simulating a MOS digital filter circuit
containing 698 MOS transistors and 384 circuit nodes. The MOS transistor models used
are based on the SH model. The program used 37% of the computation time for transis-

tor model evaluation.

26

2.2.3. Attached-Processor Efficiency Percentage of the MMAP

The AE of the MMAP is the time required to perform the transistor model evalua-
tion relative to the effective MOS transisior evaluation time. which includes the com-
munication time between the host and MMAP. In relation to the MMAP, Equation 2.3

can be rewritten as

MMAP Evaluation Time X 100%. (2.8)

MMAP AE = MMAP Evaluation Time + Communication Time

The MMAP Evaluation Time is dependent on the number of floating-point operations
required. and the Communication Time is dependent on the number of floating-point
words transferred between theA host and MMAP. The AE of an attached processor per-
forming floating-point operations. such as the MMAP, can be characterized by the ratio of
the number of floating-point operations performed to the total number of floating-point
words transferred. This ratio is referred to as the Performance Ratio(PR). and the PR

applied to the MMAP is

Floating—Point Operations

Floating—Point words Transferred ' (2.9)

Performance Ratio =

The larger the PR, the higher the AE of the MMAP.

The PR of a floating-point attached processor performing a single two-operand

floating-point operation is %. since one floating-point operation is performed., two

operands are required and one floating-point result is returned.

The PR of the MMAP is dependent on the MOS transistor model used by the
MMAP. As listed in Table 2.1, a total of 9 floating-point numbers plus the model-

reference pointer are transferred for each transistor evaluation.

27

Model Model Reference Pointer

Geometry Width
Length

Terminal Vs

Voltages Vs

Vi

Ias

Returned Ggs

Results Gys
Gsp

Table 2.1

If the commonly used SH model is used in the MMAP. the number of floating-point
operations and PR is given in Table 2.2. The PR is calculated assuming a total of 10
floating-point numbers are transferred. The model data (Cox+ # Vio. A, ¥ and @) are

stored in memory local to the MMAP.

Performance Ratio - Current and Partial Derivative Calculation
“Transistor fpt. Operations Performance
Operating Region +. =X &/ v_ Ratio
Cutoff 4 2 0.6
Saturation 18 2 2.0
Ohmic 22 2 2.4
Table 2.2

The PR varies from 0.6 to 2.4 with the SH equations. The PR is dependent on the com-
plexity of the equations, which vary depending on the transistor’s operating region. The
average PR, provided the number of evaluations in each operating region is equal, is 1.6.
This is nearly 5 times greater than the PR of a single two-operand floating-point evalua-

tion.

2.24. Improvement Percentage Due to the MMAP

IP. applied to a circuit-simulation, is the percentage reduction in simulation time

achieved by using a MMAP. Ideally. if the time required by the MMAP to perform the

28

transistor evaluation is negligible when compared to the host's time. the maximum IP
- approaches the FP. Under these assumptions, for the data given in Tables 2.1a. 2.1b and
2.1c. the average maximum improvement is 44% for the SH model and 53% for the

SPICE Level-2 model.

To achieve the mazimum IP. the MMAP must perform the transistor evaluation in
" much less time than the host. The architecture of the MMAP and transistor-model
representation used by the MMAP must be optimized to achieve the largest possible IP.
The MOS transistor model used by the MMAP is presented in Ch‘apter 4, and the archi-

tecture of the MMAP is presented in Chapter 5.

2.3. Using the MMAP in Conjunction with a Circuit-Simulation Program
The interaction between the host and the MMAP required during circuit simulation

and the changes made to the circuit-simulation program’s transistor-evaluation routine

are described in this section.

2.3.1. Interaction Between the Host and MMAP

Throughout the discussion of the MMAP's operation. the host is assumed to be a
simple single-bus architecture as shown in Figure 2.4. The host’s RAM memory. disk.

1/0. and MMAP are connected to the host’s bus.

During the initialization phase of the electrical circuit-simulation program. the cir-
cuit description is parsed. the sparse-matrix structure is built up. and initial "one-time-
only” calculations are performed. In addition. the data for the models required by for the
simulation are sent to the MMAP as shown in Figure 2.5. From Figure 2.6, it is seen that
when the simulation program requires the evaluation of a MOS transistor, the appropri-
ate data are sent to the MMAP, the MMAP performs the computations. and the results

are returned for use by the host processor.

29

Host
Processor

System
BUS

Host Architecture
- Figure 2.4

I/0

Memory

Disk

MMAP

30

I/0

Host
Processor
Memory
Disk
MMAP

System
BUS

One-Time-Only Loading of Model Data

" Figure 2.5

31

Results Returned From MMAP

\ S—Pi 10
‘ Hosf
Processor
) ot » MemOI"‘Y
Data Sent to MMAP
\ v ke Disk
MMAP

System
BUS

Transistor Evaluation
Figure 2.6

32

2.3.2. Accessing the MMAP from a Model-Evaluation Routine.

A qualitative description of a transistor model-evaluation routine is given in
Chapter 1. As shown in Figure 2.7, the steps performed in the evaluation routine are

executed sequentially and repeated for every transistor.

(Model Evaluation)

#

Limit Terminal Voltages

v

Calculate Companion-Model Entries

A v

Load Circuit Matrix

v

Check for Nonlinear-Device Convergence

& < More Transist >
ore Iransisiors
=<

No

C Return)

Model-Evaluation Routine
Figure 2.7

The MMAP's function is to perform the "Calculate Companion-Model Entries® step
in the model evaluation routine. Replacing this step by a call to the MMAP is illustrated
in Figure 2.8. The "Calculate Companion Model Entries” step is replaced by three steps:

*Send Data to MMAP and Signal Execution”, “Calculate Companion Model Entries -

33

MMAP". and "Access Results From MMAP When Ready”. The host remains idle while
the MMAP performs the model calculations. and. neglecting the communication time,.

only the transistor-evaluation time is reduced.

A more efficient model-evaluation routine. shown in Figure 2.9, allows the host to
perform work in parallel 10 the MMAP. The core of the model-evaluation proceeds as
follows: while the MMAP evaluates transistor N : the host loads the results of the
evaluation of transistor N —1 in the circuit matrix, checks for convergence of transistor
N —=1. and limits the terminal voltages of transistor N + 1. The time required by the
bost(Thost) 1o limit the 1ermin$l voltages(Timit). load the circuit matrix(Tmawix—icad). and

check for device convergence(Tconverge) is
Thost = Tlimi! + Tmnr'xx-load + Tconverge . (2-10)

The total MOS transistor evaluation time(T.v,) is equal to the MMAP's model-equation

evaluation time(Tpmap) plus the communication time between the MMAP and

host(Teom)-

Tou = Tratss + Teom. | 2.11)
provided

Thot € Tmmar- | . (2.12)

Otherwise, the evaluation time is

Tml = Thosl + Tcom' (2'13)

(Model Evaluation)

> K

Limit Terminal Voltages

v ,

Send Data To MMAP and Signal
MMAP to Begin

L

MMAP Operation
Complete

Yes

No

Access Results From MMAP

v

Load Circuit Matrix

v

Check for Nonlinear-Device Convergence

!

Yes / ‘ >
< More Transistors
N

No

C Return)

Model Evaluation With MMAP
Figure 2.8

34

| C Mode! Eval,uation)
v

Limit Terminal Voltages of the
First Transistor

v

Send Data To MMAP and Signal
MMAP to Begin

35

<More Transistors> No
> Yes
\
Limit Terminal Voltages of the
Next Transistor
<4
No

(MMAP Finished >——

lYes

Access Results From MMAP Evaluation

v

Send Data To MMAP and Signal
MMAP to Begin

v

Load Circuit Matrix

Y

Check for Nonliear-Device Convergence

v

ﬁo / Last Transistor >
AN

Yes

36

O,

.

< MMAP Finished>—
lves

No

Access Results From Last
MMAP Evaluation

v

Load Circuit Matrix

v

Check for Nonliear-Device Convergence

v
(Return)

Improved Model Evaluation With MMAP
Figure 2.9

37

38

2.4. Chapter Summary

The use of a MOS-Model Attached Processor(MMAP) in conjunction with a
circuit-simulation program is shown 10 be a logical partition from both the circuit-
simulation and computer-architecture perspective. From the simulation outlook.
transistor-model evaluation is shown 10 comprise a significant percentage of the toial
circuit-simulation time. In lessening the model-evaluation time by using a MMAP, the
1otal simulation time can be reduced. From the architecture view. the MMAP performs a
large amount of work with only a minimal transfer of data to and from the host. With

a small communication overhead, the MMAP can be efficiently used by the host.

The software model-evaluation routine in the simulation program is changed to
include a call 1o the MMAP. The MMAP performs the transistor equation evaluation and
the host performs the remaining model-evaluation tasks. The MMAP and host operate
concurrently. The host processes results from the previous MMAP evaluation and
prepares data for the next MMAP evaluation. while the MMAP calculates the data for

the current MOS transistor.

39

CHAPTER 3

MOS-Transistor Model Representations

In Chapter 2 it is demonstrated that the use of a MOS-Model Attached
Processor(MMAP) is feasible provided the transistor evaluation can be performed by the
MMAP at a much greater speed than the host processor and provided the communication
between the MMAP and host is fast. On a given computer. the time required for a
transistor evaluation in software is dependent on the 'type of transistor model. The more
complicated the transistor model, the greater the time used in-solving the model equa-
tions. The time required for a transistor evaluation by the MMAP is also dependent on
the type of transistor model. but, as stated in Chapter 2, the speed of the model evalua-
tion is primarily dependent on gﬁciently realizing the transistor model in the architec-

ture of the MMAP.

The different types of MOS transistor models are presented in this chapter. The cri-
teria for comparing the different types of MOS transistor models are first presented.
Then an overview of both analytic and empirical MOS transistor model representations is

given.

3.1. Criteria Used in Choosing a Transistor-Model Representation

In this section. the criteria used in choosing a transistor model for the MMAP are

first given, and then each is described.

As described in Chapter 1. the transistor model represents the current and conduc-

tances as functions of the Vg, V;; and Vg, voltages. namely

Igs = las (Vas. Vs Vi) ' (3.1)

40

Gas = Gas (Vas. Vgs. Vsp) . (3.2)
Ggs = Ggs (Vgs. Vs Vip) . . (3.3)
Gsb = Gsb (\"dS' \"gS' Vsb) . (3.4)

The current and conductances are used 1o represent the companion model of the MOS

transistor. and are calculated at every Newton-Raphson iteration.

In general. the choice of a MOS-transistor model is based on the model accurately
representing the transistor’s characteristics while also meeting the numerical require-
ments of the circuit-simulation program. There are additional concerns for the transistor
model used by the MMAP. The model must be efficiently realized in the architecture of
the MMAP, and the model should be unaffected by changes in MOS-transistor process
technology. The criteria used in choosing a MOS model are summarized in the following
list. |

(1) Accurately model currents and conductances
(2) Meet the requirements of the circuit-simulation program

(3) Efficiently realized in a hardware architecture

(4) Unaffected by changes in MOS-transistor process technology

These four points are further discussed in the remainder of this section.

3.1.1. Accurate Modeling of Currents and Conductances

In electrical circuit simulation. the MOS transistor model must accurately represent
the transistor currents and conductances(partial derivatives of current with respect 1o
voltage). The accurate modeling of the transistor currents is required in the simulation
of both analog and digital integrated circuits. In addition. the simulation of analog

integrated circuits requires the accurate modeling of transistor conductances.

41

3.1.2. Meet the Requirements of the Circuit-Simulation Program

As described in Chapter 1. the Newton-Raphson(NR) method is used by circuit-
simulation programs 1o solve the nonlinear circuit equations. To meel the minimum
requirements of NR. the Iy given by Equation (3.1). must be a continuous. monotonic
function of Vgs. Vg and (=Vy). In addition, the first derivatives with respect to voltage.

given by Equations (3.2), (3.3) and (3.4), must be nonzero.

3.1.3. Efficiently Realized in a Hardware Architecture

As emphasized in Chapter 2, it is essential that the MMAP perform the transistor
evaluation in much less time than the host processor. In general. the model-evaluation
time of a given tr'ansistor model is limited by the data-access time and the floating-point
operation time. As described in Chapter 2, the model data are stored in memory local to
the MMAP. The storage of model data in the MMAP reduces the communication over-
head between the MMAP and host. and provides direct access to the model data by the
MMAP. Circuit-simulation programé are floating-point intensive and are primarily run
on computers which have a fast floating-point unit. The MMAP may not be able to per-
form the floating-point operations much faster than the host. and. under these cir-
cumstances, the MMAP may not achievé a significant speed advantage due to floating-
point speed alone. In order for the MMAP to achieve any additional speed-up over the
host. the transistor model must be well suited for its realization in the MMAP's architec-

ture.

There are two primary considerations in specifying the form of the transistor model
from the architecture perspective. First, the number of different logical and numeric
operations' must be kept to a minimum, and. secondly. the number of control branches
required in the model evaluation must be kept to a minimum. Minimizing the number of
operations reduces the complexity of the hardware. which allows the performance of the
" remaining functions to be better optimized, and simplifies the control of the arithmetic

and logic unit. Minimizing the number of control branches simplifies the MMAP's

42

control logic and allows the MMAP's architecture 1o be further optimized.

3.1.4. Unaffected by Changes in MOS-Transistor Process Technology

The MOS transistor's model equations should not be affected by changes in MOS
transistor processing technology. Without the MMAP, the model-evaluation routine is
executed solely by the host. To change the transistor equations. in general. requires only
the revision of the software model-evaluation routine. With the MMAP, a revision in
the model equations can require a change in the MMAP's programming and. in addition.

may even require a change in the design of the MMAP. -

3.2. Types of MOS-Transistor Models

MOS-transistor models may be partitioned into two general groups. analytic and
empirical. Analytic-model equations can be derived directly from the physical properties
of the MOS device. Empirical MOS transistor models calculate the transistor’s current
" and conductance from values of device current data. Discrete values of data can be
stored. or the data can be repisemed by numerical functions which "curve-fit" the data.
In this section. a comparison of the two model types is made relative to the criteria

stated in Section 3.1 of this chapter.

3.2.1. Analytic MOS-Transistor Models

The Shichman-Hodges[ShH68] and SPICE Level-2{V1L80] MOS transistor models
are examples of analytic models. The two analytic models are of differing complexities
but both are derived from the MOS transistor’s physical properties. A purely analytic
NiOS transistor model may not adequately represent the current-voltage relationship of
the device. Analytic MOS transistor models usually are augmented with empirical terms,
allowing the models to fit more readily 10 device data. The SPICE Level-3 model[Liu81]
and the BSIM model(She85) are examples of analytic transistor models augmented by

empirical terms. The accuracy of a given analytic model is dependent on obtaining the

43

values of model parameters which produce a "best fit" of the analytic equations 10 meas-

ured data.

Analytic MOS transistor models use separate nonlinear equations 1o represent each
of the transistor's regions of operation. In the case of the SPICE Level-2 model. four
.diﬁ' erent sets of equations are required to represent the four different transistor operating
regions(cutoff, subthreshold. saturation and ohmic). The control flow for the evaluation
of the Level-2 MOS transistor model is given in Figure 3.1. Thg evaluation of the MOS
transistor's model equations requires the solution of several conditional branches. and
the number of computational steps is dependent on the transistor’s operating region. The
nonlinear equations are, in general. very complicated and require many floating-point
computations for their evaluation. Floating-point logarithm, exponential and square-root
operations. in addition to floating-point addition. subtraction. multiplication and divi-

sion, are necessary.

CTrensistor Evaluation)

44

Caiculate Yt
= Yes
Vgs>vt)
No
Yes
< Vgs>Vt-Phi >——
Calculate Ydsat
No)
Yes
Vo> Vet > —
No
Cutoff Subthreshold Linear Saturation
Equations Equations Equetions Equations

Level 2 MOS Model Evaluation Control Flow
Figure 3.1

45

3.2.2. Empirical MOS-Transistor Models

Several approaches have been used in the development of empirical MOS transistor
models [New78] [SSM82] [BNP83] [BVS83] [BVS84] [Bur84] [BVS86). Empirical MOS
transistor models use discrete values of device current directly in the calculation of the
currents and partial derivatives for use by the circuit-simulation program. The discrete
values of current can be génerated from measurements, analytic models. or device simu-
lation. The current and partial derivative values are interpolated as needed from the
discrete data. Empirical models can be compared by the approach in which they store the

empirical data and by the method of interpolation they use.

