

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ALGORITHMS FOR PIPELINE

SCHEDULING AND SYNTHESIS

by

Srinivas Devadas and A. Richard Newton

Memorandum No. UCB/ERL M86/91

9 December 1986

ALGORITHMS FOR PIPELINE SCHEDULING AND SYNTHESIS

by

Srinivas Devadas and A. Richard Newton

Memorandum No. UCB/ERL M86/91

9 December 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

!

ALGORITHMS FOR PIPELINE SCHEDULING AND SYNTHESIS

by

Srinivas Devadas and A. Richard Newton

Memorandum No. UCB/ERL M86/91

9 December 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Algorithms for Pipeline Scheduling andSynthesis
Srinivas Devadas and A. Richard Newton

Department of Electrical Engineering and Computer Sciences
Cory Hall

University of California. Berkeley. CA. 94720

Abstract

Very little work has gone into the area of synthesizing pipelined data paths from
behavioral descriptions. This paper addresses the problems of pipeline scheduling and syn
thesis.

Given a data flow specification, in contrast to previous approaches, we define a more
general pipeline scheduling problem which involves optimally synthesising a pipeline
schedule under the given cost/performance constraints while simultaneously performing
micro-instruction timing synthesis i.e. deciding on the costs and delays of the micro
instructions, so a given arbitrary function of pipeline execution time and hardware cost is
minimized. The micro-instructions can have discretized or continuous cost-delay tradeoffs
and the algorithm finds the best possible schedule simultaneously fixing the cost-delay
tradeoff point for each micro-instruction.

We present algorithms to pipeline an already existing skeleton data path, adding the
minimal amnnnt of links, buses, registers and arithmetic units for the first time. Pipeline
synthesis on skeleton data paths entails partitioning the micro-instruction sequence
corresponding to the data path into phases. We have developed simulated-annealing-
based and modified Kernighan-Lin partitioning algorithms to solve this pipeline synthesis
problem, given hardware costs and execution time constraints.

Acknowledgements

This work is supported in part, by the Digital Equipment Corporation, the Semicon
ductor Research Corporation, and the Defense Advanced Research Projects Agency under
contract N00039-86-R-0365. Their support is gratefully acknowledged.

1. INTRODUCTION

Pipelining is an essential feature of the computers being designed today. Pipelin

ing implies overlapping of multiple tasks - each computation task is partitioned into

subtasks and each subtask is executed in a clock phase.

Given an input data flow specification, pipeline synthesis involves splitting the

data flow graph into stages, with constraints on the number of stages and stage delays,

so as to optimize for execution time and/or hardware cost. Engineering solutions to

pipeline scheduling given fixed hardware resources have been published[dave75.pate76].

A pipeline synthesis procedure based on scheduling algorithms was first published in

[park86]. SEHWA[park86] generates data paths from data flow graphs along with a-

clocking scheme which overlaps execution of tasks. SEHWA assumes that micro

instructions have fixed delays and costs. It estimates the cost of a pipeline based on the

number of processing units of each type and the number of latches required in the

hardware implementation.

In contrast to SEHWA's approach we define a more general pipeline scheduling

problem incorporating micro-instruction timing synthesis i.e. finding a schedule

of operations simultaneously deciding on the costs and delays of the micro

instructions, so a given arbitrary function ofpipeline execution lime and hardware cost

is minimized. The micro-instructions can have discretized or continuous cost-delay

tradeoffs and the algorithm finds the best possible schedule, fixing the cost-delay tra

deoff point for each micro-instruction.

Many applications may require pipelining an already existing data path into a cer

tain number of pipeline phases. Given a skeleton data path, pipeline synthesis

involves partitioning the micro-instruction sequence into phases adding the

Tr.ii.imal amount of hardware. The extra hardware required could be not only pipe

line latches or processing units but also buses, links and registers. Previous work in

this area[park85] concentrated on minimizing execution time of the pipelined data
paths without regard to hardware costs. Given hardware costs and/or execution time
constraints, we present, for the first time, simulated-annealing-based and modified
Kernighan-Lin partitioning algorithms for optimally pipeline skeleton data paths.

The general pipeline synthesis problem given an input data flow specification is
described in Section 2 along with a heuristic algorithm to solve it. Results using the

algorithm on digital signal processor examples are given in Section 3. Pipeline synthesis
starting from general purpose skeleton data paths is described and solved using simu

lated annealing and modified Kernighan-Lin algorithms in Section 4.

