

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ALGORITHMS FOR HARDWARE ALLOCATION IN DATA

PATH SYNTHESIS

by

Srinivas Devadas and A. Richard Newton

Memorandum No. UCB/ERL M86/92

9 December 1986

ALGORITHMS FOR HARDWARE ALLOCATION IN DATA PATH SYNTHESIS

by

Srinivas Devadas and A. Richard Newton

Memorandum No. UCB/ERL M86/92

9 December 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720
•

ALGORITHMS FOR HARDWARE ALLOCATION IN DATA PATH SYNTHESIS

by

Srinivas Devadas and A. Richard Newton

Memorandum No. UCB/ERL M86/92

9 December 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Algorithms for Hardware Allocation in Data Path Synthesis
Srinivas Devadas and A. Richard Newton

Department of Electrical Engineering and Computer Sciences
Cory Hall

University of California, Berkeley, CA. 94720

Abstract

The most creative step in the synthesis of data paths from behavioral descriptions is
the hardware allocation process. New algorithms for the simultaneous cost/resource con
strained allocation of registers, arithmetic units and interconnect in a data path have been
developed. These algorithms are based on novel formulations of the hardware allocation
problem. For example, the register allocation problem is shown to be identical to the PLA
multiple folding problem. The entire allocation process has been formulated as a two-
dimensional placement problem of micro-instructions in space and time. This formu
lation readily lends itself to the use of a variety of heuristics for actually solving the allo
cation problem. We present both simulated-annealing-based and exact branch-and-bound
algorithms which optimally solve this two-dimensional placement problem thus optimally
synthesizing a data path. Unlike previous approaches to automated data path synthesis,
these algorithms operate under a wide variety of user-specifiable constraints on
hardware resources and costs, incorporate conditional resource sharing, simultane
ously address all aspects of the allocation problem, namely register, arithmetic unit and
interconnect allocation, while effectively exploring the existing tradeoffs in the design
space.

Acknowledgements

This work is supported in part by the Digital Equipment Corporation, the Semicon
ductor Research Corporation, and the Defense Advanced Research Projects Agency under
contract N00039-86-R-0365. Their support is gratefully acknowledged.

1. INTRODUCTION

The goal of behavioral synthesis is to produce register-transfer (RT) level
hardware designs from an architects! description of acomputer or to produce an RT
design which implements agiven program described in ahigh level language in
hardware. Significant effort has gone into the development of techniques for
automated data path svnthesis[thom83.tric85] in recent years. However, even now.
effective and versatile procedures are not available.

initial work to tackle this problem included the development of amathematical
m0del for the data path[hafe8l] to describe the conditions and relationships to be
satisfied. Mixed integer-linear programming techniques were used. Unfortunately, even
for very small specifications the cost of generating adesign exploded rapidly.

The expert system approach was taken in the DAA[kowa83.kowa85] system.
Design rules were collected, and based on these design rules arule-based data memory
allocator was developed. As is the case with most rule-based techniques, only local
optimization was possible and extensive changes could not be made to the input
description to attain aglobally optimal solution. Similar problems afflicted the alloca
tors described and implemented in [mcfa78,hitc83].

Amore global algorithmic approach to the allocation problem was first taken in
[tsen83]. FACET is aautomatic data path synthesis program which minimizes the
number storage elements, data operators and interconnection units. However. PACE!
performs these steps sequentially and independently of the following task(s). Design
tradeoffs are thus not explored.

The data path synthesis techniques so far published in the
Uterature[thom83.park86] do not Incorporate conditional resource sharing^

^Conditional resource sharing has been addressed for apipeline synthesis P»M—

the allocation process i.e. sharing hardware resources between d.^nt operations. For
example, the allocation techniques used in the CMV-DA PrOJect[park79]. namely
EMUCS. DAA and FACET operate on VT[snow78] basic biccks with asingle entry and sm-
gle exit point. Most previous techniques^JntcSS] attempt local modifications of
the input description and perform the various subtasks sequentially.