The most direct approach to storing the empirical data is to store the discrete values
of lys. Gus: Ggs and Gy, from every data point. Since the current and conductances are
functions of 3 independent variables(refer 1o Equations (3.1) through (3.4)). the storage
of enough discrete values 1o represent the device can be quite large [New81). The amount
of data stored can be reduced by taking advantage of the firsi-order behavior of the MOS
transistor [New78] [SSM82] [Bur84). For example, [Bur84] reduced the data stored to
two dimensions, Vg and V.. where Vi, is a function of Vi and Vg. The Iy is

represented as
lds = lds (Vdsnvgse)- . (35)

To a first order. the Vy, voltage effects only the Threshold Voliage (V,). As demonstrated

by the Shichman-Hodges [ShH68] equations. given in Chapter 1. Vg, can be writien as
Vise = Vi =Vi(Vg). ' (3.6)
The dependence on the V,, is embedded in Equation 3.5.

Interpolation between the stored data points is used to generate the specific values
of current and conductances from the discrete device data. The most straightforward
approach is to linearly interpolate between the discrete data. For example. [SSM82] cal-
culates the current and conductances by linearly inl'erpolating in three dimensions from

the discrete current data. Higher-order interpolation methods can also be used. but their

46

representation of ly may not always be monotonic. [Bur$4] combined quadratic and
linear interpolation: quadratic interpolation is used o represent lqs (Vg4s) when the device
is in the ohmic region of operation, linear interpolation is used to represent Ias (Vgs) in

the saturation region, and linear interpolation in Vi is used for all voltages.

[BVS83] represents 14 by both triquadratic and tricubic splines. The device conduc-
tances, Ggs. Ggs aﬁd G,,. are generated by taking the partial derivatives of the polynomial
equations. [BVS83] uses both triquadratic and tricubic splines to represent Iy as a func-
tion of V. Vs and V. A negative aspect of splines is that they are not guaranteed to be
monotonic. The spline method has been improved to guarantee monotonic behavior at

the expense of altering the discrete values of Iy [BVS84] [BVS86).

The accuracy of an empirical model is primarily dependent on the number of
discrete data points and the order of the interpolation method. For a given interpolation
method. increasing the number of data points can provide a more accurate representation
of the device. In general. a distinct model is stored for each device type with a specific
channel length. In most cases an empirical model can be scaled by channel width. The
scaling by channel length is avoided because of the device's nonlinear dependence on
channel length. Empirical models generally. though not always, require less computation
time for their evaluation than analytlic models. Empirical models store only the data

points. and. thus, they do not contain any process-dependent parameters.

3.2.3. Comparison Between Analytic and Empirical Models

There are advantages and disadvantages to using either an analytic or an empirical
MOS transistor model. A comparison of MOS transistor models is generally based upon
the accuracy of the models and the time required to evaluate their model equations. A
further concern when considering empirical models is the storage and access of the usu-
ally large amount of empirical data necessary for each model. There are additional con-
cerns when considering transistor models f;.)r use with the MMAP. Both the sensitivity

of the model relative to changes in process technology. and the adaptation of the model

47

to the architecture of the MMAP must be considered.

3.2.3.1. Accuracy, Speed and Storage

Analytical and empirical models can offer comparable accuracy. The accuracy of an
analytical model is primarily dependent on the complexity of the model equations. and
the accuracy of the empirical model is primarily dependent on the number of data points

and the order of the interpolation method.

Model accuracy and model-evaluation speed are closely coupled for analytic transis- '
tor models. A'nalytic models become more complicated as they are changed to improve
their accuracy. An increase in the compleiity of the transistor model results in an
increase in their evalu;'tion time. For example. [BNP83] shows the typical evaluation
time of the SPICE Level-2 model 1o be 16 times that of the SPICE Level-1 model. The
amount of data stored also increases with increased model complexity. but the amount of

storage is minimal when compared 10 an empirical model.

The aécuracy of an empirical model is dependent on the number of data points
stored and the type of interpolation method used. An increase in either thé order of the
interpolation method- or the number of data points can increase the accuracy of the
empirical model. More storage is required as the number of data points increases. Also,

more storage may be required as the order of the interpolation method increases.

The accuracy of the derivatives of current with respect to voltage is also of concern.
[TsM84] demonstrated that large errors in output conductance of the MOS transistor.
Ggs. can occur even when the current is accurate. The analytic mode] parameters can be
calculated such that accuracy of both current and output conductance are optimized

[DARSS5). Empirical models. in general. do not directly address derivative accuracy.

48

3.2.3.2. Dependence on Process Technology

Analytic transistor models are revised to include physical effects that become prom-
inent as the integrated-circuit process changes. Analytical models augmented with
empirical terms are less effected by the changes since their empirical components provide
them with more degrees of freedom. ldeally. empirical models depend only on the
transistor data. The form of the empirical model does not change. only the new device

data must be obtained.

3.2.3.3. Minimizing the Number of Functions and Control Branches

Empirical models require fewer types of numerical functions in their evaluation in
comparison to analytic models. Both analytic and empirical models require floating-point
addition. subtraction. multiplication and division. but analytic models may also require

logarithm, exponential and square-root calculation.

Many empirical models can be executed without any branching. since their evalua-
tion is independent of the transistor's operating region. For example. the empirical
models described in [SSM82] and [BVS83] can be evaluated without any branching. As
described p}eviously and illustrated by Figure 3.1, analytic models use separate equa-

tions to represent the transistor’s operation in each of the transistor’'s operating regions.

3.3. Model Choice

Both analytic and empirical models can accurately represent the Iy.. For an analytic
model. the model equations can be improved to better represent the device output charac-
teristics. The improved analytic-model equations are usually more complex. resulting in
an increase in their computation time. The accuracy of an empirical model can be
improved by increasing the density of data points. By increasing the density of data
" points the error from the interpolation is reduced. but the amount of data stored is

increased.

49

The use of empirical models with electrical circuit simulators has been hindered
because of the large amount of memory used in storing the model data. Electrical
circuit-simulation programs operating on computers with physical memory-size and
address-size constraints are unable to use empirical models because of their large storage
requirements. Even computers supporting a large virtual-address space and cache
memory are hindered. In the normally "tight-looped” model evaluation. the evaluation
may be slowed down by repeated memory accesses since the data for all the empirical
models used may not fit concurrently in the computer’s cache memory; As described in
Chapter 2. the model data is stored in the MMAP during the simulation. and thus the

system using the MMAP is not hindered by the empirical model data storage.

Empirical MOS transistor models are generally better adapted for an architecture
specifically designed for MOS transistor model evaluation. The empirical model is less
sensitive 10' changes in process technology. requires fewer types of arithmetic and logic
operations, and can operate without the execution of conditional branches. The large
amount of data that must be stored for an empirical model does not tax the ilost proces-

sor and is therefore no longer a primary concern.

50
CHAPTER 4
Empirical MOS-Transistor Model Based on

Piecewise-Cubic Polynomials

This chapter describes the empirical model that has been developed for use with the
MOS-Model Attached Processor(MMAP). Chapter 3 provides an overview of various
MOS transistor models. concluding that an empirical model is a suitable choice for the
MMAP. The empirical model described in this chapter is based on piecewise-cubic poly-
nomials. This model meets the requirements of the numerical methods used in circuit-
simulation programs, while accurately representing the ‘transistor’'s current and conduc-
tances. In addition, the empirical model is evaluated without conditional branching and

uses only floating-point addition. subtraction, multiplication and division.

Some first-order MOS transistor characteristics. which have been used in the deriva-
tion of the empirical model, are first described. The empirical model is then described.
Several practical considerations that must be considered before the model can be used
with a circuit-simulation program are described. Finally, several examples of the MOS-

transistor model are presented.

4.1. First-Order MOS-Transistor Dependences

The empirical representation of the MOS transistor exploits the first-order behavior
of the transistor. The first-order device behavior can be used both to reduce the amount
of data stored and to simplify the interpolation method. This section presents the first-
order behavior of I and the conductances, Gas and Gy The application of this first-
order MOS transistor behavior to the different interpolation methods is described in Sec-

tion 4.2 of this chapter.

51

4.1.1. The Dependence of I, on Vy,

As given in Chapter 1. Iy is a function of the Vas. Vgs and Vg, voltages.
. lds = Ids(Vds.VgsoV;b) (4-1)

Of the three terminal voltages. the Iy is most " weakly" dependent on the V. To a first
order, Vy, affects only the Threshold Voltage. V,, and changes in V, can. to a first order,

be represented as a change in V.

This dependence has been used (o reduce the amount of empirical data stored for

each model [New78] [SSM82] [Bur84] [SSM85). [Bur84] represented lys as
Lis = (Vs Vg) ' (4.2)

The effective gate-to-source voltage. Vi, includes the weak dependence of the
transistor's current on V. As shown in Chapter 1. the Threshold Voliage is the only
term in the Shichman-Hodges equations dependent on the Vg, The quantity Vg is

defined as

Vese = Vs =V (Vi) (4.3)

4.1.2. The Dependence of I;; on V4, and Vi,

The behavior of the I;, is dependent on the transistor’s operating region. Typical Ias
vs. Vgs and Iy vs. Vi curves are given in Figure 41 With respect to Vg, Iys displays a
nonlinear behavior when the MOS transistor is operating in the ohmic region, and a linear
behavior when the'MOS transistor is operating in the saturation region. With respect 10
Vs 14s displays a linear behavior when the MOS transistor is operating in the ohmic
region, and a nonlinear behavior when the MOS transistor is operating in the saturation

region. The behavior of Iy is summarized in Table 4.1.

Behavior of lgs
Differential Voltage Ohmic Saturation
Vg, Nonlinear Linear
Ve Linear Nonlinear
Table 4.1

52

This characteristic behavior has been exploited in many empirical transistor models

[New78][Bur8§4][Sub85]. The form of order of the interpolation method used is depen-

dent on the operating region: For example, in the saturation region only linear interpola-

tion of Iy in Vg4 is needed. but in the ohmic region a higher-order interpolation and/or a

more dense storage of data is required to accurately model the device.

53

Vds

Vs

las vs. Vs

Figure 4.1

54

4.1.3. First-Order Behavior of G4, and Gy,

The first-order behavior of the conductances. Gys and Gy, can be derived from the

Shichman-Hodges equations. Ggs and G for a device in the saturation region are

C
Gds = A ‘“—2'01 -\X‘ (Vgs 1)2 . (44)
w

In the ohmic region. Gg4s and Gy are

Gor = 1t Cox 2 (V3 =Vy =Veu) (1 # AVig) + A Ve (Vps =Vi = ~ZEy. we

Ggs = 1 Cox .v]_i Ve (1 +A V). (4.7)

In the saturation region Gy is independent of Vg and displays a quadratic depen-
dence on V,,, and in the ohmic region Ggs displays a quadratic dependence on V4 and a

linear dependence on V. In general,
A<<1, (4.8)

and. with this approximation. Gy displays a linear dependence on both Vs and Vi for

the device operating in the ohmic region. The behavior of Gy is summarized in Tables

4.2a and 4.2b.
Behavior of Gy,
Differential Voltage Ohmic Saturation
Vas Quadratic | Constant
Ve Linear | Quadratic’
Table 4.2a

Behavior of Ggs A << 1

{ Differential Voltage Ohmic Saturation
Vg Linear Constant
Vs Linear | Quadratic!

Table 4.2b

(9]
‘n

In the saturation region G displays a linear dependence on both Vgs and Vi, and in
the ohmic region G, displays a quadratic dependence on Vgs and is independence of V..
Using the approximation given by (4.8). G,; displays only a linear dependence on Vg in
the saturation region. and a linear dependence on Vg, in the ohmic region. The behavior

of Gg is summarized in Tables 4.3a and 4.3b.

Behavior of G,
Differential Voltage Ohmic Saturation
' Vg Quadratic Constant
Voo Constant Quadratic
Table 4.3a
Behavior of G, A << 1
Differential Voliage Ohmic Saturation
Vg Linear Constant
Vs Constant Linear
Table 4.3b

4.2. Description of the Empirical MOS Model

This section describes the empirical model that has been developed for use with the
MMAP. The description is of an N-channel device. The expansion of the model to P--
.channel devices is presented in Section 4.3. An overview of the empirical method is first
given. The representation of the one-dimensional lys curves is then given. Next. the gen-
eration of the family of Iy curves is presented. Two interpolation metﬂods. linear and
cubic, are then described. Finally. the function x:epreseming the dependence of Igs on Vg
is presented. Several examples of the model described in this section are given in Section

4.4.

}This behavior of this derivative is observed 10 be nearly linear for short-channel transistors operating in
the saturation region [May86).

56

4.2.1. Overview of the Empirical Model

As described in Chapter 1. the evaluation of the transistor model is required in
circuit-simulation programs. The model evaluation provides the values of lus. Gas. Ggs
and G;, for given Vg4, Vs and Vg, terminal voliages. The current and conductances can

be represented as functions of the three terminal voliages. where

L = Fi, (VasVgaVes) . (4.9)
Gas = Fo,, (Vas.Vgs.Va) . - (4.10)
Gg = Fo,, (VasVirVas) . (4.11)
Gy = Fg, (Va5 Vs Vao) . (4.12)

The basis for the empirical model is 2 families of Iy curves. similar to those illus-
trated in Figure 4.1. One family represents l as a function of Vgs. where each curve is
for a constant value of V. The other family represents lys as a function of V. where
each curve is for a constant value of V4. Both families are derived for a constant value

of V,b.

During circuit simulation. operating points arise which do not coincide with either
of the two families of curves. The values of current and conductances are calculated by
interpolating between curves which bound the operating point. The value of G;;, and the
dependence of Iy;. Ggs and Gy on Vi, are accounted for by the introduction of Vis. as
previously described in Section 4.1. Vi is the actual Vi, altered to include a dependence

on V. The interpolation is performed for Vo = V.

4.2.2. Piecewise-Cubic Polynomial Equations

The use of piecewise-cubic polynomials to represent the one-dimensional Iy curves
is presented in this section.

A single, one-dimensional Iy curve is represented by a piecewise-cubic. polynomial
equation. The curves are of either Iy as a function of Vg, for a constant Vg or lgs as a

function of Vs for constant Vys. For example. Iss as a function of Vg, for a constant Vi,

is
lds = fk(Vd,) . Vgs = Vgsk . (4.13)

The function f; is valid over the range [Vas1.Vas,] and is composed of several cubic poly-

nomials. each of which is valid over a unique part of the range.

I = Pe1(Vas) . Vasy € Vas < Vas2 (4.14)
<

= pe2(Vas) . Vas2

= pey-1{Vas) . Vasie1 € Vae < Vg

The cubic polynomial is of the form

Pe;= 3j+ by 8Vas + ¢ (8Vys)P + d; (8V4s) . - (4.15)
where |

8Vas = Vg —Vasj. ' (4.16)

The voltages at which the discrete values of lgs and Gg4s are known, such as Vg are

referred to as measured voltages®>. The polynomial's coefficients. a;. b;. cj. and d; can be
calculated from the values of I and Gg, at the two end points of the polynomial. The

coefficients calculated from the values of currents and conductances at the endpoints are

a; = lds(vdsj) . . . (4.17)
bj = Gds(vds j) . (4.18)
I“(Vd, i+ 1) —lds(vds i)
3 =2 Gge(Vgs i) =Gas(Vs ;
;= Vas 41 —Vas aVar) =Gaal Vs jo) (4.19)
;=

Vasj+1=Vasj

2The term measured voltages applies 10 both drain-10-source and gate-to-source voltages.

58

as(Vas o 1) —las(Vas j)
\,dsj“' 1 —\"dsj (4.20)
(Vas o1 =Vas)»*

Gas(Vas) + Gas(Vas j+ 1) =2

dj=

where lg(Vys ;) and Ggi(Vs ;) are the current and derivative at Vs j» and las(Vgs j+1) and

Gas(Vs j+]) are the current and derivative at Vs j41-

The cubic polynomial given by Equation (4.15) is continuous with continuous
derivatives. At the boundary between two adjacent cubic polynomials. the value of Las
and G, for both polynomials are the same, and their values are equal to the discrete data
at the measured voltages used to calculate the polynomial’s coefficients. For example, the

polynomial py ; evaluated at the point Vg is

Px {Vas) = Tas(Vas)) . (4.21)
which is equal to the polynomial py j-) evaluated at Vs

Pr ~1(Vas) = Las(Vas) . | (4.22)

Since the cubic polynomials are continuous and the boundary of adjacent polynomials

uses the same data point. the piecewise-cubic equation given by (4.13) is continuous.