2. A GENERAL PIPELINE SYNTHESIS PROBLEM

2.1. Problem Definition

The input description is a data flow graph G. which describes the computations

tasks to. be performed. Define M = mx. m2 .. mN as the set of micro-instructions

6G and O = ox . o2 ..oz as the set of distinct operators in G. Each ot has a set of

costs ci}. and delays dy. with j = l.Tt. where Tt > 1 is the number of tradeoff

points for each ot. The cy and di} values for each ot are constrained to be monotonic

i.e.

Cjk > Ctf —> dfr < da

and vice versa. For a given pipeline schedule with micro-instruction cost-delay points

fixed, we can the total hardware cost C is given by

c = £ !««.»«

where nu gives the number of units required of each kind (tradeoff point) and each

type of operator. The execution time E for Nj instructions in the ideal case neglecting

resynchr'onization would be

E = {Nj -1 + K) * max (St, . i = 1 . AT)

where A" is the number of stages in the pipeline and Si is the delay of the i th stage.

The Si can be calculated given the schedule and dkl.

Three possibleoptimization problems can be defined.

(1) Cost constrained synthesis: minimize E subject to C ^ Co-

(2) Performance constrained synthesis: minimize C subject to £ ^ £o

(3) Function minimization: minimize / (C J?)

2.2. Global Strategy

Most scheduling problems are NP-complete. The pipeline scheduling problem

addressed in [rama75] was also shown to beNP-complete. The general pipeline schedul

ing problem described in the previous section has an extra degree of freedom and is

thus more difficult to solve. Therefore, heuristic techniques must be used.

In addition to the input data flow description and micro-instruction cost-delay

information, the number of stages in the pipeline may be constrained to lie between

certain values, and a limit can be placed on the maximum stage delay. The maximum

stage delay can be derived from the constraint on £ in the case of performance con

strained synthesis if Nj » K.

The global strategy to the solve the problem is as follows: First, given the mode

of optimization (e.g. cost constrained, performance constrained). the operation delays

and costs are fixed at different sets of values and a number of feasible schedules are

generated. These schedules are passed through amicro-instruction timing optimization

phase where the overall structure of each schedule is not changed but the cost-delay

points for each micro-instruction are massaged for best possible results.

23. The First Stage - Generating Feasible Schedules

Given the mode of optimization. Stage 1 proceeds as follows:

Cost constrained synthesis': The micro-instruction cost-delay points are fixed at

the minimum delay, maximum cost point. A maximally parallel schedule is syn

thesized. If the schedule does not violate the cost constraint, the problem has been

solved, since this is the fastest possible schedule. However, in most cases, the cost of

this schedule will be prohibitively high. Therefore, the schedule is serialized in four

ways:

(a) The delays of micro-instructions in each stage beginning from the first stage are

increased to the myrimiim without violating the maximum stage delay limit. The

process ends when Cschedttle < Co*

(b) Same as (a) but beginning from the last stageand moving upward.

(c) Starting from the first stage, the micro-instructions are serialized till the max

imum stage delay limit is reached, the remaining operations are pushed to the

next stage and the process continues till Cschedult < C0.

(d) Same as (c) except starting from the last stage and pushing micro-instructions

upward.

If a feasible schedule has not been found after (a), (b). (c) and (d). the lowest

cost results from (a) and (b) are processed through (c) and Cd). and viceversa.

Performance constrained synthesis: The process is identical to the cost constrained

synthesis except the procedures (a), (b). (c) and (d) are terminated when

Eschatuu ^ Eq. That is. the cost of the design is reduced to the point where further

reduction violates the performance constraint. If the maximally parallel initial

schedule does not satisfy the performance constraint, no feasible schedule is possible.

/ (C E) minimization during synthesis: each operator cost-delay point in each

micro-instruction ml{ckM). mudkM) (where ok is the operator in m,) is fixed such that

j = M is

MIN{ f (ckJ ,dkj)) over all ;.

A maximally parallel schedule is created with these micro-instruction delays. The

maximally parallel schedule is drawn out using procedures (c) and (d) until further

serialization violates the limit on the maximum number of stages. The feasible

schedules selected are the maximally parallel schedule itself, and serialized outputs

from procedures (c) and (d).

2A. The Second Stage - Optimizing Micro-instruction Timing

The schedules generated by the first step are optimized for micro-instruction tim

ing using critical path analysis as described below.