We formulate the hardware allocation problem in automatic data path synthesis
as atwo^imensional placement problem of micro-instructions in space and time.
The problem we solve is to synthesize adata path corresponding to the input data flow
specification such that agiven arbitrary function of execution time and hardware cost.
, (r C). is minimized. The hardware cost, are the sum total of the costs associated
with registers, arithmetic units, buses and links in the data path. Agiven placement of
micro-instructions corresponds to aunique data path with acertain hardware cost and
execution speed. Optimal conditional resource sharing is achieved by solving a
constrained three-dimensional placement problem where «*tt instructions are
allowed to occupy the same spatial and temporal location. Given a data flow
specification, we present algorithms which find an optimal placement of nncro-
instructions. thus determining the spatial and temporal delineation of resources and
producing an optimal data path configuration.

We present the formulation of the data path synthesis problem as that of two-
dimensional placement of micro-instructions in Section 2and discuss modifications to
incorporate conditional resource sharing. Given this formulation, simulated-annealmg-
oased and exact branch-and-bound algorithms to solve the allocation problem are
presented in Sections 3and 4respectively. Results and illustrative examples along

with possible applications to compiler optimization are presented in Section 5.

2. THE HARDWARE ALLOCATION PROBLEM

2.1. Introduction

The input to our behavioral synthesis system is apurely architectural description
of the machine in the specification language. This description contains no information
about the implementation. The first step is to synthesize the data path corresponding
to that description. The synthesized data path corresponds to the architectural
specification and is askeleton of the final data path which corresponds to the imple
mentation.. After the data path synthesis step, additional hardware for pipelining,
clocking etc is added and the control is synthesized.

This section describes the algorithms used in the allocation process which take the
architectural description of the machine and automatically synthesize the data path
corresponding to that description under hardware constraints and costs.

Given aprogramming language like description of amachine and hardware costs,
the goal of this step is to synthesize adata path which minimizes agiven arbitrary
function of execution time. Tand total hardware cost. C. namely / <J .C).

2.1.1. Input Description

The architectural description in the specification language is converted into acode
sequence where parallelism, sequentiality and disjoincy (mutually exclusive opera
tions) are explicitly stated. The serial blocks are due to the dependences associated
with any description. Disjoincy is a result of the conditional clauses in the input
description. An example of an input sequence is shown in Figure 1. with serud. paral
lel, and eior blocks, which are the means of representing sequentiality. parallelism and

disjoincy respectively.

(serial
(parallel

(add xl yl zl)
(add x2 y2 z2)

)
(parallel

(mult zl y3 z3)
(minus z2 y4 z4)

)
(eior

(divide z3 x3 z5)
(divide z4 x4 z5)

)
)

Fig. 1 Input Description

Data path synthesis involves the specification of data and control flow, register
allocation, arithmetic unit allocation and interconnection unit allocation. The con
straints imposed on the synthesis are mainly hardware constraints, limitation on the
number of ALUs for instance.

Any algorithm can be easily transformed into arepresentative data flow graph.
The nodes in the data flow graph correspond to arithmetic operations and the edges to
signals. The problem now is to transform the data flow graph into afunctionally
equivalent representation but which satisfies the constraints on the hardware. This
transformed graph should produce asequence of operations/blocks which is the
optimal sequence under the hardware constraints. The various interconnections «. the
transformed graph have to be realized in hardware. For example, given an ADD
micro-instruction vl =v2 +1»3 the interconnections between registers vl.v2 and v3
to the arithmetic unit +l being used are implicit in the micro-instruction. Buses are
vitally important as shared resources. The bus allocation problem thus has to be

optimally solved.

2.2. Asubproblem

We first define and solve asubproblem in the allocation process which is as fol-

lows:

Given acode sequence with singly-assigned variables and precedence constraints
between operations, assign the code-operations to Malus so agiven arbitrary function
of the number of registers required. Nr, and the execution time. T. fWrX). *
minimized.

Amaximally parallel description would use lots of registers but would execute
the fastest. Acompletely serial description would require aminimal number of regis
ters but would be slow. An algorithm based on clique partitioning was
developed[tsen83] optimizes the number of registers M . ** coae-se.uence. our
goal is to find the optimal sequence under the given conditions, and this entails an
extra degree of freedom.

Given acode-sequence the life-times of all the variables can be calculated. The
life-time of asingly assigned variable is the duration between its assignment and last
use. The number of registers required would be proportional to the overlap of the live
periods of the singly-assigned variables, or to put it differently, the number of regis
ters required is the nurtrrul density of variable life-times across the entire sequence.
This is illustrated in Figure 2.