The derivative of the piecewise-cubic function is represented by the derivative of

the cubic polynomial over the specific range. For example. the derivative of (4.13) is

d
The function TV% is valid over the range [Vgs1.Vasj] and is composed of the derivatives

of the cubic-polynomial equations. each of which is valid for a specific range.

59

d py
Ges = —tl(Ve). Vasy € Ve < Vasa. (4.24)
ava

d
= sz(vds)' Vas2 € Vas < Vasa
d Vg

d -
Pr L(Vas) . Vasi-1 € Vo < Vasy
d Vg)

The derivative of the cubic polynomial is a quadratic polynomial of the form

d pxj

where 8V, and the coefficients are given in Equations (4.16) through (4.20). At the
boundary between two adjacent quadratic polynomials. given by (4.25). the value of Ggs

is the same for both polynomials, and that value is equal 1o the value of the discrete

: 4 .
derivative for that voltage. For example, the quadratic 3.:."_’. evaluated at the point Vg
ds

is

d .

%—(V“ j) = Gd,(Vd, j) . (4.26)
and 2Pt

V,,‘ evaluated at Vg is

d px -1

Since the quadratic polynomials are continuous. and the value of two adjacent polynomi-
als at their common boundary is the same value. the piecewise-cubic equation given by

(4.13) is continuous in the first derivative.

An example of a single. piecewise-cubic polynomial is illustrated in Figure 4.2.

There are 5 data points. and the piecewise function is composed of 4 cubic polynomials as

60

shown.

(V) Separate Polynomial Equations

e

Piecewise-Cubic Polynomial
Figure 4.2

3
§
ot
-

The discrete values of Igg can be obtained from actual device measurements. the
results of a device simulation or the solution of analytic model equations [Bur84]. The
values of the derivatives at the measured data points. Gas (Gys for curves of Iy, as a func-
tion of V), are calculated using the Enhanced-Monotonic. Piecewise-Cubic Interpolation
method (EMPCI)®. The values of derivatives are calculated only once and stored for
further use.

The EMPCI method is similar to a cubic spline in that piecewise-cubic polynomials

are fitted 1o data points. The coefficients of the polynomials comprising the cubic spline

3The EMPCI method is presented in detail in Appendix D.

61

are evaluated based on conditions sel on the piecewise-cubic function. For a cubic spline.
the piecewise-cubic function and its first two derivatives are evérywhere continuous. and
the set of derivatives at the data points can be represeniéd by a system of n independent
equations in 2 unknown derivatives. The solution of the system of equations produces
unique values of derivatives. The spline provides a-smooth fit to the data. however the

cubic spline fit 10 monotone data is not necessarily monotonic.

The EMPCI] method is limitted to monotonic data. The EMPCl-derived. piecewise-
cubic function is continuous with continuous first derivative. However. unlike the spline
method. the EMPCI method does not constrain the second derivative 10 be continuous.
As a result. the system of equations defining the discrete derivatives is underdetermined.
resulting in an infinite number of possible values for them. The derivative values calcu-
lated by using the EMPCI method ensure that the piecewise-cubic polynomial is mono-
tonic. But. guaranteeing the monotonic behaQior of 14, may not accurately represent the
behavior of the derivative(Ggys and Gg)- As illustrated by Figure 4.3, even though the
piecewise-cubic polynomial fit through the monotonic data is monotone. the behavior of
the derivative does not resemble the discrete data. The incremental slopes of the discrete
data are increasing, but the second derivative of the piecewise-cubic function is not
always positive. The EMPCI method. in addition to- guaranieeing monotonic behavior,
also ensures that the shape of the piecewise-cubic polynomial’s derivative is correct rela-

tive 10 the discrete data.

The EMPCI method is developed from the Monotone Piecewise Cubic
Interpolation[FrC80] method developed by Fritsch et al.. Shima et al. [SYD83] applied
Monotone Piecewise Cubic Interpolation to the interpolation of device simulator data for

generating data points for use with their 1able look-up empirical model [ssm82].

62

f(x)

Inconsistant
Derivative

»

Data
Pointe

Monotone Fit with Inconsistent Derivative
Figure 4.3 .

4.2.3. Family of Piecewise-Cubic Polynomial Equations

A set of measured data points is used to generate the family of I4; curves, similar to
those illustrated in Figure 4.1, where each curve is represented by a piecewise-cubic poly-
nomial. The curves representing Iy as a function of Vs and I4s as a function of Vg are
generated from the same measured data. The Vy, is constant. The derivatives at the data
points for the piecewise-cubic polynomials are derived from using the EMPCI method.
The piecewise-cubic polynomials of I4(Vgas) intersect the piecewise-cubic polynomials of
Ids(Vgs) at the data points. The values of ly. Gas and G, are stored for each data point,

where Ggs and G, are the values of derivatives at the endpoints of the cubic polynomials.

As described earlier. the current and partial derivatives at the point (Vgs. Vi) are

calculated by interpolating between the l4, curves, where each I4s curve is represented by

63

piecewise-cubic polynomial. As illustrated in Figure 4.4. four piecewise-cubic polynomi-

als.
ldS = fk(Vd,) . for Vg, = Vgsk ,
Ids = fg.u(vds) . for Vg, = Vgs k+3 ¢
la = g,(Vg,) . for Vds = Vdsj .

les = gi1(Vgs) . for Vag = Vg oy .
bound the point (Vgs. Vgo). The value of Vs is
Vas; € Vas < Vasjnr
and the value of Vi is

(4.28)
(4.29)
(4.30)

(4.31)

(4.32)

(4.33)

A single cubic polynomial from each piecewise-cubic polynomial form a boundary about

the point. The four polynomials are calculated from the values of las. Gas and Gy at

(Vasj Vesx): (Vas e 1. Vi) (Vs jo Visrs 1) and (Vg 4 1. Vgsx+ 1). The values of current

and partial derivatives are calculated by interpolating between the bounding polynomi-

als, as shown in Figure 4.4.

lds = g; (Ugsﬁ ds = g, (Ugs)
Ids
interpolate
Point ids fk+1(Uds)

N\

Ids = f, (Uds)

Ugsk
‘//// ‘//// Uds
/' Uds , Uds j+1
Ugs

Interpolation Between Piecewise-Cubic Polynomials

Figure 4.4

64

65

4.2.4. Linear Interpolation

l4s. Ggs and Gy can be calculated by linearly interpolating between adjacent
piecewise-cubic equations of l4s. As given by Equations (4.32) and (4.33). Vs and Vg are
.bounded by the nearest measured voltages. The values of lys. Ggs and Ggs at (Vs Vssk).
(Vasj+ 1. Visi): (Vgsj Vgses1) and (Vasj+ 1 Vese 1) are used to calculate the coefficients
for the two cubic polynomials of lus = f(V4) and the two cubic polynomials of
ld; = g(Vg). The function representing lg. Which is derived from the linear interpola-
tion of piecewise-cubic polynomials, maintains the requirements of monotonicity and
derivative behavior that are ensured by the piecewise-cubic polynomials. In addition. las.

Ggys and Gy are continuous.

Calc'ulation.of las
I, can be calculated by linearly interpolating between the two polynomials of
Igs = f(Vgs). which is illustrated by Figure 4.5a. First. the values of I4s(Vas-Vgsx) and
'lds(Vds.st ¢+ 1) are calculated. The value of 1y is then calculated by linearly interpolat-
ing in Vs, yielding
la(VasVe) = 1aVarVen) + UaVanVesna) -1,,«v,,.v,..nv1‘£_;‘{.f—. (4.39)
; g X
In a similar manner, I can also be calculated by linearly interpolating between the two
polynomials of las = (V). Which is illustrated by Figure 4.5b. In this case. the values
of Lys(Vs Vgs) and 16:(Vas j+ 1.Vge) are first calculated. The value of 1y is then calculated
by linearly interpolating in V5. producing
I(VaeVe) = laVarpVed + (aVasp 1Ver) = 1V Ves))VT&'Y"‘;:T (4.35)
th (4.34) and (4.35) can be used to calculate las. .Since the cubic polynomials are
monotonic, linear interpolation between them results in a monotonic reprsemauon of
l4. As given in Table 4.1, linear interpolation of current in Vg, is accurate only if the

device is in the saturation region. and linear interpolation in Vg is accurate only in the

ohmic region. Therefore. one representation does not have an advantage over the other.

ids

ids

Ids = g, (ugs ds = 8 jos (Ugs)

Linear

Interpolation Ids = f,,, (Uds)

Ids = f, (Uds)

/S /"

Linear Interpolation
Figure 4.5a

Ids = g, (Ugs ds = g j,, (ugs)

Linear

Interpolation Ids = f_,, (Uds)

tds = f, (Uds)

/L

Ude ' N‘j“
Linear Interpolation
Figure 4.5b

67

Continuity of Iy

l4s is required to be continuous for all values of Vgs and Vg The equatibns
representing l4s are continuous. but they are only valid over the range specified by (4.32)
and (4.33). The border between two adjacent regions is the cubic polynomial. Since the

cubic polynomials are continuous. ly; is continuous for all values of Vysand V.

Calculation of Gy and Ggs

Gy is calculated by linearly interpolating between the derivatives of the two poly-
nomials of Iy = f(Vgs). First. the values of Gas(Vas.Vgs i) and Gas(Vas.Vgs 4 1) are calcu-

lated. The value of Gy is then calculated by linearly interpolating in V.. resulting in

Ve =V

G“(V‘,,V") = Gd,(v“,v‘,k) + (Gd,(v‘,,ve,l.. D - G‘,(vd,.vp;))-v;—:-'::‘%:‘—l- (4-36)
The first-order behavior of Ggs is given in Table 4.2. Gg, is shown to vary quadratically*
with respect to Vg when the device is operating in saturation and is otherwise linear.
Linear interpolation of Ggs. as given by (4.36). does not represent the quadratic depen-

dence of Gy on V.

G;; is calculated by linearly interpolating between the derivatives of the two poly-
nomials of lgs = f(Vi). First. the values of Gps(Vas Vi) and Gp(Vas o 1.Vys) are calcu-

lated. The value of G, is then calculated by linearly interpolating in Vg, resulting in
Gp(VaeVe) = Gp(VaspVe) + (GeVas p1Ve) — c,,(v,,,,v,,))vzil‘_i‘é-‘— (4.37)
. fe1 " Vs
The first-order behavior of Gy is given in Table 4.3. Gy, is shown to be only linearly
dependent on V4. Linear interpolation of G, as given by (4.37). does represent the

behavior of Gg..

“Near linear dependence is observed in small-channel devices (May86).

68

Continuity of Gy and Gy

Gys and Gy are continuous for all Vg and V.. Equations (4.36) and (4.37) are con-
linuous. but they are only valid over the range specified by Equations (4.32) and (4.33).
The border between two adjacent regions is the cubic polynomial. Since the first deriva-
tives of the cubic polynomials are continuous.v Gus and Gy are continuous for all values

of Vgsand V.

Summary of Linear Interpolation

Linear interpolation is a straightforward method of representing the MOS
transistor’s current and partial derivatives as functions of V4; and Vg. The method is
executed without any conditional branches. The current obtained from linear interpola-
tion is monotonic, but linear interpolation is not' always accurate (refer to Table 4.1).

The derivatives produced by linear interpolation are continuous.

69

4.2.5. Cubic Interpolation

The use of cubic interpolation between piecewise-cubic polynomials is described in

this section.

Calculation of Iy

A cubic polynomial. instead of a linear equation, may be used to interpolate
between adjacent cubic polynomials. The cubic interpolation. compared to linear interpo-
lation. can betier represent the nonlinear behavior of the MOS transistor. Figure 4.6 dep-
icts the two possible ways to perform the cubic interpolation between adjacent cubic
polynomials. The first case is depicted in Figure 4.6a. In this case the two polynomials
representing lgs as a f unction of V,, for a constant value of Vs are first solved. The two
points are the end points of a cubic polynomial in Vs which interpolates the value of I4s.
The second case is depicted in i:igure 4.6b; Here the two polynomials representing lgsas a
function of Vgs for a constant Vg are first solved. The two points are the end points of a

cubic polynomial in Vg Which interpolates the value of lqs.

A cubic polynomial interpolating between the two data points-also requires the
values of the deriv;tives at the end points. For the interpolation illustrated in Figure
4.6a, the values of Ggs at the end points are required. and for the interpolation illustrated
in Figure 4.6b, the values of Gy at the end points are required. The information in table
4.3 showed that Gy is. 10 a first order. at most linearly dependent on V4. As previously
stated. representing G, using linear interpolation of Gy in Vg does represent the

behavior of G,,. and. therefore. the interpolation depicted in Figure 4.6b is used.

Cemecw g

Ids Ids = g; (Ugs ds = g, (Ugs)_

Cubic

Interpolat ion Ids = f,,, (Uds)

lds = f, (Vds)

Ugs / / Uds

/ Uds, Udeyes
u.9° Cubic Interpolation

Figure 4.6a
Ids Ids = g; (Ugs ds = 9 jos (ugs)
Cubic
Interpolation Ids = f,,, (Uds)
Ids = f, (Uds)
Ugo ey

Uge

* / / Uds

/ Uds, Udeje1
Ugs Cubic Interpolation

Figure 4.6b

70

71

Assume that the values for Vg4; and Vg are in the subintervals [Vgs » Vs j+ 1) and
[Vgs x-Vgsk+ 1) The values for las. Gas and Gys are known for the data points (Vs j-Vesk)-
(Vas . Vs ks ,); (Vasj+ 1-Vgsk) and (Vg ju 1.Vgs ks 1). and. they define the polynomials that
border the region to be interpolated. As demonstrated in Figure 4.7, 14 and G are first
obtained at (Vgs.Vgsi) and (Vs Visge1)- The values for Iy are obtained by solving the

cubic polynomials at Vg. The values for G are calculated by linear interpolation.

-v
CulVasVerr) = GelVaryVess) + GoVarpo 1V = GeelVasV ,,.))v_——‘{fi- (4.38)

Ggs(vds'vgs ke1) = ng(vds jr¥gske Y (4.39)

. v‘ \d
+ (Gpdl Vg o 1 Veska 1 = Ges(Vas o Vos e 1”? s - 1 C”
I

The cubic polynomial representing Iq; is

Is = Co+ Cy8Vy + Cr V2 + C3 8V, (4.40)
where

8V = Vs =Vier (4.41)

_The polynomial coefficients are calculated using the values of I;; and G at the two end-

points, and they are

Co(vd,) = lds(Vd,.Vgs k)"' (442)

Ci(Vgs) = Ggs(Vds.V,,). (4.43)

3]d,(Vds.Vg, K+ 1) -I“(V“.Vgs k)
(AV)

GBS(VdS'VgS k) - Ggs(\’dS-ng k+ l)
A Vp A Vgs ’

Cx(Vas) (4.44)

72

Ggs(vds'\".gs k) Ggs(Vds-vgv k+ l) .
| = id g
Ci(Vys) AV + iV, (4.45)
-2 lds(\"ds'vgs K+ l) _lﬂs(vds-vgs k)
(AV) '
(4.46)

Avgs = Vgsk+ 1 —Vgsk .

Ids
(Uds,VUgs,)
(Ud’]oi‘ ugako)
(Uds j,!Jgskﬂ)

{Uds,Ugs).
®

' 6‘—'——". (uds, _,,VUgs,)

(Vds, Ugs,) e

(Uds |, Ugs ®
/ Uds
Ugs
Figure 4.7

Monotonic Behavior of 14

The condition for the interpolating function to be monotonic is

8%las

_ % . 4.47
Vv > 0 ()

The second derivative is expanded. yielding a quadratic function in Vg,

73

dC| dC-_:

8V, 4Gy 8V .
s Y iavs) + 3 g (5)

(AV, AV BV

> 0. (4.48)

For the interpolation 10 be monotonic. the above inequalilty must be true over the range

of Vu € [Vds j-vds i+ 1]. and Vgs € [Vgs k'\7gs k+ l]-

Continuity of I

The interpolating function representing lgs is continuous over Vg €[Vg jVas j+ N
and Vg € [Vigoi.Visre 1] The function evaluated at a boundary is the cubic polynomial
defining that boundary. Therefore. the cubic polynomial that defines the boundary
between adjacent areas also provides for a continuous functional representation of I4s

over all Vy;and V.