Each stage in the schedule is optimized separately. In the cost constrained mode,

each stage is optimized for performance without exceeding its initial cost. In the per

formance constrained mode, each stage is optimized for minimum cost, without violat

ing the maximum stage delay limit or the performance limit. In the / (C E) minimiza
tion mode, each stage i is minimized for / (SCj .SEt). where SCt and SE{ are the stage

costs and stage execution times respectively.

The algorithm if no precedence constraints exist between operations in agiven suge is

as follows:

if (stage S is such that no precedence constraints
exist between operations) {

for (o meach operator in S) {

N0 = no. of micro-instructions with operator o
for (i » each operator tradeoff point) {

case A: if (MODE is performance constrained) {

n, » number of processing units required
without violating performance constraints.

OCi = nt * coi

case B: if (MODE is cost constrained) {

m « ma-rimum number of processing units possible
without violating stage cost constraints.

OEt •

case C: if (MODE is / (C E) minimization) {

for (each n, which does not violate
maximum stage limit AND n,- ^ N0) {

calculate OCt and OEx as before.
}
pick n, which minimizes / (OCi •OEt).

}
case A: Select j so OCj is min. over tradeoffs,
case B: Select j so 0£,- is min. over tradeoffs,
caseC: Select j so / (OC, . OE,) is min. over tradeoffs.

}

N.

n.-

However, in the general case, precedence constraints exist. Critical path analysis is

then required for optimization.

if (precedence constraints exist) {

OPTLOOP:
Find critical path P - (mn . mj2.-) through S

optimizePath(P. MODE)
Tag all (mn . m,-2..) as optimized.

Recompute critical path P
if (P unchanged) {

Increase delay of each untagged mj in S for
minimum cost without exceeding delay of P.

)
else {

goto OPTLOOP

The procedure optimizePathO takes a given micro-instruction stream and optim-

izes it for performance, cost or / (C E). It is described below.

procedure optimizePath(P. MODE) {

if (MODE is / (C E) minimization) {
for (each mt in P) {

Fix point j so / (ci} . d-tj) is minimum.
}

}else if (MODE is performance constrained) \

sumjnedianjielay = 0
for (each mi in P) {

find median delay points dm
sumjnedianjielay = sumjnedianjielay + dt

}
for (each m^ in P) {

Ldelayt = d^ * maxjJlowedjielay /sumjnedianjielay
}

Sort mj in P according to increasing
cost slope around median delay point d^.

slack = 0

for (mi in sorted order) {
Pick r so dv < jZacfc + Ldelayt

AND
Jfr+i > jZacfc + Ldelay,

slack = jZacit + Ldelay{ —<f^
}

for (TTij in reverse sorted order) {
while (slack >0) {

if (dfr+i < d^. + slack) {
j£ac£ = slack —<fjr+i + djr
Update r

}
}

}
else if (MODE is cost constrained) {

/* same as performance constrained except the role
of delay and cost is interchanged. */

}

*un

10

11

In most cases, procedure optimizePathO is called only once, since there is usually

one path in the stage which is much more critical than the others, nevertheless to avoid

looping indefinitely around OPTLOOP. if a path P repeats itself the process is ter

minated. After all the feasible schedules have been optimized, the best among them is

selected.

2.5. Resynchronization and Conditional Resource Sharing

Events which break a pipeline are called resynchronization events. Resynchroniza

tion hurts longer pipelines (pipelines with larger number of stages) more than shorter

ones since the time required to start the pipeline up again i.e the set up time

(K -1)* Tdoct is proportional to the number of stages K. The equation for the exe

cution time £ has to be modified to take resynchronization into account. We refer the

reader to [park86] where a general equation for the execution time of a sequence of

tasks, a subset causing resynchronization. has been derived. This equation is used to

calculate £ in our procedures given a resynchronization rate.

Conditional clauses are common in data flow specifications. Sharing processors

between disjoint (mutually exclusive) operations is essential for cost-effective pipe

lines. Conditional resource sharing is incorporated into the scheduling algorithms by

constructing aN* N disjoincy matrix for N micro-instructions after analyzing the

conditional clauses in the input data flow. This matrix is used to test for disjoincy

during the scheduling, if two micro-instructions are disjoint and possess the same

operator, they can be placed on the same time-space point (share the same processor in

12

the same time zone).