Disjoint variables are those whose life-times do not overlap. The allocation of
registers to singly-assigned variables is finding the best possible grouping of disjoint
variables in sets so the number ofsets is minimized.

However, there is freedom in the ordering of the code-operations as long the pre
cedence constraints are not violated and the constraint on the number of processing

(add vl v2 v3)
(mult v3 vl v4)
(minus v2 v5 v6)
(inc v4 vl)
(dec v6 v2)
(divide vl v2 v5)

vl v2 v3 v4 v5 v6

maximal density = 5

I

Fig. 2 Densities of Variable Life-times

units is satisfied. This reduces to the PLA multiple folding problem, which tries to

find an ordering of the rows (which correspond to the code-operations) under certain

ordering constraints (constraints due to dependences and processors) such that the
maximum number of disjoint columns (each column corresponds to the life-time of a

variable) can be coalesced (the maximal number of variables can be merged). In the

case of minimizing a function of execution time. T. and the number of registers. Nr.

i.e. / (T Mr). what were are trying to find is an optimal aspect ratio ofthe PLA.

The PLA folding problem has been effectively solved using graph

heuristics[demi83]. simulated annealing[deva86] and exact branch and bound

techniques[egan84]. These techniques can be used to solve the problem of register allo

cation as well. However, this formulation is merely representative of one part of the

entire data path synthesis process which will now be discussed.

23. Formulation of the Entire Data Path Synthesis problem

Our approach to synthesize a data path is to give a general procedure which

minimizes a given arbitrary function of execution time and hardware cost. The entire

cost of a data path can be represented as:

C = pi * (#o£m) +p2 * (execjime) +p3 * {^register) +pA * (#bus)
Aprocedure which minimizes C under constraints would optimally synthesize a data

path.

This can be formulated as aplacement problem of code-operations in two dimen
sions, that of space and time. Agiven spatial and temporai placement of code-
operations represents adata path, and has aunique cost C. We construct atwo
dimensional grid where each vertical slice corresponds to aprocessing unit/ALU and
each horizontal slice corresponds to atime slot as shown in Figure 3. Code operations
are placed in grid locations corresponding to aALU and time slot under precedence
constraints due to the dependences associated between them. Nets connect the
occurrences of variables in the code operation and also connect variables to arithmetic
units in corresponding slots. The internal position of the variable in the code operation
is also specified, for e.g. in abinary ADD avariable can be in the first or second posi-
tions for a given configuration.

The execution time is directly related to the number of occupied horizontal time
slots. The horizontal time slots may be of different widths, the widths would be pro
portional to the delays corresponding to the code-operations occupying that slot.

The number of processing units is directly related to the number of occupied
vertical space slices. The operations that agiven processing unit has to perform
depends on the operators occupying the grid locations in its corresponding vertical
space slice. Aprocessing unit may be simply an incrementer. or may be acomplex

SPACE/TIME

TIME1

TIME2

TIME3

ALU1

(add xl Vl zl)
(minus zl x2 kl)

(or kl z2 11)

ALU2

(mult x2 y2 22) (equal x3 z3)
(divide z2 xl k2)

ALU3

(inc k2 12)

Fig. 3 2-Dimensional Grid of code-operations

10

ffoating point unit capable of muUipiy.add and divide operations. Thus the formula
tion takes into account the grouping of arithmetic operators into processing units.

necti„g occurrences of avariable is arepresentation of the life-time of the variable, and
the maximum density of lifetimes of variables across the schedule is the number of
registers required to realize the variables as illustrated in Figure 2.

The interconnect/bus relationship to the physical entities of nets and code opera
tions is more difficult to formulate. Obviously the number of registers
weakly related to the number of interconnections required. However, other measures
of interconnect complexity can be obtained from the staler of the nets in this formu
lation. The stagger of the nets implies the connection of registers to more than one
ALU The more staggered anet. the more the number of ALU, the variable (and even
tually the register) that it feeds into. The stagger of nets treated as separate entities

different ALU's may be coalesced into the same register. This register will then need
to feed into many ALU", Only variables which are disjoint can be coalesced into the
same register. However. *. staler of nets ^een disjoint variaHes is agood indicator
of interconnect complexity at any stage. The net stagger is further refined by the posi
tion information of the variables within the code operation. The position information

ALU.