Calculation of of Gys and G

The partial derivatives are calculated directly from I4. The coefficients Co. C,. C;

and C; are functions of Vg only. Taking the partial derivative of 13, with respect 10 Vg

yields
_ 4G dC, dC; ., , dCs _ .,
The partial derivative of Iy With respect to V, is
G = Cy +2C 8V, +3C3 8V, (4.50)

The partial derivative functions are continuous over the range of V4 and V..

Gqs. represented by Equatibn (4.50). is continuous at all of the polynomial boun- -
daries. At the boundaries defined by constant Vg, Vg = Vg and Ves = Vispe1o Gys is
the derivative of the polynomial. At the boundaries defined by constant Vg, Vgs'= Vs j
or Vgs = Vysje1. the derivative is the linear intérpolation of the discx"ele values of Gy

which are used in the cubic interpolation.

74

Gg:. represented by Equation (4.49). is continuous only at the boundaries defined by
constant V,, where Gy is defined by the derivative of the polynomial. At the boundary

defined by constant Vg, Gy is not continuous. but differs by a constant.

Gy is calculated by linear interpolation. where Gg; is
Gas = W
ds - GdS(VdS’ng g) + (G“(Vd;.vzs k+]) - Gd;(vds-vgs k))—A—V'—'- (4-51)
8s

which is continuous over all voltage.

4.2.6. Modeling the Source-to-Bulk Voltage Dependence
The empirical interpolation methods described in this chapter represent Iqs as a
function of Vg4 and V for a constant value of Vg. This relationship can be written as

s = Fln((vdsov:g) . for Vg = Constant ., (4.52)

where Fy,, represents the interpolation of the piecewise-cubic polynomials. During circuit
simulation. operating points occur which do not coincide with (4.52). As previously
described. lys's dependence on Vy, is accounted for by augmenting the value of Vg A

general representation of the dependence on V is
Vge = Vs + Fy, (Veo.Vas)- (4.53)

The function Fy is dependent on Vg and Vy. Equation (4.52) is evaluated using

Vg = Vg As previously mentioned, V,, is the effective gate-to-source vohége and is

used in the calculation of l. Gas. Ggs and Gsp.
To represent the function Fy,. a cubic polynomial is defined for each measured
value of V.
Vgsej = Vg + Aj+ BjVy, + C, V3, + D; V3,,. for Vg = Vg, (4.54)

The coefficients A;, B;. C; and D; are solved using a least-squares[LaH74][Str76] fit of the

data. Vi, is calculated by a linear interpolation in V.

75

Vas = Vas

Vgse = stej + (Vgse +1 = Vgse j) (4.55)

Vasj+1 = Vs

Equation (4.52) evaluated at V4 = Vg4 Where Vgs, is a measured voliage. is the
piecewise-cubic equations of Iy as a function of Vi, for Vg = Vg5, The Iy can be writ-

ten as
ld.s = g,(st) . for Vds = VdSJ . (4.56)

where g; is the piecewise-cubic polynomial equation for Vg = Vg ;. Since Equation

(4.52) is evaluated at Vi = V.. Equation (4.56) is evaluated at Ves = Ve s

Iys = 8 Vgsep) . for Vg = V. (4.57)
Equation (4.57) can also be represented as

Ve = 87 (las) . for Vas = V. , (4.58)

where g™ is the inverse of function g. As given by Equation (4.9), 14 can be written in
terms of its three independent terminal voltages. Substituting Equation (4.9) into Equa-

tion (4.58) and setting Vg5 = Vs Vi j is

Visej = 87(Fi, (Vas Vs Vb)) - (4.59)
The combination of Equation (4.54) and Equation (4.59) is

Vg + A+ BV, +C V2, + D V3, = g (Fy, (Vo pVerVap)) . for Vg = Vg (4.60)

Equation (4.60) can then be used to solve for A;, B;. C;, and D;.. Given l; data for several
different combinations of Vg, and Vi at Vs = Vs j» the coefficients can be solved using a

least-squares fitting of data. For M combinations of V,s and Vj,, the matrix equation is

76

1 Vsbu stbu Vasbu

1 Va1 Vi Vil |A
5 + ~ (4.61)
C;

.. . . D,

1 Vom Viem Viem

Veso =8 (Fias(Vas ;- Vgs 0. Vsv o))
Vis1 =8 M(Fuas(Vas - Ves1- Vo 1))

]
(=

VS’ M -g-l(Fids(Vas j-vgs M- Vsb M))
Equation (4.61) is then in the form to solve for the coefficients. and must be applied for
all measured V..

The calculation of the partial derivatives include V.'s dependence on the

differential terminal voltages.

alds + alds avgse

.G _ .
“% W T W W (“62)
_ olas
a]ds avgse
Gy, = .64
° avgse avsb (4 6)

4.3. Empirical Model - Practical Considerations

Several practical consideﬁtions must be addressed before the empirical model can
be used with a circuit simulation program. The description of the empirical model given
in the previous section only addressed a2 N-channel MOS transistor with specific channel
dimensions. In this section, the modeling of P-channel enhancement transistors using the
empirical model is first described. Then. the scaling of currents and conductances of
model transistors with channel dimensions different from the stored model! is presented.
The "out-of-range” evaluation of a transistor operating point which is outside of the

limit defined by the families of curves is described next. The issue of numerical precision

77

necessary for the model evaluation is then presented. Finally. the data storage require-

ments for the polynomial-based model are summarized.

4.3.1. P-Channel Transistors

The description of the empirical model given in Section 4.2 is based on an n-channel
enhancemex.n transistor. P-channel transistors are evaluated in the same manner as N-
channel transistors. As a circuit device. the fwo transistor types operate the same. except
that the the signs of the Vg, the Vg, the Vg, and the Iy of the P-channel transistor are
opposite those of the N-channel transistor. For the P-channel transistor, the Vg4, is nega-

tive and the l4 becomes increasingly negative as the Vg becomes more negative.

The empirical data of the P-channel device are generated in the same manner as an
N-channel transistor by changing the sign of the ls. the Vg the Vi and the Vg from
the P-channel data to correspond to an N-channel transistor. The data are then stored as
if the P-channel transistor is an N-channel transistor. When a P-channel transistor is
evaluated, the signs of the voltages are changed and the evaluation continues as if it were
an N-channel device. The current and conductances calculaied correspond in sign to an
N-channel device. and the signs of the current and conductances are changed to represent

the P-channel transistor.

4.3.2. Scaling of Channel Dimensions

Data for an em]':irical MOS transistor model are derived from a MOS transistor with
specific channel dimensions. The data for several empirical models of different dimen-
sions are stored. To model transistors with channel dimensions that differ from those of
the measured measured device, the current and conductances are multiplied by the scale

factor S..

Ias = SeX Iy (4.65)
Gas = Sc X Ggs (4.66)

78

Ggs = Sc X Gy (4.67)

Gsb = Sc X Gsb (4.68)

The scaling of currents and derivatives in this manner is valid for variations in channel

width and. in some cases. for small changes in channel length.

4.3.3. Out-of-Range Evaluation

The family of piecewise-cubic polynomials used in both linear and cubic interpola-
tion represent the normal operating range of the transistor. However. a transistor
evaluation outside of the range defined by the polynomials may be required by the

circuit-simulation program. As shown in Figure 4.8, the two families of polynomials are

valid for
Vs min € Vi < Viasmax - (4.69)
vgs min < Vgs < vgx max- (4.70)

In this "out-of-range” case. one or both of the variables Vg and Vi, are outside of the
range defined by the cubic polynomials. The ®out-of-range” case is solved by calculating
the function at the nearest boundary point. Therefore. Vys and Vi, are represented by

the following two equations,

Vds = Min(Vd, maxe Max(Vd,.Vd, mm)) (4.71)

Ve = Min(Vgs max- Max(Vigs. Vs min)) (4.72)

and the same evaluation as is required in the "in-range” case is performed.

79

Ugs

Ugs .
Norsal
Range

Ugsain

Uds . Uds,_. Uds
Out-of-Range
Figure 4.8

4.3.4. Numerical Precision

Single p:;ecision and double precision are the two accepted floating-point word sizes.
As defined by the IEEE. the single-precision word size is 32 bits including a 24-bit
mantissa. and the double-precision word size is 64 bits including a 54-bit thantissa.
Double-precision operations require a greater amount of time to compute and/or more

hardware to implement compared to single precision.

The calculated value of l4; may include an error due to the finite precision of the

floating-point calculation. Iy can be written as
Iis = laso + 8las (4.73)

where 14, is the answer computed with infinite precision and 814, is the error due to the

inaccuracy of the mantissa as a result of the calculation. Provided the order in which the

80

calculation occurs does not change. the error is constant for the same inputs. 814 can
effect an electrical simulation program in two ways-as an error in the simulation results

and as a discontinuity in the representation of lg4.

81, can be directly reflected as an error in the simulation results. If the
linearized-circuit equations are calculated with infinite precision. the fraction of error in
the circuit variables is of the same order as the fraction of error in I4. But. 81y is gen-
erally a small fraction of thé actual value. A floating-point number whose mantissa is
accurate 1o only 12 bits still has less than 0.025% percent error. Based on this concern.

single-precision. floating-point arithmetic is adequate for computing) P
814 can produce a discontinuity in Iy at the boundaries of polynomials. Even
though the error due to the discontinuity is only a small fraction of the actual value. a
discontinuity in Ig can prohibit the circuit from being simulated. To illustrate the cause
- of the discontinuity. consider the example shown in Figure 4.9. The function is com-
posed of two cubic polynomials. po and p;. where
Po(x) = 2o + by (x =x¢) + co (x =%0)* + do (x -x0)P X £ x < x; (4.74)
and
pE)=a,+bE-x)+c;(x-xP2+dx-x,) 1 € x < 13 (4.75)
With infinite-precision calculation the composite function is continuous at x,. the boun-
dary between the two polynomials.

Po (x_l) =m (X;) = 33 (4.76)

With finite precision calculation. the piecewise function can be discontinuous at Xx;.
p1 (x;) remains equal 1o a,. but po (x,) contains an error due to the finite precision of its
computation. The piecewise function is then discontinuous at x;. As shown in Appendix

D. the piecewise-cubic function is always continuous provided
(x; —x%0) X (x, -xo)“l =1 . (4.77)

is exact. By applying this to the calculation of lys. the measured values of Vgs and Vg

81

are restricted such that

(Vas o1 =Vas) X (Vs o1 =Vas ,)‘l =1 (4.78)
and

(Vgsear —Vgsi) X (Vgsgar =Vgsi)™ = 1 (4.79)

are exact. If Equations (4.78) and (4.79) are met using single-precision calculation. lus

can be calculated using only single-precision. floating-point arithmetic.

Data Point

Voo

Py e
POK \
Error

Piecewise-Cubic Polynomial Discontinuity
Figure 4.9 .

4.3.5. Data Storage

The amount of data that is stored. for each empirical model is dependent on the
number of measured voltages. lg;. Ggs and G,; must be stored for all of the combinations
of V4 and V, measured voltages. The V,,-dependence coefficients are also stored. where
there are 4 coefficients for each measured Vg4, voltage. In addition, the measured voltages
must also be stored. If J is equal to the number of Vg measured voltages. and K is equal

10 the number of V,; measured voltages. then the amount of data that must be stored is

82

equal to
"3JK + 5J) + K. . (4.80)

Typically J and K will both be greater than 10, and thus the first term in Equation

(4.80) dominates. For J = K = 10, 360 floating-point numbers must be stored.

There are only two division operations required by the transistor evaluation for
both interpolation methods. In both cases. the inverse of the difference between adjacent

measured voltages is calculated. These values have been represented as

1

— 4.81
Vas o1 = Vas j (4.81)

and

1

—_— 4.82
vgs k+1 "Vgs Kk ()

in the preceding discussions. For both general-purpose processing units and specifically
designed floating-point units, floating-point division typically requires a larger amount of
computation time in comparison to floating-point addition. subtraction and multiplica-
tion [Man82). For example. the Intel 8087 Numeric Data Processor chip requires 41us to
perform a floating-point di:vision. compared to 28us for multiplication and 18us for addi-

tion [Sta83], and the Cray-1 supercomputer requires 14 clocit cycles to perform an inver-
sion®, compared to 7 cycles for a multiplication and 6 for an addition.

The inverse of the difference between adjacent measured voltages is precalculated
and stored with the other transistor model information instead of being calculated dur-
ing the transistor evaluation. An additional J-1 and K-1 terms are stored. and including

these terms. the amount of data stored is

3JK +6J + 2K -2. (4.83)

SThe Cray-1 does not directly support division. The Cray-1 inverts the divisor and then multiplies that
result with the dividend [SBN82]). :

83

The first tern; still remains dominant. For use with the MMAP. the primary advantage
is not speed. since there are only two division operations. The primary advantage is that
* the MMAP does not need 10 support the divisidﬁ operation, thus simplifying the design
of the MMAP. For J = K = 10, the amount of storage increases by 5% to 378 floating-

point numbers.

4.4. Examples

Three examples of the empirical model are given in this section. The operating-
point data for the first two examples are generated from the Shichman-Hodges and SPICE
Level-2 transistor model respectively. The data for the third example is from a meas-

ured device.

The empirical mode] parameters are generated by the POLY_MOS program. which is
listed in Appendix E. 'i'he input to the program are the discrete current data. The pro;
gram calculates the values of Ggs and Ggs to produce the family of curves. and the pro-
gram also calculates the Vy,-dependence parameters. The data for the three examples are

given in Appendix F.

4.4.1. Example 1: Data Derived from the Shichman-Hodges Model

The Iy current data used in this example are generated from the Shichman-

Hodges(SH) model. The model parameters and current data are listed in Appendix F.

The two families of I-V curves are shown in Figures 4.10 and 4.11. In both figures.
the solid lines are the piecewise-cubic polynomials. and the dotted lines are generated
from the SH model. The family of curves represented by piecewise-cubic polynomials
coincides with the corresponding SH curves. The difference is only visible for the curve

of 14 as a function of Vg, for Vi, = 6.0.

Linear interpolation between two curves of constant Vg, is given in Figure 4.12.

The four curves. Vg = 3.6, Vs = 3.7, Vs = 3.8, and Vg = 3.9, are derived by linearly

84

imérpolating between the piecewise-cubic curves at Vy; = 3.5 and Vi = 4.0. The dotted
lines are the output of the SH model. The difference between the SH curves and the
linearly interpolated curves is a result of the linear interpolation. The linear interpola-
tion between curves of constant V, provides for only a linear dependence on V. while.
as given by the SH equations, the SH model is quadratically dependent on Vg in the

saturation region.

Figure 4.13 displays the results of applying cubic interpolation between the curves,
\’35 = 3.5 and V= 4.0. The cubic interpolation reproduces ghe behavior of the SH
_ model, with the only variation evident at the border between the saturation and ohmic
regions of operation. The agreement between the result of cubic interpolation and the SH
model is expected since the basis of the cubic-interpolation method is derived from first-

order device behavior represented by the SH equations.

4.4.2. Example 2 Data Derived from the SPICE Level-2 Model

The ly current data used in this example is generated from the SPICE Level-2

model, and the model parameters and current data are listed in Appendix F.

The two families of I-V curves are shown in Figures 4.14 and 4.15. In both figures.
the solid lines are the piecewise-cubic polynomials. and the dotted lines are generated
from the Level-2 model. The family of curves represented by piecewise-cubic polynomi-

als coincide with the corresponding Level-2 curves.

Linear interpolation betwee.n two curves of constant V. is given in Figure 4.16.
The four curves. Vg = 3.6, Vi = 3.7, Vi = 3.8, and Vs = 3.9, are derived by linearly
interpolating between the piecewise-cubic curves at Vg = 3.5 and Vi = 4.0. The dotted
lines are the output of the Level-2 model. As with the SH model given in the previous
example, the difference between the SH curves and the linearly 'interpolated curves is a
result of the linear interpolation. The linear interpolation between curves of constant V,

provides for only a linear dependence on V. while the i.evel-z equations demonstrate a

85

nonlinear (quadratic to a first order) variation in l4; due to varying V in the satura-

tion region.