3. ILLUSTRATIVE EXAMPLES

Digital signal processors are good candidates for pipelining. The first example is a
textual data flow specification of the processor given in [park86] and is shown in Figure

la. This data flow specification was pipelined assuming fixed micro-instruction (add
and multiply) costs/delays in [park86]. Micro-instruction timing synthesis during

pipeline scheduling, is illustrated by allowing for two adders - a fast adder which
costs 1.5 units and performs additions in 25 ns and aslower adder with acost of 1.0

units and delay of 40 ns. Only one kind of multiplier is assumed to exist with acost

of 2.0 units and a 80 ns delay.

Given latch delays of 20 ns. latency 1. and amaximum suge limit of 100 ns. the

fastest possible schedule given a cost constraint of 25.0 units is shown in Figure lb.

This schedule uses 5 stages, costs 23.5 units and is optimal. The Qaround a set of

operations e.g. stages 1 and 2. implies that all the operations are being performed in

parallel. The two adder units are denoted by +, (slow adder) and +, (fast adder),

both kinds of adders have been used to maximum advantage.

A second example of pipelining a data flow specification with more complicated

precedence constraints and tradeoffs is illustrated in Figure 2. Figure 2a gives the

unpipelined data flow specification, with the tradeoffs for the adders and multipliers

specified as (cost, delay) number sets. Given these tradeoffs, amaximum stage limit of

100 ns. 20 ns latch delay and a latency of 2. the program was asked to find the

cheapest possible schedule with a maximum of 6 stages (performance constrained syn

thesis). The schedule synthesized is shown in Figure 2b. +/ denotes a fast adder and

+, a slow adder (similarly for multiply). Both kinds of adders and multipliers have

been used, again to maximum advantage. Since the latency is 2. resources can be

shared across stages 1 and 2. 3 and 4. 5 and 6 so one +,. two +, . two *, and two *,

wl = vl+v2 w2 = v3 + v4 w3 = v5+'v6 w4 = v7 + v8
w5 - v9 + vlO w6 = vll + vl2 w7 « vl3 + vl4 w8 = vl5 + vl6
xl - vl7 * wl x2 = vl8 * w2 x3 = vl9 * w3 x4 = v20 * w4
x5 =• v21 * w5 x6 = v22 * w6 x7 = v23 * w7 x8 = v24 * w8
yl = xl + x2
y2 - yl + x3
y3 - y2 + x4
y4 = y3 + x5
y5 - y4 + x6
y6 «- y5 + x7
y7 - y6 + x8

(a) DSP data flow specification

[wl - vl +, v2 w3 =v5 +, v6 w5 =v9 +, vlO w7 - vl3 +, vl4]
[w2 - v3 +s v4 w4 - v7 +, v8 w6 =vll +, V12 w8 - vl5 +$ vl6 J

[xl - vl7 * wl x2 - vl8 * w2 x3 =vl9 *w3 x4 - v20* w4
x5 - v21 * w5 x6 - v22 * w6 x7 - v23 * w7 x8 - v24 * w8 J

yl - xl +/ x2
y2 • yl +/ x3
y3-y2+/ x4

y4 - y3 +, x5
y5 - y4 +, x6

y6 - y5 +, x7
y7 - y6 +, x8

(b) Cost constrained pipelining
Fig.l

units are required adding up to atotal cost of 14.0 units. The multiplier in stages 5-6

vl = xl + x2 v2 = x3 + x4 v3 = x5 * x6 v4 = x7 * x8
wl - vl + x3 w2 = v2 + x2 w3 = v3 + x7 w4 = v4 + x6
yl - wl + v3 y2 = w2 + v4 y3 =« w3 + vl y4 = w4 + v2
zl - yl + y3 z2 = yl » y3 z3 - y2 + y4 z4 - y2 * y4
al - zl + x5 a2 « z2 + x6 a3 - z3 + x7 a4 - z4 + x8

+, (1.0.40) +r (1.5.25) /* cost delay tradeoff for + V
*, (2.0.80) */ (3.0.50) /* cost delay tradeoff for**/

(a) Input specification with cost-delay tradeoffs

vl - xl +, x2 v3 - x5 *, x6
vl - x3 +, x4

wl - vl +, x3 v4 - x7 *, x8
w2 - v2 +, x2

w3 - v3 *f x7 w4 - v4 *, x6
y3 - w3 +f vl

yl - wl *f v3 y2 - w2 *, v4
y4 - w4 +y v2

zl - yl +/ y3 z2 - yl */ y3
z3 •• y2 +/ y4
al - zl +/ x5

a2 - z2 +y x6 z4 - y2 *f y4
a3 « z3 +f x7
a4 » z4 +f x8

(b) Performance constrained pipelining
Fig. 2

14

has to be a */ unit since a4 has to be computed after computing z4 in stage 6.