Aside from interconnect cost, agood measure of the number of buses required
given aschedule is the maximum number of distinct sources and number of sinks in
all the time slots (which is an indicator to the number of parallel data transfers
required). So. even if all the registers have been previously allocated, the tradeoffs

11

between execution time and interconnections can be made. In the general case, execu
tion time can be traded off against the number of registers, processing units and inter-

connections.

The cost function has been defined in terms of the above mentioned quantities.
The problem is therefore to find aglobal placement of code operations in the grid loca
tions under the dependence constraints, and aplacement of variables within the code
operations which minimizes the cost. Then the variables can be coalesced into registers
and the interconnections into buses.

Some variables like arrays for instance may need to be in memory. If they are
accessing them potentially takes longer. There is atradeoff between reducing the
number of registers by allocating variables to memory locations and increasing the exe
cution time. This tradeoff too can be explored if necessary.

To actually solve the problem, we can use various techniques for solving the
placement problem. Two approaches have been taken. Asingle simulated annealing
phase which produces excellent results is described in the Section 3. The optimal global
placement of code-operations can also be found using an exact branch and bound
scheme which is described in Section 4.

2.4. Hardware Costs

Acost file specifies the cost of hardware resources and operators. It is very gen
eral. Different costs can be specified for each succeeding register or sets of succeeding
registers. e.g. first four registers cost xunits, next three , units and so on. Similarly
the execution time cost and the interconnect costs can be specified as apiece-wise linear

or a non-linear function.

ALU operations have costs associated with them, so the algorithm can take care
of grouping of operations as well during the optimization step. A floating point

12

multiply may cost 250 units as compared with amere 20 units for aincrement opera
tion. An example cost file is shown in Figure 4.

2^. Conditional Resource Sharing

Conditionals can be introduced into the algorithm, unlike other allocation algo
rithms. This is done by defining disjoincy between statements. For example, the THEN
and ELSE clauses in aIF statement are disjoint. Disjoint statements can exist on top
of each other on the same time-space slot. The algorithm takes into account this
disjoincy and finds aoptimal schedule for the code sequence with an arbitrary number
of conditional clauses.

cost of different operations in a ALU
ALU
add 50
f add 100
mult 250

register costs
REGISTER . ^10lin:to# starting from register 1. each register has cost 10 units
#̂ ing from register 5. each register has cost 15 units
5 15

execution time
EXECUTION
150
50 50

interconnect
INTERCONNECT
15
10 10

Fig. 4 Example Cost File

13

Placing operations on the same time-space slot amounts to condition.! resource
sharing. Many forms of conditional resource sharing are possible. The co-existence of
two ADD operations on the same grid location implies that the two operations are
sharing an adder since they are mutually exclusive. If two operations which share a
common variable exist on the same location, aregister is being shared by .the two dis
joint operations, and it will store information dependent on conditional clauses.

The problem thus becomes more like a3-Dimensional placement problem with
constraints in the third dimension as to what statements can exist on the same time
and spacecoordinates.

3. ASIMULATED ANNEALING BASED SOLUTION

3.1. Introduction

Simulated annealing[kirk83] is general combinatorial optimization technique
which has been used on avariety of NT-complete problems involving alarge number of
variables and degrees of freedom. It belongs to ageneral class of algorithms called
Probabilistic Hill Climbing (PHC) algorithms[rome85].

Theoretical results exist[rome85] that simulated annealing asymptotically
approaches the global optimum of the configuration space. It has proved to be an
effective solution to the cell placement problem in « layoutslsech85]. to the general
ized array optimization problem[deva86] and the global routing problem[vecc83].

The two most important things in any simulated-annealing-based algorithm are
the generation of new states during the annealing process and the cost function to be
optimized for. The generation of states and the cost function together determine the
quality of solutions which can be obtained.

These two aspects of the simulated-annealing-based algorithm for the allocation

14

problem are described in detail in the rest of the section.

3.2. Generating New States

New states are generated during the annealing process in three different ways.