Figure 4.17 displays the results of applying cubic interpolation between the curves.
Vgs = 3.5 and Vo = 4.0. The cubic interpolation reproduces the behavior of the Level-2
model, with the only variation evident at the border between the saturation and ohmic

regions of operation.

4.4.3. Example 3: Data Generated from Device Measurement

The Iy current data used in this example is from measurement of an N-channel
MOS transistor with a channel width of 1.4 microns and a length of 1.4 microns [Dec84].

The 14, data for this example are listed in Appendix F.

The application of linear interpolation to the measured data is illustrated in Figure
4.18, and the application of cubic interpolation to the measured data is illustrated in f’ig-
ure 4.19. The curves for V= 2.0, 3.0 and 5.0 volts comprise the family of piecewise-
cubic polynomial curves of Iy as a function of Vg4 The fourth curve. Ves = 4.0, is

derived from interpolating between the curves Vg = 3.0and Vg = 5.0.

86

Ips (A)

100 |-

o
'
et
rt
rg
et
x

— Ve &b

Ypeo 08

Yoo 08

wo

Yoo

— o 18

Example 1: Family of las vs. Vas
Figure 4.10

10 Vs (V)

87

300 ¥ ¥ L
lN(M) W © B
"200}- -
e o 0000
Vs © 3000
Y © 0000
100~ -
o © 189
Yo @ OV D
#
4
W o 0N
s ¢ 0100
1 |
¢ 2 4 6 Ves (V)

- Example 1: Family of Iy vs. Vg Curves
Figure 4.11

88

130 | '
Ips (uA) -
we 0
100} =
e o e . .. 3
et -
!
/
y
1
]
l 1
| | v Vos (V)

Example 1: Linear Interpolation - lgs vs. Vas
Figure 4.12

89

130 T T
Ips (nA)
Ype &9
me 02
100}= -
Ype 8
Ve &Y
e 88
e 8
1
o J -
s
/
.J;l‘
1 1
0 3 10 Vos (V)

Example 1: Cubic Interpolation - las vs. Vs
Figure 4.13

90

Ips (uA)

200p- -

we

Vo= 4

Voo 83

Ve 09
{ _Ype 1.8

] S 10 Vos (V)

Example 2: Family of I4s vs. V4 Curves
Figure 4.14

91

Ips (uA)

200

100

Vo ® 1800

— Vo ® 0190

Example 2: Family of las vs. Vg Curves

Figure 4.15

1
6 Vas)

92

1200 |
Ips (uA)
1 Ywe & _
‘Yo
s Yoo 38
................. i
.................................. - -
T -
| -
J
vi/
y
l 1
| | 9 Vps (V)

Example 2: Linear Interpolation - las VS. Vs
Figure 4.16

..__._._--‘

-

93

120) - T

Ips (A)

Vps (V)

Example 2: Cubic Interpolation - l4s vs. Vs
Figure 4.17

94

150 : !

Ips (uA)

1
6 Vos (V)

Example 3: Linear Interpolation - Igs vs. Vs
Figure 4.18

Ips (uA)

1
6 Vps (V)

Example 3: Cubic Interpolation - las vs. Vas
Figure 4.19

96

4.5. Chapter Summary

An Empirical MOS transistor model based on piecewise-cubic polynomials is
described in this chapter. The modeling of an N-channel MOS transistor is first
presented. and is then later expanded to include a P-channel MOS transistor. Two varia-
tions on the empirical method are presented. one using linear interpolation and the other
using cubic interpolation. are presented. Both of the interpolation methods developed
make use of first-order MOS i.ransistor behavior. and provide a continuous and mono-

tonic representation of the transistor's drain-to-source current.

Three examples are given 1o illustrate the empirical model. The data for the first
two examples are generated from the Shichman-Hodges and SPICE Level-2 models
respectively. The data for the third example is from direct measurement of a 1.4y m-
channel device. As demonstrated by the examples. the empirical model reproduced the
behavior of the Shichman-Hodges and SPICE Level-2 models. In addition, the third
example demonstrated that the empirical model can represent the behavior of an actual
device from measured data. As illustrated by the three examples. cubic interpolation
more accurately models the behavior of the device, however, as earlier stated, the cubic

interpolation is not guaranteed to be monotonic.

The evaluation of the empirical model equations requires only single-precision
floating-point addition, subtraction. multiplication and division. provided the restrictions
presented in Section 4.3 are met. For a small increase in data storage. the division opera-
tion can be precalculated and stored along with the other model data. and. thus, no divi-
sion operation is used during the evaluation. The equations and interpolation are con-

sistent over all transistor operating regions, allowing the model equations to be executed

without conditional branching.

97

CHAPTER §

Architecture of the MOS-Model Attached Processor

The MOS-Model Attached Processor(MMAP) is used in conjunction with a host
computer running an electrical circuit-simulation program. The MOS transistor’s equa-
tions are evaluated by the MMAP instead of the host computer. For the MMAP 1o be an
effective attached processor. it must evaluate the transistor equations at a much greater

speed than the host processor could do by itself.

The system-level description of the MMAP is given in Chapter 2. It is shown that
the data for the transistor n:'nodels are stored in the MMAP in order to minimize the com-
munication between the host and MMAP. In addition, the host does not remain idle
while the MMAP is evaluating the transistor equations but performs additional opera-
tions in parallel with the MMAP. The empirical MOS;transistor model developed for use
with the MMAP is described in Chapter 4. This empirical model uses only single-
precision floating-point addition/subtraction! and multiplication, and the equations are

evaluated without conditional branching.

The architecture of the MMAP is described in this chapter. The architecture is
designed to efficiently evaluate the empirical model described in Chapter 4. The com-
ponents of the MMAP are first described. An example of a transistor evaluation is then
given, illustrating the operation of the MMAP's components. Next. a further description
of the organization and accessing of transistor-model data within the MMAP is given.
The MMAP architecture is shown 1o support the pipeline evaluation of several transistors

_since the evaluation of the MOS model does not require any conditional branching.

1For the remainder of this chapter, floating-point addition refers to both addition and subtraction.

98

Finally. the MMAP's architecture is shown 1o be expandable. The expansion provides an

increase in the number of transistors that can be evaluated at the same Lime.

5.1. Components of the MMAP Architecture

The organization of the MMAP's architecture and a description of the different com-

ponents are given in this section.

As described in Chapter 2. the MMAP is a "slave” to the host processor. performing
a transistor evaluation when requested by the host. The host sends the appropriate data
1o the MMAP and then signals the MMAP 1o begin a transistor evaluation. While the
MMAP performs the transistor evaluation the host is able to perform otber operations.
Once the MMAP has completed the evaluation. the host can accesses the results of the

evaluation and initiate another transistor evaluation.

The basic structure of the MMAP is shown in Figure 5.1. The MMAP consists of
the Controller, Interface and Processor components. The communication between the
MMAP and host is done through the Interface component. The MOS transistor equations
are evaluated by the MMAP's Processor component. The program defining the MMAP's
operation is stored in the Controller, and the program defines the operation of the Inter-

face and Processor components necessary to perform the transistor evaluation.

99

> Controller

Commands

Contro! Signals 7 Processor

‘ ‘ Status

Interface <€ Processor

Host Bus

MMAP Organization
Figure 5.1

5.1.1. Processor

The Processor component contains the data path used in evaluating the transistor
equations. As described in Chapter 2. the model data are stored in the MMAP. and. as a

result. the memory used to store the data is also a part of the Processor component.

100

The Processor component. shown in Figure. 5.2, is composed of the Coefﬁciem
Memory(CM) and the Model-Processing Unit(MPU). where the MPU is composed of the
Floating-Point Unit(FPU) and the Coefficient Cache(CC). Three datla buses connect the
functional units. The A and B bus lines connect the data outputs of the dual-output CC
to the inputs of the FPU, providing the FPU .with input operands. The C bus connects
the output of the CM and FPU with the input of the CC. From the C bus. data from the

CM or results from the FPU can be written into the CC.

The transistor model data are stored in the CM. The CM is large since it must store
the data for all models required by the simulation. For example. if the MMAP is to store
a maximum of 16 different models. and each model required 4 K-bytes? of storage. the

CM must be at least 64 K-bytes in size.

The transistor evaluation requires the access of data from the CM, but the amount
of data required for the evaluation is only a small fraction of the total transistor-model
data. The necessary data are accessed from the CM for each transistor simulation and

are stored in the CC for the calculation.

The CC is a set of registers which store the necessary data for the current evalua-
tion and the intermediate results from the calcﬁlations. The CC’s two outputs are
addressed independently. The CC provides both input operands for the FPU and stores
the results of the FPU’s floating-point calculations. Once the required model data have
been read from the CM and stored in the CC. the CM is no longer accessed for the
remainder of the calculation. The data path. comprised of the FPU and CC. is used in the

floating-point calculations. The CC operates at the same clock speed as the FPL.

The FPU performs the floating-point operations of the input operands presented on
the A and B buses. The result is placed on the C bus for storage in the CC. As described

in Chapter 4. only single-precision floating-point addition and multiplication are needed

2] K-byte is equal 10 1024 bytes.

101

in the transistor evaluation. Therefore. the FPU supports only these floating-point

operations. The FPU is described in further detail in Section 5.4, " Pipelined Operation of
the MMAP".

< A-BUS o
B-BUS
Coefficient Coefficient
Memory FPU | Cache
—> C-BUS . MPU
MMAP Processor®

Figure 5.2

5.1.2. Controller

In general. a processor can be divided into a data part and a control part [SBN82].
A computer program is translated into a sequence of machine-language instructions,
where the instructions specify the operations that have to be performed on the data part.
For example. the instruction may specify the moving of data between internal registers
or the addition of two numbers. In order to perform a machine-language instruction. the
control part executes an ordered sequence of control signals which dictate the operation
of the data part necessary to perform the instruction. The control of the data part of the

MMAP can be viewed in the same manner as the general case. The Controller executes an

3Control signals and interface connection are 101 shown.

102

ordered sequence of control signals which direct the Processor and Interface components

to perform the transistor evaluation.
The Controller component of the MMAP can be organized in either of two ways:

(1) A machine-language instruction set for the MMAP can be developed. and the
Controller executes a sequence of machine-language instructions representing the

transistor model.

(2) The transistor model can be embedded directly into the Controller as a single

machine-language instruction.

(1) is the more ﬂexif)le than (2). For (1), if the transistor model changes. only the
sequence of machine-language instructions must change, but for (2). the machine-
language instruction must change. necessitating a change in the Controller component.
The transistor model developed for use with the MMAP is empirical. As described in
Chapter 3, empirical models are generally unaffected by changes in process technology.
Therefore, the advantage of greater flexibility that (1) has over (2) is negated. The
implementation given in (2) is generally more efficient than (1) since each step in the
machine-language instruction of (2) is tailored to a step in the model evaluation. As pre-
viously stated. for the MMAP to be an effective attached processor, it must perform the
evaluation at as great a speed as possible. Therefore. the transistor model is embedded

directly into the Controller as a single machine-language instruction.

The Controller is microprogram based, composed of a microprogram sequencer and

control memory* as shown in Figure 5.3. The instructions defining the MOS-transistor
model are stored directly in the control .memory. The microprogram sequencer is used to
calculate the instruction address of the Controller’s control memory. All operations per-
formed by the Interface and Processor components are controlled by the Controller com-

ponent.

4Control memory is also referred 10 as microstore.

103

Microaddress
Register

Microstore
— (Read-Only Memory)

Microinstruction Register

Data
Path
Next —
Control
Microaddress ' .
Logic e«———— Processor
Status

MMAP Controller
_ Figure 5.3

5.13. Interface
The Interface component is connected to the host processor’s bus and is used to
communicate between the MMAP and the host processor. Model coefficients are sent

from the host processor to the MMAP for storage in the CM. For each transistor evalua-

104

Lion. the transistor data is sent to the MMAP and the Controller is signaled to begin com-
putation. Once the evaluation is completed. the results from the evaluation are returned

to the host through the Interface.

5.2. Single Transistor Model Calculation: An Example

In this section. the operation of the MMAP is demonstrated by the evaluation of a

piecewise-cubic polynomial of one independent variable,

The piecewise-cubic pdlynomial represents the one dimensional behavior of the MOS
transistor’s Iy as a function of its Vgs. The function f(Vgs) is composed of piecewise-
cubic polynomials as shown in Figure 5.4. Each cubic polynomial interpolates between
two consecutive data points. The function of the MMAP is to calculate lgs and Gy at a

specified value of V4. For this example, the value of Vg, is within the range

Vas2 € Vg < Vg3) (5.2)
The cubic polynomial, valid for the region specified by (5.2). is

Ias = a3 + by 8V + c2 8Vg2 + d sts.' . (5.3)
where

V4= Vgs =Vya.- | (5.4)

As described in Chapter 4. the polynomial's coefficients(a;, b;, ¢z and d;) are algebraic
functions of the values of current and derivative at the polynomial’s endpoints. How-
ever. for this example the polynomial’s coefficients are assumed to be stored in the CM.
To calculate the value of Iy at a given Vg, only the coefficients of the appropriate poly-
nomial are necessary. As shown in Figure 5.5, the values of a;. by. ¢2 and d; are read
from the CM and stored in the CC. The polynomial equation is then evaluated. Horner's

rule{lHoS84] is used to0 minimize the number of ﬂoaiing-poim operations.

105

lys = ap + 8\’;5 (by + 8Vys (c2 + d2 8Ve)) (5.5)

First d; and Vg4 are input to the FPU from the CC. The FPU muliiplies the two
floating-point numbers and returns the intermediate result to the CC. Next. the inter-
mediate resull and the coefficient ¢, are sent to the FPU. The FPU performs the addition
of the two operands and returns the result to the CC. This procedure is continued until

the calculatign of lg; and then Gy, are completed.

f(Uge)

lds //'

NN PPN AN DO I SIS DESREINT I

| | | | |
I ! ! | l

Ugst Yds2 = Udsd VYdst¢ Udss Vasb
Vs

Piecewise-Cubic Example
Figure 5.4

al

bl

ct

dl

a2

b2

c2

d2

ald

b3

c3

d3

a4

b4

c4

d4

as

b3

cS

ds

Coefficient
Memory

Access Coefficients

vVds
a2
b2
c2
d2

Coefficient
Cache

5.3. Storage of Transistor-Model Data

106

The storage and organization of the transistor-model data are described in this sec-

tion.

107

The CM is divided into equal-sized sections. where each section stores the data for a
single MOS transistor model. As given in Chapter 4. the following data are stored for

each model:
(1) lgs Gas and Gy, at the measured terminal voltages.
(2) Measured V4 and V..

(3) Values of (AVg4)™ and (AV,)™'. which are the inverses of the difference

between adjacent measured voliages,

-1 1

(8Ves)™ = Vasi+ 1 — Vdsi : i .7)
- 1

(AVgs)= d-——-—vgswl = . (5.8)

(4) Vg-dependent parameters.

As described in Chapter 2. the information passed to the MMAP for each transistor
evaluation includes a unique model pointer. The model pointer is a unique label that
corresponds to the transistor model name given in the- entered circuit description. and
references the model data that is stored in the CM. The model pointer and differential
terminal voltages ‘are used to retrieve the required information from the coefficient

memory.

The address for the CM is divided into Model, Subsection and Off set fields.

[MODEL | SUBSECTION | OFFSET |

Coefficient Memory Address
Figure 5.6

The Model field specifies the part of CM containing the data for a model. The size of the

Model field is dependent on the number of transistor models stored. The Subsection field

108

is two bits wide, specifying four equal-sized subsections. As depicted in Figure 5.7, one
subsection is used to store each of the values of 1gs. Ggs and Ggs at the measured voltages.
and one subsection is used for the storage of the V', dependence paramelers. measured
voltages, and inverse differential voltages. The Offset field specifies the appropriate dala

within a subsection.

Ids 'Measured

Voltages

Model Gds

Inverse
Differential
Voltages

Vsb
‘Parameters

>

Data Storage in the Coefficient Memory
Figure 5.7

.

5.4. Pipelined Operation.of the MMAP

As described earlier. the data path formed by the CC and the FPU is used to per-
form the floating-point addition and multiplication needed for the transistor evaluation.
In this section, the concurrent evaluation of several transistors by pipelining the data

path is described.