4. PIPELINE SYNTHESIS FROM SKELETON DATA PATHS

4.1. Problem Definition

Pipelining a general purpose data path is a different problem from synthesizing a

pipeline schedule for a data flow specification which is primarily concerned with the

15

number of processing units and intermediate latches required.

Given a skeleton data path which is made up of arithmetic units and registers

interconnected by buses and links and representative of a fixed micro-instruction

sequence, pipeline synthesis would involve partitioning the micro-instruction sequence

into a given number of phases with the minimal addition of hardware.

Hardware resources have to be added during the pipelining step since resources no

longer can be shared across the entire sequence, only across the individual phases

(assuming single micro-cycle phases - resource sharing constraints are different when

the individual phases themselves are made up of multiple micro-cycles as explained in

Section 4.4). Hardware costs and the minimum and maximum limits on the delays of

each of the phases have to be taken into account during the pipeline synthesis step.

The initial micro-instruction sequence representing the skeleton data path

possesses more information than in the data flow case. For example. VI - V3 +V4 in

the data flow case may be expanded to a form

V3 -> linkl -> busl -> link3 -> Aluljnl
V4 -> link2 -> bus2 -> link4 -> Aluljn2
Alul_put -> link5 -> busl -> VI

representing the skeleton data path. Thus shifting the micro-instruction to another ALU

changes interconnect requirements as well and may have far reaching effects on the

number of buses and links required.

We assume hardware costs for links, buses, registers and operators. Using

modified Kernighan-Lin and simulated-annealing-based techniques, we develop algo

rithms for the partitioning of the micro-instruction sequence into a given number of
• • •

phases, with limits on the delays of each individual phase, and with minimal increase

16

in hardware cost.

4.2. Initial Partition

An initial partition of micro-instructions into the given number of phases is con

structed. This initial partition satisfies the constraints on the delays on the different

phases.

Starting from the first phase, micro-instructions are packed into a phase till the

total phase delay exceeds or is equal to the mean delay (mean of the minimum and

maximum limits). During this packing the sequencing of micro-instructions is not dis

rupted. Even if precedence constraints do not exist between two micro-instructions,

they are placed in the same order in the phase as in the initial sequence to keep

resource sharing across time zones intact. Then, a new phase is begun and the process

repeated. This is done for the all the stages.

The cost of this partition is found by enumerating all the distinct arithmetic

operators, registers, links and buses required for each phase and summed over all the

phases.

43. Modified Kernighan-Lin Algorithm

Given the initial partition, a number of micro-instruction moves are made across

phases in an effort to minimize hardware cost. The Kernighan-Lin algorithm[kern70]

was originally proposed for partitioning graphs.

Given a starting configurationof N objects each in Partition A and in Partition B.

the Kernighan-Lin algorithm performs N interchanges across the partition selecting the

two objects (one from each partition) every time which maximize the gain accrued by

the interchange. This gain can be negative however. The cost function is evaluated at

the end of each move and stored. After all the moves have been made, the best

17

configuration seen across the entire set of moves is chosen as the starting point for the

next iteration. The process is terminated if an iteration fails to improve the cost func

tion.

For the pipeline synthesis problem, we propose a modified version of the algo

rithm described above. Given an initial two-way partition of micro-instructions. NA

and NB . a subset of micro-instructions MA and Mb are chosen from NA and Nb .

Let MA be the set of all micro-instructions which have no children in the data

flow graph (DAG) representing the micro-instructions in partition A i.e. NA. Similarly

let MB be the set of all micro-instructions which have no ancestors in the DAG

representing the micro-instructions in partition B alone i.e. NB. Precedence constraints

may exist between micro-instructions in MA and MB. Starting from the*initial

configuration, the gains accrued due to all possible displacements ofm 6MA from A to

B which do not violate the precedence or delay constraints are calculated, and alternat

ing with each Ato Bdisplacement, the maximal gain micro-instruction displacement of

m €MB is tried from Bto A. The hardware cost is evaluated after each move and the

best possible configuration stored. This serves as the starting point for the next itera

tion. The number of trials in each iteration is bounded by MA + MB. but is typically

less. The process terminates when an iteration fails to improve the cost.