(1) Interchanging two code-operations

(2) Displacing acode-operation from one location to another.

(3) Interchanging the variables in asymmetric operation (e.g. ADD).

Moves (1) and (2) have to satisfy certain constraints, namely the precedence con

straints between operations cannot be violated by such amove, and operations on the

same time-space slot have to be disjoint.

The generation of states proceeds as follows:

(1) Two numbers are randomly generated, the first between one and the number of
operations, the second between one and the number of operations times acertain
quantity (typically 5).

(2) If the second number is less than the number of operations, an interchange of the
two operations is Uied. If the interchange violates any constraint, and either one
of the operations happens to have asymmetric operator, the variables in that

operation are interchanged.

(3) If the second number is greater than the number of operations, anew location for
the first operation is randomly generated, and the operation is displaced to the
new location if the displacement does not violate the before-mentioned con-

straints.

During the end of the annealing process i.e. at low temperatures to generate states
which are more likely to be accepted, the generation of states takes adifferent form.

15

(1) This step is identical to the first step in the previous sequence.

(2, If the second number is less than the number of operations, an interchange
between the first operation and the operation immediately to the left or right is
Uied. If one direction fails, the other is tried. If both fail, avariable interchange is

tried.

(3) If the second number is more than the number of operations, adisplacement of
the first operation to the immediate left or right in the same time slot, immedi
ately ahead or behind in the same space slot is tried in randomly generated order.

33. The Cost Function

^ cost function should be representative of the hardware and execution time
cost function C (Section 2) which is to be optimized for.

The total execution time required for the entire sequence is one part of the cost

function.

The number of registers required in hardware is given by the maximum density
of „ets (which connect occurrences of variables) across all the time slots. The number
of registers required is part of the cost function.

For each space slot, the sum of the costs of all the distinct operators required is
found. The sum of all these costs is the processor cost constituent of the cost function.

interconnect cost is estimated by estimating the number of links and buses
required in hardware. The stagger of nets between disjoint variables is good indicator
of link cost, The number of buses required is estimated by calculating the maximum
number of distinct sources and number of sinks in all the time slots, since this is a

16

good indication of the number of parallel data transfers required.

3.4. Hardware Resource Constraints

Hardware resource constraints, (e.g. limits on the number of ALU's or registers)
can easily be incorporated into the simulated annealing based algorithm by penalizing
configurations which violate any of these constraints. Apenalty is added to the cost of
such aintermediate configuration and is sufficiently high so as to ensure that the final
solution satisfies all the constraints.

3.5. Stopping And Inner Loop Criteria

The number of states generated per temperature point is acertain integer multiple
of the number of code-operations (typically 1-10). The temperature is lowered to a
fraction (typically 0.90) of its original value after each temperature point. The
sealing process terminates when the cost function has not changed value for three
temperature points.

4. ASOLUTION BASED ON BRANCH AND BOUND

4.1. Introduction

An exact algorithm for the solution of this problem using abranch and bound
technique is described. Various heuristics have to embellish the basic technique, so as
to minimize cpu time requirements.

Scheduling algorithms for TT processors using branch and bound exist, but this
problem is much more difficult because (1) the number of processors is variable and
(2) the cost function is not merely the execution time, but also the number of regis-

17

ters. interconnections, alu's etc.

4.2. Generating All Configurations

Generating all the possible configurations recursively is accomplished using the
procedure described below. Arow corresponds to atime slot and acolumn corresponds
to an arithmetic unit.

searchO

I

for(all instructions which can be scheduled) {

if (currjnst disjoint to inst[currjrow,curr_col] AND

currjnst satisfies precedence constraints for all inst[curr_row]) {
schedule currjnst at curr_row.curr_col

continue search;

}

if (currjnst satisfies precedence constraints for inst[currjow]) {
schedule currjnst at curr_row. curr_col +1

continue search;

}

schedule currjnst at curr_row+l.l

continue search;

}

18

Abranch and bound technique is viable since the precedence constraints are typi
cally tight, and thus the search space can be restricted. The technique implemented
finds the optimal configuration, which minimizes the total cost of registers, alu
operations/ALU's, and buses/interconnections. The number of required registers is cal
culated as in the simulated annealing case. The cost of ALU operations, is found by
summing up the distinct operations for each ALU. and then summing the ALU costs. The
interconnection requirement for agiven configuration is calculated identically to the
simulated-annealing-based solution.