109

5.4.1. Pipelined Floating-Point Unit

Pipelining is a technique which can be used 1o increase the concurrency in a
floating-point unit. The technique decomposes the floating-point operation into a
sequence of sub-operations with each sub-operation executed by a special dedicated stage
of the floating-point unit that operates concurrently with all other stages in the floating-
point unit. Régisters placed between stages are used 10 buffer between stages which
allows each stage 1o operate on different data simultaneously. For example. the addition
of two floating-point numbers can be done using the following three-step procedure

[Man82].
(1) Align the mantissas.
(2) Add the mantissas.
(3) Normalize the result.

As shown in Figure 5.8, the hardwa:le for the floating-point addition can be structured as
a three-stage pipeline. where each stage performs one step of the addition procedure.
Assuming each stage is executed in a single clock cycle. an addition operation is per-
formed in three clock cycles. and. once the pipeline is full. a result is available every

clock cycle.

Most fast ﬁoating-point units are pipelined. The floating-point add and floating-
point multiply units of the CRAY-1 require 6 and 7 clock cycles. respectively. to per-
form their operations, and each unit is pipelined into single-clock segments [SBN82). As
a result of pipelining, each unit can return a result with a delay of 6 cycles for addition
and 7 cycles for multiplication. A floating-point unit which is not pipelined can gen-
erally perform a single floating-point operation faster than a pipelined floating-point unit.
But. the calculation of a large number of floating-point operations can be performed more
efficiently using a pipelined floating-point unit since the pipelined unit can return a result

every clock cycle once all its segments are full.

110

v

Register

v

Register

4

Register

v

Register

v

“Input
Operands

Allign
Mantissas

Add
Mantissas

Normalize
Result

Output
Result

Pipelined Floating-Point Addition

Figure 5.8

5.4.2. Pipelined Transistor Evaluation

The pipelined FPU must be efficiently utilized to achieve the greatest possible speed

for model evaluation. Each empirical transistor model evaluated by the MMAP requires

the calculation of several cubic polynomials. But. cubic-polynomials are not well suited

for pipelined evaluation. Consider the cubic polynomial

y=a+bx+cx’+dxi.

(5.9)

Horner's Rule [HoS84), which minimizes the number of floating-point operations. is used

to evaluate (5.9). The order of computation is

(1) dx

111

(2) c+(dx)

(3) x(c;dx)

(4) b+ (cx+dx?)
(5) x(b+cx+dx?)

(6) a+(xb+cx?+dxd)

Each step in the procedure cannot begin until the previous step is completed. and. thus.
only one segment in the FPU's pipeline is used at any time during the evaluation. For
example. ¢ + (d x) cannot be computed until (d x) is first computed.

(5.11) can be evaluated in an alternative fashion which does not minimize the
number of floating-point operations but allows for the most efficient use of the pipelined
FPU. The steps used in the computation are given below. where each step contains the

set of computations which can be in the pipeline at the same time.
(1) bx.x* and dx
2) a+(bx).cG and (d0) &7
3) (a+bx)+(cx?)

(4) (a+bx+cx?) +(dx?)

In this case. three operations can be in the pipeline in steps (1) and (2). but only one

operation in the pipeline during steps (3) and (4).

The MMAP, instead of evaluating one transistor, performs the evaluation of N
transistors concurremly.'where N is equal to the number of segments in the FPU's data
path. The transistor evaluation can be pipelined in this manner since the transistor equa-
tions are executed without any conditional branching. The pipelined evaluation of N

transistors is illustrated by the evaluation of the following N polynomial equations.

yi= 3 + x; (bl + x4 (C; + dl x,)). (510)

112

ya = az + X (b2 + x5 (c2 + d2 %2)).

yx = an + xn (bx + X (on + dn 33D

As shown in Figure 5.9. d, and x are input to the FPL, followed by d, and x on the next
clock cycle. After N cycles. the pipeline is f;xll. and the first result, d; x,. is returned
from the the FPU. As illustrated in Figure 5.10, the results of the first step are applied
to the next step in the evaluation. Ideally. once the pipeline is full, there are no breaks

in the pipeline.

d4

113

x4
stage
1 [X] a3 | x3 A A
v
2 |X d2 X2
v
3 |X dl x1
v
4
K’ Coefficient
: Cache
N
FPU +
Loading the FPU's Pipeline

Figure 5.9

114

(d3 X3)
C3
stage *
1 [+ (d2x2) | 2
v
2 |+ (dix1) | ¢t
v
3 Ix dN xN
Coefficient
v Cache
N-1|x dé x6
N |x ds x5
FPU
A

(d4 x4)

Cycling Data Through the Pipeline

Figure 5.10

115

5.5. Parallel MPUs

The amount of communication between the CM and the MPU is a fraction of the
MMAP's total MOS transistor model evaluation time. Severa] MPUs can share the same
CM o imprer the overall performance of the MMAP. The expanded MMAP can be
configured with a single Controller as shown in Figure 5.11. A single Controller is used
10 control all the MPU's. The total MOS transistor evaluation time for a MMAP with a
single MPU(Ty,,) is the sum of the time required for reading_dala(de). evaluating the

transistor equations(Tey,,). and writing the results(Tyrite)-
Tsingle = Tread + Tevar + Twrite (5.11)

With a single Controller and N MPUs. each MPU evaluates the transistor equations
simultaneously, but reading from the coefficient memory and writing results are per-
formed serially. The total evaluation time is the sum of the time to evaluate the transis-
tor equations by a single MPU plus the sum of read and write times for all MPUs. For N

MPUs, the total évaluation time(Tmmp.,) is

Trunipte = Tevat + N X (Tread + Twrite) - (5:12)

The total evaluation time increases linearly with the sum of the read and write time.
The evaluation time per MOS transistor(Ty,,) decreases with an increasing number of

MPUs

Teval + Ttud + T\vme

= (5.13)
Taw=xgxp*— 7

where P is the number of transistors evaluated concurrently by a single MPU. As the
number of MPUs increases. the Ty, becomes limited by the sum of the data read and

result write times.

116

MPU N

MPU 3
MPU 2
MPUT |1

Coefficient
Memory *

e

Processor with Multiple MPUs
Figure 5.11

5.6. Parallel MMAPs

The number of different transistor models that can be used in the simulation is lim-
ited by the size of a MMAP’s CM. The maximum number of MOS transistor models can
be increased by using multiple MMAPs as shown in Figure 5.12. The overall evaluation
time per MOS transispor model can also be reduced by having multiple MMAPs. The
reduction in time is dependent on being able to utilize all additional MMAPs. When all
MMAPs are fully utilized and there is no conflict in communication. the time per MOS-
transistor evaluation is equal to the time per MOS-transistor evaluation of a single

MMAP divided by the number of MMAPs.

T!l’lﬂ

of MMAP s (5.14)

Total Time per Model Evaluation =

MMAP 1
Host
Processor
MMAP 2
170
MMAP 3
Memory
Disk
MMAP N

System
BUS

Muhiple MMAPs
Figure 5.12

117

118

5.7. Chapter Summary

The MMAP evaluates the MOS transistor model equations. The architecture of the
MMAP is designed 1o evaluate the transistor operation based on the cubic polynomial
representation. The MMAP is composed of an Interface unit, a Controller unit and a
Processing unit. Data is communicated to and from the host through the MMAP's Inter-
face unit. The Controller unit governs the operation of the Processor and Interface units.
The MMAP executes the polynomial equations without branching. allowing for the con-
current pipelined evaluation of several transistors. It is demonstrated that the architec-
ture of the MMAP can be further optimized to allow for several Model Processing Units
to be connected to a single Coefficient Memory to increase transistor-evaluation
throughput. In addition. several MMAPs can be used in parallel to improve the

throughput.

119

CHAPTER 6
Prototype Implementation of the MMAP

on the IBM PC-XT Personal Computer

The design of a board-level prototype of the MOS-Model Attached
Processor(MMAP) is presented in this chapter. The prototype’s design is a practical reali-
zation of the architecture described in Chapter S and is optimized for the evaluation of
the empirical MOS transistor model described in Chapter 4. As described in Chapter 4.
the empirical model is shown to reproduce the behavior of both the Shichman-Hodges

and SPICE Level-2 transistor models and data from device measurements.

The prototype MMAP is built using at total of 101 "off-the-shelf" SSI. MSI and LSI
components on two wire-wrapped circuit boards which are connected through a common
interface. The prototype has a single Model-Processing Unit(MPU) and can evaluate four
MOS transistors concurrently. The prototype is interfaced to the IBM PC-XT personal
computer through the IBM PC-XT;s bus. as shown in Figure 6.1. and is used in conjunc-

tion with the BIASC circuit simulation program running on the IBM PC-XT.

A description of the IBM PC-XT personal computer and the reasons for implement-
ing the prototype MMAP on the IBM PC-XT are first given. Next, the prototype’s
hardware design is described. This includes a description of the MMAP's components
and the MMAP's hardware interface to the IBM PC-XT. The schematics and parts listing
of the prototype MMAP are given in Appendix G. Next. the performance of the proto-
type is presented. Included are the measured MOS transistor-evaluation times of the
MMAP and IBM PC-XT. Finally. the performance of the BIASC circuit-simulation pro-
gram running on the IBM PC-XT using the MMAP is presented. and results from two

example circuits are given.

120

Paraile!
Port

8088

Extra

Interface

Memory

8087

Serial
Port

Memory

MMAP

PC BUS (62)

IBM PC-XT With Prototype MMAP
Figure 6.1

121

6.1. IBM PC-XT Personal Computer

The IBM PC-XT personal computer is based on the Intel 8088 lb;bil
microprocessor{ReA80). The PC-XT has an 8-bit-wide memory data bus and a 20-bit-
wide address bus. The 20-bit address provides a 1M-byte address range. of which a
maximum of 640K is available for random-access memory(RAM). The In8088 operates
in conjunction with the Intel 8087 Numeric Data Processor(NDP){Int84). The In8087
performs all the floating-point computations and conforms to the IEEE floating-point
standard[Kah84). In addition. the In8087 has an 8-word stack. The stack word is 80
bits wide and conforms to the IEEE standard for intermediate storage of double-precision
floating-point numbers. The stack provides storage for the intermediate results of .
floating-point calculations which reduces the time required for the calculations by

minimizing the amount of data transferred.

The prototype MMAP is implemented for use with the IBM PC-XT. [GMP84],
[Gyu85] and [Blu85] demonstrated that the IBM PC-XT is effective in performing electri-
cal circuit simulation. The IBM PC-XT's In8087 provides fast evaluation of "in-line"
floating-point equations such as the MOS transistor equations. Since the IBM PC-XT is
effective in performing circuit simulation and efficient in solving "in-line" floating-point

equations. the 1BM PC-XT provides a fair test of the MMAP’s performance.

6.2. Design of the Prototype MMAP

The design of the prototype MMAP is presented in this section. An overview of the
"MMAP architecture is first giveﬁ followed by a description of the board-level organiza-
- tion of the prototype. Next. the design of the MMAP's Controller and Processor com-
ponents are presented. In the prototype design, the Interface component is part of the
Coefficient Memory and is discussed in the section describing the design of the Coefficient

Memory. The schematics of the prototype are given in Appendix G.

122

6.2.1. Design Overview

As described in Chapter 5. the MMAP is composed of the Processor, Interface and
Controller components. The Processor component stores the model data and performs
the calculations required in the model evaluation. The communication between the host
and the MMAP is done through the MMAP's Interface component. A sequence of signals
generated by the Controller, direct the operation of the Processor component in perform-

ing the transistor evaluation.

The MMAP's Processor component is composed of the Coefficient Memory(CM) and
Model-Processing Unit(MPU). The CM provides storage for the transistor model data.
and the MPU contains the data path used in the equation evaluation. The MPU is com-
posed of the Floating-Point Unit(FPU) and the Coefficient Cache(CC). The FPU performs
the floating-point operations. and the CC stores the data and intermediate results
required for the current evaluation. Both the FPU and CC operate at the same clock
speed.

As described in Chapter 5. the MMAP "architecture can support the concurrent
evaluation of several MOS transistors. The prototype is designed to simultaneously

evaluate 4 transistors.

The prototype MMAP is built on two circuit boards. and the components on the cir-
cuit boards are wire-wrapped. Board A. shown in Figure 6.2. contains the FPU, the CC.
and the CM's data and address registers. Board B, shown in Figure 6.3. contains the
CM's memory chips and memory control logic. the MMAP's Controller. and the interface
10 the IBM PC-XT. The two boards are connected by three buses. The first bus (see Fig-
ures 6.2 and 6.3) connects the CM's data input/output and address, the second bus con-
nects the clock and status signals, and the third bus connects the MMAP’s Controller on

Board B 10 control points on Board A. Board B. as shown in Figure 6.4, is connected

123

directly 1o the IBM PC-XT's bus'. The PC-XT's bus is 62-bits wide and includes
address. data. control. status. and clocking signals in addition 1o several supply voliages
and ground reference. The bus diagram is shown in Figure 6.5. The signals that are used
by the MMAP and referred to later in this chapter are marked with an asterisk. All of
the components used by the MMAP are TTL or TTL compatible and require only a +5 V
power supply. The MMAP is powered by a single +5 V power supply that is separate

from the power supply of the IBM PC-XT.

3The PC bus is also referred 10 as the /O channel.

124

B

T

}

i

N

DNRRAA

Board A
Figure 6.2

125

Board B
Figure 6.3

126

Connected 10 the IBM PC-XT
Figure 6.4

127

@0 —— | 8! a| —— -ioccHeX
RESETORV ~—t1— —_— o7
*Sv cmmcen— —— u.
rR2 —— —— o5
oSy —t— o 04.
oR2 —+— 03
T 02
CARD SEL —1— — o
"y —— —— oo
ap —— | B0 AW —f— WOCH ROY"
MEMW —— —— AN
MEMRT —— —— a9’
ow —— — a8’
IR —t— —_— a1?*
DACK3 S BT
oRQ3S —— —— ag
DACK! —— Ald
I —_ Az
DACKO —— —_— A
ax® —— |e20 Aol —— an’®
RQ? —t— —t— a0
IRG6 — a9
RGS —+— —1— ag®
RO4 —t— N
RQS —t— —— s
DACK2 —— —— s,
7 —t— —t A4
m. —_ S -
o — — A2
0s¢ —t— —t A
o —— |83 asl —— 40

Diagram of the IBM PC Bus [1BM84]
Figure 6.5

128

6.2.2. Controller

The operation and design of the Controller component of the prototype MMAP is

presented in this section.

As described in Chapter 5. the Controller is microprogram based. The Controller

consists of control logic used to generate the microaddress. a microstore used to store the

microinstructions?, and a microinstruction register used to store the current microin-
struction. The instructions for the transistor evaluation are stored directly as microin-
structions in the Controller's microstore. The sequencing of the microinstructions by the

Controller define the transistor-evaluation operation.

’ The block diagram of the Controller is shown in Figure 6.6. The microinstruction
address is generated by an AM2910 [AMDS83] microcontroller. The AM2910 outputs a
12-bit-wide address which can address up to 4K microinstructions. The microinstruc-
tions are stored in a 4i(%X 64 ROM. A new address is generated every clock cycle. and
the corresponding microinstruction is latched into the microinstruction register on the

rising clock edge.

The AM2910 can generate an address from an internal source or use the address
supplied to its D inputs. Two of thé internal sources are a microprogram counter and a
five-level deep. last-in, first-out stack. The microprogram counter contains the value of
the previous address incremented by one. Sequential access to microinstructions is
obtained by repeated use of the address stored in the microprogram counter. Uncondi-
iional. conditional and subroutine branching are also supported. Unconditional branch-
ing within the control program is accomplished by ﬁsing the address supplied by the
external input as the next microinstruction address. With conditional branching. the
address from the external input is used if the condition test passes. otherwise the address

is given by the microprogram counter. Subroutine branching is similar to unconditional

2Instructions stored in the microstore are referred 1o as microinstructions.

129

branching. except Lhe return address is stored in the stack. The subroutine return is thus
accomplished by using the address stored on the stack as the next microinstruction

address. The stack is five levels deep. allowing up to five levels of subroutine nesting.

As shown in Figure 6.6, the inputs 1o the AM291Q are the 12-bit external address
(D11-DO0). the 4-bit instruction (13-10). condition-code (CC). and condition-code enable
(CCEN) inputs. The I inputs provide the instruction used by the AM2910 in determin-
ing the next microinstruction address. For example. an instruction of binary value 0010
instructs the AM2910 1o un'condilionally branch to the address given by the D inputs.
The CC and CCEN inputs determine the conditional branching. The conditional test
always passes. independent of the CC input. if the CCEN input is set at a logic "1". If

the CCEN input is set at a logic "0, the conditional test is determined by the CC input.