The process just described is done for all sets of consecutive phases i.e. 1and 2. 2

and 3 and so on.

4.4. Simulated Annealing Based Algorithm

Simulated annealing[kirk83] is a general combinatorial optimization technique

which draws an analogy to the physical cooling (annealing) process in materials. It has

proved to be an effective solution for a variety of optimization problems involving a

large number of degrees of freedom and a large number of variables. The LSI cell

18

placement problem has been effectively solved using simulated annealing[sech85] as
has the PLA folding problem[deva86].

Simulated annealing is characterized by a random generation of new states: it

allows hill-climbing moves during the optimization process, i.e. a move may be

accepted with a finite probability even if increases the cost of the configuration. A

parameter analogous to temperature in the physical annealing process governs the

acceptance of these moves, which is less and less likely at low temperatures.

The main features of a simulated-annealing-based algorithm are the generation of

states and the cost function. In this case, the cost function is the hardware cost

required for a given configuration.

The generation of states proceeds as follows:

(1) A phase is randomly picked. If it is not the first or last phase a random number

between 0 and 1 is generated. If the number is < 0.5 the phase before it is picked

as the second phase, else the phase after it is picked. In the case of the first and

last phases a single choiceexists.

(2) Given the two consecutive phases, with the micro-instructions in them, a ran

domly picked micro-instruction in the no-descendant list of the phase ahead in

time is displaced to the following phase if it is still placed in the original phase

and if precedence constraints and delay constraints are not violated, else a ran

domly picked micro-instruction in the no-ancestor list of the latter phase is dis

placed to the former, again only if precedence and delay constraints allow the

displacement.

At each temperature point, moves equal to an integer multiple of the sum total of

the no-ancestor and no-descendant micro-instructions for each phase (typically 1-10)

are generated, after which the temperature is decreased to a fraction (typically 0.90) of

its original value. The annealing process is terminated when the cost does not change

19

for four temperature points.

4.5. Micro-cycles Within Phases

In the general case, an individual phase may be made up of several micro-cycles.

Assume a data path whose clocking scheme comprises of N phases with M micro-

cycles in each phase. Given ahardware resource (bus. link, register, arithmetic unit) in

[phaset ,micro -cyclek] the same cannot be re-used in [phasej . micro -*cyclek],

j ^i. However, it can be re-used in a different micro-cycle in a different phase i.e.

[phasej . jnicro -eyelet], j &i and I ^ k.

The overall structure of the algorithms described in Sections 4.2 and 4.3 remains

the same for the case of multiple micro-cycles as well, however the hardware cost cal

culations should take into account the new set of constraints on resource sharing.

4.6. An Example

We now give an example which illustrates how a skeleton unpipelined data path

can be pipelined with the minimal addition of hardware resources using the algorithms

described in this section.

Figure 3a shows a optimized code-sequence and the corresponding unpipelined

data path is shown in Figure 3b. Suppose we want to pipeline this data path into two

phases so as to increase throughput by a factor of 2. An initial partition is chosen near

the middle of the sequence between micro-instructions 6 and 7. Given that resources

cannot be used across phases, the pipelined datapath corresponding to this description

requires an ALU with the arithmetic operations and. +. -. and * for the first phase and

an ALU with the operations or.-. + and / for the second phase. With this partition. 8

registers are required for the first phase, namely, vl. v2. v3. v4. v5. v6. v7 and vll. 9

registers are required for the second phase, vl'. v2*. v3\ v5\ v7\ v8. v9, vlO and vll*.

20

In all 17 registers are required as compared to 11 in the unpipelined data path. Values

have to be passed across phases between the 6 registers pairs (vl. vl'). (v2. v2'X (v3.

v3'). (v5. v5'). (v7. v7*) and (vll. vll').

This initial partition can be improved so as to minimize the amount of hardware

required. Micro-instructions 5 and 6 in phase 1. and micro-instructions 7. 8, 9. 10and

11 in phase 2 are identified as being those with no descendants and ancestors respec

tively in their corresponding phases. Applying the modified Kernighan-Lin algorithm

l\
4

r)
ALU

3L

vl

(1) v3 = vl + v2 (2)vll-vl
(3) v5-v3-v4
(4) v2-v3*v6
(5) v3-v3 + v5
(6) v7 - vl and v7
(7) v8-v8-v5
(8) v9-v9orv7
(9) v2-vl + v2
(10) v5 - vlO / v5
(ll)vl-v3and v5
(12) v2 - vll or v2

(a) Code Sequence

~7R

v2 v3 •4 v5 v6 v?