Lower bounds on costs are calculated at each step. The lower bound on the maxi
mal density of registers is estimated over the entire time slots even for incomplete
configurations by assuming the following sequence to be maximally serial. The lower
bound on execution time corresponds to the addition of the present execution time plus
the execution time of amaximally parallel following sequence. The lower bound on
processor cost is calculated by assuming amaximally serial following sequence, with
the most optimistic grouping of operators. If at any time the present cost of the
configuration exceeds the cost of best solution found thus far. the search is terminated.

Hardware resource constraints are incorporated into this branch and bound based
algorithm by terminating the search for asolution along any branch which violates
any of these constraints.

The freedom offered by symmetric binary operations is exploited after this step.

19

by a second optimization step.

5. EXAMPLES, RESULTS AND APPLICATIONS

We use the code-sequence in [tsen83] as our first example. The input file is
shown in Figure 5. The entire sequence consists of an impUc block which implies that
data dependences are derived by the program and have not been explicitly stated. Each
operation is written in alisp-based syntax with the operator as the first argument and
the result the last. The INITIAL and FINAL declarations imply that the following
variables are live in the beginning and the end of the sequence respectively. The SYM
METRIC declaration enumerates all the operations whose operands are interchangeable.

In the first run. (using the simulated-annealing-based algorithm) the costs of
arithmetic operations were >50 units, each register cost was 10 units, each link 10
units and execution cost per time slot was fixed at 5units. Execution speed was thus
given alow priority in this run. The optimization produced aserial sequence shown in
Figure 6a. which needs 8cycles to execute. Cpu time required for the simulated
annealing run was 2minutes on aVAXstation-II. The exact branch and bound algo
rithm verified that this was the optimal sequence given the hardware costs in about 10
cpu minutes. The data path synthesized after bus allocation is shown in Figure 6b. It
consists of 8registers. 1arithmetic unit. 15 links and 2buses. The minimal number of
registers and interconnections have been used.

Bus allocation is done after the code-operation placement using algorithms similar
to ttsenSll. However during the placement the amount of interconnect required is cal
culated at every stage and minimized as described earlier. We have assumed that the
data transfers for every micro-instruction (op V. Vh Vc)look as follows while per-

forming bus allocation:

Vfl->link->bus->link->AXi/m 1 V6->link->bus->link->AL£/m2

ALUout -> link- >bus->link- >Vc

(implic
(add vl v2 v3)
(minus v3 v4 v5)
(mult v3 v6 v7)
(add v3 v5 v8)
(add vl v7 v9)
(divide vlO v5 vll)
(equal v3 vl3)
(equal vl vl2)
(and vll v8 vl4)
(or vl2 v9 vl5)
(equal vl4 vl)
(equal vl5 v2)

INITIAL vl v2 v4 v6 vlO
FINAL vl v2 v4 v6 vlO
SYMMETRIC add mult or and

Fig. 5 Input File for example from [tsen83]

20

The two input transfers to the ALU are required to occur in parallel. If in fact, we are
allowed to make the two input transfers to an ALU in sequence one can synthesize a
data path for this example with only one bus.

The freedom in being able to arrange symmetric operands in order to minimize
interconnect has been exploited by the program. If that had not been done more than
two buses would have been required.

Figure 7a shows the placement of code-operations produced by the program given
ahigher execution time cost than in the previous case, that of 50 units, with the
register/ALU/interconnect cost unaltered. Note that the placement is such that opera
tions in the two ALU's have no operators in common -an optimal grouping. Figure 7b
shows adata path corresponding to the code-sequence in Figure 7a again with abus-
style design. The cpu time required for synthesis was about 3 minutes on a
VAXstation-n. For two micro-instructions in the same time slot, all the ALUin

"7N

ALU
n

J^_

(add vl v2 v3) I (equal vl v!2;
(minus v3 v4 vll)

(mult v3 v6 v2)
(add v3 vll v3)
(add vl v2 v2)

(divide vlO vll vll)
(and v3 vll vl)
(or v!2 v2 v2)

(a) Code-sequence after2-D placement

•1 •2

"7N

v3

"7PT

v4 •11

y^ ^t/

(b) Synthesised Bus-style Data-Path.
Fig. 6

21

-7TC

ve •10 Tl2

^k-

transfers are assumed to occur simultaneously, and all the ALUout transfers together.
fa the data path shown four buses are required. If ti* constraint of simultaneous
input/output transfers to all ALU sis relaxed fewer buses will suffice.