Conditional branching is required in two instances. both of which are illustrated in
Figure 6.7. The MMAP remains idle after completing an evaluation, only beginning
another operation when signaled by the IBM PC-XT. The IBM PC-XT signals the MMAP
to'begin evaluation by setting the BEGIN signal to a logic "0". Once signaled. the MMAP
performs the evaluation until completion. Also, as described in Section 6.2.5, the com-
munication between the CM's internal memory storage and input/outputl registers is
asynchronous. Since the communication is asynchronous. the Controller must wait for a
signal from the CM before continuing. The CM signals the Controller that the memory
operation is complete by seiting the MRC (Memory Reference Complete) signal to a logic

Iol

As shown in Figure 6.6. the BEGIN and MRC signal are connected to 2 inputs of a
7415151 1-of-8 multiplexor. and the output of the multiplexor is connected to the CC
input of the AM2910. The three CCS signals specify which one of the eight inputs 10 the
multiplexor is input to the CC input of the AM2910. The BEGIN signal is selected as the
input to the CC input when the MMAP is waiting 1o be begin another evaluation. and the
MRC signal is selected as the input to the CC input when the MMAP is checking for the

completion of a memory operation.

130

The microstore is composed of Read-Only Memory(ROM) which can store up to 4Kk
microinstructions. and the width of the microinstruction is 64 bits. The address gen-
erated by the AM2910 is used to address the ROM. The ROM is composed of eight
4K X 8-bit ROM(Read-Only Memory) chips. The eight ROMs share the common address

input and provide a combined 64-bit-wide outéut.

As shown in Figure 6.6, the output of the microstore is directed to the input of the
instruction register. One instruction is generated per clock cycle. and the microinstruc-
tion that is currenily being executed is stored in the instruction register. New microin-
structions are loaded into the instruction register on the rising edge of the clock signal.
The output of the instruction register is connected to control points throughout the
remainder of the MMAP and to control points within the Controller. The signals fed
back to the Controller select the appropriate condition code, providing the D. I and CCEN
inpms' to the AM2910 and the CCS signals to the 741s151 multiplexor. The instruction

register is composed of 8 AM2954 [AMD83] octal register chips.

131

12
MRC l /
1 : D
8 | 7
J § —_—
—» CCEN Clk
Address Out

l

Address

ROM
(4K X 64)

Data Out

l

Microinstruction Register

a a4 |- 16//

To
Control

Points
Block Diagram of the Controller
Figure 6.6

132

Dynamic

Memory = 1"
Operation MRC ‘

BEGIN

="1"

wait for Memory

A Signal from Reference
PC-XT Complete
Completed Previous
Evaluation BEGIN = “O" = Q"

Conditional Branches
Figure 6.7

The format of the microinstruction is shown in Figure 6.8. Each microinstruction is

logically divided into 4 fields. one each for the Controller. CM, FPU and CC.

[FPU | €M [CC | Controller |

Microinstruction Fields
Figure 6.8

41 of the 64 instruction bits are used for control points throughout the MMAP and are
described in the following sections on the FPU. CC and CM and 20 instruction bits are
used in the determination of the microcontroller's next address. 3 instruction bits are

not used.

A complete list of the microinstruction bits are listed in Table 6.1. The list includes

the signal name. the name of the component (eg. FPU) it controls. and a short description

133

of the signal.

Control Signals
Micro- Signal Component
instruction Name name Description

0-11 DO0-D11 Controller Explicit Address
12-15 10-13 Controller p-controller Function

16 CCEN Controller Condition-Code Enable
17-20 DPAO-DPA3 CcC Dual-port Address

21 DPW cC Dual-port Write

22 DPL CC Output Low

23 CMA CM Memory Request
24-29 AFLO-AFLS CM Address Formation Logic Control
30-34 LAO-LA4 CM Load Address Register-
35-37 CCS0-CCS2 | Controller Condition Code Select

38 CMR CM CM Read by MMAP

39 CMW CcM CM Write by MMAP

40 LDATA CcM Load Data-Input Register

41 ENBLE CM Enable Data-Output Register

42 TOP CM
43-45 FP_FO-FP_F2 FPU FPU Function

46 FPALU_U1 FPU Unload ALU

47 FPMUL_U1 FPU Unload Multiplier

48 FP_U0O FPU
49.50 FP_LOFP_L1 FPU Load FPU

51 - unused -

52 - unused -

53 SRW CC. Static Ram Write
54-61 SRAO-SRA7 CcC Static Ram Address

62 - unused ' -

63 AFL6 CM Address Formation Logic Control

Table 6.1

6.2.3. Floating-Point Unit

As described in Chapter 5, the FPU performs floating-point addition. subtraction
and multiplication. The two input operands are entered at the same time from the
MMAP's A bus and B bus. The FPU performs the floating-point operation and outputs
the result to the MMAP's C bus. The architecture of the FPU is pipelined. Pairs of
operands can be sent continually to the FPU, wi.th the FPU performing the calculation

and returning the results in order.

The FPU is built using the Weitek 1032 32-bit multiplier[Wei84] and Weitek 1033

32-bit floating-point ALU[Wei84). The Weitek chip-set is used since it performs all the

134

required floating-point operations. has a pipelined data path. and executes the floating-

point operations very quickly. The WTL1033 performs floating-point addition and sub-

traction. and the WTL1032 performs floating-point multiplication. Both the Weitek

WTL1032 and WTL1033 are pipelined. New operands can be input to the WTL1032 and.

WTL1033 every 2 clock cycles. and both the WTL1032 and WTL1033 have a pipeline
latency of 10 clock cycles. Operating in pipeline mode at a clock speed of 10Mhz, the
Weiteks can execute all floating-point operations in 1 u-second and output results every
200 n-seconds. As a comparison. the IBM PC's Intel 8087 operating at 4.47Mhz executes

a floating-point add on data stored in its own registers in 18 u-seconds.

The data inputs and outputs of the WTL1032 and WTL1033 are connected in
parallel. as shown in Figure 6.9. One input of each Weitek is connected to the MMAP's A
bus and the other to the MMAP’s B bus. The outputs of the WTL1032 and WTL1033
are connected 1o the C bus. The Weitek's two data inputs and one data output are each
16 bits wide. requiring 2 clock cycles to load the 32-bit input operands and 1wo clock
cycles to unload the 32-bit result of .the floating-point operation. In both loading and
unloading of data. the 16 most-significant bits of the floating-point humber are entered
first followed by the 16 least-significant bits. The 16-bit-wide data inputs define the

width of the MMAP's A, B and C buses 1o be 16 bits.

The WTL1032 and WTL1033 each have 8 control inputs[WeiM]. On each Weitek
chip. the L1 and LO inputs control the loading of input‘ data. the Ul and UO inputs con-
trol the unloading of results. ‘and the F3-FO inputs select the appropriate floating-point
function. The data and control inputs are latched into internal registers on positive going
clock transitions. but only the function entered along with the most-significant portion

of the input operands is used.

As shown in Figure 6.9. a common set of control signals from the Controller is
shared by the two Weitek chips. The load inputs are both connected 10 the FP_LO and
FP_L1 control lines. The FO-F2 function inputs are both connected to the FP_FO-FP_F2

control lines. and the UO unload input of both chips are connected to the FP_UO control

135

line. The MMAP uses only a subset of the floating-point functions available from the
Weiteks. and. for these operations. the F3 signal is always a logic "0". The F3 input 10
both Weitek chips is connected to ground. The same data is loaded into both Weiteks at
ihe same time, but only the result from the appropriate output is accessed. The Ul
unload input for each chip is connected 1o separate signals {rom the Controller.
FPMUL_U1 for the WTL1032 and FPALU_U1 for the WTL1033. U1 enables the tri-
state output of a Weitek chip. Since only one output can be enabled at a time, there are

separate U1 signals to each Weitek.

PERTN

136

FPL1, FP_LO

%

FP_F2 - FP_FO
FP_LIO
FPMUL_U!

Binput Alnput Blnput A lnput
i1 —bv1
L0 +—>1L0
CLK
cK <4——— K <<—
3 3
2. ——iF 2
Weitek Weitek
! 1032 [—PF! 1033
0 0
0 JO
1 1
FPALU_U1
MUL Qutpul ALU Quj.put
16 16
C BUS

Figure 6.9

Block Diagram of the Floating-Point Unit

6.2.4. Coefficient Cache

The CC is used 10 store data for use with the FPU. The CC has 2 output ports and a

single input port. Separate data can be accessed from two locations within the CC and

output 1o the A and B buses at the same time. The CC’s input port is connected to the C

bus. The CC and the FPU operate synchronously, with the CC performing read and write

operations in a single clock cycle.

137

The CC. shown in Figure 6.10, stores 256 16-bit words. Since four transistors are
evaluated simultaneously. 64 16-bit words are available for each transistor. The CC is
composed of a 256 X 16 static memory and a 16 X 16 dual-ported memory register. The
output of the static memory is input to the dual-ported memory register, which allows

data to be read from the C bus and written 10 the A and B buses concurrently.

The 16 X 16 dual-i)ort register can store eight 32-bit floating-point numbers, pro-
viding direct access 10 four pairs of operands by the FPU. In general, the same floating-
point operation is performed on the four pairs of operands. and each pair is specific 10 one

of the four transistors being evaluated.

The dual-port register has a separate 4-bit address for each of the two data outputs.
During a read operation. the A-address port addresses the data-output portl connected 10
the A bus. and the B-address port addresses the data-output port connected 10 the B bus.
During a write operation, the A-address port specifies the location within the dual-port

register in which the data from the static memory is written.

The four DPA signals are the address of both ports. As shown in Figure 6.10. the

lowest three A-address and B-address inputs are connected 10 the DPA2-DPAO control

signals. The fourth A-address input is connected 10 the DPA3, and the fourth B-address

input is connected to ground(logic "0"). The four DPA signals provide the address in a
write operation since only the A-address port is used. In a read operation. all 16 words
can be output to the A bus, but only the lowest 8 words can be output to the B bus.
DPW is the write signal to the dual-port memory and is active low. DPL signal is active

low and forces the outputs of the dual-port register to a logic "0".

For floating-point operations. operands for the B bus are stored in the lower 8 loca-
tions. and operands for the A bus are stored in the upper 8 locations. The two operands
for a floating-point operation are stored in locations with the same lowest three address
bits. but with a different fourth address bit. For example. the A operand is stored in the

dual-port location specified by binary address 1001, and the B operand is stored in the

e e '

138

dual-port address specified by binary address 0001. Setiing DPA 10 1001 and reading.
the data stored in location 1001 is output 1o the A bus and the data stored in location

0001 is output 1o the B bus.

The eight SRA control signals specify the static memory address. The SRW control
signal is the static memory write signal and is active high. With SRW set to a logic 1. the
‘data present on the C bus is written into the static mémory location specified by the
SRA.

The 16 X 16 dual-port register consists of 4 16X 4 AM29705 Dual-port
Registers[AMDS3]. The 256 X 16 static memory consists of 4 256 x 4 AM91122-60

static RAM[AMDS3].

i)

-

139

Data Cutput -Data Qutput CLK
Port B Port A <‘_
AJ
Port B 16X 16 Port A
Address Dualpot Address A2
1 Memory ¢ AL
0 AO
DPA2 - DPAO DPAZ - DPAOD
DPW w
BRC L Data Input
SRwW—P write oW Dsata Output
CLK—D Timing
256 X 16
—
Data Input
SRA
16
C BUS

Block Diagram of the Coefficient Cache
Figure 6.10 .

6.2.5. Coefficient Memory
The CM contains 128K bytes of dynamic. random-access memory(DRAM). As
shown in Figure 6.11, the CM is dual-ported. accessed by both the MMAP's Processor

component and the IBM PC-XT. The CM is part of the IBM PC-XT's memory address

140

space. and also acts as the interface 1o the IBM PC-\T. The PC's data and address bus are
connected to the CM, and the PC performs memory-read and memory-write operations
to the CM. Logic within the CM controls the reading and writing of data since the CM

can only perform memory operations {rom one port at a time.

The IBM PC-XT has a 1 M-byte(2?°) address space. of which 640K-byies are avail-
able for random-access memory. The remainder of the address space is reserved. As
shown by the memory map in Figure 6.12, the CM is located in the last 128K bytes of
the IBM PC-XT's 640K memory address space. The first 512K-bytes are available only

to the PC. and the remaining 128K-bytes are shared between the PC and MMAP.

The block diagram of the CM is given in Figure 6.13. In addition to the dynamic
memory. the CM is composed of a memory controller, data-input and data-output regis-
ters for the two ports, address registers for both ports. and combinational logic used by
the MMAP 10 generate an address in the CM. The PC’s 8-bit data bus is connected to the
CM's data input and data output through 2 8-bit laiches. The 16-bit A and C buses of
the MPU are connected to.two 16-bit registers. Of the PC's 20-bit address, the three
most-significant bits specify the CM and the lower 17 bits are the address within the.
CM. The CM's address from the MMAP is stored in a 17-bit register. The PC's and
MNMAP's read and write signals are connected to the memory controller. The memory
controller selects the data and address from the requesting port ar;d performs the

memory operation.

The CM detects a memory request from the PC by detecting if the address is valid
and within the range of the the CM’s memory space(512K to 640K). The three most
significant bits of the PC’s 20-bit address. if at binary 100, initiate a memory operation
with the CM. For all CM memory read and write operations requested by the PC, the
CM sets the PC's 1/0 Channel Ready(TOCR) signal to a logic "0, causing the PC 10 idle
while maintaining valid data(in write operations) and address signals. In a read opera-
tion. the data is read from the dynamic memory location specified by the PC’s address

and stored in the data-output register connected to the PC's data bus. The tri-state

141

output of the register is enabled. allowing the data stored in the register 10 be present on
the PC’s data bus. The memory controller then sets the TOCR signal 1o a logic "1", caus-
ing the PC 1o latch the data from the data bus. In a write operatioh. the data on the PC’s
data bus is written to the memory location in the CM specified by the lower 17 bits of
the PC's address. When the wrile operation is complete, the CM sets the IOCR signal to

a logic " 1" allowing the PC to continue with its next operation.

The two 16-bit wide data registers buffer the transfer of data between the CM and
the MPU. The Processor’'s data paths are 16 bits wide. but the dynamic memory is byte
oriented. Data is written from the MPU 1o the CM by storing the data in the 16-bit
data-input register, and then writing the two bytes of data into the dynamic memory
one byte at a time. The MPU reads the data from the CM by first performing two
separale memory reads from the byte-oriented dynamic memory. storing the two bytes
in the 16-bit data-output register. and then writing the 16-bit data into the CC. The CM
signals the Controller that the memory operation is complete by setting the Memory
Reference Complete(MRC) signal to a logic *0". The MRC signal is reset té a logic "1"

prior to the next memory reference.

The 128K-bytes of the CM's RAM are composed of 16 64K-bit dynamic memory
chips. The memory is structured into two 64K-byte memory banks. with each bank
composed of 8 64K-bit chips. The Intel 8207 Dual-Port Memory Controller{Int83] and
additional logic control the operation of the CM. The In8207 provides all the timing sig-
nals for memory reads. writes and refreshes. The lowést 17 bits of the PC’s address is
buffered using three 741s244{Tex75] octal buffers. The MMAP's address register is 17-
bits wide and is built using 6 74lsl 73[Tex75) 4-bit registers. The outputs of the
MMAP's address register and the PC’s address buffer are connected. forming the internal
address bus used by the CM. Only one output is enabled at a given time. The 16-bit
data registers connected 10 the MMAP's internal buses are each made of 4 741s173 4-bit
registers. The data-input and the data-output registers that are connected to the PC's

data bus are made of 2 741s373[Tex75] octal registers.

142

Eighteen control points within the CM are operated by the Controller. The seven
AFL signals control the formation of the MMAP’s address from the combinational logic
and the five LA signals enable the loading of the address in the MMAP's a'ddress register.
The CMA. CMW and CMR are connected to the In8207. All three are active low. The
CMa requests a memory operation. The CMR and CMW are the read and write request
signals respectively The TOP signal diﬂ'eremiaws. between the high and low 8-bits of the
16-bit data-input and data-output registers. The TOP signal specifies which byte is to be
read from the data-input register during 2 memory write. and which byte of the data-
output register is to receive the data during a memory read. The: LDATA signal enables
the loading of the data-input register, and the ENBLE signal enables the output of the

data-output register. Both signals are active low.