7TC 7TC

v8 v9 vlO

7|C T7K 7FT >1C 7K

\l/l \U \l/ \l/l \l/ L^

(b) Unpipelined Data Path
Fig. 3

/\

vll

produces a new partition of micro-instructions into two phases which is shown in Figure

4a. The corresponding data path is shown in Figure 4b. The improved partition requires an

ALU in the first phase for +. - and * operators, and an ALU in the second with and. or

and / operators, a total of 6 operators as compared to 7 in the initial partition. A total of

16 registers are required (as compared to 17 in the initial partition) in the two phases.

Values have to passed across phases between 5 register pairs instead of 6 as in the initial

partition. Thus the number of required arithmetic operators, registers and links has been

minimized.

5. CONCLUSIONS

We have presented new algorithms for pipeline scheduling and synthesis from

behavioral descriptions. These problems have been proven to be NP-complete and we have

developed heuristic algorithms which achieve near optimal results.

Given a data flow specification, in contrast to previous approaches, we have defined a

more general pipeline synthesis problem involving micro-instruction timing synthesis and

presented a heuristic solution which achieves excellent results.

Given a skeleton unpipelined data path, we have presented, for the first time,

simulated-annealing-based and modified Kernighan-Lin partitioning algorithms to pipeline

the data path adding the minimal amount of hardware, namely registers, arithmetic units

and interconnect.

6.REFERENCES

[dave75]
E. Davidson et. al. "Effective Control for Pipelined Computers , COMPCON Digest,
pp 181-184.1975.

[deva86]
S. Devadas and A. R. Newton. "GENIE: A Generalized Array Optimizer for VLSI Syn
thesis". Proceedings of the 23rd Design Automation Conference. July 1986.

[kern70]
B. W. Kernighan and S. Lin. "An efficient heuristic procedure for Partitioning
graphs" The Bell Syst. Tech. journal 49:2. pp 291-307.

^

r*

\s

^k.

TTT

vl

/"\

*L

vl*

(1) v3 = vl + v2
(3) v5 = v3-v4
(4) v2 = v3 * v6
(5) v3 = v3 + v5
(7) v8-v8-v5
(9) v2 = vl + v2

(2) vll =• vl

(6) v7 - vl and v7
(8) v9»v9orv7
(10) v5 - vlO / v5
(11) vl = v3 and v5
(12) v2 - vll or v2

(a) Partitioned Code Sequence

"5TT

v2 v3

7FT

v4 v5 v8

"Pis

Vd.

I

2k

v2'

7N

J^

^te-

"/Tv

M

v3'

TTv

vkl.

I

v5*

^L

(b)'Pipelined Data Path
Fig. 4

^ki

"TN

"TTT

v8

"7^"

"7TT

vd

~7F

vlO

^-

vll

"/FT

^

vll'

[kirk83] a „ , J
S. Kirkpatrick. C. D. Gelatt. and M. P. Vecchi. Optimization by Simulated
Annealing" .Science. Vol.220.N. 4598. pp671-680.13 May 1983

[park85] . ^
N. Park and A. C. Parker. "Synthesis of Optimal Clocking Schemes . Proceedings of
the 22nd Design Automation Conference. June 1986.

[park86] .
N. Park and A. C. Parker. "SEHWA: A Program for the synthesis of pipelines .
Proceedings of the 23rd Design Automation Conference. June 1986.

[pate76]
J. H. Patel and E. S. Davidson. "Improving the throughput of a Pipeline by the inser
tion of delays". IEEE/ACM 3rd Annual Symposium on Computer Architecture, pp
159-163. 1976.

[rama75]
C. V. Ramamoorthy and H. F. Li. "Some Problems in Parallel and Pipeline Process
ing". Proceedings of COMPCON. IEEE, pp 177-180. 1975.

[sech85]
C. Sechen and A. Sangiovanni-Vincentelli. "The TimberWolf Placement and Routing
Package". IEEE Transactions onCircuits and Systems, April 1985.

	Copyright notice1986
	ERL-86-91