Unlike previous approaches to data path synthesis, our approach incorporates
conditional resource sharing during the allocation process, treating the problem as one
of 3-D placement with constraints in third dimension as to what code-operations can
exist in the same time-space slot. We now give an example with conditional clauses in

the input description.

(add vl v2 v3)
(minus v3 v4 v5)

(add v3 v5 v3)
(add vl v2 v2)
(add v!2 v2 v2)

(equal vl v!2)
(mult v3 v6 v2)

(divide vlO v5 v5)
(divide v3 v5 vl)

(a) Code-sequence after 2-D placement

(b) Synthesised Bus-Style Data-Path.
Fig. 7

22

The input code-sequence is shown in Figure 8a. The eior (either-or) block implies
that only one the blocks or operations within it is executed depending on the branching
condition. Dependences have been explicitly stated using the serial and parallel blocks
in this example. The hardware costs were unaltered from the previous example, but
the execution time cost was fixed at 25 units to see if agood tradeoff between speed
and required hardware could be made. The program took 30 cpu seconds to produce a
placement of the code-sequence which is shown in Figure 8b. The code-operations
within []coexist in the same time-space slot. The following points should be noted:

(!) An optimal assignment of operations to ALUs has been achieved, with the two
ALU's sharing no operators in common.

(2) The minimum number of registers (5) have been used.

(3) Depending on the conditional clauses execution time is 4or 5cycles.
It is not necessary to constrain the data paths to be bus-style designs, though in

many cases it is desirable that they are such. In the case of highly parallel sequences,
many interconnections between registers and ALU's are required and buses and links
look alike, due to much less sharing. Figure 8c shows the data path corresponding to
the placement of micro-instructions in Figure 8b using multiplexors rather than buses.

The algorithms described in this paper can be used to perform compiler optimiza
tions. For example, in the register-memory allocation phase of compilation, the algo-

rithms can do the following.

(1) Optimal allocation of registers using the freedom in being able to re-order opera
tions which don't have dependence constraints between them.

(2) Deciding which variables should reside in memory and which in aregister, taking
into account constraints on the number of registers and optimizing for execution
time (memory access being slower than register access, heavily used variables

should be in registers).

(3) Ceruin variables can be constrained to be in registers only.

(serial
(parallel

(add v2 v3 vl) (divide v2 v3 v4J

eior

(add vl v4 v6) (minus vl v4 v6)

eior

(mult v6 v3 v7)
(serial (divide v6 v3 v8) (mult v8 v2 v7jj

parallel
(and v7 v4 v9) (or v7 vl vlO)

)

(a) Input Description

(add v2 v3 vl) (divide v2 v3 v4)

[(add vl v4 v6)
(minus vl v4 v6)]

[(mult v6 v3 v6)
(minus v3 v6 v3)]

(mult v2 v3 v6)

(and v6 v4 v2) (or v6vl_v3)

(b) 3-Dimensional Placement

(c) Multiplexor-Style Data Path
Fig. 8

24

6. CONCLUSIONS

We have described a novel method for synthesising data paths from behavioral

descriptions.

The entire allocation process in data path synthesis has been formulated as a two-

dimensional placement problem of micro-instructions in space and time. This formulation

allows simultaneous cost-constrained allocation of registers, arithmetic units, interconnect

(buses and links) while trading off hardware cost against execution speed. Conditional

resource sharing is incorporated by defining disjoincy between operations and formulating

a three-dimensional placement problem with positional constraints.

We have presented both simulated-annealing-based and exact branch-and-bound

algorithms solutions to this micro-instruction placement problem and achieved excellent

results, thereby successfully demonstrating that data paths can be synthesized optimally

from behavioral descriptions using this technique.