143

Coefficient

Memory

(128K)
IBMPC MMAP
Port Port
Address Address
Data in Data in ABUS
Data out Data out _>__C£_S_
R R |t
w w < CMW

Dual-Access Coefficient Memory
Figure 6.11

PC-XT Address MMAP Address

0
PC-XT
RAM

MEMORY

512K 0
| COEFFICIENT

MEMORY

640K 128K

IBM PC-XT Memory Configuration
Figure 6.12

144

145

128K X 8
Dynamic
Memory
Address
Dout Din Timing W —_—
. 16
16-bit
B-bit - ot J¢+_
data fagister A BUS
register
) <«
Y= O
16-bit 16
8-bit M data
data rggistgr C BUS
D7-D0 register
FEW Memory e
MEMR > Cont:oner ¢ CMR .
— . CMA
IOCR Additional Logic =
'—. Address Input " >
Address *'7 "ﬁ?us
Latch Address |
and Register 6
Select and ‘7/'—
Logic Formation AFLS-0

PC BUS

Logic

g S /
LA4-0

Block Diagram of the Coefficient Memory

Figure 6.13

146

6.2.6. MMAP Clocking

The MMAP's Controller. FPU and CC operate synchronously using a common clock
signal and all operations are executed on the rising clock edge. The maximum designed
frequency of the MMAP's clock is 10MHz, which can only be achieved when high-
speed(€ 50ns delay time) fuse-linked Programmable ROMs(PROMs) are used in the
Controller. The frequency of the MMAP's clock is then limited by the speed of the
Weitek ALU and multiplier. If PROMs with access limes > 50ns are used, the max-

imum clock frequency is limited by the Controller's microinstruction access time.

Erasable PROMs (EPROMs) are used instead of the fuse-linked PROMs. EPROMs
are more practical for use in the development of a prototype. EPROMSs can be erased and
reprogrammed. While fuse-linked PROMs can only be programmed once. and, in general.
the cost of fuse-linked PROMs are prohibitive in a development project. 450ns access-

time EPROMs are used.

The 450ns EPROMs restrict the maximum clock frequency to 2Mhz. Instead of
using a clock'signal generated external to both the IBM PC-XT and MMAP, the MMAP's
clock signal is derived from tiae IBM PC's clock signal present on the PC’s bus. The clock
frequency of the IBM PC-XT used with the prototype is 4.77 Mhz. The. PC'’s clock signal
is divided by 4. providing a 1.2Mhz clock frequency for the MMAP (reducing the PC's
clock by 2 would result in a frequency of 2.38Mhz. which is greater than the maximum
allowed clock frequency).

Communication between the CM and both the IBM PC-XT and remainder of the
MMAP is performed asynchronously. The CM uses a clock separate from the remainder
of the MMAP, and the CM clock frequency is equal to the frequency of the IBM PC-XT

clock.

147

6.3. Organization and Access of Data in the Coefficient Memory

The oréanization of data within the CM. and the access of the data stored in the CM

by both the MMAP and IBM PC-XT are described.

6.3.1. The Storage and Access of Model Data Within the Coefficient Memory

The data that is stored in the CM is listed in Chapter 5. All floating-point numbers
are stored in single-precision format. requiring 4 bytes of storage per floating-point
number. In this design there are a maximum of 16 measured values of Vgs. Vs meas. and
16 measured values of Vg, Vs meas. fOr each model. 3K bytes are used to store the values
of lys. Ggs and Gy for the 256 combinations of measured voltages. The 32 measured vol-
tages require 128 bytes of memory, the 30 values of the inverse of the difference between
adjacent measured voltages require 248 bytes of memory. and the 64
(4 coefficients X 16 measure .Vds) V,,-dependent parameters require 256 bytes .of
memory. In addition. 256 1-byte voltage-dependent pointers. 128 each for Vg4 and Vs,
and 3 floating-point constants are stored. The function of the pointers is described in

Section 6.3.3. The following table summarizes the data storage requirements.

Data Stored # bytes
| P 1024
Gys 1024
Ggs 1024
Vs 64
Vs 64
(AVg)™? 60
(avg)™ 60
Vp-Dependence Parameters 256
Vg4; Pointers 128
Vs Pointers 128
Fpt. Constants 12

Table 6.2

As described in Chapter 5, the CM is partitioned into equal sections, each of which
stores the data for a single transistor model. Within one section the memory is further

partitioned into four subsections; three subsections store the values of ly;. Gas and Gy

148

respectively, and ihe fourth subsection stores the remainder of the model data. The lgs.
Gas and G, are stored in sequential memory locations within their subsection. The
storage order of the data is illustrated by Figures 6.14 and 6.15. In 'Figure 6.14. the data
are represented by points in the plane with Vg as the x-axis and V,s as the y-axis. The
points correspond o the data at the different combinations of Vs mes and Vs meas- The
storage of the data illustrated in Figure 6.14 is given in Figure 6.15. The first values
stored of lgs. Ggs. and Gy correspond to the combination of the first (lowest value)
Vs meas 0 and the first (lowest value). Vis measo. The next value st‘ored corresponds to the
combination of the second Vgsmes: and the first Vi peso ’i‘he ordering continues
through to the combination of the last Vusmes1s and the first Vysmeaso- The above is

repeated using the remaining values of Vs mes in order of smallest to largest value.

With 16 measured values of both Vg4, and Vi, the offset from relative to the first

location. within the subsection of either ly;. Gy of Ggs can be given as
offiset = 16k +j. for0 £ j < 16 and 0 € k < 16, 6.1

where both j and k are integers. Vs mesj and Vgsmeasy are ordered in increasing value.
For example. the las. Gys. and Gy corresponding to (Vs meas 2-Vgs meas 1) is accessed from

the appropriate subsection using an offset of value 18.

(6.1) can be represented in an alternative fashion when the offset term is used
directly as part of the address. Since j and k are within the limits given in (6.1) . they
can each be represented by a 4 bit binary number. Multiplying k by 16 is the same as
adding four zeros to the .right of the binary representation of k. The offset can then be
represented as a 8-bit binary number. where the four most-sighiﬁcam bits are the binary
representation of k and the four least-significant bits are the binary representation of j.
With j=2 and k=1, the offset. in binary, is 00010010. which is 18 decimal. The binary

representations of j and k are referred 1o as the V4, and Vg, pointers respectively.

As described in Chapter 4. the model evaluation uses the values of lgs. Gas and Gy

from 4 data points to calculate the device's operating-point information. For the given

149

values of V4. and V. each voliage is bound by two measured voltages.

vdsj $ vds < Vdsj-#l .
and

(6.2)

(6.3)

j and k are restricted to the range given in Equation (6.1). and their binary values are the

Vg4s and V pointers. The values of lgs. Gys and Gy for the data points (Vs Vs k)

(Vds j+l-Vgs g). (vds j.Vgs k+1). and (Vds ,-.,.,.Vg, k+1) are accessed.

points are:

(Vs j Vgsi)
(Vds) Vgs k+l)
(vds j*le vgs k)

(Vs jo1- Vesxar)

The offset for the four

k i
k+1 | j
k i+1
k+1 { j+1

Vgs -k e

Storage of Iy, Ggs and G,
Figure 6.14

.(1.5,15)

150

151

Ids K, j Gds K, j Ggs K, j

lds 0,0 Gds 0, 0 Ggs O, 0
Ids O, 1 Gds O, | Ggs O, |
Ids O, 2 Gds 0O, 2 Ggs O, 2
Ids 1,0 Gds 1,0 Ggs 1,0
Ids 1,1 1,1

Gas 1,1 Ggs

Ids 15,15 Gds 15,15 Ggs 15,15

Storage of lg,. Gas and G
Figure 6.15

152

6.3.2. Generation of the Voltage-Dependent Pointers

As described in Chapter 4, the data required for a transistor evaluation is dependent
on the values of Vg4s and V.. This dependence is represented by the Vg4s and Vg pointers
introduced in the previous section. This section describes the generation of these pointers

from the given voltage values.

6.3.2.1. Background

There are several methods by which the pointers can be generated. A straightfor-
ward approach is 1o directly map the voltage into a pointer using combinational logic. as
shown in Figure 6.16. The advantage of this approach is that the operation can be per-
formed in one clock cycle. The primary disadvantage to this approach is that the values
of the measured voltages, 16 in the case of the prototype. are restricted to always being
the same value. A change in the value of 2 measured voltages would require a change in

the combinational logic generating the pointer.

A more general approach is to derive the pointer value by doing repeated comparis-
ons of the voltage value with the measured voltages. The voltage value would be com-

pared to the different measured voltages until the valid range is determined. For example,

Voltage-to-Pointer Pointer

voltage
| Logic

e

Direct Transformation of Voltage into a Pointer
Figure 6.16

153

if
Vs 2 Vismeass and Vg < Vasmeasa: (6.4)

the pointer would be 3. This approach is very general. but would require additional
hardware to perform the floating-point comparison and use many additional memory
references in accessing the values of measured voltage from the CM 10 use in the com-

parison.

6.3.2.2. Overview of Two-Step Procedure

A two-step procedure, illustrated in Figure 6.17. is used to generate the voltage-
dependent pointers in the prototype. The floating-point number representing the voltage
is first transformed into a unique offset address. This transformation is performed the
combinational logic within the CM. The offset is then used to access the appropriate

pointer for the transistor model stored in the CM.

The first step in the procedure. the transformation of a voltage into a unique
address. is similar to the direct approach since the transf orxﬁation is "hardwired” directly
into the combinational logic within the CM. Unlike the direct approach. the result is not
a pointer, but an address in the CM containing a pointer. The intermediate address
represents a possible measured voltage. referred to as an allowed measured voltage.
There are 128 allowed measured voltages. and they comprise the set of voltages from

which the 16 measured voltages can be taken.

vds measured € vds allowed (65)

Vgx measured € vgs allowed (6.6)

The pointer stored at this address references the nearest Vs meas{Vgs meas) that does not

exceed Vg (V).

154

Address | ccicient
Memory

Voltage

-to- v
Voltage-to-Address

Logic

Pointer
1 Pointer +—»

Generate Voltage-Dependent Pointers
Figure 6.17

6.3.23. Allowed Measured Voltages

The single-precision, floating-point number representing either Vqs or Vo is mapped
into an address which represents the allowed measured voltage value that is nearest 10
the floating-point number without exceeding it. The format of the floating-point number

is given below.

31 30 23 22 0
Sign | Fxponent | Mantissa |

The most significant bit of the floating-point number is the sign bit, the following 8 bits
store the exponent and the remaining 23 bits store the mantissa. A leading 1 is in;plicit
in the mantissa. giving the mantissa 24 bits of accuracy. Since the data paths and storage
of the MPU is 16-bits wide. the 32-bit wide floating-point numbers are represented by 2

16-bit words.

155

15 14 7 6 0
[ﬁgn | Exponent | Mantissa |

Most-Significant Word

15. 0

Least-Significant Word

The 16 most-significant bits of the floating-pint number. sign bit. exponent field and 7
leading bits of the mantissa are stored in one word, and the 16 least-significant bits of

the mantissa are stored in the other.

The empirical model described in Chapter 4 represents the MOS transistor only over
the range of measured voltages. The set of allowed measured voltages must span a wide
range. allowing a transistor to be represented over a large voltage range. In addition,
exponential variations in transistor current can occur in the device's subthreshold region
of operation. To better represent the subthreshold behavior, the differences between
adjacent measured voltages must be small in this region to better approximate the

exponential behavior by a cubic polynomial.

A further restriction is imposed on the values of measured vollages. As described
in Chapter 4. the inverse .of the difference between adjacent measured voltages must be
calculated exactly since single-precision, floating-point arithmetic is used. As shown in

. Chapter 4, an error in this computation can produce discontinuities in the transistor

characteristics which can result in the nonconvergence of the circuit-simulation program.

The ﬂoating—poim_number's exponent field and the first 4 bits of the mantissa. not
including the implicit leading 1. are used to derive the voltage-dependent component of
the CM’s address. The allowed measured values of V4, and Vg are restricted to be

between 0 and 256 volts.

0.0 € Measured Voltages < 256.0 ' 6.7

156

The total range is divided into eight sub-ranges. and in each sub-range there are 16

allowed voliages. The sub-ranges are given in Table 6.3.

Voltage Sub-Range(volts) | Increment(volts) | Address(Voliage) |
00 S v < 2.0 0.125 111VVVYV

20 S v« 4.0 0.125 000VVVYV

40 S v < 8.0 0.25 001VVVYV

80 S v < 16.0 0.5 010VVVV
160 < v < 32.0 1.0 . 011VVVV
320 S v < 64.0 2.0 100VVVYV
640 < v < 1280 4.0 101VVVV
1280 £ v < 256.0 8.0 110VVVV

Table 6.3

The Address(Voltage) is the lowest 7 bits of the Offset field. The first 3 bits of the
Address(Voltage) specify the range. and the remaining 4 bits(VVVV as used in Table
6.3) represent one of the 16 allowed voltages within that range. The size of the incre-
ments increase as the voltage increases. This results in a fine granularity of allowed
measured voltages at small voltages. and increasing granularity as the voltage increases.
The minimum value of allowed measured voltage is 0',0 and the maximum value of
allowed measured voltage is 248.0. For voliages that are less than 0.0 the combinational
logic generates the Address(Voltage) representing 0.0 volis. and for voltages that are
greater than 24§.0 the combinational logic generates the Address(Vollage) representing

248.0 volts.
For example, over the sub-range
20 € v < 40, (6.8)

the allowed voltages are in increments of 0.125 volts. The allowed voltages and

corresponding Address(Voltage) are given in the following table.

157

Allowed Measured Voliage Address(Voliage)
2.0 0000000 -
2.125 0000001
2.25 0000010
2.375 0000011
2.5 0000100
2.625 0000101

-2.75 0000110
2.875) 0000111
3.0 0001000
3.125 0001001
3.25 0001010
3.375 0001011
3.5 0001100
3.625 0001101
3.75 0001110
3.875 0001111

Table 6.4

In this sub-range the allowed voltages begin with 2.0 volts and continue to 3.875 volts
in 0.125 volt increments. The first 3 bits of the Address(Voltage) component of the
Offset field is 000. the value for the sub-range given in Table 6.3. The remaining 4 bits
~ begin at a value of 0000. corresponding to a voltage of 2.0. For each 0.125 increase in
voltage. the remaining 4 bits are incremented by 1. For a voltage value of 2.7, the com-
binational logic generates an Address(Voltage) of 0000101. This address corresponds to
Lhe allowed measured voltage of 2.625 volts. the aliowed voltage that is nearest to 2.7
wil};out e{ceeding it. [-

The inverse of the difference between adjacent measured voltages. (AV)™!, are pre-
calculated and stored as model data. As stated in Chapter 4, it is necessary for these

values to be exact in order 1o guarantee continuity of the transistor output characteris-

tics. If the floating-point number representing (A V) is an integral power of 2.
AV=1x2" 6.9)
then its inverse, (AV)7L. is
(AvV)y'=1x 2™ | (6.10)

which can be stored exactly by a single-precision. floating-point number. The allowed

l..-‘..__.,, — .

158

measured voltages. as represented in Table‘6.3. allow for the difference between adjacent
measured voltages 1o be equal 10 an integral power of 2. and. therefore. (AV)™ can be
represented exactly. For;xample. if the first measured voliage is 0.0 and the second is
0.25. their difference is 0.25 (272). The inverse of 0.25 is 4 (22). which can be stored

exactly.

6.3.3. Coefficient-Memory Address

The CM's address is 17 bits wide. allowing for the complete addressing of the 128K
bytes of CM. As described in Chapter 5. the address is composed of the Model. Subsec-
tion and Offset fields. The Model field comprises the highest 5 bits. the Subsection field

is the next 2 bits. and the Off set field is the lowest 10 bits.

[Model |[] Subsection || Offset |
16 12 1 10 9 0

Coefficient Memory Address

The 5-bit Model field provides the address for 32 4K-byte sections. Data for a single

transistor model is stored in a 4K-byte section.

The CM functions as the interface between the MMAP and IBM PC-XT. The first
4K-by1e section (Model field set to 00000). as shown in Figure 6