7. REFERENCES

[barb79]
M. Barbacci. G. Barnes. R. Cattell and D. P. Siewiorek. "The Symbolic Manipulation
of Computer Descriptions: ISPS Computer Description Language". Carnegie-Mellon
University 1979.

[demi83]
G. De Micheli and A. Sangiovanni-Vincentelli. "Multiple Constrained Folding of Pro
grammable Logic Arrays: Theory and Applications". IEEE Transactions on CAD. July
1983.

[demi85]
G. De Micheli. R. K. Brayton and A. Sangiovanni-Vincentelli. "Optimal State Assign
ment for Finite State Machines". IEEE Transactions on CAD. July 1985.

[deva86]
S. Devadas and A. R. Newton. "GENIE: A Generalized Array Optimizer for VLSI Syn
thesis". Proceedings of the 23rd Design Automation Conference. July 1986.

[egan84]
P. Egan and C. L. Liu. "Optimal Bipartite Folding of a PLA". IEEE Transactions on
CAD. July 1984.

[hafe8l]
L. J. Hafer. "Automated Data Memory Synthesis: A Formal Method for the
Specification, Analysis and Design of Register Transfer Level Design Logic", PhD
Thesis. Carnegie-Mellon University, June 1981.

[hitc83]
C. Y. Hitchcock III and D. E. Thomas. "A Method for Automatic Data Path Syn
thesis", "Proceedings of the 20th Design Automation Conference. June 1983.

[kirk83]
S. Kirkpatrick, C. D. Gelatt. and M. P. Vecchi. "Optimization by Simulated
Annealing" .Science. Vol.220,N. 4598. pp 671-680. 13 May 1983

[kowa83]
T. J. Kowalski and D. E. Thomas, "The VLSI Design Automation Assistant: Prototype
System". Proceedings of the 20th Design Automation Conference, June 1983.

[kowa85]
T. J. Kowalski and D. E. Thomas. "The VLSI Design Automation Assistant: What's in
a Knowledge Base". Proceedings of the 22nd Design Automation Conference. June
1985.

[mcfa78]
M. C. McFarland. "The VT: A Database for Automated Digital Design". Technical
Report DRC-01-4-80. Design Research Center. Cemegie-Mellon University. December
1978.

[park79]
A. C. Parker. D. E. Thomas, D. Siewiorek. M. Barbacci. L. Hafer. G. Lieve and J. Kim,
"The CMU Design Automation System", in ACM IEEE 16th Design Automation
Conference Proceedings 1979.

[park86]
A. C. Parker. M. Mlinar and J. Pizarro. "MAHA: A Program for Data Path Syn
thesis" . Proceedings of the 23rd Design Automation Conference. June 1986.

[raja85]
J. V. Rajan and D. E. Thomas. "Synthesis by Delayed Binding of Decisions . Proceed
ings of the 23rd Design Automation Conference. June 1985.

[rome85]
F. Romeo, and A. Sangiovanni-Vincentelli, "Probabilistic Hill Climbing Algorithms:
Properties and Applications^. Fuchs ed., 1985 Chapel Hill Conference on VLSI, May
1985.

[snow78] m
E. A. Snow. "Automation of Module Set Independent Register-transfer Level Design .
PhD Thesis. Carnegie-Mellon University, April 1978.

[thom83]
D. E. Thomas. C. Y. Hitchcock m. T. J. Kowalski. J. V. Rajan and R. A. Walker.
"Automatic Data Path Synthesis". IEEE Computer. December 1983.

[tric85]
H. Trickey, "Compiling Pascal Programs into Silicon", PhD Thesis, Stanford Univer
sity, Jlu 1985. Stanford Computer Science Report STAN-CS-85-1059.

[tsen8l]
C-J Tseng and D. P. Siewiorek. "The Modeling and Synthesis of Bus Systems .
Proceedings of the 18th Design Automation Conference. June 1981.

[tsen83]
C-J Tseng and D. P. Siewiorek. "Facet: A Procedure for the Automated Synthesis of
Digital Systems". Proceedings of the 20th Design Automation Conference, June 1983.

[tsen84]
C-J Tseng and D. P. Siewiorek. "Emerald: A Bus Style Designer . Proceedings of the
20th Design Automation Conference, June 1983.

	Copyright notice1986
	ERL-86-92

